Modeling Language GNU MathProg

Language Reference

for GLPK Version 4.50

(DRAFT, May 2013)



The GLPK package is part of the GNU Project released under the aegis of GNU.

Copyright (©) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2013 Andrew
Makhorin, Department for Applied Informatics, Moscow Aviation Institute, Moscow, Russia. All
rights reserved.

Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright
notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions
for verbatim copying, provided also that the entire resulting derived work is distributed under the
terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language,
under the above conditions for modified versions.



Contents

1 Introduction
1.1 Linear programming problem . . . . . . . .. .. . Lo L Lo
1.2 Model objects . . . . . . . . e
1.3 Structure of model description . . . . . . ... Lo
2 Coding model description
2.1 Symbolic names . . . . . . ...
2.2 Numeric literals . . . . . . . . . e
2.3 String literals . . . . . . . L
2.4 Keywords . . . . . . . e e e e e e e
2.5 Delimiters . . . . . . . .. e e
2.6 Comments . . . . . . . . L e e
3 Expressions
3.1 Numeric expressions . . . . . . . . . . L e e e
3.1.1 Numeric literals . . . . . . .. ...
3.1.2 Dummy indices . . . . . . . .. e
3.1.3 Unsubscripted parameters . . . . . . . . . . . . ...
3.1.4 Subscripted parameters . . . . . .. ..o
3.1.5  Function references . . . . . . . . . . ...
3.1.6 Iterated expressions . . . . . . . ...
3.1.7 Conditional expressions . . . . . . . . . ...
3.1.8 Parenthesized expressions . . . . . . . . .. Lo oo
3.1.9 Arithmetic operators . . . . . . . . . ...
3.1.10 Hierarchy of operations . . . . . . . . . . ... ... ...
3.2 Symbolic eXpressions . . . . . ... e
3.2.1 Function references . . . . . . . . ...
3.2.2 Symbolic operators . . . . . . . ... e
3.2.3 Hierarchy of operations . . . . . . . . . . . . . . . ...
3.3 Indexing expressions and dummy indices . . . . . . .. ... Lo Lo
3.4 Set eXpressions . . . . . ... e e e e
3.4.1 Literal sets . . . . . . . e
3.4.2 Unsubscripted sets . . . . . . . . ...
3.4.3 Subscripted sets . . . . ..
3.4.4  “Arithmetic” sets . . . . . . . . . . e

10
10
10
11
11
11



3.4.5 Indexing expressions . . . . . . . . . ..o e e e 23

3.4.6 Tterated expressions . . . . . . . .. ..o 24
3.4.7 Conditional expressions . . . . . . . . . ... e 24
3.4.8 Parenthesized expressions . . . . . . .. ..o o 24
3.4.9 Set operators . . . . . . ... e e 25
3.4.10 Hierarchy of operations . . . . . . . . . . . . .. ... 25

3.5 Logical expressions . . . . . . . . .. e 26
3.5.1 Numeric expressions . . . . . . . . . . .. e e e 26
3.5.2 Relational operators . . . . . . . . . ... 26
3.5.3 TIterated expressions . . . . . . . ... L 27
3.5.4 Parenthesized expressions . . . . . . . .. ..o e s 27
3.5.5 Logical operators . . . . . . . ... 28
3.5.6 Hierarchy of operations . . . . . . . . . . ... ... 28

3.6 Linear eXpressions . . . . . . . .. ... oo e e e e e 28
3.6.1 Unsubscripted variables . . . . . . . . . . . .. .. ... 29
3.6.2 Subscripted variables . . . . . . . .. ... 29
3.6.3 Iterated expressions . . . . . . . ... Lo 29
3.6.4 Conditional expressions . . . . . . . . . ... 29
3.6.5 Parenthesized expressions . . . . . . . . ..o oo 30
3.6.6 Arithmetic operators . . . . . . . . . ... 30
3.6.7 Hierarchy of operations . . . . . . . ... .. . ... . 30

4 Statements 31
4.1 Setstatement . . . . . . . ... e 31
4.2 Parameter statement . . . . .. ... Lo 33
4.3 Variable statement . . . . . . .. .. e e 35
4.4 Constraint statement . . . . . . . . . .. L. 36
4.5 Objective statement . . . . . . . . ..o 37
4.6 Solve statement . . . . . ... e 38
4.7 Check statement . . . . . . .. L 39
4.8 Display statement . . . . . ... 39
4.9 Printf statement . . . . ..o 40
4.10 For statement . . . . . . . . .. e e e e e e 41
4.11 Table statement . . . . . . . . . .. 42
4.11.1 Table structure . . . . . . . . . . e 43
4.11.2 Reading data from input table . . . . . .. .. ... oL 43
4.11.3 Writing data to output table . . . . .. ... ... 00 oo 43

5 Model data 45
5.1 Coding data section . . . . . . ... 46
5.2 Setdatablock. . . . . . . L 47
5.2.1 Assigndatarecord . . . . . . ... L 48
5.2.2 Slice datarecord . . . . . . . . . 48
5.2.3 Simple datarecord . . . . . . ... 49
5.2.4 Matrix datarecord . . . . . . ... 49



5.2.5 Transposed matrix data record . . . . . . . .. ... oo
5.3 Parameter data block . . . . . . ...
5.3.1 Assigndatarecord . . . . . ... ..
5.3.2 Slice datarecord . . . . . . . . . ... e
5.3.3 Plaindatarecord . . . . . . . . . ...
5.3.4 Tabular datarecord . . . . . . . . . ... ...
5.3.5 Transposed tabular datarecord . . . . . . . . . ... ... ... ... ... ..
5.3.6 Tabbing data format . . . . . . . . ...

A Using suffixes

B Date and time functions
B.1 Obtaining current calendar time . . . . . . ... .. ... L L 0L
B.2 Converting character string to calendar time . . . . . . . .. .. ... ... ... ..
B.3 Converting calendar time to character string . . . . . . . ... ... ... ... ...

C Table drivers
C.1 CSV tabledriver . . . . . . . . . .
C.2 xBASE tabledriver. . . . . . . . . . . e
C.3 ODBC tabledriver . . . . . . . . .
C.4 MySQL table driver . . . . . . . . . . .

D Solving models with glpsol

Example model description

E.1 Model description written in MathProg . . . . .. .. ... ... ... ... ...
E.2 Generated LP problem instance . . . . . . . . . ... .. ... ... .. .. ... ...
E.3 Optimal LP solution . . . . . . . . . .. .

Acknowledgements

55

56
56
o6
o8

61
61
63
63
65

68

70
70
72
72

74



Chapter 1

Introduction

GNU MathProg is a modeling language intended for describing linear mathematical program-
ming models.!

Model descriptions written in the GNU MathProg language consist of a set of statements and
data blocks constructed by the user from the language elements described in this document.

In a process called translation, a program called the model translator analyzes the model descrip-
tion and translates it into internal data structures, which may be then used either for generating
mathematical programming problem instance or directly by a program called the solver to obtain
numeric solution of the problem.

1.1 Linear programming problem

In MathProg the linear programming (LP) problem is stated as follows:
minimize (or maximize)
z=c1x1 +cato+ ...+ cnTn + o (1.1)
subject to linear constraints

Ly < a1 + agxs +...4+ aipx, < Ui
Ly < agim1 + azxe +...+ azen, < Us

(1.2)
Ly, < amiz1 + amax2 + ...+ apnn < U,
and bounds of variables
lhh <z <wy
lo <29 <o (1.3)
I < 0 <ty

!The GNU MathProg language is a subset of the AMPL language. Its GLPK implementation is mainly based
on the paper: Robert Fourer, David M. Gay, and Brian W. Kernighan, “A Modeling Language for Mathematical
Programming.” Management Science 36 (1990), pp. 519-54.



where x1, x9, ..., x, are variables; z is the objective function; ¢, c3, ..., ¢, are objective coeffi-

cients; ¢ is the constant term (“shift”) of the objective function; a1, ai2, ..., amy are constraint
coefficients; Ly, Lo, ..., L,, are lower constraint bounds; Uy, Us, ..., Uy, are upper constraint
bounds; 1, lo, ..., l,, are lower bounds of variables; w1, us, ..., u, are upper bounds of variables.

Bounds of variables and constraint bounds can be finite as well as infinite. Besides, lower bounds
can be equal to corresponding upper bounds. Thus, the following types of variables and constraints
are allowed:

—00 <z < +00 Free (unbounded) variable
I <z <40 Variable with lower bound

—co<zr<u Variable with upper bound
[ <z <u Double-bounded variable
l=x=u Fixed variable

—00 < Y ajrj < 400 Free (unbounded) linear form
L <Y ajr; < +oo Inequality constraint “greater than or equal to”
—00 < Y ajxr; <U Inequality constraint “less than or equal to”
L<> ajr; < U Double-bounded inequality constraint
L=5%ajz;=U Equality constraint

In addition to pure LP problems MathProg also allows mixed integer linear programming (MIP)
problems, where some or all variables are restricted to be integer or binary.

1.2 Model objects

In MathProg the model is described in terms of sets, parameters, variables, constraints, and
objectives, which are called model objects.

The user introduces particular model objects using the language statements. Each model object
is provided with a symbolic name which uniquely identifies the object and is intended for referencing
purposes.

Model objects, including sets, can be multidimensional arrays built over indexing sets. Formally,
n-dimensional array A is the mapping:
A:A—=E (1.4)

where A C S7 X ... x S, is a subset of the Cartesian product of indexing sets, = is a set of
array members. In MathProg the set A is called the subscript domain. Its members are n-tuples
(il, cee ,in), where i1 € S1, ..., i, € 5,

If n = 0, the Cartesian product above has exactly one member (namely, O-tuple), so it is
convenient to think scalar objects as 0-dimensional arrays having one member.



The type of array members is determined by the type of corresponding model object as follows:

Model object Array member

Set Elemental plain set
Parameter Number or symbol
Variable Elemental variable
Constraint Elemental constraint
Objective Elemental objective

In order to refer to a particular object member the object should be provided with subscripts.
For example, if a is a 2-dimensional parameter defined over I x J, a reference to its particular
member can be written as a[i, j], where ¢ € I and j € J. It is understood that scalar objects being
0-dimensional need no subscripts.

1.3 Structure of model description

It is sometimes desirable to write a model which, at various points, may require different data
for each problem instance to be solved using that model. For this reason in MathProg the model
description consists of two parts: the model section and the data section.

The model section is a main part of the model description that contains declarations of model
objects and is common for all problems based on the corresponding model.

The data section is an optional part of the model description that contains data specific for a
particular problem instance.

Depending on what is more convenient the model and data sections can be placed either in one
file or in two separate files. The latter feature allows having arbitrary number of different data
sections to be used with the same model section.



Chapter 2

Coding model description

The model description is coded in a plain text format using ASCII character set. Characters
valid in the model description are the following:

— alphabetic characters:
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopgrstuvwxyz._

— numeric characters:
01234567829

— special characters:

P g ()x+, - ./, <=>[1"4{13%"

— white-space characters:
SP HT CR NL VT FF

Within string literals and comments any ASCII characters (except control characters) are valid.

White-space characters are non-significant. They can be used freely between lexical units to
improve readability of the model description. They are also used to separate lexical units from each
other if there is no other way to do that.

Syntactically model description is a sequence of lexical units in the following categories:
— symbolic names;
— numeric literals;
— string literals;
— keywords;
— delimiters;

— comments.

The lexical units of the language are discussed below.



2.1 Symbolic names

A symbolic name consists of alphabetic and numeric characters, the first of which should be
alphabetic. All symbolic names are distinct (case sensitive).

Examples

alphal23
This_is_a_name
_P123_abc_321

Symbolic names are used to identify model objects (sets, parameters, variables, constraints,
objectives) and dummy indices.

All symbolic names (except names of dummy indices) should be unique, i.e. the model descrip-
tion should have no objects with identical names. Symbolic names of dummy indices should be
unique within the scope, where they are valid.

2.2 Numeric literals

A numeric literal has the form zzEsyy, where zz is a number with optional decimal point, s is
the sign + or -, yy is a decimal exponent. The letter E is case insensitive and can be coded as e.

Examples

123
3.14159

56 .E+5

.78
123.456e-7

Numeric literals are used to represent numeric quantities. They have obvious fixed meaning.

2.3 String literals

A string literal is a sequence of arbitrary characters enclosed either in single quotes or in double
quotes. Both these forms are equivalent.

If a single quote is part of a string literal enclosed in single quotes, it should be coded twice.
Analogously, if a double quote is part of a string literal enclosed in double quotes, it should be
coded twice.

Examples

’This is a string’

"This is another string"

’That’’s all’

"""Hello there,"" said the captain."

String literals are used to represent symbolic quantities.

10



2.4 Keywords

A keyword is a sequence of alphabetic characters and possibly some special characters.

All keywords fall into two categories: reserved keywords, which cannot be used as symbolic
names, and non-reserved keywords, which are recognized by context and therefore can be used as
symbolic names.

The reserved keywords are the following:

and else mod union
by if not within
Cross in or

diff inter symdiff

div less then

Non-reserved keywords are described in following sections.

All the keywords have fixed meaning, which will be explained on discussion of corresponding
syntactic constructions, where the keywords are used.

2.5 Delimiters

A delimiter is either a single special character or a sequence of two special characters as follows:

+ *% <= > && : | [ >>
- B = <> I ; - ] <-
* & == I= . = ( {
/ < >= ! , .. ) }

If the delimiter consists of two characters, there should be no spaces between the characters.

All the delimiters have fixed meaning, which will be explained on discussion corresponding
syntactic constructions, where the delimiters are used.

2.6 Comments

For documenting purposes the model description can be provided with comments, which may
have two different forms. The first form is a single-line comment, which begins with the character
# and extends until end of line. The second form is a comment sequence, which is a sequence of
any characters enclosed within /* and */.

Examples

param n := 10; # This is a comment
/* This is another comment */

Comments are ignored by the model translator and can appear anywhere in the model descrip-
tion, where white-space characters are allowed.

11



Chapter 3

Expressions

An expression is a rule for computing a value. In model description expressions are used as
constituents of certain statements.

In general case expressions consist of operands and operators.
Depending on the type of the resultant value all expressions fall into the following categories:

— numeric expressions;
— symbolic expressions;
— indexing expressions;
— set expressions;

— logical expressions;

— linear expressions.

3.1 Numeric expressions

A numeric expression is a rule for computing a single numeric value represented as a floating-
point number.

The primary numeric expression may be a numeric literal, dummy index, unsubscripted param-
eter, subscripted parameter, built-in function reference, iterated numeric expression, conditional
numeric expression, or another numeric expression enclosed in parentheses.

Examples

1.23 (numeric literal)

j (dummy index)

time (unsubscripted parameter)
(
(

a[’May 20037, j+1] subscripted parameter)
abs(b[i,jl) function reference)

12



sum{i in S diff T} alpha[i] * b[i,j] (iterated expression)
if i in I then 2 * p else qli+1] (conditional expression)
(b[i,j]l + .56 * ¢) (parenthesized expression)

More general numeric expressions containing two or more primary numeric expressions may be
constructed by using certain arithmetic operators.

Examples

j+1

2 * ali-1,j+1] - bl[i,j]

sum{j in J} ali,j] * x[j] + sum{k in K} b[i,k] * x[k]

(if i in I and p >= 1 then 2 * p else qli+1]) / (ali,j] + 1.5)

3.1.1 Numeric literals

If the primary numeric expression is a numeric literal, the resultant value is obvious.

3.1.2 Dummy indices

If the primary numeric expression is a dummy index, the resultant value is current value assigned
to that dummy index.

3.1.3 Unsubscripted parameters

If the primary numeric expression is an unsubscripted parameter (which should be 0-dimen-
sional), the resultant value is the value of that parameter.

3.1.4 Subscripted parameters

The primary numeric expression, which refers to a subscripted parameter, has the following
syntactic form:
nameliy, 19, ..., inl

where name is the symbolic name of the parameter, i1, io, ..., i, are subscripts.

Each subscript should be a numeric or symbolic expression. The number of subscripts in the
subscript list should be the same as the dimension of the parameter with which the subscript list
is associated.

Actual values of subscript expressions are used to identify a particular member of the parameter
that determines the resultant value of the primary expression.

13



3.1.5 Function references

In MathProg there exist the following built-in functions which may be used in numeric expres-

sions:
abs(x)
atan(x)
atan(y, x)

card(X)
ceil(x)
cos(x)
exp(x)
floor(x)
gmtime ()

length(s)

log(x)

log10(x)

max(xy, X2, ..., Tp)
min(xry, T2, ..., Tp)
round (x)

round(z, n)

sin(z)

sqrt (x)
str2time(s, f)

trunc(z)
trunc(x, n)
Irand224 ()
Uniform01()
Uniform(a, b)
Normal0O1()
Normal (i, o)

||, absolute value of x

arctan z, principal value of the arc tangent of = (in radians)
arctany/x, principal value of the arc tangent of y/z (in radians). In
this case the signs of both arguments y and x are used to determine
the quadrant of the resultant value

| X|, cardinality (the number of elements) of set X

[x], smallest integer not less than x (“ceiling of x”)

cos x, cosine of z (in radians)

e”, base-e exponential of z

|x], largest integer not greater than = (“floor of )

the number of seconds elapsed since 00:00:00 Jan 1, 1970, Coordinated
Universal Time (for details see Section B.1, page 56)

|s], length of character string s

log x, natural logarithm of x

log,y x, common (decimal) logarithm of z

the largest of values z1, xo, ..., x,

the smallest of values x1, o, ..., x,

rounding x to nearest integer

rounding z to n fractional decimal digits

sin z, sine of z (in radians)

\/x, non-negative square root of x

converting character string s to calendar time (for details see Section
B.2, page 56)

truncating x to nearest integer

truncating x to n fractional decimal digits

generating pseudo-random integer uniformly distributed in [0, 22%)
generating pseudo-random number uniformly distributed in [0, 1)
generating pseudo-random number uniformly distributed in [a, b)
generating Gaussian pseudo-random variate with 4 =0 and 0 =1
generating Gaussian pseudo-random variate with given p and o

Arguments of all built-in functions, except card, length, and str2time, should be numeric
expressions. The argument of card should be a set expression. The argument of length and both
arguments of str2time should be symbolic expressions.

The resultant value of the numeric expression, which is a function reference, is the result of
applying the function to its argument(s).

Note that each pseudo-random generator function has a latent argument (i.e. some internal
state), which is changed whenever the function has been applied. Thus, if the function is applied
repeatedly even to identical arguments, due to the side effect different resultant values are always

produced.

14



3.1.6 Iterated expressions

An iterated numeric expression is a primary numeric expression, which has the following syn-
tactic form:
iterated-operator indexing-expression integrand

where iterated-operator is the symbolic name of the iterated operator to be performed (see be-
low), indexing-expression is an indexing expression which introduces dummy indices and controls
iterating, integrand is a numeric expression that participates in the operation.

In MathProg there exist four iterated operators, which may be used in numeric expressions:

sum  summation Z flir, .. yin)
(’il,.A.,in)GA
prod production H flir, ... in)
(41,...,in)EA
min  minimum min  f(iy,...,0p)
(i17~~~vin)€A
max  maximum max  f(ig,...,ip)
(il,...,in)GA
where i1, ..., i, are dummy indices introduced in the indexing expression, A is the domain, a set of
n-tuples specified by the indexing expression which defines particular values assigned to the dummy
indices on performing the iterated operation, f(i1,...,iy) is the integrand, a numeric expression

whose resultant value depends on the dummy indices.

The resultant value of an iterated numeric expression is the result of applying of the iterated
operator to its integrand over all n-tuples contained in the domain.

3.1.7 Conditional expressions

A conditional numeric expression is a primary numeric expression, which has one of the following
two syntactic forms:

if b then = else y
if b then z

where b is an logical expression, x and y are numeric expressions.

The resultant value of the conditional expression depends on the value of the logical expression
that follows the keyword if. If it takes on the value true, the value of the conditional expression
is the value of the expression that follows the keyword then. Otherwise, if the logical expression
takes on the value false, the value of the conditional expression is the value of the expression that
follows the keyword else. If the second, reduced form of the conditional expression is used and the
logical expression takes on the value false, the resultant value of the conditional expression is zero.

15



3.1.8 Parenthesized expressions

Any numeric expression may be enclosed in parentheses that syntactically makes it a primary
numeric expression.

Parentheses may be used in numeric expressions, as in algebra, to specify the desired order
in which operations are to be performed. Where parentheses are used, the expression within the
parentheses is evaluated before the resultant value is used.

The resultant value of the parenthesized expression is the same as the value of the expression
enclosed within parentheses.

3.1.9 Arithmetic operators

In MathProg there exist the following arithmetic operators, which may be used in numeric
expressions:

+x unary plus

-z unary minus

Tty addition

-y subtraction

z less y positive difference (if z < y then 0 else z — y)
T *ky multiplication

x/y division

x div y quotient of exact division

x mod y remainder of exact division

x ** y, x "y exponentiation (raising to power)
where = and y are numeric expressions.

If the expression includes more than one arithmetic operator, all operators are performed from
left to right according to the hierarchy of operations (see below) with the only exception that the
exponentiaion operators are performed from right to left.

The resultant value of the expression, which contains arithmetic operators, is the result of
applying the operators to their operands.

3.1.10 Hierarchy of operations

The following list shows the hierarchy of operations in numeric expressions:

Operation Hierarchy
Evaluation of functions (abs, ceil, etc.) 1st
Exponentiation (**, =) 2nd
Unary plus and minus (+, -) 3rd
Multiplication and division (*, /, div, mod)  4th
Iterated operations (sum, prod, min, max) 5th
Addition and subtraction (+, -, less) 6th

Conditional evaluation (if ...then ...else) Tth

16



This hierarchy is used to determine which of two consecutive operations is performed first. If
the first operator is higher than or equal to the second, the first operation is performed. If it is
not, the second operator is compared to the third, etc. When the end of the expression is reached,
all of the remaining operations are performed in the reverse order.

3.2 Symbolic expressions

A symbolic expression is a rule for computing a single symbolic value represented as a character
string.

The primary symbolic expression may be a string literal, dummy index, unsubscripted parame-
ter, subscripted parameter, built-in function reference, conditional symbolic expression, or another
symbolic expression enclosed in parentheses.

It is also allowed to use a numeric expression as the primary symbolic expression, in which case
the resultant value of the numeric expression is automatically converted to the symbolic type.

Examples

’May 2003’ (string literal)

j (dummy index)

p (unsubscripted parameter)
s[’abc’,j+1] (subscripted parameter)
substr(name[i] ,k+1,3) (function reference)

if i in I then s[i,j] & "..." else t[i+1] (conditional expression)
((10 * b[i,jl) & ’.bis’) (parenthesized expression)

More general symbolic expressions containing two or more primary symbolic expressions may
be constructed by using the concatenation operator.

Examples

abe[’ & i & °,0 & j & °1°
"from " & city[i] " to " & cityl[j]

The principles of evaluation of symbolic expressions are completely analogous to the ones given
for numeric expressions (see above).

3.2.1 Function references

In MathProg there exist the following built-in functions which may be used in symbolic expres-
sions:

substr(s, x) substring of s starting from position z

substr(s, x, y) substring of s starting from position x and having length y

time2str (t, f) converting calendar time to character string (for details see Section
B.3, page 58)

The first argument of substr should be a symbolic expression while its second and optional
third arguments should be numeric expressions.

17



The first argument of time2str should be a numeric expression, and its second argument should
be a symbolic expression.

The resultant value of the symbolic expression, which is a function reference, is the result of
applying the function to its arguments.

3.2.2 Symbolic operators

Currently in MathProg there exists the only symbolic operator:
s &t

where s and t are symbolic expressions. This operator means concatenation of its two symbolic
operands, which are character strings.

3.2.3 Hierarchy of operations

The following list shows the hierarchy of operations in symbolic expressions:

Operation Hierarchy
Evaluation of numeric operations 1st-7th
Concatenation (&) 8th

Conditional evaluation (if ...then ...else) 9th

This hierarchy has the same meaning as was explained above for numeric expressions (see
Subsection 3.1.10, page 16).

3.3 Indexing expressions and dummy indices

An indexing expression is an auxiliary construction, which specifies a plain set of n-tuples and
introduces dummy indices. It has two syntactic forms:
{ entry,, entrya, ..., entry, }
{ entry,, entrya, ..., entry, : predicate }
where entry;, entrys, ..., entry, are indexing entries, predicate is a logical expression that specifies
an optional predicate (logical condition).

Each indezring entry in the indexing expression has one of the following three forms:

1in S
(il, ’ig, ,in) in S
S
where i1, 49, ..., i, are indices, S is a set expression (discussed in the next section) that specifies

the basic set.

18



The number of indices in the indexing entry should be the same as the dimension of the basic
set S, i.e. if S consists of 1-tuples, the first form should be used, and if S consists of n-tuples,
where n > 1, the second form should be used.

If the first form of the indexing entry is used, the index ¢ can be a dummy index only (see
below). If the second form is used, the indices i1, @2, ..., i, can be either dummy indices or some
numeric or symbolic expressions, where at least one index should be a dummy index. The third,
reduced form of the indexing entry has the same effect as if there were ¢ (if S is 1-dimensional) or
i1, 92, ..., ip (if S is n-dimensional) all specified as dummy indices.

A dummy index is an auxiliary model object, which acts like an individual variable. Values
assigned to dummy indices are components of n-tuples from basic sets, i.e. some numeric and
symbolic quantities.

For referencing purposes dummy indices can be provided with symbolic names. However, unlike
other model objects (sets, parameters, etc.) dummy indices need not be explicitly declared. Each
undeclared symbolic name being used in the indexing position of an indexing entry is recognized as
the symbolic name of corresponding dummy index.

Symbolic names of dummy indices are valid only within the scope of the indexing expression,
where the dummy indices were introduced. Beyond the scope the dummy indices are completely
inaccessible, so the same symbolic names may be used for other purposes, in particular, to represent
dummy indices in other indexing expressions.

The scope of indexing expression, where implicit declarations of dummy indices are valid, de-
pends on the context, in which the indexing expression is used:

— If the indexing expression is used in iterated operator, its scope extends until the end of the

integrand.

— If the indexing expression is used as a primary set expression, its scope extends until the end
of that indexing expression.

— If the indexing expression is used to define the subscript domain in declarations of some model
objects, its scope extends until the end of the corresponding statement.

The indexing mechanism implemented by means of indexing expressions is best explained by
some examples discussed below.

Let there be given three sets:

A=1{4,7,9},
B ={(1,Jan), (1, Feb), (2, Mar), (2, Apr), (3, May), (3, Jun)},
C ={a,b,c},

where A and C' consist of 1-tuples (singlets), B consists of 2-tuples (doublets). Consider the
following indexing expression:

{i in A, (j,k) in B, 1 in C}

where i, j, k, and 1 are dummy indices.
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Although MathProg is not a procedural language, for any indexing expression an equivalent
algorithmic description can be given. In particular, the algorithmic description of the indexing
expression above could look like follows:

for all i € A do
for all (j,k) € B do
for alll € C' do
action;
where the dummy indices 7, j, k, [ are consecutively assigned corresponding components of n-tuples
from the basic sets A, B, C, and action is some action that depends on the context, where the
indexing expression is used. For example, if the action were printing current values of dummy
indices, the printout would look like follows:
1=4 j7=1 k=Jan l=a
1=4 j=1 k=Jan 1=0
1=4 j7=1 k=Jan l=c
1=4 j=1 k=Feb l=a
1=4 j=1 k=Feb 1l=0

1=9 j7=3 k=Jun [l=0
1=9 7=3 k=Jun l=c

Let the example indexing expression be used in the following iterated operation:
sum{i in A, (j,k) in B, 1 in C} pli,j,k,1]

where p is a 4-dimensional numeric parameter or some numeric expression whose resultant value
depends on i, j, k, and 1. In this case the action is summation, so the resultant value of the
primary numeric expression is:

E (Pijk1)-

i€A,(j,k)EB,leC

Now let the example indexing expression be used as a primary set expression. In this case the
action is gathering all 4-tuples (quadruplets) of the form (i, j, k,1) in one set, so the resultant value
of such operation is simply the Cartesian product of the basic sets:

Ax BxC={(i,j,k1):i€ A (jk)e BleC}
Note that in this case the same indexing expression might be written in the reduced form:
{A, B, C}

because the dummy indices i, j, k, and [ are not referenced and therefore their symbolic names
need not be specified.
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Finally, let the example indexing expression be used as the subscript domain in the declaration
of a 4-dimensional model object, say, a numeric parameter:

param p{i in A, (j,k) in B, 1 in C}...;

In this case the action is generating the parameter members, where each member has the form
pli, 7, k, 1.

As was said above, some indices in the second form of indexing entries may be numeric or
symbolic expressions, not only dummy indices. In this case resultant values of such expressions

play role of some logical conditions to select only that n-tuples from the Cartesian product of basic
sets that satisfy these conditions.

Consider, for example, the following indexing expression:
{i in A, (i-1,k) in B, 1 in C}

where i, k, 1 are dummy indices, and i-1 is a numeric expression. The algorithmic decsription of
this indexing expression is the following:

for all i € A do
for all (j,k) e Band j=1i—1do
for all [ € C do

action;

Thus, if this indexing expression were used as a primary set expression, the resultant set would be
the following:

{