
Python Library Reference
Release 2.1.2

Guido van Rossum

Fred L. Drake, Jr., editor

January 16, 2002

PythonLabs
E-mail: python-docs@python.org



Copyright c© 2001-2002 Python Software Foundation. All rights reserved.

Copyright c© 2000 BeOpen.com. All rights reserved.

Copyright c© 1995-2000 Corporation for National Research Initiatives. All rights reserved.

Copyright c© 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See the end of this document for complete license and permissions information.



Abstract

Python is an extensible, interpreted, object-oriented programming language. It supports a wide range
of applications, from simple text processing scripts to interactive WWW browsers.

While the Python Reference Manual describes the exact syntax and semantics of the language, it does
not describe the standard library that is distributed with the language, and which greatly enhances its
immediate usability. This library contains built-in modules (written in C) that provide access to system
functionality such as file I/O that would otherwise be inaccessible to Python programmers, as well as
modules written in Python that provide standardized solutions for many problems that occur in everyday
programming. Some of these modules are explicitly designed to encourage and enhance the portability
of Python programs.

This library reference manual documents Python’s standard library, as well as many optional library
modules (which may or may not be available, depending on whether the underlying platform supports
them and on the configuration choices made at compile time). It also documents the standard types of the
language and its built-in functions and exceptions, many of which are not or incompletely documented
in the Reference Manual.

This manual assumes basic knowledge about the Python language. For an informal introduction to
Python, see the Python Tutorial; the Python Reference Manual remains the highest authority on syntactic
and semantic questions. Finally, the manual entitled Extending and Embedding the Python Interpreter
describes how to add new extensions to Python and how to embed it in other applications.





CONTENTS

1 Introduction 1

2 Built-in Types, Exceptions and Functions 3
2.1 Built-in Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Built-in Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Built-in Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Python Runtime Services 29
3.1 sys — System-specific parameters and functions . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 gc — Garbage Collector interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 weakref — Weak references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4 fpectl — Floating point exception control . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5 atexit — Exit handlers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.6 types — Names for all built-in types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.7 UserDict — Class wrapper for dictionary objects . . . . . . . . . . . . . . . . . . . . . . 42
3.8 UserList — Class wrapper for list objects . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.9 UserString — Class wrapper for string objects . . . . . . . . . . . . . . . . . . . . . . . 43
3.10 operator — Standard operators as functions. . . . . . . . . . . . . . . . . . . . . . . . . 43
3.11 inspect — Inspect live objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.12 traceback — Print or retrieve a stack traceback . . . . . . . . . . . . . . . . . . . . . . . 50
3.13 linecache — Random access to text lines . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.14 pickle — Python object serialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.15 cPickle — Alternate implementation of pickle . . . . . . . . . . . . . . . . . . . . . . . 57
3.16 copy reg — Register pickle support functions . . . . . . . . . . . . . . . . . . . . . . . 57
3.17 shelve — Python object persistence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.18 copy — Shallow and deep copy operations . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.19 marshal — Alternate Python object serialization . . . . . . . . . . . . . . . . . . . . . . 59
3.20 warnings — Warning control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.21 imp — Access the import internals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.22 code — Interpreter base classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.23 codeop — Compile Python code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.24 pprint — Data pretty printer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.25 repr — Alternate repr() implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.26 new — Creation of runtime internal objects . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.27 site — Site-specific configuration hook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.28 user — User-specific configuration hook . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.29 builtin — Built-in functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.30 main — Top-level script environment . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4 String Services 75
4.1 string — Common string operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2 re — Regular expression operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.3 struct — Interpret strings as packed binary data . . . . . . . . . . . . . . . . . . . . . . 86

i



4.4 difflib — Helpers for computing deltas . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.5 fpformat — Floating point conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.6 StringIO — Read and write strings as files . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.7 cStringIO — Faster version of StringIO . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.8 codecs — Codec registry and base classes . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.9 unicodedata — Unicode Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5 Miscellaneous Services 99
5.1 doctest — Test docstrings represent reality . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.2 unittest — Unit testing framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.3 math — Mathematical functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.4 cmath — Mathematical functions for complex numbers . . . . . . . . . . . . . . . . . . . 116
5.5 random — Generate pseudo-random numbers . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.6 whrandom — Pseudo-random number generator . . . . . . . . . . . . . . . . . . . . . . . . 120
5.7 bisect — Array bisection algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.8 array — Efficient arrays of numeric values . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.9 ConfigParser — Configuration file parser . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.10 fileinput — Iterate over lines from multiple input streams . . . . . . . . . . . . . . . . 126
5.11 xreadlines — Efficient iteration over a file . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.12 calendar — General calendar-related functions . . . . . . . . . . . . . . . . . . . . . . . 128
5.13 cmd — Support for line-oriented command interpreters . . . . . . . . . . . . . . . . . . . 129
5.14 shlex — Simple lexical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6 Generic Operating System Services 135
6.1 os — Miscellaneous OS interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.2 os.path — Common pathname manipulations . . . . . . . . . . . . . . . . . . . . . . . . 146
6.3 dircache — Cached directory listings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.4 stat — Interpreting stat() results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.5 statcache — An optimization of os.stat() . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.6 statvfs — Constants used with os.statvfs() . . . . . . . . . . . . . . . . . . . . . . . 151
6.7 filecmp — File and Directory Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.8 popen2 — Subprocesses with accessible I/O streams . . . . . . . . . . . . . . . . . . . . . 153
6.9 time — Time access and conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
6.10 sched — Event scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.11 mutex — Mutual exclusion support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
6.12 getpass — Portable password input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6.13 curses — Terminal handling for character-cell displays . . . . . . . . . . . . . . . . . . . 160
6.14 curses.textpad — Text input widget for curses programs . . . . . . . . . . . . . . . . . 174
6.15 curses.wrapper — Terminal handler for curses programs . . . . . . . . . . . . . . . . . . 175
6.16 curses.ascii — Utilities for ASCII characters . . . . . . . . . . . . . . . . . . . . . . . 176
6.17 curses.panel — A panel stack extension for curses. . . . . . . . . . . . . . . . . . . . . 178
6.18 getopt — Parser for command line options . . . . . . . . . . . . . . . . . . . . . . . . . . 179
6.19 tempfile — Generate temporary file names . . . . . . . . . . . . . . . . . . . . . . . . . 180
6.20 errno — Standard errno system symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
6.21 glob — Unix style pathname pattern expansion . . . . . . . . . . . . . . . . . . . . . . . 187
6.22 fnmatch — Unix filename pattern matching . . . . . . . . . . . . . . . . . . . . . . . . . 187
6.23 shutil — High-level file operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
6.24 locale — Internationalization services . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
6.25 gettext — Multilingual internationalization services . . . . . . . . . . . . . . . . . . . . 193

7 Optional Operating System Services 201
7.1 signal — Set handlers for asynchronous events . . . . . . . . . . . . . . . . . . . . . . . 201
7.2 socket — Low-level networking interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
7.3 select — Waiting for I/O completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
7.4 thread — Multiple threads of control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
7.5 threading — Higher-level threading interface . . . . . . . . . . . . . . . . . . . . . . . . 211
7.6 Queue — A synchronized queue class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
7.7 mmap — Memory-mapped file support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
7.8 anydbm — Generic access to DBM-style databases . . . . . . . . . . . . . . . . . . . . . . 219

ii



7.9 dumbdbm — Portable DBM implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 220
7.10 dbhash — DBM-style interface to the BSD database library . . . . . . . . . . . . . . . . 220
7.11 whichdb — Guess which DBM module created a database . . . . . . . . . . . . . . . . . 221
7.12 bsddb — Interface to Berkeley DB library . . . . . . . . . . . . . . . . . . . . . . . . . . 221
7.13 zlib — Compression compatible with gzip . . . . . . . . . . . . . . . . . . . . . . . . . . 223
7.14 gzip — Support for gzip files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
7.15 zipfile — Work with ZIP archives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
7.16 readline — GNU readline interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
7.17 rlcompleter — Completion function for GNU readline . . . . . . . . . . . . . . . . . . . 230

8 Unix Specific Services 231
8.1 posix — The most common POSIX system calls . . . . . . . . . . . . . . . . . . . . . . . 231
8.2 pwd — The password database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
8.3 grp — The group database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
8.4 crypt — Function to check Unix passwords . . . . . . . . . . . . . . . . . . . . . . . . . 233
8.5 dl — Call C functions in shared objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
8.6 dbm — Simple “database” interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
8.7 gdbm — GNU’s reinterpretation of dbm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
8.8 termios — POSIX style tty control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
8.9 TERMIOS — Constants used with the termios module . . . . . . . . . . . . . . . . . . . . 238
8.10 tty — Terminal control functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
8.11 pty — Pseudo-terminal utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
8.12 fcntl — The fcntl() and ioctl() system calls . . . . . . . . . . . . . . . . . . . . . . . 239
8.13 pipes — Interface to shell pipelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
8.14 posixfile — File-like objects with locking support . . . . . . . . . . . . . . . . . . . . . 241
8.15 resource — Resource usage information . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
8.16 nis — Interface to Sun’s NIS (Yellow Pages) . . . . . . . . . . . . . . . . . . . . . . . . . 245
8.17 syslog — Unix syslog library routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
8.18 commands — Utilities for running commands . . . . . . . . . . . . . . . . . . . . . . . . . 246

9 The Python Debugger 249
9.1 Debugger Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
9.2 How It Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

10 The Python Profiler 255
10.1 Introduction to the profiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
10.2 How Is This Profiler Different From The Old Profiler? . . . . . . . . . . . . . . . . . . . . 255
10.3 Instant Users Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
10.4 What Is Deterministic Profiling? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
10.5 Reference Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
10.6 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
10.7 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
10.8 Extensions — Deriving Better Profilers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

11 Internet Protocols and Support 267
11.1 webbrowser — Convenient Web-browser controller . . . . . . . . . . . . . . . . . . . . . . 267
11.2 cgi — Common Gateway Interface support. . . . . . . . . . . . . . . . . . . . . . . . . . 269
11.3 urllib — Open arbitrary resources by URL . . . . . . . . . . . . . . . . . . . . . . . . . 274
11.4 urllib2 — extensible library for opening URLs . . . . . . . . . . . . . . . . . . . . . . . 278
11.5 httplib — HTTP protocol client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
11.6 ftplib — FTP protocol client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
11.7 gopherlib — Gopher protocol client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
11.8 poplib — POP3 protocol client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
11.9 imaplib — IMAP4 protocol client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
11.10 nntplib — NNTP protocol client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
11.11 smtplib — SMTP protocol client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
11.12 telnetlib — Telnet client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
11.13 urlparse — Parse URLs into components . . . . . . . . . . . . . . . . . . . . . . . . . . 302
11.14 SocketServer — A framework for network servers . . . . . . . . . . . . . . . . . . . . . . 303

iii



11.15 BaseHTTPServer — Basic HTTP server . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
11.16 SimpleHTTPServer — Simple HTTP request handler . . . . . . . . . . . . . . . . . . . . 308
11.17 CGIHTTPServer — CGI-capable HTTP request handler . . . . . . . . . . . . . . . . . . . 308
11.18 Cookie — HTTP state management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
11.19 asyncore — Asynchronous socket handler . . . . . . . . . . . . . . . . . . . . . . . . . . 313

12 Internet Data Handling 317
12.1 formatter — Generic output formatting . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
12.2 rfc822 — Parse RFC 822 mail headers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
12.3 mimetools — Tools for parsing MIME messages . . . . . . . . . . . . . . . . . . . . . . . 324
12.4 MimeWriter — Generic MIME file writer . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
12.5 multifile — Support for files containing distinct parts . . . . . . . . . . . . . . . . . . . 326
12.6 binhex — Encode and decode binhex4 files . . . . . . . . . . . . . . . . . . . . . . . . . . 327
12.7 uu — Encode and decode uuencode files . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
12.8 binascii — Convert between binary and ascii . . . . . . . . . . . . . . . . . . . . . . . 328
12.9 xdrlib — Encode and decode XDR data . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
12.10 mailcap — Mailcap file handling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
12.11 mimetypes — Map filenames to MIME types . . . . . . . . . . . . . . . . . . . . . . . . . 333
12.12 base64 — Encode and decode MIME base64 data . . . . . . . . . . . . . . . . . . . . . . 334
12.13 quopri — Encode and decode MIME quoted-printable data . . . . . . . . . . . . . . . . 335
12.14 mailbox — Read various mailbox formats . . . . . . . . . . . . . . . . . . . . . . . . . . 335
12.15 mhlib — Access to MH mailboxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
12.16 mimify — MIME processing of mail messages . . . . . . . . . . . . . . . . . . . . . . . . 338
12.17 netrc — netrc file processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
12.18 robotparser — Parser for robots.txt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340

13 Structured Markup Processing Tools 341
13.1 sgmllib — Simple SGML parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
13.2 htmllib — A parser for HTML documents . . . . . . . . . . . . . . . . . . . . . . . . . . 343
13.3 htmlentitydefs — Definitions of HTML general entities . . . . . . . . . . . . . . . . . . 345
13.4 xml.parsers.expat — Fast XML parsing using Expat . . . . . . . . . . . . . . . . . . . 345
13.5 xml.dom — The Document Object Model API . . . . . . . . . . . . . . . . . . . . . . . . 351
13.6 xml.dom.minidom — Lightweight DOM implementation . . . . . . . . . . . . . . . . . . . 360
13.7 xml.dom.pulldom — Support for building partial DOM trees . . . . . . . . . . . . . . . . 365
13.8 xml.sax — Support for SAX2 parsers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
13.9 xml.sax.handler — Base classes for SAX handlers . . . . . . . . . . . . . . . . . . . . . 367
13.10 xml.sax.saxutils — SAX Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
13.11 xml.sax.xmlreader — Interface for XML parsers . . . . . . . . . . . . . . . . . . . . . . 371
13.12 xmllib — A parser for XML documents . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

14 Multimedia Services 379
14.1 audioop — Manipulate raw audio data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
14.2 imageop — Manipulate raw image data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
14.3 aifc — Read and write AIFF and AIFC files . . . . . . . . . . . . . . . . . . . . . . . . . 383
14.4 sunau — Read and write Sun AU files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
14.5 wave — Read and write WAV files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
14.6 chunk — Read IFF chunked data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
14.7 colorsys — Conversions between color systems . . . . . . . . . . . . . . . . . . . . . . . 390
14.8 rgbimg — Read and write “SGI RGB” files . . . . . . . . . . . . . . . . . . . . . . . . . . 391
14.9 imghdr — Determine the type of an image . . . . . . . . . . . . . . . . . . . . . . . . . . 391
14.10 sndhdr — Determine type of sound file . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392

15 Cryptographic Services 393
15.1 md5 — MD5 message digest algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
15.2 sha — SHA message digest algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
15.3 mpz — GNU arbitrary magnitude integers . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
15.4 rotor — Enigma-like encryption and decryption . . . . . . . . . . . . . . . . . . . . . . . 396

16 Restricted Execution 399

iv



16.1 rexec — Restricted execution framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
16.2 Bastion — Restricting access to objects . . . . . . . . . . . . . . . . . . . . . . . . . . . 402

17 Python Language Services 405
17.1 parser — Access Python parse trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
17.2 symbol — Constants used with Python parse trees . . . . . . . . . . . . . . . . . . . . . . 414
17.3 token — Constants used with Python parse trees . . . . . . . . . . . . . . . . . . . . . . 414
17.4 keyword — Testing for Python keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
17.5 tokenize — Tokenizer for Python source . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
17.6 tabnanny — Detection of ambiguous indentation . . . . . . . . . . . . . . . . . . . . . . . 415
17.7 pyclbr — Python class browser support . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
17.8 py compile — Compile Python source files . . . . . . . . . . . . . . . . . . . . . . . . . 417
17.9 compileall — Byte-compile Python libraries . . . . . . . . . . . . . . . . . . . . . . . . 417
17.10 dis — Disassembler for Python byte code . . . . . . . . . . . . . . . . . . . . . . . . . . 417

18 SGI IRIX Specific Services 425
18.1 al — Audio functions on the SGI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
18.2 AL — Constants used with the al module . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
18.3 cd — CD-ROM access on SGI systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
18.4 fl — FORMS library interface for GUI applications . . . . . . . . . . . . . . . . . . . . . 430
18.5 FL — Constants used with the fl module . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
18.6 flp — Functions for loading stored FORMS designs . . . . . . . . . . . . . . . . . . . . . 435
18.7 fm — Font Manager interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
18.8 gl — Graphics Library interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
18.9 DEVICE — Constants used with the gl module . . . . . . . . . . . . . . . . . . . . . . . . 438
18.10 GL — Constants used with the gl module . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
18.11 imgfile — Support for SGI imglib files . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
18.12 jpeg — Read and write JPEG files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439

19 SunOS Specific Services 441
19.1 sunaudiodev — Access to Sun audio hardware . . . . . . . . . . . . . . . . . . . . . . . . 441
19.2 SUNAUDIODEV — Constants used with sunaudiodev . . . . . . . . . . . . . . . . . . . . . 442

20 MS Windows Specific Services 443
20.1 msvcrt – Useful routines from the MS VC++ runtime . . . . . . . . . . . . . . . . . . . . 443
20.2 winreg – Windows registry access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444
20.3 winsound — Sound-playing interface for Windows . . . . . . . . . . . . . . . . . . . . . . 448

A Undocumented Modules 451
A.1 Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
A.2 Miscellaneous useful utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
A.3 Platform specific modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
A.4 Multimedia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452
A.5 Obsolete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452
A.6 SGI-specific Extension modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453

B Reporting Bugs 455

Module Index 457

Index 461

v



vi



CHAPTER

ONE

Introduction

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as
numbers and lists. For these types, the Python language core defines the form of literals and places some
constraints on their semantics, but does not fully define the semantics. (On the other hand, the language
core does define syntactic properties like the spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python
code without the need of an import statement. Some of these are defined by the core language, but
many are not essential for the core semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect
this collection. Some modules are written in C and built in to the Python interpreter; others are written
in Python and imported in source form. Some modules provide interfaces that are highly specific to
Python, like printing a stack trace; some provide interfaces that are specific to particular operating
systems, such as access to specific hardware; others provide interfaces that are specific to a particular
application domain, like the World-Wide Web. Some modules are available in all versions and ports of
Python; others are only available when the underlying system supports or requires them; yet others are
available only when a particular configuration option was chosen at the time when Python was compiled
and installed.

This manual is organized “from the inside out:” it first describes the built-in data types, then the built-in
functions and exceptions, and finally the modules, grouped in chapters of related modules. The ordering
of the chapters as well as the ordering of the modules within each chapter is roughly from most relevant
to least important.

This means that if you start reading this manual from the start, and skip to the next chapter when
you get bored, you will get a reasonable overview of the available modules and application areas that
are supported by the Python library. Of course, you don’t have to read it like a novel — you can also
browse the table of contents (in front of the manual), or look for a specific function, module or term in
the index (in the back). And finally, if you enjoy learning about random subjects, you choose a random
page number (see module random) and read a section or two. Regardless of the order in which you read
the sections of this manual, it helps to start with chapter 2, “Built-in Types, Exceptions and Functions,”
as the remainder of the manual assumes familiarity with this material.

Let the show begin!

1



2



CHAPTER

TWO

Built-in Types, Exceptions and Functions

Names for built-in exceptions and functions are found in a separate symbol table. This table is searched
last when the interpreter looks up the meaning of a name, so local and global user-defined names can
override built-in names. Built-in types are described together here for easy reference.1

The tables in this chapter document the priorities of operators by listing them in order of ascending
priority (within a table) and grouping operators that have the same priority in the same box. Binary
operators of the same priority group from left to right. (Unary operators group from right to left, but
there you have no real choice.) See chapter 5 of the Python Reference Manual for the complete picture
on operator priorities.

2.1 Built-in Types

The following sections describe the standard types that are built into the interpreter. These are the
numeric types, sequence types, and several others, including types themselves. There is no explicit
Boolean type; use integers instead.

Some operations are supported by several object types; in particular, all objects can be compared, tested
for truth value, and converted to a string (with the ‘. . . ‘ notation). The latter conversion is implicitly
used when an object is written by the print statement.

2.1.1 Truth Value Testing

Any object can be tested for truth value, for use in an if or while condition or as operand of the Boolean
operations below. The following values are considered false:

• None

• zero of any numeric type, for example, 0, 0L, 0.0, 0j.

• any empty sequence, for example, ’’, (), [].

• any empty mapping, for example, {}.

• instances of user-defined classes, if the class defines a nonzero () or len () method,
when that method returns zero.2

All other values are considered true — so objects of many types are always true.

Operations and built-in functions that have a Boolean result always return 0 for false and 1 for true,
unless otherwise stated. (Important exception: the Boolean operations ‘or’ and ‘and’ always return one
of their operands.)

1Most descriptions sorely lack explanations of the exceptions that may be raised — this will be fixed in a future version
of this manual.

2Additional information on these special methods may be found in the Python Reference Manual.

3



2.1.2 Boolean Operations

These are the Boolean operations, ordered by ascending priority:

Operation Result Notes
x or y if x is false, then y , else x (1)

x and y if x is false, then x , else y (1)
not x if x is false, then 1, else 0 (2)

Notes:

(1) These only evaluate their second argument if needed for their outcome.

(2) ‘not’ has a lower priority than non-Boolean operators, so not a == b is interpreted as not (a ==
b), and a == not b is a syntax error.

2.1.3 Comparisons

Comparison operations are supported by all objects. They all have the same priority (which is higher
than that of the Boolean operations). Comparisons can be chained arbitrarily; for example, x < y <=
z is equivalent to x < y and y <= z , except that y is evaluated only once (but in both cases z is not
evaluated at all when x < y is found to be false).

This table summarizes the comparison operations:

Operation Meaning Notes
< strictly less than
<= less than or equal
> strictly greater than
>= greater than or equal
== equal
!= not equal (1)
<> not equal (1)
is object identity

is not negated object identity

Notes:

(1) <> and != are alternate spellings for the same operator. (I couldn’t choose between abc and C! :-)
!= is the preferred spelling; <> is obsolescent.

Objects of different types, except different numeric types, never compare equal; such objects are ordered
consistently but arbitrarily (so that sorting a heterogeneous array yields a consistent result). Further-
more, some types (for example, file objects) support only a degenerate notion of comparison where any
two objects of that type are unequal. Again, such objects are ordered arbitrarily but consistently.

Instances of a class normally compare as non-equal unless the class defines the cmp () method. Refer
to the Python Reference Manual for information on the use of this method to effect object comparisons.

Implementation note: Objects of different types except numbers are ordered by their type names;
objects of the same types that don’t support proper comparison are ordered by their address.

Two more operations with the same syntactic priority, ‘in’ and ‘not in’, are supported only by sequence
types (below).

2.1.4 Numeric Types

There are four numeric types: plain integers, long integers, floating point numbers, and complex numbers.
Plain integers (also just called integers) are implemented using long in C, which gives them at least 32

4 Chapter 2. Built-in Types, Exceptions and Functions



bits of precision. Long integers have unlimited precision. Floating point numbers are implemented using
double in C. All bets on their precision are off unless you happen to know the machine you are working
with.

Complex numbers have a real and imaginary part, which are both implemented using double in C. To
extract these parts from a complex number z , use z.real and z.imag.

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned
integer literals (including hex and octal numbers) yield plain integers. Integer literals with an ‘L’ or
‘l’ suffix yield long integers (‘L’ is preferred because ‘1l’ looks too much like eleven!). Numeric literals
containing a decimal point or an exponent sign yield floating point numbers. Appending ‘j’ or ‘J’ to a
numeric literal yields a complex number.

Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different
numeric types, the operand with the “smaller” type is converted to that of the other, where plain integer
is smaller than long integer is smaller than floating point is smaller than complex. Comparisons between
numbers of mixed type use the same rule.3 The functions int(), long(), float(), and complex() can
be used to coerce numbers to a specific type.

All numeric types support the following operations, sorted by ascending priority (operations in the same
box have the same priority; all numeric operations have a higher priority than comparison operations):

Operation Result Notes
x + y sum of x and y
x - y difference of x and y
x * y product of x and y
x / y quotient of x and y (1)
x % y remainder of x / y
-x x negated
+x x unchanged

abs(x) absolute value or magnitude of x
int(x) x converted to integer (2)
long(x) x converted to long integer (2)
float(x) x converted to floating point

complex(re,im) a complex number with real part re, imaginary part im. im defaults to zero.
c.conjugate() conjugate of the complex number c
divmod(x, y) the pair (x / y, x % y) (3)
pow(x, y) x to the power y

x ** y x to the power y

Notes:

(1) For (plain or long) integer division, the result is an integer. The result is always rounded towards
minus infinity: 1/2 is 0, (-1)/2 is -1, 1/(-2) is -1, and (-1)/(-2) is 0. Note that the result is a long
integer if either operand is a long integer, regardless of the numeric value.

(2) Conversion from floating point to (long or plain) integer may round or truncate as in C; see functions
floor() and ceil() in the math module for well-defined conversions.

(3) See section 2.3, “Built-in Functions,” for a full description.

Bit-string Operations on Integer Types

Plain and long integer types support additional operations that make sense only for bit-strings. Negative
numbers are treated as their 2’s complement value (for long integers, this assumes a sufficiently large
number of bits that no overflow occurs during the operation).

3As a consequence, the list [1, 2] is considered equal to [1.0, 2.0], and similar for tuples.

2.1. Built-in Types 5



The priorities of the binary bit-wise operations are all lower than the numeric operations and higher than
the comparisons; the unary operation ‘~’ has the same priority as the other unary numeric operations
(‘+’ and ‘-’).

This table lists the bit-string operations sorted in ascending priority (operations in the same box have
the same priority):

Operation Result Notes
x | y bitwise or of x and y
x ^ y bitwise exclusive or of x and y
x & y bitwise and of x and y

x << n x shifted left by n bits (1), (2)
x >> n x shifted right by n bits (1), (3)

~x the bits of x inverted

Notes:

(1) Negative shift counts are illegal and cause a ValueError to be raised.

(2) A left shift by n bits is equivalent to multiplication by pow(2, n) without overflow check.

(3) A right shift by n bits is equivalent to division by pow(2, n) without overflow check.

2.1.5 Sequence Types

There are six sequence types: strings, Unicode strings, lists, tuples, buffers, and xrange objects.

Strings literals are written in single or double quotes: ’xyzzy’, "frobozz". See chapter 2 of the Python
Reference Manual for more about string literals. Unicode strings are much like strings, but are specified
in the syntax using a preceeding ‘u’ character: u’abc’, u"def". Lists are constructed with square
brackets, separating items with commas: [a, b, c]. Tuples are constructed by the comma operator
(not within square brackets), with or without enclosing parentheses, but an empty tuple must have the
enclosing parentheses, e.g., a, b, c or (). A single item tuple must have a trailing comma, e.g., (d,).
Buffers are not directly supported by Python syntax, but can be created by calling the builtin function
buffer(). XRanges objects are similar to buffers in that there is no specific syntax to create them, but
they are created using the xrange() function.

Sequence types support the following operations. The ‘in’ and ‘not in’ operations have the same priori-
ties as the comparison operations. The ‘+’ and ‘*’ operations have the same priority as the corresponding
numeric operations.4

This table lists the sequence operations sorted in ascending priority (operations in the same box have
the same priority). In the table, s and t are sequences of the same type; n, i and j are integers:

Operation Result Notes
x in s 1 if an item of s is equal to x , else 0

x not in s 0 if an item of s is equal to x , else 1
s + t the concatenation of s and t

s * n, n * s n copies of s concatenated (1)
s[i] i ’th item of s, origin 0 (2)

s[i:j] slice of s from i to j (2), (3)
len(s) length of s
min(s) smallest item of s
max(s) largest item of s

Notes:

(1) Values of n less than 0 are treated as 0 (which yields an empty sequence of the same type as s).
4They must have since the parser can’t tell the type of the operands.

6 Chapter 2. Built-in Types, Exceptions and Functions



(2) If i or j is negative, the index is relative to the end of the string, i.e., len(s) + i or len(s) + j is
substituted. But note that -0 is still 0.

(3) The slice of s from i to j is defined as the sequence of items with index k such that i <= k < j . If
i or j is greater than len(s), use len(s). If i is omitted, use 0. If j is omitted, use len(s). If i
is greater than or equal to j , the slice is empty.

String Methods

These are the string methods which both 8-bit strings and Unicode objects support:

capitalize()
Return a copy of the string with only its first character capitalized.

center(width)
Return centered in a string of length width. Padding is done using spaces.

count(sub[, start[, end ] ])
Return the number of occurrences of substring sub in string S[start:end]. Optional arguments
start and end are interpreted as in slice notation.

encode([encoding[,errors ] ])
Return an encoded version of the string. Default encoding is the current default string encod-
ing. errors may be given to set a different error handling scheme. The default for errors is
’strict’, meaning that encoding errors raise a ValueError. Other possible values are ’ignore’
and ’replace’. New in version 2.0.

endswith(suffix [, start[, end ] ])
Return true if the string ends with the specified suffix , otherwise return false. With optional start ,
test beginning at that position. With optional end , stop comparing at that position.

expandtabs([tabsize ])
Return a copy of the string where all tab characters are expanded using spaces. If tabsize is not
given, a tab size of 8 characters is assumed.

find(sub[, start[, end ] ])
Return the lowest index in the string where substring sub is found, such that sub is contained in the
range [start , end). Optional arguments start and end are interpreted as in slice notation. Return
-1 if sub is not found.

index(sub[, start[, end ] ])
Like find(), but raise ValueError when the substring is not found.

isalnum()
Return true if all characters in the string are alphanumeric and there is at least one character, false
otherwise.

isalpha()
Return true if all characters in the string are alphabetic and there is at least one character, false
otherwise.

isdigit()
Return true if there are only digit characters, false otherwise.

islower()
Return true if all cased characters in the string are lowercase and there is at least one cased
character, false otherwise.

isspace()
Return true if there are only whitespace characters in the string and the string is not empty, false
otherwise.

istitle()
Return true if the string is a titlecased string, i.e. uppercase characters may only follow uncased
characters and lowercase characters only cased ones. Return false otherwise.

2.1. Built-in Types 7



isupper()
Return true if all cased characters in the string are uppercase and there is at least one cased
character, false otherwise.

join(seq)
Return a string which is the concatenation of the strings in the sequence seq . The separator
between elements is the string providing this method.

ljust(width)
Return the string left justified in a string of length width. Padding is done using spaces. The
original string is returned if width is less than len(s).

lower()
Return a copy of the string converted to lowercase.

lstrip()
Return a copy of the string with leading whitespace removed.

replace(old, new[, maxsplit ])
Return a copy of the string with all occurrences of substring old replaced by new . If the optional
argument maxsplit is given, only the first maxsplit occurrences are replaced.

rfind(sub [,start [,end ] ])
Return the highest index in the string where substring sub is found, such that sub is contained
within s[start,end]. Optional arguments start and end are interpreted as in slice notation. Return
-1 on failure.

rindex(sub[, start[, end ] ])
Like rfind() but raises ValueError when the substring sub is not found.

rjust(width)
Return the string right justified in a string of length width. Padding is done using spaces. The
original string is returned if width is less than len(s).

rstrip()
Return a copy of the string with trailing whitespace removed.

split([sep [,maxsplit ] ])
Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at
most maxsplit splits are done. If sep is not specified or None, any whitespace string is a separator.

splitlines([keepends ])
Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included
in the resulting list unless keepends is given and true.

startswith(prefix [, start[, end ] ])
Return true if string starts with the prefix , otherwise return false. With optional start , test string
beginning at that position. With optional end , stop comparing string at that position.

strip()
Return a copy of the string with leading and trailing whitespace removed.

swapcase()
Return a copy of the string with uppercase characters converted to lowercase and vice versa.

title()
Return a titlecased version of, i.e. words start with uppercase characters, all remaining cased
characters are lowercase.

translate(table[, deletechars ])
Return a copy of the string where all characters occurring in the optional argument deletechars
are removed, and the remaining characters have been mapped through the given translation table,
which must be a string of length 256.

upper()
Return a copy of the string converted to uppercase.

8 Chapter 2. Built-in Types, Exceptions and Functions



String Formatting Operations

String and Unicode objects have one unique built-in operation: the % operator (modulo). Given format
%values (where format is a string or Unicode object), % conversion specifications in format are replaced
with zero or more elements of values. The effect is similar to the using sprintf() in the C language. If
format is a Unicode object, or if any of the objects being converted using the %s conversion are Unicode
objects, the result will be a Unicode object as well.

If format requires a single argument, values may be a single non-tuple object. 5 Otherwise, values must
be a tuple with exactly the number of items specified by the format string, or a single mapping object
(for example, a dictionary).

A conversion specifier contains two or more characters and has the following components, which must
occur in this order:

1. The ‘%’ character, which marks the start of the specifier.

2. Mapping key value (optional), consisting of an identifier in parentheses (for example, (somename)).

3. Conversion flags (optional), which affect the result of some conversion types.

4. Minimum field width (optional). If specified as an ‘*’ (asterisk), the actual width is read from the
next element of the tuple in values, and the object to convert comes after the minimum field width
and optional precision.

5. Precision (optional), given as a ‘.’ (dot) followed by the precision. If specified as ‘*’ (an asterisk),
the actual width is read from the next element of the tuple in values, and the value to convert
comes after the precision.

6. Length modifier (optional).

7. Conversion type.

If the right argument is a dictionary (or any kind of mapping), then the formats in the string must have
a parenthesized key into that dictionary inserted immediately after the ‘%’ character, and each format
formats the corresponding entry from the mapping. For example:

>>> count = 2

>>> language = ’Python’

>>> print ’%(language)s has %(count)03d quote types.’ % vars()

Python has 002 quote types.

In this case no * specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

Flag Meaning
‘#’ The value conversion will use the “alternate form” (where defined below).
‘0’ The conversion will be zero padded.
‘-’ The converted value is left adjusted (overrides ‘-’).
‘ ’ (a space) A blank should be left before a positive number (or empty string) produced by a signed conversion.
‘+’ A sign character (‘+’ or ‘-’) will precede the conversion (overrides a ”space” flag).

The length modifier may be h, l, and L may be present, but are ignored as they are not necessary for
Python.

The conversion types are:
5A tuple object in this case should be a singleton.

2.1. Built-in Types 9



Conversion Meaning
‘d’ Signed integer decimal.
‘i’ Signed integer decimal.
‘o’ Unsigned octal.
‘u’ Unsigned decimal.
‘x’ Unsigned hexidecimal (lowercase).
‘X’ Unsigned hexidecimal (uppercase).
‘e’ Floating point exponential format (lowercase).
‘E’ Floating point exponential format (uppercase).
‘f’ Floating point decimal format.
‘F’ Floating point decimal format.
‘g’ Same as ‘e’ if exponent is greater than -4 or less than precision, ‘f’ otherwise.
‘G’ Same as ‘E’ if exponent is greater than -4 or less than precision, ‘F’ otherwise.
‘c’ Single character (accepts integer or single character string).
‘r’ String (converts any python object using repr()).
‘s’ String (converts any python object using str()).
‘%’ No argument is converted, results in a ‘%’ character in the result. (The complete specification is %%.)

Since Python strings have an explicit length, %s conversions do not assume that ’\0’ is the end of the
string.

For safety reasons, floating point precisions are clipped to 50; %f conversions for numbers whose absolute
value is over 1e25 are replaced by %g conversions.6 All other errors raise exceptions.

Additional string operations are defined in standard module string and in built-in module re.

XRange Type

The xrange type is an immutable sequence which is commonly used for looping. The advantage of the
xrange type is that an xrange object will always take the same amount of memory, no matter the size of
the range it represents. There are no consistent performance advantages.

XRange objects behave like tuples, and offer a single method:

tolist()
Return a list object which represents the same values as the xrange object.

Mutable Sequence Types

List objects support additional operations that allow in-place modification of the object. These operations
would be supported by other mutable sequence types (when added to the language) as well. Strings and
tuples are immutable sequence types and such objects cannot be modified once created. The following
operations are defined on mutable sequence types (where x is an arbitrary object):

6These numbers are fairly arbitrary. They are intended to avoid printing endless strings of meaningless digits without
hampering correct use and without having to know the exact precision of floating point values on a particular machine.

10 Chapter 2. Built-in Types, Exceptions and Functions



Operation Result Notes
s[i] = x item i of s is replaced by x

s[i:j] = t slice of s from i to j is replaced by t
del s[i:j] same as s[i:j] = []

s.append(x) same as s[len(s):len(s)] = [x] (1)
s.extend(x) same as s[len(s):len(s)] = x (2)
s.count(x) return number of i ’s for which s[i] == x
s.index(x) return smallest i such that s[i] == x (3)

s.insert(i, x) same as s[i:i] = [x] if i >= 0

s.pop([i ]) same as x = s[i]; del s[i]; return x (4)
s.remove(x) same as del s[s.index(x)] (3)
s.reverse() reverses the items of s in place (5)

s.sort([cmpfunc ]) sort the items of s in place (5), (6)

Notes:

(1) The C implementation of Python has historically accepted multiple parameters and implicitly joined
them into a tuple; this no longer works in Python 2.0. Use of this misfeature has been deprecated
since Python 1.4.

(2) Raises an exception when x is not a list object. The extend() method is experimental and not
supported by mutable sequence types other than lists.

(3) Raises ValueError when x is not found in s.

(4) The pop() method is only supported by the list and array types. The optional argument i defaults
to -1, so that by default the last item is removed and returned.

(5) The sort() and reverse() methods modify the list in place for economy of space when sorting or
reversing a large list. They don’t return the sorted or reversed list to remind you of this side effect.

(6) The sort() method takes an optional argument specifying a comparison function of two arguments
(list items) which should return -1, 0 or 1 depending on whether the first argument is considered
smaller than, equal to, or larger than the second argument. Note that this slows the sorting process
down considerably; e.g. to sort a list in reverse order it is much faster to use calls to the methods
sort() and reverse() than to use the built-in function sort() with a comparison function that
reverses the ordering of the elements.

2.1.6 Mapping Types

A mapping object maps values of one type (the key type) to arbitrary objects. Mappings are mutable
objects. There is currently only one standard mapping type, the dictionary. A dictionary’s keys are
almost arbitrary values. The only types of values not acceptable as keys are values containing lists or
dictionaries or other mutable types that are compared by value rather than by object identity. Numeric
types used for keys obey the normal rules for numeric comparison: if two numbers compare equal (e.g.
1 and 1.0) then they can be used interchangeably to index the same dictionary entry.

Dictionaries are created by placing a comma-separated list of key: value pairs within braces, for ex-
ample: {’jack’: 4098, ’sjoerd’: 4127} or {4098: ’jack’, 4127: ’sjoerd’}.

The following operations are defined on mappings (where a and b are mappings, k is a key, and v and x
are arbitrary objects):

2.1. Built-in Types 11



Operation Result Notes
len(a) the number of items in a
a[k] the item of a with key k (1)

a[k] = v set a[k] to v
del a[k] remove a[k] from a (1)
a.clear() remove all items from a
a.copy() a (shallow) copy of a

a.has key(k) 1 if a has a key k , else 0
a.items() a copy of a’s list of (key , value) pairs (2)
a.keys() a copy of a’s list of keys (2)

a.update(b) for k in b.keys(): a[k] = b[k] (3)
a.values() a copy of a’s list of values (2)

a.get(k[, x ]) a[k] if a.has key(k), else x (4)
a.setdefault(k[, x ]) a[k] if a.has key(k), else x (also setting it) (5)

a.popitem() remove and return an arbitrary (key , value) pair (6)

Notes:

(1) Raises a KeyError exception if k is not in the map.

(2) Keys and values are listed in random order. If keys() and values() are called with no intervening
modifications to the dictionary, the two lists will directly correspond. This allows the creation of
(value, key) pairs using map(): ‘pairs = map(None, a.values(), a.keys())’.

(3) b must be of the same type as a.

(4) Never raises an exception if k is not in the map, instead it returns x . x is optional; when x is not
provided and k is not in the map, None is returned.

(5) setdefault() is like get(), except that if k is missing, x is both returned and inserted into the
dictionary as the value of k .

(6) popitem() is useful to destructively iterate over a dictionary, as often used in set algorithms.

2.1.7 Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations.

Modules

The only special operation on a module is attribute access: m.name, where m is a module and name
accesses a name defined in m’s symbol table. Module attributes can be assigned to. (Note that the
import statement is not, strictly speaking, an operation on a module object; import foo does not
require a module object named foo to exist, rather it requires an (external) definition for a module
named foo somewhere.)

A special member of every module is dict . This is the dictionary containing the module’s symbol
table. Modifying this dictionary will actually change the module’s symbol table, but direct assignment
to the dict attribute is not possible (i.e., you can write m. dict [’a’] = 1, which defines
m.a to be 1, but you can’t write m. dict = {}.

Modules built into the interpreter are written like this: <module ’sys’ (built-in)>. If loaded from a
file, they are written as <module ’os’ from ’/usr/local/lib/python2.1/os.pyc’>.

Classes and Class Instances

See chapters 3 and 7 of the Python Reference Manual for these.

12 Chapter 2. Built-in Types, Exceptions and Functions



Functions

Function objects are created by function definitions. The only operation on a function object is to call
it: func(argument-list).

There are really two flavors of function objects: built-in functions and user-defined functions. Both
support the same operation (to call the function), but the implementation is different, hence the different
object types.

The implementation adds two special read-only attributes: f .func code is a function’s code object (see
below) and f .func globals is the dictionary used as the function’s global namespace (this is the same
as m. dict where m is the module in which the function f was defined).

Function objects also support getting and setting arbitrary attributes, which can be used to, e.g. attach
metadata to functions. Regular attribute dot-notation is used to get and set such attributes. Note that
the current implementation only supports function attributes on functions written in Python. Function
attributes on built-ins may be supported in the future.

Functions have another special attribute f . dict (a.k.a. f .func dict) which contains the names-
pace used to support function attributes. dict can be accessed directly, set to a dictionary object,
or None. It can also be deleted (but the following two lines are equivalent):

del func.__dict__

func.__dict__ = None

Methods

Methods are functions that are called using the attribute notation. There are two flavors: built-in
methods (such as append() on lists) and class instance methods. Built-in methods are described with
the types that support them.

The implementation adds two special read-only attributes to class instance methods: m.im self is the
object on which the method operates, and m.im func is the function implementing the method. Call-
ing m(arg-1, arg-2, . . . , arg-n) is completely equivalent to calling m.im func(m.im self, arg-1,
arg-2, . . . , arg-n).

Class instance methods are either bound or unbound, referring to whether the method was accessed
through an instance or a class, respectively. When a method is unbound, its im self attribute will be
None and if called, an explicit self object must be passed as the first argument. In this case, self must
be an instance of the unbound method’s class (or a subclass of that class), otherwise a TypeError is
raised.

Like function objects, methods objects support getting arbitrary attributes. However, since method
attributes are actually stored on the underlying function object (i.e. meth.im func), setting method
attributes on either bound or unbound methods is disallowed. Attempting to set a method attribute
results in a TypeError being raised. In order to set a method attribute, you need to explicitly set it on
the underlying function object:

class C:

def method(self):

pass

c = C()

c.method.im_func.whoami = ’my name is c’

See the Python Reference Manual for more information.

2.1. Built-in Types 13



Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code
such as a function body. They differ from function objects because they don’t contain a reference to
their global execution environment. Code objects are returned by the built-in compile() function and
can be extracted from function objects through their func code attribute.

A code object can be executed or evaluated by passing it (instead of a source string) to the exec statement
or the built-in eval() function.

See the Python Reference Manual for more information.

Type Objects

Type objects represent the various object types. An object’s type is accessed by the built-in function
type(). There are no special operations on types. The standard module types defines names for all
standard built-in types.

Types are written like this: <type ’int’>.

The Null Object

This object is returned by functions that don’t explicitly return a value. It supports no special operations.
There is exactly one null object, named None (a built-in name).

It is written as None.

The Ellipsis Object

This object is used by extended slice notation (see the Python Reference Manual). It supports no special
operations. There is exactly one ellipsis object, named Ellipsis (a built-in name).

It is written as Ellipsis.

File Objects

File objects are implemented using C’s stdio package and can be created with the built-in function
open() described in section 2.3, “Built-in Functions.” They are also returned by some other built-
in functions and methods, e.g., os.popen() and os.fdopen() and the makefile() method of socket
objects.

When a file operation fails for an I/O-related reason, the exception IOError is raised. This includes
situations where the operation is not defined for some reason, like seek() on a tty device or writing a
file opened for reading.

Files have the following methods:

close()
Close the file. A closed file cannot be read or written anymore. Any operation which requires that
the file be open will raise a ValueError after the file has been closed. Calling close() more than
once is allowed.

flush()
Flush the internal buffer, like stdio’s fflush(). This may be a no-op on some file-like objects.

isatty()
Return true if the file is connected to a tty(-like) device, else false. Note: If a file-like object is
not associated with a real file, this method should not be implemented.

fileno()
Return the integer “file descriptor” that is used by the underlying implementation to request I/O

14 Chapter 2. Built-in Types, Exceptions and Functions



operations from the operating system. This can be useful for other, lower level interfaces that use
file descriptors, e.g. module fcntl or os.read() and friends. Note: File-like objects which do not
have a real file descriptor should not provide this method!

read([size ])
Read at most size bytes from the file (less if the read hits eof before obtaining size bytes). If the
size argument is negative or omitted, read all data until eof is reached. The bytes are returned as
a string object. An empty string is returned when eof is encountered immediately. (For certain
files, like ttys, it makes sense to continue reading after an eof is hit.) Note that this method may
call the underlying C function fread() more than once in an effort to acquire as close to size bytes
as possible.

readline([size ])
Read one entire line from the file. A trailing newline character is kept in the string7 (but may
be absent when a file ends with an incomplete line). If the size argument is present and non-
negative, it is a maximum byte count (including the trailing newline) and an incomplete line may
be returned. An empty string is returned when eof is hit immediately. Note: Unlike stdio’s
fgets(), the returned string contains null characters (’\0’) if they occurred in the input.

readlines([sizehint ])
Read until eof using readline() and return a list containing the lines thus read. If the optional
sizehint argument is present, instead of reading up to eof, whole lines totalling approximately
sizehint bytes (possibly after rounding up to an internal buffer size) are read. Objects implement-
ing a file-like interface may choose to ignore sizehint if it cannot be implemented, or cannot be
implemented efficiently.

xreadlines()
Equivalent to xreadlines.xreadlines(file). (See the xreadlines module for more information.)
New in version 2.1.

seek(offset[, whence ])
Set the file’s current position, like stdio’s fseek(). The whence argument is optional and defaults
to 0 (absolute file positioning); other values are 1 (seek relative to the current position) and 2 (seek
relative to the file’s end). There is no return value. Note that if the file is opened for appending
(mode ’a’ or ’a+’), any seek() operations will be undone at the next write. If the file is only
opened for writing in append mode (mode ’a’), this method is essentially a no-op, but it remains
useful for files opened in append mode with reading enabled (mode ’a+’).

tell()
Return the file’s current position, like stdio’s ftell().

truncate([size ])
Truncate the file’s size. If the optional size argument present, the file is truncated to (at most)
that size. The size defaults to the current position. Availability of this function depends on the
operating system version (for example, not all Unix versions support this operation).

write(str)
Write a string to the file. There is no return value. Note: Due to buffering, the string may not
actually show up in the file until the flush() or close() method is called.

writelines(list)
Write a list of strings to the file. There is no return value. (The name is intended to match
readlines(); writelines() does not add line separators.)

File objects also offer a number of other interesting attributes. These are not required for file-like objects,
but should be implemented if they make sense for the particular object.

closed
Boolean indicating the current state of the file object. This is a read-only attribute; the close()
method changes the value. It may not be available on all file-like objects.

7The advantage of leaving the newline on is that an empty string can be returned to mean eof without being ambiguous.
Another advantage is that (in cases where it might matter, e.g. if you want to make an exact copy of a file while scanning
its lines) you can tell whether the last line of a file ended in a newline or not (yes this happens!).

2.1. Built-in Types 15



mode
The I/O mode for the file. If the file was created using the open() built-in function, this will be the
value of the mode parameter. This is a read-only attribute and may not be present on all file-like
objects.

name
If the file object was created using open(), the name of the file. Otherwise, some string that
indicates the source of the file object, of the form ‘<...>’. This is a read-only attribute and may
not be present on all file-like objects.

softspace
Boolean that indicates whether a space character needs to be printed before another value when
using the print statement. Classes that are trying to simulate a file object should also have
a writable softspace attribute, which should be initialized to zero. This will be automatic for
most classes implemented in Python (care may be needed for objects that override attribute access);
types implemented in C will have to provide a writable softspace attribute. Note: This attribute
is not used to control the print statement, but to allow the implementation of print to keep track
of its internal state.

Internal Objects

See the Python Reference Manual for this information. It describes stack frame objects, traceback objects,
and slice objects.

2.1.8 Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are
relevant:

dict
A dictionary or other mapping object used to store an object’s (writable) attributes.

methods
List of the methods of many built-in object types, e.g., []. methods yields [’append’,
’count’, ’index’, ’insert’, ’pop’, ’remove’, ’reverse’, ’sort’]. This usually does
not need to be explicitly provided by the object.

members
Similar to methods , but lists data attributes. This usually does not need to be explicitly
provided by the object.

class
The class to which a class instance belongs.

bases
The tuple of base classes of a class object.

2.2 Built-in Exceptions

Exceptions can be class objects or string objects. Though most exceptions have been string objects in
past versions of Python, in Python 1.5 and newer versions, all standard exceptions have been converted
to class objects, and users are encouraged to do the same. The exceptions are defined in the module
exceptions. This module never needs to be imported explicitly: the exceptions are provided in the
built-in namespace.

Two distinct string objects with the same value are considered different exceptions. This is done to force
programmers to use exception names rather than their string value when specifying exception handlers.
The string value of all built-in exceptions is their name, but this is not a requirement for user-defined
exceptions or exceptions defined by library modules.

16 Chapter 2. Built-in Types, Exceptions and Functions



For class exceptions, in a try statement with an except clause that mentions a particular class, that
clause also handles any exception classes derived from that class (but not exception classes from which
it is derived). Two exception classes that are not related via subclassing are never equivalent, even if
they have the same name.

The built-in exceptions listed below can be generated by the interpreter or built-in functions. Except
where mentioned, they have an “associated value” indicating the detailed cause of the error. This may
be a string or a tuple containing several items of information (e.g., an error code and a string explaining
the code). The associated value is the second argument to the raise statement. For string exceptions,
the associated value itself will be stored in the variable named as the second argument of the except
clause (if any). For class exceptions, that variable receives the exception instance. If the exception
class is derived from the standard root class Exception, the associated value is present as the exception
instance’s args attribute, and possibly on other attributes as well.

User code can raise built-in exceptions. This can be used to test an exception handler or to report an
error condition “just like” the situation in which the interpreter raises the same exception; but beware
that there is nothing to prevent user code from raising an inappropriate error.

The following exceptions are only used as base classes for other exceptions.

exception Exception
The root class for exceptions. All built-in exceptions are derived from this class. All user-defined
exceptions should also be derived from this class, but this is not (yet) enforced. The str() function,
when applied to an instance of this class (or most derived classes) returns the string value of the
argument or arguments, or an empty string if no arguments were given to the constructor. When
used as a sequence, this accesses the arguments given to the constructor (handy for backward
compatibility with old code). The arguments are also available on the instance’s args attribute,
as a tuple.

exception StandardError
The base class for all built-in exceptions except SystemExit. StandardError itself is derived from
the root class Exception.

exception ArithmeticError
The base class for those built-in exceptions that are raised for various arithmetic errors:
OverflowError, ZeroDivisionError, FloatingPointError.

exception LookupError
The base class for the exceptions that are raised when a key or index used on a mapping or sequence
is invalid: IndexError, KeyError. This can be raised directly by sys.setdefaultencoding().

exception EnvironmentError
The base class for exceptions that can occur outside the Python system: IOError, OSError. When
exceptions of this type are created with a 2-tuple, the first item is available on the instance’s errno
attribute (it is assumed to be an error number), and the second item is available on the strerror
attribute (it is usually the associated error message). The tuple itself is also available on the args
attribute. New in version 1.5.2.

When an EnvironmentError exception is instantiated with a 3-tuple, the first two items are avail-
able as above, while the third item is available on the filename attribute. However, for backwards
compatibility, the args attribute contains only a 2-tuple of the first two constructor arguments.

The filename attribute is None when this exception is created with other than 3 arguments. The
errno and strerror attributes are also None when the instance was created with other than 2 or
3 arguments. In this last case, args contains the verbatim constructor arguments as a tuple.

The following exceptions are the exceptions that are actually raised.

exception AssertionError
Raised when an assert statement fails.

exception AttributeError
Raised when an attribute reference or assignment fails. (When an object does not support attribute
references or attribute assignments at all, TypeError is raised.)

exception EOFError

2.2. Built-in Exceptions 17



Raised when one of the built-in functions (input() or raw input()) hits an end-of-file condition
(eof) without reading any data. (N.B.: the read() and readline() methods of file objects return
an empty string when they hit eof.)

exception FloatingPointError
Raised when a floating point operation fails. This exception is always defined, but can only be
raised when Python is configured with the --with-fpectl option, or the WANT SIGFPE HANDLER
symbol is defined in the ‘config.h’ file.

exception IOError
Raised when an I/O operation (such as a print statement, the built-in open() function or a
method of a file object) fails for an I/O-related reason, e.g., “file not found” or “disk full”.

This class is derived from EnvironmentError. See the discussion above for more information on
exception instance attributes.

exception ImportError
Raised when an import statement fails to find the module definition or when a from . . . import
fails to find a name that is to be imported.

exception IndexError
Raised when a sequence subscript is out of range. (Slice indices are silently truncated to fall in the
allowed range; if an index is not a plain integer, TypeError is raised.)

exception KeyError
Raised when a mapping (dictionary) key is not found in the set of existing keys.

exception KeyboardInterrupt
Raised when the user hits the interrupt key (normally Control-C or DEL). During execution, a
check for interrupts is made regularly. Interrupts typed when a built-in function input() or
raw input()) is waiting for input also raise this exception.

exception MemoryError
Raised when an operation runs out of memory but the situation may still be rescued (by deleting
some objects). The associated value is a string indicating what kind of (internal) operation ran out
of memory. Note that because of the underlying memory management architecture (C’s malloc()
function), the interpreter may not always be able to completely recover from this situation; it
nevertheless raises an exception so that a stack traceback can be printed, in case a run-away
program was the cause.

exception NameError
Raised when a local or global name is not found. This applies only to unqualified names. The
associated value is the name that could not be found.

exception NotImplementedError
This exception is derived from RuntimeError. In user defined base classes, abstract methods should
raise this exception when they require derived classes to override the method. New in version
1.5.2.

exception OSError
This class is derived from EnvironmentError and is used primarily as the os module’s os.error
exception. See EnvironmentError above for a description of the possible associated values. New
in version 1.5.2.

exception OverflowError
Raised when the result of an arithmetic operation is too large to be represented. This cannot
occur for long integers (which would rather raise MemoryError than give up). Because of the lack
of standardization of floating point exception handling in C, most floating point operations also
aren’t checked. For plain integers, all operations that can overflow are checked except left shift,
where typical applications prefer to drop bits than raise an exception.

exception RuntimeError
Raised when an error is detected that doesn’t fall in any of the other categories. The associated
value is a string indicating what precisely went wrong. (This exception is mostly a relic from a
previous version of the interpreter; it is not used very much any more.)

18 Chapter 2. Built-in Types, Exceptions and Functions



exception SyntaxError
Raised when the parser encounters a syntax error. This may occur in an import statement, in an
exec statement, in a call to the built-in function eval() or input(), or when reading the initial
script or standard input (also interactively).

When class exceptions are used, instances of this class have atttributes filename, lineno, offset
and text for easier access to the details; for string exceptions, the associated value is usually a
tuple of the form (message, (filename, lineno, offset, text)). For class exceptions, str()
returns only the message.

exception SystemError
Raised when the interpreter finds an internal error, but the situation does not look so serious to
cause it to abandon all hope. The associated value is a string indicating what went wrong (in
low-level terms).

You should report this to the author or maintainer of your Python interpreter. Be sure to report the
version string of the Python interpreter (sys.version; it is also printed at the start of an interactive
Python session), the exact error message (the exception’s associated value) and if possible the source
of the program that triggered the error.

exception SystemExit
This exception is raised by the sys.exit() function. When it is not handled, the Python interpreter
exits; no stack traceback is printed. If the associated value is a plain integer, it specifies the system
exit status (passed to C’s exit() function); if it is None, the exit status is zero; if it has another
type (such as a string), the object’s value is printed and the exit status is one.

Instances have an attribute code which is set to the proposed exit status or error message (defaulting
to None). Also, this exception derives directly from Exception and not StandardError, since it is
not technically an error.

A call to sys.exit() is translated into an exception so that clean-up handlers (finally clauses of
try statements) can be executed, and so that a debugger can execute a script without running the
risk of losing control. The os. exit() function can be used if it is absolutely positively necessary
to exit immediately (e.g., after a fork() in the child process).

exception TypeError
Raised when a built-in operation or function is applied to an object of inappropriate type. The
associated value is a string giving details about the type mismatch.

exception UnboundLocalError
Raised when a reference is made to a local variable in a function or method, but no value has been
bound to that variable. This is a subclass of NameError. New in version 2.0.

exception UnicodeError
Raised when a Unicode-related encoding or decoding error occurs. It is a subclass of ValueError.
New in version 2.0.

exception ValueError
Raised when a built-in operation or function receives an argument that has the right type but
an inappropriate value, and the situation is not described by a more precise exception such as
IndexError.

exception WindowsError
Raised when a Windows-specific error occurs or when the error number does not correspond
to an errno value. The errno and strerror values are created from the return values of the
GetLastError() and FormatMessage() functions from the Windows Platform API. This is a sub-
class of OSError. New in version 2.0.

exception ZeroDivisionError
Raised when the second argument of a division or modulo operation is zero. The associated value
is a string indicating the type of the operands and the operation.

The following exceptions are used as warning categories; see the warnings module for more information.

exception Warning
Base class for warning categories.

2.2. Built-in Exceptions 19



exception UserWarning
Base class for warnings generated by user code.

exception DeprecationWarning
Base class for warnings about deprecated features.

exception SyntaxWarning
Base class for warnings about dubious syntax

exception RuntimeWarning
Base class for warnings about dubious runtime behavior.

2.3 Built-in Functions

The Python interpreter has a number of functions built into it that are always available. They are listed
here in alphabetical order.

import (name[, globals[, locals[, fromlist ] ] ])
This function is invoked by the import statement. It mainly exists so that you can replace it with
another function that has a compatible interface, in order to change the semantics of the import
statement. For examples of why and how you would do this, see the standard library modules
ihooks and rexec. See also the built-in module imp, which defines some useful operations out of
which you can build your own import () function.

For example, the statement ‘import spam’ results in the following call: import (’spam’,
globals(), locals(), []); the statement ‘from spam.ham import eggs’ results in
‘ import (’spam.ham’, globals(), locals(), [’eggs’])’. Note that even though
locals() and [’eggs’] are passed in as arguments, the import () function does not set
the local variable named eggs; this is done by subsequent code that is generated for the import
statement. (In fact, the standard implementation does not use its locals argument at all, and uses
its globals only to determine the package context of the import statement.)

When the name variable is of the form package.module, normally, the top-level package (the
name up till the first dot) is returned, not the module named by name. However, when a non-
empty fromlist argument is given, the module named by name is returned. This is done for
compatibility with the bytecode generated for the different kinds of import statement; when using
‘import spam.ham.eggs’, the top-level package spam must be placed in the importing namespace,
but when using ‘from spam.ham import eggs’, the spam.ham subpackage must be used to find the
eggs variable. As a workaround for this behavior, use getattr() to extract the desired components.
For example, you could define the following helper:

import string

def my_import(name):

mod = __import__(name)

components = string.split(name, ’.’)

for comp in components[1:]:

mod = getattr(mod, comp)

return mod

abs(x)
Return the absolute value of a number. The argument may be a plain or long integer or a floating
point number. If the argument is a complex number, its magnitude is returned.

apply(function, args[, keywords ])
The function argument must be a callable object (a user-defined or built-in function or method,
or a class object) and the args argument must be a sequence (if it is not a tuple, the sequence is
first converted to a tuple). The function is called with args as the argument list; the number of
arguments is the the length of the tuple. (This is different from just calling func(args), since in
that case there is always exactly one argument.) If the optional keywords argument is present, it

20 Chapter 2. Built-in Types, Exceptions and Functions



must be a dictionary whose keys are strings. It specifies keyword arguments to be added to the
end of the the argument list.

buffer(object[, offset[, size ] ])
The object argument must be an object that supports the buffer call interface (such as strings,
arrays, and buffers). A new buffer object will be created which references the object argument.
The buffer object will be a slice from the beginning of object (or from the specified offset). The
slice will extend to the end of object (or will have a length given by the size argument).

callable(object)
Return true if the object argument appears callable, false if not. If this returns true, it is still
possible that a call fails, but if it is false, calling object will never succeed. Note that classes
are callable (calling a class returns a new instance); class instances are callable if they have a

call () method.

chr(i)
Return a string of one character whose ascii code is the integer i , e.g., chr(97) returns the
string ’a’. This is the inverse of ord(). The argument must be in the range [0..255], inclusive;
ValueError will be raised if i is outside that range.

cmp(x, y)
Compare the two objects x and y and return an integer according to the outcome. The return
value is negative if x < y , zero if x == y and strictly positive if x > y .

coerce(x, y)
Return a tuple consisting of the two numeric arguments converted to a common type, using the
same rules as used by arithmetic operations.

compile(string, filename, kind)
Compile the string into a code object. Code objects can be executed by an exec statement or
evaluated by a call to eval(). The filename argument should give the file from which the code was
read; pass e.g. ’<string>’ if it wasn’t read from a file. The kind argument specifies what kind of
code must be compiled; it can be ’exec’ if string consists of a sequence of statements, ’eval’ if
it consists of a single expression, or ’single’ if it consists of a single interactive statement (in the
latter case, expression statements that evaluate to something else than None will printed).

complex(real[, imag ])
Create a complex number with the value real + imag*j or convert a string or number to a complex
number. Each argument may be any numeric type (including complex). If imag is omitted, it
defaults to zero and the function serves as a numeric conversion function like int(), long() and
float(); in this case it also accepts a string argument which should be a valid complex number.

delattr(object, name)
This is a relative of setattr(). The arguments are an object and a string. The string must be
the name of one of the object’s attributes. The function deletes the named attribute, provided the
object allows it. For example, delattr(x, ’foobar’) is equivalent to del x.foobar .

dir([object ])
Without arguments, return the list of names in the current local symbol table. With an argument,
attempts to return a list of valid attribute for that object. This information is gleaned from
the object’s dict , methods and members attributes, if defined. The list is not
necessarily complete; e.g., for classes, attributes defined in base classes are not included, and for
class instances, methods are not included. The resulting list is sorted alphabetically. For example:

>>> import sys

>>> dir()

[’sys’]

>>> dir(sys)

[’argv’, ’exit’, ’modules’, ’path’, ’stderr’, ’stdin’, ’stdout’]

divmod(a, b)
Take two numbers as arguments and return a pair of numbers consisting of their quotient and

2.3. Built-in Functions 21



remainder when using long division. With mixed operand types, the rules for binary arithmetic
operators apply. For plain and long integers, the result is the same as (a / b, a % b). For
floating point numbers the result is (q, a % b), where q is usually math.floor(a / b) but may
be 1 less than that. In any case q * b + a % b is very close to a, if a % b is non-zero it has the
same sign as b, and 0 <= abs(a % b) < abs(b).

eval(expression[, globals[, locals ] ])
The arguments are a string and two optional dictionaries. The expression argument is parsed and
evaluated as a Python expression (technically speaking, a condition list) using the globals and locals
dictionaries as global and local name space. If the locals dictionary is omitted it defaults to the
globals dictionary. If both dictionaries are omitted, the expression is executed in the environment
where eval is called. The return value is the result of the evaluated expression. Syntax errors are
reported as exceptions. Example:

>>> x = 1

>>> print eval(’x+1’)

2

This function can also be used to execute arbitrary code objects (e.g. created by compile()). In
this case pass a code object instead of a string. The code object must have been compiled passing
’eval’ to the kind argument.

Hints: dynamic execution of statements is supported by the exec statement. Execution of state-
ments from a file is supported by the execfile() function. The globals() and locals() functions
returns the current global and local dictionary, respectively, which may be useful to pass around
for use by eval() or execfile().

execfile(file[, globals[, locals ] ])
This function is similar to the exec statement, but parses a file instead of a string. It is different
from the import statement in that it does not use the module administration — it reads the file
unconditionally and does not create a new module.8

The arguments are a file name and two optional dictionaries. The file is parsed and evaluated as a
sequence of Python statements (similarly to a module) using the globals and locals dictionaries as
global and local namespace. If the locals dictionary is omitted it defaults to the globals dictionary.
If both dictionaries are omitted, the expression is executed in the environment where execfile()
is called. The return value is None.

filter(function, list)
Construct a list from those elements of list for which function returns true. If list is a string or a
tuple, the result also has that type; otherwise it is always a list. If function is None, the identity
function is assumed, i.e. all elements of list that are false (zero or empty) are removed.

float(x)
Convert a string or a number to floating point. If the argument is a string, it must contain a
possibly signed decimal or floating point number, possibly embedded in whitespace; this behaves
identical to string.atof(x). Otherwise, the argument may be a plain or long integer or a floating
point number, and a floating point number with the same value (within Python’s floating point
precision) is returned.

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the
underlying C library. The specific set of strings accepted which cause these values to be returned
depends entirely on the C library and is known to vary.

getattr(object, name[, default ])
Return the value of the named attributed of object . name must be a string. If the string is the
name of one of the object’s attributes, the result is the value of that attribute. For example,
getattr(x, ’foobar’) is equivalent to x.foobar. If the named attribute does not exist, default
is returned if provided, otherwise AttributeError is raised.

globals()
Return a dictionary representing the current global symbol table. This is always the dictionary of

8It is used relatively rarely so does not warrant being made into a statement.

22 Chapter 2. Built-in Types, Exceptions and Functions



the current module (inside a function or method, this is the module where it is defined, not the
module from which it is called).

hasattr(object, name)
The arguments are an object and a string. The result is 1 if the string is the name of one of the
object’s attributes, 0 if not. (This is implemented by calling getattr(object, name) and seeing
whether it raises an exception or not.)

hash(object)
Return the hash value of the object (if it has one). Hash values are integers. They are used to
quickly compare dictionary keys during a dictionary lookup. Numeric values that compare equal
have the same hash value (even if they are of different types, e.g. 1 and 1.0).

hex(x)
Convert an integer number (of any size) to a hexadecimal string. The result is a valid Python
expression. Note: this always yields an unsigned literal, e.g. on a 32-bit machine, hex(-1) yields
’0xffffffff’. When evaluated on a machine with the same word size, this literal is evaluated as
-1; at a different word size, it may turn up as a large positive number or raise an OverflowError
exception.

id(object)
Return the ‘identity’ of an object. This is an integer (or long integer) which is guaranteed to be
unique and constant for this object during its lifetime. Two objects whose lifetimes are disjunct
may have the same id() value. (Implementation note: this is the address of the object.)

input([prompt ])
Equivalent to eval(raw input(prompt)). Warning: This function is not safe from user errors!
It expects a valid Python expression as input; if the input is not syntactically valid, a SyntaxError
will be raised. Other exceptions may be raised if there is an error during evaluation. (On the other
hand, sometimes this is exactly what you need when writing a quick script for expert use.)

If the readline module was loaded, then input() will use it to provide elaborate line editing and
history features.

Consider using the raw input() function for general input from users.

int(x [, radix ])
Convert a string or number to a plain integer. If the argument is a string, it must contain a pos-
sibly signed decimal number representable as a Python integer, possibly embedded in whitespace;
this behaves identical to string.atoi(x [, radix ]). The radix parameter gives the base for the
conversion and may be any integer in the range [2, 36], or zero. If radix is zero, the proper radix
is guessed based on the contents of string; the interpretation is the same as for integer literals. If
radix is specified and x is not a string, TypeError is raised. Otherwise, the argument may be a
plain or long integer or a floating point number. Conversion of floating point numbers to integers
is defined by the C semantics; normally the conversion truncates towards zero.9

intern(string)
Enter string in the table of “interned” strings and return the interned string – which is string itself
or a copy. Interning strings is useful to gain a little performance on dictionary lookup – if the keys
in a dictionary are interned, and the lookup key is interned, the key comparisons (after hashing)
can be done by a pointer compare instead of a string compare. Normally, the names used in Python
programs are automatically interned, and the dictionaries used to hold module, class or instance
attributes have interned keys. Interned strings are immortal (i.e. never get garbage collected).

isinstance(object, class)
Return true if the object argument is an instance of the class argument, or of a (direct or indirect)
subclass thereof. Also return true if class is a type object and object is an object of that type. If
object is not a class instance or a object of the given type, the function always returns false. If
class is neither a class object nor a type object, a TypeError exception is raised.

issubclass(class1, class2)
Return true if class1 is a subclass (direct or indirect) of class2 . A class is considered a subclass of

9This is ugly — the language definition should require truncation towards zero.

2.3. Built-in Functions 23



itself. If either argument is not a class object, a TypeError exception is raised.

len(s)
Return the length (the number of items) of an object. The argument may be a sequence (string,
tuple or list) or a mapping (dictionary).

list(sequence)
Return a list whose items are the same and in the same order as sequence’s items. If sequence is
already a list, a copy is made and returned, similar to sequence[:]. For instance, list(’abc’)
returns returns [’a’, ’b’, ’c’] and list( (1, 2, 3) ) returns [1, 2, 3].

locals()
Return a dictionary representing the current local symbol table. Warning: The contents of this
dictionary should not be modified; changes may not affect the values of local variables used by the
interpreter.

long(x [, radix ])
Convert a string or number to a long integer. If the argument is a string, it must contain a
possibly signed number of arbitrary size, possibly embedded in whitespace; this behaves identical
to string.atol(x). The radix argument is interpreted in the same way as for int(), and may
only be given when x is a string. Otherwise, the argument may be a plain or long integer or a
floating point number, and a long integer with the same value is returned. Conversion of floating
point numbers to integers is defined by the C semantics; see the description of int().

map(function, list, ...)
Apply function to every item of list and return a list of the results. If additional list arguments are
passed, function must take that many arguments and is applied to the items of all lists in parallel;
if a list is shorter than another it is assumed to be extended with None items. If function is None,
the identity function is assumed; if there are multiple list arguments, map() returns a list consisting
of tuples containing the corresponding items from all lists (i.e. a kind of transpose operation). The
list arguments may be any kind of sequence; the result is always a list.

max(s[, args... ])
With a single argument s, return the largest item of a non-empty sequence (e.g., a string, tuple or
list). With more than one argument, return the largest of the arguments.

min(s[, args... ])
With a single argument s, return the smallest item of a non-empty sequence (e.g., a string, tuple
or list). With more than one argument, return the smallest of the arguments.

oct(x)
Convert an integer number (of any size) to an octal string. The result is a valid Python ex-
pression. Note: this always yields an unsigned literal, e.g. on a 32-bit machine, oct(-1) yields
’037777777777’. When evaluated on a machine with the same word size, this literal is evaluated
as -1; at a different word size, it may turn up as a large positive number or raise an OverflowError
exception.

open(filename[, mode[, bufsize ] ])
Return a new file object (described earlier under Built-in Types). The first two arguments are the
same as for stdio’s fopen(): filename is the file name to be opened, mode indicates how the file
is to be opened: ’r’ for reading, ’w’ for writing (truncating an existing file), and ’a’ opens it
for appending (which on some Unix systems means that all writes append to the end of the file,
regardless of the current seek position).

Modes ’r+’, ’w+’ and ’a+’ open the file for updating (note that ’w+’ truncates the file). Append
’b’ to the mode to open the file in binary mode, on systems that differentiate between binary and
text files (else it is ignored). If the file cannot be opened, IOError is raised.

If mode is omitted, it defaults to ’r’. When opening a binary file, you should append ’b’ to the
mode value for improved portability. (It’s useful even on systems which don’t treat binary and text
files differently, where it serves as documentation.) The optional bufsize argument specifies the
file’s desired buffer size: 0 means unbuffered, 1 means line buffered, any other positive value means
use a buffer of (approximately) that size. A negative bufsize means to use the system default,
which is usually line buffered for for tty devices and fully buffered for other files. If omitted, the

24 Chapter 2. Built-in Types, Exceptions and Functions



system default is used.10

ord(c)
Return the ascii value of a string of one character or a Unicode character. E.g., ord(’a’) returns
the integer 97, ord(u’
u2020’) returns 8224. This is the inverse of chr() for strings and of unichr() for Unicode
characters.

pow(x, y[, z ])
Return x to the power y ; if z is present, return x to the power y , modulo z (computed more
efficiently than pow(x, y) % z ). The arguments must have numeric types. With mixed operand
types, the rules for binary arithmetic operators apply. The effective operand type is also the type
of the result; if the result is not expressible in this type, the function raises an exception; e.g.,
pow(2, -1) or pow(2, 35000) is not allowed.

range([start, ] stop[, step ])
This is a versatile function to create lists containing arithmetic progressions. It is most often used
in for loops. The arguments must be plain integers. If the step argument is omitted, it defaults
to 1. If the start argument is omitted, it defaults to 0. The full form returns a list of plain integers
[start, start + step, start + 2 * step, ...]. If step is positive, the last element is the largest
start + i * step less than stop; if step is negative, the last element is the largest start + i * step
greater than stop. step must not be zero (or else ValueError is raised). Example:

>>> range(10)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> range(1, 11)

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> range(0, 30, 5)

[0, 5, 10, 15, 20, 25]

>>> range(0, 10, 3)

[0, 3, 6, 9]

>>> range(0, -10, -1)

[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]

>>> range(0)

[]

>>> range(1, 0)

[]

raw input([prompt ])
If the prompt argument is present, it is written to standard output without a trailing newline. The
function then reads a line from input, converts it to a string (stripping a trailing newline), and
returns that. When eof is read, EOFError is raised. Example:

>>> s = raw_input(’--> ’)

--> Monty Python’s Flying Circus

>>> s

"Monty Python’s Flying Circus"

If the readline module was loaded, then raw input() will use it to provide elaborate line editing
and history features.

reduce(function, sequence[, initializer ])
Apply function of two arguments cumulatively to the items of sequence, from left to right, so as
to reduce the sequence to a single value. For example, reduce(lambda x, y: x+y, [1, 2, 3,
4, 5]) calculates ((((1+2)+3)+4)+5). If the optional initializer is present, it is placed before the
items of the sequence in the calculation, and serves as a default when the sequence is empty.

reload(module)
10Specifying a buffer size currently has no effect on systems that don’t have setvbuf(). The interface to specify the

buffer size is not done using a method that calls setvbuf(), because that may dump core when called after any I/O has
been performed, and there’s no reliable way to determine whether this is the case.

2.3. Built-in Functions 25



Re-parse and re-initialize an already imported module. The argument must be a module object,
so it must have been successfully imported before. This is useful if you have edited the module
source file using an external editor and want to try out the new version without leaving the Python
interpreter. The return value is the module object (i.e. the same as the module argument).

There are a number of caveats:

If a module is syntactically correct but its initialization fails, the first import statement for it does
not bind its name locally, but does store a (partially initialized) module object in sys.modules. To
reload the module you must first import it again (this will bind the name to the partially initialized
module object) before you can reload() it.

When a module is reloaded, its dictionary (containing the module’s global variables) is retained.
Redefinitions of names will override the old definitions, so this is generally not a problem. If the new
version of a module does not define a name that was defined by the old version, the old definition
remains. This feature can be used to the module’s advantage if it maintains a global table or cache
of objects — with a try statement it can test for the table’s presence and skip its initialization if
desired.

It is legal though generally not very useful to reload built-in or dynamically loaded modules, except
for sys, main and builtin . In many cases, however, extension modules are not designed
to be initialized more than once, and may fail in arbitrary ways when reloaded.

If a module imports objects from another module using from . . . import . . . , calling reload()
for the other module does not redefine the objects imported from it — one way around this is
to re-execute the from statement, another is to use import and qualified names (module.name)
instead.

If a module instantiates instances of a class, reloading the module that defines the class does not
affect the method definitions of the instances — they continue to use the old class definition. The
same is true for derived classes.

repr(object)
Return a string containing a printable representation of an object. This is the same value yielded
by conversions (reverse quotes). It is sometimes useful to be able to access this operation as an
ordinary function. For many types, this function makes an attempt to return a string that would
yield an object with the same value when passed to eval().

round(x [, n ])
Return the floating point value x rounded to n digits after the decimal point. If n is omitted, it
defaults to zero. The result is a floating point number. Values are rounded to the closest multiple
of 10 to the power minus n; if two multiples are equally close, rounding is done away from 0 (so
e.g. round(0.5) is 1.0 and round(-0.5) is -1.0).

setattr(object, name, value)
This is the counterpart of getattr(). The arguments are an object, a string and an arbitrary
value. The string may name an existing attribute or a new attribute. The function assigns the
value to the attribute, provided the object allows it. For example, setattr(x, ’foobar’, 123) is
equivalent to x.foobar = 123.

slice([start, ] stop[, step ])
Return a slice object representing the set of indices specified by range(start, stop, step). The
start and step arguments default to None. Slice objects have read-only data attributes start, stop
and step which merely return the argument values (or their default). They have no other explicit
functionality; however they are used by Numerical Python and other third party extensions. Slice
objects are also generated when extended indexing syntax is used, e.g. for ‘a[start:stop:step]’
or ‘a[start:stop, i]’.

str(object)
Return a string containing a nicely printable representation of an object. For strings, this returns
the string itself. The difference with repr(object) is that str(object) does not always attempt to
return a string that is acceptable to eval(); its goal is to return a printable string.

tuple(sequence)
Return a tuple whose items are the same and in the same order as sequence’s items. If sequence

26 Chapter 2. Built-in Types, Exceptions and Functions



is already a tuple, it is returned unchanged. For instance, tuple(’abc’) returns returns (’a’,
’b’, ’c’) and tuple([1, 2, 3]) returns (1, 2, 3).

type(object)
Return the type of an object . The return value is a type object. The standard module types
defines names for all built-in types. For instance:

>>> import types

>>> if type(x) == types.StringType: print "It’s a string"

unichr(i)
Return the Unicode string of one character whose Unicode code is the integer i , e.g., unichr(97)
returns the string u’a’. This is the inverse of ord() for Unicode strings. The argument must be
in the range [0..65535], inclusive. ValueError is raised otherwise. New in version 2.0.

unicode(string[, encoding[, errors ] ])
Decodes string using the codec for encoding . Error handling is done according to errors. The
default behavior is to decode UTF-8 in strict mode, meaning that encoding errors raise ValueError.
See also the codecs module. New in version 2.0.

vars([object ])
Without arguments, return a dictionary corresponding to the current local symbol table. With a
module, class or class instance object as argument (or anything else that has a dict attribute),
returns a dictionary corresponding to the object’s symbol table. The returned dictionary should
not be modified: the effects on the corresponding symbol table are undefined.11

xrange([start, ] stop[, step ])
This function is very similar to range(), but returns an “xrange object” instead of a list. This is
an opaque sequence type which yields the same values as the corresponding list, without actually
storing them all simultaneously. The advantage of xrange() over range() is minimal (since
xrange() still has to create the values when asked for them) except when a very large range
is used on a memory-starved machine (e.g. MS-DOS) or when all of the range’s elements are never
used (e.g. when the loop is usually terminated with break).

zip(seq1, ...)
This function returns a list of tuples, where each tuple contains the i -th element from each of
the argument sequences. At least one sequence is required, otherwise a TypeError is raised. The
returned list is truncated in length to the length of the shortest argument sequence. When there
are multiple argument sequences which are all of the same length, zip() is similar to map() with
an initial argument of None. With a single sequence argument, it returns a list of 1-tuples. New
in version 2.0.

11In the current implementation, local variable bindings cannot normally be affected this way, but variables retrieved
from other scopes (e.g. modules) can be. This may change.

2.3. Built-in Functions 27



28



CHAPTER

THREE

Python Runtime Services

The modules described in this chapter provide a wide range of services related to the Python interpreter
and its interaction with its environment. Here’s an overview:
sys Access system-specific parameters and functions.
gc Interface to the cycle-detecting garbage collector.
weakref Support for weak references and weak dictionaries.
fpectl Provide control for floating point exception handling.
atexit Register and execute cleanup functions.
types Names for all built-in types.
UserDict Class wrapper for dictionary objects.
UserList Class wrapper for list objects.
UserString Class wrapper for string objects.
operator All Python’s standard operators as built-in functions.
inspect Extract information and source code from live objects.
traceback Print or retrieve a stack traceback.
linecache This module provides random access to individual lines from text files.
pickle Convert Python objects to streams of bytes and back.
cPickle Faster version of pickle, but not subclassable.
copy reg Register pickle support functions.
shelve Python object persistence.
copy Shallow and deep copy operations.
marshal Convert Python objects to streams of bytes and back (with different constraints).
warnings Issue warning messages and control their disposition.
imp Access the implementation of the import statement.
code Base classes for interactive Python interpreters.
codeop Compile (possibly incomplete) Python code.
pprint Data pretty printer.
repr Alternate repr() implementation with size limits.
new Interface to the creation of runtime implementation objects.
site A standard way to reference site-specific modules.
user A standard way to reference user-specific modules.

builtin The set of built-in functions.
main The environment where the top-level script is run.

3.1 sys — System-specific parameters and functions

This module provides access to some variables used or maintained by the interpreter and to functions
that interact strongly with the interpreter. It is always available.

argv
The list of command line arguments passed to a Python script. argv[0] is the script name (it is
operating system dependent whether this is a full pathname or not). If the command was executed
using the -c command line option to the interpreter, argv[0] is set to the string ’-c’. If no script
name was passed to the Python interpreter, argv has zero length.

29



byteorder
An indicator of the native byte order. This will have the value ’big’ on big-endian (most-
signigicant byte first) platforms, and ’little’ on little-endian (least-significant byte first) plat-
forms. New in version 2.0.

builtin module names
A tuple of strings giving the names of all modules that are compiled into this Python interpreter.
(This information is not available in any other way — modules.keys() only lists the imported
modules.)

copyright
A string containing the copyright pertaining to the Python interpreter.

dllhandle
Integer specifying the handle of the Python DLL. Availability: Windows.

displayhook(value)
If value is not None, this function prints it to sys.stdout, and saves it in builtin . .

sys.displayhook is called on the result of evaluating an expression entered in an interactive
Python session. The display of these values can be customized by assigning another one-argument
function to sys.displayhook.

excepthook(type, value, traceback)
This function prints out a given traceback and exception to sys.stderr.

When an exception is raised and uncaught, the interpreter calls sys.excepthook with three argu-
ments, the exception class, exception instance, and a traceback object. In an interactive session
this happens just before control is returned to the prompt; in a Python program this happens just
before the program exits. The handling of such top-level exceptions can be customized by assigning
another three-argument function to sys.excepthook.

displayhook
excepthook

These objects contain the original values of displayhook and excepthook at the start of the
program. They are saved so that displayhook and excepthook can be restored in case they
happen to get replaced with broken objects.

exc info()
This function returns a tuple of three values that give information about the exception that is
currently being handled. The information returned is specific both to the current thread and to
the current stack frame. If the current stack frame is not handling an exception, the information
is taken from the calling stack frame, or its caller, and so on until a stack frame is found that is
handling an exception. Here, “handling an exception” is defined as “executing or having executed
an except clause.” For any stack frame, only information about the most recently handled exception
is accessible.

If no exception is being handled anywhere on the stack, a tuple containing three None values is
returned. Otherwise, the values returned are (type, value, traceback). Their meaning is: type
gets the exception type of the exception being handled (a string or class object); value gets the
exception parameter (its associated value or the second argument to raise, which is always a class
instance if the exception type is a class object); traceback gets a traceback object (see the Reference
Manual) which encapsulates the call stack at the point where the exception originally occurred.

Warning: assigning the traceback return value to a local variable in a function that is handling an
exception will cause a circular reference. This will prevent anything referenced by a local variable
in the same function or by the traceback from being garbage collected. Since most functions
don’t need access to the traceback, the best solution is to use something like exctype, value =
sys.exc info()[:2] to extract only the exception type and value. If you do need the traceback,
make sure to delete it after use (best done with a try ... finally statement) or to call exc info()
in a function that does not itself handle an exception.

exc type
exc value
exc traceback

30 Chapter 3. Python Runtime Services



Deprecated since release 1.5. Use exc info() instead.

Since they are global variables, they are not specific to the current thread, so their use is not safe
in a multi-threaded program. When no exception is being handled, exc type is set to None and
the other two are undefined.

exec prefix
A string giving the site-specific directory prefix where the platform-dependent Python files are in-
stalled; by default, this is also ’/usr/local’. This can be set at build time with the --exec-prefix
argument to the configure script. Specifically, all configuration files (e.g. the ‘config.h’ header file)
are installed in the directory exec prefix + ’/lib/pythonversion/config’, and shared library
modules are installed in exec prefix + ’/lib/pythonversion/lib-dynload’, where version is
equal to version[:3].

executable
A string giving the name of the executable binary for the Python interpreter, on systems where
this makes sense.

exit([arg ])
Exit from Python. This is implemented by raising the SystemExit exception, so cleanup actions
specified by finally clauses of try statements are honored, and it is possible to intercept the exit
attempt at an outer level. The optional argument arg can be an integer giving the exit status
(defaulting to zero), or another type of object. If it is an integer, zero is considered “successful
termination” and any nonzero value is considered “abnormal termination” by shells and the like.
Most systems require it to be in the range 0-127, and produce undefined results otherwise. Some
systems have a convention for assigning specific meanings to specific exit codes, but these are
generally underdeveloped; Unix programs generally use 2 for command line syntax errors and 1
for all other kind of errors. If another type of object is passed, None is equivalent to passing zero,
and any other object is printed to sys.stderr and results in an exit code of 1. In particular,
sys.exit("some error message") is a quick way to exit a program when an error occurs.

exitfunc
This value is not actually defined by the module, but can be set by the user (or by a program) to
specify a clean-up action at program exit. When set, it should be a parameterless function. This
function will be called when the interpreter exits. Only one function may be installed in this way;
to allow multiple functions which will be called at termination, use the atexit module. Note: the
exit function is not called when the program is killed by a signal, when a Python fatal internal
error is detected, or when os. exit() is called.

getdefaultencoding()
Return the name of the current default string encoding used by the Unicode implementation. New
in version 2.0.

getrefcount(object)
Return the reference count of the object . The count returned is generally one higher than you
might expect, because it includes the (temporary) reference as an argument to getrefcount().

getrecursionlimit()
Return the current value of the recursion limit, the maximum depth of the Python interpreter
stack. This limit prevents infinite recursion from causing an overflow of the C stack and crashing
Python. It can be set by setrecursionlimit().

getframe([depth ])
Return a frame object from the call stack. If optional integer depth is given, return the frame
object that many calls below the top of the stack. If that is deeper than the call stack, ValueError
is raised. The default for depth is zero, returning the frame at the top of the call stack.

This function should be used for internal and specialized purposes only.

hexversion
The version number encoded as a single integer. This is guaranteed to increase with each ver-
sion, including proper support for non-production releases. For example, to test that the Python
interpreter is at least version 1.5.2, use:

3.1. sys — System-specific parameters and functions 31



if sys.hexversion >= 0x010502F0:

# use some advanced feature

...

else:

# use an alternative implementation or warn the user

...

This is called ‘hexversion’ since it only really looks meaningful when viewed as the result of passing
it to the built-in hex() function. The version info value may be used for a more human-friendly
encoding of the same information. New in version 1.5.2.

last type
last value
last traceback

These three variables are not always defined; they are set when an exception is not handled and
the interpreter prints an error message and a stack traceback. Their intended use is to allow an
interactive user to import a debugger module and engage in post-mortem debugging without having
to re-execute the command that caused the error. (Typical use is ‘import pdb; pdb.pm()’ to enter
the post-mortem debugger; see the chapter “The Python Debugger” for more information.)

The meaning of the variables is the same as that of the return values from exc info() above.
(Since there is only one interactive thread, thread-safety is not a concern for these variables, unlike
for exc type etc.)

maxint
The largest positive integer supported by Python’s regular integer type. This is at least 2**31-1.
The largest negative integer is -maxint-1 – the asymmetry results from the use of 2’s complement
binary arithmetic.

modules
This is a dictionary that maps module names to modules which have already been loaded. This
can be manipulated to force reloading of modules and other tricks. Note that removing a module
from this dictionary is not the same as calling reload() on the corresponding module object.

path
A list of strings that specifies the search path for modules. Initialized from the environment variable
PYTHONPATH, or an installation-dependent default.

The first item of this list, path[0], is the directory containing the script that was used to invoke
the Python interpreter. If the script directory is not available (e.g. if the interpreter is invoked
interactively or if the script is read from standard input), path[0] is the empty string, which
directs Python to search modules in the current directory first. Notice that the script directory is
inserted before the entries inserted as a result of PYTHONPATH.

platform
This string contains a platform identifier, e.g. ’sunos5’ or ’linux1’. This can be used to append
platform-specific components to path, for instance.

prefix
A string giving the site-specific directory prefix where the platform independent Python files are
installed; by default, this is the string ’/usr/local’. This can be set at build time with the
--prefix argument to the configure script. The main collection of Python library modules is
installed in the directory prefix + ’/lib/pythonversion’ while the platform independent header
files (all except ‘config.h’) are stored in prefix + ’/include/pythonversion’, where version is
equal to version[:3].

ps1
ps2

Strings specifying the primary and secondary prompt of the interpreter. These are only defined if
the interpreter is in interactive mode. Their initial values in this case are ’>>> ’ and ’... ’. If
a non-string object is assigned to either variable, its str() is re-evaluated each time the interpreter
prepares to read a new interactive command; this can be used to implement a dynamic prompt.

32 Chapter 3. Python Runtime Services



setcheckinterval(interval)
Set the interpreter’s “check interval”. This integer value determines how often the interpreter
checks for periodic things such as thread switches and signal handlers. The default is 10, meaning
the check is performed every 10 Python virtual instructions. Setting it to a larger value may
increase performance for programs using threads. Setting it to a value <= 0 checks every virtual
instruction, maximizing responsiveness as well as overhead.

setdefaultencoding(name)
Set the current default string encoding used by the Unicode implementation. If name does not
match any available encoding, LookupError is raised. This function is only intended to be used by
the site module implementation and, where needed, by sitecustomize. Once used by the site
module, it is removed from the sys module’s namespace. New in version 2.0.

setprofile(profilefunc)
Set the system’s profile function, which allows you to implement a Python source code profiler in
Python. See the chapter on the Python Profiler. The system’s profile function is called similarly
to the system’s trace function (see settrace()), but it isn’t called for each executed line of code
(only on call and return and when an exception occurs). Also, its return value is not used, so it
can just return None.

setrecursionlimit(limit)
Set the maximum depth of the Python interpreter stack to limit . This limit prevents infinite
recursion from causing an overflow of the C stack and crashing Python.

The highest possible limit is platform-dependent. A user may need to set the limit higher when
she has a program that requires deep recursion and a platform that supports a higher limit. This
should be done with care, because a too-high limit can lead to a crash.

settrace(tracefunc)
Set the system’s trace function, which allows you to implement a Python source code debugger in
Python. See section “How It Works” in the chapter on the Python Debugger.

stdin
stdout
stderr

File objects corresponding to the interpreter’s standard input, output and error streams. stdin is
used for all interpreter input except for scripts but including calls to input() and raw input().
stdout is used for the output of print and expression statements and for the prompts of input()
and raw input(). The interpreter’s own prompts and (almost all of) its error messages go to
stderr. stdout and stderr needn’t be built-in file objects: any object is acceptable as long as it
has a write() method that takes a string argument. (Changing these objects doesn’t affect the
standard I/O streams of processes executed by os.popen(), os.system() or the exec*() family
of functions in the os module.)

stdin
stdout
stderr

These objects contain the original values of stdin, stderr and stdout at the start of the program.
They are used during finalization, and could be useful to restore the actual files to known working
file objects in case they have been overwritten with a broken object.

tracebacklimit
When this variable is set to an integer value, it determines the maximum number of levels of
traceback information printed when an unhandled exception occurs. The default is 1000. When
set to 0 or less, all traceback information is suppressed and only the exception type and value are
printed.

version
A string containing the version number of the Python interpreter plus additional information
on the build number and compiler used. It has a value of the form ’version (#build number,
build date, build time) [compiler]’. The first three characters are used to identify the version
in the installation directories (where appropriate on each platform). An example:

3.1. sys — System-specific parameters and functions 33



>>> import sys

>>> sys.version

’1.5.2 (#0 Apr 13 1999, 10:51:12) [MSC 32 bit (Intel)]’

version info
A tuple containing the five components of the version number: major , minor , micro, release-
level , and serial . All values except releaselevel are integers; the release level is ’alpha’, ’beta’,
’candidate’, or ’final’. The version info value corresponding to the Python version 2.0 is
(2, 0, 0, ’final’, 0). New in version 2.0.

winver
The version number used to form registry keys on Windows platforms. This is stored as string
resource 1000 in the Python DLL. The value is normally the first three characters of version. It
is provided in the sys module for informational purposes; modifying this value has no effect on the
registry keys used by Python. Availability: Windows.

3.2 gc — Garbage Collector interface

The gc module is only available if the interpreter was built with the optional cyclic garbage detector
(enabled by default). If this was not enabled, an ImportError is raised by attempts to import this
module.

This module provides an interface to the optional garbage collector. It provides the ability to disable the
collector, tune the collection frequency, and set debugging options. It also provides access to unreachable
objects that the collector found but cannot free. Since the collector supplements the reference counting
already used in Python, you can disable the collector if you are sure your program does not create
reference cycles. Automatic collection can be disabled by calling gc.disable(). To debug a leaking
program call gc.set debug(gc.DEBUG LEAK).

The gc module provides the following functions:

enable()
Enable automatic garbage collection.

disable()
Disable automatic garbage collection.

isenabled()
Returns true if automatic collection is enabled.

collect()
Run a full collection. All generations are examined and the number of unreachable objects found
is returned.

set debug(flags)
Set the garbage collection debugging flags. Debugging information will be written to sys.stderr.
See below for a list of debugging flags which can be combined using bit operations to control
debugging.

get debug()
Return the debugging flags currently set.

set threshold(threshold0 [, threshold1 [, threshold2 ] ])
Set the garbage collection thresholds (the collection frequency). Setting threshold0 to zero disables
collection.

The GC classifies objects into three generations depending on how many collection sweeps they
have survived. New objects are placed in the youngest generation (generation 0). If an object
survives a collection it is moved into the next older generation. Since generation 2 is the oldest
generation, objects in that generation remain there after a collection. In order to decide when
to run, the collector keeps track of the number object allocations and deallocations since the last
collection. When the number of allocations minus the number of deallocations exceeds threshold0 ,
collection starts. Initially only generation 0 is examined. If generation 0 has been examined more

34 Chapter 3. Python Runtime Services



than threshold1 times since generation 1 has been examined, then generation 1 is examined as well.
Similarly, threshold2 controls the number of collections of generation 1 before collecting generation
2.

get threshold()
Return the current collection thresholds as a tuple of (threshold0, threshold1, threshold2).

The following variable is provided for read-only access:

garbage
A list of objects which the collector found to be unreachable but could not be freed (uncollectable
objects). Objects that have del () methods and create part of a reference cycle cause the
entire reference cycle to be uncollectable. If DEBUG SAVEALL is set, then all unreachable objects
will be added to this list rather than freed.

The following constants are provided for use with set debug():

DEBUG STATS
Print statistics during collection. This information can be useful when tuning the collection fre-
quency.

DEBUG COLLECTABLE
Print information on collectable objects found.

DEBUG UNCOLLECTABLE
Print information of uncollectable objects found (objects which are not reachable but cannot be
freed by the collector). These objects will be added to the garbage list.

DEBUG INSTANCES
When DEBUG COLLECTABLE or DEBUG UNCOLLECTABLE is set, print information about instance ob-
jects found.

DEBUG OBJECTS
When DEBUG COLLECTABLE or DEBUG UNCOLLECTABLE is set, print information about objects other
than instance objects found.

DEBUG SAVEALL
When set, all unreachable objects found will be appended to garbage rather than being freed. This
can be useful for debugging a leaking program.

DEBUG LEAK
The debugging flags necessary for the collector to print information about a leak-
ing program (equal to DEBUG COLLECTABLE | DEBUG UNCOLLECTABLE | DEBUG INSTANCES |
DEBUG OBJECTS | DEBUG SAVEALL).

3.3 weakref — Weak references

New in version 2.1.

The weakref module allows the Python programmer to create weak references to objects.

XXX — need to say more here!

Not all objects can be weakly referenced; those objects which do include class instances, functions
written in Python (but not in C), and methods (both bound and unbound). Extension types can easily
be made to support weak references; see section 3.3.3, “Weak References in Extension Types,” for more
information.

ref(object[, callback ])
Return a weak reference to object . If callback is provided, it will be called when the object is about
to be finalized; the weak reference object will be passed as the only parameter to the callback; the
referent will no longer be available. The original object can be retrieved by calling the reference
object, if the referent is still alive.

It is allowable for many weak references to be constructed for the same object. Callbacks registered

3.3. weakref — Weak references 35



for each weak reference will be called from the most recently registered callback to the oldest
registered callback.

Exceptions raised by the callback will be noted on the standard error output, but cannot be propa-
gated; they are handled in exactly the same way as exceptions raised from an object’s del ()
method.

Weak references are hashable if the object is hashable. They will maintain their hash value even
after the object was deleted. If hash() is called the first time only after the object was deleted, the
call will raise TypeError.

Weak references support test for equality, but not ordering. If the object is still alive, to references
are equal if the objects are equal (regardless of the callback). If the object has been deleted, they
are equal iff they are identical.

proxy(object[, callback ])
Return a proxy to object which uses a weak reference. This supports use of the proxy in most
contexts instead of requiring the explicit dereferencing used with weak reference objects. The
returned object will have a type of either ProxyType or CallableProxyType, depending on whether
object is callable. Proxy objects are not hashable regardless of the referent; this avoids a number of
problems related to their fundamentally mutable nature, and prevent their use as dictionary keys.
callback is the same as the parameter of the same name to the ref() function.

getweakrefcount(object)
Return the number of weak references and proxies which refer to object .

getweakrefs(object)
Return a list of all weak reference and proxy objects which refer to object .

class WeakKeyDictionary([dict ])
Mapping class that references keys weakly. Entries in the dictionary will be discarded when there
is no longer a strong reference to the key. This can be used to associate additional data with an
object owned by other parts of an application without adding attributes to those objects. This can
be especially useful with objects that override attribute accesses.

class WeakValueDictionary([dict ])
Mapping class that references values weakly. Entries in the dictionary will be discarded when no
strong reference to the value exists anymore.

ReferenceType
The type object for weak references objects.

ProxyType
The type object for proxies of objects which are not callable.

CallableProxyType
The type object for proxies of callable objects.

ProxyTypes
Sequence containing all the type objects for proxies. This can make it simpler to test if an object
is a proxy without being dependent on naming both proxy types.

exception ReferenceError
Exception raised when a proxy object is used but the underlying object has been collected.

See Also:

PEP 0205, “Weak References”
The proposal and rationale for this feature, including links to earlier implementations and infor-
mation about similar features in other languages.

3.3.1 Weak Reference Objects

Weak reference objects have no attributes or methods, but do allow the referent to be obtained, if it still
exists, by calling it:

36 Chapter 3. Python Runtime Services



>>> import weakref

>>> class Object:

... pass

...

>>> o = Object()

>>> r = weakref.ref(o)

>>> o2 = r()

>>> o is o2

1

If the referent no longer exists, calling the reference object returns None:

>>> del o, o2

>>> print r()

None

Testing that a weak reference object is still live should be done using the expression ref .get() is not
None. Normally, application code that needs to use a reference object should follow this pattern:

o = ref.get()

if o is None:

# referent has been garbage collected

print "Object has been allocated; can’t frobnicate."

else:

print "Object is still live!"

o.do_something_useful()

Using a separate test for “liveness” creates race conditions in threaded applications; another thread can
cause a weak reference to become invalidated before the get() method is called; the idiom shown above
is safe in threaded applications as well as single-threaded applications.

3.3.2 Example

This simple example shows how an application can use objects IDs to retrieve objects that it has seen
before. The IDs of the objects can then be used in other data structures without forcing the objects to
remain alive, but the objects can still be retrieved by ID if they do.

import weakref

_id2obj_dict = weakref.WeakValueDictionary()

def remember(obj):

_id2obj_dict[id(obj)] = obj

def id2obj(id):

return _id2obj_dict.get(id)

3.3.3 Weak References in Extension Types

One of the goals of the implementation is to allow any type to participate in the weak reference mechanism
without incurring the overhead on those objects which do not benefit by weak referencing (such as
numbers).

For an object to be weakly referencable, the extension must include a PyObject * field in the instance

3.3. weakref — Weak references 37



structure for the use of the weak reference mechanism; it must be initialized to NULL by the object’s
constructor. It must also set the tp weaklistoffset field of the corresponding type object to the offset
of the field. For example, the instance type is defined with the following structure:

typedef struct {

PyObject_HEAD

PyClassObject *in_class; /* The class object */

PyObject *in_dict; /* A dictionary */

PyObject *in_weakreflist; /* List of weak references */

} PyInstanceObject;

The statically-declared type object for instances is defined this way:

PyTypeObject PyInstance_Type = {

PyObject_HEAD_INIT(&PyType_Type)

0,

"instance",

/* Lots of stuff omitted for brevity... */

offsetof(PyInstanceObject, in_weakreflist) /* tp_weaklistoffset */

};

The only further addition is that the destructor needs to call the weak reference manager to clear any
weak references. This should be done before any other parts of the destruction have occurred:

static void

instance_dealloc(PyInstanceObject *inst)

{

/* Allocate tempories if needed, but do not begin

destruction just yet.

*/

PyObject_ClearWeakRefs((PyObject *) inst);

/* Proceed with object destuction normally. */

}

3.4 fpectl — Floating point exception control

Most computers carry out floating point operations in conformance with the so-called IEEE-754 standard.
On any real computer, some floating point operations produce results that cannot be expressed as a
normal floating point value. For example, try

>>> import math

>>> math.exp(1000)

inf

>>> math.exp(1000) / math.exp(1000)

nan

(The example above will work on many platforms. DEC Alpha may be one exception.) ”Inf” is a special,
non-numeric value in IEEE-754 that stands for ”infinity”, and ”nan” means ”not a number.” Note that,
other than the non-numeric results, nothing special happened when you asked Python to carry out those

38 Chapter 3. Python Runtime Services



calculations. That is in fact the default behaviour prescribed in the IEEE-754 standard, and if it works
for you, stop reading now.

In some circumstances, it would be better to raise an exception and stop processing at the point where
the faulty operation was attempted. The fpectl module is for use in that situation. It provides control
over floating point units from several hardware manufacturers, allowing the user to turn on the generation
of SIGFPE whenever any of the IEEE-754 exceptions Division by Zero, Overflow, or Invalid Operation
occurs. In tandem with a pair of wrapper macros that are inserted into the C code comprising your
python system, SIGFPE is trapped and converted into the Python FloatingPointError exception.

The fpectl module defines the following functions and may raise the given exception:

turnon sigfpe()
Turn on the generation of SIGFPE, and set up an appropriate signal handler.

turnoff sigfpe()
Reset default handling of floating point exceptions.

exception FloatingPointError
After turnon sigfpe() has been executed, a floating point operation that raises one of the IEEE-
754 exceptions Division by Zero, Overflow, or Invalid operation will in turn raise this standard
Python exception.

3.4.1 Example

The following example demonstrates how to start up and test operation of the fpectl module.

>>> import fpectl

>>> import fpetest

>>> fpectl.turnon_sigfpe()

>>> fpetest.test()

overflow PASS

FloatingPointError: Overflow

div by 0 PASS

FloatingPointError: Division by zero

[ more output from test elided ]

>>> import math

>>> math.exp(1000)

Traceback (most recent call last):

File "<stdin>", line 1, in ?

FloatingPointError: in math_1

3.4.2 Limitations and other considerations

Setting up a given processor to trap IEEE-754 floating point errors currently requires custom code on a
per-architecture basis. You may have to modify fpectl to control your particular hardware.

Conversion of an IEEE-754 exception to a Python exception requires that the wrapper macros
PyFPE START PROTECT and PyFPE END PROTECT be inserted into your code in an appropriate fash-
ion. Python itself has been modified to support the fpectl module, but many other codes of interest to
numerical analysts have not.

The fpectl module is not thread-safe.

See Also:

Some files in the source distribution may be interesting in learning more about how this module op-
erates. The include file ‘Include/pyfpe.h’ discusses the implementation of this module at some length.
‘Modules/fpetestmodule.c’ gives several examples of use. Many additional examples can be found in
‘Objects/floatobject.c’.

3.4. fpectl — Floating point exception control 39



3.5 atexit — Exit handlers

New in version 2.0.

The atexit module defines a single function to register cleanup functions. Functions thus registered are
automatically executed upon normal interpreter termination.

Note: the functions registered via this module are not called when the program is killed by a signal,
when a Python fatal internal error is detected, or when os. exit() is called.

This is an alternate interface to the functionality provided by the sys.exitfunc variable.

Note: This module is unlikely to work correctly when used with other code that sets sys.exitfunc.
In particular, other core Python modules are free to use atexit without the programmer’s knowledge.
Authors who use sys.exitfunc should convert their code to use atexit instead. The simplest way to
convert code that sets sys.exitfunc is to import atexit and register the function that had been bound
to sys.exitfunc.

register(func[, *args[, **kargs ] ])
Register func as a function to be executed at termination. Any optional arguments that are to be
passed to func must be passed as arguments to register().

At normal program termination (for instance, if sys.exit() is called or the main module’s exe-
cution completes), all functions registered are called in last in, first out order. The assumption is
that lower level modules will normally be imported before higher level modules and thus must be
cleaned up later.

See Also:

Module readline (section 7.16):
Useful example of atexit to read and write readline history files.

3.5.1 atexit Example

The following simple example demonstrates how a module can initialize a counter from a file when it
is imported and save the counter’s updated value automatically when the program terminates without
relying on the application making an explicit call into this module at termination.

try:

_count = int(open("/tmp/counter").read())

except IOError:

_count = 0

def incrcounter(n):

global _count

_count = _count + n

def savecounter():

open("/tmp/counter", "w").write("%d" % _count)

import atexit

atexit.register(savecounter)

3.6 types — Names for all built-in types

This module defines names for all object types that are used by the standard Python interpreter, but
not for the types defined by various extension modules. It is safe to use ‘from types import *’ — the
module does not export any names besides the ones listed here. New names exported by future versions
of this module will all end in ‘Type’.

40 Chapter 3. Python Runtime Services



Typical use is for functions that do different things depending on their argument types, like the following:

from types import *

def delete(list, item):

if type(item) is IntType:

del list[item]

else:

list.remove(item)

The module defines the following names:

NoneType
The type of None.

TypeType
The type of type objects (such as returned by type()).

IntType
The type of integers (e.g. 1).

LongType
The type of long integers (e.g. 1L).

FloatType
The type of floating point numbers (e.g. 1.0).

ComplexType
The type of complex numbers (e.g. 1.0j).

StringType
The type of character strings (e.g. ’Spam’).

UnicodeType
The type of Unicode character strings (e.g. u’Spam’).

TupleType
The type of tuples (e.g. (1, 2, 3, ’Spam’)).

ListType
The type of lists (e.g. [0, 1, 2, 3]).

DictType
The type of dictionaries (e.g. {’Bacon’: 1, ’Ham’: 0}).

DictionaryType
An alternate name for DictType.

FunctionType
The type of user-defined functions and lambdas.

LambdaType
An alternate name for FunctionType.

CodeType
The type for code objects such as returned by compile().

ClassType
The type of user-defined classes.

InstanceType
The type of instances of user-defined classes.

MethodType
The type of methods of user-defined class instances.

UnboundMethodType
An alternate name for MethodType.

3.6. types — Names for all built-in types 41



BuiltinFunctionType
The type of built-in functions like len() or sys.exit().

BuiltinMethodType
An alternate name for BuiltinFunction.

ModuleType
The type of modules.

FileType
The type of open file objects such as sys.stdout.

XRangeType
The type of range objects returned by xrange().

SliceType
The type of objects returned by slice().

EllipsisType
The type of Ellipsis.

TracebackType
The type of traceback objects such as found in sys.exc traceback.

FrameType
The type of frame objects such as found in tb.tb frame if tb is a traceback object.

BufferType
The type of buffer objects created by the buffer() function.

3.7 UserDict — Class wrapper for dictionary objects

This module defines a class that acts as a wrapper around dictionary objects. It is a useful base class
for your own dictionary-like classes, which can inherit from them and override existing methods or add
new ones. In this way one can add new behaviors to dictionaries.

The UserDict module defines the UserDict class:

class UserDict([initialdata ])
Class that simulates a dictionary. The instance’s contents are kept in a regular dictionary, which is
accessible via the data attribute of UserDict instances. If initialdata is provided, data is initialized
with its contents; note that a reference to initialdata will not be kept, allowing it be used used for
other purposes.

In addition to supporting the methods and operations of mappings (see section 2.1.6), UserDict instances
provide the following attribute:

data
A real dictionary used to store the contents of the UserDict class.

3.8 UserList — Class wrapper for list objects

This module defines a class that acts as a wrapper around list objects. It is a useful base class for your
own list-like classes, which can inherit from them and override existing methods or add new ones. In
this way one can add new behaviors to lists.

The UserList module defines the UserList class:

class UserList([list ])
Class that simulates a list. The instance’s contents are kept in a regular list, which is accessible
via the data attribute of UserList instances. The instance’s contents are initially set to a copy
of list , defaulting to the empty list []. list can be either a regular Python list, or an instance of
UserList (or a subclass).

42 Chapter 3. Python Runtime Services



In addition to supporting the methods and operations of mutable sequences (see section 2.1.5), UserList
instances provide the following attribute:

data
A real Python list object used to store the contents of the UserList class.

Subclassing requirements: Subclasses of UserList are expect to offer a constructor which can be
called with either no arguments or one argument. List operations which return a new sequence attempt
to create an instance of the actual implementation class. To do so, it assumes that the constructor can
be called with a single parameter, which is a sequence object used as a data source.

If a derived class does not wish to comply with this requirement, all of the special methods supported
by this class will need to be overridden; please consult the sources for information about the methods
which need to be provided in that case.

Changed in version 2.0: Python versions 1.5.2 and 1.6 also required that the constructor be callable with
no parameters, and offer a mutable data attribute. Earlier versions of Python did not attempt to create
instances of the derived class.

3.9 UserString — Class wrapper for string objects

This module defines a class that acts as a wrapper around string objects. It is a useful base class for your
own string-like classes, which can inherit from them and override existing methods or add new ones. In
this way one can add new behaviors to strings.

It should be noted that these classes are highly inefficient compared to real string or Unicode objects;
this is especially the case for MutableString.

The UserString module defines the following classes:

class UserString([sequence ])
Class that simulates a string or a Unicode string object. The instance’s content is kept in a regular
string or Unicode string object, which is accessible via the data attribute of UserString instances.
The instance’s contents are initially set to a copy of sequence. sequence can be either a regular
Python string or Unicode string, an instance of UserString (or a subclass) or an arbitrary sequence
which can be converted into a string using the built-in str() function.

class MutableString([sequence ])
This class is derived from the UserString above and redefines strings to be mutable. Mutable
strings can’t be used as dictionary keys, because dictionaries require immutable objects as keys.
The main intention of this class is to serve as an educational example for inheritance and necessity
to remove (override) the hash () method in order to trap attempts to use a mutable object
as dictionary key, which would be otherwise very error prone and hard to track down.

In addition to supporting the methods and operations of string and Unicode objects (see section 2.1.5,
“String Methods”), UserString instances provide the following attribute:

data
A real Python string or Unicode object used to store the content of the UserString class.

3.10 operator — Standard operators as functions.

The operator module exports a set of functions implemented in C corresponding to the intrinsic oper-
ators of Python. For example, operator.add(x, y) is equivalent to the expression x+y. The function
names are those used for special class methods; variants without leading and trailing ‘ ’ are also
provided for convenience.

The operator module defines the following functions:

add(a, b)
add (a, b)

3.9. UserString — Class wrapper for string objects 43



Return a + b, for a and b numbers.

sub(a, b)
sub (a, b)

Return a - b.

mul(a, b)
mul (a, b)

Return a * b, for a and b numbers.

div(a, b)
div (a, b)

Return a / b.

mod(a, b)
mod (a, b)

Return a % b.

neg(o)
neg (o)

Return o negated.

pos(o)
pos (o)

Return o positive.

abs(o)
abs (o)

Return the absolute value of o.

inv(o)
invert(o)

inv (o)
invert (o)

Return the bitwise inverse of the number o. The names invert() and invert () were added
in Python 2.0.

lshift(a, b)
lshift (a, b)

Return a shifted left by b.

rshift(a, b)
rshift (a, b)

Return a shifted right by b.

and (a, b)
and (a, b)

Return the bitwise and of a and b.

or (a, b)
or (a, b)

Return the bitwise or of a and b.

xor(a, b)
xor (a, b)

Return the bitwise exclusive or of a and b.

not (o)
not (o)

Return the outcome of not o. (Note that there is no not () method for object instances;
only the interpreter core defines this operation.)

truth(o)
Return 1 if o is true, and 0 otherwise.

concat(a, b)

44 Chapter 3. Python Runtime Services



concat (a, b)
Return a + b for a and b sequences.

repeat(a, b)
repeat (a, b)

Return a * b where a is a sequence and b is an integer.

contains(a, b)
contains (a, b)

Return the outcome of the test b in a. Note the reversed operands. The name contains ()
was added in Python 2.0.

sequenceIncludes(...)
Deprecated since release 2.0. Use contains() instead.

Alias for contains().

countOf(a, b)
Return the number of occurrences of b in a.

indexOf(a, b)
Return the index of the first of occurrence of b in a.

getitem(a, b)
getitem (a, b)

Return the value of a at index b.

setitem(a, b, c)
setitem (a, b, c)

Set the value of a at index b to c.

delitem(a, b)
delitem (a, b)

Remove the value of a at index b.

getslice(a, b, c)
getslice (a, b, c)

Return the slice of a from index b to index c-1.

setslice(a, b, c, v)
setslice (a, b, c, v)

Set the slice of a from index b to index c-1 to the sequence v .

delslice(a, b, c)
delslice (a, b, c)

Delete the slice of a from index b to index c-1.

The operator also defines a few predicates to test the type of objects. Note: Be careful not to
misinterpret the results of these functions; only isCallable() has any measure of reliability with instance
objects. For example:

>>> class C:

... pass

...

>>> import operator

>>> o = C()

>>> operator.isMappingType(o)

1

isCallable(o)
Deprecated since release 2.0. Use the callable() built-in function instead.

Returns true if the object o can be called like a function, otherwise it returns false. True is returned
for functions, bound and unbound methods, class objects, and instance objects which support the

call () method.

3.10. operator — Standard operators as functions. 45



isMappingType(o)
Returns true if the object o supports the mapping interface. This is true for dictionaries and all
instance objects. Warning: There is no reliable way to test if an instance supports the complete
mapping protocol since the interface itself is ill-defined. This makes this test less useful than it
otherwise might be.

isNumberType(o)
Returns true if the object o represents a number. This is true for all numeric types implemented in
C, and for all instance objects. Warning: There is no reliable way to test if an instance supports
the complete numeric interface since the interface itself is ill-defined. This makes this test less
useful than it otherwise might be.

isSequenceType(o)
Returns true if the object o supports the sequence protocol. This returns true for all objects which
define sequence methods in C, and for all instance objects. Warning: There is no reliable way to
test if an instance supports the complete sequence interface since the interface itself is ill-defined.
This makes this test less useful than it otherwise might be.

Example: Build a dictionary that maps the ordinals from 0 to 256 to their character equivalents.

>>> import operator

>>> d = {}

>>> keys = range(256)

>>> vals = map(chr, keys)

>>> map(operator.setitem, [d]*len(keys), keys, vals)

3.10.1 Mapping Operators to Functions

This table shows how abstract operations correspond to operator symbols in the Python syntax and the
functions in the operator module.

Operation Syntax Function
Addition a + b add(a, b)
Concatenation seq1 + seq2 concat(seq1, seq2)
Containment Test o in seq contains(seq, o)
Division a / b div(a, b)
Bitwise And a & b and (a, b)
Bitwise Exclusive Or a ^ b xor(a, b)
Bitwise Inversion ~ a invert(a)
Bitwise Or a | b or (a, b)
Indexed Assignment o[k] = v setitem(o, k, v)
Indexed Deletion del o[k] delitem(o, k)
Indexing o[k] getitem(o, k)
Left Shift a << b lshift(a, b)
Modulo a % b mod(a, b)
Multiplication a * b mul(a, b)
Negation (Arithmetic) - a neg(a)
Negation (Logical) not a not (a)
Right Shift a >> b rshift(a, b)
Sequence Repitition seq * i repeat(seq, i)
Slice Assignment seq[i:j] = values setslice(seq, i, j, values)
Slice Deletion del seq[i:j] delslice(seq, i, j)
Slicing seq[i:j] getslice(seq, i, j)
String Formatting s % o mod(s, o)
Subtraction a - b sub(a, b)
Truth Test o truth(o)

46 Chapter 3. Python Runtime Services



3.11 inspect — Inspect live objects

New in version 2.1.

The inspect module provides several useful functions to help get information about live objects such as
modules, classes, methods, functions, tracebacks, frame objects, and code objects. For example, it can
help you examine the contents of a class, retrieve the source code of a method, extract and format the
argument list for a function, or get all the information you need to display a detailed traceback.

There are four main kinds of services provided by this module: type checking, getting source code,
inspecting classes and functions, and examining the interpreter stack.

3.11.1 Types and members

The getmembers() function retrieves the members of an object such as a class or module. The nine
functions whose names begin with “is” are mainly provided as convenient choices for the second argument
to getmembers(). They also help you determine when you can expect to find the following special
attributes:

3.11. inspect — Inspect live objects 47



Type Attribute Description
module doc documentation string

file filename (missing for built-in modules)
class doc documentation string

module name of module in which this class was defined
method doc documentation string

name name with which this method was defined
im class class object in which this method belongs
im func function object containing implementation of method
im self instance to which this method is bound, or None

function doc documentation string
name name with which this function was defined

func code code object containing compiled function bytecode
func defaults tuple of any default values for arguments
func doc (same as doc )
func globals global namespace in which this function was defined
func name (same as name )

traceback tb frame frame object at this level
tb lasti index of last attempted instruction in bytecode
tb lineno current line number in Python source code
tb next next inner traceback object (called by this level)

frame f back next outer frame object (this frame’s caller)
f builtins built-in namespace seen by this frame
f code code object being executed in this frame
f exc traceback traceback if raised in this frame, or None
f exc type exception type if raised in this frame, or None
f exc value exception value if raised in this frame, or None
f globals global namespace seen by this frame
f lasti index of last attempted instruction in bytecode
f lineno current line number in Python source code
f locals local namespace seen by this frame
f restricted 0 or 1 if frame is in restricted execution mode
f trace tracing function for this frame, or None

code co argcount number of arguments (not including * or ** args)
co code string of raw compiled bytecode
co consts tuple of constants used in the bytecode
co filename name of file in which this code object was created
co firstlineno number of first line in Python source code
co flags bitmap: 1=optimized | 2=newlocals | 4=*arg | 8=**arg
co lnotab encoded mapping of line numbers to bytecode indices
co name name with which this code object was defined
co names tuple of names of local variables
co nlocals number of local variables
co stacksize virtual machine stack space required
co varnames tuple of names of arguments and local variables

builtin doc documentation string
name original name of this function or method
self instance to which a method is bound, or None

getmembers(object[, predicate ])
Return all the members of an object in a list of (name, value) pairs sorted by name. If the optional
predicate argument is supplied, only members for which the predicate returns a true value are
included.

getmoduleinfo(path)
Return a tuple of values that describe how Python will interpret the file identified by path if it is
a module, or None if it would not be identified as a module. The return tuple is (name, suffix,
mode, mtype), where name is the name of the module without the name of any enclosing package,
suffix is the trailing part of the file name (which may not be a dot-delimited extension), mode is

48 Chapter 3. Python Runtime Services



the open() mode that would be used (’r’ or ’rb’), and mtype is an integer giving the type of
the module. mtype will have a value which can be compared to the constants defined in the imp
module; see the documentation for that module for more information on module types.

getmodulename(path)
Return the name of the module named by the file path, without including the names of enclosing
packages. This uses the same algortihm as the interpreter uses when searching for modules. If the
name cannot be matched according to the interpreter’s rules, None is returned.

ismodule(object)
Return true if the object is a module.

isclass(object)
Return true if the object is a class.

ismethod(object)
Return true if the object is a method.

isfunction(object)
Return true if the object is a Python function or unnamed (lambda) function.

istraceback(object)
Return true if the object is a traceback.

isframe(object)
Return true if the object is a frame.

iscode(object)
Return true if the object is a code.

isbuiltin(object)
Return true if the object is a built-in function.

isroutine(object)
Return true if the object is a user-defined or built-in function or method.

3.11.2 Retrieving source code

getdoc(object)
Get the documentation string for an object. All tabs are expanded to spaces. To clean up docstrings
that are indented to line up with blocks of code, any whitespace than can be uniformly removed
from the second line onwards is removed.

getcomments(object)
Return in a single string any lines of comments immediately preceding the object’s source code (for
a class, function, or method), or at the top of the Python source file (if the object is a module).

getfile(object)
Return the name of the (text or binary) file in which an object was defined. This will fail with a
TypeError if the object is a built-in module, class, or function.

getmodule(object)
Try to guess which module an object was defined in.

getsourcefile(object)
Return the name of the Python source file in which an object was defined. This will fail with a
TypeError if the object is a built-in module, class, or function.

getsourcelines(object)
Return a list of source lines and starting line number for an object. The argument may be a
module, class, method, function, traceback, frame, or code object. The source code is returned as
a list of the lines corresponding to the object and the line number indicates where in the original
source file the first line of code was found. An IOError is raised if the source code cannot be
retrieved.

getsource(object)

3.11. inspect — Inspect live objects 49



Return the text of the source code for an object. The argument may be a module, class, method,
function, traceback, frame, or code object. The source code is returned as a single string. An
IOError is raised if the source code cannot be retrieved.

3.11.3 Classes and functions

getclasstree(classes[, unique ])
Arrange the given list of classes into a hierarchy of nested lists. Where a nested list appears, it
contains classes derived from the class whose entry immediately precedes the list. Each entry is a
2-tuple containing a class and a tuple of its base classes. If the unique argument is true, exactly
one entry appears in the returned structure for each class in the given list. Otherwise, classes using
multiple inheritance and their descendants will appear multiple times.

getargspec(func)
Get the names and default values of a function’s arguments. A tuple of four things is returned:
(args, varargs, varkw, defaults). args is a list of the argument names (it may contain nested
lists). varargs and varkw are the names of the * and ** arguments or None. defaults is a tuple of
default argument values; if this tuple has n elements, they correspond to the last n elements listed
in args.

getargvalues(frame)
Get information about arguments passed into a particular frame. A tuple of four things is returned:
(args, varargs, varkw, locals). args is a list of the argument names (it may contain nested lists).
varargs and varkw are the names of the * and ** arguments or None. locals is the locals dictionary
of the given frame.

formatargspec(args[, varargs, varkw, defaults, argformat, varargsformat, varkwformat, defaultformat ])
Format a pretty argument spec from the four values returned by getargspec(). The other four
arguments are the corresponding optional formatting functions that are called to turn names and
values into strings.

formatargvalues(args[, varargs, varkw, locals, argformat, varargsformat, varkwformat, valueformat ])
Format a pretty argument spec from the four values returned by getargvalues(). The other four
arguments are the corresponding optional formatting functions that are called to turn names and
values into strings.

3.11.4 The interpreter stack

When the following functions return “frame records,” each record is a tuple of six items: the frame
object, the filename, the line number of the current line, the function name, a list of lines of context
from the source code, and the index of the current line within that list. The optional context argument
specifies the number of lines of context to return, which are centered around the current line.

getouterframes(frame[, context ])
Get a list of frame records for a frame and all higher (calling) frames.

getinnerframes(traceback[, context ])
Get a list of frame records for a traceback’s frame and all lower frames.

currentframe()
Return the frame object for the caller’s stack frame.

stack([context ])
Return a list of frame records for the stack above the caller’s frame.

trace([context ])
Return a list of frame records for the stack below the current exception.

3.12 traceback — Print or retrieve a stack traceback

50 Chapter 3. Python Runtime Services



This module provides a standard interface to extract, format and print stack traces of Python programs.
It exactly mimics the behavior of the Python interpreter when it prints a stack trace. This is useful
when you want to print stack traces under program control, e.g. in a “wrapper” around the interpreter.

The module uses traceback objects — this is the object type that is stored in the variables
sys.exc traceback and sys.last traceback and returned as the third item from sys.exc info().

The module defines the following functions:

print tb(traceback[, limit[, file ] ])
Print up to limit stack trace entries from traceback . If limit is omitted or None, all entries are
printed. If file is omitted or None, the output goes to sys.stderr; otherwise it should be an open
file or file-like object to receive the output.

print exception(type, value, traceback[, limit[, file ] ])
Print exception information and up to limit stack trace entries from traceback to file. This differs
from print tb() in the following ways: (1) if traceback is not None, it prints a header ‘Traceback
(most recent call last):’; (2) it prints the exception type and value after the stack trace; (3)
if type is SyntaxError and value has the appropriate format, it prints the line where the syntax
error occurred with a caret indicating the approximate position of the error.

print exc([limit[, file ] ])
This is a shorthand for ‘print exception(sys.exc type, sys.exc value,
sys.exc traceback, limit, file)’. (In fact, it uses sys.exc info() to retrieve the same
information in a thread-safe way.)

print last([limit[, file ] ])
This is a shorthand for ‘print exception(sys.last type, sys.last value,
sys.last traceback, limit, file)’.

print stack([f [, limit[, file ] ] ])
This function prints a stack trace from its invocation point. The optional f argument can be used
to specify an alternate stack frame to start. The optional limit and file arguments have the same
meaning as for print exception().

extract tb(traceback[, limit ])
Return a list of up to limit “pre-processed” stack trace entries extracted from the traceback object
traceback . It is useful for alternate formatting of stack traces. If limit is omitted or None, all entries
are extracted. A “pre-processed” stack trace entry is a quadruple (filename, line number , function
name, text) representing the information that is usually printed for a stack trace. The text is a
string with leading and trailing whitespace stripped; if the source is not available it is None.

extract stack([f [, limit ] ])
Extract the raw traceback from the current stack frame. The return value has the same format as for
extract tb(). The optional f and limit arguments have the same meaning as for print stack().

format list(list)
Given a list of tuples as returned by extract tb() or extract stack(), return a list of strings
ready for printing. Each string in the resulting list corresponds to the item with the same index
in the argument list. Each string ends in a newline; the strings may contain internal newlines as
well, for those items whose source text line is not None.

format exception only(type, value)
Format the exception part of a traceback. The arguments are the exception type and value such as
given by sys.last type and sys.last value. The return value is a list of strings, each ending
in a newline. Normally, the list contains a single string; however, for SyntaxError exceptions,
it contains several lines that (when printed) display detailed information about where the syntax
error occurred. The message indicating which exception occurred is the always last string in the
list.

format exception(type, value, tb[, limit ])
Format a stack trace and the exception information. The arguments have the same meaning as
the corresponding arguments to print exception(). The return value is a list of strings, each

3.12. traceback — Print or retrieve a stack traceback 51



ending in a newline and some containing internal newlines. When these lines are concatenated and
printed, exactly the same text is printed as does print exception().

format tb(tb[, limit ])
A shorthand for format list(extract tb(tb, limit)).

format stack([f [, limit ] ])
A shorthand for format list(extract stack(f , limit)).

tb lineno(tb)
This function returns the current line number set in the traceback object. This is normally the
same as the tb.tb lineno field of the object, but when optimization is used (the -O flag) this field
is not updated correctly; this function calculates the correct value.

3.12.1 Traceback Example

This simple example implements a basic read-eval-print loop, similar to (but less useful than) the standard
Python interactive interpreter loop. For a more complete implementation of the interpreter loop, refer
to the code module.

import sys, traceback

def run_user_code(envdir):

source = raw_input(">>> ")

try:

exec source in envdir

except:

print "Exception in user code:"

print ’-’*60

traceback.print_exc(file=sys.stdout)

print ’-’*60

envdir = {}

while 1:

run_user_code(envdir)

3.13 linecache — Random access to text lines

The linecache module allows one to get any line from any file, while attempting to optimize internally,
using a cache, the common case where many lines are read from a single file. This is used by the
traceback module to retrieve source lines for inclusion in the formatted traceback.

The linecache module defines the following functions:

getline(filename, lineno)
Get line lineno from file named filename. This function will never throw an exception — it will
return ’’ on errors (the terminating newline character will be included for lines that are found).

If a file named filename is not found, the function will look for it in the module search path,
sys.path.

clearcache()
Clear the cache. Use this function if you no longer need lines from files previously read using
getline().

checkcache()
Check the cache for validity. Use this function if files in the cache may have changed on disk, and
you require the updated version.

52 Chapter 3. Python Runtime Services



Example:

>>> import linecache

>>> linecache.getline(’/etc/passwd’, 4)

’sys:x:3:3:sys:/dev:/bin/sh\n’

3.14 pickle — Python object serialization

The pickle module implements a basic but powerful algorithm for “pickling” (a.k.a. serializing, mar-
shalling or flattening) nearly arbitrary Python objects. This is the act of converting objects to a stream
of bytes (and back: “unpickling”). This is a more primitive notion than persistence — although pickle
reads and writes file objects, it does not handle the issue of naming persistent objects, nor the (even
more complicated) area of concurrent access to persistent objects. The pickle module can transform a
complex object into a byte stream and it can transform the byte stream into an object with the same
internal structure. The most obvious thing to do with these byte streams is to write them onto a file, but
it is also conceivable to send them across a network or store them in a database. The module shelve
provides a simple interface to pickle and unpickle objects on DBM-style database files.

Note: The pickle module is rather slow. A reimplementation of the same algorithm in C, which is
up to 1000 times faster, is available as the cPickle module. This has the same interface except that
Pickler and Unpickler are factory functions, not classes (so they cannot be used as base classes for
inheritance).

Although the pickle module can use the built-in module marshal internally, it differs from marshal in
the way it handles certain kinds of data:

• Recursive objects (objects containing references to themselves): pickle keeps track of the objects
it has already serialized, so later references to the same object won’t be serialized again. (The
marshal module breaks for this.)

• Object sharing (references to the same object in different places): This is similar to self-referencing
objects; pickle stores the object once, and ensures that all other references point to the master
copy. Shared objects remain shared, which can be very important for mutable objects.

• User-defined classes and their instances: marshal does not support these at all, but pickle can
save and restore class instances transparently. The class definition must be importable and live in
the same module as when the object was stored.

The data format used by pickle is Python-specific. This has the advantage that there are no restrictions
imposed by external standards such as XDR (which can’t represent pointer sharing); however it means
that non-Python programs may not be able to reconstruct pickled Python objects.

By default, the pickle data format uses a printable ascii representation. This is slightly more volu-
minous than a binary representation. The big advantage of using printable ascii (and of some other
characteristics of pickle’s representation) is that for debugging or recovery purposes it is possible for a
human to read the pickled file with a standard text editor.

A binary format, which is slightly more efficient, can be chosen by specifying a nonzero (true) value for
the bin argument to the Pickler constructor or the dump() and dumps() functions. The binary format
is not the default because of backwards compatibility with the Python 1.4 pickle module. In a future
version, the default may change to binary.

The pickle module doesn’t handle code objects, which the marshal module does. I suppose pickle
could, and maybe it should, but there’s probably no great need for it right now (as long as marshal
continues to be used for reading and writing code objects), and at least this avoids the possibility of
smuggling Trojan horses into a program.

For the benefit of persistence modules written using pickle, it supports the notion of a reference to an
object outside the pickled data stream. Such objects are referenced by a name, which is an arbitrary

3.14. pickle — Python object serialization 53



string of printable ascii characters. The resolution of such names is not defined by the pickle module —
the persistent object module will have to implement a method persistent load(). To write references
to persistent objects, the persistent module must define a method persistent id() which returns either
None or the persistent ID of the object.

There are some restrictions on the pickling of class instances.

First of all, the class must be defined at the top level in a module. Furthermore, all its instance variables
must be picklable.

When a pickled class instance is unpickled, its init () method is normally not invoked. Note: This
is a deviation from previous versions of this module; the change was introduced in Python 1.5b2. The
reason for the change is that in many cases it is desirable to have a constructor that requires arguments;
it is a (minor) nuisance to have to provide a getinitargs () method.

If it is desirable that the init () method be called on unpickling, a class can define a method
getinitargs (), which should return a tuple containing the arguments to be passed to the class

constructor ( init ()). This method is called at pickle time; the tuple it returns is incorporated in
the pickle for the instance.

Classes can further influence how their instances are pickled — if the class defines the method
getstate (), it is called and the return state is pickled as the contents for the instance, and if

the class defines the method setstate (), it is called with the unpickled state. (Note that these
methods can also be used to implement copying class instances.) If there is no getstate () method,
the instance’s dict is pickled. If there is no setstate () method, the pickled object must
be a dictionary and its items are assigned to the new instance’s dictionary. (If a class defines both

getstate () and setstate (), the state object needn’t be a dictionary — these methods can
do what they want.) This protocol is also used by the shallow and deep copying operations defined in
the copy module.

Note that when class instances are pickled, their class’s code and data are not pickled along with them.
Only the instance data are pickled. This is done on purpose, so you can fix bugs in a class or add
methods and still load objects that were created with an earlier version of the class. If you plan to have
long-lived objects that will see many versions of a class, it may be worthwhile to put a version number
in the objects so that suitable conversions can be made by the class’s setstate () method.

When a class itself is pickled, only its name is pickled — the class definition is not pickled, but re-
imported by the unpickling process. Therefore, the restriction that the class must be defined at the top
level in a module applies to pickled classes as well.

The interface can be summarized as follows.

To pickle an object x onto a file f, open for writing:

p = pickle.Pickler(f)

p.dump(x)

A shorthand for this is:

pickle.dump(x, f)

To unpickle an object x from a file f, open for reading:

u = pickle.Unpickler(f)

x = u.load()

A shorthand is:

x = pickle.load(f)

The Pickler class only calls the method f.write() with a string argument. The Unpickler calls the

54 Chapter 3. Python Runtime Services



methods f.read() (with an integer argument) and f.readline() (without argument), both returning
a string. It is explicitly allowed to pass non-file objects here, as long as they have the right methods.

The constructor for the Pickler class has an optional second argument, bin. If this is present and true,
the binary pickle format is used; if it is absent or false, the (less efficient, but backwards compatible) text
pickle format is used. The Unpickler class does not have an argument to distinguish between binary
and text pickle formats; it accepts either format.

The following types can be pickled:

• None

• integers, long integers, floating point numbers

• normal and Unicode strings

• tuples, lists and dictionaries containing only picklable objects

• functions defined at the top level of a module (by name reference, not storage of the implementation)

• built-in functions

• classes that are defined at the top level in a module

• instances of such classes whose dict or setstate () is picklable

Attempts to pickle unpicklable objects will raise the PicklingError exception; when this happens, an
unspecified number of bytes may have been written to the file.

It is possible to make multiple calls to the dump() method of the same Pickler instance. These must
then be matched to the same number of calls to the load() method of the corresponding Unpickler
instance. If the same object is pickled by multiple dump() calls, the load() will all yield references to the
same object. Warning: this is intended for pickling multiple objects without intervening modifications
to the objects or their parts. If you modify an object and then pickle it again using the same Pickler
instance, the object is not pickled again — a reference to it is pickled and the Unpickler will return the
old value, not the modified one. (There are two problems here: (a) detecting changes, and (b) marshalling
a minimal set of changes. I have no answers. Garbage Collection may also become a problem here.)

Apart from the Pickler and Unpickler classes, the module defines the following functions, and an
exception:

dump(object, file[, bin ])
Write a pickled representation of object to the open file object file. This is equivalent to
‘Pickler(file, bin).dump(object)’. If the optional bin argument is present and nonzero, the bi-
nary pickle format is used; if it is zero or absent, the (less efficient) text pickle format is used.

load(file)
Read a pickled object from the open file object file. This is equivalent to ‘Unpickler(file).load()’.

dumps(object[, bin ])
Return the pickled representation of the object as a string, instead of writing it to a file. If the
optional bin argument is present and nonzero, the binary pickle format is used; if it is zero or
absent, the (less efficient) text pickle format is used.

loads(string)
Read a pickled object from a string instead of a file. Characters in the string past the pickled
object’s representation are ignored.

exception PicklingError
This exception is raised when an unpicklable object is passed to Pickler.dump().

See Also:

Module copy reg (section 3.16):
Pickle interface constructor registration for extension types.

3.14. pickle — Python object serialization 55



Module shelve (section 3.17):
Indexed databases of objects; uses pickle.

Module copy (section 3.18):
Shallow and deep object copying.

Module marshal (section 3.19):
High-performance serialization of built-in types.

3.14.1 Example

Here’s a simple example of how to modify pickling behavior for a class. The TextReader class opens a
text file, and returns the line number and line contents each time its readline() method is called. If a
TextReader instance is pickled, all attributes except the file object member are saved. When the instance
is unpickled, the file is reopened, and reading resumes from the last location. The setstate () and

getstate () methods are used to implement this behavior.

# illustrate __setstate__ and __getstate__ methods

# used in pickling.

class TextReader:

"Print and number lines in a text file."

def __init__(self,file):

self.file = file

self.fh = open(file,’r’)

self.lineno = 0

def readline(self):

self.lineno = self.lineno + 1

line = self.fh.readline()

if not line:

return None

return "%d: %s" % (self.lineno,line[:-1])

# return data representation for pickled object

def __getstate__(self):

odict = self.__dict__ # get attribute dictionary

del odict[’fh’] # remove filehandle entry

return odict

# restore object state from data representation generated

# by __getstate__

def __setstate__(self,dict):

fh = open(dict[’file’]) # reopen file

count = dict[’lineno’] # read from file...

while count: # until line count is restored

fh.readline()

count = count - 1

dict[’fh’] = fh # create filehandle entry

self.__dict__ = dict # make dict our attribute dictionary

A sample usage might be something like this:

56 Chapter 3. Python Runtime Services



>>> import TextReader

>>> obj = TextReader.TextReader("TextReader.py")

>>> obj.readline()

’1: #!/usr/local/bin/python’

>>> # (more invocations of obj.readline() here)

... obj.readline()

’7: class TextReader:’

>>> import pickle

>>> pickle.dump(obj,open(’save.p’,’w’))

(start another Python session)

>>> import pickle

>>> reader = pickle.load(open(’save.p’))

>>> reader.readline()

’8: "Print and number lines in a text file."’

3.15 cPickle — Alternate implementation of pickle

The cPickle module provides a similar interface and identical functionality as the pickle module, but
can be up to 1000 times faster since it is implemented in C. The only other important difference to note
is that Pickler() and Unpickler() are functions and not classes, and so cannot be subclassed. This
should not be an issue in most cases.

The format of the pickle data is identical to that produced using the pickle module, so it is possible to
use pickle and cPickle interchangeably with existing pickles.

(Since the pickle data format is actually a tiny stack-oriented programming language, and there are some
freedoms in the encodings of certain objects, it’s possible that the two modules produce different pickled
data for the same input objects; however they will always be able to read each other’s pickles back in.)

3.16 copy reg — Register pickle support functions

The copy reg module provides support for the pickle and cPickle modules. The copy module is likely
to use this in the future as well. It provides configuration information about object constructors which
are not classes. Such constructors may be factory functions or class instances.

constructor(object)
Declares object to be a valid constructor. If object is not callable (and hence not valid as a
constructor), raises TypeError.

pickle(type, function[, constructor ])
Declares that function should be used as a “reduction” function for objects of type type; type should
not a class object. function should return either a string or a tuple. The optional constructor
parameter, if provided, is a callable object which can be used to reconstruct the object when called
with the tuple of arguments returned by function at pickling time. TypeError will be raised if
object is a class or constructor is not callable.

3.17 shelve — Python object persistence

A “shelf” is a persistent, dictionary-like object. The difference with “dbm” databases is that the values
(not the keys!) in a shelf can be essentially arbitrary Python objects — anything that the pickle module
can handle. This includes most class instances, recursive data types, and objects containing lots of shared
sub-objects. The keys are ordinary strings.

3.15. cPickle — Alternate implementation of pickle 57



To summarize the interface (key is a string, data is an arbitrary object):

import shelve

d = shelve.open(filename) # open, with (g)dbm filename -- no suffix

d[key] = data # store data at key (overwrites old data if

# using an existing key)

data = d[key] # retrieve data at key (raise KeyError if no

# such key)

del d[key] # delete data stored at key (raises KeyError

# if no such key)

flag = d.has_key(key) # true if the key exists

list = d.keys() # a list of all existing keys (slow!)

d.close() # close it

Restrictions:

• The choice of which database package will be used (e.g. dbm or gdbm) depends on which interface
is available. Therefore it is not safe to open the database directly using dbm. The database is
also (unfortunately) subject to the limitations of dbm, if it is used — this means that (the pickled
representation of) the objects stored in the database should be fairly small, and in rare cases key
collisions may cause the database to refuse updates.

• Dependent on the implementation, closing a persistent dictionary may or may not be necessary to
flush changes to disk.

• The shelve module does not support concurrent read/write access to shelved objects. (Multiple
simultaneous read accesses are safe.) When a program has a shelf open for writing, no other
program should have it open for reading or writing. Unix file locking can be used to solve this,
but this differs across Unix versions and requires knowledge about the database implementation
used.

See Also:

Module anydbm (section 7.8):
Generic interface to dbm-style databases.

Module dbhash (section 7.10):
BSD db database interface.

Module dbm (section 8.6):
Standard Unix database interface.

Module dumbdbm (section 7.9):
Portable implementation of the dbm interface.

Module gdbm (section 8.7):
GNU database interface, based on the dbm interface.

Module pickle (section 3.14):
Object serialization used by shelve.

Module cPickle (section 3.15):
High-performance version of pickle.

3.18 copy — Shallow and deep copy operations

This module provides generic (shallow and deep) copying operations.

58 Chapter 3. Python Runtime Services



Interface summary:

import copy

x = copy.copy(y) # make a shallow copy of y

x = copy.deepcopy(y) # make a deep copy of y

For module specific errors, copy.error is raised.

The difference between shallow and deep copying is only relevant for compound objects (objects that
contain other objects, like lists or class instances):

• A shallow copy constructs a new compound object and then (to the extent possible) inserts refer-
ences into it to the objects found in the original.

• A deep copy constructs a new compound object and then, recursively, inserts copies into it of the
objects found in the original.

Two problems often exist with deep copy operations that don’t exist with shallow copy operations:

• Recursive objects (compound objects that, directly or indirectly, contain a reference to themselves)
may cause a recursive loop.

• Because deep copy copies everything it may copy too much, e.g., administrative data structures
that should be shared even between copies.

The deepcopy() function avoids these problems by:

• keeping a “memo” dictionary of objects already copied during the current copying pass; and

• letting user-defined classes override the copying operation or the set of components copied.

This version does not copy types like module, class, function, method, stack trace, stack frame, file,
socket, window, array, or any similar types.

Classes can use the same interfaces to control copying that they use to control pickling: they can define
methods called getinitargs (), getstate () and setstate (). See the description
of module pickle for information on these methods. The copy module does not use the copy reg
registration module.

In order for a class to define its own copy implementation, it can define special methods copy ()
and deepcopy (). The former is called to implement the shallow copy operation; no additional
arguments are passed. The latter is called to implement the deep copy operation; it is passed one
argument, the memo dictionary. If the deepcopy () implementation needs to make a deep copy
of a component, it should call the deepcopy() function with the component as first argument and the
memo dictionary as second argument.

See Also:

Module pickle (section 3.14):
Discussion of the special methods used to support object state retrieval and restoration.

3.19 marshal — Alternate Python object serialization

This module contains functions that can read and write Python values in a binary format. The format
is specific to Python, but independent of machine architecture issues (e.g., you can write a Python

3.19. marshal — Alternate Python object serialization 59



value to a file on a PC, transport the file to a Sun, and read it back there). Details of the format are
undocumented on purpose; it may change between Python versions (although it rarely does).1

This is not a general “persistence” module. For general persistence and transfer of Python objects
through RPC calls, see the modules pickle and shelve. The marshal module exists mainly to support
reading and writing the “pseudo-compiled” code for Python modules of ‘.pyc’ files.

Not all Python object types are supported; in general, only objects whose value is independent from
a particular invocation of Python can be written and read by this module. The following types are
supported: None, integers, long integers, floating point numbers, strings, Unicode objects, tuples, lists,
dictionaries, and code objects, where it should be understood that tuples, lists and dictionaries are only
supported as long as the values contained therein are themselves supported; and recursive lists and
dictionaries should not be written (they will cause infinite loops).

Caveat: On machines where C’s long int type has more than 32 bits (such as the DEC Alpha), it is
possible to create plain Python integers that are longer than 32 bits. Since the current marshal module
uses 32 bits to transfer plain Python integers, such values are silently truncated. This particularly affects
the use of very long integer literals in Python modules — these will be accepted by the parser on such
machines, but will be silently be truncated when the module is read from the ‘.pyc’ instead.2

There are functions that read/write files as well as functions operating on strings.

The module defines these functions:

dump(value, file)
Write the value on the open file. The value must be a supported type. The file must be an open
file object such as sys.stdout or returned by open() or posix.popen(). It must be opened in
binary mode (’wb’ or ’w+b’).

If the value has (or contains an object that has) an unsupported type, a ValueError exception is
raised — but garbage data will also be written to the file. The object will not be properly read
back by load().

load(file)
Read one value from the open file and return it. If no valid value is read, raise EOFError,
ValueError or TypeError. The file must be an open file object opened in binary mode (’rb’
or ’r+b’).

Warning: If an object containing an unsupported type was marshalled with dump(), load() will
substitute None for the unmarshallable type.

dumps(value)
Return the string that would be written to a file by dump(value, file). The value must be a
supported type. Raise a ValueError exception if value has (or contains an object that has) an
unsupported type.

loads(string)
Convert the string to a value. If no valid value is found, raise EOFError, ValueError or TypeError.
Extra characters in the string are ignored.

3.20 warnings — Warning control

New in version 2.1.

Warning messages are typically issued in situations where it is useful to alert the user of some condition
in a program, where that condition (normally) doesn’t warrant raising an exception and terminating the
program. For example, one might want to issue a warning when a program uses an obsolete module.

1The name of this module stems from a bit of terminology used by the designers of Modula-3 (amongst others), who
use the term “marshalling” for shipping of data around in a self-contained form. Strictly speaking, “to marshal” means
to convert some data from internal to external form (in an RPC buffer for instance) and “unmarshalling” for the reverse
process.

2A solution would be to refuse such literals in the parser, since they are inherently non-portable. Another solution
would be to let the marshal module raise an exception when an integer value would be truncated. At least one of these
solutions will be implemented in a future version.

60 Chapter 3. Python Runtime Services



Python programmers issue warnings by calling the warn() function defined in this module. (C program-
mers use PyErr Warn(); see the Python/C API Reference Manual for details).

Warning messages are normally written to sys.stderr, but their disposition can be changed flexibly,
from ignoring all warnings to turning them into exceptions. The disposition of warnings can vary based
on the warning category (see below), the text of the warning message, and the source location where it
is issued. Repetitions of a particular warning for the same source location are typically suppressed.

There are two stages in warning control: first, each time a warning is issued, a determination is made
whether a message should be issued or not; next, if a message is to be issued, it is formatted and printed
using a user-settable hook.

The determination whether to issue a warning message is controlled by the warning filter, which is a
sequence of matching rules and actions. Rules can be added to the filter by calling filterwarnings()
and reset to its default state by calling resetwarnings().

The printing of warning messages is done by calling showwarning(), which may be overidden; the default
implementation of this function formats the message by calling formatwarning(), which is also available
for use by custom implementations.

3.20.1 Warning Categories

There are a number of built-in exceptions that represent warning categories. This categorization is useful
to be able to filter out groups of warnings. The following warnings category classes are currently defined:

Class Description
Warning This is the base class of all warning category classes. It itself a subclass of Exception.
UserWarning The default category for warn().
DeprecationWarning Base category for warnings about deprecated features.
SyntaxWarning Base category for warnings about dubious syntactic features.
RuntimeWarning Base category for warnings about dubious runtime features.

While these are technically built-in exceptions, they are documented here, because conceptually they
belong to the warnings mechanism.

User code can define additional warning categories by subclassing one of the standard warning categories.
A warning category must always be a subclass of the Warning class.

3.20.2 The Warnings Filter

The warnings filter controls whether warnings are ignored, displayed, or turned into errors (raising an
exception).

Conceptually, the warnings filter maintains an ordered list of filter specifications; any specific warning is
matched against each filter specification in the list in turn until a match is found; the match determines
the disposition of the match. Each entry is a tuple of the form (action, message, category , module,
lineno), where:

• action is one of the following strings:

Value Disposition
"error" turn matching warnings into exceptions
"ignore" never print matching warnings
"always" always print matching warnings
"default" print the first occurrence of matching warnings for each location where the warning is issued
"module" print the first occurrence of matching warnings for each module where the warning is issued
"once" print only the first occurrence of matching warnings, regardless of location

3.20. warnings — Warning control 61



• message is a compiled regular expression that the warning message must match (the match is
case-insensitive)

• category is a class (a subclass of Warning) of which the warning category must be a subclass in
order to match

• module is a compiled regular expression that the module name must match

• lineno is an integer that the line number where the warning occurred must match, or 0 to match
all line numbers

Since the Warning class is derived from the built-in Exception class, to turn a warning into an error we
simply raise category(message).

The warnings filter is initialized by -W options passed to the Python interpreter command line. The
interpreter saves the arguments for all -W options without interpretation in sys.warnoptions; the
warnings module parses these when it is first imported (invalid options are ignored, after printing a
message to sys.stderr).

3.20.3 Available Functions

warn(message[, category[, stacklevel ] ])
Issue a warning, or maybe ignore it or raise an exception. The category argument, if given, must be
a warning category class (see above); it defaults to UserWarning. This function raises an exception
if the particular warning issued is changed into an error by the warnings filter see above. The
stacklevel argument can be used by wrapper functions written in Python, like this:

def deprecation(message):

warnings.warn(message, DeprecationWarning, level=2)

This makes the warning refer to deprecation()’s caller, rather than to the source of
deprecation() itself (since the latter would defeat the purpose of the warning message).

warn explicit(message, category, filename, lineno[, module[, registry ] ])
This is a low-level interface to the functionality of warn(), passing in explicitly the message,
category, filename and line number, and optionally the module name and the registry (which
should be the warningregistry dictionary of the module). The module name defaults to
the filename with .py stripped; if no registry is passed, the warning is never suppressed.

showwarning(message, category, filename, lineno[, file ])
Write a warning to a file. The default implementation calls showwarning(message, category,
filename, lineno) and writes the resulting string to file, which defaults to sys.stderr. You may
replace this function with an alternative implementation by assigning to warnings.showwarning.

formatwarning(message, category, filename, lineno)
Format a warning the standard way. This returns a string which may contain embedded newlines
and ends in a newline.

filterwarnings(action[, message[, category[, module[, lineno[, append ] ] ] ] ])
Insert an entry into the list of warnings filters. The entry is inserted at the front by default; if
append is true, it is inserted at the end. This checks the types of the arguments, compiles the
message and module regular expressions, and inserts them as a tuple in front of the warnings filter.
Entries inserted later override entries inserted earlier, if both match a particular warning. Omitted
arguments default to a value that matches everything.

resetwarnings()
Reset the warnings filter. This discards the effect of all previous calls to filterwarnings(),
including that of the -W command line options.

62 Chapter 3. Python Runtime Services



3.21 imp — Access the import internals

This module provides an interface to the mechanisms used to implement the import statement. It defines
the following constants and functions:

get magic()
Return the magic string value used to recognize byte-compiled code files (‘.pyc’ files). (This value
may be different for each Python version.)

get suffixes()
Return a list of triples, each describing a particular type of module. Each triple has the form
(suffix, mode, type), where suffix is a string to be appended to the module name to form the
filename to search for, mode is the mode string to pass to the built-in open() function to open the
file (this can be ’r’ for text files or ’rb’ for binary files), and type is the file type, which has one
of the values PY SOURCE, PY COMPILED, or C EXTENSION, described below.

find module(name[, path ])
Try to find the module name on the search path path. If path is a list of directory names, each
directory is searched for files with any of the suffixes returned by get suffixes() above. Invalid
names in the list are silently ignored (but all list items must be strings). If path is omitted or
None, the list of directory names given by sys.path is searched, but first it searches a few special
places: it tries to find a built-in module with the given name (C BUILTIN), then a frozen module
(PY FROZEN), and on some systems some other places are looked in as well (on the Mac, it looks
for a resource (PY RESOURCE); on Windows, it looks in the registry which may point to a specific
file).

If search is successful, the return value is a triple (file, pathname, description) where file is an
open file object positioned at the beginning, pathname is the pathname of the file found, and
description is a triple as contained in the list returned by get suffixes() describing the kind of
module found. If the module does not live in a file, the returned file is None, filename is the empty
string, and the description tuple contains empty strings for its suffix and mode; the module type
is as indicate in parentheses above. If the search is unsuccessful, ImportError is raised. Other
exceptions indicate problems with the arguments or environment.

This function does not handle hierarchical module names (names containing dots). In order to find
P .M , i.e., submodule M of package P , use find module() and load module() to find and load
package P , and then use find module() with the path argument set to P. path . When P
itself has a dotted name, apply this recipe recursively.

load module(name, file, filename, description)
Load a module that was previously found by find module() (or by an otherwise conducted search
yielding compatible results). This function does more than importing the module: if the module
was already imported, it is equivalent to a reload()! The name argument indicates the full module
name (including the package name, if this is a submodule of a package). The file argument is an
open file, and filename is the corresponding file name; these can be None and ’’, respectively,
when the module is not being loaded from a file. The description argument is a tuple, as would be
returned by get suffixes(), describing what kind of module must be loaded.

If the load is successful, the return value is the module object; otherwise, an exception (usually
ImportError) is raised.

Important: the caller is responsible for closing the file argument, if it was not None, even when
an exception is raised. This is best done using a try ... finally statement.

new module(name)
Return a new empty module object called name. This object is not inserted in sys.modules.

The following constants with integer values, defined in this module, are used to indicate the search result
of find module().

PY SOURCE
The module was found as a source file.

PY COMPILED
The module was found as a compiled code object file.

3.21. imp — Access the import internals 63



C EXTENSION
The module was found as dynamically loadable shared library.

PY RESOURCE
The module was found as a Macintosh resource. This value can only be returned on a Macintosh.

PKG DIRECTORY
The module was found as a package directory.

C BUILTIN
The module was found as a built-in module.

PY FROZEN
The module was found as a frozen module (see init frozen()).

The following constant and functions are obsolete; their functionality is available through find module()
or load module(). They are kept around for backward compatibility:

SEARCH ERROR
Unused.

init builtin(name)
Initialize the built-in module called name and return its module object. If the module was already
initialized, it will be initialized again. A few modules cannot be initialized twice — attempting
to initialize these again will raise an ImportError exception. If there is no built-in module called
name, None is returned.

init frozen(name)
Initialize the frozen module called name and return its module object. If the module was already
initialized, it will be initialized again. If there is no frozen module called name, None is returned.
(Frozen modules are modules written in Python whose compiled byte-code object is incorporated
into a custom-built Python interpreter by Python’s freeze utility. See ‘Tools/freeze/’ for now.)

is builtin(name)
Return 1 if there is a built-in module called name which can be initialized again. Return -1 if
there is a built-in module called name which cannot be initialized again (see init builtin()).
Return 0 if there is no built-in module called name.

is frozen(name)
Return 1 if there is a frozen module (see init frozen()) called name, or 0 if there is no such
module.

load compiled(name, pathname, file)
Load and initialize a module implemented as a byte-compiled code file and return its module
object. If the module was already initialized, it will be initialized again. The name argument is
used to create or access a module object. The pathname argument points to the byte-compiled
code file. The file argument is the byte-compiled code file, open for reading in binary mode, from
the beginning. It must currently be a real file object, not a user-defined class emulating a file.

load dynamic(name, pathname[, file ])
Load and initialize a module implemented as a dynamically loadable shared library and return its
module object. If the module was already initialized, it will be initialized again. Some modules
don’t like that and may raise an exception. The pathname argument must point to the shared
library. The name argument is used to construct the name of the initialization function: an
external C function called ‘initname()’ in the shared library is called. The optional file argument
is ignored. (Note: using shared libraries is highly system dependent, and not all systems support
it.)

load source(name, pathname, file)
Load and initialize a module implemented as a Python source file and return its module object. If
the module was already initialized, it will be initialized again. The name argument is used to create
or access a module object. The pathname argument points to the source file. The file argument is
the source file, open for reading as text, from the beginning. It must currently be a real file object,
not a user-defined class emulating a file. Note that if a properly matching byte-compiled file (with
suffix ‘.pyc’ or ‘.pyo’) exists, it will be used instead of parsing the given source file.

64 Chapter 3. Python Runtime Services



3.21.1 Examples

The following function emulates what was the standard import statement up to Python 1.4 (i.e., no
hierarchical module names). (This implementation wouldn’t work in that version, since find module()
has been extended and load module() has been added in 1.4.)

import imp

import sys

def __import__(name, globals=None, locals=None, fromlist=None):

# Fast path: see if the module has already been imported.

try:

return sys.modules[name]

except KeyError:

pass

# If any of the following calls raises an exception,

# there’s a problem we can’t handle -- let the caller handle it.

fp, pathname, description = imp.find_module(name)

try:

return imp.load_module(name, fp, pathname, description)

finally:

# Since we may exit via an exception, close fp explicitly.

if fp:

fp.close()

A more complete example that implements hierarchical module names and includes a reload() function
can be found in the standard module knee (which is intended as an example only — don’t rely on any
part of it being a standard interface).

3.22 code — Interpreter base classes

The code module provides facilities to implement read-eval-print loops in Python. Two classes and
convenience functions are included which can be used to build applications which provide an interactive
interpreter prompt.

class InteractiveInterpreter([locals ])
This class deals with parsing and interpreter state (the user’s namespace); it does not deal with
input buffering or prompting or input file naming (the filename is always passed in explicitly). The
optional locals argument specifies the dictionary in which code will be executed; it defaults to a
newly created dictionary with key ’ name ’ set to ’ console ’ and key ’ doc ’ set
to None.

class InteractiveConsole([locals[, filename ] ])
Closely emulate the behavior of the interactive Python interpreter. This class builds on
InteractiveInterpreter and adds prompting using the familiar sys.ps1 and sys.ps2, and input
buffering.

interact([banner[, readfunc[, local ] ] ])
Convenience function to run a read-eval-print loop. This creates a new instance of
InteractiveConsole and sets readfunc to be used as the raw input() method, if provided. If
local is provided, it is passed to the InteractiveConsole constructor for use as the default names-
pace for the interpreter loop. The interact() method of the instance is then run with banner
passed as the banner to use, if provided. The console object is discarded after use.

compile command(source[, filename[, symbol ] ])
This function is useful for programs that want to emulate Python’s interpreter main loop (a.k.a.

3.22. code — Interpreter base classes 65



the read-eval-print loop). The tricky part is to determine when the user has entered an incomplete
command that can be completed by entering more text (as opposed to a complete command or a
syntax error). This function almost always makes the same decision as the real interpreter main
loop.

source is the source string; filename is the optional filename from which source was read, defaulting
to ’<input>’; and symbol is the optional grammar start symbol, which should be either ’single’
(the default) or ’eval’.

Returns a code object (the same as compile(source, filename, symbol)) if the command is com-
plete and valid; None if the command is incomplete; raises SyntaxError if the command is complete
and contains a syntax error, or raises OverflowError if the command includes a numeric constant
which exceeds the range of the appropriate numeric type.

3.22.1 Interactive Interpreter Objects

runsource(source[, filename[, symbol ] ])
Compile and run some source in the interpreter. Arguments are the same as for
compile command(); the default for filename is ’<input>’, and for symbol is ’single’. One
several things can happen:

•The input is incorrect; compile command() raised an exception (SyntaxError or
OverflowError). A syntax traceback will be printed by calling the showsyntaxerror()
method. runsource() returns 0.

•The input is incomplete, and more input is required; compile command() returned None.
runsource() returns 1.

•The input is complete; compile command() returned a code object. The code is executed
by calling the runcode() (which also handles run-time exceptions, except for SystemExit).
runsource() returns 0.

The return value can be used to decide whether to use sys.ps1 or sys.ps2 to prompt the next
line.

runcode(code)
Execute a code object. When an exception occurs, showtraceback() is called to display a trace-
back. All exceptions are caught except SystemExit, which is allowed to propagate.

A note about KeyboardInterrupt: this exception may occur elsewhere in this code, and may not
always be caught. The caller should be prepared to deal with it.

showsyntaxerror([filename ])
Display the syntax error that just occurred. This does not display a stack trace because there isn’t
one for syntax errors. If filename is given, it is stuffed into the exception instead of the default
filename provided by Python’s parser, because it always uses ’<string>’ when reading from a
string. The output is written by the write() method.

showtraceback()
Display the exception that just occurred. We remove the first stack item because it is within the
interpreter object implementation. The output is written by the write() method.

write(data)
Write a string to the standard error stream (sys.stderr). Derived classes should override this to
provide the appropriate output handling as needed.

3.22.2 Interactive Console Objects

The InteractiveConsole class is a subclass of InteractiveInterpreter, and so offers all the methods
of the interpreter objects as well as the following additions.

66 Chapter 3. Python Runtime Services



interact([banner ])
Closely emulate the interactive Python console. The optional banner argument specify the banner
to print before the first interaction; by default it prints a banner similar to the one printed by the
standard Python interpreter, followed by the class name of the console object in parentheses (so
as not to confuse this with the real interpreter – since it’s so close!).

push(line)
Push a line of source text to the interpreter. The line should not have a trailing newline; it may
have internal newlines. The line is appended to a buffer and the interpreter’s runsource() method
is called with the concatenated contents of the buffer as source. If this indicates that the command
was executed or invalid, the buffer is reset; otherwise, the command is incomplete, and the buffer
is left as it was after the line was appended. The return value is 1 if more input is required, 0 if
the line was dealt with in some way (this is the same as runsource()).

resetbuffer()
Remove any unhandled source text from the input buffer.

raw input([prompt ])
Write a prompt and read a line. The returned line does not include the trailing newline. When the
user enters the eof key sequence, EOFError is raised. The base implementation uses the built-in
function raw input(); a subclass may replace this with a different implementation.

3.23 codeop — Compile Python code

The codeop module provides a function to compile Python code with hints on whether it is certainly
complete, possibly complete or definitely incomplete. This is used by the code module and should not
normally be used directly.

The codeop module defines the following function:

compile command(source[, filename[, symbol ] ])
Tries to compile source, which should be a string of Python code and return a code object if source
is valid Python code. In that case, the filename attribute of the code object will be filename, which
defaults to ’<input>’. Returns None if source is not valid Python code, but is a prefix of valid
Python code.

If there is a problem with source, an exception will be raised. SyntaxError is raised if there is
invalid Python syntax, and OverflowError if there is an invalid numeric constant.

The symbol argument determines whether source is compiled as a statement (’single’, the default)
or as an expression (’eval’). Any other value will cause ValueError to be raised.

Caveat: It is possible (but not likely) that the parser stops parsing with a successful outcome
before reaching the end of the source; in this case, trailing symbols may be ignored instead of
causing an error. For example, a backslash followed by two newlines may be followed by arbitrary
garbage. This will be fixed once the API for the parser is better.

3.24 pprint — Data pretty printer

The pprint module provides a capability to “pretty-print” arbitrary Python data structures in a form
which can be used as input to the interpreter. If the formatted structures include objects which are not
fundamental Python types, the representation may not be loadable. This may be the case if objects such
as files, sockets, classes, or instances are included, as well as many other builtin objects which are not
representable as Python constants.

The formatted representation keeps objects on a single line if it can, and breaks them onto multiple lines
if they don’t fit within the allowed width. Construct PrettyPrinter objects explicitly if you need to
adjust the width constraint.

The pprint module defines one class:

3.23. codeop — Compile Python code 67



class PrettyPrinter(...)
Construct a PrettyPrinter instance. This constructor understands several keyword parameters.
An output stream may be set using the stream keyword; the only method used on the stream object
is the file protocol’s write() method. If not specified, the PrettyPrinter adopts sys.stdout.
Three additional parameters may be used to control the formatted representation. The keywords
are indent , depth, and width. The amount of indentation added for each recursive level is specified
by indent ; the default is one. Other values can cause output to look a little odd, but can make
nesting easier to spot. The number of levels which may be printed is controlled by depth; if the
data structure being printed is too deep, the next contained level is replaced by ‘...’. By default,
there is no constraint on the depth of the objects being formatted. The desired output width is
constrained using the width parameter; the default is eighty characters. If a structure cannot be
formatted within the constrained width, a best effort will be made.

>>> import pprint, sys

>>> stuff = sys.path[:]

>>> stuff.insert(0, stuff[:])

>>> pp = pprint.PrettyPrinter(indent=4)

>>> pp.pprint(stuff)

[ [ ’’,

’/usr/local/lib/python1.5’,

’/usr/local/lib/python1.5/test’,

’/usr/local/lib/python1.5/sunos5’,

’/usr/local/lib/python1.5/sharedmodules’,

’/usr/local/lib/python1.5/tkinter’],

’’,

’/usr/local/lib/python1.5’,

’/usr/local/lib/python1.5/test’,

’/usr/local/lib/python1.5/sunos5’,

’/usr/local/lib/python1.5/sharedmodules’,

’/usr/local/lib/python1.5/tkinter’]

>>>

>>> import parser

>>> tup = parser.ast2tuple(

... parser.suite(open(’pprint.py’).read()))[1][1][1]

>>> pp = pprint.PrettyPrinter(depth=6)

>>> pp.pprint(tup)

(266, (267, (307, (287, (288, (...))))))

The PrettyPrinter class supports several derivative functions:

pformat(object)
Return the formatted representation of object as a string. The default parameters for formatting
are used.

pprint(object[, stream ])
Prints the formatted representation of object on stream, followed by a newline. If stream is omitted,
sys.stdout is used. This may be used in the interactive interpreter instead of a print statement
for inspecting values. The default parameters for formatting are used.

>>> stuff = sys.path[:]

>>> stuff.insert(0, stuff)

>>> pprint.pprint(stuff)

[<Recursion on list with id=869440>,

’’,

’/usr/local/lib/python1.5’,

’/usr/local/lib/python1.5/test’,

’/usr/local/lib/python1.5/sunos5’,

’/usr/local/lib/python1.5/sharedmodules’,

’/usr/local/lib/python1.5/tkinter’]

isreadable(object)

68 Chapter 3. Python Runtime Services



Determine if the formatted representation of object is “readable,” or can be used to reconstruct
the value using eval(). This always returns false for recursive objects.

>>> pprint.isreadable(stuff)

0

isrecursive(object)
Determine if object requires a recursive representation.

One more support function is also defined:

saferepr(object)
Return a string representation of object , protected against recursive data structures. If the represen-
tation of object exposes a recursive entry, the recursive reference will be represented as ‘<Recursion
on typename with id=number>’. The representation is not otherwise formatted.

>>> pprint.saferepr(stuff)

"[<Recursion on list with id=682968>, ’’, ’/usr/local/lib/python1.5’, ’/usr/loca

l/lib/python1.5/test’, ’/usr/local/lib/python1.5/sunos5’, ’/usr/local/lib/python

1.5/sharedmodules’, ’/usr/local/lib/python1.5/tkinter’]"

3.24.1 PrettyPrinter Objects

PrettyPrinter instances have the following methods:

pformat(object)
Return the formatted representation of object . This takes into Account the options passed to the
PrettyPrinter constructor.

pprint(object)
Print the formatted representation of object on the configured stream, followed by a newline.

The following methods provide the implementations for the corresponding functions of the same names.
Using these methods on an instance is slightly more efficient since new PrettyPrinter objects don’t
need to be created.

isreadable(object)
Determine if the formatted representation of the object is “readable,” or can be used to reconstruct
the value using eval(). Note that this returns false for recursive objects. If the depth parameter
of the PrettyPrinter is set and the object is deeper than allowed, this returns false.

isrecursive(object)
Determine if the object requires a recursive representation.

3.25 repr — Alternate repr() implementation

The repr module provides a means for producing object representations with limits on the size of the
resulting strings. This is used in the Python debugger and may be useful in other contexts as well.

This module provides a class, an instance, and a function:

class Repr()
Class which provides formatting services useful in implementing functions similar to the built-in
repr(); size limits for different object types are added to avoid the generation of representations
which are excessively long.

aRepr
This is an instance of Repr which is used to provide the repr() function described below. Changing
the attributes of this object will affect the size limits used by repr() and the Python debugger.

3.25. repr — Alternate repr() implementation 69



repr(obj)
This is the repr() method of aRepr. It returns a string similar to that returned by the built-in
function of the same name, but with limits on most sizes.

3.25.1 Repr Objects

Repr instances provide several members which can be used to provide size limits for the representations
of different object types, and methods which format specific object types.

maxlevel
Depth limit on the creation of recursive representations. The default is 6.

maxdict
maxlist
maxtuple

Limits on the number of entries represented for the named object type. The default for maxdict
is 4, for the others, 6.

maxlong
Maximum number of characters in the representation for a long integer. Digits are dropped from
the middle. The default is 40.

maxstring
Limit on the number of characters in the representation of the string. Note that the “normal”
representation of the string is used as the character source: if escape sequences are needed in the
representation, these may be mangled when the representation is shortened. The default is 30.

maxother
This limit is used to control the size of object types for which no specific formatting method is
available on the Repr object. It is applied in a similar manner as maxstring. The default is 20.

repr(obj)
The equivalent to the built-in repr() that uses the formatting imposed by the instance.

repr1(obj, level)
Recursive implementation used by repr(). This uses the type of obj to determine which formatting
method to call, passing it obj and level . The type-specific methods should call repr1() to perform
recursive formatting, with level - 1 for the value of level in the recursive call.

repr type(obj, level)
Formatting methods for specific types are implemented as methods with a
name based on the type name. In the method name, type is replaced by
string.join(string.split(type(obj). name , ’ ’). Dispatch to these methods is
handled by repr1(). Type-specific methods which need to recursively format a value should call
‘self.repr1(subobj, level - 1)’.

3.25.2 Subclassing Repr Objects

The use of dynamic dispatching by Repr.repr1() allows subclasses of Repr to add support for additional
built-in object types or to modify the handling of types already supported. This example shows how
special support for file objects could be added:

70 Chapter 3. Python Runtime Services



import repr

import sys

class MyRepr(repr.Repr):

def repr_file(self, obj, level):

if obj.name in [’<stdin>’, ’<stdout>’, ’<stderr>’]:

return obj.name

else:

return ‘obj‘

aRepr = MyRepr()

print aRepr.repr(sys.stdin) # prints ’<stdin>’

3.26 new — Creation of runtime internal objects

The new module allows an interface to the interpreter object creation functions. This is for use primarily
in marshal-type functions, when a new object needs to be created “magically” and not by using the
regular creation functions. This module provides a low-level interface to the interpreter, so care must be
exercised when using this module.

The new module defines the following functions:

instance(class[, dict ])
This function creates an instance of class with dictionary dict without calling the init ()
constructor. If dict is omitted or None, a new, empty dictionary is created for the new instance.
Note that there are no guarantees that the object will be in a consistent state.

instancemethod(function, instance, class)
This function will return a method object, bound to instance, or unbound if instance is None.
function must be callable, and instance must be an instance object or None.

function(code, globals[, name[, argdefs ] ])
Returns a (Python) function with the given code and globals. If name is given, it must be a string
or None. If it is a string, the function will have the given name, otherwise the function name will
be taken from code.co name. If argdefs is given, it must be a tuple and will be used to determine
the default values of parameters.

code(argcount, nlocals, stacksize, flags, codestring, constants, names, varnames, filename, name, firstlineno, lnotab)
This function is an interface to the PyCode New() C function.

module(name)
This function returns a new module object with name name. name must be a string.

classobj(name, baseclasses, dict)
This function returns a new class object, with name name, derived from baseclasses (which should
be a tuple of classes) and with namespace dict .

3.27 site — Site-specific configuration hook

This module is automatically imported during initialization.

In earlier versions of Python (up to and including 1.5a3), scripts or modules that needed to use site-
specific modules would place ‘import site’ somewhere near the top of their code. This is no longer
necessary.

This will append site-specific paths to the module search path.

It starts by constructing up to four directories from a head and a tail part. For the head part, it uses

3.26. new — Creation of runtime internal objects 71



sys.prefix and sys.exec prefix; empty heads are skipped. For the tail part, it uses the empty string
(on Macintosh or Windows) or it uses first ‘lib/python2.1/site-packages’ and then ‘lib/site-python’ (on Unix).
For each of the distinct head-tail combinations, it sees if it refers to an existing directory, and if so, adds
to sys.path, and also inspects the path for configuration files.

A path configuration file is a file whose name has the form ‘package.pth’; its contents are additional items
(one per line) to be added to sys.path. Non-existing items are never added to sys.path, but no check
is made that the item refers to a directory (rather than a file). No item is added to sys.path more than
once. Blank lines and lines beginning with # are skipped. Lines starting with import are executed.

For example, suppose sys.prefix and sys.exec prefix are set to ‘/usr/local’. The Python 2.1.2 library
is then installed in ‘/usr/local/lib/python2.1’ (where only the first three characters of sys.version are used
to form the installation path name). Suppose this has a subdirectory ‘/usr/local/lib/python2.1/site-packages’
with three subsubdirectories, ‘foo’, ‘bar’ and ‘spam’, and two path configuration files, ‘foo.pth’ and ‘bar.pth’.
Assume ‘foo.pth’ contains the following:

# foo package configuration

foo

bar

bletch

and ‘bar.pth’ contains:

# bar package configuration

bar

Then the following directories are added to sys.path, in this order:

/usr/local/lib/python1.5/site-packages/bar

/usr/local/lib/python1.5/site-packages/foo

Note that ‘bletch’ is omitted because it doesn’t exist; the ‘bar’ directory precedes the ‘foo’ directory
because ‘bar.pth’ comes alphabetically before ‘foo.pth’; and ‘spam’ is omitted because it is not mentioned
in either path configuration file.

After these path manipulations, an attempt is made to import a module named sitecustomize, which
can perform arbitrary site-specific customizations. If this import fails with an ImportError exception,
it is silently ignored.

Note that for some non-Unix systems, sys.prefix and sys.exec prefix are empty, and the path
manipulations are skipped; however the import of sitecustomize is still attempted.

3.28 user — User-specific configuration hook

As a policy, Python doesn’t run user-specified code on startup of Python programs. (Only interactive
sessions execute the script specified in the PYTHONSTARTUP environment variable if it exists).

However, some programs or sites may find it convenient to allow users to have a standard customization
file, which gets run when a program requests it. This module implements such a mechanism. A program
that wishes to use the mechanism must execute the statement

import user

The user module looks for a file ‘.pythonrc.py’ in the user’s home directory and if it can be opened,

72 Chapter 3. Python Runtime Services



executes it (using execfile()) in its own (i.e. the module user’s) global namespace. Errors during this
phase are not caught; that’s up to the program that imports the user module, if it wishes. The home
directory is assumed to be named by the HOME environment variable; if this is not set, the current
directory is used.

The user’s ‘.pythonrc.py’ could conceivably test for sys.version if it wishes to do different things de-
pending on the Python version.

A warning to users: be very conservative in what you place in your ‘.pythonrc.py’ file. Since you don’t
know which programs will use it, changing the behavior of standard modules or functions is generally
not a good idea.

A suggestion for programmers who wish to use this mechanism: a simple way to let users specify options
for your package is to have them define variables in their ‘.pythonrc.py’ file that you test in your module.
For example, a module spam that has a verbosity level can look for a variable user.spam verbose, as
follows:

import user

try:

verbose = user.spam_verbose # user’s verbosity preference

except AttributeError:

verbose = 0 # default verbosity

Programs with extensive customization needs are better off reading a program-specific customization
file.

Programs with security or privacy concerns should not import this module; a user can easily break into
a program by placing arbitrary code in the ‘.pythonrc.py’ file.

Modules for general use should not import this module; it may interfere with the operation of the
importing program.

See Also:

Module site (section 3.27):
Site-wide customization mechanism.

3.29 builtin — Built-in functions

This module provides direct access to all ‘built-in’ identifiers of Python; e.g. builtin .open is the
full name for the built-in function open(). See section 2.3, “Built-in Functions.”

3.30 main — Top-level script environment

This module represents the (otherwise anonymous) scope in which the interpreter’s main program exe-
cutes — commands read either from standard input, from a script file, or from an interactive prompt.
It is this environment in which the idiomatic “conditional script” stanza causes a script to run:

if __name__ == "__main__":

main()

3.29. builtin — Built-in functions 73



74



CHAPTER

FOUR

String Services

The modules described in this chapter provide a wide range of string manipulation operations. Here’s
an overview:
string Common string operations.
re Regular expression search and match operations with a Perl-style expression syntax.
struct Interpret strings as packed binary data.
difflib Helpers for computing differences between objects.
fpformat General floating point formatting functions.
StringIO Read and write strings as if they were files.
cStringIO Faster version of StringIO, but not subclassable.
codecs Encode and decode data and streams.
unicodedata Access the Unicode Database.

4.1 string — Common string operations

This module defines some constants useful for checking character classes and some useful string functions.
See the module re for string functions based on regular expressions.

The constants defined in this module are:

digits
The string ’0123456789’.

hexdigits
The string ’0123456789abcdefABCDEF’.

letters
The concatenation of the strings lowercase and uppercase described below.

lowercase
A string containing all the characters that are considered lowercase letters. On most systems this
is the string ’abcdefghijklmnopqrstuvwxyz’. Do not change its definition — the effect on the
routines upper() and swapcase() is undefined.

octdigits
The string ’01234567’.

punctuation
String of ascii characters which are considered punctuation characters in the ‘C’ locale.

printable
String of characters which are considered printable. This is a combination of digits, letters,
punctuation, and whitespace.

uppercase
A string containing all the characters that are considered uppercase letters. On most systems this
is the string ’ABCDEFGHIJKLMNOPQRSTUVWXYZ’. Do not change its definition — the effect on the
routines lower() and swapcase() is undefined.

75



whitespace
A string containing all characters that are considered whitespace. On most systems this includes
the characters space, tab, linefeed, return, formfeed, and vertical tab. Do not change its definition
— the effect on the routines strip() and split() is undefined.

Many of the functions provided by this module are also defined as methods of string and Unicode objects;
see “String Methods” (section 2.1.5) for more information on those. The functions defined in this module
are:

atof(s)
Deprecated since release 2.0. Use the float() built-in function.

Convert a string to a floating point number. The string must have the standard syntax for a
floating point literal in Python, optionally preceded by a sign (‘+’ or ‘-’). Note that this behaves
identical to the built-in function float() when passed a string.

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the
underlying C library. The specific set of strings accepted which cause these values to be returned
depends entirely on the C library and is known to vary.

atoi(s[, base ])
Deprecated since release 2.0. Use the int() built-in function.

Convert string s to an integer in the given base. The string must consist of one or more digits,
optionally preceded by a sign (‘+’ or ‘-’). The base defaults to 10. If it is 0, a default base is chosen
depending on the leading characters of the string (after stripping the sign): ‘0x’ or ‘0X’ means 16,
‘0’ means 8, anything else means 10. If base is 16, a leading ‘0x’ or ‘0X’ is always accepted, though
not required. This behaves identically to the built-in function int() when passed a string. (Also
note: for a more flexible interpretation of numeric literals, use the built-in function eval().)

atol(s[, base ])
Deprecated since release 2.0. Use the long() built-in function.

Convert string s to a long integer in the given base. The string must consist of one or more digits,
optionally preceded by a sign (‘+’ or ‘-’). The base argument has the same meaning as for atoi().
A trailing ‘l’ or ‘L’ is not allowed, except if the base is 0. Note that when invoked without base or
with base set to 10, this behaves identical to the built-in function long() when passed a string.

capitalize(word)
Capitalize the first character of the argument.

capwords(s)
Split the argument into words using split(), capitalize each word using capitalize(), and join
the capitalized words using join(). Note that this replaces runs of whitespace characters by a
single space, and removes leading and trailing whitespace.

expandtabs(s[, tabsize ])
Expand tabs in a string, i.e. replace them by one or more spaces, depending on the current column
and the given tab size. The column number is reset to zero after each newline occurring in the
string. This doesn’t understand other non-printing characters or escape sequences. The tab size
defaults to 8.

find(s, sub[, start[,end ] ])
Return the lowest index in s where the substring sub is found such that sub is wholly contained
in s[start:end]. Return -1 on failure. Defaults for start and end and interpretation of negative
values is the same as for slices.

rfind(s, sub[, start[, end ] ])
Like find() but find the highest index.

index(s, sub[, start[, end ] ])
Like find() but raise ValueError when the substring is not found.

rindex(s, sub[, start[, end ] ])
Like rfind() but raise ValueError when the substring is not found.

76 Chapter 4. String Services



count(s, sub[, start[, end ] ])
Return the number of (non-overlapping) occurrences of substring sub in string s[start:end]. De-
faults for start and end and interpretation of negative values are the same as for slices.

lower(s)
Return a copy of s, but with upper case letters converted to lower case.

maketrans(from, to)
Return a translation table suitable for passing to translate() or regex.compile(), that will map
each character in from into the character at the same position in to; from and to must have the
same length.

Warning: don’t use strings derived from lowercase and uppercase as arguments; in some locales,
these don’t have the same length. For case conversions, always use lower() and upper().

split(s[, sep[, maxsplit ] ])
Return a list of the words of the string s. If the optional second argument sep is absent or None,
the words are separated by arbitrary strings of whitespace characters (space, tab, newline, return,
formfeed). If the second argument sep is present and not None, it specifies a string to be used as the
word separator. The returned list will then have one more item than the number of non-overlapping
occurrences of the separator in the string. The optional third argument maxsplit defaults to 0. If
it is nonzero, at most maxsplit number of splits occur, and the remainder of the string is returned
as the final element of the list (thus, the list will have at most maxsplit+1 elements).

splitfields(s[, sep[, maxsplit ] ])
This function behaves identically to split(). (In the past, split() was only used with one
argument, while splitfields() was only used with two arguments.)

join(words[, sep ])
Concatenate a list or tuple of words with intervening occurrences of sep. The default value for sep
is a single space character. It is always true that ‘string.join(string.split(s, sep), sep)’
equals s.

joinfields(words[, sep ])
This function behaves identical to join(). (In the past, join() was only used with one argument,
while joinfields() was only used with two arguments.)

lstrip(s)
Return a copy of s but without leading whitespace characters.

rstrip(s)
Return a copy of s but without trailing whitespace characters.

strip(s)
Return a copy of s without leading or trailing whitespace.

swapcase(s)
Return a copy of s, but with lower case letters converted to upper case and vice versa.

translate(s, table[, deletechars ])
Delete all characters from s that are in deletechars (if present), and then translate the characters
using table, which must be a 256-character string giving the translation for each character value,
indexed by its ordinal.

upper(s)
Return a copy of s, but with lower case letters converted to upper case.

ljust(s, width)
rjust(s, width)
center(s, width)

These functions respectively left-justify, right-justify and center a string in a field of given width.
They return a string that is at least width characters wide, created by padding the string s with
spaces until the given width on the right, left or both sides. The string is never truncated.

zfill(s, width)

4.1. string — Common string operations 77



Pad a numeric string on the left with zero digits until the given width is reached. Strings starting
with a sign are handled correctly.

replace(str, old, new[, maxsplit ])
Return a copy of string str with all occurrences of substring old replaced by new . If the optional
argument maxsplit is given, the first maxsplit occurrences are replaced.

4.2 re — Regular expression operations

This module provides regular expression matching operations similar to those found in Perl. Regular
expression pattern strings may not contain null bytes, but can specify the null byte using the \number
notation. Both patterns and strings to be searched can be Unicode strings as well as 8-bit strings. The
re module is always available.

Regular expressions use the backslash character (‘\’) to indicate special forms or to allow special char-
acters to be used without invoking their special meaning. This collides with Python’s usage of the same
character for the same purpose in string literals; for example, to match a literal backslash, one might have
to write ’\\\\’ as the pattern string, because the regular expression must be ‘\\’, and each backslash
must be expressed as ‘\\’ inside a regular Python string literal.

The solution is to use Python’s raw string notation for regular expression patterns; backslashes are
not handled in any special way in a string literal prefixed with ‘r’. So r"\n" is a two-character string
containing ‘\’ and ‘n’, while "\n" is a one-character string containing a newline. Usually patterns will
be expressed in Python code using this raw string notation.

Implementation note: The re module has two distinct implementations: sre is the default imple-
mentation and includes Unicode support, but may run into stack limitations for some patterns. Though
this will be fixed for a future release of Python, the older implementation (without Unicode support) is
still available as the pre module.

See Also:

Mastering Regular Expressions
Book on regular expressions by Jeffrey Friedl, published by O’Reilly. The Python material in this
book dates from before the re module, but it covers writing good regular expression patterns in
great detail.

4.2.1 Regular Expression Syntax

A regular expression (or RE) specifies a set of strings that matches it; the functions in this module let you
check if a particular string matches a given regular expression (or if a given regular expression matches
a particular string, which comes down to the same thing).

Regular expressions can be concatenated to form new regular expressions; if A and B are both regular
expressions, then AB is also an regular expression. If a string p matches A and another string q matches
B, the string pq will match AB. Thus, complex expressions can easily be constructed from simpler
primitive expressions like the ones described here. For details of the theory and implementation of
regular expressions, consult the Friedl book referenced below, or almost any textbook about compiler
construction.

A brief explanation of the format of regular expressions follows. For further information and a gentler
presentation, consult the Regular Expression HOWTO, accessible from http://www.python.org/doc/howto/.

Regular expressions can contain both special and ordinary characters. Most ordinary characters, like
‘A’, ‘a’, or ‘0’, are the simplest regular expressions; they simply match themselves. You can concatenate
ordinary characters, so dlastcmatches the string ’last’. (In the rest of this section, we’ll write RE’s in
dthis special stylec, usually without quotes, and strings to be matched ’in single quotes’.)

Some characters, like ‘|’ or ‘(’, are special. Special characters either stand for classes of ordinary
characters, or affect how the regular expressions around them are interpreted.

78 Chapter 4. String Services



The special characters are:

‘.’ (Dot.) In the default mode, this matches any character except a newline. If the DOTALL flag
has been specified, this matches any character including a newline.

‘^’ (Caret.) Matches the start of the string, and in MULTILINE mode also matches immediately
after each newline.

‘$’ Matches the end of the string, and in MULTILINE mode also matches before a newline. dfooc
matches both ’foo’ and ’foobar’, while the regular expression dfoo$cmatches only ’foo’.

‘*’ Causes the resulting RE to match 0 or more repetitions of the preceding RE, as many
repetitions as are possible. dab*cwill match ’a’, ’ab’, or ’a’ followed by any number of ’b’s.

‘+’ Causes the resulting RE to match 1 or more repetitions of the preceding RE. dab+cwill match
’a’ followed by any non-zero number of ’b’s; it will not match just ’a’.

‘?’ Causes the resulting RE to match 0 or 1 repetitions of the preceding RE. dab?c will match
either ’a’ or ’ab’.

*?, +?, ?? The ‘*’, ‘+’, and ‘?’ qualifiers are all greedy; they match as much text as possible. Sometimes
this behaviour isn’t desired; if the RE d<.*>c is matched against ’<H1>title</H1>’, it will
match the entire string, and not just ’<H1>’. Adding ‘?’ after the qualifier makes it perform
the match in non-greedy or minimal fashion; as few characters as possible will be matched.
Using d.*?c in the previous expression will match only ’<H1>’.

{m,n} Causes the resulting RE to match from m to n repetitions of the preceding RE, attempting
to match as many repetitions as possible. For example, da{3,5}c will match from 3 to 5 ‘a’
characters. Omitting n specifies an infinite upper bound; you can’t omit m.

{m,n}? Causes the resulting RE to match from m to n repetitions of the preceding RE, attempting to
match as few repetitions as possible. This is the non-greedy version of the previous qualifier.
For example, on the 6-character string ’aaaaaa’, da{3,5}cwill match 5 ‘a’ characters, while
da{3,5}?cwill only match 3 characters.

‘\’ Either escapes special characters (permitting you to match characters like ‘*’, ‘?’, and so
forth), or signals a special sequence; special sequences are discussed below.

If you’re not using a raw string to express the pattern, remember that Python also uses the
backslash as an escape sequence in string literals; if the escape sequence isn’t recognized by
Python’s parser, the backslash and subsequent character are included in the resulting string.
However, if Python would recognize the resulting sequence, the backslash should be repeated
twice. This is complicated and hard to understand, so it’s highly recommended that you use
raw strings for all but the simplest expressions.

[] Used to indicate a set of characters. Characters can be listed individually, or a range of
characters can be indicated by giving two characters and separating them by a ‘-’. Special
characters are not active inside sets. For example, d[akm$]c will match any of the characters
‘a’, ‘k’, ‘m’, or ‘$’; d[a-z]c will match any lowercase letter, and [a-zA-Z0-9] matches any
letter or digit. Character classes such as \w or \S (defined below) are also acceptable inside a
range. If you want to include a ‘]’ or a ‘-’ inside a set, precede it with a backslash, or place
it as the first character. The pattern d[]]cwill match ’]’, for example.

You can match the characters not within a range by complementing the set. This is indicated
by including a ‘^’ as the first character of the set; ‘^’ elsewhere will simply match the ‘^’
character. For example, d[^5]cwill match any character except ‘5’.

‘|’ A|B, where A and B can be arbitrary REs, creates a regular expression that will match either
A or B. An arbitrary number of REs can be separated by the ‘|’ in this way. This can be
used inside groups (see below) as well. REs separated by ‘|’ are tried from left to right, and
the first one that allows the complete pattern to match is considered the accepted branch.
This means that if A matches, B will never be tested, even if it would produce a longer overall
match. In other words, the ‘|’ operator is never greedy. To match a literal ‘|’, use d\|c, or
enclose it inside a character class, as in d[|]c.

4.2. re — Regular expression operations 79



(...) Matches whatever regular expression is inside the parentheses, and indicates the start and
end of a group; the contents of a group can be retrieved after a match has been performed,
and can be matched later in the string with the d\numberc special sequence, described below.
To match the literals ‘(’ or ‘)’, use d\(c or d\)c, or enclose them inside a character class: d[(]
[)]c.

(?...) This is an extension notation (a ‘?’ following a ‘(’ is not meaningful otherwise). The first
character after the ‘?’ determines what the meaning and further syntax of the construct is.
Extensions usually do not create a new group; d(?P<name>...)c is the only exception to this
rule. Following are the currently supported extensions.

(?iLmsux) (One or more letters from the set ‘i’, ‘L’, ‘m’, ‘s’, ‘u’, ‘x’.) The group matches the empty
string; the letters set the corresponding flags (re.I, re.L, re.M, re.S, re.U, re.X) for the
entire regular expression. This is useful if you wish to include the flags as part of the regular
expression, instead of passing a flag argument to the compile() function.

Note that the d(?x)c flag changes how the expression is parsed. It should be used first in the
expression string, or after one or more whitespace characters. If there are non-whitespace
characters before the flag, the results are undefined.

(?:...) A non-grouping version of regular parentheses. Matches whatever regular expression is inside
the parentheses, but the substring matched by the group cannot be retrieved after performing
a match or referenced later in the pattern.

(?P<name>...) Similar to regular parentheses, but the substring matched by the group is accessible via
the symbolic group name name. Group names must be valid Python identifiers. A symbolic
group is also a numbered group, just as if the group were not named. So the group named
’id’ in the example above can also be referenced as the numbered group 1.

For example, if the pattern is d(?P<id>[a-zA-Z ]\w*)c, the group can be referenced by its
name in arguments to methods of match objects, such as m.group(’id’) or m.end(’id’),
and also by name in pattern text (e.g. d(?P=id)c) and replacement text (e.g. \g<id>).

(?P=name) Matches whatever text was matched by the earlier group named name.

(?#...) A comment; the contents of the parentheses are simply ignored.

(?=...) Matches if d...cmatches next, but doesn’t consume any of the string. This is called a looka-
head assertion. For example, dIsaac (?=Asimov)c will match ’Isaac ’ only if it’s followed
by ’Asimov’.

(?!...) Matches if d...c doesn’t match next. This is a negative lookahead assertion. For example,
dIsaac (?!Asimov)cwill match ’Isaac ’ only if it’s not followed by ’Asimov’.

(?<=...) Matches if the current position in the string is preceded by a match for d...c that ends at
the current position. This is called a positive lookbehind assertion. d(?<=abc)defcwill match
‘abcdef’, since the lookbehind will back up 3 characters and check if the contained pattern
matches. The contained pattern must only match strings of some fixed length, meaning that
dabcc or da|bc are allowed, but da*c isn’t.

(?<!...) Matches if the current position in the string is not preceded by a match for d...c. This
is called a negative lookbehind assertion. Similar to positive lookbehind assertions, the
contained pattern must only match strings of some fixed length.

The special sequences consist of ‘\’ and a character from the list below. If the ordinary character is
not on the list, then the resulting RE will match the second character. For example, d\$c matches the
character ‘$’.

\number Matches the contents of the group of the same number. Groups are numbered starting from 1.
For example, d(.+) \1cmatches ’the the’ or ’55 55’, but not ’the end’ (note the space
after the group). This special sequence can only be used to match one of the first 99 groups.
If the first digit of number is 0, or number is 3 octal digits long, it will not be interpreted
as a group match, but as the character with octal value number . Inside the ‘[’ and ‘]’ of a
character class, all numeric escapes are treated as characters.

80 Chapter 4. String Services



\A Matches only at the start of the string.

\b Matches the empty string, but only at the beginning or end of a word. A word is defined
as a sequence of alphanumeric characters, so the end of a word is indicated by whitespace
or a non-alphanumeric character. Inside a character range, d\bc represents the backspace
character, for compatibility with Python’s string literals.

\B Matches the empty string, but only when it is not at the beginning or end of a word.

\d Matches any decimal digit; this is equivalent to the set d[0-9]c.

\D Matches any non-digit character; this is equivalent to the set d[^0-9]c.

\s Matches any whitespace character; this is equivalent to the set d[ \t\n\r\f\v]c.

\S Matches any non-whitespace character; this is equivalent to the set d[^ \t\n\r\f\v]c.

\w When the LOCALE and UNICODE flags are not specified, matches any alphanumeric character;
this is equivalent to the set d[a-zA-Z0-9 ]c. With LOCALE, it will match the set d[0-9 ]c
plus whatever characters are defined as letters for the current locale. If UNICODE is set, this
will match the characters d[0-9 ]c plus whatever is classified as alphanumeric in the Unicode
character properties database.

\W When the LOCALE and UNICODE flags are not specified, matches any non-alphanumeric char-
acter; this is equivalent to the set d[^a-zA-Z0-9 ]c. With LOCALE, it will match any character
not in the set d[0-9 ]c, and not defined as a letter for the current locale. If UNICODE is set,
this will match anything other than d[0-9 ]c and characters marked at alphanumeric in the
Unicode character properties database.

\Z Matches only at the end of the string.

\\ Matches a literal backslash.

4.2.2 Matching vs. Searching

Python offers two different primitive operations based on regular expressions: match and search. If you
are accustomed to Perl’s semantics, the search operation is what you’re looking for. See the search()
function and corresponding method of compiled regular expression objects.

Note that match may differ from search using a regular expression beginning with ‘^’: ‘^’ matches only
at the start of the string, or in MULTILINE mode also immediately following a newline. The “match”
operation succeeds only if the pattern matches at the start of the string regardless of mode, or at the
starting position given by the optional pos argument regardless of whether a newline precedes it.

re.compile("a").match("ba", 1) # succeeds

re.compile("^a").search("ba", 1) # fails; ’a’ not at start

re.compile("^a").search("\na", 1) # fails; ’a’ not at start

re.compile("^a", re.M).search("\na", 1) # succeeds

re.compile("^a", re.M).search("ba", 1) # fails; no preceding \n

4.2.3 Module Contents

The module defines the following functions and constants, and an exception:

compile(pattern[, flags ])
Compile a regular expression pattern into a regular expression object, which can be used for
matching using its match() and search() methods, described below.

The expression’s behaviour can be modified by specifying a flags value. Values can be any of the
following variables, combined using bitwise OR (the | operator).

4.2. re — Regular expression operations 81



The sequence

prog = re.compile(pat)

result = prog.match(str)

is equivalent to

result = re.match(pat, str)

but the version using compile() is more efficient when the expression will be used several times
in a single program.

I
IGNORECASE

Perform case-insensitive matching; expressions like d[A-Z]c will match lowercase letters, too. This
is not affected by the current locale.

L
LOCALE

Make d\wc, d\Wc, d\bc, and d\Bc dependent on the current locale.

M
MULTILINE

When specified, the pattern character ‘^’ matches at the beginning of the string and at the beginning
of each line (immediately following each newline); and the pattern character ‘$’ matches at the
end of the string and at the end of each line (immediately preceding each newline). By default, ‘^’
matches only at the beginning of the string, and ‘$’ only at the end of the string and immediately
before the newline (if any) at the end of the string.

S
DOTALL

Make the ‘.’ special character match any character at all, including a newline; without this flag,
‘.’ will match anything except a newline.

U
UNICODE

Make d\wc, d\Wc, d\bc, and d\Bc dependent on the Unicode character properties database. New in
version 2.0.

X
VERBOSE

This flag allows you to write regular expressions that look nicer. Whitespace within the pattern is
ignored, except when in a character class or preceded by an unescaped backslash, and, when a line
contains a ‘#’ neither in a character class or preceded by an unescaped backslash, all characters
from the leftmost such ‘#’ through the end of the line are ignored.

search(pattern, string[, flags ])
Scan through string looking for a location where the regular expression pattern produces a match,
and return a corresponding MatchObject instance. Return None if no position in the string matches
the pattern; note that this is different from finding a zero-length match at some point in the string.

match(pattern, string[, flags ])
If zero or more characters at the beginning of string match the regular expression pattern, return a
corresponding MatchObject instance. Return None if the string does not match the pattern; note
that this is different from a zero-length match.

Note: If you want to locate a match anywhere in string , use search() instead.

split(pattern, string[, maxsplit = 0 ])
Split string by the occurrences of pattern. If capturing parentheses are used in pattern, then the
text of all groups in the pattern are also returned as part of the resulting list. If maxsplit is nonzero,
at most maxsplit splits occur, and the remainder of the string is returned as the final element of
the list. (Incompatibility note: in the original Python 1.5 release, maxsplit was ignored. This has

82 Chapter 4. String Services



been fixed in later releases.)

>>> re.split(’\W+’, ’Words, words, words.’)

[’Words’, ’words’, ’words’, ’’]

>>> re.split(’(\W+)’, ’Words, words, words.’)

[’Words’, ’, ’, ’words’, ’, ’, ’words’, ’.’, ’’]

>>> re.split(’\W+’, ’Words, words, words.’, 1)

[’Words’, ’words, words.’]

This function combines and extends the functionality of the old regsub.split() and
regsub.splitx().

findall(pattern, string)
Return a list of all non-overlapping matches of pattern in string . If one or more groups are present
in the pattern, return a list of groups; this will be a list of tuples if the pattern has more than one
group. Empty matches are included in the result. New in version 1.5.2.

sub(pattern, repl, string[, count = 0 ])
Return the string obtained by replacing the leftmost non-overlapping occurrences of pattern in
string by the replacement repl . If the pattern isn’t found, string is returned unchanged. repl
can be a string or a function; if a function, it is called for every non-overlapping occurrence of
pattern. The function takes a single match object argument, and returns the replacement string.
For example:

>>> def dashrepl(matchobj):

.... if matchobj.group(0) == ’-’: return ’ ’

.... else: return ’-’

>>> re.sub(’-{1,2}’, dashrepl, ’pro----gram-files’)

’pro--gram files’

The pattern may be a string or an RE object; if you need to specify regular expression flags, you
must use a RE object, or use embedded modifiers in a pattern; e.g. ‘sub("(?i)b+", "x", "bbbb
BBBB")’ returns ’x x’.

The optional argument count is the maximum number of pattern occurrences to be replaced; count
must be a non-negative integer, and the default value of 0 means to replace all occurrences.

Empty matches for the pattern are replaced only when not adjacent to a previous match, so
‘sub(’x*’, ’-’, ’abc’)’ returns ’-a-b-c-’.

If repl is a string, any backslash escapes in it are processed. That is, ‘\n’ is converted to a single
newline character, ‘\r’ is converted to a linefeed, and so forth. Unknown escapes such as ‘\j’ are
left alone. Backreferences, such as ‘\6’, are replaced with the substring matched by group 6 in the
pattern.

In addition to character escapes and backreferences as described above, ‘\g<name>’ will use the sub-
string matched by the group named ‘name’, as defined by the d(?P<name>...)c syntax. ‘\g<number>’
uses the corresponding group number; ‘\g<2>’ is therefore equivalent to ‘\2’, but isn’t ambiguous
in a replacement such as ‘\g<2>0’. ‘\20’ would be interpreted as a reference to group 20, not a
reference to group 2 followed by the literal character ‘0’.

subn(pattern, repl, string[, count = 0 ])
Perform the same operation as sub(), but return a tuple (new string, number of subs made).

escape(string)
Return string with all non-alphanumerics backslashed; this is useful if you want to match an
arbitrary literal string that may have regular expression metacharacters in it.

exception error
Exception raised when a string passed to one of the functions here is not a valid regular expression
(e.g., unmatched parentheses) or when some other error occurs during compilation or matching. It
is never an error if a string contains no match for a pattern.

4.2. re — Regular expression operations 83



4.2.4 Regular Expression Objects

Compiled regular expression objects support the following methods and attributes:

search(string[, pos[, endpos ] ])
Scan through string looking for a location where this regular expression produces a match, and
return a corresponding MatchObject instance. Return None if no position in the string matches
the pattern; note that this is different from finding a zero-length match at some point in the string.

The optional pos and endpos parameters have the same meaning as for the match() method.

match(string[, pos[, endpos ] ])
If zero or more characters at the beginning of string match this regular expression, return a
corresponding MatchObject instance. Return None if the string does not match the pattern; note
that this is different from a zero-length match.

Note: If you want to locate a match anywhere in string , use search() instead.

The optional second parameter pos gives an index in the string where the search is to start; it
defaults to 0. This is not completely equivalent to slicing the string; the ’^’ pattern character
matches at the real beginning of the string and at positions just after a newline, but not necessarily
at the index where the search is to start.

The optional parameter endpos limits how far the string will be searched; it will be as if the string
is endpos characters long, so only the characters from pos to endpos will be searched for a match.

split(string[, maxsplit = 0 ])
Identical to the split() function, using the compiled pattern.

findall(string)
Identical to the findall() function, using the compiled pattern.

sub(repl, string[, count = 0 ])
Identical to the sub() function, using the compiled pattern.

subn(repl, string[, count = 0 ])
Identical to the subn() function, using the compiled pattern.

flags
The flags argument used when the RE object was compiled, or 0 if no flags were provided.

groupindex
A dictionary mapping any symbolic group names defined by d(?P<id>)c to group numbers. The
dictionary is empty if no symbolic groups were used in the pattern.

pattern
The pattern string from which the RE object was compiled.

4.2.5 Match Objects

MatchObject instances support the following methods and attributes:

expand(template)
Return the string obtained by doing backslash substitution on the template string template, as
done by the sub() method. Escapes such as ‘\n’ are converted to the appropriate characters, and
numeric backreferences (‘\1’, ‘\2’) and named backreferences (‘\g<1>’, ‘\g<name>’) are replaced
by the contents of the corresponding group.

group([group1, ... ])
Returns one or more subgroups of the match. If there is a single argument, the result is a single
string; if there are multiple arguments, the result is a tuple with one item per argument. Without
arguments, group1 defaults to zero (i.e. the whole match is returned). If a groupN argument is
zero, the corresponding return value is the entire matching string; if it is in the inclusive range
[1..99], it is the string matching the the corresponding parenthesized group. If a group number
is negative or larger than the number of groups defined in the pattern, an IndexError exception

84 Chapter 4. String Services



is raised. If a group is contained in a part of the pattern that did not match, the corresponding
result is None. If a group is contained in a part of the pattern that matched multiple times, the
last match is returned.

If the regular expression uses the d(?P<name>...)c syntax, the groupN arguments may also be
strings identifying groups by their group name. If a string argument is not used as a group name
in the pattern, an IndexError exception is raised.

A moderately complicated example:

m = re.match(r"(?P<int>\d+)\.(\d*)", ’3.14’)

After performing this match, m.group(1) is ’3’, as is m.group(’int’), and m.group(2) is ’14’.

groups([default ])
Return a tuple containing all the subgroups of the match, from 1 up to however many groups are
in the pattern. The default argument is used for groups that did not participate in the match; it
defaults to None. (Incompatibility note: in the original Python 1.5 release, if the tuple was one
element long, a string would be returned instead. In later versions (from 1.5.1 on), a singleton
tuple is returned in such cases.)

groupdict([default ])
Return a dictionary containing all the named subgroups of the match, keyed by the subgroup name.
The default argument is used for groups that did not participate in the match; it defaults to None.

start([group ])
end([group ])

Return the indices of the start and end of the substring matched by group; group defaults to zero
(meaning the whole matched substring). Return -1 if group exists but did not contribute to the
match. For a match object m, and a group g that did contribute to the match, the substring
matched by group g (equivalent to m.group(g)) is

m.string[m.start(g):m.end(g)]

Note that m.start(group) will equal m.end(group) if group matched a null string. For example,
after m = re.search(’b(c?)’, ’cba’), m.start(0) is 1, m.end(0) is 2, m.start(1) and
m.end(1) are both 2, and m.start(2) raises an IndexError exception.

span([group ])
For MatchObject m, return the 2-tuple (m.start(group), m.end(group)). Note that if group
did not contribute to the match, this is (-1, -1). Again, group defaults to zero.

pos
The value of pos which was passed to the search() or match() function. This is the index into
the string at which the RE engine started looking for a match.

endpos
The value of endpos which was passed to the search() or match() function. This is the index into
the string beyond which the RE engine will not go.

lastgroup
The name of the last matched capturing group, or None if the group didn’t have a name, or if no
group was matched at all.

lastindex
The integer index of the last matched capturing group, or None if no group was matched at all.

re
The regular expression object whose match() or search() method produced this MatchObject
instance.

string
The string passed to match() or search().

4.2. re — Regular expression operations 85



4.3 struct — Interpret strings as packed binary data

This module performs conversions between Python values and C structs represented as Python strings.
It uses format strings (explained below) as compact descriptions of the lay-out of the C structs and the
intended conversion to/from Python values. This can be used in handling binary data stored in files or
from network connections, among other sources.

The module defines the following exception and functions:

exception error
Exception raised on various occasions; argument is a string describing what is wrong.

pack(fmt, v1, v2, . . .)
Return a string containing the values v1, v2, . . . packed according to the given format. The
arguments must match the values required by the format exactly.

unpack(fmt, string)
Unpack the string (presumably packed by pack(fmt, . . . )) according to the given format. The
result is a tuple even if it contains exactly one item. The string must contain exactly the amount
of data required by the format (i.e. len(string) must equal calcsize(fmt)).

calcsize(fmt)
Return the size of the struct (and hence of the string) corresponding to the given format.

Format characters have the following meaning; the conversion between C and Python values should be
obvious given their types:

Format C Type Python Notes
‘x’ pad byte no value
‘c’ char string of length 1
‘b’ signed char integer
‘B’ unsigned char integer
‘h’ short integer
‘H’ unsigned short integer
‘i’ int integer
‘I’ unsigned int long (1)
‘l’ long integer
‘L’ unsigned long long
‘f’ float float
‘d’ double float
‘s’ char[] string
‘p’ char[] string
‘P’ void * integer

Notes:

(1) The ‘I’ conversion code will convert to a Python long if the C int is the same size as a C long,
which is typical on most modern systems. If a C int is smaller than a C long, an Python integer
will be created instead.

A format character may be preceded by an integral repeat count; e.g. the format string ’4h’ means
exactly the same as ’hhhh’.

Whitespace characters between formats are ignored; a count and its format must not contain whitespace
though.

For the ‘s’ format character, the count is interpreted as the size of the string, not a repeat count like for
the other format characters; e.g. ’10s’ means a single 10-byte string, while ’10c’ means 10 characters.
For packing, the string is truncated or padded with null bytes as appropriate to make it fit. For unpacking,
the resulting string always has exactly the specified number of bytes. As a special case, ’0s’ means a
single, empty string (while ’0c’ means 0 characters).

86 Chapter 4. String Services



The ‘p’ format character can be used to encode a Pascal string. The first byte is the length of the stored
string, with the bytes of the string following. If count is given, it is used as the total number of bytes
used, including the length byte. If the string passed in to pack() is too long, the stored representation
is truncated. If the string is too short, padding is used to ensure that exactly enough bytes are used to
satisfy the count.

For the ‘I’ and ‘L’ format characters, the return value is a Python long integer.

For the ‘P’ format character, the return value is a Python integer or long integer, depending on the size
needed to hold a pointer when it has been cast to an integer type. A NULL pointer will always be returned
as the Python integer 0. When packing pointer-sized values, Python integer or long integer objects may
be used. For example, the Alpha and Merced processors use 64-bit pointer values, meaning a Python
long integer will be used to hold the pointer; other platforms use 32-bit pointers and will use a Python
integer.

By default, C numbers are represented in the machine’s native format and byte order, and properly
aligned by skipping pad bytes if necessary (according to the rules used by the C compiler).

Alternatively, the first character of the format string can be used to indicate the byte order, size and
alignment of the packed data, according to the following table:

Character Byte order Size and alignment
‘@’ native native
‘=’ native standard
‘<’ little-endian standard
‘>’ big-endian standard
‘!’ network (= big-endian) standard

If the first character is not one of these, ‘@’ is assumed.

Native byte order is big-endian or little-endian, depending on the host system (e.g. Motorola and Sun
are big-endian; Intel and DEC are little-endian).

Native size and alignment are determined using the C compiler’s sizeof expression. This is always
combined with native byte order.

Standard size and alignment are as follows: no alignment is required for any type (so you have to use
pad bytes); short is 2 bytes; int and long are 4 bytes. float and double are 32-bit and 64-bit IEEE
floating point numbers, respectively.

Note the difference between ‘@’ and ‘=’: both use native byte order, but the size and alignment of the
latter is standardized.

The form ‘!’ is available for those poor souls who claim they can’t remember whether network byte
order is big-endian or little-endian.

There is no way to indicate non-native byte order (i.e. force byte-swapping); use the appropriate choice
of ‘<’ or ‘>’.

The ‘P’ format character is only available for the native byte ordering (selected as the default or with the
‘@’ byte order character). The byte order character ‘=’ chooses to use little- or big-endian ordering based
on the host system. The struct module does not interpret this as native ordering, so the ‘P’ format is
not available.

Examples (all using native byte order, size and alignment, on a big-endian machine):

>>> from struct import *

>>> pack(’hhl’, 1, 2, 3)

’\x00\x01\x00\x02\x00\x00\x00\x03’

>>> unpack(’hhl’, ’\x00\x01\x00\x02\x00\x00\x00\x03’)

(1, 2, 3)

>>> calcsize(’hhl’)

8

4.3. struct — Interpret strings as packed binary data 87



Hint: to align the end of a structure to the alignment requirement of a particular type, end the format
with the code for that type with a repeat count of zero, e.g. the format ’llh0l’ specifies two pad bytes
at the end, assuming longs are aligned on 4-byte boundaries. This only works when native size and
alignment are in effect; standard size and alignment does not enforce any alignment.

See Also:

Module array (section 5.8):
Packed binary storage of homogeneous data.

Module xdrlib (section 12.9):
Packing and unpacking of XDR data.

4.4 difflib — Helpers for computing deltas

New in version 2.1.

get close matches(word, possibilities[, n[, cutoff ] ])
Return a list of the best “good enough” matches. word is a sequence for which close matches are
desired (typically a string), and possibilities is a list of sequences against which to match word
(typically a list of strings).

Optional argument n (default 3) is the maximum number of close matches to return; n must be
greater than 0.

Optional argument cutoff (default 0.6) is a float in the range [0, 1]. Possibilities that don’t score
at least that similar to word are ignored.

The best (no more than n) matches among the possibilities are returned in a list, sorted by similarity
score, most similar first.

>>> get_close_matches(’appel’, [’ape’, ’apple’, ’peach’, ’puppy’])

[’apple’, ’ape’]

>>> import keyword

>>> get_close_matches(’wheel’, keyword.kwlist)

[’while’]

>>> get_close_matches(’apple’, keyword.kwlist)

[]

>>> get_close_matches(’accept’, keyword.kwlist)

[’except’]

class SequenceMatcher(...)
This is a flexible class for comparing pairs of sequences of any type, so long as the sequence
elements are hashable. The basic algorithm predates, and is a little fancier than, an algorithm
published in the late 1980’s by Ratcliff and Obershelp under the hyperbolic name “gestalt pattern
matching.” The idea is to find the longest contiguous matching subsequence that contains no
“junk” elements (the Ratcliff and Obershelp algorithm doesn’t address junk). The same idea is
then applied recursively to the pieces of the sequences to the left and to the right of the matching
subsequence. This does not yield minimal edit sequences, but does tend to yield matches that
“look right” to people.

Timing: The basic Ratcliff-Obershelp algorithm is cubic time in the worst case and quadratic time
in the expected case. SequenceMatcher is quadratic time for the worst case and has expected-case
behavior dependent in a complicated way on how many elements the sequences have in common;
best case time is linear.

See Also:

Pattern Matching: The Gestalt Approach
Discussion of a similar algorithm by John W. Ratcliff and D. E. Metzener. This was published in
Dr. Dobb’s Journal in July, 1988.

88 Chapter 4. String Services



4.4.1 SequenceMatcher Objects

class SequenceMatcher([isjunk[, a[, b ] ] ])
Optional argument isjunk must be None (the default) or a one-argument function that takes a
sequence element and returns true if and only if the element is “junk” and should be ignored. None
is equivalent to passing lambda x: 0, i.e. no elements are ignored. For example, pass

lambda x: x in " \t"

if you’re comparing lines as sequences of characters, and don’t want to synch up on blanks or hard
tabs.

The optional arguments a and b are sequences to be compared; both default to empty strings. The
elements of both sequences must be hashable.

SequenceMatcher objects have the following methods:

set seqs(a, b)
Set the two sequences to be compared.

SequenceMatcher computes and caches detailed information about the second sequence, so if you want
to compare one sequence against many sequences, use set seq2() to set the commonly used sequence
once and call set seq1() repeatedly, once for each of the other sequences.

set seq1(a)
Set the first sequence to be compared. The second sequence to be compared is not changed.

set seq2(b)
Set the second sequence to be compared. The first sequence to be compared is not changed.

find longest match(alo, ahi, blo, bhi)
Find longest matching block in a[alo:ahi] and b[blo:bhi].

If isjunk was omitted or None, get longest match() returns (i, j, k) such that a[i:i+k] is
equal to b[j:j+k], where alo <= i <= i+k <= ahi and blo <= j <= j+k <= bhi . For all (i’, j’,
k’) meeting those conditions, the additional conditions k >= k’ , i <= i’ , and if i == i’ , j <= j’
are also met. In other words, of all maximal matching blocks, return one that starts earliest in a,
and of all those maximal matching blocks that start earliest in a, return the one that starts earliest
in b.

>>> s = SequenceMatcher(None, " abcd", "abcd abcd")

>>> s.find_longest_match(0, 5, 0, 9)

(0, 4, 5)

If isjunk was provided, first the longest matching block is determined as above, but with the
additional restriction that no junk element appears in the block. Then that block is extended
as far as possible by matching (only) junk elements on both sides. So the resulting block never
matches on junk except as identical junk happens to be adjacent to an interesting match.

Here’s the same example as before, but considering blanks to be junk. That prevents ’ abcd’ from
matching the ’ abcd’ at the tail end of the second sequence directly. Instead only the ’abcd’ can
match, and matches the leftmost ’abcd’ in the second sequence:

>>> s = SequenceMatcher(lambda x: x==" ", " abcd", "abcd abcd")

>>> s.find_longest_match(0, 5, 0, 9)

(1, 0, 4)

If no blocks match, this returns (alo, blo, 0).

get matching blocks()
Return list of triples describing matching subsequences. Each triple is of the form (i, j, n), and
means that a[i:i+n] == b[j:j+n]. The triples are monotonically increasing in i and j .

The last triple is a dummy, and has the value (len(a), len(b), 0). It is the only triple with n
== 0.

4.4. difflib — Helpers for computing deltas 89



>>> s = SequenceMatcher(None, "abxcd", "abcd")

>>> s.get_matching_blocks()

[(0, 0, 2), (3, 2, 2), (5, 4, 0)]

get opcodes()
Return list of 5-tuples describing how to turn a into b. Each tuple is of the form (tag, i1, i2,
j1, j2). The first tuple has i1 == j1 == 0, and remaining tuples have i1 equal to the i2 from
the preceeding tuple, and, likewise, j1 equal to the previous j2 .

The tag values are strings, with these meanings:

Value Meaning
’replace’ a[i1:i2] should be replaced by b[j1:j2].
’delete’ a[i1:i2] should be deleted. Note that j1 == j2 in this case.
’insert’ b[j1:j2] should be inserted at a[i1:i1]. Note that i1 == i2 in this case.
’equal’ a[i1:i2] == b[j1:j2] (the sub-sequences are equal).

For example:

>>> a = "qabxcd"

>>> b = "abycdf"

>>> s = SequenceMatcher(None, a, b)

>>> for tag, i1, i2, j1, j2 in s.get_opcodes():

... print ("%7s a[%d:%d] (%s) b[%d:%d] (%s)" %

... (tag, i1, i2, a[i1:i2], j1, j2, b[j1:j2]))

delete a[0:1] (q) b[0:0] ()

equal a[1:3] (ab) b[0:2] (ab)

replace a[3:4] (x) b[2:3] (y)

equal a[4:6] (cd) b[3:5] (cd)

insert a[6:6] () b[5:6] (f)

ratio()
Return a measure of the sequences’ similarity as a float in the range [0, 1].

Where T is the total number of elements in both sequences, and M is the number of matches, this
is 2.0*M / T. Note that this is 1. if the sequences are identical, and 0. if they have nothing in
common.

This is expensive to compute if get matching blocks() or get opcodes() hasn’t already been
called, in which case you may want to try quick ratio() or real quick ratio() first to get an
upper bound.

quick ratio()
Return an upper bound on ratio() relatively quickly.

This isn’t defined beyond that it is an upper bound on ratio(), and is faster to compute.

real quick ratio()
Return an upper bound on ratio() very quickly.

This isn’t defined beyond that it is an upper bound on ratio(), and is faster to compute than
either ratio() or quick ratio().

The three methods that return the ratio of matching to total characters can give different results due
to differing levels of approximation, although quick ratio() and real quick ratio() are always at
least as large as ratio():

>>> s = SequenceMatcher(None, "abcd", "bcde")

>>> s.ratio()

0.75

>>> s.quick_ratio()

0.75

>>> s.real_quick_ratio()

1.0

90 Chapter 4. String Services



4.4.2 Examples

This example compares two strings, considering blanks to be “junk:”

>>> s = SequenceMatcher(lambda x: x == " ",

... "private Thread currentThread;",

... "private volatile Thread currentThread;")

ratio() returns a float in [0, 1], measuring the similarity of the sequences. As a rule of thumb, a ratio()
value over 0.6 means the sequences are close matches:

>>> print round(s.ratio(), 3)

0.866

If you’re only interested in where the sequences match, get matching blocks() is handy:

>>> for block in s.get_matching_blocks():

... print "a[%d] and b[%d] match for %d elements" % block

a[0] and b[0] match for 8 elements

a[8] and b[17] match for 6 elements

a[14] and b[23] match for 15 elements

a[29] and b[38] match for 0 elements

Note that the last tuple returned by get matching blocks() is always a dummy, (len(a), len(b),
0), and this is the only case in which the last tuple element (number of elements matched) is 0.

If you want to know how to change the first sequence into the second, use get opcodes():

>>> for opcode in s.get_opcodes():

... print "%6s a[%d:%d] b[%d:%d]" % opcode

equal a[0:8] b[0:8]

insert a[8:8] b[8:17]

equal a[8:14] b[17:23]

equal a[14:29] b[23:38]

See ‘Tools/scripts/ndiff.py’ from the Python source distribution for a fancy human-friendly file differencer,
which uses SequenceMatcher both to view files as sequences of lines, and lines as sequences of characters.

See also the function get close matches() in this module, which shows how simple code building on
SequenceMatcher can be used to do useful work.

4.5 fpformat — Floating point conversions

The fpformat module defines functions for dealing with floating point numbers representations in 100%
pure Python. Note: This module is unneeded: everything here could be done via the % string interpo-
lation operator.

The fpformat module defines the following functions and an exception:

fix(x, digs)
Format x as [-]ddd.ddd with digs digits after the point and at least one digit before. If digs <=
0, the decimal point is suppressed.

x can be either a number or a string that looks like one. digs is an integer.

Return value is a string.

4.5. fpformat — Floating point conversions 91



sci(x, digs)
Format x as [-]d.dddE[+-]ddd with digs digits after the point and exactly one digit before. If
digs <= 0, one digit is kept and the point is suppressed.

x can be either a real number, or a string that looks like one. digs is an integer.

Return value is a string.

exception NotANumber
Exception raised when a string passed to fix() or sci() as the x parameter does not look like a
number. This is a subclass of ValueError when the standard exceptions are strings. The exception
value is the improperly formatted string that caused the exception to be raised.

Example:

>>> import fpformat

>>> fpformat.fix(1.23, 1)

’1.2’

4.6 StringIO — Read and write strings as files

This module implements a file-like class, StringIO, that reads and writes a string buffer (also known as
memory files). See the description of file objects for operations (section 2.1.7).

class StringIO([buffer ])
When a StringIO object is created, it can be initialized to an existing string by passing the string
to the constructor. If no string is given, the StringIO will start empty.

The StringIO object can accept either Unicode or 8-bit strings, but mixing the two may take some
care. If both are used, 8-bit strings that cannot be interpreted as 7-bit ascii (i.e., that use the 8th
bit) will cause a UnicodeError to be raised when getvalue() is called.

The following methods of StringIO objects require special mention:

getvalue()
Retrieve the entire contents of the “file” at any time before the StringIO object’s close() method
is called. See the note above for information about mixing Unicode and 8-bit strings; such mixing
can cause this method to raise UnicodeError.

close()
Free the memory buffer.

4.7 cStringIO — Faster version of StringIO

The module cStringIO provides an interface similar to that of the StringIO module. Heavy use of
StringIO.StringIO objects can be made more efficient by using the function StringIO() from this
module instead.

Since this module provides a factory function which returns objects of built-in types, there’s no way to
build your own version using subclassing. Use the original StringIO module in that case.

Unlike the memory files implemented by the StringIO module, those provided by this module are not
able to accept Unicode strings that cannot be encoded as plain ascii strings.

The following data objects are provided as well:

InputType
The type object of the objects created by calling StringIO with a string parameter.

OutputType
The type object of the objects returned by calling StringIO with no parameters.

92 Chapter 4. String Services



There is a C API to the module as well; refer to the module source for more information.

4.8 codecs — Codec registry and base classes

This module defines base classes for standard Python codecs (encoders and decoders) and provides access
to the internal Python codec registry which manages the codec lookup process.

It defines the following functions:

register(search function)
Register a codec search function. Search functions are expected to take one argument, the encoding
name in all lower case letters, and return a tuple of functions (encoder, decoder, stream reader,
stream writer) taking the following arguments:

encoder and decoder : These must be functions or methods which have the same interface as the
encode()/decode() methods of Codec instances (see Codec Interface). The functions/methods
are expected to work in a stateless mode.

stream reader and stream writer : These have to be factory functions providing the following
interface:

factory(stream, errors=’strict’)

The factory functions must return objects providing the interfaces defined by the base classes
StreamWriter and StreamReader, respectively. Stream codecs can maintain state.

Possible values for errors are ’strict’ (raise an exception in case of an encoding error), ’replace’
(replace malformed data with a suitable replacement marker, such as ‘?’) and ’ignore’ (ignore
malformed data and continue without further notice).

In case a search function cannot find a given encoding, it should return None.

lookup(encoding)
Looks up a codec tuple in the Python codec registry and returns the function tuple as defined
above.

Encodings are first looked up in the registry’s cache. If not found, the list of registered search
functions is scanned. If no codecs tuple is found, a LookupError is raised. Otherwise, the codecs
tuple is stored in the cache and returned to the caller.

To simplify working with encoded files or stream, the module also defines these utility functions:

open(filename, mode[, encoding[, errors[, buffering ] ] ])
Open an encoded file using the given mode and return a wrapped version providing transparent
encoding/decoding.

Note: The wrapped version will only accept the object format defined by the codecs, i.e. Unicode
objects for most built-in codecs. Output is also codec-dependent and will usually be Unicode as
well.

encoding specifies the encoding which is to be used for the the file.

errors may be given to define the error handling. It defaults to ’strict’ which causes a
ValueError to be raised in case an encoding error occurs.

buffering has the same meaning as for the built-in open() function. It defaults to line buffered.

EncodedFile(file, input[, output[, errors ] ])
Return a wrapped version of file which provides transparent encoding translation.

Strings written to the wrapped file are interpreted according to the given input encoding and then
written to the original file as strings using the output encoding. The intermediate encoding will
usually be Unicode but depends on the specified codecs.

If output is not given, it defaults to input .

errors may be given to define the error handling. It defaults to ’strict’, which causes ValueError
to be raised in case an encoding error occurs.

4.8. codecs — Codec registry and base classes 93



The module also provides the following constants which are useful for reading and writing to platform
dependent files:

BOM
BOM BE
BOM LE
BOM32 BE
BOM32 LE
BOM64 BE
BOM64 LE

These constants define the byte order marks (BOM) used in data streams to indicate the byte order
used in the stream or file. BOM is either BOM BE or BOM LE depending on the platform’s native byte
order, while the others represent big endian (‘ BE’ suffix) and little endian (‘ LE’ suffix) byte order
using 32-bit and 64-bit encodings.

See Also:

http://sourceforge.net/projects/python-codecs/

A SourceForge project working on additional support for Asian codecs for use with Python. They
are in the early stages of development at the time of this writing — look in their FTP area for
downloadable files.

4.8.1 Codec Base Classes

The codecs defines a set of base classes which define the interface and can also be used to easily write
you own codecs for use in Python.

Each codec has to define four interfaces to make it usable as codec in Python: stateless encoder, stateless
decoder, stream reader and stream writer. The stream reader and writers typically reuse the stateless
encoder/decoder to implement the file protocols.

The Codec class defines the interface for stateless encoders/decoders.

To simplify and standardize error handling, the encode() and decode() methods may implement dif-
ferent error handling schemes by providing the errors string argument. The following string values are
defined and implemented by all standard Python codecs:

Value Meaning
’strict’ Raise ValueError (or a subclass); this is the default.
’ignore’ Ignore the character and continue with the next.
’replace’ Replace with a suitable replacement character; Python will use the official U+FFFD REPLACEMENT CHARACTER for the built-in Unicode codecs.

Codec Objects

The Codec class defines these methods which also define the function interfaces of the stateless encoder
and decoder:

encode(input[, errors ])
Encodes the object input and returns a tuple (output object, length consumed).

errors defines the error handling to apply. It defaults to ’strict’ handling.

The method may not store state in the Codec instance. Use StreamCodec for codecs which have
to keep state in order to make encoding/decoding efficient.

The encoder must be able to handle zero length input and return an empty object of the output
object type in this situation.

decode(input[, errors ])
Decodes the object input and returns a tuple (output object, length consumed).

input must be an object which provides the bf getreadbuf buffer slot. Python strings, buffer
objects and memory mapped files are examples of objects providing this slot.

94 Chapter 4. String Services



errors defines the error handling to apply. It defaults to ’strict’ handling.

The method may not store state in the Codec instance. Use StreamCodec for codecs which have
to keep state in order to make encoding/decoding efficient.

The decoder must be able to handle zero length input and return an empty object of the output
object type in this situation.

The StreamWriter and StreamReader classes provide generic working interfaces which can be used to
implement new encodings submodules very easily. See encodings.utf 8 for an example on how this is
done.

StreamWriter Objects

The StreamWriter class is a subclass of Codec and defines the following methods which every stream
writer must define in order to be compatible to the Python codec registry.

class StreamWriter(stream[, errors ])
Constructor for a StreamWriter instance.

All stream writers must provide this constructor interface. They are free to add additional keyword
arguments, but only the ones defined here are used by the Python codec registry.

stream must be a file-like object open for writing (binary) data.

The StreamWriter may implement different error handling schemes by providing the errors key-
word argument. These parameters are defined:

•’strict’ Raise ValueError (or a subclass); this is the default.

•’ignore’ Ignore the character and continue with the next.

•’replace’ Replace with a suitable replacement character

write(object)
Writes the object’s contents encoded to the stream.

writelines(list)
Writes the concatenated list of strings to the stream (possibly by reusing the write() method).

reset()
Flushes and resets the codec buffers used for keeping state.

Calling this method should ensure that the data on the output is put into a clean state, that allows
appending of new fresh data without having to rescan the whole stream to recover state.

In addition to the above methods, the StreamWriter must also inherit all other methods and attribute
from the underlying stream.

StreamReader Objects

The StreamReader class is a subclass of Codec and defines the following methods which every stream
reader must define in order to be compatible to the Python codec registry.

class StreamReader(stream[, errors ])
Constructor for a StreamReader instance.

All stream readers must provide this constructor interface. They are free to add additional keyword
arguments, but only the ones defined here are used by the Python codec registry.

stream must be a file-like object open for reading (binary) data.

The StreamReader may implement different error handling schemes by providing the errors key-
word argument. These parameters are defined:

•’strict’ Raise ValueError (or a subclass); this is the default.

•’ignore’ Ignore the character and continue with the next.

4.8. codecs — Codec registry and base classes 95



•’replace’ Replace with a suitable replacement character.

read([size ])
Decodes data from the stream and returns the resulting object.

size indicates the approximate maximum number of bytes to read from the stream for decoding
purposes. The decoder can modify this setting as appropriate. The default value -1 indicates to
read and decode as much as possible. size is intended to prevent having to decode huge files in one
step.

The method should use a greedy read strategy meaning that it should read as much data as is
allowed within the definition of the encoding and the given size, e.g. if optional encoding endings
or state markers are available on the stream, these should be read too.

readline([size])
Read one line from the input stream and return the decoded data.

Note: Unlike the readlines() method, this method inherits the line breaking knowledge from the
underlying stream’s readline() method – there is currently no support for line breaking using the
codec decoder due to lack of line buffering. Sublcasses should however, if possible, try to implement
this method using their own knowledge of line breaking.

size, if given, is passed as size argument to the stream’s readline() method.

readlines([sizehint])
Read all lines available on the input stream and return them as list of lines.

Line breaks are implemented using the codec’s decoder method and are included in the list entries.

sizehint , if given, is passed as size argument to the stream’s read() method.

reset()
Resets the codec buffers used for keeping state.

Note that no stream repositioning should take place. This method is primarily intended to be able
to recover from decoding errors.

In addition to the above methods, the StreamReader must also inherit all other methods and attribute
from the underlying stream.

The next two base classes are included for convenience. They are not needed by the codec registry, but
may provide useful in practice.

StreamReaderWriter Objects

The StreamReaderWriter allows wrapping streams which work in both read and write modes.

The design is such that one can use the factory functions returned by the lookup() function to construct
the instance.

class StreamReaderWriter(stream, Reader, Writer, errors)
Creates a StreamReaderWriter instance. stream must be a file-like object. Reader and Writer
must be factory functions or classes providing the StreamReader and StreamWriter interface resp.
Error handling is done in the same way as defined for the stream readers and writers.

StreamReaderWriter instances define the combined interfaces of StreamReader and StreamWriter
classes. They inherit all other methods and attribute from the underlying stream.

StreamRecoder Objects

The StreamRecoder provide a frontend - backend view of encoding data which is sometimes useful when
dealing with different encoding environments.

The design is such that one can use the factory functions returned by the lookup() function to construct
the instance.

96 Chapter 4. String Services



class StreamRecoder(stream, encode, decode, Reader, Writer, errors)
Creates a StreamRecoder instance which implements a two-way conversion: encode and decode
work on the frontend (the input to read() and output of write()) while Reader and Writer work
on the backend (reading and writing to the stream).

You can use these objects to do transparent direct recodings from e.g. Latin-1 to UTF-8 and back.

stream must be a file-like object.

encode, decode must adhere to the Codec interface, Reader , Writer must be factory functions or
classes providing objects of the the StreamReader and StreamWriter interface respectively.

encode and decode are needed for the frontend translation, Reader and Writer for the backend
translation. The intermediate format used is determined by the two sets of codecs, e.g. the
Unicode codecs will use Unicode as intermediate encoding.

Error handling is done in the same way as defined for the stream readers and writers.

StreamRecoder instances define the combined interfaces of StreamReader and StreamWriter classes.
They inherit all other methods and attribute from the underlying stream.

4.9 unicodedata — Unicode Database

This module provides access to the Unicode Character Database which defines character properties for
all Unicode characters. The data in this database is based on the ‘UnicodeData.txt’ file version 3.0.0 which
is publically available from ftp://ftp.unicode.org/.

The module uses the same names and symbols as defined by the UnicodeData File Format 3.0.0 (see
http://www.unicode.org/Public/UNIDATA/UnicodeData.html). It defines the following functions:

lookup(name)
Look up character by name. If a character with the given name is found, return the corresponding
Unicode character. If not found, KeyError is raised.

name(unichr[, default ])
Returns the name assigned to the Unicode character unichr as a string. If no name is defined,
default is returned, or, if not given, ValueError is raised.

decimal(unichr[, default ])
Returns the decimal value assigned to the Unicode character unichr as integer. If no such value is
defined, default is returned, or, if not given, ValueError is raised.

digit(unichr[, default ])
Returns the digit value assigned to the Unicode character unichr as integer. If no such value is
defined, default is returned, or, if not given, ValueError is raised.

numeric(unichr[, default ])
Returns the numeric value assigned to the Unicode character unichr as float. If no such value is
defined, default is returned, or, if not given, ValueError is raised.

category(unichr)
Returns the general category assigned to the Unicode character unichr as string.

bidirectional(unichr)
Returns the bidirectional category assigned to the Unicode character unichr as string. If no such
value is defined, an empty string is returned.

combining(unichr)
Returns the canonical combining class assigned to the Unicode character unichr as integer. Returns
0 if no combining class is defined.

mirrored(unichr)
Returns the mirrored property of assigned to the Unicode character unichr as integer. Returns 1
if the character has been identified as a “mirrored” character in bidirectional text, 0 otherwise.

4.9. unicodedata — Unicode Database 97



decomposition(unichr)
Returns the character decomposition mapping assigned to the Unicode character unichr as string.
An empty string is returned in case no such mapping is defined.

98 Chapter 4. String Services



CHAPTER

FIVE

Miscellaneous Services

The modules described in this chapter provide miscellaneous services that are available in all Python
versions. Here’s an overview:
doctest A framework for verifying examples in docstrings.
unittest Unit testing framework for Python.
math Mathematical functions (sin() etc.).
cmath Mathematical functions for complex numbers.
random Generate pseudo-random numbers with various common distributions.
whrandom Floating point pseudo-random number generator.
bisect Array bisection algorithms for binary searching.
array Efficient arrays of uniformly typed numeric values.
ConfigParser Configuration file parser.
fileinput Perl-like iteration over lines from multiple input streams, with “save in place” capability.
xreadlines Efficient iteration over the lines of a file.
calendar General functions for working with the calendar, including some emulation of the Unix cal program.
cmd Build line-oriented command interpreters.
shlex Simple lexical analysis for Unix shell-like languages.

5.1 doctest — Test docstrings represent reality

The doctest module searches a module’s docstrings for text that looks like an interactive Python session,
then executes all such sessions to verify they still work exactly as shown. Here’s a complete but small
example:

99



"""

This is module example.

Example supplies one function, factorial. For example,

>>> factorial(5)

120

"""

def factorial(n):

"""Return the factorial of n, an exact integer >= 0.

If the result is small enough to fit in an int, return an int.

Else return a long.

>>> [factorial(n) for n in range(6)]

[1, 1, 2, 6, 24, 120]

>>> [factorial(long(n)) for n in range(6)]

[1, 1, 2, 6, 24, 120]

>>> factorial(30)

265252859812191058636308480000000L

>>> factorial(30L)

265252859812191058636308480000000L

>>> factorial(-1)

Traceback (most recent call last):

...

ValueError: n must be >= 0

Factorials of floats are OK, but the float must be an exact integer:

>>> factorial(30.1)

Traceback (most recent call last):

...

ValueError: n must be exact integer

>>> factorial(30.0)

265252859812191058636308480000000L

It must also not be ridiculously large:

>>> factorial(1e100)

Traceback (most recent call last):

...

OverflowError: n too large

"""

100 Chapter 5. Miscellaneous Services



import math

if not n >= 0:

raise ValueError("n must be >= 0")

if math.floor(n) != n:

raise ValueError("n must be exact integer")

if n+1 == n: # e.g., 1e300

raise OverflowError("n too large")

result = 1

factor = 2

while factor <= n:

try:

result *= factor

except OverflowError:

result *= long(factor)

factor += 1

return result

def _test():

import doctest, example

return doctest.testmod(example)

if __name__ == "__main__":

_test()

If you run ‘example.py’ directly from the command line, doctest works its magic:

$ python example.py

$

There’s no output! That’s normal, and it means all the examples worked. Pass -v to the script, and
doctest prints a detailed log of what it’s trying, and prints a summary at the end:

$ python example.py -v

Running example.__doc__

Trying: factorial(5)

Expecting: 120

ok

0 of 1 examples failed in example.__doc__

Running example.factorial.__doc__

Trying: [factorial(n) for n in range(6)]

Expecting: [1, 1, 2, 6, 24, 120]

ok

Trying: [factorial(long(n)) for n in range(6)]

Expecting: [1, 1, 2, 6, 24, 120]

ok

Trying: factorial(30)

Expecting: 265252859812191058636308480000000L

ok

And so on, eventually ending with:

5.1. doctest — Test docstrings represent reality 101



Trying: factorial(1e100)

Expecting:

Traceback (most recent call last):

...

OverflowError: n too large

ok

0 of 8 examples failed in example.factorial.__doc__

2 items passed all tests:

1 tests in example

8 tests in example.factorial

9 tests in 2 items.

9 passed and 0 failed.

Test passed.

$

That’s all you need to know to start making productive use of doctest! Jump in. The docstrings
in doctest.py contain detailed information about all aspects of doctest, and we’ll just cover the more
important points here.

5.1.1 Normal Usage

In normal use, end each module M with:

def _test():

import doctest, M # replace M with your module’s name

return doctest.testmod(M) # ditto

if __name__ == "__main__":

_test()

Then running the module as a script causes the examples in the docstrings to get executed and verified:

python M.py

This won’t display anything unless an example fails, in which case the failing example(s) and the cause(s)
of the failure(s) are printed to stdout, and the final line of output is ’Test failed.’.

Run it with the -v switch instead:

python M.py -v

and a detailed report of all examples tried is printed to stdout, along with assorted summaries at the
end.

You can force verbose mode by passing verbose=1 to testmod, or prohibit it by passing verbose=0. In
either of those cases, sys.argv is not examined by testmod.

In any case, testmod returns a 2-tuple of ints (f , t), where f is the number of docstring examples that
failed and t is the total number of docstring examples attempted.

5.1.2 Which Docstrings Are Examined?

See ‘docstring.py’ for all the details. They’re unsurprising: the module docstring, and all function, class
and method docstrings are searched, with the exception of docstrings attached to objects with private
names.

102 Chapter 5. Miscellaneous Services



In addition, if M. test exists and ”is true”, it must be a dict, and each entry maps a (string) name to
a function object, class object, or string. Function and class object docstrings found from M. test
are searched even if the name is private, and strings are searched directly as if they were docstrings. In
output, a key K in M. test appears with name

<name of M>.__test__.K

Any classes found are recursively searched similarly, to test docstrings in their contained methods and
nested classes. While private names reached from M’s globals are skipped, all names reached from
M. test are searched.

5.1.3 What’s the Execution Context?

By default, each time testmod finds a docstring to test, it uses a copy of M’s globals, so that running
tests on a module doesn’t change the module’s real globals, and so that one test in M can’t leave behind
crumbs that accidentally allow another test to work. This means examples can freely use any names
defined at top-level in M, and names defined earlier in the docstring being run. It also means that sloppy
imports (see below) can cause examples in external docstrings to use globals inappropriate for them.

You can force use of your own dict as the execution context by passing globs=your dict to testmod()
instead. Presumably this would be a copy of M. dict merged with the globals from other imported
modules.

5.1.4 What About Exceptions?

No problem, as long as the only output generated by the example is the traceback itself. For example:

>>> [1, 2, 3].remove(42)

Traceback (most recent call last):

File "<stdin>", line 1, in ?

ValueError: list.remove(x): x not in list

>>>

Note that only the exception type and value are compared (specifically, only the last line in the traceback).
The various “File” lines in between can be left out (unless they add significantly to the documentation
value of the example).

5.1.5 Advanced Usage

testmod() actually creates a local instance of class Tester, runs appropriate methods of that class, and
merges the results into global Tester instance master.

You can create your own instances of Tester, and so build your own policies, or even run methods of
master directly. See Tester. doc for details.

5.1.6 How are Docstring Examples Recognized?

In most cases a copy-and-paste of an interactive console session works fine — just make sure the leading
whitespace is rigidly consistent (you can mix tabs and spaces if you’re too lazy to do it right, but doctest
is not in the business of guessing what you think a tab means).

5.1. doctest — Test docstrings represent reality 103



>>> # comments are ignored

>>> x = 12

>>> x

12

>>> if x == 13:

... print "yes"

... else:

... print "no"

... print "NO"

... print "NO!!!"

...

no

NO

NO!!!

>>>

Any expected output must immediately follow the final ’>>> ’ or ’... ’ line containing the code, and
the expected output (if any) extends to the next ’>>> ’ or all-whitespace line.

The fine print:

• Expected output cannot contain an all-whitespace line, since such a line is taken to signal the end
of expected output.

• Output to stdout is captured, but not output to stderr (exception tracebacks are captured via a
different means).

• If you continue a line via backslashing in an interactive session, or for any other reason use a
backslash, you need to double the backslash in the docstring version. This is simply because you’re
in a string, and so the backslash must be escaped for it to survive intact. Like:

>>> if "yes" == \\

... "y" + \\

... "es":

... print ’yes’

yes

• The starting column doesn’t matter:

>>> assert "Easy!"

>>> import math

>>> math.floor(1.9)

1.0

and as many leading whitespace characters are stripped from the expected output as appeared in
the initial ’>>> ’ line that triggered it.

5.1.7 Warnings

1. Sloppy imports can cause trouble; e.g., if you do

from XYZ import XYZclass

then XYZclass is a name in M. dict too, and doctest has no way to know that XYZclass
wasn’t defined in M. So it may try to execute the examples in XYZclass’s docstring, and those in

104 Chapter 5. Miscellaneous Services



turn may require a different set of globals to work correctly. I prefer to do “import *”-friendly
imports, a la

from XYZ import XYZclass as _XYZclass

and then the leading underscore makes XYZclass a private name so testmod skips it by default.
Other approaches are described in ‘doctest.py’.

2. doctest is serious about requiring exact matches in expected output. If even a single character
doesn’t match, the test fails. This will probably surprise you a few times, as you learn exactly
what Python does and doesn’t guarantee about output. For example, when printing a dict, Python
doesn’t guarantee that the key-value pairs will be printed in any particular order, so a test like

>>> foo()

{"Hermione": "hippogryph", "Harry": "broomstick"}

>>>

is vulnerable! One workaround is to do

>>> foo() == {"Hermione": "hippogryph", "Harry": "broomstick"}

1

>>>

instead. Another is to do

>>> d = foo().items()

>>> d.sort()

>>> d

[(’Harry’, ’broomstick’), (’Hermione’, ’hippogryph’)]

There are others, but you get the idea.

Another bad idea is to print things that embed an object address, like

>>> id(1.0) # certain to fail some of the time

7948648

>>>

Floating-point numbers are also subject to small output variations across platforms, because
Python defers to the platform C library for float formatting, and C libraries vary widely in quality
here.

>>> 1./7 # risky

0.14285714285714285

>>> print 1./7 # safer

0.142857142857

>>> print round(1./7, 6) # much safer

0.142857

Numbers of the form I/2.**J are safe across all platforms, and I often contrive doctest examples
to produce numbers of that form:

>>> 3./4 # utterly safe

0.75

5.1. doctest — Test docstrings represent reality 105



Simple fractions are also easier for people to understand, and that makes for better documentation.

3. Be careful if you have code that must only execute once.

If you have module-level code that must only execute once, a more foolproof definition of test()
is

def _test():

import doctest, sys

doctest.testmod(sys.modules["__main__"])

5.1.8 Soapbox

The first word in doctest is ”doc”, and that’s why the author wrote doctest: to keep documentation up
to date. It so happens that doctest makes a pleasant unit testing environment, but that’s not its primary
purpose.

Choose docstring examples with care. There’s an art to this that needs to be learned — it may not be
natural at first. Examples should add genuine value to the documentation. A good example can often
be worth many words. If possible, show just a few normal cases, show endcases, show interesting subtle
cases, and show an example of each kind of exception that can be raised. You’re probably testing for
endcases and subtle cases anyway in an interactive shell: doctest wants to make it as easy as possible to
capture those sessions, and will verify they continue to work as designed forever after.

If done with care, the examples will be invaluable for your users, and will pay back the time it takes to
collect them many times over as the years go by and ”things change”. I’m still amazed at how often one
of my doctest examples stops working after a ”harmless” change.

For exhaustive testing, or testing boring cases that add no value to the docs, define a test dict
instead. That’s what it’s for.

5.2 unittest — Unit testing framework

The Python unit testing framework, often referred to as “PyUnit,” is a Python language version of
JUnit, by Kent Beck and Erich Gamma. JUnit is, in turn, a Java version of Kent’s Smalltalk testing
framework. Each is the de facto standard unit testing framework for its respective language.

PyUnit supports test automation, sharing of setup and shutdown code for tests, aggregation of tests into
collections, and independence of the tests from the reporting framework. The unittest module provides
classes that make it easy to support these qualities for a set of tests.

To achieve this, PyUnit supports some important concepts:

test fixture
A test fixture represents the preparation needed to perform one or more tests, and any associate
cleanup actions. This may involve, for example, creating temporary or proxy databases, directories,
or starting a server process.

test case
A test case is the smallest unit of testing. It checks for a specific response to a particular set of
inputs. PyUnit provides a base class, TestCase, which may be used to create new test cases.

test suite
A test suite is a collection of test cases, test suites, or both. It is used to aggregate tests that should
be executed together.

test runner
A test runner is a component which orchestrates the execution of tests and provides the outcome
to the user. The runner may use a graphical interface, a textual interface, or return a special value
to indicate the results of executing the tests.

106 Chapter 5. Miscellaneous Services



The test case and test fixture concepts are supported through the TestCase and FunctionTestCase
classes; the former should be used when creating new tests, and the later can be used when integrating
existing test code with a PyUnit-driven framework. When building test fixtures using TestCase, the
setUp() and tearDown() methods can be overridden to provide initialization and cleanup for the fixture.
With FunctionTestCase, existing functions can be passed to the constructor for these purposes. When
the test is run, the fixture initialization is run first; if it succeeds, the cleanup method is run after the
test has been executed, regardless of the outcome of the test. Each instance of the TestCase will only
be used to run a single test method, so a new fixture is created for each test.

Test suites are implemented by the TestSuite class. This class allows individual tests and test suites to
be aggregated; when the suite is executed, all tests added directly to the suite and in “child” test suites
are run.

A test runner is an object that provides a single method, run(), which accepts a TestCase or TestSuite
object as a parameter, and returns a result object. The class TestResult is provided for use as the result
object. PyUnit provide the TextTestRunner as an example test runner which reports test results on the
standard error stream by default. Alternate runners can be implemented for other environments (such
as graphical environments) without any need to derive from a specific class.

See Also:

PyUnit Web Site
(http://pyunit.sourceforge.net/)

The source for further information on PyUnit.

Simple Smalltalk Testing: With Patterns
(http://www.XProgramming.com/testfram.htm)

Kent Beck’s original paper on testing frameworks using the pattern shared by unittest.

5.2.1 Organizing test code

The basic building blocks of unit testing are test cases — single scenarios that must be set up and checked
for correctness. In PyUnit, test cases are represented by instances of the TestCase class in the unittest
module. To make your own test cases you must write subclasses of TestCase, or use FunctionTestCase.

An instance of a TestCase-derived class is an object that can completely run a single test method,
together with optional set-up and tidy-up code.

The testing code of a TestCase instance should be entirely self contained, such that it can be run either
in isolation or in arbitrary combination with any number of other test cases.

The simplest test case subclass will simply override the runTest() method in order to perform specific
testing code:

import unittest

class DefaultWidgetSizeTestCase(unittest.TestCase):

def runTest(self):

widget = Widget("The widget")

self.failUnless(widget.size() == (50,50), ’incorrect default size’)

Note that in order to test something, we use the one of the assert*() or fail*() methods provided by
the TestCase base class. If the test fails when the test case runs, an exception will be raised, and the
testing framework will identify the test case as a failure. Other exceptions that do not arise from checks
made through the assert*() and fail*() methods are identified by the testing framework as dfnerrors.

The way to run a test case will be described later. For now, note that to construct an instance of such
a test case, we call its constructor without arguments:

5.2. unittest — Unit testing framework 107



testCase = DefaultWidgetSizeTestCase()

Now, such test cases can be numerous, and their set-up can be repetitive. In the above case, constructing
a “Widget” in each of 100 Widget test case subclasses would mean unsightly duplication.

Luckily, we can factor out such set-up code by implementing a method called setUp(), which the testing
framework will automatically call for us when we run the test:

import unittest

class SimpleWidgetTestCase(unittest.TestCase):

def setUp(self):

self.widget = Widget("The widget")

class DefaultWidgetSizeTestCase(SimpleWidgetTestCase):

def runTest(self):

self.failUnless(self.widget.size() == (50,50),

’incorrect default size’)

class WidgetResizeTestCase(SimpleWidgetTestCase):

def runTest(self):

self.widget.resize(100,150)

self.failUnless(self.widget.size() == (100,150),

’wrong size after resize’)

If the setUp() method raises an exception while the test is running, the framework will consider the test
to have suffered an error, and the runTest() method will not be executed.

Similarly, we can provide a tearDown() method that tidies up after the runTest() method has been
run:

import unittest

class SimpleWidgetTestCase(unittest.TestCase):

def setUp(self):

self.widget = Widget("The widget")

def tearDown(self):

self.widget.dispose()

self.widget = None

If setUp() succeeded, the tearDown() method will be run regardless of whether or not runTest()
succeeded.

Such a working environment for the testing code is called a fixture.

Often, many small test cases will use the same fixture. In this case, we would end up subclassing
SimpleWidgetTestCase into many small one-method classes such as DefaultWidgetSizeTestCase. This
is time-consuming and discouraging, so in the same vein as JUnit, PyUnit provides a simpler mechanism:

108 Chapter 5. Miscellaneous Services



import unittest

class WidgetTestCase(unittest.TestCase):

def setUp(self):

self.widget = Widget("The widget")

def tearDown(self):

self.widget.dispose()

self.widget = None

def testDefaultSize(self):

self.failUnless(self.widget.size() == (50,50),

’incorrect default size’)

def testResize(self):

self.widget.resize(100,150)

self.failUnless(self.widget.size() == (100,150),

’wrong size after resize’)

Here we have not provided a runTest() method, but have instead provided two different test methods.
Class instances will now each run one of the test*() methods, with self.widget created and destroyed
separately for each instance. When creating an instance we must specify the test method it is to run.
We do this by passing the method name in the constructor:

defaultSizeTestCase = WidgetTestCase("testDefaultSize")

resizeTestCase = WidgetTestCase("testResize")

Test case instances are grouped together according to the features they test. PyUnit provides a mecha-
nism for this: the test suite, represented by the class TestSuite in the unittest module:

widgetTestSuite = unittest.TestSuite()

widgetTestSuite.addTest(WidgetTestCase("testDefaultSize"))

widgetTestSuite.addTest(WidgetTestCase("testResize"))

For the ease of running tests, as we will see later, it is a good idea to provide in each test module a
callable object that returns a pre-built test suite:

def suite():

suite = unittest.TestSuite()

suite.addTest(WidgetTestCase("testDefaultSize"))

suite.addTest(WidgetTestCase("testResize"))

return suite

or even:

class WidgetTestSuite(unittest.TestSuite):

def __init__(self):

unittest.TestSuite.__init__(self,map(WidgetTestCase,

("testDefaultSize",

"testResize")))

(The latter is admittedly not for the faint-hearted!)

Since it is a common pattern to create a TestCase subclass with many similarly named test functions,
there is a convenience function called makeSuite() provided in the unittest module that constructs a

5.2. unittest — Unit testing framework 109



test suite that comprises all of the test cases in a test case class:

suite = unittest.makeSuite(WidgetTestCase,’test’)

Note that when using the makeSuite() function, the order in which the various test cases will be run
by the test suite is the order determined by sorting the test function names using the cmp() built-in
function.

Often it is desirable to group suites of test cases together, so as to run tests for the whole system at
once. This is easy, since TestSuite instances can be added to a TestSuite just as TestCase instances
can be added to a TestSuite:

suite1 = module1.TheTestSuite()

suite2 = module2.TheTestSuite()

alltests = unittest.TestSuite((suite1, suite2))

You can place the definitions of test cases and test suites in the same modules as the code they are to
test (e.g. ‘widget.py’), but there are several advantages to placing the test code in a separate module, such
as ‘widgettests.py’:

• The test module can be run standalone from the command line.

• The test code can more easily be separated from shipped code.

• There is less temptation to change test code to fit the code. it tests without a good reason.

• Test code should be modified much less frequently than the code it tests.

• Tested code can be refactored more easily.

• Tests for modules written in C must be in separate modules anyway, so why not be consistent?

• If the testing strategy changes, there is no need to change the source code.

5.2.2 Re-using old test code

Some users will find that they have existing test code that they would like to run from PyUnit, without
converting every old test function to a TestCase subclass.

For this reason, PyUnit provides a FunctionTestCase class. This subclass of TestCase can be used to
wrap an existing test function. Set-up and tear-down functions can also optionally be wrapped.

Given the following test function:

def testSomething():

something = makeSomething()

assert something.name is not None

# ...

one can create an equivalent test case instance as follows:

testcase = unittest.FunctionTestCase(testSomething)

If there are additional set-up and tear-down methods that should be called as part of the test case’s
operation, they can also be provided:

110 Chapter 5. Miscellaneous Services



testcase = unittest.FunctionTestCase(testSomething,

setUp=makeSomethingDB,

tearDown=deleteSomethingDB)

Note: PyUnit supports the use of AssertionError as an indicator of test failure, but does not recom-
mend it. Future versions may treat AssertionError differently.

5.2.3 Classes and functions

class TestCase()
Instances of the TestCase class represent the smallest testable units in a set of tests. This class is
intended to be used as a base class, with specific tests being implemented by concrete subclasses.
This class implements the interface needed by the test runner to allow it to drive the test, and
methods that the test code can use to check for and report various kinds of failures.

class FunctionTestCase(testFunc[, setUp[, tearDown[, description ] ] ])
This class implements the portion of the TestCase interface which allows the test runner to drive
the test, but does not provide the methods which test code can use to check and report errors. This
is used to create test cases using legacy test code, allowing it to be integrated into a unittest-based
test framework.

class TestSuite([tests ])
This class represents an aggregation of individual tests cases and test suites. The class presents
the interface needed by the test runner to allow it to be run as any other test case, but all the
contained tests and test suites are executed. Additional methods are provided to add test cases
and suites to the aggregation. If tests is given, it must be a sequence of individual tests that will
be added to the suite.

class TestLoader()
This class is responsible for loading tests according to various criteria and returning them wrapped
in a TestSuite. It can load all tests within a given module or TestCase class. When loading from
a module, it considers all TestCase-derived classes. For each such class, it creates an instance for
each method with a name beginning with the string ‘test’.

defaultTestLoader
Instance of the TestLoader class which can be shared. If no customization of the TestLoader is
needed, this instance can always be used instead of creating new instances.

class TextTestRunner([stream[, descriptions[, verbosity ] ] ])
A basic test runner implementation which prints results on standard output. It has a few con-
figurable parameters, but is essentially very simple. Graphical applications which run test suites
should provide alternate implementations.

main([module[, defaultTest[, argv[, testRunner[, testRunner ] ] ] ] ])
A command-line program that runs a set of tests; this is primarily for making test modules conve-
niently executable. The simplest use for this function is:

if __name__ == ’__main__’:

unittest.main()

5.2.4 TestCase Objects

Each TestCase instance represents a single test, but each concrete subclass may be used to define multiple
tests — the concrete class represents a single test fixture. The fixture is created and cleaned up for each
test case.

TestCase instances provide three groups of methods: one group used to run the test, another used by
the test implementation to check conditions and report failures, and some inquiry methods allowing

5.2. unittest — Unit testing framework 111



information about the test itself to be gathered.

Methods in the first group are:

setUp()
Method called to prepare the test fixture. This is called immediately before calling the test method;
any exception raised by this method will be considered an error rather than a test failure. The
default implementation does nothing.

tearDown()
Method called immediately after the test method has been called and the result recorded. This is
called even if the test method raised an exception, so the implementation in subclasses may need
to be particularly careful about checking internal state. Any exception raised by this method will
be considered an error rather than a test failure. This method will only be called if the setUp()
succeeds, regardless of the outcome of the test method. The default implementation does nothing.

run([result ])
Run the test, collecting the result into the test result object passed as result . If result is omitted or
None, a temporary result object is created and used, but is not made available to the caller. This
is equivalent to simply calling the TestCase instance.

debug()
Run the test without collecting the result. This allows exceptions raised by the test to be pro-
pogated to the caller, and can be used to support running tests under a debugger.

The test code can use any of the following methods to check for and report failures.

assert (expr[, msg ])
failUnless(expr[, msg ])

Signal a test failure if expr is false; the explanation for the error will be msg if given, otherwise it
will be None.

assertEqual(first, second[, msg ])
failUnlessEqual(first, second[, msg ])

Test that first and second are equal. If the values do not compare equal, the test will fail with the
explanation given by msg , or None. Note that using failUnlessEqual() improves upon doing the
comparison as the first parameter to failUnless(): the default value for msg can be computed
to include representations of both first and second .

assertNotEqual(first, second[, msg ])
failIfEqual(first, second[, msg ])

Test that first and second are not equal. If the values do compare equal, the test will fail with
the explanation given by msg , or None. Note that using failIfEqual() improves upon doing
the comparison as the first parameter to failUnless() is that the default value for msg can be
computed to include representations of both first and second .

assertRaises(exception, callable, ...)
failUnlessRaises(exception, callable, ...)

Test that an exception is raised when callable is called with any positional or keyword arguments
that are also passed to assertRaises(). The test passes if exception is raised, is an error if another
exception is raised, or fails if no exception is raised. To catch any of a group of exceptions, a tuple
containing the exception classes may be passed as exception.

failIf(expr[, msg ])
The inverse of the failUnless() method is the failIf() method. This signals a test failure if
expr is true, with msg or None for the error message.

fail([msg ])
Signals a test failure unconditionally, with msg or None for the error message.

failureException
This class attribute gives the exception raised by the test() method. If a test framework needs to
use a specialized exception, possibly to carry additional information, it must subclass this exception

112 Chapter 5. Miscellaneous Services



in order to “play fair” with the framework. The initial value of this attribute is AssertionError.

Testing frameworks can use the following methods to collect information on the test:

countTestCases()
Return the number of tests represented by the this test object. For TestCase instances, this will
always be 1, but this method is also implemented by the TestSuite class, which can return larger
values.

defaultTestResult()
Return the default type of test result object to be used to run this test.

id()
Return a string identifying the specific test case. This is usually the full name of the test method,
including the module and class names.

shortDescription()
Returns a one-line description of the test, or None if no description has been provided. The default
implementation of this method returns the first line of the test method’s docstring, if available, or
None.

5.2.5 TestSuite Objects

TestSuite objects behave much like TestCase objects, except they do not actually implement a test.
Instead, they are used to aggregate tests into groups that should be run together. Some additional
methods are available to add tests to TestSuite instances:

addTest(test)
Add a TestCase or TestSuite to the set of tests that make up the suite.

addTests(tests)
Add all the tests from a sequence of TestCase and TestSuite instances to this test suite.

5.2.6 TestResult Objects

A TestResult object stores the results of a set of tests. The TestCase and TestSuite classes ensure
that results are properly stored; test authors do not need to worry about recording the outcome of tests.

Testing frameworks built on top of unittest may want access to the TestResult object generated by
running a set of tests for reporting purposes; a TestResult instance is returned by the TestRunner.run()
method for this purpose.

Each instance holds the total number of tests run, and collections of failures and errors that occurred
among those test runs. The collections contain tuples of (testcase, exceptioninfo), where exceptioninfo
is a tuple as returned by sys.exc info().

TestResult instances have the following attributes that will be of interest when inspecting the results
of running a set of tests:

errors
A list containing pairs of TestCase instances and the sys.exc info() results for tests which
raised an exception but did not signal a test failure.

failures
A list containing pairs of TestCase instances and the sys.exc info() results for tests which
signalled a failure in the code under test.

testsRun
The number of tests which have been started.

wasSuccessful()
Returns true if all tests run so far have passed, otherwise returns false.

The following methods of the TestResult class are used to maintain the internal data structures, and

5.2. unittest — Unit testing framework 113



mmay be extended in subclasses to support additional reporting requirements. This is particularly useful
in building GUI tools which support interactive reporting while tests are being run.

startTest(test)
Called when the test case test is about to be run.

stopTest(test)
Called when the test case test has been executed, regardless of the outcome.

addError(test, err)
Called when the test case test raises an exception without signalling a test failure. err is a tuple
of the form returned by sys.exc info(): (type, value, traceback).

addFailure(test, err)
Called when the test case test signals a failure. err is a tuple of the form returned by
sys.exc info(): (type, value, traceback).

addSuccess(test)
This method is called for a test that does not fail; test is the test case object.

One additional method is available for TestResult objects:

stop()
This method can be called to signal that the set of tests being run should be aborted. Once this
has been called, the TestRunner object return to its caller without running any additional tests.
This is used by the TextTestRunner class to stop the test framework when the user signals an
interrupt from the keyboard. GUI tools which provide runners can use this in a similar manner.

5.2.7 TestLoader Objects

The TestLoader class is used to create test suites from classes and modules. Normally, there is no need
to create an instance of this class; the unittest module provides an instance that can be shared as the
defaultTestLoader module attribute. Using a subclass or instance would allow customization of some
configurable properties.

TestLoader objects have the following methods:

loadTestsFromTestCase(testCaseClass)
Return a suite of all tests cases contained in the TestCase-derived class testCaseClass.

loadTestsFromModule(module)
Return a suite of all tests cases contained in the given module. This method searches module for
classes derived from TestCase and creates an instance of the class for each test method defined for
the class.

Warning: While using a hierarchy of Testcase-derived classes can be convenient in sharing
fixtures and helper functions, defining test methods on base classes that are not intended to be
instantiated directly does not play well with this method. Doing so, however, can be useful when
the fixtures are different and defined in subclasses.

loadTestsFromName(name[, module ])
Return a suite of all tests cases given a string specifier.

The specifier name may resolve either to a module, a test case class, a test method within a test
case class, or a callable object which returns a TestCase or TestSuite instance.

The method optionally resolves name relative to a given module.

loadTestsFromNames(names[, module ])
Similar to loadTestsFromName(), but takes a sequence of names rather than a single name. The
return value is a test suite which supports all the tests defined for each name.

getTestCaseNames(testCaseClass)
Return a sorted sequence of method names found within testCaseClass.

The following attributes of a TestLoader can be configured either by subclassing or assignment on an
instance:

114 Chapter 5. Miscellaneous Services



testMethodPrefix
String giving the prefix of method names which will be interpreted as test methods. The default
value is ’test’.

sortTestMethodsUsing
Function to be used to compare method names when sorting them in getTestCaseNames(). The
default value is the built-in cmp() function; it can be set to None to disable the sort.

suiteClass
Callable object that constructs a test suite from a list of tests. No methods on the resulting object
are needed. The default value is the TestSuite class.

5.3 math — Mathematical functions

This module is always available. It provides access to the mathematical functions defined by the C
standard.

These functions cannot be used with complex numbers; use the functions of the same name from the
cmath module if you require support for complex numbers. The distinction between functions which
support complex numbers and those which don’t is made since most users do not want to learn quite
as much mathematics as required to understand complex numbers. Receiving an exception instead of a
complex result allows earlier detection of the unexpected complex number used as a parameter, so that
the programmer can determine how and why it was generated in the first place.

The following functions provided by this module:

acos(x)
Return the arc cosine of x .

asin(x)
Return the arc sine of x .

atan(x)
Return the arc tangent of x .

atan2(y, x)
Return atan(y / x).

ceil(x)
Return the ceiling of x as a float.

cos(x)
Return the cosine of x .

cosh(x)
Return the hyperbolic cosine of x .

exp(x)
Return e**x .

fabs(x)
Return the absolute value of the floating point number x .

floor(x)
Return the floor of x as a float.

fmod(x, y)
Return fmod(x, y), as defined by the platform C library. Note that the Python expression x %
y may not return the same result.

frexp(x)
Return the mantissa and exponent of x as the pair (m, e). m is a float and e is an integer such
that x == m * 2**e. If x is zero, returns (0.0, 0), otherwise 0.5 <= abs(m) < 1.

hypot(x, y)
Return the Euclidean distance, sqrt(x*x + y*y).

5.3. math — Mathematical functions 115



ldexp(x, i)
Return x * (2**i).

log(x)
Return the natural logarithm of x .

log10(x)
Return the base-10 logarithm of x .

modf(x)
Return the fractional and integer parts of x . Both results carry the sign of x . The integer part is
returned as a float.

pow(x, y)
Return x**y .

sin(x)
Return the sine of x .

sinh(x)
Return the hyperbolic sine of x .

sqrt(x)
Return the square root of x .

tan(x)
Return the tangent of x .

tanh(x)
Return the hyperbolic tangent of x .

Note that frexp() and modf() have a different call/return pattern than their C equivalents: they take
a single argument and return a pair of values, rather than returning their second return value through
an ‘output parameter’ (there is no such thing in Python).

The module also defines two mathematical constants:

pi
The mathematical constant pi.

e
The mathematical constant e.

See Also:

Module cmath (section 5.4):
Complex number versions of many of these functions.

5.4 cmath — Mathematical functions for complex numbers

This module is always available. It provides access to mathematical functions for complex numbers. The
functions are:

acos(x)
Return the arc cosine of x .

acosh(x)
Return the hyperbolic arc cosine of x .

asin(x)
Return the arc sine of x .

asinh(x)
Return the hyperbolic arc sine of x .

atan(x)
Return the arc tangent of x .

116 Chapter 5. Miscellaneous Services



atanh(x)
Return the hyperbolic arc tangent of x .

cos(x)
Return the cosine of x .

cosh(x)
Return the hyperbolic cosine of x .

exp(x)
Return the exponential value e**x .

log(x)
Return the natural logarithm of x .

log10(x)
Return the base-10 logarithm of x .

sin(x)
Return the sine of x .

sinh(x)
Return the hyperbolic sine of x .

sqrt(x)
Return the square root of x .

tan(x)
Return the tangent of x .

tanh(x)
Return the hyperbolic tangent of x .

The module also defines two mathematical constants:

pi
The mathematical constant pi, as a real.

e
The mathematical constant e, as a real.

Note that the selection of functions is similar, but not identical, to that in module math. The reason for
having two modules is that some users aren’t interested in complex numbers, and perhaps don’t even
know what they are. They would rather have math.sqrt(-1) raise an exception than return a complex
number. Also note that the functions defined in cmath always return a complex number, even if the
answer can be expressed as a real number (in which case the complex number has an imaginary part of
zero).

5.5 random — Generate pseudo-random numbers

This module implements pseudo-random number generators for various distributions. For integers, uni-
form selection from a range. For sequences, uniform selection of a random element, and a function
to generate a random permutation of a list in-place. On the real line, there are functions to com-
pute uniform, normal (Gaussian), lognormal, negative exponential, gamma, and beta distributions. For
generating distribution of angles, the circular uniform and von Mises distributions are available.

Almost all module functions depend on the basic function random(), which generates a random float
uniformly in the semi-open range [0.0, 1.0). Python uses the standard Wichmann-Hill generator, com-
bining three pure multiplicative congruential generators of modulus 30269, 30307 and 30323. Its period
(how many numbers it generates before repeating the sequence exactly) is 6,953,607,871,644. While of
much higher quality than the rand() function supplied by most C libraries, the theoretical properties
are much the same as for a single linear congruential generator of large modulus. It is not suitable for
all purposes, and is completely unsuitable for cryptographic purposes.

The functions in this module are not threadsafe: if you want to call these functions from multiple threads,

5.5. random — Generate pseudo-random numbers 117



you should explicitly serialize the calls. Else, because no critical sections are implemented internally,
calls from different threads may see the same return values.

The functions supplied by this module are actually bound methods of a hidden instance of the
random.Random class. You can instantiate your own instances of Random to get generators that don’t
share state. This is especially useful for multi-threaded programs, creating a different instance of Random
for each thread, and using the jumpahead() method to ensure that the generated sequences seen by each
thread don’t overlap (see example below).

Class Random can also be subclassed if you want to use a different basic generator of your own devising:
in that case, override the random(), seed(), getstate(), setstate() and jumpahead() methods.

Here’s one way to create threadsafe distinct and non-overlapping generators:

def create_generators(num, delta, firstseed=None):

"""Return list of num distinct generators.

Each generator has its own unique segment of delta elements

from Random.random()’s full period.

Seed the first generator with optional arg firstseed (default

is None, to seed from current time).

"""

from random import Random

g = Random(firstseed)

result = [g]

for i in range(num - 1):

laststate = g.getstate()

g = Random()

g.setstate(laststate)

g.jumpahead(delta)

result.append(g)

return result

gens = create_generators(10, 1000000)

That creates 10 distinct generators, which can be passed out to 10 distinct threads. The generators don’t
share state so can be called safely in parallel. So long as no thread calls its g.random() more than a
million times (the second argument to create generators(), the sequences seen by each thread will
not overlap. The period of the underlying Wichmann-Hill generator limits how far this technique can be
pushed.

Just for fun, note that since we know the period, jumpahead() can also be used to “move backward in
time:”

>>> g = Random(42) # arbitrary

>>> g.random()

0.25420336316883324

>>> g.jumpahead(6953607871644L - 1) # move *back* one

>>> g.random()

0.25420336316883324

Bookkeeping functions:

seed([x ])
Initialize the basic random number generator. Optional argument x can be any hashable object. If
x is omitted or None, current system time is used; current system time is also used to initialize the
generator when the module is first imported. If x is not None or an int or long, hash(x) is used
instead. If x is an int or long, x is used directly. Distinct values between 0 and 27814431486575L
inclusive are guaranteed to yield distinct internal states (this guarantee is specific to the default
Wichmann-Hill generator, and may not apply to subclasses supplying their own basic generator).

118 Chapter 5. Miscellaneous Services



whseed([x ])
This is obsolete, supplied for bit-level compatibility with versions of Python prior to 2.1. See seed
for details. whseed does not guarantee that distinct integer arguments yield distinct internal states,
and can yield no more than about 2**24 distinct internal states in all.

getstate()
Return an object capturing the current internal state of the generator. This object can be passed
to setstate() to restore the state. New in version 2.1.

setstate(state)
state should have been obtained from a previous call to getstate(), and setstate() restores the
internal state of the generator to what it was at the time setstate() was called. New in version
2.1.

jumpahead(n)
Change the internal state to what it would be if random() were called n times, but do so quickly.
n is a non-negative integer. This is most useful in multi-threaded programs, in conjuction with
multiple instances of the Random class: setstate() or seed() can be used to force all instances
into the same internal state, and then jumpahead() can be used to force the instances’ states as
far apart as you like (up to the period of the generator). New in version 2.1.

Functions for integers:

randrange([start, ] stop[, step ])
Return a randomly selected element from range(start, stop, step). This is equivalent to
choice(range(start, stop, step)), but doesn’t actually build a range object. New in version
1.5.2.

randint(a, b)
Deprecated since release 2.0. Use randrange() instead.

Return a random integer N such that a <= N <= b.

Functions for sequences:

choice(seq)
Return a random element from the non-empty sequence seq .

shuffle(x [, random ])
Shuffle the sequence x in place. The optional argument random is a 0-argument function returning
a random float in [0.0, 1.0); by default, this is the function random().

Note that for even rather small len(x), the total number of permutations of x is larger than the
period of most random number generators; this implies that most permutations of a long sequence
can never be generated.

The following functions generate specific real-valued distributions. Function parameters are named after
the corresponding variables in the distribution’s equation, as used in common mathematical practice;
most of these equations can be found in any statistics text.

random()
Return the next random floating point number in the range [0.0, 1.0).

uniform(a, b)
Return a random real number N such that a <= N < b.

betavariate(alpha, beta)
Beta distribution. Conditions on the parameters are alpha > -1 and beta > -1. Returned values
range between 0 and 1.

cunifvariate(mean, arc)
Circular uniform distribution. mean is the mean angle, and arc is the range of the distribution,
centered around the mean angle. Both values must be expressed in radians, and can range between
0 and pi. Returned values range between mean - arc/2 and mean + arc/2.

expovariate(lambd)
Exponential distribution. lambd is 1.0 divided by the desired mean. (The parameter would be

5.5. random — Generate pseudo-random numbers 119



called “lambda”, but that is a reserved word in Python.) Returned values range from 0 to positive
infinity.

gamma(alpha, beta)
Gamma distribution. (Not the gamma function!) Conditions on the parameters are alpha > -1
and beta > 0.

gauss(mu, sigma)
Gaussian distribution. mu is the mean, and sigma is the standard deviation. This is slightly faster
than the normalvariate() function defined below.

lognormvariate(mu, sigma)
Log normal distribution. If you take the natural logarithm of this distribution, you’ll get a normal
distribution with mean mu and standard deviation sigma. mu can have any value, and sigma must
be greater than zero.

normalvariate(mu, sigma)
Normal distribution. mu is the mean, and sigma is the standard deviation.

vonmisesvariate(mu, kappa)
mu is the mean angle, expressed in radians between 0 and 2*pi, and kappa is the concentration
parameter, which must be greater than or equal to zero. If kappa is equal to zero, this distribution
reduces to a uniform random angle over the range 0 to 2*pi.

paretovariate(alpha)
Pareto distribution. alpha is the shape parameter.

weibullvariate(alpha, beta)
Weibull distribution. alpha is the scale parameter and beta is the shape parameter.

See Also:

Wichmann, B. A. & Hill, I. D., “Algorithm AS 183: An efficient and portable pseudo-random number
generator”, Applied Statistics 31 (1982) 188-190.

5.6 whrandom — Pseudo-random number generator

Deprecated since release 2.1. Use random instead.

Note: This module was an implementation detail of the random module in releases of Python prior to
2.1. It is no longer used. Please do not use this module directly; use random instead.

This module implements a Wichmann-Hill pseudo-random number generator class that is also named
whrandom. Instances of the whrandom class conform to the Random Number Generator interface described
in section ??. They also offer the following method, specific to the Wichmann-Hill algorithm:

seed([x, y, z ])
Initializes the random number generator from the integers x , y and z . When the module is first
imported, the random number is initialized using values derived from the current time. If x , y ,
and z are either omitted or 0, the seed will be computed from the current system time. If one or
two of the parameters are 0, but not all three, the zero values are replaced by ones. This causes
some apparently different seeds to be equal, with the corresponding result on the pseudo-random
series produced by the generator.

choice(seq)
Chooses a random element from the non-empty sequence seq and returns it.

randint(a, b)
Returns a random integer N such that a<=N <=b.

random()
Returns the next random floating point number in the range [0.0 ... 1.0).

seed(x, y, z)
Initializes the random number generator from the integers x , y and z . When the module is first

120 Chapter 5. Miscellaneous Services



imported, the random number is initialized using values derived from the current time.

uniform(a, b)
Returns a random real number N such that a<=N <b.

When imported, the whrandom module also creates an instance of the whrandom class, and makes
the methods of that instance available at the module level. Therefore one can write either N =
whrandom.random() or:

generator = whrandom.whrandom()

N = generator.random()

Note that using separate instances of the generator leads to independent sequences of pseudo-random
numbers.

See Also:

Module random (section 5.5):
Generators for various random distributions and documentation for the Random Number Generator
interface.

Wichmann, B. A. & Hill, I. D., “Algorithm AS 183: An efficient and portable pseudo-random number
generator”, Applied Statistics 31 (1982) 188-190.

5.7 bisect — Array bisection algorithm

This module provides support for maintaining a list in sorted order without having to sort the list after
each insertion. For long lists of items with expensive comparison operations, this can be an improvement
over the more common approach. The module is called bisect because it uses a basic bisection algorithm
to do its work. The source code may be most useful as a working example of the algorithm (i.e., the
boundary conditions are already right!).

The following functions are provided:

bisect left(list, item[, lo[, hi ] ])
Locate the proper insertion point for item in list to maintain sorted order. The parameters lo and
hi may be used to specify a subset of the list which should be considered; by default the entire
list is used. If item is already present in list , the insertion point will be before (to the left of) any
existing entries. The return value is suitable for use as the first parameter to list.insert(). This
assumes that list is already sorted. New in version 2.1.

bisect right(list, item[, lo[, hi ] ])
Similar to bisect left(), but returns an insertion point which comes after (to the right of) any
existing entries of item in list . New in version 2.1.

bisect(...)
Alias for bisect right().

insort left(list, item[, lo[, hi ] ])
Insert item in list in sorted order. This is equivalent to list.insert(bisect.bisect left(list,
item, lo, hi), item). This assumes that list is already sorted. New in version 2.1.

insort right(list, item[, lo[, hi ] ])
Similar to insort left(), but inserting item in list after any existing entries of item. New in
version 2.1.

insort(...)
Alias for insort right().

5.7.1 Example

5.7. bisect — Array bisection algorithm 121



The bisect() function is generally useful for categorizing numeric data. This example uses bisect()
to look up a letter grade for an exam total (say) based on a set of ordered numeric breakpoints: 85 and
up is an ‘A’, 75..84 is a ‘B’, etc.

>>> grades = "FEDCBA"

>>> breakpoints = [30, 44, 66, 75, 85]

>>> from bisect import bisect

>>> def grade(total):

... return grades[bisect(breakpoints, total)]

...

>>> grade(66)

’C’

>>> map(grade, [33, 99, 77, 44, 12, 88])

[’E’, ’A’, ’B’, ’D’, ’F’, ’A’]

5.8 array — Efficient arrays of numeric values

This module defines a new object type which can efficiently represent an array of basic values: characters,
integers, floating point numbers. Arrays are sequence types and behave very much like lists, except that
the type of objects stored in them is constrained. The type is specified at object creation time by using
a type code, which is a single character. The following type codes are defined:

Type code C Type Minimum size in bytes
’c’ character 1
’b’ signed int 1
’B’ unsigned int 1
’h’ signed int 2
’H’ unsigned int 2
’i’ signed int 2
’I’ unsigned int 2
’l’ signed int 4
’L’ unsigned int 4
’f’ float 4
’d’ double 8

The actual representation of values is determined by the machine architecture (strictly speaking, by the
C implementation). The actual size can be accessed through the itemsize attribute. The values stored
for ’L’ and ’I’ items will be represented as Python long integers when retrieved, because Python’s plain
integer type cannot represent the full range of C’s unsigned (long) integers.

The module defines the following function and type object:

array(typecode[, initializer ])
Return a new array whose items are restricted by typecode, and initialized from the optional
initializer value, which must be a list or a string. The list or string is passed to the new array’s
fromlist() or fromstring() method (see below) to add initial items to the array.

ArrayType
Type object corresponding to the objects returned by array().

Array objects support the following data items and methods:

typecode
The typecode character used to create the array.

itemsize
The length in bytes of one array item in the internal representation.

122 Chapter 5. Miscellaneous Services



append(x)
Append a new item with value x to the end of the array.

buffer info()
Return a tuple (address, length) giving the current memory address and the length in bytes of
the buffer used to hold array’s contents. This is occasionally useful when working with low-level
(and inherently unsafe) I/O interfaces that require memory addresses, such as certain ioctl()
operations. The returned numbers are valid as long as the array exists and no length-changing
operations are applied to it.

byteswap()
“Byteswap” all items of the array. This is only supported for values which are 1, 2, 4, or 8 bytes
in size; for other types of values, RuntimeError is raised. It is useful when reading data from a file
written on a machine with a different byte order.

count(x)
Return the number of occurences of x in the array.

extend(a)
Append array items from a to the end of the array.

fromfile(f, n)
Read n items (as machine values) from the file object f and append them to the end of the array.
If less than n items are available, EOFError is raised, but the items that were available are still
inserted into the array. f must be a real built-in file object; something else with a read() method
won’t do.

fromlist(list)
Append items from the list. This is equivalent to ‘for x in list: a.append(x)’ except that if
there is a type error, the array is unchanged.

fromstring(s)
Appends items from the string, interpreting the string as an array of machine values (i.e. as if it
had been read from a file using the fromfile() method).

index(x)
Return the smallest i such that i is the index of the first occurence of x in the array.

insert(i, x)
Insert a new item with value x in the array before position i .

pop([i ])
Removes the item with the index i from the array and returns it. The optional argument defaults
to -1, so that by default the last item is removed and returned.

read(f, n)
Deprecated since release 1.5.1. Use the fromfile() method.

Read n items (as machine values) from the file object f and append them to the end of the array.
If less than n items are available, EOFError is raised, but the items that were available are still
inserted into the array. f must be a real built-in file object; something else with a read() method
won’t do.

remove(x)
Remove the first occurence of x from the array.

reverse()
Reverse the order of the items in the array.

tofile(f )
Write all items (as machine values) to the file object f .

tolist()
Convert the array to an ordinary list with the same items.

tostring()
Convert the array to an array of machine values and return the string representation (the same

5.8. array — Efficient arrays of numeric values 123



sequence of bytes that would be written to a file by the tofile() method.)

write(f )
Deprecated since release 1.5.1. Use the tofile() method.

Write all items (as machine values) to the file object f .

When an array object is printed or converted to a string, it is represented as array(typecode, initializer).
The initializer is omitted if the array is empty, otherwise it is a string if the typecode is ’c’, otherwise
it is a list of numbers. The string is guaranteed to be able to be converted back to an array with the
same type and value using reverse quotes (‘‘), so long as the array() function has been imported using
‘from array import array’. Examples:

array(’l’)

array(’c’, ’hello world’)

array(’l’, [1, 2, 3, 4, 5])

array(’d’, [1.0, 2.0, 3.14])

See Also:

Module struct (section 4.3):
Packing and unpacking of heterogeneous binary data.

Module xdrlib (section 12.9):
Packing and unpacking of External Data Representation (XDR) data as used in some remote
procedure call systems.

The Numerical Python Manual
(http://numpy.sourceforge.net/numdoc/HTML/numdoc.html)

The Numeric Python extension (NumPy) defines another array type; see
http://numpy.sourceforge.net/ for further information about Numerical Python. (A PDF ver-
sion of the NumPy manual is available at http://numpy.sourceforge.net/numdoc/numdoc.pdf.

5.9 ConfigParser — Configuration file parser

This module defines the class ConfigParser. The ConfigParser class implements a basic configuration
file parser language which provides a structure similar to what you would find on Microsoft Windows
INI files. You can use this to write Python programs which can be customized by end users easily.

The configuration file consists of sections, lead by a ‘[section]’ header and followed by ‘name: value’
entries, with continuations in the style of RFC 822; ‘name=value’ is also accepted. Note that leading
whitespace is removed from values. The optional values can contain format strings which refer to other
values in the same section, or values in a special DEFAULT section. Additional defaults can be provided
upon initialization and retrieval. Lines beginning with ‘#’ or ‘;’ are ignored and may be used to provide
comments.

For example:

foodir: %(dir)s/whatever

dir=frob

would resolve the ‘%(dir)s’ to the value of ‘dir’ (‘frob’ in this case). All reference expansions are done
on demand.

Default values can be specified by passing them into the ConfigParser constructor as a dictionary.
Additional defaults may be passed into the get() method which will override all others.

class ConfigParser([defaults ])
Return a new instance of the ConfigParser class. When defaults is given, it is initialized into the
dictionary of intrinsic defaults. The keys must be strings, and the values must be appropriate for

124 Chapter 5. Miscellaneous Services



the ‘%()s’ string interpolation. Note that name is an intrinsic default; its value is the section
name, and will override any value provided in defaults.

exception NoSectionError
Exception raised when a specified section is not found.

exception DuplicateSectionError
Exception raised when multiple sections with the same name are found, or if add section() is
called with the name of a section that is already present.

exception NoOptionError
Exception raised when a specified option is not found in the specified section.

exception InterpolationError
Exception raised when problems occur performing string interpolation.

exception InterpolationDepthError
Exception raised when string interpolation cannot be completed because the number of iterations
exceeds MAX INTERPOLATION DEPTH.

exception MissingSectionHeaderError
Exception raised when attempting to parse a file which has no section headers.

exception ParsingError
Exception raised when errors occur attempting to parse a file.

MAX INTERPOLATION DEPTH
The maximum depth for recursive interpolation for get() when the raw parameter is false. Setting
this does not change the allowed recursion depth.

See Also:

Module shlex (section 5.14):
Support for a creating Unix shell-like minilanguages which can be used as an alternate format for
application configuration files.

5.9.1 ConfigParser Objects

ConfigParser instances have the following methods:

defaults()
Return a dictionary containing the instance-wide defaults.

sections()
Return a list of the sections available; DEFAULT is not included in the list.

add section(section)
Add a section named section to the instance. If a section by the given name already exists,
DuplicateSectionError is raised.

has section(section)
Indicates whether the named section is present in the configuration. The DEFAULT section is not
acknowledged.

options(section)
Returns a list of options available in the specified section.

has option(section, option)
If the given section exists, and contains the given option. return 1; otherwise return 0. (New in
1.6)

read(filenames)
Read and parse a list of filenames. If filenames is a string or Unicode string, it is treated as a
single filename. If a file named in filenames cannot be opened, that file will be ignored. This is
designed so that you can specify a list of potential configuration file locations (for example, the
current directory, the user’s home directory, and some system-wide directory), and all existing

5.9. ConfigParser — Configuration file parser 125



configuration files in the list will be read. If none of the named files exist, the ConfigParser
instance will contain an empty dataset. An application which requires initial values to be loaded
from a file should load the required file or files using readfp() before calling read() for any
optional files:

import ConfigParser, os

config = ConfigParser.ConfigParser()

config.readfp(open(’defaults.cfg’))

config.read([’site.cfg’, os.path.expanduser(’~/.myapp.cfg’)])

readfp(fp[, filename ])
Read and parse configuration data from the file or file-like object in fp (only the readline()
method is used). If filename is omitted and fp has a name attribute, that is used for filename; the
default is ‘<???>’.

get(section, option[, raw[, vars ] ])
Get an option value for the provided section. All the ‘%’ interpolations are expanded in the return
values, based on the defaults passed into the constructor, as well as the options vars provided,
unless the raw argument is true.

getint(section, option)
A convenience method which coerces the option in the specified section to an integer.

getfloat(section, option)
A convenience method which coerces the option in the specified section to a floating point number.

getboolean(section, option)
A convenience method which coerces the option in the specified section to a boolean value. Note
that the only accepted values for the option are ‘0’ and ‘1’, any others will raise ValueError.

set(section, option, value)
If the given section exists, set the given option to the specified value; otherwise raise
NoSectionError. (New in 1.6)

write(fileobject)
Write a representation of the configuration to the specified file object. This representation can be
parsed by a future read() call. (New in 1.6)

remove option(section, option)
Remove the specified option from the specified section. If the section does not exist, raise
NoSectionError. If the option existed to be removed, return 1; otherwise return 0. (New in
1.6)

remove section(section)
Remove the specified section from the configuration. If the section in fact existed, return 1.
Otherwise return 0.

optionxform(option)
Transforms the option name option as found in an input file or as passed in by client code to
the form that should be used in the internal structures. The default implementation returns a
lower-case version of option; subclasses may override this or client code can set an attribute of this
name on instances to affect this behavior. Setting this to str(), for example, would make option
names case sensitive.

5.10 fileinput — Iterate over lines from multiple input streams

This module implements a helper class and functions to quickly write a loop over standard input or a
list of files.

The typical use is:

126 Chapter 5. Miscellaneous Services



import fileinput

for line in fileinput.input():

process(line)

This iterates over the lines of all files listed in sys.argv[1:], defaulting to sys.stdin if the list is empty.
If a filename is ’-’, it is also replaced by sys.stdin. To specify an alternative list of filenames, pass it
as the first argument to input(). A single file name is also allowed.

All files are opened in text mode. If an I/O error occurs during opening or reading a file, IOError is
raised.

If sys.stdin is used more than once, the second and further use will return no lines, except perhaps for
interactive use, or if it has been explicitly reset (e.g. using sys.stdin.seek(0)).

Empty files are opened and immediately closed; the only time their presence in the list of filenames is
noticeable at all is when the last file opened is empty.

It is possible that the last line of a file does not end in a newline character; lines are returned including
the trailing newline when it is present.

The following function is the primary interface of this module:

input([files[, inplace[, backup ] ] ])
Create an instance of the FileInput class. The instance will be used as global state for the
functions of this module, and is also returned to use during iteration. The parameters to this
function will be passed along to the constructor of the FileInput class.

The following functions use the global state created by input(); if there is no active state, RuntimeError
is raised.

filename()
Return the name of the file currently being read. Before the first line has been read, returns None.

lineno()
Return the cumulative line number of the line that has just been read. Before the first line has
been read, returns 0. After the last line of the last file has been read, returns the line number of
that line.

filelineno()
Return the line number in the current file. Before the first line has been read, returns 0. After the
last line of the last file has been read, returns the line number of that line within the file.

isfirstline()
Returns true the line just read is the first line of its file, otherwise returns false.

isstdin()
Returns true if the last line was read from sys.stdin, otherwise returns false.

nextfile()
Close the current file so that the next iteration will read the first line from the next file (if any);
lines not read from the file will not count towards the cumulative line count. The filename is not
changed until after the first line of the next file has been read. Before the first line has been read,
this function has no effect; it cannot be used to skip the first file. After the last line of the last file
has been read, this function has no effect.

close()
Close the sequence.

The class which implements the sequence behavior provided by the module is available for subclassing
as well:

class FileInput([files[, inplace[, backup ] ] ])
Class FileInput is the implementation; its methods filename(), lineno(), fileline(),
isfirstline(), isstdin(), nextfile() and close() correspond to the functions of the same
name in the module. In addition it has a readline() method which returns the next input line,

5.10. fileinput — Iterate over lines from multiple input streams 127



and a getitem () method which implements the sequence behavior. The sequence must be
accessed in strictly sequential order; random access and readline() cannot be mixed.

Optional in-place filtering: if the keyword argument inplace=1 is passed to input() or to the
FileInput constructor, the file is moved to a backup file and standard output is directed to the input
file (if a file of the same name as the backup file already exists, it will be replaced silently). This makes
it possible to write a filter that rewrites its input file in place. If the keyword argument backup=’.<some
extension>’ is also given, it specifies the extension for the backup file, and the backup file remains
around; by default, the extension is ’.bak’ and it is deleted when the output file is closed. In-place
filtering is disabled when standard input is read.

Caveat: The current implementation does not work for MS-DOS 8+3 filesystems.

5.11 xreadlines — Efficient iteration over a file

New in version 2.1.

This module defines a new object type which can efficiently iterate over the lines of a file. An xreadlines
object is a sequence type which implements simple in-order indexing beginning at 0, as required by for
statement or the filter() function.

Thus, the code

import xreadlines, sys

for line in xreadlines.xreadlines(sys.stdin):

pass

has approximately the same speed and memory consumption as

while 1:

lines = sys.stdin.readlines(8*1024)

if not lines: break

for line in lines:

pass

except the clarity of the for statement is retained in the former case.

xreadlines(fileobj)
Return a new xreadlines object which will iterate over the contents of fileobj . fileobj must have a
readlines() method that supports the sizehint parameter.

An xreadlines object s supports the following sequence operation:

Operation Result
s[i] i ’th line of s

If successive values of i are not sequential starting from 0, this code will raise RuntimeError.

After the last line of the file is read, this code will raise an IndexError.

5.12 calendar — General calendar-related functions

This module allows you to output calendars like the Unix cal program, and provides additional useful
functions related to the calendar. By default, these calendars have Monday as the first day of the week,
and Sunday as the last (the European convention). Use setfirstweekday() to set the first day of the
week to Sunday (6) or to any other weekday.

128 Chapter 5. Miscellaneous Services



setfirstweekday(weekday)
Sets the weekday (0 is Monday, 6 is Sunday) to start each week. The values MONDAY, TUESDAY,
WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, and SUNDAY are provided for convenience. For example,
to set the first weekday to Sunday:

import calendar

calendar.setfirstweekday(calendar.SUNDAY)

firstweekday()
Returns the current setting for the weekday to start each week.

isleap(year)
Returns true if year is a leap year.

leapdays(y1, y2)
Returns the number of leap years in the range [y1 . . . y2 ).

weekday(year, month, day)
Returns the day of the week (0 is Monday) for year (1970–. . . ), month (1–12), day (1–31).

monthrange(year, month)
Returns weekday of first day of the month and number of days in month, for the specified year
and month.

monthcalendar(year, month)
Returns a matrix representing a month’s calendar. Each row represents a week; days outside of the
month a represented by zeros. Each week begins with Monday unless set by setfirstweekday().

prmonth(theyear, themonth[, w[, l ] ])
Prints a month’s calendar as returned by month().

month(theyear, themonth[, w[, l ] ])
Returns a month’s calendar in a multi-line string. If w is provided, it specifies the width of the
date columns, which are centered. If l is given, it specifies the number of lines that each week will
use. Depends on the first weekday as set by setfirstweekday().

prcal(year[, w[, l[c ] ] ])
Prints the calendar for an entire year as returned by calendar().

calendar(year[, w[, l[c ] ] ])
Returns a 3-column calendar for an entire year as a multi-line string. Optional parameters w , l ,
and c are for date column width, lines per week, and number of spaces between month columns,
respectively. Depends on the first weekday as set by setfirstweekday().

timegm(tuple)
An unrelated but handy function that takes a time tuple such as returned by the gmtime() function
in the time module, and returns the corresponding Unix timestamp value, assuming an epoch of
1970, and the POSIX encoding. In fact, time.gmtime() and timegm() are each others’ inverse.

See Also:

Module time (section 6.9):
Low-level time related functions.

5.13 cmd — Support for line-oriented command interpreters

The Cmd class provides a simple framework for writing line-oriented command interpreters. These are
often useful for test harnesses, administrative tools, and prototypes that will later be wrapped in a more
sophisticated interface.

class Cmd()
A Cmd instance or subclass instance is a line-oriented interpreter framework. There is no good
reason to instantiate Cmd itself; rather, it’s useful as a superclass of an interpreter class you define

5.13. cmd — Support for line-oriented command interpreters 129



yourself in order to inherit Cmd’s methods and encapsulate action methods.

5.13.1 Cmd Objects

A Cmd instance has the following methods:

cmdloop([intro ])
Repeatedly issue a prompt, accept input, parse an initial prefix off the received input, and dispatch
to action methods, passing them the remainder of the line as argument.

The optional argument is a banner or intro string to be issued before the first prompt (this overrides
the intro class member).

If the readline module is loaded, input will automatically inherit bash-like history-list editing
(e.g. Ctrl-P scrolls back to the last command, Ctrl-N forward to the next one, Ctrl-F moves the
cursor to the right non-destructively, Ctrl-B moves the cursor to the left non-destructively, etc.).

An end-of-file on input is passed back as the string ’EOF’.

An interpreter instance will recognize a command name ‘foo’ if and only if it has a method
do foo(). As a special case, a line beginning with the character ‘?’ is dispatched to the method
do help(). As another special case, a line beginning with the character ‘!’ is dispatched to the
method do shell (if such a method is defined).

All subclasses of Cmd inherit a predefined do help. This method, called with an argument bar,
invokes the corresponding method help bar(). With no argument, do help() lists all available
help topics (that is, all commands with corresponding help *() methods), and also lists any
undocumented commands.

onecmd(str)
Interpret the argument as though it had been typed in response to the prompt. This may be
overridden, but should not normally need to be; see the precmd() and postcmd() methods for
useful execution hooks. The return value is a flag indicating whether interpretation of commands
by the interpreter should stop.

emptyline()
Method called when an empty line is entered in response to the prompt. If this method is not
overridden, it repeats the last nonempty command entered.

default(line)
Method called on an input line when the command prefix is not recognized. If this method is not
overridden, it prints an error message and returns.

precmd()
Hook method executed just before the command line line is interpreted, but after the input prompt
is generated and issued. This method is a stub in Cmd; it exists to be overridden by subclasses.
The return value is used as the command which will be executed by the onecmd() method; the
precmd() implementation may re-write the command or simply return line unchanged.

postcmd(stop, line)
Hook method executed just after a command dispatch is finished. This method is a stub in Cmd;
it exists to be overridden by subclasses. line is the command line which was executed, and stop is
a flag which indicates whether execution will be terminated after the call to postcmd(); this will
be the return value of the onecmd() method. The return value of this method will be used as the
new value for the internal flag which corresponds to stop; returning false will cause interpretation
to continue.

preloop()
Hook method executed once when cmdloop() is called. This method is a stub in Cmd; it exists to
be overridden by subclasses.

postloop()
Hook method executed once when cmdloop() is about to return. This method is a stub in Cmd; it
exists to be overridden by subclasses.

Instances of Cmd subclasses have some public instance variables:

130 Chapter 5. Miscellaneous Services



prompt
The prompt issued to solicit input.

identchars
The string of characters accepted for the command prefix.

lastcmd
The last nonempty command prefix seen.

intro
A string to issue as an intro or banner. May be overridden by giving the cmdloop() method an
argument.

doc header
The header to issue if the help output has a section for documented commands.

misc header
The header to issue if the help output has a section for miscellaneous help topics (that is, there are
help *() methods without corresponding do *() methods).

undoc header
The header to issue if the help output has a section for undocumented commands (that is, there
are do *() methods without corresponding help *() methods).

ruler
The character used to draw separator lines under the help-message headers. If empty, no ruler line
is drawn. It defaults to ‘=’.

use rawinput
A flag, defaulting to true. If true, cmdloop() uses raw input() to display a prompt and read the
next command; if false, sys.stdout.write() and sys.stdin.readline() are used.

5.14 shlex — Simple lexical analysis

New in version 1.5.2.

The shlex class makes it easy to write lexical analyzers for simple syntaxes resembling that of the Unix

shell. This will often be useful for writing minilanguages, e.g. in run control files for Python applications.

class shlex([stream[, file ] ])
A shlex instance or subclass instance is a lexical analyzer object. The initialization argument,
if present, specifies where to read characters from. It must be a file- or stream-like object with
read() and readline() methods. If no argument is given, input will be taken from sys.stdin.
The second optional argument is a filename string, which sets the initial value of the infile
member. If the stream argument is omitted or equal to sys.stdin, this second argument defaults
to “stdin”.

See Also:

Module ConfigParser (section 5.9):
Parser for configuration files similar to the Windows ‘.ini’ files.

5.14.1 shlex Objects

A shlex instance has the following methods:

get token()
Return a token. If tokens have been stacked using push token(), pop a token off the stack.
Otherwise, read one from the input stream. If reading encounters an immediate end-of-file, an
empty string is returned.

push token(str)
Push the argument onto the token stack.

5.14. shlex — Simple lexical analysis 131



read token()
Read a raw token. Ignore the pushback stack, and do not interpret source requests. (This is not
ordinarily a useful entry point, and is documented here only for the sake of completeness.)

sourcehook(filename)
When shlex detects a source request (see source below) this method is given the following token
as argument, and expected to return a tuple consisting of a filename and an open file-like object.

Normally, this method first strips any quotes off the argument. If the result is an absolute path-
name, or there was no previous source request in effect, or the previous source was a stream (e.g.
sys.stdin), the result is left alone. Otherwise, if the result is a relative pathname, the directory
part of the name of the file immediately before it on the source inclusion stack is prepended (this
behavior is like the way the C preprocessor handles #include "file.h").

The result of the manipulations is treated as a filename, and returned as the first component of
the tuple, with open() called on it to yield the second component. (Note: this is the reverse of the
order of arguments in instance initialization!)

This hook is exposed so that you can use it to implement directory search paths, addition of file
extensions, and other namespace hacks. There is no corresponding ‘close’ hook, but a shlex instance
will call the close() method of the sourced input stream when it returns eof.

For more explicit control of source stacking, use the push source() and pop source() methods.

push source(stream[, filename ])
Push an input source stream onto the input stack. If the filename argument is specified it will later
be available for use in error messages. This is the same method used internally by the sourcehook
method. New in version 2.1.

pop source()
Pop the last-pushed input source from the input stack. This is the same method used internally
when the lexer reaches eofon a stacked input stream. New in version 2.1.

error leader([file[, line ] ])
This method generates an error message leader in the format of a Unix C compiler error label; the
format is ’"%s", line %d: ’, where the ‘%s’ is replaced with the name of the current source file
and the ‘%d’ with the current input line number (the optional arguments can be used to override
these).

This convenience is provided to encourage shlex users to generate error messages in the standard,
parseable format understood by Emacs and other Unix tools.

Instances of shlex subclasses have some public instance variables which either control lexical analysis
or can be used for debugging:

commenters
The string of characters that are recognized as comment beginners. All characters from the com-
ment beginner to end of line are ignored. Includes just ‘#’ by default.

wordchars
The string of characters that will accumulate into multi-character tokens. By default, includes all
ascii alphanumerics and underscore.

whitespace
Characters that will be considered whitespace and skipped. Whitespace bounds tokens. By default,
includes space, tab, linefeed and carriage-return.

quotes
Characters that will be considered string quotes. The token accumulates until the same quote
is encountered again (thus, different quote types protect each other as in the shell.) By default,
includes ascii single and double quotes.

infile
The name of the current input file, as initially set at class instantiation time or stacked by later
source requests. It may be useful to examine this when constructing error messages.

instream

132 Chapter 5. Miscellaneous Services



The input stream from which this shlex instance is reading characters.

source
This member is None by default. If you assign a string to it, that string will be recognized as
a lexical-level inclusion request similar to the ‘source’ keyword in various shells. That is, the
immediately following token will opened as a filename and input taken from that stream until eof,
at which point the close() method of that stream will be called and the input source will again
become the original input stream. Source requests may be stacked any number of levels deep.

debug
If this member is numeric and 1 or more, a shlex instance will print verbose progress output on
its behavior. If you need to use this, you can read the module source code to learn the details.

Note that any character not declared to be a word character, whitespace, or a quote will be returned as
a single-character token.

Quote and comment characters are not recognized within words. Thus, the bare words ‘ain’t’ and
‘ain#t’ would be returned as single tokens by the default parser.

lineno
Source line number (count of newlines seen so far plus one).

token
The token buffer. It may be useful to examine this when catching exceptions.

5.14. shlex — Simple lexical analysis 133



134



CHAPTER

SIX

Generic Operating System Services

The modules described in this chapter provide interfaces to operating system features that are available
on (almost) all operating systems, such as files and a clock. The interfaces are generally modeled after
the Unix or C interfaces, but they are available on most other systems as well. Here’s an overview:

os Miscellaneous OS interfaces.
os.path Common pathname manipulations.
dircache Return directory listing, with cache mechanism.
stat Utilities for interpreting the results of os.stat(), os.lstat() and os.fstat().
statcache Stat files, and remember results.
statvfs Constants for interpreting the result of os.statvfs().
filecmp Compare files efficiently.
popen2 Subprocesses with accessible standard I/O streams.
time Time access and conversions.
sched General purpose event scheduler.
mutex Lock and queue for mutual exclusion.
getpass Portable reading of passwords and retrieval of the userid.
curses An interface to the curses library, providing portable terminal handling.
curses.textpad Emacs-like input editing in a curses window.
curses.wrapper Terminal configuration wrapper for curses programs.
curses.ascii Constants and set-membership functions for ascii characters.
curses.panel A panel stack extension that adds depth to curses windows.
getopt Portable parser for command line options; support both short and long option names.
tempfile Generate temporary file names.
errno Standard errno system symbols.
glob Unix shell style pathname pattern expansion.
fnmatch Unix shell style filename pattern matching.
shutil High-level file operations, including copying.
locale Internationalization services.
gettext Multilingual internationalization services.

6.1 os — Miscellaneous OS interfaces

This module provides a more portable way of using operating system (OS) dependent functionality than
importing an OS dependent built-in module like posix or nt.

This module searches for an OS dependent built-in module like mac or posix and exports the same
functions and data as found there. The design of all Python’s built-in OS dependent modules is such that
as long as the same functionality is available, it uses the same interface; e.g., the function os.stat(path)
returns stat information about path in the same format (which happens to have originated with the
POSIX interface).

Extensions peculiar to a particular OS are also available through the os module, but using them is of
course a threat to portability!

Note that after the first time os is imported, there is no performance penalty in using functions from os

135



instead of directly from the OS dependent built-in module, so there should be no reason not to use os!

exception error
This exception is raised when a function returns a system-related error (e.g., not for illegal argument
types). This is also known as the built-in exception OSError. The accompanying value is a pair
containing the numeric error code from errno and the corresponding string, as would be printed
by the C function perror(). See the module errno, which contains names for the error codes
defined by the underlying operating system.

When exceptions are classes, this exception carries two attributes, errno and strerror. The first
holds the value of the C errno variable, and the latter holds the corresponding error message
from strerror(). For exceptions that involve a file system path (e.g. chdir() or unlink()), the
exception instance will contain a third attribute, filename, which is the file name passed to the
function.

When exceptions are strings, the string for the exception is ’OSError’.

name
The name of the OS dependent module imported. The following names have currently been regis-
tered: ’posix’, ’nt’, ’dos’, ’mac’, ’os2’, ’ce’, ’java’.

path
The corresponding OS dependent standard module for pathname operations, e.g., posixpath or
macpath. Thus, given the proper imports, os.path.split(file) is equivalent to but more portable
than posixpath.split(file). Note that this is also a valid module: it may be imported directly
as os.path.

6.1.1 Process Parameters

These functions and data items provide information and operate on the current process and user.

environ
A mapping object representing the string environment. For example, environ[’HOME’] is the
pathname of your home directory (on some platforms), and is equivalent to getenv("HOME") in C.

If the platform supports the putenv() function, this mapping may be used to modify the environ-
ment as well as query the environment. putenv() will be called automatically when the mapping
is modified.

If putenv() is not provided, this mapping may be passed to the appropriate process-creation
functions to cause child processes to use a modified environment.

chdir(path)
getcwd()

These functions are described in “Files and Directories” (section 6.1.4).

ctermid()
Return the filename corresponding to the controlling terminal of the process. Availability: Unix.

getegid()
Return the current process’ effective group id. Availability: Unix.

geteuid()
Return the current process’ effective user id. Availability: Unix.

getgid()
Return the current process’ group id. Availability: Unix.

getgroups()
Return list of supplemental group ids associated with the current process. Availability: Unix.

getlogin()
Return the actual login name for the current process, even if there are multiple login names which
map to the same user id. Availability: Unix.

getpgrp()
Return the current process group id. Availability: Unix.

136 Chapter 6. Generic Operating System Services



getpid()
Return the current process id. Availability: Unix, Windows.

getppid()
Return the parent’s process id. Availability: Unix.

getuid()
Return the current process’ user id. Availability: Unix.

getenv(varname[, value ])
Return the value of the environment variable varname if it exists, or value if it doesn’t. value
defaults to None. Availability: most flavors of Unix, Windows.

putenv(varname, value)
Set the environment variable named varname to the string value. Such changes to the environment
affect subprocesses started with os.system(), popen() or fork() and execv(). Availability: most
flavors of Unix, Windows.

When putenv() is supported, assignments to items in os.environ are automatically translated
into corresponding calls to putenv(); however, calls to putenv() don’t update os.environ, so it
is actually preferable to assign to items of os.environ.

setegid(egid)
Set the current process’s effective group id. Availability: Unix.

seteuid(euid)
Set the current process’s effective user id. Availability: Unix.

setgid(gid)
Set the current process’ group id. Availability: Unix.

setpgrp()
Calls the system call setpgrp() or setpgrp(0, 0) depending on which version is implemented (if
any). See the Unix manual for the semantics. Availability: Unix.

setpgid(pid, pgrp)
Calls the system call setpgid(). See the Unix manual for the semantics. Availability: Unix.

setreuid(ruid, euid)
Set the current process’s real and effective user ids. Availability: Unix.

setregid(rgid, egid)
Set the current process’s real and effective group ids. Availability: Unix.

setsid()
Calls the system call setsid(). See the Unix manual for the semantics. Availability: Unix.

setuid(uid)
Set the current process’ user id. Availability: Unix.

strerror(code)
Return the error message corresponding to the error code in code. Availability: Unix, Windows.

umask(mask)
Set the current numeric umask and returns the previous umask. Availability: Unix, Windows.

uname()
Return a 5-tuple containing information identifying the current operating system. The tuple con-
tains 5 strings: (sysname, nodename, release, version, machine). Some systems truncate the
nodename to 8 characters or to the leading component; a better way to get the hostname is
socket.gethostname() or even socket.gethostbyaddr(socket.gethostname()). Availabil-
ity: recent flavors of Unix.

6.1.2 File Object Creation

These functions create new file objects.

6.1. os — Miscellaneous OS interfaces 137



fdopen(fd[, mode[, bufsize ] ])
Return an open file object connected to the file descriptor fd . The mode and bufsize arguments have
the same meaning as the corresponding arguments to the built-in open() function. Availability:
Macintosh, Unix, Windows.

popen(command[, mode[, bufsize ] ])
Open a pipe to or from command . The return value is an open file object connected to the pipe,
which can be read or written depending on whether mode is ’r’ (default) or ’w’. The bufsize
argument has the same meaning as the corresponding argument to the built-in open() function.
The exit status of the command (encoded in the format specified for wait()) is available as the
return value of the close() method of the file object, except that when the exit status is zero
(termination without errors), None is returned. Availability: Unix, Windows.

Changed in version 2.0: This function worked unreliably under Windows in earlier versions of
Python. This was due to the use of the popen() function from the libraries provided with
Windows. Newer versions of Python do not use the broken implementation from the Windows
libraries.

tmpfile()
Return a new file object opened in update mode (‘w+’). The file has no directory entries associated
with it and will be automatically deleted once there are no file descriptors for the file. Availability:
Unix.

For each of these popen() variants, if bufsize is specified, it specifies the buffer size for the I/O pipes.
mode, if provided, should be the string ’b’ or ’t’; on Windows this is needed to determine whether the
file objects should be opened in binary or text mode. The default value for mode is ’t’.

popen2(cmd[, mode[, bufsize ] ])
Executes cmd as a sub-process. Returns the file objects (child stdin, child stdout). Availability:
Unix, Windows. New in version 2.0.

popen3(cmd[, mode[, bufsize ] ])
Executes cmd as a sub-process. Returns the file objects (child stdin, child stdout,
child stderr). Availability: Unix, Windows. New in version 2.0.

popen4(cmd[, mode[, bufsize ] ])
Executes cmd as a sub-process. Returns the file objects (child stdin, child stdout and stderr).
Availability: Unix, Windows. New in version 2.0.

This functionality is also available in the popen2 module using functions of the same names, but the
return values of those functions have a different order.

6.1.3 File Descriptor Operations

These functions operate on I/O streams referred to using file descriptors.

close(fd)
Close file descriptor fd . Availability: Macintosh, Unix, Windows.

Note: this function is intended for low-level I/O and must be applied to a file descriptor as returned
by open() or pipe(). To close a “file object” returned by the built-in function open() or by
popen() or fdopen(), use its close() method.

dup(fd)
Return a duplicate of file descriptor fd . Availability: Macintosh, Unix, Windows.

dup2(fd, fd2)
Duplicate file descriptor fd to fd2 , closing the latter first if necessary. Availability: Unix, Windows.

fpathconf(fd, name)
Return system configuration information relevant to an open file. name specifies the configuration
value to retrieve; it may be a string which is the name of a defined system value; these names
are specified in a number of standards (POSIX.1, Unix95, Unix98, and others). Some platforms
define additional names as well. The names known to the host operating system are given in the

138 Chapter 6. Generic Operating System Services



pathconf names dictionary. For configuration variables not included in that mapping, passing an
integer for name is also accepted. Availability: Unix.

If name is a string and is not known, ValueError is raised. If a specific value for name is not
supported by the host system, even if it is included in pathconf names, an OSError is raised with
errno.EINVAL for the error number.

fstat(fd)
Return status for file descriptor fd , like stat(). Availability: Unix, Windows.

fstatvfs(fd)
Return information about the filesystem containing the file associated with file descriptor fd , like
statvfs(). Availability: Unix.

ftruncate(fd, length)
Truncate the file corresponding to file descriptor fd , so that it is at most length bytes in size.
Availability: Unix.

isatty(fd)
Return 1 if the file descriptor fd is open and connected to a tty(-like) device, else 0. Availability:
Unix

lseek(fd, pos, how)
Set the current position of file descriptor fd to position pos, modified by how : 0 to set the position
relative to the beginning of the file; 1 to set it relative to the current position; 2 to set it relative
to the end of the file. Availability: Macintosh, Unix, Windows.

open(file, flags[, mode ])
Open the file file and set various flags according to flags and possibly its mode according to mode.
The default mode is 0777 (octal), and the current umask value is first masked out. Return the file
descriptor for the newly opened file. Availability: Macintosh, Unix, Windows.

For a description of the flag and mode values, see the C run-time documentation; flag constants
(like O RDONLY and O WRONLY) are defined in this module too (see below).

Note: this function is intended for low-level I/O. For normal usage, use the built-in function open(),
which returns a “file object” with read() and write() methods (and many more).

openpty()
Open a new pseudo-terminal pair. Return a pair of file descriptors (master, slave) for the pty and
the tty, respectively. For a (slightly) more portable approach, use the pty module. Availability:
Some flavors of Unix

pipe()
Create a pipe. Return a pair of file descriptors (r, w) usable for reading and writing, respectively.
Availability: Unix, Windows.

read(fd, n)
Read at most n bytes from file descriptor fd . Return a string containing the bytes read. Availability:
Macintosh, Unix, Windows.

Note: this function is intended for low-level I/O and must be applied to a file descriptor as returned
by open() or pipe(). To read a “file object” returned by the built-in function open() or by popen()
or fdopen(), or sys.stdin, use its read() or readline() methods.

tcgetpgrp(fd)
Return the process group associated with the terminal given by fd (an open file descriptor as
returned by open()). Availability: Unix.

tcsetpgrp(fd, pg)
Set the process group associated with the terminal given by fd (an open file descriptor as returned
by open()) to pg . Availability: Unix.

ttyname(fd)
Return a string which specifies the terminal device associated with file-descriptor fd . If fd is not
associated with a terminal device, an exception is raised. Availability: Unix.

write(fd, str)

6.1. os — Miscellaneous OS interfaces 139



Write the string str to file descriptor fd . Return the number of bytes actually written. Availability:
Macintosh, Unix, Windows.

Note: this function is intended for low-level I/O and must be applied to a file descriptor as returned
by open() or pipe(). To write a “file object” returned by the built-in function open() or by
popen() or fdopen(), or sys.stdout or sys.stderr, use its write() method.

The following data items are available for use in constructing the flags parameter to the open() function.

O RDONLY
O WRONLY
O RDWR
O NDELAY
O NONBLOCK
O APPEND
O DSYNC
O RSYNC
O SYNC
O NOCTTY
O CREAT
O EXCL
O TRUNC

Options for the flag argument to the open() function. These can be bit-wise OR’d together.
Availability: Macintosh, Unix, Windows.

O BINARY
Option for the flag argument to the open() function. This can be bit-wise OR’d together with
those listed above. Availability: Macintosh, Windows.

6.1.4 Files and Directories

access(path, mode)
Check read/write/execute permissions for this process or existence of file path. mode should be
F OK to test the existence of path, or it can be the inclusive OR of one or more of R OK, W OK, and
X OK to test permissions. Return 1 if access is allowed, 0 if not. See the Unix man page access(2)
for more information. Availability: Unix, Windows.

F OK
Value to pass as the mode parameter of access() to test the existence of path.

R OK
Value to include in the mode parameter of access() to test the readability of path.

W OK
Value to include in the mode parameter of access() to test the writability of path.

X OK
Value to include in the mode parameter of access() to determine if path can be executed.

chdir(path)
Change the current working directory to path. Availability: Macintosh, Unix, Windows.

getcwd()
Return a string representing the current working directory. Availability: Macintosh, Unix, Win-
dows.

chmod(path, mode)
Change the mode of path to the numeric mode. Availability: Unix, Windows.

chown(path, uid, gid)
Change the owner and group id of path to the numeric uid and gid . Availability: Unix.

link(src, dst)
Create a hard link pointing to src named dst . Availability: Unix.

140 Chapter 6. Generic Operating System Services



listdir(path)
Return a list containing the names of the entries in the directory. The list is in arbitrary order.
It does not include the special entries ’.’ and ’..’ even if they are present in the directory.
Availability: Macintosh, Unix, Windows.

lstat(path)
Like stat(), but do not follow symbolic links. Availability: Unix.

mkfifo(path[, mode ])
Create a FIFO (a named pipe) named path with numeric mode mode. The default mode is 0666
(octal). The current umask value is first masked out from the mode. Availability: Unix.

FIFOs are pipes that can be accessed like regular files. FIFOs exist until they are deleted (for ex-
ample with os.unlink()). Generally, FIFOs are used as rendezvous between “client” and “server”
type processes: the server opens the FIFO for reading, and the client opens it for writing. Note
that mkfifo() doesn’t open the FIFO — it just creates the rendezvous point.

mkdir(path[, mode ])
Create a directory named path with numeric mode mode. The default mode is 0777 (octal). On
some systems, mode is ignored. Where it is used, the current umask value is first masked out.
Availability: Macintosh, Unix, Windows.

makedirs(path[, mode ])
Recursive directory creation function. Like mkdir(), but makes all intermediate-level directories
needed to contain the leaf directory. Throws an error exception if the leaf directory already exists
or cannot be created. The default mode is 0777 (octal). New in version 1.5.2.

pathconf(path, name)
Return system configuration information relevant to a named file. name specifies the configuration
value to retrieve; it may be a string which is the name of a defined system value; these names
are specified in a number of standards (POSIX.1, Unix95, Unix98, and others). Some platforms
define additional names as well. The names known to the host operating system are given in the
pathconf names dictionary. For configuration variables not included in that mapping, passing an
integer for name is also accepted. Availability: Unix.

If name is a string and is not known, ValueError is raised. If a specific value for name is not
supported by the host system, even if it is included in pathconf names, an OSError is raised with
errno.EINVAL for the error number.

pathconf names
Dictionary mapping names accepted by pathconf() and fpathconf() to the integer values defined
for those names by the host operating system. This can be used to determine the set of names
known to the system. Availability: Unix.

readlink(path)
Return a string representing the path to which the symbolic link points. The result may be either
an absolute or relative pathname; if it is relative, it may be converted to an absolute pathname
using os.path.join(os.path.dirname(path), result). Availability: Unix.

remove(path)
Remove the file path. If path is a directory, OSError is raised; see rmdir() below to remove a
directory. This is identical to the unlink() function documented below. On Windows, attempting
to remove a file that is in use causes an exception to be raised; on Unix, the directory entry is
removed but the storage allocated to the file is not made available until the original file is no longer
in use. Availability: Macintosh, Unix, Windows.

removedirs(path)
Recursive directory removal function. Works like rmdir() except that, if the leaf directory is
successfully removed, directories corresponding to rightmost path segments will be pruned way
until either the whole path is consumed or an error is raised (which is ignored, because it generally
means that a parent directory is not empty). Throws an error exception if the leaf directory could
not be successfully removed. New in version 1.5.2.

rename(src, dst)

6.1. os — Miscellaneous OS interfaces 141



Rename the file or directory src to dst . If dst is a directory, OSError will be raised. On Unix, if
dst exists and is a file, it will be removed silently if the user has permission. The operation may fail
on some Unix flavors if src and dst are on different filesystems. If successful, the renaming will be
an atomic operation (this is a POSIX requirement). On Windows, if dst already exists, OSError
will be raised even if it is a file; there may be no way to implement an atomic rename when dst
names an existing file. Availability: Macintosh, Unix, Windows.

renames(old, new)
Recursive directory or file renaming function. Works like rename(), except creation of any inter-
mediate directories needed to make the new pathname good is attempted first. After the rename,
directories corresponding to rightmost path segments of the old name will be pruned away using
removedirs().

Note: this function can fail with the new directory structure made if you lack permissions needed
to remove the leaf directory or file. New in version 1.5.2.

rmdir(path)
Remove the directory path. Availability: Macintosh, Unix, Windows.

stat(path)
Perform a stat() system call on the given path. The return value is a tuple of at least 10 integers
giving the most important (and portable) members of the stat structure, in the order st mode,
st ino, st dev, st nlink, st uid, st gid, st size, st atime, st mtime, st ctime. More
items may be added at the end by some implementations. Note that on the Macintosh, the time
values are floating point values, like all time values on the Macintosh. (On MS Windows, some
items are filled with dummy values.) Availability: Macintosh, Unix, Windows.

Note: The standard module stat defines functions and constants that are useful for extracting
information from a stat structure.

statvfs(path)
Perform a statvfs() system call on the given path. The return value is a tuple of 10 integers
giving the most common members of the statvfs structure, in the order f bsize, f frsize,
f blocks, f bfree, f bavail, f files, f ffree, f favail, f flag, f namemax. Availability:
Unix.

Note: The standard module statvfs defines constants that are useful for extracting information
from a statvfs structure.

symlink(src, dst)
Create a symbolic link pointing to src named dst . Availability: Unix.

tempnam([dir[, prefix ] ])
Return a unique path name that is reasonable for creating a temporary file. This will be an
absolute path that names a potential directory entry in the directory dir or a common location
for temporary files if dir is omitted or None. If given and not None, prefix is used to provide a
short prefix to the filename. Applications are responsible for properly creating and managing files
created using paths returned by tempnam(); no automatic cleanup is provided. Availability: Unix.

tmpnam()
Return a unique path name that is reasonable for creating a temporary file. This will be an absolute
path that names a potential directory entry in a common location for temporary files. Applications
are responsible for properly creating and managing files created using paths returned by tmpnam();
no automatic cleanup is provided. Availability: Unix.

TMP MAX
The maximum number of unique names that tmpnam() will generate before reusing names. Avail-
ability: Unix, Windows.

unlink(path)
Remove the file path. This is the same function as remove(); the unlink() name is its traditional
Unix name. Availability: Macintosh, Unix, Windows.

utime(path, times)
Set the access and modified times of the file specified by path. If times is None, then the file’s access

142 Chapter 6. Generic Operating System Services



and modified times are set to the current time. Otherwise, times must be a 2-tuple of numbers,
of the form (atime, mtime) which is used to set the access and modified times, respectively.
Changed in version 2.0: Added support for None for times. Availability: Macintosh, Unix,
Windows.

6.1.5 Process Management

These functions may be used to create and manage processes.

The various exec*() functions take a list of arguments for the new program loaded into the process. In
each case, the first of these arguments is passed to the new program as its own name rather than as an
argument a user may have typed on a command line. For the C programmer, this is the argv[0] passed
to a program’s main(). For example, ‘os.execv(’/bin/echo’, [’foo’, ’bar’])’ will only print ‘bar’
on standard output; ‘foo’ will seem to be ignored.

abort()
Generate a SIGABRT signal to the current process. On Unix, the default behavior is to produce
a core dump; on Windows, the process immediately returns an exit code of 3. Be aware that
programs which use signal.signal() to register a handler for SIGABRT will behave differently.
Availability: Unix, Windows.

execl(path, arg0, arg1, ...)
This is equivalent to ‘execv(path, (arg0, arg1, ...))’. Availability: Unix, Windows.

execle(path, arg0, arg1, ..., env)
This is equivalent to ‘execve(path, (arg0, arg1, ...), env)’. Availability: Unix, Windows.

execlp(path, arg0, arg1, ...)
This is equivalent to ‘execvp(path, (arg0, arg1, ...))’. Availability: Unix, Windows.

execv(path, args)
Execute the executable path with argument list args, replacing the current process (i.e., the Python
interpreter). The argument list may be a tuple or list of strings. Availability: Unix, Windows.

execve(path, args, env)
Execute the executable path with argument list args, and environment env , replacing the current
process (i.e., the Python interpreter). The argument list may be a tuple or list of strings. The
environment must be a dictionary mapping strings to strings. Availability: Unix, Windows.

execvp(path, args)
This is like ‘execv(path, args)’ but duplicates the shell’s actions in searching for an executable file
in a list of directories. The directory list is obtained from environ[’PATH’]. Availability: Unix,
Windows.

execvpe(path, args, env)
This is a cross between execve() and execvp(). The directory list is obtained from env[’PATH’].
Availability: Unix, Windows.

exit(n)
Exit to the system with status n, without calling cleanup handlers, flushing stdio buffers, etc.
Availability: Unix, Windows.

Note: the standard way to exit is sys.exit(n). exit() should normally only be used in the
child process after a fork().

fork()
Fork a child process. Return 0 in the child, the child’s process id in the parent. Availability: Unix.

forkpty()
Fork a child process, using a new pseudo-terminal as the child’s controlling terminal. Return a
pair of (pid, fd), where pid is 0 in the child, the new child’s process id in the parent, and fd is
the file descriptor of the master end of the pseudo-terminal. For a more portable approach, use
the pty module. Availability: Some flavors of Unix

kill(pid, sig)

6.1. os — Miscellaneous OS interfaces 143



Kill the process pid with signal sig . Availability: Unix.

nice(increment)
Add increment to the process’s “niceness”. Return the new niceness. Availability: Unix.

plock(op)
Lock program segments into memory. The value of op (defined in <sys/lock.h>) determines which
segments are locked. Availability: Unix.

popen(...)
popen2(...)
popen3(...)
popen4(...)

Run child processes, returning opened pipes for communications. These functions are described in
section 6.1.2.

spawnv(mode, path, args)
Execute the program path in a new process, passing the arguments specified in args as command-
line parameters. args may be a list or a tuple. mode is a magic operational constant. See the
Visual C++ Runtime Library documentation for further information; the constants are exposed
to the Python programmer as listed below. Availability: Unix, Windows. New in version 1.6.

spawnve(mode, path, args, env)
Execute the program path in a new process, passing the arguments specified in args as command-
line parameters and the contents of the mapping env as the environment. args may be a list or a
tuple. mode is a magic operational constant. See the Visual C++ Runtime Library documentation
for further information; the constants are exposed to the Python programmer as listed below.
Availability: Unix, Windows. New in version 1.6.

P WAIT
P NOWAIT
P NOWAITO

Possible values for the mode parameter to spawnv() and spawnve(). Availability: Unix, Windows.
New in version 1.6.

P OVERLAY
P DETACH

Possible values for the mode parameter to spawnv() and spawnve(). These are less portable than
those listed above. Availability: Windows. New in version 1.6.

startfile(path)
Start a file with its associated application. This acts like double-clicking the file in Windows
Explorer, or giving the file name as an argument to the DOS start command: the file is opened
with whatever application (if any) its extension is associated.

startfile() returns as soon as the associated application is launched. There is no option to
wait for the application to close, and no way to retrieve the application’s exit status. The path
parameter is relative to the current directory. If you want to use an absolute path, make sure the
first character is not a slash (‘/’); the underlying Win32 ShellExecute() function doesn’t work it
is. Use the os.path.normpath() function to ensure that the path is properly encoded for Win32.
Availability: Windows. New in version 2.0.

system(command)
Execute the command (a string) in a subshell. This is implemented by calling the Standard C
function system(), and has the same limitations. Changes to posix.environ, sys.stdin, etc. are
not reflected in the environment of the executed command. The return value is the exit status of
the process encoded in the format specified for wait(), except on Windows 95 and 98, where it is
always 0. Note that POSIX does not specify the meaning of the return value of the C system()
function, so the return value of the Python function is system-dependent. Availability: Unix,
Windows.

times()
Return a 5-tuple of floating point numbers indicating accumulated (CPU or other) times, in seconds.
The items are: user time, system time, children’s user time, children’s system time, and elapsed

144 Chapter 6. Generic Operating System Services



real time since a fixed point in the past, in that order. See the Unix manual page times(2) or the
corresponding Windows Platform API documentation. Availability: Unix, Windows.

wait()
Wait for completion of a child process, and return a tuple containing its pid and exit status
indication: a 16-bit number, whose low byte is the signal number that killed the process, and
whose high byte is the exit status (if the signal number is zero); the high bit of the low byte is set
if a core file was produced. Availability: Unix.

waitpid(pid, options)
Wait for completion of a child process given by process id pid , and return a tuple containing its
process id and exit status indication (encoded as for wait()). The semantics of the call are affected
by the value of the integer options, which should be 0 for normal operation. Availability: Unix.

If pid is greater than 0, waitpid() requests status information for that specific process. If pid is
0, the request is for the status of any child in the process group of the current process. If pid is -1,
the request pertains to any child of the current process. If pid is less than -1, status is requested
for any process in the process group -pid (the absolute value of pid).

WNOHANG
The option for waitpid() to avoid hanging if no child process status is available immediately.
Availability: Unix.

The following functions take a process status code as returned by system(), wait(), or waitpid() as a
parameter. They may be used to determine the disposition of a process.

WIFSTOPPED(status)
Return true if the process has been stopped. Availability: Unix.

WIFSIGNALED(status)
Return true if the process exited due to a signal. Availability: Unix.

WIFEXITED(status)
Return true if the process exited using the exit(2) system call. Availability: Unix.

WEXITSTATUS(status)
If WIFEXITED(status) is true, return the integer parameter to the exit(2) system call. Otherwise,
the return value is meaningless. Availability: Unix.

WSTOPSIG(status)
Return the signal which caused the process to stop. Availability: Unix.

WTERMSIG(status)
Return the signal which caused the process to exit. Availability: Unix.

6.1.6 Miscellaneous System Information

confstr(name)
Return string-valued system configuration values. name specifies the configuration value to retrieve;
it may be a string which is the name of a defined system value; these names are specified in a number
of standards (POSIX, Unix95, Unix98, and others). Some platforms define additional names as
well. The names known to the host operating system are given in the confstr names dictionary.
For configuration variables not included in that mapping, passing an integer for name is also
accepted. Availability: Unix.

If the configuration value specified by name isn’t defined, the empty string is returned.

If name is a string and is not known, ValueError is raised. If a specific value for name is not
supported by the host system, even if it is included in confstr names, an OSError is raised with
errno.EINVAL for the error number.

confstr names
Dictionary mapping names accepted by confstr() to the integer values defined for those names by
the host operating system. This can be used to determine the set of names known to the system.
Availability: Unix.

6.1. os — Miscellaneous OS interfaces 145



sysconf(name)
Return integer-valued system configuration values. If the configuration value specified by name isn’t
defined, -1 is returned. The comments regarding the name parameter for confstr() apply here
as well; the dictionary that provides information on the known names is given by sysconf names.
Availability: Unix.

sysconf names
Dictionary mapping names accepted by sysconf() to the integer values defined for those names by
the host operating system. This can be used to determine the set of names known to the system.
Availability: Unix.

The follow data values are used to support path manipulation operations. These are defined for all
platforms.

Higher-level operations on pathnames are defined in the os.path module.

curdir
The constant string used by the OS to refer to the current directory, e.g. ’.’ for POSIX or ’:’
for the Macintosh.

pardir
The constant string used by the OS to refer to the parent directory, e.g. ’..’ for POSIX or ’::’
for the Macintosh.

sep
The character used by the OS to separate pathname components, e.g. ‘/’ for POSIX or ‘:’ for the
Macintosh. Note that knowing this is not sufficient to be able to parse or concatenate pathnames
— use os.path.split() and os.path.join() — but it is occasionally useful.

altsep
An alternative character used by the OS to separate pathname components, or None if only one
separator character exists. This is set to ‘/’ on DOS and Windows systems where sep is a backslash.

pathsep
The character conventionally used by the OS to separate search patch components (as in PATH),
e.g. ‘:’ for POSIX or ‘;’ for DOS and Windows.

defpath
The default search path used by exec*p*() if the environment doesn’t have a ’PATH’ key.

linesep
The string used to separate (or, rather, terminate) lines on the current platform. This may be a
single character, e.g. ’\n’ for POSIX or ’\r’ for MacOS, or multiple characters, e.g. ’\r\n’ for
MS-DOS and MS Windows.

6.2 os.path — Common pathname manipulations

This module implements some useful functions on pathnames.

abspath(path)
Return a normalized absolutized version of the pathname path. On most platforms, this is equiv-
alent to normpath(join(os.getcwd(), path)). New in version 1.5.2.

basename(path)
Return the base name of pathname path. This is the second half of the pair returned by
split(path). Note that the result of this function is different from the Unix basename pro-
gram; where basename for ’/foo/bar/’ returns ’bar’, the basename() function returns an
empty string (’’).

commonprefix(list)
Return the longest path prefix (taken character-by-character) that is a prefix of all paths in list .
If list is empty, return the empty string (’’). Note that this may return invalid paths because it
works a character at a time.

146 Chapter 6. Generic Operating System Services



dirname(path)
Return the directory name of pathname path. This is the first half of the pair returned by
split(path).

exists(path)
Return true if path refers to an existing path.

expanduser(path)
Return the argument with an initial component of ‘~’ or ‘~user ’ replaced by that user ’s home
directory. An initial ‘~’ is replaced by the environment variable HOME; an initial ‘~user ’ is looked
up in the password directory through the built-in module pwd. If the expansion fails, or if the path
does not begin with a tilde, the path is returned unchanged. On the Macintosh, this always returns
path unchanged.

expandvars(path)
Return the argument with environment variables expanded. Substrings of the form ‘$name’ or
‘${name}’ are replaced by the value of environment variable name. Malformed variable names and
references to non-existing variables are left unchanged. On the Macintosh, this always returns path
unchanged.

getatime(path)
Return the time of last access of filename. The return value is integer giving the number of seconds
since the epoch (see the time module). Raise os.error if the file does not exist or is inaccessible.
New in version 1.5.2.

getmtime(path)
Return the time of last modification of filename. The return value is integer giving the number
of seconds since the epoch (see the time module). Raise os.error if the file does not exist or is
inaccessible. New in version 1.5.2.

getsize(path)
Return the size, in bytes, of filename. Raise os.error if the file does not exist or is inaccessible.
New in version 1.5.2.

isabs(path)
Return true if path is an absolute pathname (begins with a slash).

isfile(path)
Return true if path is an existing regular file. This follows symbolic links, so both islink() and
isfile() can be true for the same path.

isdir(path)
Return true if path is an existing directory. This follows symbolic links, so both islink() and
isdir() can be true for the same path.

islink(path)
Return true if path refers to a directory entry that is a symbolic link. Always false if symbolic links
are not supported.

ismount(path)
Return true if pathname path is a mount point: a point in a file system where a different file system
has been mounted. The function checks whether path’s parent, ‘path/..’, is on a different device
than path, or whether ‘path/..’ and path point to the same i-node on the same device — this should
detect mount points for all Unix and POSIX variants.

join(path1 [, path2 [, ... ] ])
Joins one or more path components intelligently. If any component is an absolute path, all previous
components are thrown away, and joining continues. The return value is the concatenation of path1 ,
and optionally path2 , etc., with exactly one slash (’/’) inserted between components, unless path
is empty.

normcase(path)
Normalize the case of a pathname. On Unix, this returns the path unchanged; on case-insensitive
filesystems, it converts the path to lowercase. On Windows, it also converts forward slashes to
backward slashes.

6.2. os.path — Common pathname manipulations 147



normpath(path)
Normalize a pathname. This collapses redundant separators and up-level references, e.g. A//B,
A/./B and A/foo/../B all become A/B. It does not normalize the case (use normcase() for that).
On Windows, it converts forward slashes to backward slashes.

samefile(path1, path2)
Return true if both pathname arguments refer to the same file or directory (as indicated by device
number and i-node number). Raise an exception if a os.stat() call on either pathname fails.
Availability: Macintosh, Unix.

sameopenfile(fp1, fp2)
Return true if the file objects fp1 and fp2 refer to the same file. The two file objects may represent
different file descriptors. Availability: Macintosh, Unix.

samestat(stat1, stat2)
Return true if the stat tuples stat1 and stat2 refer to the same file. These structures may have been
returned by fstat(), lstat(), or stat(). This function implements the underlying comparison
used by samefile() and sameopenfile(). Availability: Macintosh, Unix.

split(path)
Split the pathname path into a pair, (head, tail) where tail is the last pathname component and
head is everything leading up to that. The tail part will never contain a slash; if path ends in a
slash, tail will be empty. If there is no slash in path, head will be empty. If path is empty, both
head and tail are empty. Trailing slashes are stripped from head unless it is the root (one or more
slashes only). In nearly all cases, join(head, tail) equals path (the only exception being when
there were multiple slashes separating head from tail).

splitdrive(path)
Split the pathname path into a pair (drive, tail) where drive is either a drive specification or the
empty string. On systems which do not use drive specifications, drive will always be the empty
string. In all cases, drive + tail will be the same as path. New in version 1.3.

splitext(path)
Split the pathname path into a pair (root, ext) such that root + ext == path, and ext is empty
or begins with a period and contains at most one period.

walk(path, visit, arg)
Calls the function visit with arguments (arg, dirname, names) for each directory in the di-
rectory tree rooted at path (including path itself, if it is a directory). The argument dirname
specifies the visited directory, the argument names lists the files in the directory (gotten from
os.listdir(dirname)). The visit function may modify names to influence the set of directories
visited below dirname, e.g., to avoid visiting certain parts of the tree. (The object referred to by
names must be modified in place, using del or slice assignment.)

6.3 dircache — Cached directory listings

The dircache module defines a function for reading directory listing using a cache, and cache invalidation
using the mtime of the directory. Additionally, it defines a function to annotate directories by appending
a slash.

The dircache module defines the following functions:

listdir(path)
Return a directory listing of path, as gotten from os.listdir(). Note that unless path changes,
further call to listdir() will not re-read the directory structure.

Note that the list returned should be regarded as read-only. (Perhaps a future version should
change it to return a tuple?)

opendir(path)
Same as listdir(). Defined for backwards compatibility.

annotate(head, list)

148 Chapter 6. Generic Operating System Services



Assume list is a list of paths relative to head , and append, in place, a ‘/’ to each path which points
to a directory.

>>> import dircache

>>> a=dircache.listdir(’/’)

>>> a=a[:] # Copy the return value so we can change ’a’

>>> a

[’bin’, ’boot’, ’cdrom’, ’dev’, ’etc’, ’floppy’, ’home’, ’initrd’, ’lib’, ’lost+

found’, ’mnt’, ’proc’, ’root’, ’sbin’, ’tmp’, ’usr’, ’var’, ’vmlinuz’]

>>> dircache.annotate(’/’, a)

>>> a

[’bin/’, ’boot/’, ’cdrom/’, ’dev/’, ’etc/’, ’floppy/’, ’home/’, ’initrd/’, ’lib/

’, ’lost+found/’, ’mnt/’, ’proc/’, ’root/’, ’sbin/’, ’tmp/’, ’usr/’, ’var/’, ’vm

linuz’]

6.4 stat — Interpreting stat() results

The stat module defines constants and functions for interpreting the results of os.stat(), os.fstat()
and os.lstat() (if they exist). For complete details about the stat(), fstat() and lstat() calls,
consult the documentation for your system.

The stat module defines the following functions to test for specific file types:

S ISDIR(mode)
Return non-zero if the mode is from a directory.

S ISCHR(mode)
Return non-zero if the mode is from a character special device file.

S ISBLK(mode)
Return non-zero if the mode is from a block special device file.

S ISREG(mode)
Return non-zero if the mode is from a regular file.

S ISFIFO(mode)
Return non-zero if the mode is from a FIFO (named pipe).

S ISLNK(mode)
Return non-zero if the mode is from a symbolic link.

S ISSOCK(mode)
Return non-zero if the mode is from a socket.

Two additional functions are defined for more general manipulation of the file’s mode:

S IMODE(mode)
Return the portion of the file’s mode that can be set by os.chmod()—that is, the file’s permission
bits, plus the sticky bit, set-group-id, and set-user-id bits (on systems that support them).

S IFMT(mode)
Return the portion of the file’s mode that describes the file type (used by the S IS*() functions
above).

Normally, you would use the os.path.is*() functions for testing the type of a file; the functions here
are useful when you are doing multiple tests of the same file and wish to avoid the overhead of the
stat() system call for each test. These are also useful when checking for information about a file that
isn’t handled by os.path, like the tests for block and character devices.

All the variables below are simply symbolic indexes into the 10-tuple returned by os.stat(), os.fstat()
or os.lstat().

ST MODE

6.4. stat — Interpreting stat() results 149



Inode protection mode.

ST INO
Inode number.

ST DEV
Device inode resides on.

ST NLINK
Number of links to the inode.

ST UID
User id of the owner.

ST GID
Group id of the owner.

ST SIZE
Size in bytes of a plain file; amount of data waiting on some special files.

ST ATIME
Time of last access.

ST MTIME
Time of last modification.

ST CTIME
Time of last status change (see manual pages for details).

The interpretation of “file size” changes according to the file type. For plain files this is the size of the
file in bytes. For FIFOs and sockets under most Unixes (including Linux in particular), the “size” is the
number of bytes waiting to be read at the time of the call to os.stat(), os.fstat(), or os.lstat();
this can sometimes be useful, especially for polling one of these special files after a non-blocking open.
The meaning of the size field for other character and block devices varies more, depending on the
implementation of the underlying system call.

Example:

import os, sys

from stat import *

def walktree(dir, callback):

’’’recursively descend the directory rooted at dir,

calling the callback function for each regular file’’’

for f in os.listdir(dir):

pathname = ’%s/%s’ % (dir, f)

mode = os.stat(pathname)[ST_MODE]

if S_ISDIR(mode):

# It’s a directory, recurse into it

walktree(pathname, callback)

elif S_ISREG(mode):

# It’s a file, call the callback function

callback(pathname)

else:

# Unknown file type, print a message

print ’Skipping %s’ % pathname

def visitfile(file):

print ’visiting’, file

if __name__ == ’__main__’:

walktree(sys.argv[1], visitfile)

150 Chapter 6. Generic Operating System Services



6.5 statcache — An optimization of os.stat()

The statcache module provides a simple optimization to os.stat(): remembering the values of previous
invocations.

The statcache module defines the following functions:

stat(path)
This is the main module entry-point. Identical for os.stat(), except for remembering the result
for future invocations of the function.

The rest of the functions are used to clear the cache, or parts of it.

reset()
Clear the cache: forget all results of previous stat() calls.

forget(path)
Forget the result of stat(path), if any.

forget prefix(prefix)
Forget all results of stat(path) for path starting with prefix .

forget dir(prefix)
Forget all results of stat(path) for path a file in the directory prefix , including stat(prefix).

forget except prefix(prefix)
Similar to forget prefix(), but for all path values not starting with prefix .

Example:

>>> import os, statcache

>>> statcache.stat(’.’)

(16893, 2049, 772, 18, 1000, 1000, 2048, 929609777, 929609777, 929609777)

>>> os.stat(’.’)

(16893, 2049, 772, 18, 1000, 1000, 2048, 929609777, 929609777, 929609777)

6.6 statvfs — Constants used with os.statvfs()

The statvfs module defines constants so interpreting the result if os.statvfs(), which returns a tuple,
can be made without remembering “magic numbers.” Each of the constants defined in this module is
the index of the entry in the tuple returned by os.statvfs() that contains the specified information.

F BSIZE
Preferred file system block size.

F FRSIZE
Fundamental file system block size.

F BLOCKS
Total number of blocks in the filesystem.

F BFREE
Total number of free blocks.

F BAVAIL
Free blocks available to non-super user.

F FILES
Total number of file nodes.

F FFREE
Total number of free file nodes.

6.5. statcache — An optimization of os.stat() 151



F FAVAIL
Free nodes available to non-super user.

F FLAG
Flags. System dependent: see statvfs() man page.

F NAMEMAX
Maximum file name length.

6.7 filecmp — File and Directory Comparisons

The filecmp module defines functions to compare files and directories, with various optional
time/correctness trade-offs.

The filecmp module defines the following function:

cmp(f1, f2 [, shallow[, use statcache ] ])
Compare the files named f1 and f2 , returning 1 if they seem equal, 0 otherwise.

Unless shallow is given and is false, files with identical os.stat() signatures are taken to be equal.
If use statcache is given and is true, statcache.stat() will be called rather then os.stat(); the
default is to use os.stat().

Files that were compared using this function will not be compared again unless their os.stat()
signature changes. Note that using use statcache true will cause the cache invalidation mechanism
to fail — the stale stat value will be used from statcache’s cache.

Note that no external programs are called from this function, giving it portability and efficiency.

cmpfiles(dir1, dir2, common[, shallow[, use statcache ] ])
Returns three lists of file names: match, mismatch, errors. match contains the list of files match
in both directories, mismatch includes the names of those that don’t, and errros lists the names
of files which could not be compared. Files may be listed in errors because the user may lack
permission to read them or many other reasons, but always that the comparison could not be done
for some reason.

The shallow and use statcache parameters have the same meanings and default values as for
filecmp.cmp().

Example:

>>> import filecmp

>>> filecmp.cmp(’libundoc.tex’, ’libundoc.tex’)

1

>>> filecmp.cmp(’libundoc.tex’, ’lib.tex’)

0

6.7.1 The dircmp class

class dircmp(a, b[, ignore[, hide ] ])
Construct a new directory comparison object, to compare the directories a and b. ignore is a list
of names to ignore, and defaults to [’RCS’, ’CVS’, ’tags’]. hide is a list of names to hide, and
defaults to [os.curdir, os.pardir].

report()
Print (to sys.stdout) a comparison between a and b.

report partial closure()
Print a comparison between a and b and common immediate subdirctories.

report full closure()
Print a comparison between a and b and common subdirctories (recursively).

152 Chapter 6. Generic Operating System Services



left list
Files and subdirectories in a, filtered by hide and ignore.

right list
Files and subdirectories in b, filtered by hide and ignore.

common
Files and subdirectories in both a and b.

left only
Files and subdirectories only in a.

right only
Files and subdirectories only in b.

common dirs
Subdirectories in both a and b.

common files
Files in both a and b

common funny
Names in both a and b, such that the type differs between the directories, or names for which
os.stat() reports an error.

same files
Files which are identical in both a and b.

diff files
Files which are in both a and b, whose contents differ.

funny files
Files which are in both a and b, but could not be compared.

subdirs
A dictionary mapping names in common dirs to dircmp objects.

Note that via getattr () hooks, all attributes are computed lazilly, so there is no speed penalty if
only those attributes which are lightweight to compute are used.

6.8 popen2 — Subprocesses with accessible I/O streams

This module allows you to spawn processes and connect to their input/output/error pipes and obtain
their return codes under Unix and Windows.

Note that starting with Python 2.0, this functionality is available using functions from the os module
which have the same names as the factory functions here, but the order of the return values is more
intuitive in the os module variants.

The primary interface offered by this module is a trio of factory functions. For each of these, if bufsize
is specified, it specifies the buffer size for the I/O pipes. mode, if provided, should be the string ’b’ or
’t’; on Windows this is needed to determine whether the file objects should be opened in binary or text
mode. The default value for mode is ’t’.

popen2(cmd[, bufsize[, mode ] ])
Executes cmd as a sub-process. Returns the file objects (child stdout, child stdin).

popen3(cmd[, bufsize[, mode ] ])
Executes cmd as a sub-process. Returns the file objects (child stdout, child stdin,
child stderr).

popen4(cmd[, bufsize[, mode ] ])
Executes cmd as a sub-process. Returns the file objects (child stdout and stderr, child stdin).
New in version 2.0.

On Unix, a class defining the objects returned by the factory functions is also available. These are not

6.8. popen2 — Subprocesses with accessible I/O streams 153



used for the Windows implementation, and are not available on that platform.

class Popen3(cmd[, capturestderr[, bufsize ] ])
This class represents a child process. Normally, Popen3 instances are created using the popen2()
and popen3() factory functions described above.

If not using one off the helper functions to create Popen3 objects, the parameter cmd is the shell
command to execute in a sub-process. The capturestderr flag, if true, specifies that the object
should capture standard error output of the child process. The default is false. If the bufsize
parameter is specified, it specifies the size of the I/O buffers to/from the child process.

class Popen4(cmd[, bufsize ])
Similar to Popen3, but always captures standard error into the same file object as standard output.
These are typically created using popen4(). New in version 2.0.

6.8.1 Popen3 and Popen4 Objects

Instances of the Popen3 and Popen4 classes have the following methods:

poll()
Returns -1 if child process hasn’t completed yet, or its return code otherwise.

wait()
Waits for and returns the status code of the child process. The status code encodes both the return
code of the process and information about whether it exited using the exit() system call or died
due to a signal. Functions to help interpret the status code are defined in the os module; see
section 6.1.5 for the W*() family of functions.

The following attributes are also available:

fromchild
A file object that provides output from the child process. For Popen4 instances, this will provide
both the standard output and standard error streams.

tochild
A file object that provides input to the child process.

childerr
Where the standard error from the child process goes is capturestderr was true for the constructor,
or None. This will always be None for Popen4 instances.

pid
The process ID of the child process.

6.9 time — Time access and conversions

This module provides various time-related functions. It is always available, but not all functions are
available on all platforms.

An explanation of some terminology and conventions is in order.

• The epoch is the point where the time starts. On January 1st of that year, at 0 hours, the “time
since the epoch” is zero. For Unix, the epoch is 1970. To find out what the epoch is, look at
gmtime(0).

• The functions in this module do not handle dates and times before the epoch or far in the future.
The cut-off point in the future is determined by the C library; for Unix, it is typically in 2038.

• Year 2000 (Y2K) issues: Python depends on the platform’s C library, which generally doesn’t
have year 2000 issues, since all dates and times are represented internally as seconds since the
epoch. Functions accepting a time tuple (see below) generally require a 4-digit year. For backward
compatibility, 2-digit years are supported if the module variable accept2dyear is a non-zero integer;

154 Chapter 6. Generic Operating System Services



this variable is initialized to 1 unless the environment variable PYTHONY2K is set to a non-empty
string, in which case it is initialized to 0. Thus, you can set PYTHONY2K to a non-empty string
in the environment to require 4-digit years for all year input. When 2-digit years are accepted,
they are converted according to the POSIX or X/Open standard: values 69-99 are mapped to
1969-1999, and values 0–68 are mapped to 2000–2068. Values 100–1899 are always illegal. Note
that this is new as of Python 1.5.2(a2); earlier versions, up to Python 1.5.1 and 1.5.2a1, would add
1900 to year values below 1900.

• UTC is Coordinated Universal Time (formerly known as Greenwich Mean Time, or GMT). The
acronym UTC is not a mistake but a compromise between English and French.

• DST is Daylight Saving Time, an adjustment of the timezone by (usually) one hour during part of
the year. DST rules are magic (determined by local law) and can change from year to year. The
C library has a table containing the local rules (often it is read from a system file for flexibility)
and is the only source of True Wisdom in this respect.

• The precision of the various real-time functions may be less than suggested by the units in which
their value or argument is expressed. E.g. on most Unix systems, the clock “ticks” only 50 or 100
times a second, and on the Mac, times are only accurate to whole seconds.

• On the other hand, the precision of time() and sleep() is better than their Unix equivalents:
times are expressed as floating point numbers, time() returns the most accurate time available
(using Unix gettimeofday() where available), and sleep() will accept a time with a nonzero
fraction (Unix select() is used to implement this, where available).

• The time tuple as returned by gmtime(), localtime(), and strptime(), and accepted by
asctime(), mktime() and strftime(), is a tuple of 9 integers:

Index Field Values
0 year (e.g. 1993)
1 month range [1,12]
2 day range [1,31]
3 hour range [0,23]
4 minute range [0,59]
5 second range [0,61]; see (1) in strftime() description
6 weekday range [0,6], Monday is 0
7 Julian day range [1,366]
8 daylight savings flag 0, 1 or -1; see below

Note that unlike the C structure, the month value is a range of 1-12, not 0-11. A year value will be
handled as described under “Year 2000 (Y2K) issues” above. A -1 argument as daylight savings
flag, passed to mktime() will usually result in the correct daylight savings state to be filled in.

The module defines the following functions and data items:

accept2dyear
Boolean value indicating whether two-digit year values will be accepted. This is true by default,
but will be set to false if the environment variable PYTHONY2K has been set to a non-empty
string. It may also be modified at run time.

altzone
The offset of the local DST timezone, in seconds west of UTC, if one is defined. This is negative
if the local DST timezone is east of UTC (as in Western Europe, including the UK). Only use this
if daylight is nonzero.

asctime([tuple ])
Convert a tuple representing a time as returned by gmtime() or localtime() to a 24-character
string of the following form: ’Sun Jun 20 23:21:05 1993’. If tuple is not provided, the current
time as returned by localtime() is used. Note: unlike the C function of the same name, there is
no trailing newline. Changed in version 2.1: Allowed tuple to be omitted.

6.9. time — Time access and conversions 155



clock()
On Unix, return the current processor time as a floating point number expressed in seconds. The
precision, and in fact the very definition of the meaning of “processor time”, depends on that of
the C function of the same name, but in any case, this is the function to use for benchmarking
Python or timing algorithms.

On Windows, this function returns the nearest approximation to wall-clock time since the first call
to this function, based on the Win32 function QueryPerformanceCounter(). The resolution is
typically better than one microsecond.

ctime([secs ])
Convert a time expressed in seconds since the epoch to a string representing local time. If secs
is not provided, the current time as returned by time() is used. ctime(secs) is equivalent to
asctime(localtime(secs)). Changed in version 2.1: Allowed secs to be omitted.

daylight
Nonzero if a DST timezone is defined.

gmtime([secs ])
Convert a time expressed in seconds since the epoch to a time tuple in UTC in which the dst flag
is always zero. If secs is not provided, the current time as returned by time() is used. Fractions
of a second are ignored. See above for a description of the tuple lay-out. Changed in version 2.1:
Allowed secs to be omitted.

localtime([secs ])
Like gmtime() but converts to local time. The dst flag is set to 1 when DST applies to the given
time. Changed in version 2.1: Allowed secs to be omitted.

mktime(tuple)
This is the inverse function of localtime(). Its argument is the full 9-tuple (since the dst flag is
needed; use -1 as the dst flag if it is unknown) which expresses the time in local time, not UTC.
It returns a floating point number, for compatibility with time(). If the input value cannot be
represented as a valid time, OverflowError is raised.

sleep(secs)
Suspend execution for the given number of seconds. The argument may be a floating point number
to indicate a more precise sleep time. The actual suspension time may be less than that requested
because any caught signal will terminate the sleep() following execution of that signal’s catching
routine. Also, the suspension time may be longer than requested by an arbitrary amount because
of the scheduling of other activity in the system.

strftime(format[, tuple ])
Convert a tuple representing a time as returned by gmtime() or localtime() to a string as specified
by the format argument. If tuple is not provided, the current time as returned by localtime() is
used. format must be a string. Changed in version 2.1: Allowed tuple to be omitted.

The following directives can be embedded in the format string. They are shown without the
optional field width and precision specification, and are replaced by the indicated characters in the
strftime() result:

156 Chapter 6. Generic Operating System Services



Directive Meaning Notes
%a Locale’s abbreviated weekday name.
%A Locale’s full weekday name.
%b Locale’s abbreviated month name.
%B Locale’s full month name.
%c Locale’s appropriate date and time representation.
%d Day of the month as a decimal number [01,31].
%H Hour (24-hour clock) as a decimal number [00,23].
%I Hour (12-hour clock) as a decimal number [01,12].
%j Day of the year as a decimal number [001,366].
%m Month as a decimal number [01,12].
%M Minute as a decimal number [00,59].
%p Locale’s equivalent of either AM or PM.
%S Second as a decimal number [00,61]. (1)
%U Week number of the year (Sunday as the first day of the

week) as a decimal number [00,53]. All days in a new
year preceding the first Sunday are considered to be in
week 0.

%w Weekday as a decimal number [0(Sunday),6].
%W Week number of the year (Monday as the first day of

the week) as a decimal number [00,53]. All days in a
new year preceding the first Sunday are considered to
be in week 0.

%x Locale’s appropriate date representation.
%X Locale’s appropriate time representation.
%y Year without century as a decimal number [00,99].
%Y Year with century as a decimal number.
%Z Time zone name (or by no characters if no time zone

exists).
%% A literal ‘%’ character.

Notes:

(1)The range really is 0 to 61; this accounts for leap seconds and the (very rare) double leap
seconds.

Here is an example, a format for dates compatible with that specified in the RFC 2822 Internet
email standard. 1

>>> from time import gmtime, strftime

>>> strftime("%a, %d %b %Y %H:%M:%S +0000", gmtime())

’Thu, 28 Jun 2001 14:17:15 +0000’

Additional directives may be supported on certain platforms, but only the ones listed here have a
meaning standardized by ANSI C.

On some platforms, an optional field width and precision specification can immediately follow the
initial ‘%’ of a directive in the following order; this is also not portable. The field width is normally
2 except for %j where it is 3.

strptime(string[, format ])
Parse a string representing a time according to a format. The return value is a tuple as returned
by gmtime() or localtime(). The format parameter uses the same directives as those used by
strftime(); it defaults to "%a %b %d %H:%M:%S %Y" which matches the formatting returned by
ctime(). The same platform caveats apply; see the local Unix documentation for restrictions or
additional supported directives. If string cannot be parsed according to format , ValueError is

1The use of %Z is now deprecated, but the %z escape that expands to the preferred hour/minute offset is not supported
by all ANSI C libraries. Also, a strict reading of the original 1982 RFC 822 standard calls for a two-digit year (%y rather
than %Y), but practice moved to 4-digit years long before the year 2000. The 4-digit year has been mandated by RFC
2822, which obsoletes RFC 822.

6.9. time — Time access and conversions 157



raised. Values which are not provided as part of the input string are filled in with default values; the
specific values are platform-dependent as the XPG standard does not provide sufficient information
to constrain the result.

Note: This function relies entirely on the underlying platform’s C library for the date parsing, and
some of these libraries are buggy. There’s nothing to be done about this short of a new, portable
implementation of strptime().

Availability: Most modern Unix systems.

time()
Return the time as a floating point number expressed in seconds since the epoch, in UTC. Note
that even though the time is always returned as a floating point number, not all systems provide
time with a better precision than 1 second.

timezone
The offset of the local (non-DST) timezone, in seconds west of UTC (i.e. negative in most of
Western Europe, positive in the US, zero in the UK).

tzname
A tuple of two strings: the first is the name of the local non-DST timezone, the second is the name
of the local DST timezone. If no DST timezone is defined, the second string should not be used.

See Also:

Module locale (section 6.24):
Internationalization services. The locale settings can affect the return values for some of the
functions in the time module.

6.10 sched — Event scheduler

The sched module defines a class which implements a general purpose event scheduler:

class scheduler(timefunc, delayfunc)
The scheduler class defines a generic interface to scheduling events. It needs two functions to
actually deal with the “outside world” — timefunc should be callable without arguments, and
return a number (the “time”, in any units whatsoever). The delayfunc function should be callable
with one argument, compatible with the output of timefunc, and should delay that many time
units. delayfunc will also be called with the argument 0 after each event is run to allow other
threads an opportunity to run in multi-threaded applications.

Example:

>>> import sched, time

>>> s=sched.scheduler(time.time, time.sleep)

>>> def print_time(): print "From print_time", time.time()

...

>>> def print_some_times():

... print time.time()

... s.enter(5, 1, print_time, ())

... s.enter(10, 1, print_time, ())

... s.run()

... print time.time()

...

>>> print_some_times()

930343690.257

From print_time 930343695.274

From print_time 930343700.273

930343700.276

158 Chapter 6. Generic Operating System Services



6.10.1 Scheduler Objects

scheduler instances have the following methods:

enterabs(time, priority, action, argument)
Schedule a new event. The time argument should be a numeric type compatible with the return
value of the timefunc function passed to the constructor. Events scheduled for the same time will
be executed in the order of their priority .

Executing the event means executing apply(action, argument). argument must be a tuple holding
the parameters for action.

Return value is an event which may be used for later cancellation of the event (see cancel()).

enter(delay, priority, action, argument)
Schedule an event for delay more time units. Other then the relative time, the other arguments,
the effect and the return value are the same as those for enterabs().

cancel(event)
Remove the event from the queue. If event is not an event currently in the queue, this method will
raise a RuntimeError.

empty()
Return true if the event queue is empty.

run()
Run all scheduled events. This function will wait (using the delayfunc function passed to the
constructor) for the next event, then execute it and so on until there are no more scheduled events.

Either action or delayfunc can raise an exception. In either case, the scheduler will maintain a
consistent state and propagate the exception. If an exception is raised by action, the event will
not be attempted in future calls to run().

If a sequence of events takes longer to run than the time available before the next event, the
scheduler will simply fall behind. No events will be dropped; the calling code is responsible for
canceling events which are no longer pertinent.

6.11 mutex — Mutual exclusion support

The mutex module defines a class that allows mutual-exclusion via acquiring and releasing locks. It does
not require (or imply) threading or multi-tasking, though it could be useful for those purposes.

The mutex module defines the following class:

class mutex()
Create a new (unlocked) mutex.

A mutex has two pieces of state — a “locked” bit and a queue. When the mutex is not locked,
the queue is empty. Otherwise, the queue contains zero or more (function, argument) pairs
representing functions (or methods) waiting to acquire the lock. When the mutex is unlocked
while the queue is not empty, the first queue entry is removed and its function(argument) pair
called, implying it now has the lock.

Of course, no multi-threading is implied – hence the funny interface for lock(), where a function
is called once the lock is acquired.

6.11.1 Mutex Objects

mutex objects have following methods:

test()
Check whether the mutex is locked.

testandset()
“Atomic” test-and-set, grab the lock if it is not set, and return true, otherwise, return false.

6.11. mutex — Mutual exclusion support 159



lock(function, argument)
Execute function(argument), unless the mutex is locked. In the case it is locked, place the function
and argument on the queue. See unlock for explanation of when function(argument) is executed
in that case.

unlock()
Unlock the mutex if queue is empty, otherwise execute the first element in the queue.

6.12 getpass — Portable password input

The getpass module provides two functions:

getpass([prompt ])
Prompt the user for a password without echoing. The user is prompted using the string prompt ,
which defaults to ’Password: ’. Availability: Macintosh, Unix, Windows.

getuser()
Return the “login name” of the user. Availability: Unix, Windows.

This function checks the environment variables LOGNAME, USER, LNAME and USERNAME,
in order, and returns the value of the first one which is set to a non-empty string. If none are set,
the login name from the password database is returned on systems which support the pwd module,
otherwise, an exception is raised.

6.13 curses — Terminal handling for character-cell displays

Changed in version 1.6: Added support for the ncurses library and converted to a package.

The curses module provides an interface to the curses library, the de-facto standard for portable ad-
vanced terminal handling.

While curses is most widely used in the Unix environment, versions are available for DOS, OS/2, and
possibly other systems as well. This extension module is designed to match the API of ncurses, an
open-source curses library hosted on Linux and the BSD variants of Unix.

See Also:

Module curses.ascii (section 6.16):
Utilities for working with ascii characters, regardless of your locale settings.

Module curses.panel (section 6.17):
A panel stack extension that adds depth to curses windows.

Module curses.textpad (section 6.14):
Editable text widget for curses supporting Emacs-like bindings.

Module curses.wrapper (section 6.15):
Convenience function to ensure proper terminal setup and resetting on application entry and exit.

Curses Programming with Python
(http://www.python.org/doc/howto/curses/curses.html)

Tutorial material on using curses with Python, by Andrew Kuchling and Eric Raymond, is available
on the Python Web site.

The ‘Demo/curses/’ directory in the Python source distribution contains some example programs using
the curses bindings provided by this module.

6.13.1 Functions

The module curses defines the following exception:

160 Chapter 6. Generic Operating System Services



exception error
Exception raised when a curses library function returns an error.

Note: Whenever x or y arguments to a function or a method are optional, they default to the current
cursor location. Whenever attr is optional, it defaults to A NORMAL.

The module curses defines the following functions:

baudrate()
Returns the output speed of the terminal in bits per second. On software terminal emulators it
will have a fixed high value. Included for historical reasons; in former times, it was used to write
output loops for time delays and occasionally to change interfaces depending on the line speed.

beep()
Emit a short attention sound.

can change color()
Returns true or false, depending on whether the programmer can change the colors displayed by
the terminal.

cbreak()
Enter cbreak mode. In cbreak mode (sometimes called “rare” mode) normal tty line buffering is
turned off and characters are available to be read one by one. However, unlike raw mode, special
characters (interrupt, quit, suspend, and flow control) retain their effects on the tty driver and
calling program. Calling first raw() then cbreak() leaves the terminal in cbreak mode.

color content(color number)
Returns the intensity of the red, green, and blue (RGB) components in the color color number ,
which must be between 0 and COLORS. A 3-tuple is returned, containing the R,G,B values for the
given color, which will be between 0 (no component) and 1000 (maximum amount of component).

color pair(color number)
Returns the attribute value for displaying text in the specified color. This attribute value can
be combined with A STANDOUT, A REVERSE, and the other A * attributes. pair number() is the
counterpart to this function.

curs set(visibility)
Sets the cursor state. visibility can be set to 0, 1, or 2, for invisible, normal, or very visible. If
the terminal supports the visibility requested, the previous cursor state is returned; otherwise, an
exception is raised. On many terminals, the “visible” mode is an underline cursor and the “very
visible” mode is a block cursor.

def prog mode()
Saves the current terminal mode as the “program” mode, the mode when the running program
is using curses. (Its counterpart is the “shell” mode, for when the program is not in curses.)
Subsequent calls to reset prog mode() will restore this mode.

def shell mode()
Saves the current terminal mode as the “shell” mode, the mode when the running program is
not using curses. (Its counterpart is the “program” mode, when the program is using curses
capabilities.) Subsequent calls to reset shell mode() will restore this mode.

delay output(ms)
Inserts an ms millisecond pause in output.

doupdate()
Update the physical screen. The curses library keeps two data structures, one representing the
current physical screen contents and a virtual screen representing the desired next state. The
doupdate() ground updates the physical screen to match the virtual screen.

The virtual screen may be updated by a noutrefresh() call after write operations such as addstr()
have been performed on a window. The normal refresh() call is simply noutrefresh() followed
by doupdate(); if you have to update multiple windows, you can speed performance and per-
haps reduce screen flicker by issuing noutrefresh() calls on all windows, followed by a single
doupdate().

6.13. curses — Terminal handling for character-cell displays 161



echo()
Enter echo mode. In echo mode, each character input is echoed to the screen as it is entered.

endwin()
De-initialize the library, and return terminal to normal status.

erasechar()
Returns the user’s current erase character. Under Unix operating systems this is a property of the
controlling tty of the curses program, and is not set by the curses library itself.

filter()
The filter() routine, if used, must be called before initscr() is called. The effect is that, during
those calls, LINES is set to 1; the capabilities clear, cup, cud, cud1, cuu1, cuu, vpa are disabled;
and the home string is set to the value of cr. The effect is that the cursor is confined to the current
line, and so are screen updates. This may be used for enabling cgaracter-at-a-time line editing
without touching the rest of the screen.

flash()
Flash the screen. That is, change it to reverse-video and then change it back in a short interval.
Some people prefer such as ‘visible bell’ to the audible attention signal produced by beep().

flushinp()
Flush all input buffers. This throws away any typeahead that has been typed by the user and has
not yet been processed by the program.

getmouse()
After getch() returns KEY MOUSE to signal a mouse event, this method should be call to retrieve
the queued mouse event, represented as a 5-tuple (id, x, y, z, bstate). id is an ID value
used to distinguish multiple devices, and x , y , z are the event’s coordinates. (z is currently
unused.). bstate is an integer value whose bits will be set to indicate the type of event, and will
be the bitwise OR of one or more of the following constants, where n is the button number from
1 to 4: BUTTONn PRESSED, BUTTONn RELEASED, BUTTONn CLICKED, BUTTONn DOUBLE CLICKED,
BUTTONn TRIPLE CLICKED, BUTTON SHIFT, BUTTON CTRL, BUTTON ALT.

getsyx()
Returns the current coordinates of the virtual screen cursor in y and x. If leaveok is currently true,
then -1,-1 is returned.

getwin(file)
Reads window related data stored in the file by an earlier putwin() call. The routine then creates
and initializes a new window using that data, returning the new window object.

has colors()
Returns true if the terminal can display colors; otherwise, it returns false.

has ic()
Returns true if the terminal has insert- and delete- character capabilities. This function is included
for historical reasons only, as all modern software terminal emulators have such capabilities.

has il()
Returns true if the terminal has insert- and delete-line capabilities, or can simulate them using
scrolling regions. This function is included for historical reasons only, as all modern software
terminal emulators have such capabilities.

has key(ch)
Takes a key value ch, and returns true if the current terminal type recognizes a key with that value.

halfdelay(tenths)
Used for half-delay mode, which is similar to cbreak mode in that characters typed by the user
are immediately available to the program. However, after blocking for tenths tenths of seconds, an
exception is raised if nothing has been typed. The value of tenths must be a number between 1
and 255. Use nocbreak() to leave half-delay mode.

init color(color number, r, g, b)
Changes the definition of a color, taking the number of the color to be changed followed by three

162 Chapter 6. Generic Operating System Services



RGB values (for the amounts of red, green, and blue components). The value of color number
must be between 0 and COLORS. Each of r , g , b, must be a value between 0 and 1000. When
init color() is used, all occurrences of that color on the screen immediately change to the new
definition. This function is a no-op on most terminals; it is active only if can change color()
returns 1.

init pair(pair number, fg, bg)
Changes the definition of a color-pair. It takes three arguments: the number of the color-pair
to be changed, the foreground color number, and the background color number. The value of
pair number must be between 1 and COLOR PAIRS - 1 (the 0 color pair is wired to white on black
and cannot be changed). The value of fg and bg arguments must be between 0 and COLORS. If the
color-pair was previously initialized, the screen is refreshed and all occurrences of that color-pair
are changed to the new definition.

initscr()
Initialize the library. Returns a WindowObject which represents the whole screen.

isendwin()
Returns true if endwin() has been called (that is, the curses library has been deinitialized).

keyname(k)
Return the name of the key numbered k . The name of a key generating printable ASCII character is
the key’s character. The name of a control-key combination is a two-character string consisting of a
caret followed by the corresponding printable ASCII character. The name of an alt-key combination
(128-255) is a string consisting of the prefix ‘M-’ followed by the name of the corresponding ASCII
character.

killchar()
Returns the user’s current line kill character. Under Unix operating systems this is a property of
the controlling tty of the curses program, and is not set by the curses library itself.

longname()
Returns a string containing the terminfo long name field describing the current terminal. The
maximum length of a verbose description is 128 characters. It is defined only after the call to
initscr().

meta(yes)
If yes is 1, allow 8-bit characters to be input. If yes is 0, allow only 7-bit chars.

mouseinterval(interval)
Sets the maximum time in milliseconds that can elapse between press and release events in order
for them to be recognized as a click, and returns the previous interval value. The default value is
200 msec, or one fifth of a second.

mousemask(mousemask)
Sets the mouse events to be reported, and returns a tuple (availmask, oldmask). availmask
indicates which of the specified mouse events can be reported; on complete failure it returns 0.
oldmask is the previous value of the given window’s mouse event mask. If this function is never
called, no mouse events are ever reported.

napms(ms)
Sleep for ms milliseconds.

newpad(nlines, ncols)
Creates and returns a pointer to a new pad data structure with the given number of lines and
columns. A pad is returned as a window object.

A pad is like a window, except that it is not restricted by the screen size, and is not necessarily
associated with a particular part of the screen. Pads can be used when a large window is needed,
and only a part of the window will be on the screen at one time. Automatic refreshes of pads (e.g.,
from scrolling or echoing of input) do not occur. The refresh() and noutrefresh() methods
of a pad require 6 arguments to specify the part of the pad to be displayed and the location on
the screen to be used for the display. The arguments are pminrow, pmincol, sminrow, smincol,
smaxrow, smaxcol; the p arguments refer to the upper left corner of the the pad region to be
displayed and the s arguments define a clipping box on the screen within which the pad region is

6.13. curses — Terminal handling for character-cell displays 163



to be displayed.

newwin([nlines, ncols, ] begin y, begin x)
Return a new window, whose left-upper corner is at (begin y, begin x), and whose height/width
is nlines/ncols.

By default, the window will extend from the specified position to the lower right corner of the
screen.

nl()
Enter newline mode. This mode translates the return key into newline on input, and translates
newline into return and line-feed on output. Newline mode is initially on.

nocbreak()
Leave cbreak mode. Return to normal “cooked” mode with line buffering.

noecho()
Leave echo mode. Echoing of input characters is turned off,

nonl()
Leave newline mode. Disable translation of return into newline on input, and disable low-level
translation of newline into newline/return on output (but this does not change the behavior of
addch(’\n’), which always does the equivalent of return and line feed on the virtual screen).
With translation off, curses can sometimes speed up vertical motion a little; also, it will be able to
detect the return key on input.

noqiflush()
When the noqiflush routine is used, normal flush of input and output queues associated with the
INTR, QUIT and SUSP characters will not be done. You may want to call noqiflush() in a signal
handler if you want output to continue as though the interrupt had not occurred, after the handler
exits.

noraw()
Leave raw mode. Return to normal “cooked” mode with line buffering.

pair content(pair number)
Returns a tuple (fg,bg) containing the colors for the requested color pair. The value of pair number
must be between 0 and COLOR PAIRS-1.

pair number(attr)
Returns the number of the color-pair set by the attribute value attr . color pair() is the coun-
terpart to this function.

putp(string)
Equivalent to tputs(str, 1, putchar); emits the value of a specified terminfo capability for the
current terminal. Note that the output of putp always goes to standard output.

qiflush( [flag ] )
If flag is false, the effect is the same as calling noqiflush(). If flag is true, or no argument is
provided, the queues will be flushed when these control characters are read.

raw()
Enter raw mode. In raw mode, normal line buffering and processing of interrupt, quit, suspend,
and flow control keys are turned off; characters are presented to curses input functions one by one.

reset prog mode()
Restores the terminal to “program” mode, as previously saved by def prog mode().

reset shell mode()
Restores the terminal to “shell” mode, as previously saved by def shell mode().

setsyx(y, x)
Sets the virtual screen cursor to y , x . If y and x are both -1, then leaveok is set.

setupterm([termstr, fd ])
Initializes the terminal. termstr is a string giving the terminal name; if omitted, the value of
the TERM environment variable will be used. fd is the file descriptor to which any initialization

164 Chapter 6. Generic Operating System Services



sequences will be sent; if not supplied, the file descriptor for sys.stdout will be used.

start color()
Must be called if the programmer wants to use colors, and before any other color manipulation
routine is called. It is good practice to call this routine right after initscr().

start color() initializes eight basic colors (black, red, green, yellow, blue, magenta, cyan, and
white), and two global variables in the curses module, COLORS and COLOR PAIRS, containing the
maximum number of colors and color-pairs the terminal can support. It also restores the colors on
the terminal to the values they had when the terminal was just turned on.

termattrs()
Returns a logical OR of all video attributes supported by the terminal. This information is useful
when a curses program needs complete control over the appearance of the screen.

termname()
Returns the value of the environment variable TERM, truncated to 14 characters.

tigetflag(capname)
Returns the value of the Boolean capability corresponding to the terminfo capability name capname.
The value -1 is returned if capname is not a Boolean capability, or 0 if it is canceled or absent
from the terminal description.

tigetnum(capname)
Returns the value of the numeric capability corresponding to the terminfo capability name capname.
The value -2 is returned if capname is not a numeric capability, or -1 if it is canceled or absent
from the terminal description.

tigetstr(capname)
Returns the value of the string capability corresponding to the terminfo capability name capname.
None is returned if capname is not a string capability, or is canceled or absent from the terminal
description.

tparm(str[,... ])
Instantiates the string str with the supplied parameters, where str should be a parameterized
string obtained from the terminfo database. E.g. tparm(tigetstr("cup"), 5, 3) could result in
’\033[6;4H’, the exact result depending on terminal type.

typeahead(fd)
Specifies that the file descriptor fd be used for typeahead checking. If fd is -1, then no typeahead
checking is done.

The curses library does “line-breakout optimization” by looking for typeahead periodically while
updating the screen. If input is found, and it is coming from a tty, the current update is postponed
until refresh or doupdate is called again, allowing faster response to commands typed in advance.
This function allows specifying a different file descriptor for typeahead checking.

unctrl(ch)
Returns a string which is a printable representation of the character ch. Control characters are
displayed as a caret followed by the character, for example as ^C. Printing characters are left as
they are.

ungetch(ch)
Push ch so the next getch() will return it. Note: only one ch can be pushed before getch() is
called.

ungetmouse(id, x, y, z, bstate)
Push a KEY MOUSE event onto the input queue, associating the given state data with it.

use env(flag)
If used, this function should be called before initscr() or newterm are called. When flag is false,
the values of lines and columns specified in the terminfo database will be used, even if environment
variables LINES and COLUMNS (used by default) are set, or if curses is running in a window (in
which case default behavior would be to use the window size if LINES and COLUMNS are not
set).

6.13. curses — Terminal handling for character-cell displays 165



6.13.2 Window Objects

Window objects, as returned by initscr() and newwin() above, have the following methods:

addch([y, x, ] ch[, attr ])
Note: A character means a C character (i.e., an ascii code), rather then a Python character (a
string of length 1). (This note is true whenever the documentation mentions a character.) The
builtin ord() is handy for conveying strings to codes.

Paint character ch at (y, x) with attributes attr , overwriting any character previously painter
at that location. By default, the character position and attributes are the current settings for the
window object.

addnstr([y, x, ] str, n[, attr ])
Paint at most n characters of the string str at (y, x) with attributes attr , overwriting anything
previously on the display.

addstr([y, x, ] str[, attr ])
Paint the string str at (y, x) with attributes attr , overwriting anything previously on the display.

attroff(attr)
Remove attribute attr from the “background” set applied to all writes to the current window.

attron(attr)
Add attribute attr from the “background” set applied to all writes to the current window.

attrset(attr)
Set the “background” set of attributes to attr . This set is initially 0 (no attributes).

bkgd(ch[, attr ])
Sets the background property of the window to the character ch, with attributes attr . The change
is then applied to every character position in that window:

•The attribute of every character in the window is changed to the new background attribute.
•Wherever the former background character appears, it is changed to the new background
character.

bkgdset(ch[, attr ])
Sets the window’s background. A window’s background consists of a character and any combination
of attributes. The attribute part of the background is combined (OR’ed) with all non-blank char-
acters that are written into the window. Both the character and attribute parts of the background
are combined with the blank characters. The background becomes a property of the character and
moves with the character through any scrolling and insert/delete line/character operations.

border([ls[, rs[, ts[, bs[, tl[, tr[, bl[, br ] ] ] ] ] ] ] ])
Draw a border around the edges of the window. Each parameter specifies the character to use for
a specific part of the border; see the table below for more details. The characters must be specified
as integers; using one-character strings will cause TypeError to be raised.

Note: A 0 value for any parameter will cause the default character to be used for that parameter.
Keyword parameters can not be used. The defaults are listed in this table:

Parameter Description Default value
ls Left side ACS VLINE
rs Right side ACS VLINE
ts Top ACS HLINE
bs Bottom ACS HLINE
tl Upper-left corner ACS ULCORNER
tr Upper-right corner ACS URCORNER
bl Bottom-left corner ACS BLCORNER
br Bottom-right corner ACS BRCORNER

box([vertch, horch ])
Similar to border(), but both ls and rs are vertch and both ts and bs are horch. The default
corner characters are always used by this function.

166 Chapter 6. Generic Operating System Services



clear()
Like erase(), but also causes the whole window to be repainted upon next call to refresh().

clearok(yes)
If yes is 1, the next call to refresh() will clear the window completely.

clrtobot()
Erase from cursor to the end of the window: all lines below the cursor are deleted, and then the
equivalent of clrtoeol() is performed.

clrtoeol()
Erase from cursor to the end of the line.

cursyncup()
Updates the current cursor position of all the ancestors of the window to reflect the current cursor
position of the window.

delch([x, y ])
Delete any character at (y, x).

deleteln()
Delete the line under the cursor. All following lines are moved up by 1 line.

derwin([nlines, ncols, ] begin y, begin x)
An abbreviation for “derive window”, derwin() is the same as calling subwin(), except that
begin y and begin x are relative to the origin of the window, rather than relative to the entire
screen. Returns a window object for the derived window.

echochar(ch[, attr ])
Add character ch with attribute attr , and immediately call refresh() on the window.

enclose(y, x)
Tests whether the given pair of screen-relative character-cell coordinates are enclosed by the given
window, returning true or false. It is useful for determining what subset of the screen windows
enclose the location of a mouse event.

erase()
Clear the window.

getbegyx()
Return a tuple (y, x) of co-ordinates of upper-left corner.

getch([x, y ])
Get a character. Note that the integer returned does not have to be in ascii range: function keys,
keypad keys and so on return numbers higher than 256. In no-delay mode, an exception is raised
if there is no input.

getkey([x, y ])
Get a character, returning a string instead of an integer, as getch() does. Function keys, keypad
keys and so on return a multibyte string containing the key name. In no-delay mode, an exception
is raised if there is no input.

getmaxyx()
Return a tuple (y, x) of the height and width of the window.

getparyx()
Returns the beginning coordinates of this window relative to its parent window into two integer
variables y and x. Returns -1,-1 if this window has no parent.

getstr([x, y ])
Read a string from the user, with primitive line editing capacity.

getyx()
Return a tuple (y, x) of current cursor position relative to the window’s upper-left corner.

hline([y, x, ] ch, n)

6.13. curses — Terminal handling for character-cell displays 167



Display a horizontal line starting at (y, x) with length n consisting of the character ch.

idcok(flag)
If flag is false, curses no longer considers using the hardware insert/delete character feature of the
terminal; if flag is true, use of character insertion and deletion is enabled. When curses is first
initialized, use of character insert/delete is enabled by default.

idlok(yes)
If called with yes equal to 1, curses will try and use hardware line editing facilities. Otherwise,
line insertion/deletion are disabled.

immedok(flag)
If flag is true, any change in the window image automatically causes the window to be refreshed;
you no longer have to call refresh() yourself. However, it may degrade performance considerably,
due to repeated calls to wrefresh. This option is disabled by default.

inch([x, y ])
Return the character at the given position in the window. The bottom 8 bits are the character
proper, and upper bits are the attributes.

insch([y, x, ] ch[, attr ])
Paint character ch at (y, x) with attributes attr , moving the line from position x right by one
character.

insdelln(nlines)
Inserts nlines lines into the specified window above the current line. The nlines bottom lines are
lost. For negative nlines, delete nlines lines starting with the one under the cursor, and move the
remaining lines up. The bottom nlines lines are cleared. The current cursor position remains the
same.

insertln()
Insert a blank line under the cursor. All following lines are moved down by 1 line.

insnstr([y, x, ] str, n [, attr ])
Insert a character string (as many characters as will fit on the line) before the character under the
cursor, up to n characters. If n is zero or negative, the entire string is inserted. All characters to
the right of the cursor are shifted right, with the the rightmost characters on the line being lost.
The cursor position does not change (after moving to y , x , if specified).

insstr([y, x, ] str [, attr ])
Insert a character string (as many characters as will fit on the line) before the character under the
cursor. All characters to the right of the cursor are shifted right, with the the rightmost characters
on the line being lost. The cursor position does not change (after moving to y , x , if specified).

instr([y, x ] [, n ])
Returns a string of characters, extracted from the window starting at the current cursor position,
or at y , x if specified. Attributes are stripped from the characters. If n is specified, instr()
returns return a string at most n characters long (exclusive of the trailing NUL).

is linetouched(line)
Returns true if the specified line was modified since the last call to refresh(); otherwise returns
false. Raises a curses.error exception if line is not valid for the given window.

is wintouched()
Returns true if the specified window was modified since the last call to refresh(); otherwise
returns false.

keypad(yes)
If yes is 1, escape sequences generated by some keys (keypad, function keys) will be interpreted by
curses. If yes is 0, escape sequences will be left as is in the input stream.

leaveok(yes)
If yes is 1, cursor is left where it is on update, instead of being at “cursor position.” This reduces
cursor movement where possible. If possible the cursor will be made invisible.

168 Chapter 6. Generic Operating System Services



If yes is 0, cursor will always be at “cursor position” after an update.

move(new y, new x)
Move cursor to (new y, new x).

mvderwin(y, x)
Moves the window inside its parent window. The screen-relative parameters of the window are not
changed. This routine is used to display different parts of the parent window at the same physical
position on the screen.

mvwin(new y, new x)
Move the window so its upper-left corner is at (new y, new x).

nodelay(yes)
If yes is 1, getch() will be non-blocking.

notimeout(yes)
If yes is 1, escape sequences will not be timed out.

If yes is 0, after a few milliseconds, an escape sequence will not be interpreted, and will be left in
the input stream as is.

noutrefresh()
Mark for refresh but wait. This function updates the data structure representing the desired state
of the window, but does not force an update of the physical screen. To accomplish that, call
doupdate().

overlay(destwin[, sminrow, smincol, dminrow, dmincol, dmaxrow, dmaxcol ])
Overlay the window on top of destwin. The windows need not be the same size, only the overlapping
region is copied. This copy is non-destructive, which means that the current background character
does not overwrite the old contents of destwin.

To get fine-grained control over the copied region, the second form of overlay() can be used.
sminrow and smincol are the upper-left coordinates of the source window, and the other variables
mark a rectangle in the destination window.

overwrite(destwin[, sminrow, smincol, dminrow, dmincol, dmaxrow, dmaxcol ])
Overwrite the window on top of destwin. The windows need not be the same size, in which case
only the overlapping region is copied. This copy is destructive, which means that the current
background character overwrites the old contents of destwin.

To get fine-grained control over the copied region, the second form of overwrite() can be used.
sminrow and smincol are the upper-left coordinates of the source window, the other variables mark
a rectangle in the destination window.

putwin(file)
Writes all data associated with the window into the provided file object. This information can be
later retrieved using the getwin() function.

redrawln(beg, num)
Indicates that the num screen lines, starting at line beg , are corrupted and should be completely
redrawn on the next refresh() call.

redrawwin()
Touches the entire window, causing it to be completely redrawn on the next refresh() call.

refresh([pminrow, pmincol, sminrow, smincol, smaxrow, smaxcol ])
Update the display immediately (sync actual screen with previous drawing/deleting methods).

The 6 optional arguments can only be specified when the window is a pad created with newpad().
The additional parameters are needed to indicate what part of the pad and screen are involved.
pminrow and pmincol specify the upper left-hand corner of the rectangle to be displayed in the
pad. sminrow , smincol , smaxrow , and smaxcol specify the edges of the rectangle to be displayed
on the screen. The lower right-hand corner of the rectangle to be displayed in the pad is calculated
from the screen coordinates, since the rectangles must be the same size. Both rectangles must
be entirely contained within their respective structures. Negative values of pminrow , pmincol ,
sminrow , or smincol are treated as if they were zero.

6.13. curses — Terminal handling for character-cell displays 169



scroll([lines = 1 ])
Scroll the screen or scrolling region upward by lines lines.

scrollok(flag)
Controls what happens when the cursor of a window is moved off the edge of the window or scrolling
region, either as a result of a newline action on the bottom line, or typing the last character of
the last line. If flag is false, the cursor is left on the bottom line. If flag is true, the window is
scrolled up one line. Note that in order to get the physical scrolling effect on the terminal, it is
also necessary to call idlok().

setscrreg(top, bottom)
Set the scrolling region from line top to line bottom. All scrolling actions will take place in this
region.

standend()
Turn off the standout attribute. On some terminals this has the side effect of turning off all
attributes.

standout()
Turn on attribute A STANDOUT .

subpad([nlines, ncols, ] begin y, begin x)
Return a sub-window, whose upper-left corner is at (begin y, begin x), and whose width/height
is ncols/nlines.

subwin([nlines, ncols, ] begin y, begin x)
Return a sub-window, whose upper-left corner is at (begin y, begin x), and whose width/height
is ncols/nlines.
By default, the sub-window will extend from the specified position to the lower right corner of the
window.

syncdown()
Touches each location in the window that has been touched in any of its ancestor windows. This
routine is called by refresh(), so it should almost never be necessary to call it manually.

syncok(flag)
If called with flag set to true, then syncup() is called automatically whenever there is a change in
the window.

syncup()
Touches all locations in ancestors of the window that have been changed in the window.

timeout(delay)
Sets blocking or non-blocking read behavior for the window. If delay is negative, blocking read is
used, which will wait indefinitely for input). If delay is zero, then non-blocking read is used, and
-1 will be returned by getch() if no input is waiting. If delay is positive, then getch() will block
for delay milliseconds, and return -1 if there is still no input at the end of that time.

touchline(start, count)
Pretend count lines have been changed, starting with line start .

touchwin()
Pretend the whole window has been changed, for purposes of drawing optimizations.

untouchwin()
Marks all lines in the window as unchanged since the last call to refresh().

vline([y, x, ] ch, n)
Display a vertical line starting at (y, x) with length n consisting of the character ch.

6.13.3 Constants

The curses module defines the following data members:

ERR

170 Chapter 6. Generic Operating System Services



Some curses routines that return an integer, such as getch(), return ERR upon failure.

OK
Some curses routines that return an integer, such as napms(), return OK upon success.

version
A string representing the current version of the module. Also available as version .

Several constants are available to specify character cell attributes:

Attribute Meaning
A ALTCHARSET Alternate character set mode.
A BLINK Blink mode.
A BOLD Bold mode.
A DIM Dim mode.
A NORMAL Normal attribute.
A STANDOUT Standout mode.
A UNDERLINE Underline mode.

Keys are referred to by integer constants with names starting with ‘KEY ’. The exact keycaps available
are system dependent.

Key constant Key
KEY MIN Minimum key value
KEY BREAK Break key (unreliable)
KEY DOWN Down-arrow
KEY UP Up-arrow
KEY LEFT Left-arrow
KEY RIGHT Right-arrow
KEY HOME Home key (upward+left arrow)
KEY BACKSPACE Backspace (unreliable)
KEY F0 Function keys. Up to 64 function keys are supported.
KEY Fn Value of function key n
KEY DL Delete line
KEY IL Insert line
KEY DC Delete character
KEY IC Insert char or enter insert mode
KEY EIC Exit insert char mode
KEY CLEAR Clear screen
KEY EOS Clear to end of screen
KEY EOL Clear to end of line
KEY SF Scroll 1 line forward
KEY SR Scroll 1 line backward (reverse)
KEY NPAGE Next page
KEY PPAGE Previous page
KEY STAB Set tab
KEY CTAB Clear tab
KEY CATAB Clear all tabs
KEY ENTER Enter or send (unreliable)
KEY SRESET Soft (partial) reset (unreliable)
KEY RESET Reset or hard reset (unreliable)
KEY PRINT Print
KEY LL Home down or bottom (lower left)
KEY A1 Upper left of keypad
KEY A3 Upper right of keypad
KEY B2 Center of keypad
KEY C1 Lower left of keypad
KEY C3 Lower right of keypad
KEY BTAB Back tab

6.13. curses — Terminal handling for character-cell displays 171



Key constant Key
KEY BEG Beg (beginning)
KEY CANCEL Cancel
KEY CLOSE Close
KEY COMMAND Cmd (command)
KEY COPY Copy
KEY CREATE Create
KEY END End
KEY EXIT Exit
KEY FIND Find
KEY HELP Help
KEY MARK Mark
KEY MESSAGE Message
KEY MOVE Move
KEY NEXT Next
KEY OPEN Open
KEY OPTIONS Options
KEY PREVIOUS Prev (previous)
KEY REDO Redo
KEY REFERENCE Ref (reference)
KEY REFRESH Refresh
KEY REPLACE Replace
KEY RESTART Restart
KEY RESUME Resume
KEY SAVE Save
KEY SBEG Shifted Beg (beginning)
KEY SCANCEL Shifted Cancel
KEY SCOMMAND Shifted Command
KEY SCOPY Shifted Copy
KEY SCREATE Shifted Create
KEY SDC Shifted Delete char
KEY SDL Shifted Delete line
KEY SELECT Select
KEY SEND Shifted End
KEY SEOL Shifted Clear line
KEY SEXIT Shifted Dxit
KEY SFIND Shifted Find
KEY SHELP Shifted Help
KEY SHOME Shifted Home
KEY SIC Shifted Input
KEY SLEFT Shifted Left arrow
KEY SMESSAGE Shifted Message
KEY SMOVE Shifted Move
KEY SNEXT Shifted Next
KEY SOPTIONS Shifted Options
KEY SPREVIOUS Shifted Prev
KEY SPRINT Shifted Print
KEY SREDO Shifted Redo
KEY SREPLACE Shifted Replace
KEY SRIGHT Shifted Right arrow
KEY SRSUME Shifted Resume
KEY SSAVE Shifted Save
KEY SSUSPEND Shifted Suspend
KEY SUNDO Shifted Undo
KEY SUSPEND Suspend
KEY UNDO Undo
KEY MOUSE Mouse event has occurred
KEY RESIZE Terminal resize event

172 Chapter 6. Generic Operating System Services



Key constant Key
KEY MAX Maximum key value

On VT100s and their software emulations, such as X terminal emulators, there are normally at least
four function keys (KEY F1, KEY F2, KEY F3, KEY F4) available, and the arrow keys mapped to KEY UP,
KEY DOWN, KEY LEFT and KEY RIGHT in the obvious way. If your machine has a PC keybboard, it is safe
to expect arrow keys and twelve function keys (older PC keyboards may have only ten function keys);
also, the following keypad mappings are standard:

Keycap Constant
Insert KEY IC
Delete KEY DC
Home KEY HOME
End KEY END
Page Up KEY NPAGE
Page Down KEY PPAGE

The following table lists characters from the alternate character set. These are inherited from the VT100
terminal, and will generally be available on software emulations such as X terminals. When there is no
graphic available, curses falls back on a crude printable ASCII approximation. Note: These are available
only after initscr() has been called.

ACS code Meaning
ACS BBSS alternate name for upper right corner
ACS BLOCK solid square block
ACS BOARD board of squares
ACS BSBS alternate name for horizontal line
ACS BSSB alternate name for upper left corner
ACS BSSS alternate name for top tee
ACS BTEE bottom tee
ACS BULLET bullet
ACS CKBOARD checker board (stipple)
ACS DARROW arrow pointing down
ACS DEGREE degree symbol
ACS DIAMOND diamond
ACS GEQUAL greater-than-or-equal-to
ACS HLINE horizontal line
ACS LANTERN lantern symbol
ACS LARROW left arrow
ACS LEQUAL less-than-or-equal-to
ACS LLCORNER lower left-hand corner
ACS LRCORNER lower right-hand corner
ACS LTEE left tee
ACS NEQUAL not-equal sign
ACS PI letter pi
ACS PLMINUS plus-or-minus sign
ACS PLUS big plus sign
ACS RARROW right arrow
ACS RTEE right tee
ACS S1 scan line 1
ACS S3 scan line 3
ACS S7 scan line 7
ACS S9 scan line 9
ACS SBBS alternate name for lower right corner

6.13. curses — Terminal handling for character-cell displays 173



ACS code Meaning
ACS SBSB alternate name for vertical line
ACS SBSS alternate name for right tee
ACS SSBB alternate name for lower left corner
ACS SSBS alternate name for bottom tee
ACS SSSB alternate name for left tee
ACS SSSS alternate name for crossover or big plus
ACS STERLING pound sterling
ACS TTEE top tee
ACS UARROW up arrow
ACS ULCORNER upper left corner
ACS URCORNER upper right corner
ACS VLINE vertical line

The following table lists the predefined colors:

Constant Color
COLOR BLACK Black
COLOR BLUE Blue
COLOR CYAN Cyan (light greenish blue)
COLOR GREEN Green
COLOR MAGENTA Magenta (purplish red)
COLOR RED Red
COLOR WHITE White
COLOR YELLOW Yellow

6.14 curses.textpad — Text input widget for curses programs

New in version 1.6.

The curses.textpad module provides a Textbox class that handles elementary text editing in a curses
window, supporting a set of keybindings resembling those of Emacs (thus, also of Netscape Navigator,
BBedit 6.x, FrameMaker, and many other programs). The module also provides a rectangle-drawing
function useful for framing text boxes or for other purposes.

The module curses.textpad defines the following function:

rectangle(win, uly, ulx, lry, lrx)
Draw a rectangle. The first argument must be a window object; the remaining arguments are
coordinates relative to that window. The second and third arguments are the y and x coordinates
of the upper left hand corner of the rectangle To be drawn; the fourth and fifth arguments are the
y and x coordinates of the lower right hand corner. The rectangle will be drawn using VT100/IBM
PC forms characters on terminals that make this possible (including xterm and most other software
terminal emulators). Otherwise it will be drawn with ASCII dashes, vertical bars, and plus signs.

6.14.1 Textbox objects

You can instantiate a Textbox object as follows:

class Textbox(win)
Return a textbox widget object. The win argument should be a curses WindowObject in which
the textbox is to be contained. The edit cursor of the textbox is initially located at the upper left
hand corner of the containin window, with coordinates (0, 0). The instance’s stripspaces flag
is initially on.

174 Chapter 6. Generic Operating System Services



Textbox objects have the following methods:

edit([validator ])
This is the entry point you will normally use. It accepts editing keystrokes until one of the
termination keystrokes is entered. If validator is supplied, it must be a function. It will be
called for each keystroke entered with the keystroke as a parameter; command dispatch is done on
the result. This method returns the window contents as a string; whether blanks in the window
are included is affected by the stripspaces member.

do command(ch)
Process a single command keystroke. Here are the supported special keystrokes:

Keystroke Action
Ctrl-A Go to left edge of window.
Ctrl-B Cursor left, wrapping to previous line if appropriate.
Ctrl-D Delete character under cursor.
Ctrl-E Go to right edge (stripspaces off) or end of line (stripspaces on).
Ctrl-F Cursor right, wrapping to next line when appropriate.
Ctrl-G Terminate, returning the window contents.
Ctrl-H Delete character backward.
Ctrl-J Terminate if the window is 1 line, otherwise insert newline.
Ctrl-K If line is blank, delete it, otherwise clear to end of line.
Ctrl-L Refresh screen.
Ctrl-N Cursor down; move down one line.
Ctrl-O Insert a blank line at cursor location.
Ctrl-P Cursor up; move up one line.

Move operations do nothing if the cursor is at an edge where the movement is not possible. The
following synonyms are supported where possible:

Constant Keystroke
KEY LEFT Ctrl-B
KEY RIGHT Ctrl-F
KEY UP Ctrl-P
KEY DOWN Ctrl-N
KEY BACKSPACE Ctrl-h

All other keystrokes are treated as a command to insert the given character and move right (with
line wrapping).

gather()
This method returns the window contents as a string; whether blanks in the window are included
is affected by the stripspaces member.

stripspaces
This data member is a flag which controls the interpretation of blanks in the window. When it
is on, trailing blanks on each line are ignored; any cursor motion that would land the cursor on
a trailing blank goes to the end of that line instead, and trailing blanks are stripped when the
window contents is gathered.

6.15 curses.wrapper — Terminal handler for curses programs

New in version 1.6.

This module supplies one function, wrapper(), which runs another function which should be the rest of
your curses-using application. If the application raises an exception, wrapper() will restore the terminal
to a sane state before passing it further up the stack and generating a traceback.

wrapper(func, ...)
Wrapper function that initializes curses and calls another function, func, restoring normal key-
board/screen behavior on error. The callable object func is then passed the main window ’stdscr’
as its first argument, followed by any other arguments passed to wrapper().

6.15. curses.wrapper — Terminal handler for curses programs 175



Before calling the hook function, wrapper() turns on cbreak mode, turns off echo, enables the termi-
nal keypad, and initializes colors if the terminal has color support. On exit (whether normally or by
exception) it restores cooked mode, turns on echo, and disables the terminal keypad.

6.16 curses.ascii — Utilities for ASCII characters

New in version 1.6.

The curses.ascii module supplies name constants for ascii characters and functions to test membership
in various ascii character classes. The constants supplied are names for control characters as follows:

Name Meaning
NUL
SOH Start of heading, console interrupt
STX Start of text
ETX End of text
EOT End of transmission
ENQ Enquiry, goes with ACK flow control
ACK Acknowledgement
BEL Bell
BS Backspace
TAB Tab
HT Alias for TAB: “Horizontal tab”
LF Line feed
NL Alias for LF: “New line”
VT Vertical tab
FF Form feed
CR Carriage return
SO Shift-out, begin alternate character set
SI Shift-in, resume default character set
DLE Data-link escape
DC1 XON, for flow control
DC2 Device control 2, block-mode flow control
DC3 XOFF, for flow control
DC4 Device control 4
NAK Negative acknowledgement
SYN Synchronous idle
ETB End transmission block
CAN Cancel
EM End of medium
SUB Substitute
ESC Escape
FS File separator
GS Group separator
RS Record separator, block-mode terminator
US Unit separator
SP Space
DEL Delete

Note that many of these have little practical significance in modern usage. The mnemonics derive from
teleprinter conventions that predate digital computers.

The module supplies the following functions, patterned on those in the standard C library:

isalnum(c)
Checks for an ascii alphanumeric character; it is equivalent to ‘isalpha(c) or isdigit(c)’.

isalpha(c)
Checks for an ascii alphabetic character; it is equivalent to ‘isupper(c) or islower(c)’.

176 Chapter 6. Generic Operating System Services



isascii(c)
Checks for a character value that fits in the 7-bit ascii set.

isblank(c)
Checks for an ascii whitespace character.

iscntrl(c)
Checks for an ascii control character (in the range 0x00 to 0x1f).

isdigit(c)
Checks for an ascii decimal digit, ‘0’ through ‘9’. This is equivalent to ‘c in string.digits’.

isgraph(c)
Checks for ascii any printable character except space.

islower(c)
Checks for an ascii lower-case character.

isprint(c)
Checks for any ascii printable character including space.

ispunct(c)
Checks for any printable ascii character which is not a space or an alphanumeric character.

isspace(c)
Checks for ascii white-space characters; space, line feed, carriage return, form feed, horizontal tab,
vertical tab.

isupper(c)
Checks for an ascii uppercase letter.

isxdigit(c)
Checks for an ascii hexadecimal digit. This is equivalent to ‘c in string.hexdigits’.

isctrl(c)
Checks for an ascii control character (ordinal values 0 to 31).

ismeta(c)
Checks for a non-ascii character (ordinal values 0x80 and above).

These functions accept either integers or strings; when the argument is a string, it is first converted using
the built-in function ord().

Note that all these functions check ordinal bit values derived from the first character of the string you pass
in; they do not actually know anything about the host machine’s character encoding. For functions that
know about the character encoding (and handle internationalization properly) see the string module.

The following two functions take either a single-character string or integer byte value; they return a value
of the same type.

ascii(c)
Return the ASCII value corresponding to the low 7 bits of c.

ctrl(c)
Return the control character corresponding to the given character (the character bit value is bitwise-
anded with 0x1f).

alt(c)
Return the 8-bit character corresponding to the given ASCII character (the character bit value is
bitwise-ored with 0x80).

The following function takes either a single-character string or integer value; it returns a string.

unctrl(c)
Return a string representation of the ascii character c. If c is printable, this string is the character
itself. If the character is a control character (0x00-0x1f) the string consists of a caret (‘^’) followed
by the corresponding uppercase letter. If the character is an ascii delete (0x7f) the string is ’^?’.
If the character has its meta bit (0x80) set, the meta bit is stripped, the preceding rules applied,
and ‘!’ prepended to the result.

6.16. curses.ascii — Utilities for ASCII characters 177



controlnames
A 33-element string array that contains the ascii mnemonics for the thirty-two ascii control
characters from 0 (NUL) to 0x1f (US), in order, plus the mnemonic ‘SP’ for the space character.

6.17 curses.panel — A panel stack extension for curses.

Panels are windows with the added feature of depth, so they can be stacked on top of each other, and
only the visible portions of each window will be displayed. Panels can be added, moved up or down in
the stack, and removed.

6.17.1 Functions

The module curses.panel defines the following functions:

bottom panel()
Returns the bottom panel in the panel stack.

new panel(win)
Returns a panel object, associating it with the given window win.

top panel()
Returns the top panel in the panel stack.

update panels()
Updates the virtual screen after changes in the panel stack. This does not call curses.doupdate(),
so you’ll have to do this yourself.

6.17.2 Panel Objects

Panel objects, as returned by new panel() above, are windows with a stacking order. There’s always a
window associated with a panel which determines the content, while the panel methods are responsible
for the window’s depth in the panel stack.

Panel objects have the following methods:

above()
Returns the panel above the current panel.

below()
Returns the panel below the current panel.

bottom()
Push the panel to the bottom of the stack.

hidden()
Returns true if the panel is hidden (not visible), false otherwise.

hide()
Hide the panel. This does not delete the object, it just makes the window on screen invisible.

move(y, x)
Move the panel to the screen coordinates (y, x).

replace(win)
Change the window associated with the panel to the window win.

set userptr(obj)
Set the panel’s user pointer to obj . This is used to associate an arbitrary piece of data with the
panel, and can be any Python object.

show()
Display the panel (which might have been hidden).

178 Chapter 6. Generic Operating System Services



top()
Push panel to the top of the stack.

userptr()
Returns the user pointer for the panel. This might be any Python object.

window()
Returns the window object associated with the panel.

6.18 getopt — Parser for command line options

This module helps scripts to parse the command line arguments in sys.argv. It supports the same
conventions as the Unix getopt() function (including the special meanings of arguments of the form ‘-’
and ‘--’). Long options similar to those supported by GNU software may be used as well via an optional
third argument. This module provides a single function and an exception:

getopt(args, options[, long options ])
Parses command line options and parameter list. args is the argument list to be parsed, without
the leading reference to the running program. Typically, this means ‘sys.argv[1:]’. options is the
string of option letters that the script wants to recognize, with options that require an argument
followed by a colon (‘:’; i.e., the same format that Unix getopt() uses).

Note: Unlike GNU getopt(), after a non-option argument, all further arguments are considered
also non-options. This is similar to the way non-GNU Unix systems work.

long options, if specified, must be a list of strings with the names of the long options which should
be supported. The leading ’--’ characters should not be included in the option name. Long
options which require an argument should be followed by an equal sign (‘=’). To accept only long
options, options should be an empty string. Long options on the command line can be recognized
so long as they provide a prefix of the option name that matches exactly one of the accepted
options. For example, it long options is [’foo’, ’frob’], the option --fo will match as --foo,
but --f will not match uniquely, so GetoptError will be raised.

The return value consists of two elements: the first is a list of (option, value) pairs; the second is
the list of program arguments left after the option list was stripped (this is a trailing slice of args).
Each option-and-value pair returned has the option as its first element, prefixed with a hyphen for
short options (e.g., ’-x’) or two hyphens for long options (e.g., ’--long-option’), and the option
argument as its second element, or an empty string if the option has no argument. The options
occur in the list in the same order in which they were found, thus allowing multiple occurrences.
Long and short options may be mixed.

exception GetoptError
This is raised when an unrecognized option is found in the argument list or when an option requiring
an argument is given none. The argument to the exception is a string indicating the cause of the
error. For long options, an argument given to an option which does not require one will also cause
this exception to be raised. The attributes msg and opt give the error message and related option;
if there is no specific option to which the exception relates, opt is an empty string.

Changed in version 1.6: Introduced GetoptError as a synonym for error.

exception error
Alias for GetoptError; for backward compatibility.

An example using only Unix style options:

6.18. getopt — Parser for command line options 179



>>> import getopt

>>> args = ’-a -b -cfoo -d bar a1 a2’.split()

>>> args

[’-a’, ’-b’, ’-cfoo’, ’-d’, ’bar’, ’a1’, ’a2’]

>>> optlist, args = getopt.getopt(args, ’abc:d:’)

>>> optlist

[(’-a’, ’’), (’-b’, ’’), (’-c’, ’foo’), (’-d’, ’bar’)]

>>> args

[’a1’, ’a2’]

Using long option names is equally easy:

>>> s = ’--condition=foo --testing --output-file abc.def -x a1 a2’

>>> args = s.split()

>>> args

[’--condition=foo’, ’--testing’, ’--output-file’, ’abc.def’, ’-x’, ’a1’, ’a2’]

>>> optlist, args = getopt.getopt(args, ’x’, [

... ’condition=’, ’output-file=’, ’testing’])

>>> optlist

[(’--condition’, ’foo’), (’--testing’, ’’), (’--output-file’, ’abc.def’), (’-x’,

’’)]

>>> args

[’a1’, ’a2’]

In a script, typical usage is something like this:

import getopt, sys

def main():

try:

opts, args = getopt.getopt(sys.argv[1:], "ho:", ["help", "output="])

except getopt.GetoptError:

# print help information and exit:

usage()

sys.exit(2)

output = None

for o, a in opts:

if o in ("-h", "--help"):

usage()

sys.exit()

if o in ("-o", "--output"):

output = a

# ...

if __name__ == "__main__":

main()

6.19 tempfile — Generate temporary file names

This module generates temporary file names. It is not Unix specific, but it may require some help on
non-Unix systems.

The module defines the following user-callable functions:

mktemp([suffix ])

180 Chapter 6. Generic Operating System Services



Return a unique temporary filename. This is an absolute pathname of a file that does not exist at
the time the call is made. No two calls will return the same filename. suffix , if provided, is used as
the last part of the generated file name. This can be used to provide a filename extension or other
identifying information that may be useful on some platforms.

TemporaryFile([mode[, bufsize[, suffix ] ] ])
Return a file (or file-like) object that can be used as a temporary storage area. The file is created
in the most secure manner available in the appropriate temporary directory for the host platform.
Under Unix, the directory entry to the file is removed so that it is secure against attacks which
involve creating symbolic links to the file or replacing the file with a symbolic link to some other
file. For other platforms, which don’t allow removing the directory entry while the file is in use,
the file is automatically deleted as soon as it is closed (including an implicit close when it is
garbage-collected).

The mode parameter defaults to ’w+b’ so that the file created can be read and written without
being closed. Binary mode is used so that it behaves consistently on all platforms without regard
for the data that is stored. bufsize defaults to -1, meaning that the operating system default is
used. suffix is passed to mktemp().

The module uses two global variables that tell it how to construct a temporary name. The caller may
assign values to them; by default they are initialized at the first call to mktemp().

tempdir
When set to a value other than None, this variable defines the directory in which filenames returned
by mktemp() reside. The default is taken from the environment variable TMPDIR; if this is not
set, either ‘/usr/tmp’ is used (on Unix), or the current working directory (all other systems). No
check is made to see whether its value is valid.

gettempprefix()
Return the filename prefix used to create temporary files. This does not contain the directory
component. Using this function is preferred over using the template variable directly. New in
version 1.5.2.

template
Deprecated since release 2.0. Use gettempprefix() instead.

When set to a value other than None, this variable defines the prefix of the final component of the
filenames returned by mktemp(). A string of decimal digits is added to generate unique filenames.
The default is either ‘@pid .’ where pid is the current process ID (on Unix), ‘˜pid -’ on Windows
NT, ‘Python-Tmp-’ on MacOS, or ‘tmp’ (all other systems).

Older versions of this module used to require that template be set to None after a call to os.fork();
this has not been necessary since version 1.5.2.

6.20 errno — Standard errno system symbols

This module makes available standard errno system symbols. The value of each symbol is the cor-
responding integer value. The names and descriptions are borrowed from ‘linux/include/errno.h’, which
should be pretty all-inclusive.

errorcode
Dictionary providing a mapping from the errno value to the string name in the underlying system.
For instance, errno.errorcode[errno.EPERM] maps to ’EPERM’.

To translate a numeric error code to an error message, use os.strerror().

Of the following list, symbols that are not used on the current platform are not defined by the module.
The specific list of defined symbols is available as errno.errorcode.keys(). Symbols available can
include:

EPERM
Operation not permitted

ENOENT

6.20. errno — Standard errno system symbols 181



No such file or directory

ESRCH
No such process

EINTR
Interrupted system call

EIO
I/O error

ENXIO
No such device or address

E2BIG
Arg list too long

ENOEXEC
Exec format error

EBADF
Bad file number

ECHILD
No child processes

EAGAIN
Try again

ENOMEM
Out of memory

EACCES
Permission denied

EFAULT
Bad address

ENOTBLK
Block device required

EBUSY
Device or resource busy

EEXIST
File exists

EXDEV
Cross-device link

ENODEV
No such device

ENOTDIR
Not a directory

EISDIR
Is a directory

EINVAL
Invalid argument

ENFILE
File table overflow

EMFILE
Too many open files

ENOTTY
Not a typewriter

182 Chapter 6. Generic Operating System Services



ETXTBSY
Text file busy

EFBIG
File too large

ENOSPC
No space left on device

ESPIPE
Illegal seek

EROFS
Read-only file system

EMLINK
Too many links

EPIPE
Broken pipe

EDOM
Math argument out of domain of func

ERANGE
Math result not representable

EDEADLK
Resource deadlock would occur

ENAMETOOLONG
File name too long

ENOLCK
No record locks available

ENOSYS
Function not implemented

ENOTEMPTY
Directory not empty

ELOOP
Too many symbolic links encountered

EWOULDBLOCK
Operation would block

ENOMSG
No message of desired type

EIDRM
Identifier removed

ECHRNG
Channel number out of range

EL2NSYNC
Level 2 not synchronized

EL3HLT
Level 3 halted

EL3RST
Level 3 reset

ELNRNG
Link number out of range

EUNATCH

6.20. errno — Standard errno system symbols 183



Protocol driver not attached

ENOCSI
No CSI structure available

EL2HLT
Level 2 halted

EBADE
Invalid exchange

EBADR
Invalid request descriptor

EXFULL
Exchange full

ENOANO
No anode

EBADRQC
Invalid request code

EBADSLT
Invalid slot

EDEADLOCK
File locking deadlock error

EBFONT
Bad font file format

ENOSTR
Device not a stream

ENODATA
No data available

ETIME
Timer expired

ENOSR
Out of streams resources

ENONET
Machine is not on the network

ENOPKG
Package not installed

EREMOTE
Object is remote

ENOLINK
Link has been severed

EADV
Advertise error

ESRMNT
Srmount error

ECOMM
Communication error on send

EPROTO
Protocol error

EMULTIHOP
Multihop attempted

184 Chapter 6. Generic Operating System Services



EDOTDOT
RFS specific error

EBADMSG
Not a data message

EOVERFLOW
Value too large for defined data type

ENOTUNIQ
Name not unique on network

EBADFD
File descriptor in bad state

EREMCHG
Remote address changed

ELIBACC
Can not access a needed shared library

ELIBBAD
Accessing a corrupted shared library

ELIBSCN
.lib section in a.out corrupted

ELIBMAX
Attempting to link in too many shared libraries

ELIBEXEC
Cannot exec a shared library directly

EILSEQ
Illegal byte sequence

ERESTART
Interrupted system call should be restarted

ESTRPIPE
Streams pipe error

EUSERS
Too many users

ENOTSOCK
Socket operation on non-socket

EDESTADDRREQ
Destination address required

EMSGSIZE
Message too long

EPROTOTYPE
Protocol wrong type for socket

ENOPROTOOPT
Protocol not available

EPROTONOSUPPORT
Protocol not supported

ESOCKTNOSUPPORT
Socket type not supported

EOPNOTSUPP
Operation not supported on transport endpoint

EPFNOSUPPORT

6.20. errno — Standard errno system symbols 185



Protocol family not supported

EAFNOSUPPORT
Address family not supported by protocol

EADDRINUSE
Address already in use

EADDRNOTAVAIL
Cannot assign requested address

ENETDOWN
Network is down

ENETUNREACH
Network is unreachable

ENETRESET
Network dropped connection because of reset

ECONNABORTED
Software caused connection abort

ECONNRESET
Connection reset by peer

ENOBUFS
No buffer space available

EISCONN
Transport endpoint is already connected

ENOTCONN
Transport endpoint is not connected

ESHUTDOWN
Cannot send after transport endpoint shutdown

ETOOMANYREFS
Too many references: cannot splice

ETIMEDOUT
Connection timed out

ECONNREFUSED
Connection refused

EHOSTDOWN
Host is down

EHOSTUNREACH
No route to host

EALREADY
Operation already in progress

EINPROGRESS
Operation now in progress

ESTALE
Stale NFS file handle

EUCLEAN
Structure needs cleaning

ENOTNAM
Not a XENIX named type file

ENAVAIL
No XENIX semaphores available

186 Chapter 6. Generic Operating System Services



EISNAM
Is a named type file

EREMOTEIO
Remote I/O error

EDQUOT
Quota exceeded

6.21 glob — Unix style pathname pattern expansion

The glob module finds all the pathnames matching a specified pattern according to the rules used by the
Unix shell. No tilde expansion is done, but *, ?, and character ranges expressed with [] will be correctly
matched. This is done by using the os.listdir() and fnmatch.fnmatch() functions in concert, and
not by actually invoking a subshell. (For tilde and shell variable expansion, use os.path.expanduser()
and os.path.expandvars().)

glob(pathname)
Returns a possibly-empty list of path names that match pathname, which must be a string con-
taining a path specification. pathname can be either absolute (like ‘/usr/src/Python-1.5/Makefile’) or
relative (like ‘../../Tools/*/*.gif’), and can contain shell-style wildcards.

For example, consider a directory containing only the following files: ‘1.gif’, ‘2.txt’, and ‘card.gif’. glob()
will produce the following results. Notice how any leading components of the path are preserved.

>>> import glob

>>> glob.glob(’./[0-9].*’)

[’./1.gif’, ’./2.txt’]

>>> glob.glob(’*.gif’)

[’1.gif’, ’card.gif’]

>>> glob.glob(’?.gif’)

[’1.gif’]

See Also:

Module fnmatch (section 6.22):
Shell-style filename (not path) expansion

6.22 fnmatch — Unix filename pattern matching

This module provides support for Unix shell-style wildcards, which are not the same as regular expres-
sions (which are documented in the re module). The special characters used in shell-style wildcards
are:

Pattern Meaning
* matches everything
? matches any single character

[seq] matches any character in seq
[!seq] matches any character not in seq

Note that the filename separator (’/’ on Unix) is not special to this module. See module glob for
pathname expansion (glob uses fnmatch() to match pathname segments). Similarly, filenames starting
with a period are not special for this module, and are matched by the * and ? patterns.

fnmatch(filename, pattern)
Test whether the filename string matches the pattern string, returning true or false. If the operating
system is case-insensitive, then both parameters will be normalized to all lower- or upper-case before

6.21. glob — Unix style pathname pattern expansion 187



the comparison is performed. If you require a case-sensitive comparison regardless of whether that’s
standard for your operating system, use fnmatchcase() instead.

fnmatchcase(filename, pattern)
Test whether filename matches pattern, returning true or false; the comparison is case-sensitive.

See Also:

Module glob (section 6.21):
Unix shell-style path expansion.

6.23 shutil — High-level file operations

The shutil module offers a number of high-level operations on files and collections of files. In particular,
functions are provided which support file copying and removal.

Caveat: On MacOS, the resource fork and other metadata are not used. For file copies, this means that
resources will be lost and file type and creator codes will not be correct.

copyfile(src, dst)
Copy the contents of the file named src to a file named dst . If dst exists, it will be replaced,
otherwise it will be created.

copyfileobj(fsrc, fdst[, length ])
Copy the contents of the file-like object fsrc to the file-like object fdst . The integer length, if given,
is the buffer size. In particular, a negative length value means to copy the data without looping
over the source data in chunks; by default the data is read in chunks to avoid uncontrolled memory
consumption.

copymode(src, dst)
Copy the permission bits from src to dst . The file contents, owner, and group are unaffected.

copystat(src, dst)
Copy the permission bits, last access time, and last modification time from src to dst . The file
contents, owner, and group are unaffected.

copy(src, dst)
Copy the file src to the file or directory dst . If dst is a directory, a file with the same basename as
src is created (or overwritten) in the directory specified. Permission bits are copied.

copy2(src, dst)
Similar to copy(), but last access time and last modification time are copied as well. This is similar
to the Unix command cp -p.

copytree(src, dst[, symlinks ])
Recursively copy an entire directory tree rooted at src. The destination directory, named by dst ,
must not already exist; it will be created. Individual files are copied using copy2(). If symlinks is
true, symbolic links in the source tree are represented as symbolic links in the new tree; if false or
omitted, the contents of the linked files are copied to the new tree. Errors are reported to standard
output.

The source code for this should be considered an example rather than a tool.

rmtree(path[, ignore errors[, onerror ] ])
Delete an entire directory tree. If ignore errors is true, errors will be ignored; if false or omitted,
errors are handled by calling a handler specified by onerror or raise an exception.

If onerror is provided, it must be a callable that accepts three parameters: function, path, and
excinfo. The first parameter, function, is the function which raised the exception; it will be
os.remove() or os.rmdir(). The second parameter, path, will be the path name passed to func-
tion. The third parameter, excinfo, will be the exception information return by sys.exc info().
Exceptions raised by onerror will not be caught.

188 Chapter 6. Generic Operating System Services



6.23.1 Example

This example is the implementation of the copytree() function, described above, with the docstring
omitted. It demonstrates many of the other functions provided by this module.

def copytree(src, dst, symlinks=0):

names = os.listdir(src)

os.mkdir(dst)

for name in names:

srcname = os.path.join(src, name)

dstname = os.path.join(dst, name)

try:

if symlinks and os.path.islink(srcname):

linkto = os.readlink(srcname)

os.symlink(linkto, dstname)

elif os.path.isdir(srcname):

copytree(srcname, dstname)

else:

copy2(srcname, dstname)

# XXX What about devices, sockets etc.?

except (IOError, os.error), why:

print "Can’t copy %s to %s: %s" % (‘srcname‘, ‘dstname‘, str(why))

6.24 locale — Internationalization services

The locale module opens access to the POSIX locale database and functionality. The POSIX locale
mechanism allows programmers to deal with certain cultural issues in an application, without requiring
the programmer to know all the specifics of each country where the software is executed.

The locale module is implemented on top of the locale module, which in turn uses an ANSI C locale
implementation if available.

The locale module defines the following exception and functions:

exception Error
Exception raised when setlocale() fails.

setlocale(category[, locale ])
If locale is specified, it may be a string, a tuple of the form (language code, encoding), or None.
If it is a tuple, it is converted to a string using the locale aliasing engine. If locale is given and
not None, setlocale() modifies the locale setting for the category . The available categories are
listed in the data description below. The value is the name of a locale. An empty string specifies
the user’s default settings. If the modification of the locale fails, the exception Error is raised. If
successful, the new locale setting is returned.

If locale is omitted or None, the current setting for category is returned.

setlocale() is not thread safe on most systems. Applications typically start with a call of

import locale

locale.setlocale(locale.LC_ALL, ’’)

This sets the locale for all categories to the user’s default setting (typically specified in the LANG
environment variable). If the locale is not changed thereafter, using multithreading should not
cause problems.

Changed in version 2.0: Added support for tuple values of the locale parameter.

localeconv()
Returns the database of of the local conventions as a dictionary. This dictionary has the following

6.24. locale — Internationalization services 189



strings as keys:
Key Category Meaning
LC NUMERIC ’decimal point’ Decimal point character.

’grouping’ Sequence of numbers specifying which relative po-
sitions the ’thousands sep’ is expected. If the
sequence is terminated with CHAR MAX, no further
grouping is performed. If the sequence terminates
with a 0, the last group size is repeatedly used.

’thousands sep’ Character used between groups.
LC MONETARY ’int curr symbol’ International currency symbol.

’currency symbol’ Local currency symbol.
’mon decimal point’ Decimal point used for monetary values.
’mon thousands sep’ Group separator used for monetary values.
’mon grouping’ Equivalent to ’grouping’, used for monetary val-

ues.
’positive sign’ Symbol used to annotate a positive monetary

value.
’negative sign’ Symbol used to annotate a nnegative monetary

value.
’frac digits’ Number of fractional digits used in local format-

ting of monetary values.
’int frac digits’ Number of fractional digits used in international

formatting of monetary values.

The possible values for ’p sign posn’ and ’n sign posn’ are given below.

Value Explanation
0 Currency and value are surrounded by parentheses.
1 The sign should precede the value and currency symbol.
2 The sign should follow the value and currency symbol.
3 The sign should immediately precede the value.
4 The sign should immediately follow the value.

LC MAX Nothing is specified in this locale.

getdefaultlocale([envvars ])
Tries to determine the default locale settings and returns them as a tuple of the form (language
code, encoding).

According to POSIX, a program which has not called setlocale(LC ALL, ’’) runs using the
portable ’C’ locale. Calling setlocale(LC ALL, ’’) lets it use the default locale as defined by
the LANG variable. Since we do not want to interfere with the current locale setting we thus
emulate the behavior in the way described above.

To maintain compatibility with other platforms, not only the LANG variable is tested, but a list of
variables given as envvars parameter. The first found to be defined will be used. envvars defaults
to the search path used in GNU gettext; it must always contain the variable name ‘LANG’. The GNU
gettext search path contains ’LANGUAGE’, ’LC ALL’, code’LC CTYPE’, and ’LANG’, in that order.

Except for the code ’C’, the language code corresponds to RFC 1766. language code and encoding
may be None if their values cannot be determined. New in version 2.0.

getlocale([category ])
Returns the current setting for the given locale category as tuple (language code, encoding). cate-
gory may be one of the LC * values except LC ALL. It defaults to LC CTYPE.

Except for the code ’C’, the language code corresponds to RFC 1766. language code and encoding
may be None if their values cannot be determined. New in version 2.0.

normalize(localename)
Returns a normalized locale code for the given locale name. The returned locale code is formatted
for use with setlocale(). If normalization fails, the original name is returned unchanged.

If the given encoding is not known, the function defaults to the default encoding for the locale code
just like setlocale(). New in version 2.0.

190 Chapter 6. Generic Operating System Services



resetlocale([category ])
Sets the locale for category to the default setting.

The default setting is determined by calling getdefaultlocale(). category defaults to LC ALL.
New in version 2.0.

strcoll(string1, string2)
Compares two strings according to the current LC COLLATE setting. As any other compare function,
returns a negative, or a positive value, or 0, depending on whether string1 collates before or after
string2 or is equal to it.

strxfrm(string)
Transforms a string to one that can be used for the built-in function cmp(), and still returns locale-
aware results. This function can be used when the same string is compared repeatedly, e.g. when
collating a sequence of strings.

format(format, val[, grouping ])
Formats a number val according to the current LC NUMERIC setting. The format follows the
conventions of the % operator. For floating point values, the decimal point is modified if appropriate.
If grouping is true, also takes the grouping into account.

str(float)
Formats a floating point number using the same format as the built-in function str(float), but
takes the decimal point into account.

atof(string)
Converts a string to a floating point number, following the LC NUMERIC settings.

atoi(string)
Converts a string to an integer, following the LC NUMERIC conventions.

LC CTYPE
Locale category for the character type functions. Depending on the settings of this category, the
functions of module string dealing with case change their behaviour.

LC COLLATE
Locale category for sorting strings. The functions strcoll() and strxfrm() of the locale module
are affected.

LC TIME
Locale category for the formatting of time. The function time.strftime() follows these conven-
tions.

LC MONETARY
Locale category for formatting of monetary values. The available options are available from the
localeconv() function.

LC MESSAGES
Locale category for message display. Python currently does not support application specific
locale-aware messages. Messages displayed by the operating system, like those returned by
os.strerror() might be affected by this category.

LC NUMERIC
Locale category for formatting numbers. The functions format(), atoi(), atof() and str() of
the locale module are affected by that category. All other numeric formatting operations are not
affected.

LC ALL
Combination of all locale settings. If this flag is used when the locale is changed, setting the locale
for all categories is attempted. If that fails for any category, no category is changed at all. When
the locale is retrieved using this flag, a string indicating the setting for all categories is returned.
This string can be later used to restore the settings.

CHAR MAX
This is a symbolic constant used for different values returned by localeconv().

6.24. locale — Internationalization services 191



Example:

>>> import locale

>>> loc = locale.setlocale(locale.LC_ALL) # get current locale

>>> locale.setlocale(locale.LC_ALL, ’de’) # use German locale

>>> locale.strcoll(’f\xe4n’, ’foo’) # compare a string containing an umlaut

>>> locale.setlocale(locale.LC_ALL, ’’) # use user’s preferred locale

>>> locale.setlocale(locale.LC_ALL, ’C’) # use default (C) locale

>>> locale.setlocale(locale.LC_ALL, loc) # restore saved locale

6.24.1 Background, details, hints, tips and caveats

The C standard defines the locale as a program-wide property that may be relatively expensive to change.
On top of that, some implementation are broken in such a way that frequent locale changes may cause
core dumps. This makes the locale somewhat painful to use correctly.

Initially, when a program is started, the locale is the ‘C’ locale, no matter what the user’s preferred
locale is. The program must explicitly say that it wants the user’s preferred locale settings by calling
setlocale(LC ALL, ’’).

It is generally a bad idea to call setlocale() in some library routine, since as a side effect it affects the
entire program. Saving and restoring it is almost as bad: it is expensive and affects other threads that
happen to run before the settings have been restored.

If, when coding a module for general use, you need a locale independent version of an operation that
is affected by the locale (e.g. string.lower(), or certain formats used with time.strftime())), you
will have to find a way to do it without using the standard library routine. Even better is convincing
yourself that using locale settings is okay. Only as a last resort should you document that your module
is not compatible with non-‘C’ locale settings.

The case conversion functions in the string module are affected by the locale settings. When a
call to the setlocale() function changes the LC CTYPE settings, the variables string.lowercase,
string.uppercase and string.letters are recalculated. Note that this code that uses these vari-
able through ‘from ... import ...’, e.g. from string import letters, is not affected by subsequent
setlocale() calls.

The only way to perform numeric operations according to the locale is to use the special functions defined
by this module: atof(), atoi(), format(), str().

6.24.2 For extension writers and programs that embed Python

Extension modules should never call setlocale(), except to find out what the current locale is. But
since the return value can only be used portably to restore it, that is not very useful (except perhaps to
find out whether or not the locale is ‘C’).

When Python is embedded in an application, if the application sets the locale to something specific
before initializing Python, that is generally okay, and Python will use whatever locale is set, except that
the LC NUMERIC locale should always be ‘C’.

The setlocale() function in the locale module gives the Python programmer the impression that you
can manipulate the LC NUMERIC locale setting, but this not the case at the C level: C code will always
find that the LC NUMERIC locale setting is ‘C’. This is because too much would break when the decimal
point character is set to something else than a period (e.g. the Python parser would break). Caveat:
threads that run without holding Python’s global interpreter lock may occasionally find that the numeric
locale setting differs; this is because the only portable way to implement this feature is to set the numeric
locale settings to what the user requests, extract the relevant characteristics, and then restore the ‘C’
numeric locale.

When Python code uses the locale module to change the locale, this also affects the embedding applica-
tion. If the embedding application doesn’t want this to happen, it should remove the locale extension

192 Chapter 6. Generic Operating System Services



module (which does all the work) from the table of built-in modules in the ‘config.c’ file, and make sure
that the locale module is not accessible as a shared library.

6.25 gettext — Multilingual internationalization services

The gettext module provides internationalization (I18N) and localization (L10N) services for your
Python modules and applications. It supports both the GNU gettext message catalog API and a
higher level, class-based API that may be more appropriate for Python files. The interface described
below allows you to write your module and application messages in one natural language, and provide a
catalog of translated messages for running under different natural languages.

Some hints on localizing your Python modules and applications are also given.

6.25.1 GNU gettext API

The gettext module defines the following API, which is very similar to the GNU gettext API. If you
use this API you will affect the translation of your entire application globally. Often this is what you
want if your application is monolingual, with the choice of language dependent on the locale of your
user. If you are localizing a Python module, or if your application needs to switch languages on the fly,
you probably want to use the class-based API instead.

bindtextdomain(domain[, localedir ])
Bind the domain to the locale directory localedir . More concretely, gettext
will look for binary ‘.mo’ files for the given domain using the path (on Unix):
‘localedir/language/LC MESSAGES/domain.mo’, where languages is searched for in the en-
vironment variables LANGUAGE, LC ALL, LC MESSAGES, and LANG respectively.

If localedir is omitted or None, then the current binding for domain is returned.2

textdomain([domain ])
Change or query the current global domain. If domain is None, then the current global domain is
returned, otherwise the global domain is set to domain, which is returned.

gettext(message)
Return the localized translation of message, based on the current global domain, language, and
locale directory. This function is usually aliased as in the local namespace (see examples below).

dgettext(domain, message)
Like gettext(), but look the message up in the specified domain.

Note that GNU gettext also defines a dcgettext() method, but this was deemed not useful and so it
is currently unimplemented.

Here’s an example of typical usage for this API:

import gettext

gettext.bindtextdomain(’myapplication’, ’/path/to/my/language/directory’)

gettext.textdomain(’myapplication’)

_ = gettext.gettext

# ...

print _(’This is a translatable string.’)

2The default locale directory is system dependent; e.g. on RedHat Linux it is ‘/usr/share/locale’, but on Solaris it
is ‘/usr/lib/locale’. The gettext module does not try to support these system dependent defaults; instead its default is
‘sys.prefix/share/locale’. For this reason, it is always best to call bindtextdomain() with an explicit absolute path at
the start of your application.

6.25. gettext — Multilingual internationalization services 193



6.25.2 Class-based API

The class-based API of the gettext module gives you more flexibility and greater convenience than the
GNU gettext API. It is the recommended way of localizing your Python applications and modules.
gettext defines a “translations” class which implements the parsing of GNU ‘.mo’ format files, and has
methods for returning either standard 8-bit strings or Unicode strings. Translations instances can also
install themselves in the built-in namespace as the function ().

find(domain[, localedir[, languages ] ])
This function implements the standard ‘.mo’ file search algorithm. It takes a domain, identical
to what textdomain() takes, and optionally a localedir (as in bindtextdomain()), and a list of
languages. All arguments are strings.

If localedir is not given, then the default system locale directory is used.3 If languages is not given,
then the following environment variables are searched: LANGUAGE, LC ALL, LC MESSAGES,
and LANG. The first one returning a non-empty value is used for the languages variable. The
environment variables can contain a colon separated list of languages, which will be split.

find() then expands and normalizes the languages, and then iterates through them, searching for
an existing file built of these components:

‘localedir/language/LC MESSAGES/domain.mo’

The first such file name that exists is returned by find(). If no such file is found, then None is
returned.

translation(domain[, localedir[, languages[, class ] ] ])
Return a Translations instance based on the domain, localedir , and languages, which are first
passed to find() to get the associated ‘.mo’ file path. Instances with identical ‘.mo’ file names are
cached. The actual class instantiated is either class if provided, otherwise GNUTranslations. The
class’s constructor must take a single file object argument. If no ‘.mo’ file is found, this function
raises IOError.

install(domain[, localedir[, unicode ] ])
This installs the function in Python’s builtin namespace, based on domain, and localedir which
are passed to the function translation(). The unicode flag is passed to the resulting translation
object’s install method.

As seen below, you usually mark the strings in your application that are candidates for translation,
by wrapping them in a call to the function (), e.g.

print _(’This string will be translated.’)

For convenience, you want the () function to be installed in Python’s builtin namespace, so it is
easily accessible in all modules of your application.

The NullTranslations class

Translation classes are what actually implement the translation of original source file message strings
to translated message strings. The base class used by all translation classes is NullTranslations; this
provides the basic interface you can use to write your own specialized translation classes. Here are the
methods of NullTranslations:

init ([fp ])
Takes an optional file object fp, which is ignored by the base class. Initializes “protected” instance
variables info and charset which are set by derived classes. It then calls self. parse(fp) if fp
is not None.

parse(fp)
No-op’d in the base class, this method takes file object fp, and reads the data from the file,
initializing its message catalog. If you have an unsupported message catalog file format, you
should override this method to parse your format.

3See the footnote for bindtextdomain() above.

194 Chapter 6. Generic Operating System Services



gettext(message)
Return the translated message. Overridden in derived classes.

ugettext(message)
Return the translated message as a Unicode string. Overridden in derived classes.

info()
Return the “protected” info variable.

charset()
Return the “protected” charset variable.

install([unicode ])
If the unicode flag is false, this method installs self.gettext() into the built-in namespace,
binding it to ‘ ’. If unicode is true, it binds self.ugettext() instead. By default, unicode is
false.

Note that this is only one way, albeit the most convenient way, to make the function available
to your application. Because it affects the entire application globally, and specifically the built-in
namespace, localized modules should never install . Instead, they should use this code to make

available to their module:

import gettext

t = gettext.translation(’mymodule’, ...)

_ = t.gettext

This puts only in the module’s global namespace and so only affects calls within this module.

The GNUTranslations class

The gettext module provides one additional class derived from NullTranslations: GNUTranslations.
This class overrides parse() to enable reading GNU gettext format ‘.mo’ files in both big-endian and
little-endian format.

It also parses optional meta-data out of the translation catalog. It is convention with GNU gettext
to include meta-data as the translation for the empty string. This meta-data is in RFC 822-style key:
value pairs. If the key Content-Type is found, then the charset property is used to initialize the
“protected” charset instance variable. The entire set of key/value pairs are placed into a dictionary
and set as the “protected” info instance variable.

If the ‘.mo’ file’s magic number is invalid, or if other problems occur while reading the file, instantiating
a GNUTranslations class can raise IOError.

The other usefully overridden method is ugettext(), which returns a Unicode string by passing both the
translated message string and the value of the “protected” charset variable to the builtin unicode()
function.

Solaris message catalog support

The Solaris operating system defines its own binary ‘.mo’ file format, but since no documentation can be
found on this format, it is not supported at this time.

The Catalog constructor

GNOME uses a version of the gettext module by James Henstridge, but this version has a slightly
different API. Its documented usage was:

6.25. gettext — Multilingual internationalization services 195



import gettext

cat = gettext.Catalog(domain, localedir)

_ = cat.gettext

print _(’hello world’)

For compatibility with this older module, the function Catalog() is an alias for the the translation()
function described above.

One difference between this module and Henstridge’s: his catalog objects supported access through a
mapping API, but this appears to be unused and so is not currently supported.

6.25.3 Internationalizing your programs and modules

Internationalization (I18N) refers to the operation by which a program is made aware of multiple lan-
guages. Localization (L10N) refers to the adaptation of your program, once internationalized, to the
local language and cultural habits. In order to provide multilingual messages for your Python programs,
you need to take the following steps:

1. prepare your program or module by specially marking translatable strings

2. run a suite of tools over your marked files to generate raw messages catalogs

3. create language specific translations of the message catalogs

4. use the gettext module so that message strings are properly translated

In order to prepare your code for I18N, you need to look at all the strings in your files. Any string that
needs to be translated should be marked by wrapping it in (’...’) – i.e. a call to the function ().
For example:

filename = ’mylog.txt’

message = _(’writing a log message’)

fp = open(filename, ’w’)

fp.write(message)

fp.close()

In this example, the string ’writing a log message’ is marked as a candidate for translation, while
the strings ’mylog.txt’ and ’w’ are not.

The Python distribution comes with two tools which help you generate the message catalogs once you’ve
prepared your source code. These may or may not be available from a binary distribution, but they can
be found in a source distribution, in the ‘Tools/i18n’ directory.

The pygettext4 program scans all your Python source code looking for the strings you previously marked
as translatable. It is similar to the GNU gettext program except that it understands all the intricacies
of Python source code, but knows nothing about C or C++ source code. You don’t need GNU gettext
unless you’re also going to be translating C code (e.g. C extension modules).

pygettext generates textual Uniforum-style human readable message catalog ‘.pot’ files, essentially struc-
tured human readable files which contain every marked string in the source code, along with a placeholder
for the translation strings. pygettext is a command line script that supports a similar command line
interface as xgettext; for details on its use, run:

pygettext.py --help

4François Pinard has written a program called xpot which does a similar job. It is available as part of his po-utils
package at http://www.iro.umontreal.ca/contrib/po-utils/HTML.

196 Chapter 6. Generic Operating System Services



Copies of these ‘.pot’ files are then handed over to the individual human translators who write language-
specific versions for every supported natural language. They send you back the filled in language-specific
versions as a ‘.po’ file. Using the msgfmt.py5 program (in the ‘Tools/i18n’ directory), you take the ‘.po’
files from your translators and generate the machine-readable ‘.mo’ binary catalog files. The ‘.mo’ files
are what the gettext module uses for the actual translation processing during run-time.

How you use the gettext module in your code depends on whether you are internationalizing your entire
application or a single module.

Localizing your module

If you are localizing your module, you must take care not to make global changes, e.g. to the built-in
namespace. You should not use the GNU gettext API but instead the class-based API.

Let’s say your module is called “spam” and the module’s various natural language translation ‘.mo’
files reside in ‘/usr/share/locale’ in GNU gettext format. Here’s what you would put at the top of your
module:

import gettext

t = gettext.translation(’spam’, ’/usr/share/locale’)

_ = t.gettext

If your translators were providing you with Unicode strings in their ‘.po’ files, you’d instead do:

import gettext

t = gettext.translation(’spam’, ’/usr/share/locale’)

_ = t.ugettext

Localizing your application

If you are localizing your application, you can install the () function globally into the built-in names-
pace, usually in the main driver file of your application. This will let all your application-specific files
just use (’...’) without having to explicitly install it in each file.

In the simple case then, you need only add the following bit of code to the main driver file of your
application:

import gettext

gettext.install(’myapplication’)

If you need to set the locale directory or the unicode flag, you can pass these into the install() function:

import gettext

gettext.install(’myapplication’, ’/usr/share/locale’, unicode=1)

Changing languages on the fly

If your program needs to support many languages at the same time, you may want to create multiple
translation instances and then switch between them explicitly, like so:

5msgfmt.py is binary compatible with GNU msgfmt except that it provides a simpler, all-Python implementation.
With this and pygettext.py, you generally won’t need to install the GNU gettext package to internationalize your Python
applications.

6.25. gettext — Multilingual internationalization services 197



import gettext

lang1 = gettext.translation(languages=[’en’])

lang2 = gettext.translation(languages=[’fr’])

lang3 = gettext.translation(languages=[’de’])

# start by using language1

lang1.install()

# ... time goes by, user selects language 2

lang2.install()

# ... more time goes by, user selects language 3

lang3.install()

Deferred translations

In most coding situations, strings are translated were they are coded. Occasionally however, you need
to mark strings for translation, but defer actual translation until later. A classic example is:

animals = [’mollusk’,

’albatross’,

’rat’,

’penguin’,

’python’,

]

# ...

for a in animals:

print a

Here, you want to mark the strings in the animals list as being translatable, but you don’t actually want
to translate them until they are printed.

Here is one way you can handle this situation:

def _(message): return message

animals = [_(’mollusk’),

_(’albatross’),

_(’rat’),

_(’penguin’),

_(’python’),

]

del _

# ...

for a in animals:

print _(a)

This works because the dummy definition of () simply returns the string unchanged. And this dummy
definition will temporarily override any definition of () in the built-in namespace (until the del com-
mand). Take care, though if you have a previous definition of in the local namespace.

Note that the second use of () will not identify “a” as being translatable to the pygettext program,
since it is not a string.

198 Chapter 6. Generic Operating System Services



Another way to handle this is with the following example:

def N_(message): return message

animals = [N_(’mollusk’),

N_(’albatross’),

N_(’rat’),

N_(’penguin’),

N_(’python’),

]

# ...

for a in animals:

print _(a)

In this case, you are marking translatable strings with the function N (),6 which won’t conflict with
any definition of (). However, you will need to teach your message extraction program to look for
translatable strings marked with N (). pygettext and xpot both support this through the use of
command line switches.

6.25.4 Acknowledgements

The following people contributed code, feedback, design suggestions, previous implementations, and
valuable experience to the creation of this module:

• Peter Funk

• James Henstridge

• Marc-André Lemburg

• Martin von Löwis

• François Pinard

• Barry Warsaw

6The choice of N () here is totally arbitrary; it could have just as easily been MarkThisStringForTranslation().

6.25. gettext — Multilingual internationalization services 199



200



CHAPTER

SEVEN

Optional Operating System Services

The modules described in this chapter provide interfaces to operating system features that are available
on selected operating systems only. The interfaces are generally modeled after the Unix or C interfaces
but they are available on some other systems as well (e.g. Windows or NT). Here’s an overview:

signal Set handlers for asynchronous events.
socket Low-level networking interface.
select Wait for I/O completion on multiple streams.
thread Create multiple threads of control within one interpreter.
threading Higher-level threading interface.
Queue A synchronized queue class.
mmap Interface to memory-mapped files for Unix and Windows.
anydbm Generic interface to DBM-style database modules.
dumbdbm Portable implementation of the simple DBM interface.
dbhash DBM-style interface to the BSD database library.
whichdb Guess which DBM-style module created a given database.
bsddb Interface to Berkeley DB database library
zlib Low-level interface to compression and decompression routines compatible with gzip.
gzip Interfaces for gzip compression and decompression using file objects.
zipfile Read and write ZIP-format archive files.
readline GNU readline support for Python.
rlcompleter Python identifier completion for the GNU readline library.

7.1 signal — Set handlers for asynchronous events

This module provides mechanisms to use signal handlers in Python. Some general rules for working with
signals and their handlers:

• A handler for a particular signal, once set, remains installed until it is explicitly reset (i.e. Python
emulates the BSD style interface regardless of the underlying implementation), with the exception
of the handler for SIGCHLD, which follows the underlying implementation.

• There is no way to “block” signals temporarily from critical sections (since this is not supported
by all Unix flavors).

• Although Python signal handlers are called asynchronously as far as the Python user is concerned,
they can only occur between the “atomic” instructions of the Python interpreter. This means that
signals arriving during long calculations implemented purely in C (e.g. regular expression matches
on large bodies of text) may be delayed for an arbitrary amount of time.

• When a signal arrives during an I/O operation, it is possible that the I/O operation raises an
exception after the signal handler returns. This is dependent on the underlying Unix system’s
semantics regarding interrupted system calls.

• Because the C signal handler always returns, it makes little sense to catch synchronous errors like
SIGFPE or SIGSEGV.

201



• Python installs a small number of signal handlers by default: SIGPIPE is ignored (so write errors
on pipes and sockets can be reported as ordinary Python exceptions) and SIGINT is translated into
a KeyboardInterrupt exception. All of these can be overridden.

• Some care must be taken if both signals and threads are used in the same program. The funda-
mental thing to remember in using signals and threads simultaneously is: always perform signal()
operations in the main thread of execution. Any thread can perform an alarm(), getsignal(),
or pause(); only the main thread can set a new signal handler, and the main thread will be the
only one to receive signals (this is enforced by the Python signal module, even if the underlying
thread implementation supports sending signals to individual threads). This means that signals
can’t be used as a means of inter-thread communication. Use locks instead.

The variables defined in the signal module are:

SIG DFL
This is one of two standard signal handling options; it will simply perform the default function for
the signal. For example, on most systems the default action for SIGQUIT is to dump core and exit,
while the default action for SIGCLD is to simply ignore it.

SIG IGN
This is another standard signal handler, which will simply ignore the given signal.

SIG*
All the signal numbers are defined symbolically. For example, the hangup signal is defined as
signal.SIGHUP; the variable names are identical to the names used in C programs, as found in
<signal.h>. The Unix man page for ‘signal()’ lists the existing signals (on some systems this is
signal(2), on others the list is in signal(7)). Note that not all systems define the same set of signal
names; only those names defined by the system are defined by this module.

NSIG
One more than the number of the highest signal number.

The signal module defines the following functions:

alarm(time)
If time is non-zero, this function requests that a SIGALRM signal be sent to the process in time
seconds. Any previously scheduled alarm is canceled (i.e. only one alarm can be scheduled at any
time). The returned value is then the number of seconds before any previously set alarm was to
have been delivered. If time is zero, no alarm id scheduled, and any scheduled alarm is canceled.
The return value is the number of seconds remaining before a previously scheduled alarm. If the
return value is zero, no alarm is currently scheduled. (See the Unix man page alarm(2).)

getsignal(signalnum)
Return the current signal handler for the signal signalnum. The returned value may be a callable
Python object, or one of the special values signal.SIG IGN, signal.SIG DFL or None. Here,
signal.SIG IGN means that the signal was previously ignored, signal.SIG DFL means that the
default way of handling the signal was previously in use, and None means that the previous signal
handler was not installed from Python.

pause()
Cause the process to sleep until a signal is received; the appropriate handler will then be called.
Returns nothing. (See the Unix man page signal(2).)

signal(signalnum, handler)
Set the handler for signal signalnum to the function handler . handler can be a callable Python
object taking two arguments (see below), or one of the special values signal.SIG IGN or
signal.SIG DFL. The previous signal handler will be returned (see the description of getsignal()
above). (See the Unix man page signal(2).)

When threads are enabled, this function can only be called from the main thread; attempting to
call it from other threads will cause a ValueError exception to be raised.

The handler is called with two arguments: the signal number and the current stack frame (None
or a frame object; see the reference manual for a description of frame objects).

202 Chapter 7. Optional Operating System Services



7.1.1 Example

Here is a minimal example program. It uses the alarm() function to limit the time spent waiting to
open a file; this is useful if the file is for a serial device that may not be turned on, which would normally
cause the os.open() to hang indefinitely. The solution is to set a 5-second alarm before opening the file;
if the operation takes too long, the alarm signal will be sent, and the handler raises an exception.

import signal, os, FCNTL

def handler(signum, frame):

print ’Signal handler called with signal’, signum

raise IOError, "Couldn’t open device!"

# Set the signal handler and a 5-second alarm

signal.signal(signal.SIGALRM, handler)

signal.alarm(5)

# This open() may hang indefinitely

fd = os.open(’/dev/ttyS0’, FCNTL.O_RDWR)

signal.alarm(0) # Disable the alarm

7.2 socket — Low-level networking interface

This module provides access to the BSD socket interface. It is available on all modern Unix systems,
Windows, MacOS, BeOS, OS/2, and probably additional platforms.

For an introduction to socket programming (in C), see the following papers: An Introductory 4.3BSD
Interprocess Communication Tutorial, by Stuart Sechrest and An Advanced 4.3BSD Interprocess Com-
munication Tutorial, by Samuel J. Leffler et al, both in the Unix Programmer’s Manual, Supplementary
Documents 1 (sections PS1:7 and PS1:8). The platform-specific reference material for the various socket-
related system calls are also a valuable source of information on the details of socket semantics. For Unix,
refer to the manual pages; for Windows, see the WinSock (or Winsock 2) specification.

The Python interface is a straightforward transliteration of the Unix system call and library interface for
sockets to Python’s object-oriented style: the socket() function returns a socket object whose methods
implement the various socket system calls. Parameter types are somewhat higher-level than in the C
interface: as with read() and write() operations on Python files, buffer allocation on receive operations
is automatic, and buffer length is implicit on send operations.

Socket addresses are represented as a single string for the AF UNIX address family and as a pair (host,
port) for the AF INET address family, where host is a string representing either a hostname in Internet
domain notation like ’daring.cwi.nl’ or an IP address like ’100.50.200.5’, and port is an integral
port number. Other address families are currently not supported. The address format required by a
particular socket object is automatically selected based on the address family specified when the socket
object was created.

For IP addresses, two special forms are accepted instead of a host address: the empty string represents
INADDR ANY, and the string ’<broadcast>’ represents INADDR BROADCAST.

All errors raise exceptions. The normal exceptions for invalid argument types and out-of-memory con-
ditions can be raised; errors related to socket or address semantics raise the error socket.error.

Non-blocking mode is supported through the setblocking() method.

The module socket exports the following constants and functions:

exception error
This exception is raised for socket- or address-related errors. The accompanying value is either
a string telling what went wrong or a pair (errno, string) representing an error returned by a

7.2. socket — Low-level networking interface 203



system call, similar to the value accompanying os.error. See the module errno, which contains
names for the error codes defined by the underlying operating system.

AF UNIX
AF INET

These constants represent the address (and protocol) families, used for the first argument to
socket(). If the AF UNIX constant is not defined then this protocol is unsupported.

SOCK STREAM
SOCK DGRAM
SOCK RAW
SOCK RDM
SOCK SEQPACKET

These constants represent the socket types, used for the second argument to socket(). (Only
SOCK STREAM and SOCK DGRAM appear to be generally useful.)

SO *
SOMAXCONN
MSG *
SOL *
IPPROTO *
IPPORT *
INADDR *
IP *

Many constants of these forms, documented in the Unix documentation on sockets and/or the
IP protocol, are also defined in the socket module. They are generally used in arguments to the
setsockopt() and getsockopt() methods of socket objects. In most cases, only those symbols
that are defined in the Unix header files are defined; for a few symbols, default values are provided.

getfqdn([name ])
Return a fully qualified domain name for name. If name is omitted or empty, it is interpreted as
the local host. To find the fully qualified name, the hostname returned by gethostbyaddr() is
checked, then aliases for the host, if available. The first name which includes a period is selected.
In case no fully qualified domain name is available, the hostname is returned. New in version 2.0.

gethostbyname(hostname)
Translate a host name to IP address format. The IP address is returned as a string, such
as ’100.50.200.5’. If the host name is an IP address itself it is returned unchanged. See
gethostbyname ex() for a more complete interface.

gethostbyname ex(hostname)
Translate a host name to IP address format, extended interface. Return a triple (hostname,
aliaslist, ipaddrlist) where hostname is the primary host name responding to the given
ip address, aliaslist is a (possibly empty) list of alternative host names for the same address,
and ipaddrlist is a list of IP addresses for the same interface on the same host (often but not
always a single address).

gethostname()
Return a string containing the hostname of the machine where the Python interpreter
is currently executing. If you want to know the current machine’s IP address, use
gethostbyname(gethostname()). Note: gethostname() doesn’t always return the fully quali-
fied domain name; use gethostbyaddr(gethostname()) (see below).

gethostbyaddr(ip address)
Return a triple (hostname, aliaslist, ipaddrlist) where hostname is the primary host name re-
sponding to the given ip address, aliaslist is a (possibly empty) list of alternative host names for
the same address, and ipaddrlist is a list of IP addresses for the same interface on the same host
(most likely containing only a single address). To find the fully qualified domain name, use the
function getfqdn().

getprotobyname(protocolname)
Translate an Internet protocol name (for example, ’icmp’) to a constant suitable for passing as
the (optional) third argument to the socket() function. This is usually only needed for sockets

204 Chapter 7. Optional Operating System Services



opened in “raw” mode (SOCK RAW); for the normal socket modes, the correct protocol is chosen
automatically if the protocol is omitted or zero.

getservbyname(servicename, protocolname)
Translate an Internet service name and protocol name to a port number for that service. The
protocol name should be ’tcp’ or ’udp’.

socket(family, type[, proto ])
Create a new socket using the given address family, socket type and protocol number. The address
family should be AF INET or AF UNIX. The socket type should be SOCK STREAM, SOCK DGRAM or
perhaps one of the other ‘SOCK ’ constants. The protocol number is usually zero and may be
omitted in that case.

fromfd(fd, family, type[, proto ])
Build a socket object from an existing file descriptor (an integer as returned by a file object’s
fileno() method). Address family, socket type and protocol number are as for the socket()
function above. The file descriptor should refer to a socket, but this is not checked — subsequent
operations on the object may fail if the file descriptor is invalid. This function is rarely needed,
but can be used to get or set socket options on a socket passed to a program as standard input or
output (such as a server started by the Unix inet daemon). Availability: Unix.

ntohl(x)
Convert 32-bit integers from network to host byte order. On machines where the host byte order
is the same as network byte order, this is a no-op; otherwise, it performs a 4-byte swap operation.

ntohs(x)
Convert 16-bit integers from network to host byte order. On machines where the host byte order
is the same as network byte order, this is a no-op; otherwise, it performs a 2-byte swap operation.

htonl(x)
Convert 32-bit integers from host to network byte order. On machines where the host byte order
is the same as network byte order, this is a no-op; otherwise, it performs a 4-byte swap operation.

htons(x)
Convert 16-bit integers from host to network byte order. On machines where the host byte order
is the same as network byte order, this is a no-op; otherwise, it performs a 2-byte swap operation.

inet aton(ip string)
Convert an IP address from dotted-quad string format (for example, ’123.45.67.89’) to 32-bit packed
binary format, as a string four characters in length.

Useful when conversing with a program that uses the standard C library and needs objects of type
struct in addr, which is the C type for the 32-bit packed binary this function returns.

If the IP address string passed to this function is invalid, socket.error will be raised. Note that
exactly what is valid depends on the underlying C implementation of inet aton().

inet ntoa(packed ip)
Convert a 32-bit packed IP address (a string four characters in length) to its standard dotted-quad
string representation (for example, ’123.45.67.89’).

Useful when conversing with a program that uses the standard C library and needs objects of
type struct in addr, which is the C type for the 32-bit packed binary this function takes as an
argument.

If the string passed to this function is not exactly 4 bytes in length, socket.error will be raised.

SocketType
This is a Python type object that represents the socket object type. It is the same as
type(socket(...)).

See Also:

Module SocketServer (section 11.14):
Classes that simplify writing network servers.

7.2. socket — Low-level networking interface 205



7.2.1 Socket Objects

Socket objects have the following methods. Except for makefile() these correspond to Unix system
calls applicable to sockets.

accept()
Accept a connection. The socket must be bound to an address and listening for connections. The
return value is a pair (conn, address) where conn is a new socket object usable to send and receive
data on the connection, and address is the address bound to the socket on the other end of the
connection.

bind(address)
Bind the socket to address. The socket must not already be bound. (The format of address
depends on the address family — see above.) Note: This method has historically accepted a pair
of parameters for AF INET addresses instead of only a tuple. This was never intentional and is no
longer be available in Python 2.0.

close()
Close the socket. All future operations on the socket object will fail. The remote end will receive
no more data (after queued data is flushed). Sockets are automatically closed when they are
garbage-collected.

connect(address)
Connect to a remote socket at address. (The format of address depends on the address family
— see above.) Note: This method has historically accepted a pair of parameters for AF INET
addresses instead of only a tuple. This was never intentional and is no longer available in Python
2.0 and later.

connect ex(address)
Like connect(address), but return an error indicator instead of raising an exception for errors
returned by the C-level connect() call (other problems, such as “host not found,” can still raise
exceptions). The error indicator is 0 if the operation succeeded, otherwise the value of the errno
variable. This is useful to support, for example, asynchronous connects. Note: This method has
historically accepted a pair of parameters for AF INET addresses instead of only a tuple. This was
never intentional and is no longer be available in Python 2.0 and later.

fileno()
Return the socket’s file descriptor (a small integer). This is useful with select.select().

getpeername()
Return the remote address to which the socket is connected. This is useful to find out the port
number of a remote IP socket, for instance. (The format of the address returned depends on the
address family — see above.) On some systems this function is not supported.

getsockname()
Return the socket’s own address. This is useful to find out the port number of an IP socket, for
instance. (The format of the address returned depends on the address family — see above.)

getsockopt(level, optname[, buflen ])
Return the value of the given socket option (see the Unix man page getsockopt(2)). The needed
symbolic constants (SO * etc.) are defined in this module. If buflen is absent, an integer option
is assumed and its integer value is returned by the function. If buflen is present, it specifies the
maximum length of the buffer used to receive the option in, and this buffer is returned as a string.
It is up to the caller to decode the contents of the buffer (see the optional built-in module struct
for a way to decode C structures encoded as strings).

listen(backlog)
Listen for connections made to the socket. The backlog argument specifies the maximum number
of queued connections and should be at least 1; the maximum value is system-dependent (usually
5).

makefile([mode[, bufsize ] ])
Return a file object associated with the socket. (File objects are described in 2.1.7, “File Objects.”)

206 Chapter 7. Optional Operating System Services



The file object references a dup()ped version of the socket file descriptor, so the file object and
socket object may be closed or garbage-collected independently. The optional mode and bufsize
arguments are interpreted the same way as by the built-in open() function; see “Built-in Functions”
(section 2.3) for more information.

recv(bufsize[, flags ])
Receive data from the socket. The return value is a string representing the data received. The
maximum amount of data to be received at once is specified by bufsize. See the Unix manual page
recv(2) for the meaning of the optional argument flags; it defaults to zero.

recvfrom(bufsize[, flags ])
Receive data from the socket. The return value is a pair (string, address) where string is a
string representing the data received and address is the address of the socket sending the data.
The optional flags argument has the same meaning as for recv() above. (The format of address
depends on the address family — see above.)

send(string[, flags ])
Send data to the socket. The socket must be connected to a remote socket. The optional flags
argument has the same meaning as for recv() above. Returns the number of bytes sent. Ap-
plications are responsible for checking that all data has been sent; if only some of the data was
transmitted, the application needs to attempt delivery of the remaining data.

sendall(string[, flags ])
Send data to the socket. The socket must be connected to a remote socket. The optional flags
argument has the same meaning as for recv() above. Unlike send(), this method continues to
send data from string until either all data has been sent or an error occurs. None is returned on
success. On error, an exception is raised, and there is no way to determine how much data, if any,
was successfully sent.

sendto(string[, flags ], address)
Send data to the socket. The socket should not be connected to a remote socket, since the des-
tination socket is specified by address. The optional flags argument has the same meaning as for
recv() above. Return the number of bytes sent. (The format of address depends on the address
family — see above.)

setblocking(flag)
Set blocking or non-blocking mode of the socket: if flag is 0, the socket is set to non-blocking, else
to blocking mode. Initially all sockets are in blocking mode. In non-blocking mode, if a recv() call
doesn’t find any data, or if a send() call can’t immediately dispose of the data, a error exception
is raised; in blocking mode, the calls block until they can proceed.

setsockopt(level, optname, value)
Set the value of the given socket option (see the Unix manual page setsockopt(2)). The needed
symbolic constants are defined in the socket module (SO * etc.). The value can be an integer
or a string representing a buffer. In the latter case it is up to the caller to ensure that the string
contains the proper bits (see the optional built-in module struct for a way to encode C structures
as strings).

shutdown(how)
Shut down one or both halves of the connection. If how is 0, further receives are disallowed. If
how is 1, further sends are disallowed. If how is 2, further sends and receives are disallowed.

Note that there are no methods read() or write(); use recv() and send() without flags argument
instead.

7.2.2 Example

Here are two minimal example programs using the TCP/IP protocol: a server that echoes all data that
it receives back (servicing only one client), and a client using it. Note that a server must perform the
sequence socket(), bind(), listen(), accept() (possibly repeating the accept() to service more than
one client), while a client only needs the sequence socket(), connect(). Also note that the server does

7.2. socket — Low-level networking interface 207



not send()/recv() on the socket it is listening on but on the new socket returned by accept().

# Echo server program

import socket

HOST = ’’ # Symbolic name meaning the local host

PORT = 50007 # Arbitrary non-privileged port

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s.bind((HOST, PORT))

s.listen(1)

conn, addr = s.accept()

print ’Connected by’, addr

while 1:

data = conn.recv(1024)

if not data: break

conn.send(data)

conn.close()

# Echo client program

import socket

HOST = ’daring.cwi.nl’ # The remote host

PORT = 50007 # The same port as used by the server

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

s.connect((HOST, PORT))

s.send(’Hello, world’)

data = s.recv(1024)

s.close()

print ’Received’, ‘data‘

7.3 select — Waiting for I/O completion

This module provides access to the select() and poll() functions available in most operating systems.
Note that on Windows, it only works for sockets; on other operating systems, it also works for other file
types (in particular, on Unix, it works on pipes). It cannot be used on regular files to determine whether
a file has grown since it was last read.

The module defines the following:

exception error
The exception raised when an error occurs. The accompanying value is a pair containing the
numeric error code from errno and the corresponding string, as would be printed by the C function
perror().

poll()
(Not supported by all operating systems.) Returns a polling object, which supports registering
and unregistering file descriptors, and then polling them for I/O events; see section 7.3.1 below for
the methods supported by polling objects.

select(iwtd, owtd, ewtd[, timeout ])
This is a straightforward interface to the Unix select() system call. The first three arguments are
lists of ‘waitable objects’: either integers representing file descriptors or objects with a parameterless
method named fileno() returning such an integer. The three lists of waitable objects are for
input, output and ‘exceptional conditions’, respectively. Empty lists are allowed, but acceptance
of three empty lists is platform-dependent. (It is known to work on Unix but not on Windows.)
The optional timeout argument specifies a time-out as a floating point number in seconds. When
the timeout argument is omitted the function blocks until at least one file descriptor is ready. A
time-out value of zero specifies a poll and never blocks.

208 Chapter 7. Optional Operating System Services



The return value is a triple of lists of objects that are ready: subsets of the first three arguments.
When the time-out is reached without a file descriptor becoming ready, three empty lists are
returned.

Amongst the acceptable object types in the lists are Python file objects (e.g. sys.stdin, or objects
returned by open() or os.popen()), socket objects returned by socket.socket(), . You may also
define a wrapper class yourself, as long as it has an appropriate fileno() method (that really
returns a file descriptor, not just a random integer). Note: File objects on Windows are not
acceptable, but sockets are. On Windows, the underlying select() function is provided by the
WinSock library, and does not handle file desciptors that don’t originate from WinSock.

7.3.1 Polling Objects

The poll() system call, supported on most Unix systems, provides better scalability for network servers
that service many, many clients at the same time. poll() scales better because the system call only
requires listing the file descriptors of interest, while select() builds a bitmap, turns on bits for the fds of
interest, and then afterward the whole bitmap has to be linearly scanned again. select() is O(highest
file descriptor), while poll() is O(number of file descriptors).

register(fd[, eventmask ])
Register a file descriptor with the polling object. Future calls to the poll() method will then check
whether the file descriptor has any pending I/O events. fd can be either an integer, or an object
with a fileno() method that returns an integer. File objects implement fileno(), so they can
also be used as the argument.

eventmask is an optional bitmask describing the type of events you want to check for, and can be
a combination of the constants POLLIN, POLLPRI, and POLLOUT, described in the table below. If
not specified, the default value used will check for all 3 types of events.

Constant Meaning
POLLIN There is data to read
POLLPRI There is urgent data to read
POLLOUT Ready for output: writing will not block
POLLERR Error condition of some sort
POLLHUP Hung up
POLLNVAL Invalid request: descriptor not open

Registering a file descriptor that’s already registered is not an error, and has the same effect as
registering the descriptor exactly once.

unregister(fd)
Remove a file descriptor being tracked by a polling object. Just like the register() method, fd
can be an integer or an object with a fileno() method that returns an integer.

Attempting to remove a file descriptor that was never registered causes a KeyError exception to
be raised.

poll([timeout ])
Polls the set of registered file descriptors, and returns a possibly-empty list containing (fd, event)
2-tuples for the descriptors that have events or errors to report. fd is the file descriptor, and event
is a bitmask with bits set for the reported events for that descriptor — POLLIN for waiting input,
POLLOUT to indicate that the descriptor can be written to, and so forth. An empty list indicates
that the call timed out and no file descriptors had any events to report. If timeout is given, it
specifies the length of time in milliseconds which the system will wait for events before returning.
If timeout is omitted, negative, or None, the call will block until there is an event for this poll
object.

7.4 thread — Multiple threads of control

This module provides low-level primitives for working with multiple threads (a.k.a. light-weight processes
or tasks) — multiple threads of control sharing their global data space. For synchronization, simple locks

7.4. thread — Multiple threads of control 209



(a.k.a. mutexes or binary semaphores) are provided.

The module is optional. It is supported on Windows NT and ’95, SGI IRIX, Solaris 2.x, as well as on
systems that have a POSIX thread (a.k.a. “pthread”) implementation.

It defines the following constant and functions:

exception error
Raised on thread-specific errors.

LockType
This is the type of lock objects.

start new thread(function, args[, kwargs ])
Start a new thread. The thread executes the function function with the argument list args (which
must be a tuple). The optional kwargs argument specifies a dictionary of keyword arguments. When
the function returns, the thread silently exits. When the function terminates with an unhandled
exception, a stack trace is printed and then the thread exits (but other threads continue to run).

exit()
Raise the SystemExit exception. When not caught, this will cause the thread to exit silently.

exit thread()
Deprecated since release 1.5.2. Use exit().

This is an obsolete synonym for exit().

allocate lock()
Return a new lock object. Methods of locks are described below. The lock is initially unlocked.

get ident()
Return the ‘thread identifier’ of the current thread. This is a nonzero integer. Its value has no direct
meaning; it is intended as a magic cookie to be used e.g. to index a dictionary of thread-specific
data. Thread identifiers may be recycled when a thread exits and another thread is created.

Lock objects have the following methods:

acquire([waitflag ])
Without the optional argument, this method acquires the lock unconditionally, if necessary waiting
until it is released by another thread (only one thread at a time can acquire a lock — that’s their
reason for existence), and returns None. If the integer waitflag argument is present, the action
depends on its value: if it is zero, the lock is only acquired if it can be acquired immediately without
waiting, while if it is nonzero, the lock is acquired unconditionally as before. If an argument is
present, the return value is 1 if the lock is acquired successfully, 0 if not.

release()
Releases the lock. The lock must have been acquired earlier, but not necessarily by the same
thread.

locked()
Return the status of the lock: 1 if it has been acquired by some thread, 0 if not.

Caveats:

• Threads interact strangely with interrupts: the KeyboardInterrupt exception will be received by
an arbitrary thread. (When the signal module is available, interrupts always go to the main
thread.)

• Calling sys.exit() or raising the SystemExit exception is equivalent to calling exit().

• Not all built-in functions that may block waiting for I/O allow other threads to run. (The most
popular ones (time.sleep(), file.read(), select.select()) work as expected.)

• It is not possible to interrupt the acquire() method on a lock — the KeyboardInterrupt exception
will happen after the lock has been acquired.

• When the main thread exits, it is system defined whether the other threads survive. On SGI IRIX

210 Chapter 7. Optional Operating System Services



using the native thread implementation, they survive. On most other systems, they are killed
without executing try ... finally clauses or executing object destructors.

• When the main thread exits, it does not do any of its usual cleanup (except that try ... finally
clauses are honored), and the standard I/O files are not flushed.

7.5 threading — Higher-level threading interface

This module constructs higher-level threading interfaces on top of the lower level thread module.

This module is safe for use with ‘from threading import *’. It defines the following functions and
objects:

activeCount()
Return the number of currently active Thread objects. The returned count is equal to the length of
the list returned by enumerate(). A function that returns the number of currently active threads.

Condition()
A factory function that returns a new condition variable object. A condition variable allows one
or more threads to wait until they are notified by another thread.

currentThread()
Return the current Thread object, corresponding to the caller’s thread of control. If the caller’s
thread of control was not created through the threading module, a dummy thread object with
limited functionality is returned.

enumerate()
Return a list of all currently active Thread objects. The list includes daemonic threads, dummy
thread objects created by currentThread(), and the main thread. It excludes terminated threads
and threads that have not yet been started.

Event()
A factory function that returns a new event object. An event manages a flag that can be set to
true with the set() method and reset to false with the clear() method. The wait() method
blocks until the flag is true.

Lock()
A factory function that returns a new primitive lock object. Once a thread has acquired it,
subsequent attempts to acquire it block, until it is released; any thread may release it.

RLock()
A factory function that returns a new reentrant lock object. A reentrant lock must be released by
the thread that acquired it. Once a thread has acquired a reentrant lock, the same thread may
acquire it again without blocking; the thread must release it once for each time it has acquired it.

Semaphore()
A factory function that returns a new semaphore object. A semaphore manages a counter repre-
senting the number of release() calls minus the number of acquire() calls, plus an initial value.
The acquire() method blocks if necessary until it can return without making the counter negative.

class Thread
A class that represents a thread of control. This class can be safely subclassed in a limited fashion.

Detailed interfaces for the objects are documented below.

The design of this module is loosely based on Java’s threading model. However, where Java makes locks
and condition variables basic behavior of every object, they are separate objects in Python. Python’s
Thread class supports a subset of the behavior of Java’s Thread class; currently, there are no priorities,
no thread groups, and threads cannot be destroyed, stopped, suspended, resumed, or interrupted. The
static methods of Java’s Thread class, when implemented, are mapped to module-level functions.

All of the methods described below are executed atomically.

7.5. threading — Higher-level threading interface 211



7.5.1 Lock Objects

A primitive lock is a synchronization primitive that is not owned by a particular thread when locked. In
Python, it is currently the lowest level synchronization primitive available, implemented directly by the
thread extension module.

A primitive lock is in one of two states, “locked” or “unlocked”. It is created in the unlocked state.
It has two basic methods, acquire() and release(). When the state is unlocked, acquire() changes
the state to locked and returns immediately. When the state is locked, acquire() blocks until a call
to release() in another thread changes it to unlocked, then the acquire() call resets it to locked
and returns. The release() method should only be called in the locked state; it changes the state to
unlocked and returns immediately. When more than one thread is blocked in acquire() waiting for the
state to turn to unlocked, only one thread proceeds when a release() call resets the state to unlocked;
which one of the waiting threads proceeds is not defined, and may vary across implementations.

All methods are executed atomically.

acquire([blocking = 1 ])
Acquire a lock, blocking or non-blocking.

When invoked without arguments, block until the lock is unlocked, then set it to locked, and return.
There is no return value in this case.

When invoked with the blocking argument set to true, do the same thing as when called without
arguments, and return true.

When invoked with the blocking argument set to false, do not block. If a call without an argu-
ment would block, return false immediately; otherwise, do the same thing as when called without
arguments, and return true.

release()
Release a lock.

When the lock is locked, reset it to unlocked, and return. If any other threads are blocked waiting
for the lock to become unlocked, allow exactly one of them to proceed.

Do not call this method when the lock is unlocked.

There is no return value.

7.5.2 RLock Objects

A reentrant lock is a synchronization primitive that may be acquired multiple times by the same
thread. Internally, it uses the concepts of “owning thread” and “recursion level” in addition to the
locked/unlocked state used by primitive locks. In the locked state, some thread owns the lock; in the
unlocked state, no thread owns it.

To lock the lock, a thread calls its acquire() method; this returns once the thread owns the lock. To
unlock the lock, a thread calls its release() method. acquire()/release() call pairs may be nested;
only the final release() (i.e. the release() of the outermost pair) resets the lock to unlocked and
allows another thread blocked in acquire() to proceed.

acquire([blocking = 1 ])
Acquire a lock, blocking or non-blocking.

When invoked without arguments: if this thread already owns the lock, increment the recursion
level by one, and return immediately. Otherwise, if another thread owns the lock, block until the
lock is unlocked. Once the lock is unlocked (not owned by any thread), then grab ownership, set
the recursion level to one, and return. If more than one thread is blocked waiting until the lock is
unlocked, only one at a time will be able to grab ownership of the lock. There is no return value
in this case.

When invoked with the blocking argument set to true, do the same thing as when called without
arguments, and return true.

212 Chapter 7. Optional Operating System Services



When invoked with the blocking argument set to false, do not block. If a call without an argu-
ment would block, return false immediately; otherwise, do the same thing as when called without
arguments, and return true.

release()
Release a lock, decrementing the recursion level. If after the decrement it is zero, reset the lock to
unlocked (not owned by any thread), and if any other threads are blocked waiting for the lock to
become unlocked, allow exactly one of them to proceed. If after the decrement the recursion level
is still nonzero, the lock remains locked and owned by the calling thread.

Only call this method when the calling thread owns the lock. Do not call this method when the
lock is unlocked.

There is no return value.

7.5.3 Condition Objects

A condition variable is always associated with some kind of lock; this can be passed in or one will be
created by default. (Passing one in is useful when several condition variables must share the same lock.)

A condition variable has acquire() and release() methods that call the corresponding methods of the
associated lock. It also has a wait() method, and notify() and notifyAll() methods. These three
must only be called when the calling thread has acquired the lock.

The wait() method releases the lock, and then blocks until it is awakened by a notify() or notifyAll()
call for the same condition variable in another thread. Once awakened, it re-acquires the lock and returns.
It is also possible to specify a timeout.

The notify() method wakes up one of the threads waiting for the condition variable, if any are waiting.
The notifyAll() method wakes up all threads waiting for the condition variable.

Note: the notify() and notifyAll() methods don’t release the lock; this means that the thread or
threads awakened will not return from their wait() call immediately, but only when the thread that
called notify() or notifyAll() finally relinquishes ownership of the lock.

Tip: the typical programming style using condition variables uses the lock to synchronize access to some
shared state; threads that are interested in a particular change of state call wait() repeatedly until
they see the desired state, while threads that modify the state call notify() or notifyAll() when they
change the state in such a way that it could possibly be a desired state for one of the waiters. For
example, the following code is a generic producer-consumer situation with unlimited buffer capacity:

# Consume one item

cv.acquire()

while not an_item_is_available():

cv.wait()

get_an_available_item()

cv.release()

# Produce one item

cv.acquire()

make_an_item_available()

cv.notify()

cv.release()

To choose between notify() and notifyAll(), consider whether one state change can be interesting
for only one or several waiting threads. E.g. in a typical producer-consumer situation, adding one item
to the buffer only needs to wake up one consumer thread.

class Condition([lock ])
If the lock argument is given and not None, it must be a Lock or RLock object, and it is used as
the underlying lock. Otherwise, a new RLock object is created and used as the underlying lock.

7.5. threading — Higher-level threading interface 213



acquire(*args)
Acquire the underlying lock. This method calls the corresponding method on the underlying lock;
the return value is whatever that method returns.

release()
Release the underlying lock. This method calls the corresponding method on the underlying lock;
there is no return value.

wait([timeout ])
Wait until notified or until a timeout occurs. This must only be called when the calling thread has
acquired the lock.

This method releases the underlying lock, and then blocks until it is awakened by a notify() or
notifyAll() call for the same condition variable in another thread, or until the optional timeout
occurs. Once awakened or timed out, it re-acquires the lock and returns.

When the timeout argument is present and not None, it should be a floating point number specifying
a timeout for the operation in seconds (or fractions thereof).

When the underlying lock is an RLock, it is not released using its release() method, since this may
not actually unlock the lock when it was acquired multiple times recursively. Instead, an internal
interface of the RLock class is used, which really unlocks it even when it has been recursively
acquired several times. Another internal interface is then used to restore the recursion level when
the lock is reacquired.

notify()
Wake up a thread waiting on this condition, if any. This must only be called when the calling
thread has acquired the lock.

This method wakes up one of the threads waiting for the condition variable, if any are waiting; it
is a no-op if no threads are waiting.

The current implementation wakes up exactly one thread, if any are waiting. However, it’s not
safe to rely on this behavior. A future, optimized implementation may occasionally wake up more
than one thread.

Note: the awakened thread does not actually return from its wait() call until it can reacquire the
lock. Since notify() does not release the lock, its caller should.

notifyAll()
Wake up all threads waiting on this condition. This method acts like notify(), but wakes up all
waiting threads instead of one.

7.5.4 Semaphore Objects

This is one of the oldest synchronization primitives in the history of computer science, invented by the
early Dutch computer scientist Edsger W. Dijkstra (he used P() and V() instead of acquire() and
release()).

A semaphore manages an internal counter which is decremented by each acquire() call and incremented
by each release() call. The counter can never go below zero; when acquire() finds that it is zero, it
blocks, waiting until some other thread calls release().

class Semaphore([value ])
The optional argument gives the initial value for the internal counter; it defaults to 1.

acquire([blocking ])
Acquire a semaphore.

When invoked without arguments: if the internal counter is larger than zero on entry, decrement
it by one and return immediately. If it is zero on entry, block, waiting until some other thread
has called release() to make it larger than zero. This is done with proper interlocking so that
if multiple acquire() calls are blocked, release() will wake exactly one of them up. The imple-
mentation may pick one at random, so the order in which blocked threads are awakened should
not be relied on. There is no return value in this case.

214 Chapter 7. Optional Operating System Services



When invoked with blocking set to true, do the same thing as when called without arguments, and
return true.

When invoked with blocking set to false, do not block. If a call without an argument would block,
return false immediately; otherwise, do the same thing as when called without arguments, and
return true.

release()
Release a semaphore, incrementing the internal counter by one. When it was zero on entry and
another thread is waiting for it to become larger than zero again, wake up that thread.

7.5.5 Event Objects

This is one of the simplest mechanisms for communication between threads: one thread signals an event
and one or more other threads are waiting for it.

An event object manages an internal flag that can be set to true with the set() method and reset to
false with the clear() method. The wait() method blocks until the flag is true.

class Event()
The internal flag is initially false.

isSet()
Return true if and only if the internal flag is true.

set()
Set the internal flag to true. All threads waiting for it to become true are awakened. Threads that
call wait() once the flag is true will not block at all.

clear()
Reset the internal flag to false. Subsequently, threads calling wait() will block until set() is called
to set the internal flag to true again.

wait([timeout ])
Block until the internal flag is true. If the internal flag is true on entry, return immediately.
Otherwise, block until another thread calls set() to set the flag to true, or until the optional
timeout occurs.

When the timeout argument is present and not None, it should be a floating point number specifying
a timeout for the operation in seconds (or fractions thereof).

7.5.6 Thread Objects

This class represents an activity that is run in a separate thread of control. There are two ways to specify
the activity: by passing a callable object to the constructor, or by overriding the run() method in a
subclass. No other methods (except for the constructor) should be overridden in a subclass. In other
words, only override the init () and run() methods of this class.

Once a thread object is created, its activity must be started by calling the thread’s start() method.
This invokes the run() method in a separate thread of control.

Once the thread’s activity is started, the thread is considered ’alive’ and ’active’ (these concepts are
almost, but not quite exactly, the same; their definition is intentionally somewhat vague). It stops
being alive and active when its run() method terminates – either normally, or by raising an unhandled
exception. The isAlive() method tests whether the thread is alive.

Other threads can call a thread’s join() method. This blocks the calling thread until the thread whose
join() method is called is terminated.

A thread has a name. The name can be passed to the constructor, set with the setName() method, and
retrieved with the getName() method.

A thread can be flagged as a “daemon thread”. The significance of this flag is that the entire Python
program exits when only daemon threads are left. The initial value is inherited from the creating thread.

7.5. threading — Higher-level threading interface 215



The flag can be set with the setDaemon() method and retrieved with the isDaemon() method.

There is a “main thread” object; this corresponds to the initial thread of control in the Python program.
It is not a daemon thread.

There is the possibility that “dummy thread objects” are created. These are thread objects corresponding
to “alien threads”. These are threads of control started outside the threading module, e.g. directly from
C code. Dummy thread objects have limited functionality; they are always considered alive, active,
and daemonic, and cannot be join()ed. They are never deleted, since it is impossible to detect the
termination of alien threads.

class Thread(group=None, target=None, name=None, args=(), kwargs=–˝)
This constructor should always be called with keyword arguments. Arguments are:

group should be None; reserved for future extension when a ThreadGroup class is implemented.

target is the callable object to be invoked by the run() method. Defaults to None, meaning nothing
is called.

name is the thread name. By default, a unique name is constructed of the form “Thread-N ” where
N is a small decimal number.

args is the argument tuple for the target invocation. Defaults to ().

kwargs is a dictionary of keyword arguments for the target invocation. Defaults to {}.

If the subclass overrides the constructor, it must make sure to invoke the base class constructor
(Thread. init ()) before doing anything else to the thread.

start()
Start the thread’s activity.

This must be called at most once per thread object. It arranges for the object’s run() method to
be invoked in a separate thread of control.

run()
Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method invokes the callable
object passed to the object’s constructor as the target argument, if any, with sequential and keyword
arguments taken from the args and kwargs arguments, respectively.

join([timeout ])
Wait until the thread terminates. This blocks the calling thread until the thread whose join()
method is called terminates – either normally or through an unhandled exception – or until the
optional timeout occurs.

When the timeout argument is present and not None, it should be a floating point number specifying
a timeout for the operation in seconds (or fractions thereof).

A thread can be join()ed many times.

A thread cannot join itself because this would cause a deadlock.

It is an error to attempt to join() a thread before it has been started.

getName()
Return the thread’s name.

setName(name)
Set the thread’s name.

The name is a string used for identification purposes only. It has no semantics. Multiple threads
may be given the same name. The initial name is set by the constructor.

isAlive()
Return whether the thread is alive.

Roughly, a thread is alive from the moment the start() method returns until its run() method
terminates.

isDaemon()
Return the thread’s daemon flag.

216 Chapter 7. Optional Operating System Services



setDaemon(daemonic)
Set the thread’s daemon flag to the Boolean value daemonic. This must be called before start()
is called.

The initial value is inherited from the creating thread.

The entire Python program exits when no active non-daemon threads are left.

7.6 Queue — A synchronized queue class

The Queue module implements a multi-producer, multi-consumer FIFO queue. It is especially useful in
threads programming when information must be exchanged safely between multiple threads. The Queue
class in this module implements all the required locking semantics. It depends on the availability of
thread support in Python.

The Queue module defines the following class and exception:

class Queue(maxsize)
Constructor for the class. maxsize is an integer that sets the upperbound limit on the number of
items that can be placed in the queue. Insertion will block once this size has been reached, until
queue items are consumed. If maxsize is less than or equal to zero, the queue size is infinite.

exception Empty
Exception raised when non-blocking get() (or get nowait()) is called on a Queue object which
is empty or locked.

exception Full
Exception raised when non-blocking put() (or put nowait()) is called on a Queue object which
is full or locked.

7.6.1 Queue Objects

Class Queue implements queue objects and has the methods described below. This class can be derived
from in order to implement other queue organizations (e.g. stack) but the inheritable interface is not
described here. See the source code for details. The public methods are:

qsize()
Return the approximate size of the queue. Because of multithreading semantics, this number is
not reliable.

empty()
Return 1 if the queue is empty, 0 otherwise. Because of multithreading semantics, this is not
reliable.

full()
Return 1 if the queue is full, 0 otherwise. Because of multithreading semantics, this is not reliable.

put(item[, block ])
Put item into the queue. If optional argument block is 1 (the default), block if necessary until a
free slot is available. Otherwise (block is 0), put item on the queue if a free slot is immediately
available, else raise the Full exception.

put nowait(item)
Equivalent to put(item, 0).

get([block ])
Remove and return an item from the queue. If optional argument block is 1 (the default), block if
necessary until an item is available. Otherwise (block is 0), return an item if one is immediately
available, else raise the Empty exception.

get nowait()
Equivalent to get(0).

7.6. Queue — A synchronized queue class 217



7.7 mmap — Memory-mapped file support

Memory-mapped file objects behave like both mutable strings and like file objects. You can use mmap
objects in most places where strings are expected; for example, you can use the re module to search
through a memory-mapped file. Since they’re mutable, you can change a single character by doing
obj[index] = ’a’, or change a substring by assigning to a slice: obj[i1:i2] = ’...’. You can also
read and write data starting at the current file position, and seek() through the file to different positions.

A memory-mapped file is created by the following function, which is different on Unix and on Windows.

mmap(fileno, length[, tagname ])
(Windows version) Maps length bytes from the file specified by the file handle fileno, and returns
a mmap object. If length is 0, the maximum length of the map will be the current size of the file
when mmap() is called. If you wish to map an existing Python file object, use its fileno() method
to obtain the correct value for the fileno parameter. The file must be opened for update.

tagname, if specified and not None, is a string giving a tag name for the mapping. Windows allows
you to have many different mappings against the same file. If you specify the name of an existing
tag, that tag is opened, otherwise a new tag of this name is created. If this parameter is omitted
or None, the mapping is created without a name. Avoiding the use of the tag parameter will assist
in keeping your code portable between Unix and Windows.

mmap(fileno, size[, flags, prot ])
(Unix version) Maps length bytes from the file specified by the file handle fileno, and returns
a mmap object. If you wish to map an existing Python file object, use its fileno() method to
obtain the correct value for the fileno parameter. The file must be opened for update.

flags specifies the nature of the mapping. MAP PRIVATE creates a private copy-on-write mapping,
so changes to the contents of the mmap object will be private to this process, and MAP SHARED
creates a mapping that’s shared with all other processes mapping the same areas of the file. The
default value is MAP SHARED.

prot , if specified, gives the desired memory protection; the two most useful values are PROT READ
and PROT WRITE, to specify that the pages may be read or written. prot defaults to PROT READ |
PROT WRITE.

Memory-mapped file objects support the following methods:

close()
Close the file. Subsequent calls to other methods of the object will result in an exception being
raised.

find(string[, start ])
Returns the lowest index in the object where the substring string is found. Returns -1 on failure.
start is the index at which the search begins, and defaults to zero.

flush([offset, size ])
Flushes changes made to the in-memory copy of a file back to disk. Without use of this call there
is no guarantee that changes are written back before the object is destroyed. If offset and size are
specified, only changes to the given range of bytes will be flushed to disk; otherwise, the whole
extent of the mapping is flushed.

move(dest, src, count)
Copy the count bytes starting at offset src to the destination index dest .

read(num)
Return a string containing up to num bytes starting from the current file position; the file position
is updated to point after the bytes that were returned.

read byte()
Returns a string of length 1 containing the character at the current file position, and advances the
file position by 1.

readline()
Returns a single line, starting at the current file position and up to the next newline.

218 Chapter 7. Optional Operating System Services



resize(newsize)

seek(pos[, whence ])
Set the file’s current position. whence argument is optional and defaults to 0 (absolute file posi-
tioning); other values are 1 (seek relative to the current position) and 2 (seek relative to the file’s
end).

size()
Return the length of the file, which can be larger than the size of the memory-mapped area.

tell()
Returns the current position of the file pointer.

write(string)
Write the bytes in string into memory at the current position of the file pointer; the file position
is updated to point after the bytes that were written.

write byte(byte)
Write the single-character string byte into memory at the current position of the file pointer; the
file position is advanced by 1.

7.8 anydbm — Generic access to DBM-style databases

anydbm is a generic interface to variants of the DBM database — dbhash (requires bsddb), gdbm, or
dbm. If none of these modules is installed, the slow-but-simple implementation in module dumbdbm will
be used.

open(filename[, flag[, mode ] ])
Open the database file filename and return a corresponding object.

If the database file already exists, the whichdb module is used to determine its type and the
appropriate module is used; if it does not exist, the first module listed above that can be imported
is used.

The optional flag argument can be ’r’ to open an existing database for reading only, ’w’ to open
an existing database for reading and writing, ’c’ to create the database if it doesn’t exist, or ’n’,
which will always create a new empty database. If not specified, the default value is ’r’.

The optional mode argument is the Unix mode of the file, used only when the database has to be
created. It defaults to octal 0666 (and will be modified by the prevailing umask).

exception error
A tuple containing the exceptions that can be raised by each of the supported modules, with a
unique exception anydbm.error as the first item — the latter is used when anydbm.error is raised.

The object returned by open() supports most of the same functionality as dictionaries; keys and their
corresponding values can be stored, retrieved, and deleted, and the has key() and keys() methods are
available. Keys and values must always be strings.

See Also:

Module anydbm (section 7.8):
Generic interface to dbm-style databases.

Module dbhash (section 7.10):
BSD db database interface.

Module dbm (section 8.6):
Standard Unix database interface.

Module dumbdbm (section 7.9):
Portable implementation of the dbm interface.

Module gdbm (section 8.7):
GNU database interface, based on the dbm interface.

7.8. anydbm — Generic access to DBM-style databases 219



Module shelve (section 3.17):
General object persistence built on top of the Python dbm interface.

Module whichdb (section 7.11):
Utility module used to determine the type of an existing database.

7.9 dumbdbm — Portable DBM implementation

A simple and slow database implemented entirely in Python. This should only be used when no other
DBM-style database is available.

open(filename[, flag[, mode ] ])
Open the database file filename and return a corresponding object. The flag argument, used to
control how the database is opened in the other DBM implementations, is ignored in dumbdbm; the
database is always opened for update, and will be created if it does not exist.

The optional mode argument is ignored.

exception error
Raised for errors not reported as KeyError errors.

See Also:

Module anydbm (section 7.8):
Generic interface to dbm-style databases.

Module whichdb (section 7.11):
Utility module used to determine the type of an existing database.

7.10 dbhash — DBM-style interface to the BSD database library

The dbhash module provides a function to open databases using the BSD db library. This module mirrors
the interface of the other Python database modules that provide access to DBM-style databases. The
bsddb module is required to use dbhash.

This module provides an exception and a function:

exception error
Exception raised on database errors other than KeyError. It is a synonym for bsddb.error.

open(path[, flag[, mode ] ])
Open a db database and return the database object. The path argument is the name of the database
file.

The flag argument can be ’r’ (the default), ’w’, ’c’ (which creates the database if it doesn’t
exist), or ’n’ (which always creates a new empty database). For platforms on which the BSD db
library supports locking, an ‘l’ can be appended to indicate that locking should be used.

The optional mode parameter is used to indicate the Unix permission bits that should be set if a
new database must be created; this will be masked by the current umask value for the process.

See Also:

Module anydbm (section 7.8):
Generic interface to dbm-style databases.

Module bsddb (section 7.12):
Lower-level interface to the BSD db library.

Module whichdb (section 7.11):
Utility module used to determine the type of an existing database.

220 Chapter 7. Optional Operating System Services



7.10.1 Database Objects

The database objects returned by open() provide the methods common to all the DBM-style databases.
The following methods are available in addition to the standard methods.

first()
It’s possible to loop over every key in the database using this method and the next() method. The
traversal is ordered by the databases internal hash values, and won’t be sorted by the key values.
This method returns the starting key.

last()
Return the last key in a database traversal. This may be used to begin a reverse-order traversal;
see previous().

next(key)
Returns the key that follows key in the traversal. The following code prints every key in the
database db, without having to create a list in memory that contains them all:

k = db.first()

while k != None:

print k

k = db.next(k)

previous(key)
Return the key that comes before key in a forward-traversal of the database. In conjunction with
last(), this may be used to implement a reverse-order traversal.

sync()
This method forces any unwritten data to be written to the disk.

7.11 whichdb — Guess which DBM module created a database

The single function in this module attempts to guess which of the several simple database modules
available–dbm, gdbm, or dbhash–should be used to open a given file.

whichdb(filename)
Returns one of the following values: None if the file can’t be opened because it’s unreadable or
doesn’t exist; the empty string (’’) if the file’s format can’t be guessed; or a string containing the
required module name, such as ’dbm’ or ’gdbm’.

7.12 bsddb — Interface to Berkeley DB library

The bsddb module provides an interface to the Berkeley DB library. Users can create hash, btree or record
based library files using the appropriate open call. Bsddb objects behave generally like dictionaries. Keys
and values must be strings, however, so to use other objects as keys or to store other kinds of objects
the user must serialize them somehow, typically using marshal.dumps or pickle.dumps.

There are two incompatible versions of the underlying library. Version 1.85 is widely available, but has
some known bugs. Version 2 is not quite as widely used, but does offer some improvements. The bsddb
module uses the 1.85 interface. Starting with Python 2.0, the configure script can usually determine the
version of the library which is available and build it correctly. If you have difficulty getting configure
to do the right thing, run it with the --help option to get information about additional options that can
help. On Windows, you will need to define the HAVE DB 185 H macro if you are building Python from
source and using version 2 of the DB library.

The bsddb module defines the following functions that create objects that access the appropriate type
of Berkeley DB file. The first two arguments of each function are the same. For ease of portability, only
the first two arguments should be used in most instances.

hashopen(filename[, flag[, mode[, bsize[, ffactor[, nelem[, cachesize[, hash[, lorder ] ] ] ] ] ] ] ])

7.11. whichdb — Guess which DBM module created a database 221



Open the hash format file named filename. The optional flag identifies the mode used to open
the file. It may be ‘r’ (read only), ‘w’ (read-write), ‘c’ (read-write - create if necessary) or ‘n’
(read-write - truncate to zero length). The other arguments are rarely used and are just passed
to the low-level dbopen() function. Consult the Berkeley DB documentation for their use and
interpretation.

btopen(filename[, flag[, mode[, btflags[, cachesize[, maxkeypage[, minkeypage[, psize[, lorder ] ] ] ] ] ] ] ])
Open the btree format file named filename. The optional flag identifies the mode used to open the
file. It may be ‘r’ (read only), ‘w’ (read-write), ‘c’ (read-write - create if necessary) or ‘n’ (read-write
- truncate to zero length). The other arguments are rarely used and are just passed to the low-level
dbopen function. Consult the Berkeley DB documentation for their use and interpretation.

rnopen(filename[, flag[, mode[, rnflags[, cachesize[, psize[, lorder[, reclen[, bval[, bfname ] ] ] ] ] ] ] ] ])
Open a DB record format file named filename. The optional flag identifies the mode used to
open the file. It may be ‘r’ (read only), ‘w’ (read-write), ‘c’ (read-write - create if necessary)
or ‘n’ (read-write - truncate to zero length). The other arguments are rarely used and are just
passed to the low-level dbopen function. Consult the Berkeley DB documentation for their use and
interpretation.

See Also:

Module dbhash (section 7.10):
DBM-style interface to the bsddb

7.12.1 Hash, BTree and Record Objects

Once instantiated, hash, btree and record objects support the following methods:

close()
Close the underlying file. The object can no longer be accessed. Since there is no open open
method for these objects, to open the file again a new bsddb module open function must be called.

keys()
Return the list of keys contained in the DB file. The order of the list is unspecified and should not
be relied on. In particular, the order of the list returned is different for different file formats.

has key(key)
Return 1 if the DB file contains the argument as a key.

set location(key)
Set the cursor to the item indicated by key and return a tuple containing the key and its value.
For binary tree databases (opened using btopen()), if key does not actually exist in the database,
the cursor will point to the next item in sorted order and return that key and value. For other
databases, KeyError will be raised if key is not found in the database.

first()
Set the cursor to the first item in the DB file and return it. The order of keys in the file is
unspecified, except in the case of B-Tree databases.

next()
Set the cursor to the next item in the DB file and return it. The order of keys in the file is
unspecified, except in the case of B-Tree databases.

previous()
Set the cursor to the first item in the DB file and return it. The order of keys in the file is
unspecified, except in the case of B-Tree databases. This is not supported on hashtable databases
(those opened with hashopen()).

last()
Set the cursor to the last item in the DB file and return it. The order of keys in the file is
unspecified. This is not supported on hashtable databases (those opened with hashopen()).

sync()
Synchronize the database on disk.

222 Chapter 7. Optional Operating System Services



Example:

>>> import bsddb

>>> db = bsddb.btopen(’/tmp/spam.db’, ’c’)

>>> for i in range(10): db[’%d’%i] = ’%d’% (i*i)

...

>>> db[’3’]

’9’

>>> db.keys()

[’0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’8’, ’9’]

>>> db.first()

(’0’, ’0’)

>>> db.next()

(’1’, ’1’)

>>> db.last()

(’9’, ’81’)

>>> db.set_location(’2’)

(’2’, ’4’)

>>> db.previous()

(’1’, ’1’)

>>> db.sync()

0

7.13 zlib — Compression compatible with gzip

For applications that require data compression, the functions in this module allow compression and
decompression, using the zlib library. The zlib library has its own home page at http://www.gzip.org/zlib/.
Version 1.1.3 is the most recent version as of September 2000; use a later version if one is available.
There are known incompatibilities between the Python module and earlier versions of the zlib library.

The available exception and functions in this module are:

exception error
Exception raised on compression and decompression errors.

adler32(string[, value ])
Computes a Adler-32 checksum of string . (An Adler-32 checksum is almost as reliable as a CRC32
but can be computed much more quickly.) If value is present, it is used as the starting value of
the checksum; otherwise, a fixed default value is used. This allows computing a running checksum
over the concatenation of several input strings. The algorithm is not cryptographically strong, and
should not be used for authentication or digital signatures.

compress(string[, level ])
Compresses the data in string , returning a string contained compressed data. level is an integer
from 1 to 9 controlling the level of compression; 1 is fastest and produces the least compression, 9
is slowest and produces the most. The default value is 6. Raises the error exception if any error
occurs.

compressobj([level ])
Returns a compression object, to be used for compressing data streams that won’t fit into memory
at once. level is an integer from 1 to 9 controlling the level of compression; 1 is fastest and produces
the least compression, 9 is slowest and produces the most. The default value is 6.

crc32(string[, value ])
Computes a CRC (Cyclic Redundancy Check) checksum of string . If value is present, it is used
as the starting value of the checksum; otherwise, a fixed default value is used. This allows com-
puting a running checksum over the concatenation of several input strings. The algorithm is not
cryptographically strong, and should not be used for authentication or digital signatures.

7.13. zlib — Compression compatible with gzip 223



decompress(string[, wbits[, bufsize ] ])
Decompresses the data in string , returning a string containing the uncompressed data. The wbits
parameter controls the size of the window buffer. If bufsize is given, it is used as the initial size of
the output buffer. Raises the error exception if any error occurs.

The absolute value of wbits is the base two logarithm of the size of the history buffer (the “window
size”) used when compressing data. Its absolute value should be between 8 and 15 for the most
recent versions of the zlib library, larger values resulting in better compression at the expense of
greater memory usage. The default value is 15. When wbits is negative, the standard gzip header is
suppressed; this is an undocumented feature of the zlib library, used for compatibility with unzip’s
compression file format.

bufsize is the initial size of the buffer used to hold decompressed data. If more space is required,
the buffer size will be increased as needed, so you don’t have to get this value exactly right; tuning
it will only save a few calls to malloc(). The default size is 16384.

decompressobj([wbits ])
Returns a decompression object, to be used for decompressing data streams that won’t fit into
memory at once. The wbits parameter controls the size of the window buffer.

Compression objects support the following methods:

compress(string)
Compress string , returning a string containing compressed data for at least part of the data in
string . This data should be concatenated to the output produced by any preceding calls to the
compress() method. Some input may be kept in internal buffers for later processing.

flush([mode ])
All pending input is processed, and a string containing the remaining compressed output is re-
turned. mode can be selected from the constants Z SYNC FLUSH, Z FULL FLUSH, or Z FINISH,
defaulting to Z FINISH. Z SYNC FLUSH and Z FULL FLUSH allow compressing further strings of
data and are used to allow partial error recovery on decompression, while Z FINISH finishes the
compressed stream and prevents compressing any more data. After calling flush() with mode set
to Z FINISH, the compress() method cannot be called again; the only realistic action is to delete
the object.

Decompression objects support the following methods, and a single attribute:

unused data
A string which contains any unused data from the last string fed to this decompression object. If
the whole string turned out to contain compressed data, this is "", the empty string.

The only way to determine where a string of compressed data ends is by actually decompressing
it. This means that when compressed data is contained part of a larger file, you can only find the
end of it by reading data and feeding it into a decompression object’s decompress method until
the unused data attribute is no longer the empty string.

decompress(string)
Decompress string , returning a string containing the uncompressed data corresponding to at least
part of the data in string . This data should be concatenated to the output produced by any
preceding calls to the decompress() method. Some of the input data may be preserved in internal
buffers for later processing.

flush()
All pending input is processed, and a string containing the remaining uncompressed output is
returned. After calling flush(), the decompress() method cannot be called again; the only
realistic action is to delete the object.

See Also:

Module gzip (section 7.14):
Reading and writing gzip-format files.

http://www.gzip.org/zlib/

The zlib library home page.

224 Chapter 7. Optional Operating System Services



7.14 gzip — Support for gzip files

The data compression provided by the zlib module is compatible with that used by the GNU compression
program gzip. Accordingly, the gzip module provides the GzipFile class to read and write gzip-format
files, automatically compressing or decompressing the data so it looks like an ordinary file object. Note
that additional file formats which can be decompressed by the gzip and gunzip programs, such as those
produced by compress and pack, are not supported by this module.

The module defines the following items:

class GzipFile([filename[, mode[, compresslevel[, fileobj ] ] ] ])
Constructor for the GzipFile class, which simulates most of the methods of a file object, with the
exception of the seek() and tell() methods. At least one of fileobj and filename must be given
a non-trivial value.

The new class instance is based on fileobj , which can be a regular file, a StringIO object, or any
other object which simulates a file. It defaults to None, in which case filename is opened to provide
a file object.

When fileobj is not None, the filename argument is only used to be included in the gzip file header,
which may includes the original filename of the uncompressed file. It defaults to the filename
of fileobj , if discernible; otherwise, it defaults to the empty string, and in this case the original
filename is not included in the header.

The mode argument can be any of ’r’, ’rb’, ’a’, ’ab’, ’w’, or ’wb’, depending on whether the
file will be read or written. The default is the mode of fileobj if discernible; otherwise, the default
is ’rb’. Be aware that only the ’rb’, ’ab’, and ’wb’ values should be used for cross-platform
portability.

The compresslevel argument is an integer from 1 to 9 controlling the level of compression; 1 is
fastest and produces the least compression, and 9 is slowest and produces the most compression.
The default is 9.

Calling a GzipFile object’s close() method does not close fileobj , since you might wish to append
more material after the compressed data. This also allows you to pass a StringIO object opened for
writing as fileobj , and retrieve the resulting memory buffer using the StringIO object’s getvalue()
method.

open(filename[, mode[, compresslevel ] ])
This is a shorthand for GzipFile(filename, mode, compresslevel). The filename argument is
required; mode defaults to ’rb’ and compresslevel defaults to 9.

See Also:

Module zlib (section 7.13):
The basic data compression module needed to support the gzip file format.

7.15 zipfile — Work with ZIP archives

New in version 1.6.

The ZIP file format is a common archive and compression standard. This module provides tools to create,
read, write, append, and list a ZIP file. Any advanced use of this module will require an understanding
of the format, as defined in PKZIP Application Note.

This module does not currently handle ZIP files which have appended comments, or multi-disk ZIP files.

The available attributes of this module are:

exception error
The error raised for bad ZIP files.

class ZipFile(...)
The class for reading and writing ZIP files. See “ZipFile Objects” (section 7.15.1) for constructor
details.

7.14. gzip — Support for gzip files 225



class PyZipFile(...)
Class for creating ZIP archives containing Python libraries.

class ZipInfo([filename[, date time ] ])
Class used the represent infomation about a member of an archive. Instances of this class are
returned by the getinfo() and infolist() methods of ZipFile objects. Most users of the
zipfile module will not need to create these, but only use those created by this module. filename
should be the full name of the archive member, and date time should be a tuple containing six
fields which describe the time of the last modification to the file; the fields are described in section
7.15.3, “ZipInfo Objects.”

is zipfile(filename)
Returns true if filename is a valid ZIP file based on its magic number, otherwise returns false. This
module does not currently handle ZIP files which have appended comments.

ZIP STORED
The numeric constant for an uncompressed archive member.

ZIP DEFLATED
The numeric constant for the usual ZIP compression method. This requires the zlib module. No
other compression methods are currently supported.

See Also:

PKZIP Application Note
(http://www.pkware.com/appnote.html)

Documentation on the ZIP file format by Phil Katz, the creator of the format and algorithms used.

Info-ZIP Home Page
(http://www.info-zip.org/pub/infozip/)

Information about the Info-ZIP project’s ZIP archive programs and development libraries.

7.15.1 ZipFile Objects

class ZipFile(file[, mode[, compression ] ])
Open a ZIP file, where file can be either a path to a file (i.e. a string) or a file-like object. The
mode parameter should be ’r’ to read an existing file, ’w’ to truncate and write a new file, or ’a’
to append to an existing file. For mode is ’a’ and file refers to an existing ZIP file, then additional
files are added to it. If file does not refer to a ZIP file, then a new ZIP archive is appended to the
file. This is meant for adding a ZIP archive to another file, such as ‘python.exe’. Using

cat myzip.zip >> python.exe

also works, and at least WinZip can read such files. compression is the ZIP compression method
to use when writing the archive, and should be ZIP STORED or ZIP DEFLATED; unrecognized values
will cause RuntimeError to be raised. If ZIP DEFLATED is specified but the zlib module is not
available, RuntimeError is also raised. The default is ZIP STORED.

close()
Close the archive file. You must call close() before exiting your program or essential records will
not be written.

getinfo(name)
Return a ZipInfo object with information about the archive member name.

infolist()
Return a list containing a ZipInfo object for each member of the archive. The objects are in the
same order as their entries in the actual ZIP file on disk if an existing archive was opened.

namelist()
Return a list of archive members by name.

printdir()
Print a table of contents for the archive to sys.stdout.

226 Chapter 7. Optional Operating System Services



read(name)
Return the bytes of the file in the archive. The archive must be open for read or append.

testzip()
Read all the files in the archive and check their CRC’s. Return the name of the first bad file, or
else return None.

write(filename[, arcname[, compress type ] ])
Write the file named filename to the archive, giving it the archive name arcname (by default, this
will be the same as filename). If given, compress type overrides the value given for the compression
parameter to the constructor for the new entry. The archive must be open with mode ’w’ or ’a’.

writestr(zinfo, bytes)
Write the string bytes to the archive; meta-information is given as the ZipInfo instance zinfo. At
least the filename, date, and time must be given by zinfo. The archive must be opened with mode
’w’ or ’a’.

The following data attribute is also available:

debug
The level of debug output to use. This may be set from 0 (the default, no output) to 3 (the most
output). Debugging information is written to sys.stdout.

7.15.2 PyZipFile Objects

The PyZipFile constructor takes the same parameters as the ZipFile constructor. Instances have one
method in addition to those of ZipFile objects.

writepy(pathname[, basename ])
Search for files ‘*.py’ and add the corresponding file to the archive. The corresponding file is a
‘*.pyo’ file if available, else a ‘*.pyc’ file, compiling if necessary. If the pathname is a file, the
filename must end with ‘.py’, and just the (corresponding ‘*.py[co]’) file is added at the top level (no
path information). If it is a directory, and the directory is not a package directory, then all the files
‘*.py[co]’ are added at the top level. If the directory is a package directory, then all ‘*.py[oc]’ are
added under the package name as a file path, and if any subdirectories are package directories, all
of these are added recursively. basename is intended for internal use only. The writepy() method
makes archives with file names like this:

string.pyc # Top level name

test/__init__.pyc # Package directory

test/testall.pyc # Module test.testall

test/bogus/__init__.pyc # Subpackage directory

test/bogus/myfile.pyc # Submodule test.bogus.myfile

7.15.3 ZipInfo Objects

Instances of the ZipInfo class are returned by the getinfo() and infolist() methods of ZipFile
objects. Each object stores information about a single member of the ZIP archive.

Instances have the following attributes:

filename
Name of the file in the archive.

date time
The time and date of the last modification to to the archive member. This is a tuple of six values:

7.15. zipfile — Work with ZIP archives 227



Index Value
0 Year
1 Month (one-based)
2 Day of month (one-based)
3 Hours (zero-based)
4 Minutes (zero-based)
5 Seconds (zero-based)

compress type
Type of compression for the archive member.

comment
Comment for the individual archive member.

extra
Expansion field data. The PKZIP Application Note contains some comments on the internal
structure of the data contained in this string.

create system
System which created ZIP archive.

create version
PKZIP version which created ZIP archive.

extract version
PKZIP version needed to extract archive.

reserved
Must be zero.

flag bits
ZIP flag bits.

volume
Volume number of file header.

internal attr
Internal attributes.

external attr
External file attributes.

header offset
Byte offset to the file header.

file offset
Byte offset to the start of the file data.

CRC
CRC-32 of the uncompressed file.

compress size
Size of the compressed data.

file size
Size of the uncompressed file.

7.16 readline — GNU readline interface

The readline module defines a number of functions used either directly or from the rlcompleter module
to facilitate completion and history file read and write from the Python interpreter.

The readline module defines the following functions:

parse and bind(string)
Parse and execute single line of a readline init file.

228 Chapter 7. Optional Operating System Services



get line buffer()
Return the current contents of the line buffer.

insert text(string)
Insert text into the command line.

read init file([filename ])
Parse a readline initialization file. The default filename is the last filename used.

read history file([filename ])
Load a readline history file. The default filename is ‘˜/.history’.

write history file([filename ])
Save a readline history file. The default filename is ‘˜/.history’.

get history length()
Return the desired length of the history file. Negative values imply unlimited history file size.

set history length(length)
Set the number of lines to save in the history file. write history file() uses this value to
truncate the history file when saving. Negative values imply unlimited history file size.

set completer([function ])
Set or remove the completer function. The completer function is called as function(text, state),
for i in [0, 1, 2, ...] until it returns a non-string. It should return the next possible com-
pletion starting with text .

get begidx()
Get the beginning index of the readline tab-completion scope.

get endidx()
Get the ending index of the readline tab-completion scope.

set completer delims(string)
Set the readline word delimiters for tab-completion.

get completer delims()
Get the readline word delimiters for tab-completion.

See Also:

Module rlcompleter (section 7.17):
Completion of Python identifiers at the interactive prompt.

7.16.1 Example

The following example demonstrates how to use the readline module’s history reading and writing
functions to automatically load and save a history file named ‘.pyhist’ from the user’s home directory.
The code below would normally be executed automatically during interactive sessions from the user’s
PYTHONSTARTUP file.

import os

histfile = os.path.join(os.environ["HOME"], ".pyhist")

try:

readline.read_history_file(histfile)

except IOError:

pass

import atexit

atexit.register(readline.write_history_file, histfile)

del os, histfile

7.16. readline — GNU readline interface 229



7.17 rlcompleter — Completion function for GNU readline

The rlcompleter module defines a completion function for the readline module by completing valid
Python identifiers and keywords.

This module is Unix-specific due to it’s dependence on the readline module.

The rlcompleter module defines the Completer class.

Example:

>>> import rlcompleter

>>> import readline

>>> readline.parse_and_bind("tab: complete")

>>> readline. <TAB PRESSED>

readline.__doc__ readline.get_line_buffer readline.read_init_file

readline.__file__ readline.insert_text readline.set_completer

readline.__name__ readline.parse_and_bind

>>> readline.

The rlcompleter module is designed for use with Python’s interactive mode. A user can add the
following lines to his or her initialization file (identified by the PYTHONSTARTUP environment variable)
to get automatic Tab completion:

try:

import readline

except ImportError:

print "Module readline not available."

else:

import rlcompleter

readline.parse_and_bind("tab: complete")

7.17.1 Completer Objects

Completer objects have the following method:

complete(text, state)
Return the stateth completion for text .

If called for text that doesn’t include a period character (‘.’), it will complete from names currently
defined in main , builtin and keywords (as defined by the keyword module).

If called for a dotted name, it will try to evaluate anything without obvious side-effects (i.e.,
functions will not be evaluated, but it can generate calls to getattr ()) upto the last part,
and find matches for the rest via the dir() function.

230 Chapter 7. Optional Operating System Services



CHAPTER

EIGHT

Unix Specific Services

The modules described in this chapter provide interfaces to features that are unique to the Unix operating
system, or in some cases to some or many variants of it. Here’s an overview:

posix The most common POSIX system calls (normally used via module os).
pwd The password database (getpwnam() and friends).
grp The group database (getgrnam() and friends).
crypt The crypt() function used to check Unix passwords.
dl Call C functions in shared objects.
dbm The standard “database” interface, based on ndbm.
gdbm GNU’s reinterpretation of dbm.
termios POSIX style tty control.
TERMIOS Symbolic constants required to use the termios module.
tty Utility functions that perform common terminal control operations.
pty Pseudo-Terminal Handling for SGI and Linux.
fcntl The fcntl() and ioctl() system calls.
pipes A Python interface to Unix shell pipelines.
posixfile A file-like object with support for locking.
resource An interface to provide resource usage information on the current process.
nis Interface to Sun’s NIS (a.k.a. Yellow Pages) library.
syslog An interface to the Unix syslog library routines.
commands Utility functions for running external commands.

8.1 posix — The most common POSIX system calls

This module provides access to operating system functionality that is standardized by the C Standard
and the POSIX standard (a thinly disguised Unix interface).

Do not import this module directly. Instead, import the module os, which provides a portable
version of this interface. On Unix, the os module provides a superset of the posix interface. On non-
Unix operating systems the posix module is not available, but a subset is always available through
the os interface. Once os is imported, there is no performance penalty in using it instead of posix.
In addition, os provides some additional functionality, such as automatically calling putenv() when an
entry in os.environ is changed.

The descriptions below are very terse; refer to the corresponding Unix manual (or POSIX documentation)
entry for more information. Arguments called path refer to a pathname given as a string.

Errors are reported as exceptions; the usual exceptions are given for type errors, while errors reported
by the system calls raise error (a synonym for the standard exception OSError), described below.

8.1.1 Large File Support

Several operating systems (including AIX, HPUX, Irix and Solaris) provide support for files that are
larger than 2 Gb from a C programming model where int and long are 32-bit values. This is typically

231



accomplished by defining the relevant size and offset types as 64-bit values. Such files are sometimes
referred to as large files.

Large file support is enabled in Python when the size of an off t is larger than a long and the long
long type is available and is at least as large as an off t. Python longs are then used to represent
file sizes, offsets and other values that can exceed the range of a Python int. It may be necessary to
configure and compile Python with certain compiler flags to enable this mode. For example, it is enabled
by default with recent versions of Irix, but with Solaris 2.6 and 2.7 you need to do something like:

CC="cc ‘getconf LFS_CFLAGS‘" ./configure

On large-file-capable Linux systems, this might work:

CC=’gcc -D_LARGEFILE64_SOURCE -D_FILE_OFFSET_BITS=64’ ./configure

8.1.2 Module Contents

Module posix defines the following data item:

environ
A dictionary representing the string environment at the time the interpreter was started. For
example, environ[’HOME’] is the pathname of your home directory, equivalent to getenv("HOME")
in C.

Modifying this dictionary does not affect the string environment passed on by execv(), popen()
or system(); if you need to change the environment, pass environ to execve() or add variable
assignments and export statements to the command string for system() or popen().

Note: The os module provides an alternate implementation of environ which updates the envi-
ronment on modification. Note also that updating os.environ will render this dictionary obsolete.
Use of the os for this is recommended over direct access to the posix module.

Additional contents of this module should only be accessed via the os module; refer to the documentation
for that module for further information.

8.2 pwd — The password database

This module provides access to the Unix user account and password database. It is available on all Unix

versions.

Password database entries are reported as 7-tuples containing the following items from the password
database (see <pwd.h>), in order:

Index Field Meaning
0 pw name Login name
1 pw passwd Optional encrypted password
2 pw uid Numerical user ID
3 pw gid Numerical group ID
4 pw gecos User name or comment field
5 pw dir User home directory
6 pw shell User command interpreter

The uid and gid items are integers, all others are strings. KeyError is raised if the entry asked for cannot
be found.

Note: In traditional Unix the field pw passwd usually contains a password encrypted with a DES
derived algorithm (see module crypt). However most modern unices use a so-called shadow password
system. On those unices the field pw passwd only contains a asterisk (’*’) or the letter ‘x’ where the
encrypted password is stored in a file ‘/etc/shadow’ which is not world readable.

232 Chapter 8. Unix Specific Services



It defines the following items:

getpwuid(uid)
Return the password database entry for the given numeric user ID.

getpwnam(name)
Return the password database entry for the given user name.

getpwall()
Return a list of all available password database entries, in arbitrary order.

See Also:

Module grp (section 8.3):
An interface to the group database, similar to this.

8.3 grp — The group database

This module provides access to the Unix group database. It is available on all Unix versions.

Group database entries are reported as 4-tuples containing the following items from the group database
(see <grp.h>), in order:

Index Field Meaning
0 gr name the name of the group
1 gr passwd the (encrypted) group password; often empty
2 gr gid the numerical group ID
3 gr mem all the group member’s user names

The gid is an integer, name and password are strings, and the member list is a list of strings. (Note
that most users are not explicitly listed as members of the group they are in according to the password
database. Check both databases to get complete membership information.)

It defines the following items:

getgrgid(gid)
Return the group database entry for the given numeric group ID. KeyError is raised if the entry
asked for cannot be found.

getgrnam(name)
Return the group database entry for the given group name. KeyError is raised if the entry asked
for cannot be found.

getgrall()
Return a list of all available group entries, in arbitrary order.

See Also:

Module pwd (section 8.2):
An interface to the user database, similar to this.

8.4 crypt — Function to check Unix passwords

This module implements an interface to the crypt(3) routine, which is a one-way hash function based
upon a modified DES algorithm; see the Unix man page for further details. Possible uses include allowing
Python scripts to accept typed passwords from the user, or attempting to crack Unix passwords with a
dictionary.

crypt(word, salt)
word will usually be a user’s password as typed at a prompt or in a graphical interface. salt is
usually a random two-character string which will be used to perturb the DES algorithm in one
of 4096 ways. The characters in salt must be in the set d[./a-zA-Z0-9]c. Returns the hashed

8.3. grp — The group database 233



password as a string, which will be composed of characters from the same alphabet as the salt (the
first two characters represent the salt itself).

A simple example illustrating typical use:

import crypt, getpass, pwd

def login():

username = raw_input(’Python login:’)

cryptedpasswd = pwd.getpwnam(username)[1]

if cryptedpasswd:

if cryptedpasswd == ’x’ or cryptedpasswd == ’*’:

raise "Sorry, currently no support for shadow passwords"

cleartext = getpass.getpass()

return crypt.crypt(cleartext, cryptedpasswd[:2]) == cryptedpasswd

else:

return 1

8.5 dl — Call C functions in shared objects

The dl module defines an interface to the dlopen() function, which is the most common interface
on Unix platforms for handling dynamically linked libraries. It allows the program to call arbitrary
functions in such a library.

Note: This module will not work unless

sizeof(int) == sizeof(long) == sizeof(char *)

If this is not the case, SystemError will be raised on import.

The dl module defines the following function:

open(name[, mode = RTLD LAZY ])
Open a shared object file, and return a handle. Mode signifies late binding (RTLD LAZY) or immedi-
ate binding (RTLD NOW). Default is RTLD LAZY. Note that some systems do not support RTLD NOW.

Return value is a dlobject.

The dl module defines the following constants:

RTLD LAZY
Useful as an argument to open().

RTLD NOW
Useful as an argument to open(). Note that on systems which do not support immediate binding,
this constant will not appear in the module. For maximum portability, use hasattr() to determine
if the system supports immediate binding.

The dl module defines the following exception:

exception error
Exception raised when an error has occurred inside the dynamic loading and linking routines.

Example:

>>> import dl, time

>>> a=dl.open(’/lib/libc.so.6’)

>>> a.call(’time’), time.time()

(929723914, 929723914.498)

234 Chapter 8. Unix Specific Services



This example was tried on a Debian GNU/Linux system, and is a good example of the fact that using
this module is usually a bad alternative.

8.5.1 Dl Objects

Dl objects, as returned by open() above, have the following methods:

close()
Free all resources, except the memory.

sym(name)
Return the pointer for the function named name, as a number, if it exists in the referenced shared
object, otherwise None. This is useful in code like:

>>> if a.sym(’time’):

... a.call(’time’)

... else:

... time.time()

(Note that this function will return a non-zero number, as zero is the NULL pointer)

call(name[, arg1 [, arg2. . . ] ])
Call the function named name in the referenced shared object. The arguments must be either
Python integers, which will be passed as is, Python strings, to which a pointer will be passed, or
None, which will be passed as NULL. Note that strings should only be passed to functions as const
char*, as Python will not like its string mutated.

There must be at most 10 arguments, and arguments not given will be treated as None. The
function’s return value must be a C long, which is a Python integer.

8.6 dbm — Simple “database” interface

The dbm module provides an interface to the Unix (n)dbm library. Dbm objects behave like mappings
(dictionaries), except that keys and values are always strings. Printing a dbm object doesn’t print the
keys and values, and the items() and values() methods are not supported.

This module can be used with the “classic” ndbm interface, the BSD DB compatibility interface, or
the GNU GDBM compatibility interface. On Unix, the configure script will attempt to locate the
appropriate header file to simplify building this module.

The module defines the following:

exception error
Raised on dbm-specific errors, such as I/O errors. KeyError is raised for general mapping errors
like specifying an incorrect key.

library
Name of the ndbm implementation library used.

open(filename[, flag[, mode ] ])
Open a dbm database and return a dbm object. The filename argument is the name of the database
file (without the ‘.dir’ or ‘.pag’ extensions; note that the BSD DB implementation of the interface
will append the extension ‘.db’ and only create one file).

The optional flag argument must be one of these values:
Value Meaning
’r’ Open existing database for reading only (default)
’w’ Open existing database for reading and writing
’c’ Open database for reading and writing, creating it if it doesn’t exist
’n’ Always create a new, empty database, open for reading and writing

The optional mode argument is the Unix mode of the file, used only when the database has to be
created. It defaults to octal 0666.

8.6. dbm — Simple “database” interface 235



See Also:

Module anydbm (section 7.8):
Generic interface to dbm-style databases.

Module gdbm (section 8.7):
Similar interface to the GNU GDBM library.

Module whichdb (section 7.11):
Utility module used to determine the type of an existing database.

8.7 gdbm — GNU’s reinterpretation of dbm

This module is quite similar to the dbm module, but uses gdbm instead to provide some additional
functionality. Please note that the file formats created by gdbm and dbm are incompatible.

The gdbm module provides an interface to the GNU DBM library. gdbm objects behave like mappings
(dictionaries), except that keys and values are always strings. Printing a gdbm object doesn’t print the
keys and values, and the items() and values() methods are not supported.

The module defines the following constant and functions:

exception error
Raised on gdbm-specific errors, such as I/O errors. KeyError is raised for general mapping errors
like specifying an incorrect key.

open(filename, [flag, [mode ] ])
Open a gdbm database and return a gdbm object. The filename argument is the name of the
database file.

The optional flag argument can be ’r’ (to open an existing database for reading only — default),
’w’ (to open an existing database for reading and writing), ’c’ (which creates the database if it
doesn’t exist), or ’n’ (which always creates a new empty database).

The following additional characters may be appended to the flag to control how the database is
opened:

•’f’ — Open the database in fast mode. Writes to the database will not be syncronized.

•’s’ — Synchronized mode. This will cause changes to the database will be immediately
written to the file.

•’u’ — Do not lock database.

Not all flags are valid for all versions of gdbm. The module constant open flags is a string of
supported flag characters. The exception error is raised if an invalid flag is specified.

The optional mode argument is the Unix mode of the file, used only when the database has to be
created. It defaults to octal 0666.

In addition to the dictionary-like methods, gdbm objects have the following methods:

firstkey()
It’s possible to loop over every key in the database using this method and the nextkey() method.
The traversal is ordered by gdbm’s internal hash values, and won’t be sorted by the key values.
This method returns the starting key.

nextkey(key)
Returns the key that follows key in the traversal. The following code prints every key in the
database db, without having to create a list in memory that contains them all:

k = db.firstkey()

while k != None:

print k

k = db.nextkey(k)

236 Chapter 8. Unix Specific Services



reorganize()
If you have carried out a lot of deletions and would like to shrink the space used by the gdbm file,
this routine will reorganize the database. gdbm will not shorten the length of a database file except
by using this reorganization; otherwise, deleted file space will be kept and reused as new (key,
value) pairs are added.

sync()
When the database has been opened in fast mode, this method forces any unwritten data to be
written to the disk.

See Also:

Module anydbm (section 7.8):
Generic interface to dbm-style databases.

Module whichdb (section 7.11):
Utility module used to determine the type of an existing database.

8.8 termios — POSIX style tty control

This module provides an interface to the POSIX calls for tty I/O control. For a complete description
of these calls, see the POSIX or Unix manual pages. It is only available for those Unix versions that
support POSIX termios style tty I/O control (and then only if configured at installation time).

All functions in this module take a file descriptor fd as their first argument. This must be an integer file
descriptor, such as returned by sys.stdin.fileno().

This module also defines all the constants needed to work with the functions provided here; these have the
same name as their counterparts in C. Please refer to your system documentation for more information
on using these terminal control interfaces.

The module defines the following functions:

tcgetattr(fd)
Return a list containing the tty attributes for file descriptor fd , as follows: [iflag , oflag , cflag ,
lflag , ispeed , ospeed , cc] where cc is a list of the tty special characters (each a string of length 1,
except the items with indices VMIN and VTIME, which are integers when these fields are defined).
The interpretation of the flags and the speeds as well as the indexing in the cc array must be done
using the symbolic constants defined in the termios module.

tcsetattr(fd, when, attributes)
Set the tty attributes for file descriptor fd from the attributes, which is a list like the one returned
by tcgetattr(). The when argument determines when the attributes are changed: TCSANOW to
change immediately, TCSADRAIN to change after transmitting all queued output, or TCSAFLUSH to
change after transmitting all queued output and discarding all queued input.

tcsendbreak(fd, duration)
Send a break on file descriptor fd . A zero duration sends a break for 0.25–0.5 seconds; a nonzero
duration has a system dependent meaning.

tcdrain(fd)
Wait until all output written to file descriptor fd has been transmitted.

tcflush(fd, queue)
Discard queued data on file descriptor fd . The queue selector specifies which queue: TCIFLUSH for
the input queue, TCOFLUSH for the output queue, or TCIOFLUSH for both queues.

tcflow(fd, action)
Suspend or resume input or output on file descriptor fd . The action argument can be TCOOFF to
suspend output, TCOON to restart output, TCIOFF to suspend input, or TCION to restart input.

See Also:

Module tty (section 8.10):

8.8. termios — POSIX style tty control 237



Convenience functions for common terminal control operations.

8.8.1 Example

Here’s a function that prompts for a password with echoing turned off. Note the technique using a
separate tcgetattr() call and a try ... finally statement to ensure that the old tty attributes are
restored exactly no matter what happens:

def getpass(prompt = "Password: "):

import termios, sys

fd = sys.stdin.fileno()

old = termios.tcgetattr(fd)

new = termios.tcgetattr(fd)

new[3] = new[3] & ~termios.ECHO # lflags

try:

termios.tcsetattr(fd, termios.TCSADRAIN, new)

passwd = raw_input(prompt)

finally:

termios.tcsetattr(fd, termios.TCSADRAIN, old)

return passwd

8.9 TERMIOS — Constants used with the termios module

Deprecated since release 2.1. Import needed constants from termios instead.

This module defines the symbolic constants required to use the termios module (see the previous section).
See the POSIX or Unix manual pages for a list of those constants.

8.10 tty — Terminal control functions

The tty module defines functions for putting the tty into cbreak and raw modes.

Because it requires the termios module, it will work only on Unix.

The tty module defines the following functions:

setraw(fd[, when ])
Change the mode of the file descriptor fd to raw. If when is omitted, it defaults to
TERMIOS.TCAFLUSH, and is passed to termios.tcsetattr().

setcbreak(fd[, when ])
Change the mode of file descriptor fd to cbreak. If when is omitted, it defaults to
TERMIOS.TCAFLUSH, and is passed to termios.tcsetattr().

See Also:

Module termios (section 8.8):
Low-level terminal control interface.

Module TERMIOS (section 8.9):
Constants useful for terminal control operations.

8.11 pty — Pseudo-terminal utilities

The pty module defines operations for handling the pseudo-terminal concept: starting another process
and being able to write to and read from its controlling terminal programmatically.

238 Chapter 8. Unix Specific Services



Because pseudo-terminal handling is highly platform dependant, there is code to do it only for SGI and
Linux. (The Linux code is supposed to work on other platforms, but hasn’t been tested yet.)

The pty module defines the following functions:

fork()
Fork. Connect the child’s controlling terminal to a pseudo-terminal. Return value is (pid, fd).
Note that the child gets pid 0, and the fd is invalid. The parent’s return value is the pid of the
child, and fd is a file descriptor connected to the child’s controlling terminal (and also to the child’s
standard input and output.

openpty()
Open a new pseudo-terminal pair, using os.openpty() if possible, or emulation code for SGI and
generic Unix systems. Return a pair of file descriptors (master, slave), for the master and the
slave end, respectively.

spawn(argv[, master read[, stdin read ] ])
Spawn a process, and connect its controlling terminal with the current process’s standard io. This
is often used to baffle programs which insist on reading from the controlling terminal.

The functions master read and stdin read should be functions which read from a file-descriptor.
The defaults try to read 1024 bytes each time they are called.

8.12 fcntl — The fcntl() and ioctl() system calls

This module performs file control and I/O control on file descriptors. It is an interface to the fcntl()
and ioctl() Unix routines. File descriptors can be obtained with the fileno() method of a file or
socket object.

The module defines the following functions:

fcntl(fd, op[, arg ])
Perform the requested operation on file descriptor fd . The operation is defined by op and is
operating system dependent. Typically these codes can be retrieved from the library module
FCNTL. The argument arg is optional, and defaults to the integer value 0. When present, it can
either be an integer value, or a string. With the argument missing or an integer value, the return
value of this function is the integer return value of the C fcntl() call. When the argument is a
string it represents a binary structure, e.g. created by struct.pack(). The binary data is copied
to a buffer whose address is passed to the C fcntl() call. The return value after a successful call
is the contents of the buffer, converted to a string object. The length of the returned string will
be the same as the length of the arg argument. This is limited to 1024 bytes. If the information
returned in the buffer by the operating system is larger than 1024 bytes, this is most likely to result
in a segmentation violation or a more subtle data corruption.

If the fcntl() fails, an IOError is raised.

ioctl(fd, op, arg)
This function is identical to the fcntl() function, except that the operations are typically defined
in the library module IOCTL.

flock(fd, op)
Perform the lock operation op on file descriptor fd . See the Unix manual flock(3) for details. (On
some systems, this function is emulated using fcntl().)

lockf(fd, operation, [len, [start, [whence ] ] ])
This is essentially a wrapper around the fcntl() locking calls. fd is the file descriptor of the file
to lock or unlock, and operation is one of the following values:

•LOCK UN – unlock

•LOCK SH – acquire a shared lock

•LOCK EX – acquire an exclusive lock

8.12. fcntl — The fcntl() and ioctl() system calls 239



When operation is LOCK SH or LOCK EX, it can also be bit-wise OR’d with LOCK NB to avoid
blocking on lock acquisition. If LOCK NB is used and the lock cannot be acquired, an IOError will
be raised and the exception will have an errno attribute set to EACCES or EAGAIN (depending on
the operating system; for portability, check for both values).

length is the number of bytes to lock, start is the byte offset at which the lock starts, relative to
whence, and whence is as with fileobj.seek(), specifically:

•0 – relative to the start of the file (SEEK SET)

•1 – relative to the current buffer position (SEEK CUR)

•2 – relative to the end of the file (SEEK END)

The default for start is 0, which means to start at the beginning of the file. The default for length
is 0 which means to lock to the end of the file. The default for whence is also 0.

If the library modules FCNTL or IOCTL are missing, you can find the opcodes in the C include files
<sys/fcntl.h> and <sys/ioctl.h>. You can create the modules yourself with the h2py script, found
in the ‘Tools/scripts/’ directory.

Examples (all on a SVR4 compliant system):

import struct, fcntl, FCNTL

file = open(...)

rv = fcntl(file.fileno(), FCNTL.F_SETFL, FCNTL.O_NDELAY)

lockdata = struct.pack(’hhllhh’, FCNTL.F_WRLCK, 0, 0, 0, 0, 0)

rv = fcntl.fcntl(file.fileno(), FCNTL.F_SETLKW, lockdata)

Note that in the first example the return value variable rv will hold an integer value; in the second
example it will hold a string value. The structure lay-out for the lockdata variable is system dependent
— therefore using the flock() call may be better.

8.13 pipes — Interface to shell pipelines

The pipes module defines a class to abstract the concept of a pipeline — a sequence of convertors from
one file to another.

Because the module uses /bin/sh command lines, a POSIX or compatible shell for os.system() and
os.popen() is required.

The pipes module defines the following class:

class Template()
An abstraction of a pipeline.

Example:

>>> import pipes

>>> t=pipes.Template()

>>> t.append(’tr a-z A-Z’, ’--’)

>>> f=t.open(’/tmp/1’, ’w’)

>>> f.write(’hello world’)

>>> f.close()

>>> open(’/tmp/1’).read()

’HELLO WORLD’

240 Chapter 8. Unix Specific Services



8.13.1 Template Objects

Template objects following methods:

reset()
Restore a pipeline template to its initial state.

clone()
Return a new, equivalent, pipeline template.

debug(flag)
If flag is true, turn debugging on. Otherwise, turn debugging off. When debugging is on, commands
to be executed are printed, and the shell is given set -x command to be more verbose.

append(cmd, kind)
Append a new action at the end. The cmd variable must be a valid bourne shell command. The
kind variable consists of two letters.

The first letter can be either of ’-’ (which means the command reads its standard input), ’f’
(which means the commands reads a given file on the command line) or ’.’ (which means the
commands reads no input, and hence must be first.)

Similarly, the second letter can be either of ’-’ (which means the command writes to standard
output), ’f’ (which means the command writes a file on the command line) or ’.’ (which means
the command does not write anything, and hence must be last.)

prepend(cmd, kind)
Add a new action at the beginning. See append() for explanations of the arguments.

open(file, mode)
Return a file-like object, open to file, but read from or written to by the pipeline. Note that only
one of ’r’, ’w’ may be given.

copy(infile, outfile)
Copy infile to outfile through the pipe.

8.14 posixfile — File-like objects with locking support

Note: This module will become obsolete in a future release. The locking operation that it provides is
done better and more portably by the fcntl.lockf() call.

This module implements some additional functionality over the built-in file objects. In particular, it
implements file locking, control over the file flags, and an easy interface to duplicate the file object. The
module defines a new file object, the posixfile object. It has all the standard file object methods and
adds the methods described below. This module only works for certain flavors of Unix, since it uses
fcntl.fcntl() for file locking.

To instantiate a posixfile object, use the open() function in the posixfile module. The resulting object
looks and feels roughly the same as a standard file object.

The posixfile module defines the following constants:

SEEK SET
Offset is calculated from the start of the file.

SEEK CUR
Offset is calculated from the current position in the file.

SEEK END
Offset is calculated from the end of the file.

The posixfile module defines the following functions:

open(filename[, mode[, bufsize ] ])
Create a new posixfile object with the given filename and mode. The filename, mode and bufsize
arguments are interpreted the same way as by the built-in open() function.

8.14. posixfile — File-like objects with locking support 241



fileopen(fileobject)
Create a new posixfile object with the given standard file object. The resulting object has the same
filename and mode as the original file object.

The posixfile object defines the following additional methods:

lock(fmt, [len[, start[, whence ] ] ])
Lock the specified section of the file that the file object is referring to. The format is explained
below in a table. The len argument specifies the length of the section that should be locked.
The default is 0. start specifies the starting offset of the section, where the default is 0. The
whence argument specifies where the offset is relative to. It accepts one of the constants SEEK SET,
SEEK CUR or SEEK END. The default is SEEK SET. For more information about the arguments refer
to the fcntl(2) manual page on your system.

flags([flags ])
Set the specified flags for the file that the file object is referring to. The new flags are ORed with
the old flags, unless specified otherwise. The format is explained below in a table. Without the
flags argument a string indicating the current flags is returned (this is the same as the ‘?’ modifier).
For more information about the flags refer to the fcntl(2) manual page on your system.

dup()
Duplicate the file object and the underlying file pointer and file descriptor. The resulting object
behaves as if it were newly opened.

dup2(fd)
Duplicate the file object and the underlying file pointer and file descriptor. The new object will
have the given file descriptor. Otherwise the resulting object behaves as if it were newly opened.

file()
Return the standard file object that the posixfile object is based on. This is sometimes necessary
for functions that insist on a standard file object.

All methods raise IOError when the request fails.

Format characters for the lock() method have the following meaning:

Format Meaning
‘u’ unlock the specified region
‘r’ request a read lock for the specified section
‘w’ request a write lock for the specified section

In addition the following modifiers can be added to the format:

Modifier Meaning Notes
‘|’ wait until the lock has been granted
‘?’ return the first lock conflicting with the requested lock, or None if there is no conflict. (1)

Note:

(1) The lock returned is in the format (mode, len, start, whence, pid) where mode is a character
representing the type of lock (’r’ or ’w’). This modifier prevents a request from being granted; it
is for query purposes only.

Format characters for the flags() method have the following meanings:

Format Meaning
‘a’ append only flag
‘c’ close on exec flag
‘n’ no delay flag (also called non-blocking flag)
‘s’ synchronization flag

242 Chapter 8. Unix Specific Services



In addition the following modifiers can be added to the format:

Modifier Meaning Notes
‘!’ turn the specified flags ’off’, instead of the default ’on’ (1)
‘=’ replace the flags, instead of the default ’OR’ operation (1)
‘?’ return a string in which the characters represent the flags that are set. (2)

Notes:

(1) The ‘!’ and ‘=’ modifiers are mutually exclusive.

(2) This string represents the flags after they may have been altered by the same call.

Examples:

import posixfile

file = posixfile.open(’/tmp/test’, ’w’)

file.lock(’w|’)

...

file.lock(’u’)

file.close()

8.15 resource — Resource usage information

This module provides basic mechanisms for measuring and controlling system resources utilized by a
program.

Symbolic constants are used to specify particular system resources and to request usage information
about either the current process or its children.

A single exception is defined for errors:

exception error
The functions described below may raise this error if the underlying system call failures unexpect-
edly.

8.15.1 Resource Limits

Resources usage can be limited using the setrlimit() function described below. Each resource is
controlled by a pair of limits: a soft limit and a hard limit. The soft limit is the current limit, and may
be lowered or raised by a process over time. The soft limit can never exceed the hard limit. The hard
limit can be lowered to any value greater than the soft limit, but not raised. (Only processes with the
effective UID of the super-user can raise a hard limit.)

The specific resources that can be limited are system dependent. They are described in the getrlimit(2)
man page. The resources listed below are supported when the underlying operating system supports
them; resources which cannot be checked or controlled by the operating system are not defined in this
module for those platforms.

getrlimit(resource)
Returns a tuple (soft, hard) with the current soft and hard limits of resource. Raises ValueError
if an invalid resource is specified, or error if the underyling system call fails unexpectedly.

setrlimit(resource, limits)
Sets new limits of consumption of resource. The limits argument must be a tuple (soft, hard) of

8.15. resource — Resource usage information 243



two integers describing the new limits. A value of -1 can be used to specify the maximum possible
upper limit.

Raises ValueError if an invalid resource is specified, if the new soft limit exceeds the hard limit,
or if a process tries to raise its hard limit (unless the process has an effective UID of super-user).
Can also raise error if the underyling system call fails.

These symbols define resources whose consumption can be controlled using the setrlimit() and
getrlimit() functions described below. The values of these symbols are exactly the constants used
by C programs.

The Unix man page for getrlimit(2) lists the available resources. Note that not all systems use the same
symbol or same value to denote the same resource. This module does not attempt to mask platform
differences — symbols not defined for a platform will not be available from this module on that platform.

RLIMIT CORE
The maximum size (in bytes) of a core file that the current process can create. This may result in
the creation of a partial core file if a larger core would be required to contain the entire process
image.

RLIMIT CPU
The maximum amount of CPU time (in seconds) that a process can use. If this limit is exceeded,
a SIGXCPU signal is sent to the process. (See the signal module documentation for information
about how to catch this signal and do something useful, e.g. flush open files to disk.)

RLIMIT FSIZE
The maximum size of a file which the process may create. This only affects the stack of the main
thread in a multi-threaded process.

RLIMIT DATA
The maximum size (in bytes) of the process’s heap.

RLIMIT STACK
The maximum size (in bytes) of the call stack for the current process.

RLIMIT RSS
The maximum resident set size that should be made available to the process.

RLIMIT NPROC
The maximum number of processes the current process may create.

RLIMIT NOFILE
The maximum number of open file descriptors for the current process.

RLIMIT OFILE
The BSD name for RLIMIT NOFILE.

RLIMIT MEMLOC
The maximm address space which may be locked in memory.

RLIMIT VMEM
The largest area of mapped memory which the process may occupy.

RLIMIT AS
The maximum area (in bytes) of address space which may be taken by the process.

8.15.2 Resource Usage

These functiona are used to retrieve resource usage information:

getrusage(who)
This function returns a large tuple that describes the resources consumed by either the current
process or its children, as specified by the who parameter. The who parameter should be specified
using one of the RUSAGE * constants described below.

The elements of the return value each describe how a particular system resource has been used,
e.g. amount of time spent running is user mode or number of times the process was swapped out

244 Chapter 8. Unix Specific Services



of main memory. Some values are dependent on the clock tick internal, e.g. the amount of memory
the process is using.

The first two elements of the return value are floating point values representing the amount of
time spent executing in user mode and the amount of time spent executing in system mode,
respectively. The remaining values are integers. Consult the getrusage(2) man page for detailed
information about these values. A brief summary is presented here:

Offset Resource
0 time in user mode (float)
1 time in system mode (float)
2 maximum resident set size
3 shared memory size
4 unshared memory size
5 unshared stack size
6 page faults not requiring I/O
7 page faults requiring I/O
8 number of swap outs
9 block input operations

10 block output operations
11 messages sent
12 messages received
13 signals received
14 voluntary context switches
15 involuntary context switches

This function will raise a ValueError if an invalid who parameter is specified. It may also raise
error exception in unusual circumstances.

getpagesize()
Returns the number of bytes in a system page. (This need not be the same as the hardware page
size.) This function is useful for determining the number of bytes of memory a process is using. The
third element of the tuple returned by getrusage() describes memory usage in pages; multiplying
by page size produces number of bytes.

The following RUSAGE * symbols are passed to the getrusage() function to specify which processes
information should be provided for.

RUSAGE SELF
RUSAGE SELF should be used to request information pertaining only to the process itself.

RUSAGE CHILDREN
Pass to getrusage() to request resource information for child processes of the calling process.

RUSAGE BOTH
Pass to getrusage() to request resources consumed by both the current process and child processes.
May not be available on all systems.

8.16 nis — Interface to Sun’s NIS (Yellow Pages)

The nis module gives a thin wrapper around the NIS library, useful for central administration of several
hosts.

Because NIS exists only on Unix systems, this module is only available for Unix.

The nis module defines the following functions:

match(key, mapname)
Return the match for key in map mapname, or raise an error (nis.error) if there is none. Both
should be strings, key is 8-bit clean. Return value is an arbitrary array of bytes (i.e., may contain
NULL and other joys).

Note that mapname is first checked if it is an alias to another name.

8.16. nis — Interface to Sun’s NIS (Yellow Pages) 245



cat(mapname)
Return a dictionary mapping key to value such that match(key, mapname)==value. Note that
both keys and values of the dictionary are arbitrary arrays of bytes.

Note that mapname is first checked if it is an alias to another name.

maps()
Return a list of all valid maps.

The nis module defines the following exception:

exception error
An error raised when a NIS function returns an error code.

8.17 syslog — Unix syslog library routines

This module provides an interface to the Unix syslog library routines. Refer to the Unix manual pages
for a detailed description of the syslog facility.

The module defines the following functions:

syslog([priority, ] message)
Send the string message to the system logger. A trailing newline is added if necessary. Each message
is tagged with a priority composed of a facility and a level . The optional priority argument, which
defaults to LOG INFO, determines the message priority. If the facility is not encoded in priority
using logical-or (LOG INFO | LOG USER), the value given in the openlog() call is used.

openlog(ident[, logopt[, facility ] ])
Logging options other than the defaults can be set by explicitly opening the log file with openlog()
prior to calling syslog(). The defaults are (usually) ident = ’syslog’, logopt = 0, facility =
LOG USER. The ident argument is a string which is prepended to every message. The optional
logopt argument is a bit field - see below for possible values to combine. The optional facility
argument sets the default facility for messages which do not have a facility explicitly encoded.

closelog()
Close the log file.

setlogmask(maskpri)
Set the priority mask to maskpri and return the previous mask value. Calls to syslog() with
a priority level not set in maskpri are ignored. The default is to log all priorities. The function
LOG MASK(pri) calculates the mask for the individual priority pri . The function LOG UPTO(pri)
calculates the mask for all priorities up to and including pri .

The module defines the following constants:

Priority levels (high to low): LOG EMERG, LOG ALERT, LOG CRIT, LOG ERR, LOG WARNING,
LOG NOTICE, LOG INFO, LOG DEBUG.

Facilities: LOG KERN, LOG USER, LOG MAIL, LOG DAEMON, LOG AUTH, LOG LPR, LOG NEWS, LOG UUCP,
LOG CRON and LOG LOCAL0 to LOG LOCAL7.

Log options: LOG PID, LOG CONS, LOG NDELAY, LOG NOWAIT and LOG PERROR if defined in
<syslog.h>.

8.18 commands — Utilities for running commands

The commands module contains wrapper functions for os.popen() which take a system command as a
string and return any output generated by the command and, optionally, the exit status.

The commands module defines the following functions:

246 Chapter 8. Unix Specific Services



getstatusoutput(cmd)
Execute the string cmd in a shell with os.popen() and return a 2-tuple (status, output). cmd is
actually run as {cmd ; }2>&1, so that the returned output will contain output or error messages.
A trailing newline is stripped from the output. The exit status for the command can be interpreted
according to the rules for the C function wait().

getoutput(cmd)
Like getstatusoutput(), except the exit status is ignored and the return value is a string con-
taining the command’s output.

getstatus(file)
Return the output of ‘ls -ld file’ as a string. This function uses the getoutput() function, and
properly escapes backslashes and dollar signs in the argument.

Example:

>>> import commands

>>> commands.getstatusoutput(’ls /bin/ls’)

(0, ’/bin/ls’)

>>> commands.getstatusoutput(’cat /bin/junk’)

(256, ’cat: /bin/junk: No such file or directory’)

>>> commands.getstatusoutput(’/bin/junk’)

(256, ’sh: /bin/junk: not found’)

>>> commands.getoutput(’ls /bin/ls’)

’/bin/ls’

>>> commands.getstatus(’/bin/ls’)

’-rwxr-xr-x 1 root 13352 Oct 14 1994 /bin/ls’

8.18. commands — Utilities for running commands 247



248



CHAPTER

NINE

The Python Debugger

The module pdb defines an interactive source code debugger for Python programs. It supports setting
(conditional) breakpoints and single stepping at the source line level, inspection of stack frames, source
code listing, and evaluation of arbitrary Python code in the context of any stack frame. It also supports
post-mortem debugging and can be called under program control.

The debugger is extensible — it is actually defined as the class Pdb. This is currently undocumented but
easily understood by reading the source. The extension interface uses the modules bdb (undocumented)
and cmd.

The debugger’s prompt is ‘(Pdb) ’. Typical usage to run a program under control of the debugger is:

>>> import pdb

>>> import mymodule

>>> pdb.run(’mymodule.test()’)

> <string>(0)?()

(Pdb) continue

> <string>(1)?()

(Pdb) continue

NameError: ’spam’

> <string>(1)?()

(Pdb)

‘pdb.py’ can also be invoked as a script to debug other scripts. For example:

python /usr/local/lib/python1.5/pdb.py myscript.py

Typical usage to inspect a crashed program is:

>>> import pdb

>>> import mymodule

>>> mymodule.test()

Traceback (most recent call last):

File "<stdin>", line 1, in ?

File "./mymodule.py", line 4, in test

test2()

File "./mymodule.py", line 3, in test2

print spam

NameError: spam

>>> pdb.pm()

> ./mymodule.py(3)test2()

-> print spam

(Pdb)

249



The module defines the following functions; each enters the debugger in a slightly different way:

run(statement[, globals[, locals ] ])
Execute the statement (given as a string) under debugger control. The debugger prompt appears
before any code is executed; you can set breakpoints and type ‘continue’, or you can step through
the statement using ‘step’ or ‘next’ (all these commands are explained below). The optional
globals and locals arguments specify the environment in which the code is executed; by default the
dictionary of the module main is used. (See the explanation of the exec statement or the
eval() built-in function.)

runeval(expression[, globals[, locals ] ])
Evaluate the expression (given as a a string) under debugger control. When runeval() returns, it
returns the value of the expression. Otherwise this function is similar to run().

runcall(function[, argument, ... ])
Call the function (a function or method object, not a string) with the given arguments. When
runcall() returns, it returns whatever the function call returned. The debugger prompt appears
as soon as the function is entered.

set trace()
Enter the debugger at the calling stack frame. This is useful to hard-code a breakpoint at a given
point in a program, even if the code is not otherwise being debugged (e.g. when an assertion fails).

post mortem(traceback)
Enter post-mortem debugging of the given traceback object.

pm()
Enter post-mortem debugging of the traceback found in sys.last traceback.

9.1 Debugger Commands

The debugger recognizes the following commands. Most commands can be abbreviated to one or two
letters; e.g. ‘h(elp)’ means that either ‘h’ or ‘help’ can be used to enter the help command (but not ‘he’
or ‘hel’, nor ‘H’ or ‘Help’ or ‘HELP’). Arguments to commands must be separated by whitespace (spaces
or tabs). Optional arguments are enclosed in square brackets (‘[]’) in the command syntax; the square
brackets must not be typed. Alternatives in the command syntax are separated by a vertical bar (‘|’).

Entering a blank line repeats the last command entered. Exception: if the last command was a ‘list’
command, the next 11 lines are listed.

Commands that the debugger doesn’t recognize are assumed to be Python statements and are executed in
the context of the program being debugged. Python statements can also be prefixed with an exclamation
point (‘!’). This is a powerful way to inspect the program being debugged; it is even possible to change a
variable or call a function. When an exception occurs in such a statement, the exception name is printed
but the debugger’s state is not changed.

Multiple commands may be entered on a single line, separated by ‘;;’. (A single ‘;’ is not used as it is
the separator for multiple commands in a line that is passed to the Python parser.) No intelligence is
applied to separating the commands; the input is split at the first ‘;;’ pair, even if it is in the middle of
a quoted string.

The debugger supports aliases. Aliases can have parameters which allows one a certain level of adapt-
ability to the context under examination.

If a file ‘.pdbrc’ exists in the user’s home directory or in the current directory, it is read in and executed
as if it had been typed at the debugger prompt. This is particularly useful for aliases. If both files exist,
the one in the home directory is read first and aliases defined there can be overridden by the local file.

h(elp) [command ] Without argument, print the list of available commands. With a command as
argument, print help about that command. ‘help pdb’ displays the full documentation file; if the
environment variable PAGER is defined, the file is piped through that command instead. Since
the command argument must be an identifier, ‘help exec’ must be entered to get help on the ‘!’

250 Chapter 9. The Python Debugger



command.

w(here) Print a stack trace, with the most recent frame at the bottom. An arrow indicates the current
frame, which determines the context of most commands.

d(own) Move the current frame one level down in the stack trace (to an newer frame).

u(p) Move the current frame one level up in the stack trace (to a older frame).

b(reak) [[filename: ]lineno|function[, condition ] ] With a lineno argument, set a break there in
the current file. With a function argument, set a break at the first executable statement within that
function. The line number may be prefixed with a filename and a colon, to specify a breakpoint in
another file (probably one that hasn’t been loaded yet). The file is searched on sys.path. Note
that each breakpoint is assigned a number to which all the other breakpoint commands refer.

If a second argument is present, it is an expression which must evaluate to true before the breakpoint
is honored.

Without argument, list all breaks, including for each breakpoint, the number of times that break-
point has been hit, the current ignore count, and the associated condition if any.

tbreak [[filename: ]lineno|function[, condition ] ] Temporary breakpoint, which is removed au-
tomatically when it is first hit. The arguments are the same as break.

cl(ear) [bpnumber [bpnumber ... ] ] With a space separated list of breakpoint numbers, clear those
breakpoints. Without argument, clear all breaks (but first ask confirmation).

disable [bpnumber [bpnumber ... ] ] Disables the breakpoints given as a space separated list of break-
point numbers. Disabling a breakpoint means it cannot cause the program to stop execution, but
unlike clearing a breakpoint, it remains in the list of breakpoints and can be (re-)enabled.

enable [bpnumber [bpnumber ... ] ] Enables the breakpoints specified.

ignore bpnumber [count ] Sets the ignore count for the given breakpoint number. If count is omitted,
the ignore count is set to 0. A breakpoint becomes active when the ignore count is zero. When
non-zero, the count is decremented each time the breakpoint is reached and the breakpoint is not
disabled and any associated condition evaluates to true.

condition bpnumber [condition ] Condition is an expression which must evaluate to true before the
breakpoint is honored. If condition is absent, any existing condition is removed; i.e., the breakpoint
is made unconditional.

s(tep) Execute the current line, stop at the first possible occasion (either in a function that is called or
on the next line in the current function).

n(ext) Continue execution until the next line in the current function is reached or it returns. (The
difference between ‘next’ and ‘step’ is that ‘step’ stops inside a called function, while ‘next’
executes called functions at (nearly) full speed, only stopping at the next line in the current
function.)

r(eturn) Continue execution until the current function returns.

c(ont(inue)) Continue execution, only stop when a breakpoint is encountered.

l(ist) [first[, last ] ] List source code for the current file. Without arguments, list 11 lines around
the current line or continue the previous listing. With one argument, list 11 lines around at that
line. With two arguments, list the given range; if the second argument is less than the first, it is
interpreted as a count.

a(rgs) Print the argument list of the current function.

p expression Evaluate the expression in the current context and print its value. (Note: ‘print’ can
also be used, but is not a debugger command — this executes the Python print statement.)

9.1. Debugger Commands 251



alias [name [command ] ] Creates an alias called name that executes command . The command must
not be enclosed in quotes. Replaceable parameters can be indicated by ‘%1’, ‘%2’, and so on, while
‘%*’ is replaced by all the parameters. If no command is given, the current alias for name is shown.
If no arguments are given, all aliases are listed.

Aliases may be nested and can contain anything that can be legally typed at the pdb prompt. Note
that internal pdb commands can be overridden by aliases. Such a command is then hidden until
the alias is removed. Aliasing is recursively applied to the first word of the command line; all other
words in the line are left alone.

As an example, here are two useful aliases (especially when placed in the ‘.pdbrc’ file):

#Print instance variables (usage "pi classInst")

alias pi for k in %1.__dict__.keys(): print "%1.",k,"=",%1.__dict__[k]

#Print instance variables in self

alias ps pi self

unalias name Deletes the specified alias.

[! ]statement Execute the (one-line) statement in the context of the current stack frame. The exclama-
tion point can be omitted unless the first word of the statement resembles a debugger command.
To set a global variable, you can prefix the assignment command with a ‘global’ command on the
same line, e.g.:

(Pdb) global list_options; list_options = [’-l’]

(Pdb)

q(uit) Quit from the debugger. The program being executed is aborted.

9.2 How It Works

Some changes were made to the interpreter:

• sys.settrace(func) sets the global trace function

• there can also a local trace function (see later)

Trace functions have three arguments: frame, event , and arg . frame is the current stack frame. event is
a string: ’call’, ’line’, ’return’ or ’exception’. arg depends on the event type.

The global trace function is invoked (with event set to ’call’) whenever a new local scope is entered; it
should return a reference to the local trace function to be used that scope, or None if the scope shouldn’t
be traced.

The local trace function should return a reference to itself (or to another function for further tracing in
that scope), or None to turn off tracing in that scope.

Instance methods are accepted (and very useful!) as trace functions.

The events have the following meaning:

’call’ A function is called (or some other code block entered). The global trace function is called; arg
is the argument list to the function; the return value specifies the local trace function.

’line’ The interpreter is about to execute a new line of code (sometimes multiple line events on one
line exist). The local trace function is called; arg in None; the return value specifies the new local
trace function.

252 Chapter 9. The Python Debugger



’return’ A function (or other code block) is about to return. The local trace function is called; arg is
the value that will be returned. The trace function’s return value is ignored.

’exception’ An exception has occurred. The local trace function is called; arg is a triple (exception,
value, traceback); the return value specifies the new local trace function

Note that as an exception is propagated down the chain of callers, an ’exception’ event is generated
at each level.

For more information on code and frame objects, refer to the Python Reference Manual.

9.2. How It Works 253



254



CHAPTER

TEN

The Python Profiler

Copyright c© 1994, by InfoSeek Corporation, all rights reserved.

Written by James Roskind.1

Permission to use, copy, modify, and distribute this Python software and its associated documentation
for any purpose (subject to the restriction in the following sentence) without fee is hereby granted,
provided that the above copyright notice appears in all copies, and that both that copyright notice
and this permission notice appear in supporting documentation, and that the name of InfoSeek not be
used in advertising or publicity pertaining to distribution of the software without specific, written prior
permission. This permission is explicitly restricted to the copying and modification of the software to
remain in Python, compiled Python, or other languages (such as C) wherein the modified or derived
code is exclusively imported into a Python module.

INFOSEEK CORPORATION DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFT-
WARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN
NO EVENT SHALL INFOSEEK CORPORATION BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

The profiler was written after only programming in Python for 3 weeks. As a result, it is probably
clumsy code, but I don’t know for sure yet ’cause I’m a beginner :-). I did work hard to make the code
run fast, so that profiling would be a reasonable thing to do. I tried not to repeat code fragments, but
I’m sure I did some stuff in really awkward ways at times. Please send suggestions for improvements to:
jar@netscape.com. I won’t promise any support. ...but I’d appreciate the feedback.

10.1 Introduction to the profiler

A profiler is a program that describes the run time performance of a program, providing a variety of
statistics. This documentation describes the profiler functionality provided in the modules profile and
pstats. This profiler provides deterministic profiling of any Python programs. It also provides a series
of report generation tools to allow users to rapidly examine the results of a profile operation.

10.2 How Is This Profiler Different From The Old Profiler?

(This section is of historical importance only; the old profiler discussed here was last seen in Python 1.1.)

The big changes from old profiling module are that you get more information, and you pay less CPU
time. It’s not a trade-off, it’s a trade-up.

To be specific:
1Updated and converted to LATEX by Guido van Rossum. The references to the old profiler are left in the text, although

it no longer exists.

255



Bugs removed: Local stack frame is no longer molested, execution time is now charged to correct
functions.

Accuracy increased: Profiler execution time is no longer charged to user’s code, calibration for plat-
form is supported, file reads are not done by profiler during profiling (and charged to user’s code!).

Speed increased: Overhead CPU cost was reduced by more than a factor of two (perhaps a factor
of five), lightweight profiler module is all that must be loaded, and the report generating module
(pstats) is not needed during profiling.

Recursive functions support: Cumulative times in recursive functions are correctly calculated; re-
cursive entries are counted.

Large growth in report generating UI: Distinct profiles runs can be added together forming a com-
prehensive report; functions that import statistics take arbitrary lists of files; sorting criteria is now
based on keywords (instead of 4 integer options); reports shows what functions were profiled as
well as what profile file was referenced; output format has been improved.

10.3 Instant Users Manual

This section is provided for users that “don’t want to read the manual.” It provides a very brief overview,
and allows a user to rapidly perform profiling on an existing application.

To profile an application with a main entry point of ‘foo()’, you would add the following to your module:

import profile

profile.run(’foo()’)

The above action would cause ‘foo()’ to be run, and a series of informative lines (the profile) to be
printed. The above approach is most useful when working with the interpreter. If you would like to
save the results of a profile into a file for later examination, you can supply a file name as the second
argument to the run() function:

import profile

profile.run(’foo()’, ’fooprof’)

The file ‘profile.py’ can also be invoked as a script to profile another script. For example:

python /usr/local/lib/python1.5/profile.py myscript.py

When you wish to review the profile, you should use the methods in the pstats module. Typically you
would load the statistics data as follows:

import pstats

p = pstats.Stats(’fooprof’)

The class Stats (the above code just created an instance of this class) has a variety of methods for
manipulating and printing the data that was just read into ‘p’. When you ran profile.run() above,
what was printed was the result of three method calls:

p.strip_dirs().sort_stats(-1).print_stats()

256 Chapter 10. The Python Profiler



The first method removed the extraneous path from all the module names. The second method sorted
all the entries according to the standard module/line/name string that is printed (this is to comply with
the semantics of the old profiler). The third method printed out all the statistics. You might try the
following sort calls:

p.sort_stats(’name’)

p.print_stats()

The first call will actually sort the list by function name, and the second call will print out the statistics.
The following are some interesting calls to experiment with:

p.sort_stats(’cumulative’).print_stats(10)

This sorts the profile by cumulative time in a function, and then only prints the ten most significant
lines. If you want to understand what algorithms are taking time, the above line is what you would use.

If you were looking to see what functions were looping a lot, and taking a lot of time, you would do:

p.sort_stats(’time’).print_stats(10)

to sort according to time spent within each function, and then print the statistics for the top ten functions.

You might also try:

p.sort_stats(’file’).print_stats(’__init__’)

This will sort all the statistics by file name, and then print out statistics for only the class init methods
(’cause they are spelled with ‘ init ’ in them). As one final example, you could try:

p.sort_stats(’time’, ’cum’).print_stats(.5, ’init’)

This line sorts statistics with a primary key of time, and a secondary key of cumulative time, and then
prints out some of the statistics. To be specific, the list is first culled down to 50% (re: ‘.5’) of its
original size, then only lines containing init are maintained, and that sub-sub-list is printed.

If you wondered what functions called the above functions, you could now (‘p’ is still sorted according
to the last criteria) do:

p.print_callers(.5, ’init’)

and you would get a list of callers for each of the listed functions.

If you want more functionality, you’re going to have to read the manual, or guess what the following
functions do:

p.print_callees()

p.add(’fooprof’)

Invoked as a script, the pstats module is a statistics browser for reading and examining profile dumps.
It has a simple line-oriented interface (implemented using cmd) and interactive help.

10.3. Instant Users Manual 257



10.4 What Is Deterministic Profiling?

Deterministic profiling is meant to reflect the fact that all function call, function return, and exception
events are monitored, and precise timings are made for the intervals between these events (during which
time the user’s code is executing). In contrast, statistical profiling (which is not done by this module)
randomly samples the effective instruction pointer, and deduces where time is being spent. The latter
technique traditionally involves less overhead (as the code does not need to be instrumented), but provides
only relative indications of where time is being spent.

In Python, since there is an interpreter active during execution, the presence of instrumented code is not
required to do deterministic profiling. Python automatically provides a hook (optional callback) for each
event. In addition, the interpreted nature of Python tends to add so much overhead to execution, that
deterministic profiling tends to only add small processing overhead in typical applications. The result
is that deterministic profiling is not that expensive, yet provides extensive run time statistics about the
execution of a Python program.

Call count statistics can be used to identify bugs in code (surprising counts), and to identify possible
inline-expansion points (high call counts). Internal time statistics can be used to identify “hot loops”
that should be carefully optimized. Cumulative time statistics should be used to identify high level
errors in the selection of algorithms. Note that the unusual handling of cumulative times in this pro-
filer allows statistics for recursive implementations of algorithms to be directly compared to iterative
implementations.

10.5 Reference Manual

The primary entry point for the profiler is the global function profile.run(). It is typically used
to create any profile information. The reports are formatted and printed using methods of the class
pstats.Stats. The following is a description of all of these standard entry points and functions. For a
more in-depth view of some of the code, consider reading the later section on Profiler Extensions, which
includes discussion of how to derive “better” profilers from the classes presented, or reading the source
code for these modules.

run(string[, filename[, ... ] ])
This function takes a single argument that has can be passed to the exec statement, and an
optional file name. In all cases this routine attempts to exec its first argument, and gather
profiling statistics from the execution. If no file name is present, then this function automatically
prints a simple profiling report, sorted by the standard name string (file/line/function-name) that
is presented in each line. The following is a typical output from such a call:

main()

2706 function calls (2004 primitive calls) in 4.504 CPU seconds

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)

2 0.006 0.003 0.953 0.477 pobject.py:75(save_objects)

43/3 0.533 0.012 0.749 0.250 pobject.py:99(evaluate)

...

The first line indicates that this profile was generated by the call:
profile.run(’main()’), and hence the exec’ed string is ’main()’. The second line indicates that
2706 calls were monitored. Of those calls, 2004 were primitive. We define primitive to mean that
the call was not induced via recursion. The next line: Ordered by: standard name, indicates
that the text string in the far right column was used to sort the output. The column headings
include:

ncalls for the number of calls,

258 Chapter 10. The Python Profiler



tottime for the total time spent in the given function (and excluding time made in calls to sub-
functions),

percall is the quotient of tottime divided by ncalls

cumtime is the total time spent in this and all subfunctions (i.e., from invocation till exit). This
figure is accurate even for recursive functions.

percall is the quotient of cumtime divided by primitive calls

filename:lineno(function) provides the respective data of each function

When there are two numbers in the first column (e.g.: ‘43/3’), then the latter is the number of
primitive calls, and the former is the actual number of calls. Note that when the function does not
recurse, these two values are the same, and only the single figure is printed.

Analysis of the profiler data is done using this class from the pstats module:

class Stats(filename[, ... ])
This class constructor creates an instance of a “statistics object” from a filename (or set of file-
names). Stats objects are manipulated by methods, in order to print useful reports.

The file selected by the above constructor must have been created by the corresponding version
of profile. To be specific, there is no file compatibility guaranteed with future versions of this
profiler, and there is no compatibility with files produced by other profilers (e.g., the old system
profiler).

If several files are provided, all the statistics for identical functions will be coalesced, so that an
overall view of several processes can be considered in a single report. If additional files need to be
combined with data in an existing Stats object, the add() method can be used.

10.5.1 The Stats Class

Stats objects have the following methods:

strip dirs()
This method for the Stats class removes all leading path information from file names. It is very
useful in reducing the size of the printout to fit within (close to) 80 columns. This method modifies
the object, and the stripped information is lost. After performing a strip operation, the object is
considered to have its entries in a “random” order, as it was just after object initialization and
loading. If strip dirs() causes two function names to be indistinguishable (i.e., they are on the
same line of the same filename, and have the same function name), then the statistics for these two
entries are accumulated into a single entry.

add(filename[, ... ])
This method of the Stats class accumulates additional profiling information into the current pro-
filing object. Its arguments should refer to filenames created by the corresponding version of
profile.run(). Statistics for identically named (re: file, line, name) functions are automatically
accumulated into single function statistics.

sort stats(key[, ... ])
This method modifies the Stats object by sorting it according to the supplied criteria. The
argument is typically a string identifying the basis of a sort (example: ’time’ or ’name’).

When more than one key is provided, then additional keys are used as secondary criteria when the
there is equality in all keys selected before them. For example, ‘sort stats(’name’, ’file’)’
will sort all the entries according to their function name, and resolve all ties (identical function
names) by sorting by file name.

Abbreviations can be used for any key names, as long as the abbreviation is unambiguous. The
following are the keys currently defined:

10.5. Reference Manual 259



Valid Arg Meaning
’calls’ call count
’cumulative’ cumulative time
’file’ file name
’module’ file name
’pcalls’ primitive call count
’line’ line number
’name’ function name
’nfl’ name/file/line
’stdname’ standard name
’time’ internal time

Note that all sorts on statistics are in descending order (placing most time consuming items first),
where as name, file, and line number searches are in ascending order (i.e., alphabetical). The
subtle distinction between ’nfl’ and ’stdname’ is that the standard name is a sort of the name as
printed, which means that the embedded line numbers get compared in an odd way. For example,
lines 3, 20, and 40 would (if the file names were the same) appear in the string order 20, 3 and 40.
In contrast, ’nfl’ does a numeric compare of the line numbers. In fact, sort stats(’nfl’) is
the same as sort stats(’name’, ’file’, ’line’).

For compatibility with the old profiler, the numeric arguments -1, 0, 1, and 2 are permitted.
They are interpreted as ’stdname’, ’calls’, ’time’, and ’cumulative’ respectively. If this old
style format (numeric) is used, only one sort key (the numeric key) will be used, and additional
arguments will be silently ignored.

reverse order()
This method for the Stats class reverses the ordering of the basic list within the object. This
method is provided primarily for compatibility with the old profiler. Its utility is questionable now
that ascending vs descending order is properly selected based on the sort key of choice.

print stats([restriction, ... ])
This method for the Stats class prints out a report as described in the profile.run() definition.

The order of the printing is based on the last sort stats() operation done on the object (subject
to caveats in add() and strip dirs().

The arguments provided (if any) can be used to limit the list down to the significant entries.
Initially, the list is taken to be the complete set of profiled functions. Each restriction is either an
integer (to select a count of lines), or a decimal fraction between 0.0 and 1.0 inclusive (to select a
percentage of lines), or a regular expression (to pattern match the standard name that is printed;
as of Python 1.5b1, this uses the Perl-style regular expression syntax defined by the re module).
If several restrictions are provided, then they are applied sequentially. For example:

print_stats(.1, ’foo:’)

would first limit the printing to first 10% of list, and then only print functions that were part of
filename ‘.*foo:’. In contrast, the command:

print_stats(’foo:’, .1)

would limit the list to all functions having file names ‘.*foo:’, and then proceed to only print the
first 10% of them.

print callers([restriction, ... ])
This method for the Stats class prints a list of all functions that called each function in the profiled
database. The ordering is identical to that provided by print stats(), and the definition of the
restricting argument is also identical. For convenience, a number is shown in parentheses after each
caller to show how many times this specific call was made. A second non-parenthesized number is
the cumulative time spent in the function at the right.

print callees([restriction, ... ])
This method for the Stats class prints a list of all function that were called by the indicated

260 Chapter 10. The Python Profiler



function. Aside from this reversal of direction of calls (re: called vs was called by), the arguments
and ordering are identical to the print callers() method.

ignore()
Deprecated since release 1.5.1. This is not needed in modern versions of Python.2

10.6 Limitations

There are two fundamental limitations on this profiler. The first is that it relies on the Python interpreter
to dispatch call, return, and exception events. Compiled C code does not get interpreted, and hence is
“invisible” to the profiler. All time spent in C code (including built-in functions) will be charged to the
Python function that invoked the C code. If the C code calls out to some native Python code, then those
calls will be profiled properly.

The second limitation has to do with accuracy of timing information. There is a fundamental problem
with deterministic profilers involving accuracy. The most obvious restriction is that the underlying
“clock” is only ticking at a rate (typically) of about .001 seconds. Hence no measurements will be more
accurate that that underlying clock. If enough measurements are taken, then the “error” will tend to
average out. Unfortunately, removing this first error induces a second source of error...

The second problem is that it “takes a while” from when an event is dispatched until the profiler’s call
to get the time actually gets the state of the clock. Similarly, there is a certain lag when exiting the
profiler event handler from the time that the clock’s value was obtained (and then squirreled away), until
the user’s code is once again executing. As a result, functions that are called many times, or call many
functions, will typically accumulate this error. The error that accumulates in this fashion is typically
less than the accuracy of the clock (i.e., less than one clock tick), but it can accumulate and become
very significant. This profiler provides a means of calibrating itself for a given platform so that this error
can be probabilistically (i.e., on the average) removed. After the profiler is calibrated, it will be more
accurate (in a least square sense), but it will sometimes produce negative numbers (when call counts are
exceptionally low, and the gods of probability work against you :-). ) Do not be alarmed by negative
numbers in the profile. They should only appear if you have calibrated your profiler, and the results are
actually better than without calibration.

10.7 Calibration

The profiler class has a hard coded constant that is added to each event handling time to compensate
for the overhead of calling the time function, and socking away the results. The following procedure can
be used to obtain this constant for a given platform (see discussion in section Limitations above).

import profile

pr = profile.Profile()

print pr.calibrate(100)

print pr.calibrate(100)

print pr.calibrate(100)

The argument to calibrate() is the number of times to try to do the sample calls to get the CPU
times. If your computer is very fast, you might have to do:

pr.calibrate(1000)

or even:
2This was once necessary, when Python would print any unused expression result that was not None. The method is

still defined for backward compatibility.

10.6. Limitations 261



pr.calibrate(10000)

The object of this exercise is to get a fairly consistent result. When you have a consistent answer, you
are ready to use that number in the source code. For a Sun Sparcstation 1000 running Solaris 2.3, the
magical number is about .00053. If you have a choice, you are better off with a smaller constant, and
your results will “less often” show up as negative in profile statistics.

The following shows how the trace dispatch() method in the Profile class should be modified to install
the calibration constant on a Sun Sparcstation 1000:

def trace_dispatch(self, frame, event, arg):

t = self.timer()

t = t[0] + t[1] - self.t - .00053 # Calibration constant

if self.dispatch[event](frame,t):

t = self.timer()

self.t = t[0] + t[1]

else:

r = self.timer()

self.t = r[0] + r[1] - t # put back unrecorded delta

return

Note that if there is no calibration constant, then the line containing the callibration constant should
simply say:

t = t[0] + t[1] - self.t # no calibration constant

You can also achieve the same results using a derived class (and the profiler will actually run equally
fast!!), but the above method is the simplest to use. I could have made the profiler “self calibrating,”
but it would have made the initialization of the profiler class slower, and would have required some very
fancy coding, or else the use of a variable where the constant ‘.00053’ was placed in the code shown.
This is a VERY critical performance section, and there is no reason to use a variable lookup at this
point, when a constant can be used.

10.8 Extensions — Deriving Better Profilers

The Profile class of module profile was written so that derived classes could be developed to extend
the profiler. Rather than describing all the details of such an effort, I’ll just present the following two
examples of derived classes that can be used to do profiling. If the reader is an avid Python programmer,
then it should be possible to use these as a model and create similar (and perchance better) profile
classes.

If all you want to do is change how the timer is called, or which timer function is used, then the basic
class has an option for that in the constructor for the class. Consider passing the name of a function to
call into the constructor:

pr = profile.Profile(your_time_func)

The resulting profiler will call your time func() instead of os.times(). The function should return
either a single number or a list of numbers (like what os.times() returns). If the function returns a
single time number, or the list of returned numbers has length 2, then you will get an especially fast
version of the dispatch routine.

262 Chapter 10. The Python Profiler



Be warned that you should calibrate the profiler class for the timer function that you choose. For most
machines, a timer that returns a lone integer value will provide the best results in terms of low overhead
during profiling. (os.times() is pretty bad, ’cause it returns a tuple of floating point values, so all
arithmetic is floating point in the profiler!). If you want to substitute a better timer in the cleanest
fashion, you should derive a class, and simply put in the replacement dispatch method that better
handles your timer call, along with the appropriate calibration constant :-).

10.8.1 OldProfile Class

Deprecated since release 2.1.2. This class will be removed in Python 2.2.

The following derived profiler simulates the old style profiler, providing errant results on recursive func-
tions. The reason for the usefulness of this profiler is that it runs faster (i.e., less overhead) than the old
profiler. It still creates all the caller stats, and is quite useful when there is no recursion in the user’s
code. It is also a lot more accurate than the old profiler, as it does not charge all its overhead time to
the user’s code.

10.8. Extensions — Deriving Better Profilers 263



class OldProfile(Profile):

def trace_dispatch_exception(self, frame, t):

rt, rtt, rct, rfn, rframe, rcur = self.cur

if rcur and not rframe is frame:

return self.trace_dispatch_return(rframe, t)

return 0

def trace_dispatch_call(self, frame, t):

fn = ‘frame.f_code‘

self.cur = (t, 0, 0, fn, frame, self.cur)

if self.timings.has_key(fn):

tt, ct, callers = self.timings[fn]

self.timings[fn] = tt, ct, callers

else:

self.timings[fn] = 0, 0, {}

return 1

def trace_dispatch_return(self, frame, t):

rt, rtt, rct, rfn, frame, rcur = self.cur

rtt = rtt + t

sft = rtt + rct

pt, ptt, pct, pfn, pframe, pcur = rcur

self.cur = pt, ptt+rt, pct+sft, pfn, pframe, pcur

tt, ct, callers = self.timings[rfn]

if callers.has_key(pfn):

callers[pfn] = callers[pfn] + 1

else:

callers[pfn] = 1

self.timings[rfn] = tt+rtt, ct + sft, callers

return 1

def snapshot_stats(self):

self.stats = {}

for func in self.timings.keys():

tt, ct, callers = self.timings[func]

nor_func = self.func_normalize(func)

nor_callers = {}

nc = 0

for func_caller in callers.keys():

nor_callers[self.func_normalize(func_caller)] = \

callers[func_caller]

nc = nc + callers[func_caller]

self.stats[nor_func] = nc, nc, tt, ct, nor_callers

10.8.2 HotProfile Class

Deprecated since release 2.1.2. This class will be removed in Python 2.2.

This profiler is the fastest derived profile example. It does not calculate caller-callee relationships, and
does not calculate cumulative time under a function. It only calculates time spent in a function, so it
runs very quickly (re: very low overhead). In truth, the basic profiler is so fast, that is probably not
worth the savings to give up the data, but this class still provides a nice example.

264 Chapter 10. The Python Profiler



class HotProfile(Profile):

def trace_dispatch_exception(self, frame, t):

rt, rtt, rfn, rframe, rcur = self.cur

if rcur and not rframe is frame:

return self.trace_dispatch_return(rframe, t)

return 0

def trace_dispatch_call(self, frame, t):

self.cur = (t, 0, frame, self.cur)

return 1

def trace_dispatch_return(self, frame, t):

rt, rtt, frame, rcur = self.cur

rfn = ‘frame.f_code‘

pt, ptt, pframe, pcur = rcur

self.cur = pt, ptt+rt, pframe, pcur

if self.timings.has_key(rfn):

nc, tt = self.timings[rfn]

self.timings[rfn] = nc + 1, rt + rtt + tt

else:

self.timings[rfn] = 1, rt + rtt

return 1

def snapshot_stats(self):

self.stats = {}

for func in self.timings.keys():

nc, tt = self.timings[func]

nor_func = self.func_normalize(func)

self.stats[nor_func] = nc, nc, tt, 0, {}

10.8. Extensions — Deriving Better Profilers 265



266



CHAPTER

ELEVEN

Internet Protocols and Support

The modules described in this chapter implement Internet protocols and support for related technology.
They are all implemented in Python. Most of these modules require the presence of the system-dependent
module socket, which is currently supported on most popular platforms. Here is an overview:

webbrowser Easy-to-use controller for Web browsers.
cgi Common Gateway Interface support, used to interpret forms in server-side scripts.
urllib Open an arbitrary network resource by URL (requires sockets).
urllib2 An extensible library for opening URLs using a variety of protocols
httplib HTTP protocol client (requires sockets).
ftplib FTP protocol client (requires sockets).
gopherlib Gopher protocol client (requires sockets).
poplib POP3 protocol client (requires sockets).
imaplib IMAP4 protocol client (requires sockets).
nntplib NNTP protocol client (requires sockets).
smtplib SMTP protocol client (requires sockets).
telnetlib Telnet client class.
urlparse Parse URLs into components.
SocketServer A framework for network servers.
BaseHTTPServer Basic HTTP server (base class for SimpleHTTPServer and CGIHTTPServer).
SimpleHTTPServer This module provides a basic request handler for HTTP servers.
CGIHTTPServer This module provides a request handler for HTTP servers which can run CGI scripts.
Cookie Support for HTTP state management (cookies).
asyncore A base class for developing asynchronous socket handling services.

11.1 webbrowser — Convenient Web-browser controller

The webbrowser module provides a very high-level interface to allow displaying Web-based documents to
users. The controller objects are easy to use and are platform-independent. Under most circumstances,
simply calling the open() function from this module will do the right thing.

Under Unix, graphical browsers are preferred under X11, but text-mode browsers will be used if graphical
browsers are not available or an X11 display isn’t available. If text-mode browsers are used, the calling
process will block until the user exits the browser.

Under Unix, if the environment variable BROWSER exists, it is interpreted to override the platform
default list of browsers, as a colon-separated list of browsers to try in order. When the value of a list
part contains the string %s, then it is interpreted as a literal browser command line to be used with the
argument URL substituted for the %s; if the part does not contain %s, it is simply interpreted as the
name of the browser to launch.

For non-Unix platforms, or when X11 browsers are available on Unix, the controlling process will not
wait for the user to finish with the browser, but allow the browser to maintain its own window on the
display.

The following exception is defined:

267



exception Error
Exception raised when a browser control error occurs.

The following functions are defined:

open(url[, new=0 ][, autoraise=1 ])
Display url using the default browser. If new is true, a new browser window is opened if possible.
If autoraise is true, the window is raised if possible (note that under many window managers this
will occur regardless of the setting of this variable).

open new(url)
Open url in a new window of the default browser, if possible, otherwise, open url in the only
browser window.

get([name ])
Return a controller object for the browser type name. If name is empty, return a controller for a
default browser appropriate to the caller’s environment.

register(name, constructor[, instance ])
Register the browser type name. Once a browser type is registered, the get() function can return
a controller for that browser type. If instance is not provided, or is None, constructor will be called
without parameters to create an instance when needed. If instance is provided, constructor will
never be called, and may be None.

This entry point is only useful if you plan to either set the BROWSER variable or call get with a
nonempty argument matching the name of a handler you declare.

A number of browser types are predefined. This table gives the type names that may be passed to the
get() function and the corresponding instantiations for the controller classes, all defined in this module.

Type Name Class Name Notes
’mozilla’ Netscape(’mozilla’)
’netscape’ Netscape(’netscape’)
’mosaic’ GenericBrowser(’mosaic %s &’)
’kfm’ Konqueror() (1)
’grail’ Grail()
’links’ GenericBrowser(’links %s’)
’lynx’ GenericBrowser(’lynx %s’)
’w3m’ GenericBrowser(’w3m %s’)
’windows-default’ WindowsDefault (2)
’internet-config’ InternetConfig (3)

Notes:

(1) “Konqueror” is the file manager for the KDE desktop environment for UNIX, and only makes sense
to use if KDE is running. Some way of reliably detecting KDE would be nice; the KDEDIR variable
is not sufficient. Note also that the name “kfm” is used even when using the konqueror command
with KDE 2 — the implementation selects the best strategy for running Konqueror.

(2) Only on Windows platforms; requires the common extension modules win32api and win32con.

(3) Only on MacOS platforms; requires the standard MacPython ic module, described in the Macintosh
Library Modules manual.

11.1.1 Browser Controller Objects

Browser controllers provide two methods which parallel two of the module-level convenience functions:

open(url[, new ])
Display url using the browser handled by this controller. If new is true, a new browser window is
opened if possible.

268 Chapter 11. Internet Protocols and Support



open new(url)
Open url in a new window of the browser handled by this controller, if possible, otherwise, open
url in the only browser window.

11.2 cgi — Common Gateway Interface support.

Support module for CGI (Common Gateway Interface) scripts.

This module defines a number of utilities for use by CGI scripts written in Python.

11.2.1 Introduction

A CGI script is invoked by an HTTP server, usually to process user input submitted through an HTML
<FORM> or <ISINDEX> element.

Most often, CGI scripts live in the server’s special ‘cgi-bin’ directory. The HTTP server places all sorts
of information about the request (such as the client’s hostname, the requested URL, the query string,
and lots of other goodies) in the script’s shell environment, executes the script, and sends the script’s
output back to the client.

The script’s input is connected to the client too, and sometimes the form data is read this way; at other
times the form data is passed via the “query string” part of the URL. This module is intended to take
care of the different cases and provide a simpler interface to the Python script. It also provides a number
of utilities that help in debugging scripts, and the latest addition is support for file uploads from a form
(if your browser supports it — Grail 0.3 and Netscape 2.0 do).

The output of a CGI script should consist of two sections, separated by a blank line. The first section
contains a number of headers, telling the client what kind of data is following. Python code to generate
a minimal header section looks like this:

print "Content-Type: text/html" # HTML is following

print # blank line, end of headers

The second section is usually HTML, which allows the client software to display nicely formatted text
with header, in-line images, etc. Here’s Python code that prints a simple piece of HTML:

print "<TITLE>CGI script output</TITLE>"

print "<H1>This is my first CGI script</H1>"

print "Hello, world!"

11.2.2 Using the cgi module

Begin by writing ‘import cgi’. Do not use ‘from cgi import *’ — the module defines all sorts of
names for its own use or for backward compatibility that you don’t want in your namespace.

It’s best to use the FieldStorage class. The other classes defined in this module are provided mostly for
backward compatibility. Instantiate it exactly once, without arguments. This reads the form contents
from standard input or the environment (depending on the value of various environment variables set
according to the CGI standard). Since it may consume standard input, it should be instantiated only
once.

The FieldStorage instance can be indexed like a Python dictionary, and also supports the standard
dictionary methods has key() and keys(). Form fields containing empty strings are ignored and do
not appear in the dictionary; to keep such values, provide the optional ‘keep blank values’ argument
when creating the FieldStorage instance.

11.2. cgi — Common Gateway Interface support. 269



For instance, the following code (which assumes that the Content-Type header and blank line have
already been printed) checks that the fields name and addr are both set to a non-empty string:

form = cgi.FieldStorage()

if not (form.has_key("name") and form.has_key("addr")):

print "<H1>Error</H1>"

print "Please fill in the name and addr fields."

return

print "<p>name:", form["name"].value

print "<p>addr:", form["addr"].value

...further form processing here...

Here the fields, accessed through ‘form[key]’, are themselves instances of FieldStorage (or
MiniFieldStorage, depending on the form encoding). The value attribute of the instance yields the
string value of the field. The getvalue() method returns this string value directly; it also accepts an
optional second argument as a default to return if the requested key is not present.

If the submitted form data contains more than one field with the same name, the object retrieved by
‘form[key]’ is not a FieldStorage or MiniFieldStorage instance but a list of such instances. Similarly,
in this situation, ‘form.getvalue(key)’ would return a list of strings. If you expect this possibility
(i.e., when your HTML form contains multiple fields with the same name), use the type() function
to determine whether you have a single instance or a list of instances. For example, here’s code that
concatenates any number of username fields, separated by commas:

value = form.getvalue("username", "")

if type(value) is type([]):

# Multiple username fields specified

usernames = ",".join(value)

else:

# Single or no username field specified

usernames = value

If a field represents an uploaded file, accessing the value via the value attribute or the getvalue()
method reads the entire file in memory as a string. This may not be what you want. You can test for
an uploaded file by testing either the filename attribute or the file attribute. You can then read the
data at leisure from the file attribute:

fileitem = form["userfile"]

if fileitem.file:

# It’s an uploaded file; count lines

linecount = 0

while 1:

line = fileitem.file.readline()

if not line: break

linecount = linecount + 1

The file upload draft standard entertains the possibility of uploading multiple files from one field (using a
recursive multipart/* encoding). When this occurs, the item will be a dictionary-like FieldStorage item.
This can be determined by testing its type attribute, which should be multipart/form-data (or perhaps
another MIME type matching multipart/*). In this case, it can be iterated over recursively just like the
top-level form object.

When a form is submitted in the “old” format (as the query string or as a single data part of type
application/x-www-form-urlencoded), the items will actually be instances of the class MiniFieldStorage. In
this case, the list, file, and filename attributes are always None.

270 Chapter 11. Internet Protocols and Support



11.2.3 Old classes

These classes, present in earlier versions of the cgi module, are still supported for backward compatibility.
New applications should use the FieldStorage class.

SvFormContentDict stores single value form content as dictionary; it assumes each field name occurs in
the form only once.

FormContentDict stores multiple value form content as a dictionary (the form items are lists of values).
Useful if your form contains multiple fields with the same name.

Other classes (FormContent, InterpFormContentDict) are present for backwards compatibility with
really old applications only. If you still use these and would be inconvenienced when they disappeared
from a next version of this module, drop me a note.

11.2.4 Functions

These are useful if you want more control, or if you want to employ some of the algorithms implemented
in this module in other circumstances.

parse(fp)
Parse a query in the environment or from a file (default sys.stdin).

parse qs(qs[, keep blank values, strict parsing ])
Parse a query string given as a string argument (data of type application/x-www-form-urlencoded).
Data are returned as a dictionary. The dictionary keys are the unique query variable names and
the values are lists of values for each name.

The optional argument keep blank values is a flag indicating whether blank values in URL encoded
queries should be treated as blank strings. A true value indicates that blanks should be retained
as blank strings. The default false value indicates that blank values are to be ignored and treated
as if they were not included.

The optional argument strict parsing is a flag indicating what to do with parsing errors. If false
(the default), errors are silently ignored. If true, errors raise a ValueError exception.

parse qsl(qs[, keep blank values, strict parsing ])
Parse a query string given as a string argument (data of type application/x-www-form-urlencoded).
Data are returned as a list of name, value pairs.

The optional argument keep blank values is a flag indicating whether blank values in URL encoded
queries should be treated as blank strings. A true value indicates that blanks should be retained
as blank strings. The default false value indicates that blank values are to be ignored and treated
as if they were not included.

The optional argument strict parsing is a flag indicating what to do with parsing errors. If false
(the default), errors are silently ignored. If true, errors raise a ValueError exception.

parse multipart(fp, pdict)
Parse input of type multipart/form-data (for file uploads). Arguments are fp for the input file and
pdict for a dictionary containing other parameters in the Content-Type header.

Returns a dictionary just like parse qs() keys are the field names, each value is a list of values for
that field. This is easy to use but not much good if you are expecting megabytes to be uploaded
— in that case, use the FieldStorage class instead which is much more flexible.

Note that this does not parse nested multipart parts — use FieldStorage for that.

parse header(string)
Parse a MIME header (such as Content-Type) into a main value and a dictionary of parameters.

test()
Robust test CGI script, usable as main program. Writes minimal HTTP headers and formats all
information provided to the script in HTML form.

print environ()
Format the shell environment in HTML.

11.2. cgi — Common Gateway Interface support. 271



print form(form)
Format a form in HTML.

print directory()
Format the current directory in HTML.

print environ usage()
Print a list of useful (used by CGI) environment variables in HTML.

escape(s[, quote ])
Convert the characters ‘&’, ‘<’ and ‘>’ in string s to HTML-safe sequences. Use this if you need
to display text that might contain such characters in HTML. If the optional flag quote is true, the
double quote character (‘"’) is also translated; this helps for inclusion in an HTML attribute value,
e.g. in <A HREF="...">.

11.2.5 Caring about security

There’s one important rule: if you invoke an external program (e.g. via the os.system() or os.popen()
functions), make very sure you don’t pass arbitrary strings received from the client to the shell. This is
a well-known security hole whereby clever hackers anywhere on the web can exploit a gullible CGI script
to invoke arbitrary shell commands. Even parts of the URL or field names cannot be trusted, since the
request doesn’t have to come from your form!

To be on the safe side, if you must pass a string gotten from a form to a shell command, you should
make sure the string contains only alphanumeric characters, dashes, underscores, and periods.

11.2.6 Installing your CGI script on a Unix system

Read the documentation for your HTTP server and check with your local system administrator to find
the directory where CGI scripts should be installed; usually this is in a directory ‘cgi-bin’ in the server
tree.

Make sure that your script is readable and executable by “others”; the Unix file mode should be 0755
octal (use ‘chmod 0755 filename’). Make sure that the first line of the script contains #! starting in
column 1 followed by the pathname of the Python interpreter, for instance:

#!/usr/local/bin/python

Make sure the Python interpreter exists and is executable by “others”.

Make sure that any files your script needs to read or write are readable or writable, respectively, by
“others” — their mode should be 0644 for readable and 0666 for writable. This is because, for security
reasons, the HTTP server executes your script as user “nobody”, without any special privileges. It
can only read (write, execute) files that everybody can read (write, execute). The current directory at
execution time is also different (it is usually the server’s cgi-bin directory) and the set of environment
variables is also different from what you get at login. In particular, don’t count on the shell’s search
path for executables (PATH) or the Python module search path (PYTHONPATH) to be set to anything
interesting.

If you need to load modules from a directory which is not on Python’s default module search path, you
can change the path in your script, before importing other modules, e.g.:

import sys

sys.path.insert(0, "/usr/home/joe/lib/python")

sys.path.insert(0, "/usr/local/lib/python")

(This way, the directory inserted last will be searched first!)

272 Chapter 11. Internet Protocols and Support



Instructions for non-Unix systems will vary; check your HTTP server’s documentation (it will usually
have a section on CGI scripts).

11.2.7 Testing your CGI script

Unfortunately, a CGI script will generally not run when you try it from the command line, and a script
that works perfectly from the command line may fail mysteriously when run from the server. There’s
one reason why you should still test your script from the command line: if it contains a syntax error, the
Python interpreter won’t execute it at all, and the HTTP server will most likely send a cryptic error to
the client.

Assuming your script has no syntax errors, yet it does not work, you have no choice but to read the next
section.

11.2.8 Debugging CGI scripts

First of all, check for trivial installation errors — reading the section above on installing your CGI
script carefully can save you a lot of time. If you wonder whether you have understood the installation
procedure correctly, try installing a copy of this module file (‘cgi.py’) as a CGI script. When invoked as a
script, the file will dump its environment and the contents of the form in HTML form. Give it the right
mode etc, and send it a request. If it’s installed in the standard ‘cgi-bin’ directory, it should be possible
to send it a request by entering a URL into your browser of the form:

http://yourhostname/cgi-bin/cgi.py?name=Joe+Blow&addr=At+Home

If this gives an error of type 404, the server cannot find the script – perhaps you need to install it in a
different directory. If it gives another error (e.g. 500), there’s an installation problem that you should
fix before trying to go any further. If you get a nicely formatted listing of the environment and form
content (in this example, the fields should be listed as “addr” with value “At Home” and “name” with
value “Joe Blow”), the ‘cgi.py’ script has been installed correctly. If you follow the same procedure for
your own script, you should now be able to debug it.

The next step could be to call the cgi module’s test() function from your script: replace its main code
with the single statement

cgi.test()

This should produce the same results as those gotten from installing the ‘cgi.py’ file itself.

When an ordinary Python script raises an unhandled exception (e.g. because of a typo in a module name,
a file that can’t be opened, etc.), the Python interpreter prints a nice traceback and exits. While the
Python interpreter will still do this when your CGI script raises an exception, most likely the traceback
will end up in one of the HTTP server’s log file, or be discarded altogether.

Fortunately, once you have managed to get your script to execute some code, it is easy to catch exceptions
and cause a traceback to be printed. The test() function below in this module is an example. Here are
the rules:

1. Import the traceback module before entering the try ... except statement

2. Assign sys.stderr to be sys.stdout

3. Make sure you finish printing the headers and the blank line early

4. Wrap all remaining code in a try ... except statement

5. In the except clause, call traceback.print exc()

11.2. cgi — Common Gateway Interface support. 273



For example:

import sys

import traceback

print "Content-Type: text/html"

print

sys.stderr = sys.stdout

try:

...your code here...

except:

print "\n\n<PRE>"

traceback.print_exc()

Notes: The assignment to sys.stderr is needed because the traceback prints to sys.stderr. The print
"\n\n<PRE>" statement is necessary to disable the word wrapping in HTML.

If you suspect that there may be a problem in importing the traceback module, you can use an even
more robust approach (which only uses built-in modules):

import sys

sys.stderr = sys.stdout

print "Content-Type: text/plain"

print

...your code here...

This relies on the Python interpreter to print the traceback. The content type of the output is set to
plain text, which disables all HTML processing. If your script works, the raw HTML will be displayed by
your client. If it raises an exception, most likely after the first two lines have been printed, a traceback
will be displayed. Because no HTML interpretation is going on, the traceback will readable.

11.2.9 Common problems and solutions

• Most HTTP servers buffer the output from CGI scripts until the script is completed. This means
that it is not possible to display a progress report on the client’s display while the script is running.

• Check the installation instructions above.

• Check the HTTP server’s log files. (‘tail -f logfile’ in a separate window may be useful!)

• Always check a script for syntax errors first, by doing something like ‘python script.py’.

• When using any of the debugging techniques, don’t forget to add ‘import sys’ to the top of the
script.

• When invoking external programs, make sure they can be found. Usually, this means using absolute
path names — PATH is usually not set to a very useful value in a CGI script.

• When reading or writing external files, make sure they can be read or written by every user on the
system.

• Don’t try to give a CGI script a set-uid mode. This doesn’t work on most systems, and is a security
liability as well.

11.3 urllib — Open arbitrary resources by URL

This module provides a high-level interface for fetching data across the World-Wide Web. In particular,
the urlopen() function is similar to the built-in function open(), but accepts Universal Resource Loca-

274 Chapter 11. Internet Protocols and Support



tors (URLs) instead of filenames. Some restrictions apply — it can only open URLs for reading, and no
seek operations are available.

It defines the following public functions:

urlopen(url[, data ])
Open a network object denoted by a URL for reading. If the URL does not have a scheme identifier,
or if it has ‘file:’ as its scheme identifier, this opens a local file; otherwise it opens a socket to a
server somewhere on the network. If the connection cannot be made, or if the server returns an
error code, the IOError exception is raised. If all went well, a file-like object is returned. This
supports the following methods: read(), readline(), readlines(), fileno(), close(), info()
and geturl().

Except for the info() and geturl() methods, these methods have the same interface as for file
objects — see section 2.1.7 in this manual. (It is not a built-in file object, however, so it can’t be
used at those few places where a true built-in file object is required.)

The info() method returns an instance of the class mimetools.Message containing meta-
information associated with the URL. When the method is HTTP, these headers are those returned
by the server at the head of the retrieved HTML page (including Content-Length and Content-
Type). When the method is FTP, a Content-Length header will be present if (as is now usual)
the server passed back a file length in response to the FTP retrieval request. When the method is
local-file, returned headers will include a Date representing the file’s last-modified time, a Content-
Length giving file size, and a Content-Type containing a guess at the file’s type. See also the
description of the mimetools module.

The geturl() method returns the real URL of the page. In some cases, the HTTP server redirects
a client to another URL. The urlopen() function handles this transparently, but in some cases the
caller needs to know which URL the client was redirected to. The geturl() method can be used
to get at this redirected URL.

If the url uses the ‘http:’ scheme identifier, the optional data argument may be given to specify a
POST request (normally the request type is GET). The data argument must in standard application/x-

www-form-urlencoded format; see the urlencode() function below.

The urlopen() function works transparently with proxies which do not require authentication.
In a Unix or Windows environment, set the http proxy, ftp proxy or gopher proxy environment
variables to a URL that identifies the proxy server before starting the Python interpreter. For
example (the ‘%’ is the command prompt):

% http_proxy="http://www.someproxy.com:3128"

% export http_proxy

% python

...

In a Macintosh environment, urlopen() will retrieve proxy information from Internet Config.

Proxies which require authentication for use are not currently supported; this is considered an
implementation limitation.

urlretrieve(url[, filename[, reporthook[, data ] ] ])
Copy a network object denoted by a URL to a local file, if necessary. If the URL points to a local
file, or a valid cached copy of the object exists, the object is not copied. Return a tuple (filename,
headers) where filename is the local file name under which the object can be found, and headers is
either None (for a local object) or whatever the info() method of the object returned by urlopen()
returned (for a remote object, possibly cached). Exceptions are the same as for urlopen().

The second argument, if present, specifies the file location to copy to (if absent, the location will be
a tempfile with a generated name). The third argument, if present, is a hook function that will be
called once on establishment of the network connection and once after each block read thereafter.
The hook will be passed three arguments; a count of blocks transferred so far, a block size in bytes,
and the total size of the file. The third argument may be -1 on older FTP servers which do not
return a file size in response to a retrieval request.

11.3. urllib — Open arbitrary resources by URL 275



If the url uses the ‘http:’ scheme identifier, the optional data argument may be given to specify a
POST request (normally the request type is GET). The data argument must in standard application/x-

www-form-urlencoded format; see the urlencode() function below.

urlcleanup()
Clear the cache that may have been built up by previous calls to urlretrieve().

quote(string[, safe ])
Replace special characters in string using the ‘%xx’ escape. Letters, digits, and the characters
‘ ,.-’ are never quoted. The optional safe parameter specifies additional characters that should
not be quoted — its default value is ’/’.

Example: quote(’/~connolly/’) yields ’/%7econnolly/’.

quote plus(string[, safe ])
Like quote(), but also replaces spaces by plus signs, as required for quoting HTML form values.
Plus signs in the original string are escaped unless they are included in safe.

unquote(string)
Replace ‘%xx’ escapes by their single-character equivalent.

Example: unquote(’/%7Econnolly/’) yields ’/~connolly/’.

unquote plus(string)
Like unquote(), but also replaces plus signs by spaces, as required for unquoting HTML form
values.

urlencode(query[, doseq ])
Convert a mapping object or a sequence of two-element tuples to a “url-encoded” string, suitable
to pass to urlopen() above as the optional data argument. This is useful to pass a dictionary
of form fields to a POST request. The resulting string is a series of key=value pairs separated by
‘&’ characters, where both key and value are quoted using quote plus() above. If the optional
parameter doseq is present and evaluates to true, individual key=value pairs are generated for each
element of the sequence. When a sequence of two-element tuples is used as the query argument,
the first element of each tuple is a key and the second is a value. The order of parameters in the
encoded string will match the order of parameter tuples in the sequence.

The public functions urlopen() and urlretrieve() create an instance of the FancyURLopener class
and use it to perform their requested actions. To override this functionality, programmers can cre-
ate a subclass of URLopener or FancyURLopener, then assign that an instance of that class to the
urllib. urlopener variable before calling the desired function. For example, applications may want
to specify a different user-agent header than URLopener defines. This can be accomplished with the
following code:

class AppURLopener(urllib.FancyURLopener):

def __init__(self, *args):

self.version = "App/1.7"

apply(urllib.FancyURLopener.__init__, (self,) + args)

urllib._urlopener = AppURLopener()

class URLopener([proxies[, **x509 ] ])
Base class for opening and reading URLs. Unless you need to support opening objects using
schemes other than ‘http:’, ‘ftp:’, ‘gopher:’ or ‘file:’, you probably want to use FancyURLopener.

By default, the URLopener class sends a user-agent header of ‘urllib/VVV ’, where VVV is
the urllib version number. Applications can define their own user-agent header by subclassing
URLopener or FancyURLopener and setting the instance attribute version to an appropriate string
value before the open() method is called.

Additional keyword parameters, collected in x509 , are used for authentication with the ‘https:’
scheme. The keywords key file and cert file are supported; both are needed to actually retrieve a
resource at an ‘https:’ URL.

276 Chapter 11. Internet Protocols and Support



class FancyURLopener(...)
FancyURLopener subclasses URLopener providing default handling for the following HTTP response
codes: 301, 302 or 401. For 301 and 302 response codes, the location header is used to fetch
the actual URL. For 401 response codes (authentication required), basic HTTP authentication is
performed. For 301 and 302 response codes, recursion is bounded by the value of the maxtries
attribute, which defaults 10.

The parameters to the constructor are the same as those for URLopener.

Note: When performing basic authentication, a FancyURLopener instance calls its
prompt user passwd() method. The default implementation asks the users for the required
information on the controlling terminal. A subclass may override this method to support more
appropriate behavior if needed.

Restrictions:

• Currently, only the following protocols are supported: HTTP, (versions 0.9 and 1.0), Gopher (but
not Gopher-+), FTP, and local files.

• The caching feature of urlretrieve() has been disabled until I find the time to hack proper
processing of Expiration time headers.

• There should be a function to query whether a particular URL is in the cache.

• For backward compatibility, if a URL appears to point to a local file but the file can’t be opened, the
URL is re-interpreted using the FTP protocol. This can sometimes cause confusing error messages.

• The urlopen() and urlretrieve() functions can cause arbitrarily long delays while waiting for a
network connection to be set up. This means that it is difficult to build an interactive web client
using these functions without using threads.

• The data returned by urlopen() or urlretrieve() is the raw data returned by the server. This
may be binary data (e.g. an image), plain text or (for example) HTML. The HTTP protocol pro-
vides type information in the reply header, which can be inspected by looking at the content-type
header. For the Gopher protocol, type information is encoded in the URL; there is currently no
easy way to extract it. If the returned data is HTML, you can use the module htmllib to parse it.

• This module does not support the use of proxies which require authentication. This may be
implemented in the future.

• Although the urllib module contains (undocumented) routines to parse and unparse URL strings,
the recommended interface for URL manipulation is in module urlparse.

11.3.1 URLopener Objects

URLopener and FancyURLopener objects have the following attributes.

open(fullurl[, data ])
Open fullurl using the appropriate protocol. This method sets up cache and proxy information,
then calls the appropriate open method with its input arguments. If the scheme is not recognized,
open unknown() is called. The data argument has the same meaning as the data argument of
urlopen().

open unknown(fullurl[, data ])
Overridable interface to open unknown URL types.

retrieve(url[, filename[, reporthook[, data ] ] ])
Retrieves the contents of url and places it in filename. The return value is a tuple consisting of a
local filename and either a mimetools.Message object containing the response headers (for remote
URLs) or None (for local URLs). The caller must then open and read the contents of filename. If
filename is not given and the URL refers to a local file, the input filename is returned. If the URL
is non-local and filename is not given, the filename is the output of tempfile.mktemp() with a
suffix that matches the suffix of the last path component of the input URL. If reporthook is given,

11.3. urllib — Open arbitrary resources by URL 277



it must be a function accepting three numeric parameters. It will be called after each chunk of
data is read from the network. reporthook is ignored for local URLs.

If the url uses the ‘http:’ scheme identifier, the optional data argument may be given to specify a
POST request (normally the request type is GET). The data argument must in standard application/x-

www-form-urlencoded format; see the urlencode() function below.

version
Variable that specifies the user agent of the opener object. To get urllib to tell servers that it is
a particular user agent, set this in a subclass as a class variable or in the constructor before calling
the base constructor.

The FancyURLopener class offers one additional method that should be overloaded to provide the ap-
propriate behavior:

prompt user passwd(host, realm)
Return information needed to authenticate the user at the given host in the specified security realm.
The return value should be a tuple, (user, password), which can be used for basic authentication.

The implementation prompts for this information on the terminal; an application should override
this method to use an appropriate interaction model in the local environment.

11.3.2 Examples

Here is an example session that uses the ‘GET’ method to retrieve a URL containing parameters:

>>> import urllib

>>> params = urllib.urlencode({’spam’: 1, ’eggs’: 2, ’bacon’: 0})

>>> f = urllib.urlopen("http://www.musi-cal.com/cgi-bin/query?%s" % params)

>>> print f.read()

The following example uses the ‘POST’ method instead:

>>> import urllib

>>> params = urllib.urlencode({’spam’: 1, ’eggs’: 2, ’bacon’: 0})

>>> f = urllib.urlopen("http://www.musi-cal.com/cgi-bin/query", params)

>>> print f.read()

11.4 urllib2 — extensible library for opening URLs

The urllib2 module defines functions and classes which help in opening URLs (mostly HTTP) in a
complex world — basic and digest authentication, redirections and more.

The urllib2 module defines the following functions:

urlopen(url[, data ])
Open the url url , which can either a string or a Request object (currently the code checks that it
really is a Request instance, or an instance of a subclass of Request).

data should be a string, which specifies additional data to send to the server. In HTTP requests,
which are the only ones that support data, it should be a buffer in the format of application/x-www-

form-urlencoded, for example one returned from urllib.urlencode().

This function returns a file-like object with two additional methods:

•geturl() — return the URL of the resource retrieved

•info() — return the meta-information of the page, as a dictionary-like object

278 Chapter 11. Internet Protocols and Support



Raises URLError on errors.

install opener(opener)
Install a OpenerDirector instance as the default opener. The code does not check for a real
OpenerDirector, and any class with the appropriate interface will work.

build opener([handler, ... ])
Return an OpenerDirector instance, which chains the handlers in the order given. handlers can be
either instances of BaseHandler, or subclasses of BaseHandler (in which case it must be possible
to call the constructor without any parameters. Instances of the following classes will be in the
front of the handlers, unless the handlers contain them, instances of them or subclasses of them:

ProxyHandler, UnknownHandler, HTTPHandler, HTTPDefaultErrorHandler,
HTTPRedirectHandler, FTPHandler, FileHandler

If the Python installation has SSL support (socket.ssl() exists), HTTPSHandler will also be
added.

The following exceptions are raised as appropriate:

exception URLError
The error handlers raise when they run into a problem. It is a subclass of IOError.

exception HTTPError
A subclass of URLError, it can also function as a non-exceptional file-like return value (the same
thing that urlopen() returns). This is useful when handling exotic HTTP errors, such as requests
for authentication.

exception GopherError
A subclass of URLError, this is the error raised by the Gopher handler.

The following classes are provided:

class Request(url[, data[, headers ] ])
This class is an abstraction of a URL request.

url should be a string which is a valid URL. For descrtion of data see the add data() description.
headers should be a dictionary, and will be treated as if add header() was called with each key
and value as arguments.

class OpenerDirector()
The OpenerDirector class opens URLs via BaseHandlers chained together. It manages the chain-
ing of handlers, and recovery from errors.

class BaseHandler()
This is the base class for all registered handlers — and handles only the simple mechanics of
registration.

class HTTPDefaultErrorHandler()
A class which defines a default handler for HTTP error responses; all responses are turned into
HTTPError exceptions.

class HTTPRedirectHandler()
A class to handle redirections.

class ProxyHandler([proxies ])
Cause requests to go through a proxy. If proxies is given, it must be a dictionary mapping protocol
names to URLs of proxies. The default is to read the list of proxies from the environment variables
protocol proxy.

class HTTPPasswordMgr()
Keep a database of (realm, uri) -> (user, password) mappings.

class HTTPPasswordMgrWithDefaultRealm()
Keep a database of (realm, uri) -> (user, password) mappings. A realm of None is considered
a catch-all realm, which is searched if no other realm fits.

class AbstractBasicAuthHandler([password mgr ])

11.4. urllib2 — extensible library for opening URLs 279



This is a mixin class that helps with HTTP authentication, both to the remote host and to a proxy.

password mgr should be something that is compatible with HTTPPasswordMgr — supplies the
documented interface above.

class HTTPBasicAuthHandler([password mgr ])
Handle authentication with the remote host. Valid password mgr , if given, are the same as for
AbstractBasicAuthHandler.

class ProxyBasicAuthHandler([password mgr ])
Handle authentication with the proxy. Valid password mgr , if given, are the same as for
AbstractBasicAuthHandler.

class AbstractDigestAuthHandler([password mgr ])
This is a mixin class, that helps with HTTP authentication, both to the remote host and to a
proxy.

password mgr should be something that is compatible with HTTPPasswordMgr — supplies the
documented interface above.

class HTTPDigestAuthHandler([password mgr ])
Handle authentication with the remote host. Valid password mgr , if given, are the same as for
AbstractBasicAuthHandler.

class ProxyDigestAuthHandler([password mgr ])
Handle authentication with the proxy. password mgr , if given, shoudl be the same as for the
constructor of AbstractDigestAuthHandler.

class HTTPHandler()
A class to handle opening of HTTP URLs.

class HTTPSHandler()
A class to handle opening of HTTPS URLs.

class FileHandler()
Open local files.

class FTPHandler()
Open FTP URLs.

class CacheFTPHandler()
Open FTP URLs, keeping a cache of open FTP connections to minimize delays.

class GopherHandler()
Open gopher URLs.

class UnknownHandler()
A catch-all class to handle unknown URLs.

11.4.1 Request Objects

The following methods describe all of Request’s public interface, and so all must be overridden in
subclasses.

add data(data)
Set the Request data to data is ignored by all handlers except HTTP handlers — and there it
should be an application/x-www-form-encoded buffer, and will change the request to be POST rather
then GET.

has data(data)
Return whether the instance has a non-None data.

get data(data)
Return the instance’s data.

add header(key, val)
Add another header to the request. Headers are currently ignored by all handlers except HTTP

280 Chapter 11. Internet Protocols and Support



handlers, where they are added to the list of headers sent to the server. Note that there cannot be
more then one header with the same name, and later calls will overwrite previous calls in case the
key collides. Currently, this is no loss of HTTP functionality, since all headers which have meaning
when used more then once have a (header-specific) way of gaining the same functionality using
only one header.

get full url()
Return the URL given in the constructor.

get type()
Return the type of the URL — also known as the scheme.

get host()
Return the host to which connection will be made.

get selector()
Return the selector — the part of the URL that is sent to the server.

set proxy(host, type)
Make the request by connecting to a proxy server. The host and type will replace those of the
instance, and the instance’s selector will be the original URL given in the constructor.

11.4.2 OpenerDirector Objects

OpenerDirector instances have the following methods:

add handler(handler)
handler should be an instance of BaseHandler. The following methods are searched, and added
to the possible chains.

•protocol open() — signal that the handler knows how to open protocol URLs.

•protocol error type() — signal that the handler knows how to handle type errors from
protocol .

close()
Explicitly break cycles, and delete all the handlers. Because the OpenerDirector needs to know the
registered handlers, and a handler needs to know who the OpenerDirector who called it is, there
is a reference cycles. Even though recent versions of Python have cycle-collection, it is sometimes
preferable to explicitly break the cycles.

open(url[, data ])
Open the given url . (which can be a request object or a string), optionally passing the given data.
Arguments, return values and exceptions raised are the same as those of urlopen() (which simply
calls the open() method on the default installed OpenerDirector.

error(proto[, arg[, ... ] ])
Handle an error in a given protocol. The HTTP protocol is special cased to use the code as the
error. This will call the registered error handlers for the given protocol with the given arguments
(which are protocol specific).

Return values and exceptions raised are the same as those of urlopen().

11.4.3 BaseHandler Objects

BaseHandler objects provide a couple of methods that are directly useful, and others that are meant to
be used by derived classes. These are intended for direct use:

add parent(director)
Add a director as parent.

close()
Remove any parents.

11.4. urllib2 — extensible library for opening URLs 281



The following members and methods should be used only be classes derived from BaseHandler:

parent
A valid OpenerDirector, which can be used to open using a different protocol, or handle errors.

default open(req)
This method is not defined in BaseHandler, but subclasses should define it if they want to catch
all URLs.

This method, if exists, will be called by the parent OpenerDirector. It should return a file-like
object as described in the return value of the open() of OpenerDirector or None. It should raise
URLError, unless a truly exceptional thing happens (for example, MemoryError should not be
mapped to URLError.

This method will be called before any protocol-specific open method.

protocol open(req)
This method is not defined in BaseHandler, but subclasses should define it if they want to handle
URLs with the given protocol.

This method, if defined, will be called by the parent OpenerDirector. Return values should be
the same as for default open().

unknown open(req)
This method is not defined in BaseHandler, but subclasses should define it if they want to catch
all URLs with no specific registerd handler to open it.

This method, if exists, will be called by the parent OpenerDirector. Return values should be the
same as for default open().

http error default(req, fp, code, msg, hdrs)
This method is not defined in BaseHandler, but subclasses should override it if they intend to
provide a catch-all for otherwise unhandled HTTP errors. It will be called automatically by the
OpenerDirector getting the error, and should not normally be called in other circumstances.

req will be a Request object, fp will be a file-like object with the HTTP error body, code will be
the three-digit code of the error, msg will be the user-visible explanation of the code and hdrs will
be a mapping object with the headers of the error.

Return values and exceptions raised should be the same as those of urlopen().

http error nnn(req, fp, code, msg, hdrs)
nnn should be a three-digit HTTP error code. This method is also not defined in BaseHandler,
but will be called, if it exists, on an instance of a subclass, when an HTTP error with code nnn
occurs.

Subclasses should override this method to handle specific HTTP errors.

Arguments, return values and exceptions raised should be the same as for http error default().

11.4.4 HTTPRedirectHandler Objects

Note: 303 redirection is not supported by this version of urllib2.

http error 301(req, fp, code, msg, hdrs)
Redirect to the Location: URL. This method is called by the parent OpenerDirector when
getting an HTTP permanent-redirect response.

http error 302(req, fp, code, msg, hdrs)
The same as http error 301(), but called for the temporary-redirect response.

11.4.5 ProxyHandler Objects

protocol open(request)
The ProxyHandler will have a method protocol open() for every protocol which has a proxy in
the proxies dictionary given in the constructor. The method will modify requests to go through

282 Chapter 11. Internet Protocols and Support



the proxy, by calling request.set proxy(), and call the next handler in the chain to actually
execute the protocol.

11.4.6 HTTPPasswordMgr Objects

These methods are available on HTTPPasswordMgr and HTTPPasswordMgrWithDefaultRealm objects.

add password(realm, uri, user, passwd)
uri can be either a single URI, or a sequene of URIs. realm, user and passwd must be strings. This
causes (user, passwd) to be used as authentication tokens when authentication for realm and a
super-URI of any of the given URIs is given.

find user password(realm, authuri)
Get user/password for given realm and URI, if any. This method will return (None, None) if there
is no matching user/password.

For HTTPPasswordMgrWithDefaultRealm objects, the realm None will be searched if the given
realm has no matching user/password.

11.4.7 AbstractBasicAuthHandler Objects

handle authentication request(authreq, host, req, headers)
Handle an authentication request by getting user/password pair, and retrying. authreq should be
the name of the header where the information about the realm, host is the host to authenticate
too, req should be the (failed) Request object, and headers should be the error headers.

11.4.8 HTTPBasicAuthHandler Objects

http error 401(req, fp, code, msg, hdrs)
Retry the request with authentication info, if available.

11.4.9 ProxyBasicAuthHandler Objects

http error 407(req, fp, code, msg, hdrs)
Retry the request with authentication info, if available.

11.4.10 AbstractDigestAuthHandler Objects

handle authentication request(authreq, host, req, headers)
authreq should be the name of the header where the information about the realm, host should be
the host to authenticate too, req should be the (failed) Request object, and headers should be the
error headers.

11.4.11 HTTPDigestAuthHandler Objects

http error 401(req, fp, code, msg, hdrs)
Retry the request with authentication info, if available.

11.4.12 ProxyDigestAuthHandler Objects

http error 407(req, fp, code, msg, hdrs)
Retry the request with authentication information, if available.

11.4. urllib2 — extensible library for opening URLs 283



11.4.13 HTTPHandler Objects

http open(req)
Send an HTTP request, whcih can be either GET or POST, depending on req.has data().

11.4.14 HTTPSHandler Objects

https open(req)
Send an HTTPS request, which can be either GET or POST, depending on req.has data().

11.4.15 FileHandler Objects

file open(req)
Open the file locally, if there is no host name, or the host name is ’localhost’. Change the
protocol to ftp otherwise, and retry opening it using parent.

11.4.16 FTPHandler Objects

ftp open(req)
Open the FTP file indicated by req . The login is always done with empty username and password.

11.4.17 CacheFTPHandler Objects

CacheFTPHandler objects are FTPHandler objects with the following additional methods:

setTimeout(t)
Set timeout of connections to t seconds.

setMaxConns(m)
Set maximum number of cached connections to m.

11.4.18 GopherHandler Objects

gopher open(req)
Open the gopher resource indicated by req .

11.4.19 UnknownHandler Objects

unknown open(R)
aise a URLError exception.

11.5 httplib — HTTP protocol client

This module defines a class which implements the client side of the HTTP protocol. It is normally not
used directly — the module urllib uses it to handle URLs that use HTTP.

The module defines one class, HTTP:

class HTTP([host[, port ] ])
An HTTP instance represents one transaction with an HTTP server. It should be instantiated
passing it a host and optional port number. If no port number is passed, the port is extracted
from the host string if it has the form host:port , else the default HTTP port (80) is used. If no
host is passed, no connection is made, and the connect() method should be used to connect to a
server. For example, the following calls all create instances that connect to the server at the same
host and port:

284 Chapter 11. Internet Protocols and Support



>>> h1 = httplib.HTTP(’www.cwi.nl’)

>>> h2 = httplib.HTTP(’www.cwi.nl:80’)

>>> h3 = httplib.HTTP(’www.cwi.nl’, 80)

Once an HTTP instance has been connected to an HTTP server, it should be used as follows:

1.Make exactly one call to the putrequest() method.

2.Make zero or more calls to the putheader() method.

3.Call the endheaders() method (this can be omitted if step 4 makes no calls).

4.Optional calls to the send() method.

5.Call the getreply() method.

6.Call the getfile() method and read the data off the file object that it returns.

11.5.1 HTTP Objects

HTTP instances have the following methods:

set debuglevel(level)
Set the debugging level (the amount of debugging output printed). The default debug level is 0,
meaning no debugging output is printed.

connect(host[, port ])
Connect to the server given by host and port . See the intro for the default port. This should be
called directly only if the instance was instantiated without passing a host.

send(data)
Send data to the server. This should be used directly only after the endheaders() method has
been called and before getreply() has been called.

putrequest(request, selector)
This should be the first call after the connection to the server has been made. It sends a line to
the server consisting of the request string, the selector string, and the HTTP version (HTTP/1.0).

putheader(header, argument[, ... ])
Send an RFC 822 style header to the server. It sends a line to the server consisting of the header,
a colon and a space, and the first argument. If more arguments are given, continuation lines are
sent, each consisting of a tab and an argument.

endheaders()
Send a blank line to the server, signalling the end of the headers.

getreply()
Complete the request by shutting down the sending end of the socket, read the reply from the
server, and return a triple (replycode, message, headers). Here, replycode is the integer reply
code from the request (e.g., 200 if the request was handled properly); message is the message
string corresponding to the reply code; and headers is an instance of the class mimetools.Message
containing the headers received from the server. See the description of the mimetools module.

getfile()
Return a file object from which the data returned by the server can be read, using the read(),
readline() or readlines() methods.

11.5.2 Examples

Here is an example session that uses the ‘GET’ method:

11.5. httplib — HTTP protocol client 285



>>> import httplib

>>> h = httplib.HTTP(’www.cwi.nl’)

>>> h.putrequest(’GET’, ’/index.html’)

>>> h.putheader(’Accept’, ’text/html’)

>>> h.putheader(’Accept’, ’text/plain’)

>>> h.endheaders()

>>> errcode, errmsg, headers = h.getreply()

>>> print errcode # Should be 200

>>> f = h.getfile()

>>> data = f.read() # Get the raw HTML

>>> f.close()

Here is an example session that shows how to ‘POST’ requests:

>>> import httplib, urllib

>>> params = urllib.urlencode({’spam’: 1, ’eggs’: 2, ’bacon’: 0})

>>> h = httplib.HTTP("www.musi-cal.com:80")

>>> h.putrequest("POST", "/cgi-bin/query")

>>> h.putheader("Content-type", "application/x-www-form-urlencoded")

>>> h.putheader("Content-length", "%d" % len(params))

>>> h.putheader(’Accept’, ’text/plain’)

>>> h.putheader(’Host’, ’www.musi-cal.com’)

>>> h.endheaders()

>>> h.send(params)

>>> reply, msg, hdrs = h.getreply()

>>> print reply # should be 200

>>> data = h.getfile().read() # get the raw HTML

11.6 ftplib — FTP protocol client

This module defines the class FTP and a few related items. The FTP class implements the client side of
the FTP protocol. You can use this to write Python programs that perform a variety of automated FTP
jobs, such as mirroring other ftp servers. It is also used by the module urllib to handle URLs that use
FTP. For more information on FTP (File Transfer Protocol), see Internet RFC 959.

Here’s a sample session using the ftplib module:

>>> from ftplib import FTP

>>> ftp = FTP(’ftp.cwi.nl’) # connect to host, default port

>>> ftp.login() # user anonymous, passwd user@hostname

>>> ftp.retrlines(’LIST’) # list directory contents

total 24418

drwxrwsr-x 5 ftp-usr pdmaint 1536 Mar 20 09:48 .

dr-xr-srwt 105 ftp-usr pdmaint 1536 Mar 21 14:32 ..

-rw-r--r-- 1 ftp-usr pdmaint 5305 Mar 20 09:48 INDEX

.

.

.

>>> ftp.retrbinary(’RETR README’, open(’README’, ’wb’).write)

’226 Transfer complete.’

>>> ftp.quit()

The module defines the following items:

class FTP([host[, user[, passwd[, acct ] ] ] ])

286 Chapter 11. Internet Protocols and Support



Return a new instance of the FTP class. When host is given, the method call connect(host) is
made. When user is given, additionally the method call login(user, passwd, acct) is made
(where passwd and acct default to the empty string when not given).

all errors
The set of all exceptions (as a tuple) that methods of FTP instances may raise as a result of problems
with the FTP connection (as opposed to programming errors made by the caller). This set includes
the four exceptions listed below as well as socket.error and IOError.

exception error reply
Exception raised when an unexpected reply is received from the server.

exception error temp
Exception raised when an error code in the range 400–499 is received.

exception error perm
Exception raised when an error code in the range 500–599 is received.

exception error proto
Exception raised when a reply is received from the server that does not begin with a digit in the
range 1–5.

See Also:

Module netrc (section 12.17):
Parser for the ‘.netrc’ file format. The file ‘.netrc’ is typically used by FTP clients to load user
authentication information before prompting the user.

The file ‘Tools/scripts/ftpmirror.py’ in the Python source distribution is a script that can mirror FTP sites,
or portions thereof, using the ftplib module. It can be used as an extended example that applies this
module.

11.6.1 FTP Objects

Several methods are available in two flavors: one for handling text files and another for binary files.
These are named for the command which is used followed by ‘lines’ for the text version or ‘binary’ for
the binary version.

FTP instances have the following methods:

set debuglevel(level)
Set the instance’s debugging level. This controls the amount of debugging output printed. The
default, 0, produces no debugging output. A value of 1 produces a moderate amount of debugging
output, generally a single line per request. A value of 2 or higher produces the maximum amount
of debugging output, logging each line sent and received on the control connection.

connect(host[, port ])
Connect to the given host and port. The default port number is 21, as specified by the FTP
protocol specification. It is rarely needed to specify a different port number. This function should
be called only once for each instance; it should not be called at all if a host was given when the
instance was created. All other methods can only be used after a connection has been made.

getwelcome()
Return the welcome message sent by the server in reply to the initial connection. (This message
sometimes contains disclaimers or help information that may be relevant to the user.)

login([user[, passwd[, acct ] ] ])
Log in as the given user . The passwd and acct parameters are optional and default to the empty
string. If no user is specified, it defaults to ’anonymous’. If user is ’anonymous’, the default
passwd is ‘realuser@host ’ where realuser is the real user name (glanced from the LOGNAME or
USER environment variable) and host is the hostname as returned by socket.gethostname().
This function should be called only once for each instance, after a connection has been established;
it should not be called at all if a host and user were given when the instance was created. Most
FTP commands are only allowed after the client has logged in.

11.6. ftplib — FTP protocol client 287



abort()
Abort a file transfer that is in progress. Using this does not always work, but it’s worth a try.

sendcmd(command)
Send a simple command string to the server and return the response string.

voidcmd(command)
Send a simple command string to the server and handle the response. Return nothing if a response
code in the range 200–299 is received. Raise an exception otherwise.

retrbinary(command, callback[, maxblocksize[, rest ] ])
Retrieve a file in binary transfer mode. command should be an appropriate ‘RETR’ command,
i.e. ’RETR filename’. The callback function is called for each block of data received, with a single
string argument giving the data block. The optional maxblocksize argument specifies the maximum
chunk size to read on the low-level socket object created to do the actual transfer (which will also
be the largest size of the data blocks passed to callback). A reasonable default is chosen. rest
means the same thing as in the transfercmd() method.

retrlines(command[, callback ])
Retrieve a file or directory listing in ascii transfer mode. command should be an appropriate
‘RETR’ command (see retrbinary() or a ‘LIST’ command (usually just the string ’LIST’). The
callback function is called for each line, with the trailing CRLF stripped. The default callback
prints the line to sys.stdout.

set pasv(boolean)
Enable “passive” mode if boolean is true, other disable passive mode. (In Python 2.0 and before,
passive mode was off by default; in Python 2.1 and later, it is on by default.)

storbinary(command, file[, blocksize ])
Store a file in binary transfer mode. command should be an appropriate ‘STOR’ command, i.e.
"STOR filename". file is an open file object which is read until eof using its read() method in
blocks of size blocksize to provide the data to be stored. The blocksize argument defaults to 8192.
Changed in version 2.1: default for blocksize added.

storlines(command, file)
Store a file in ascii transfer mode. command should be an appropriate ‘STOR’ command (see
storbinary()). Lines are read until eof from the open file object file using its readline()
method to provide the data to be stored.

transfercmd(cmd[, rest ])
Initiate a transfer over the data connection. If the transfer is active, send a ‘PORT’ command and
the transfer command specified by cmd , and accept the connection. If the server is passive, send a
‘PASV’ command, connect to it, and start the transfer command. Either way, return the socket for
the connection.
If optional rest is given, a ‘REST’ command is sent to the server, passing rest as an argument. rest
is usually a byte offset into the requested file, telling the server to restart sending the file’s bytes at
the requested offset, skipping over the initial bytes. Note however that RFC 959 requires only that
rest be a string containing characters in the printable range from ASCII code 33 to ASCII code
126. The transfercmd() method, therefore, converts rest to a string, but no check is performed
on the string’s contents. If the server does not recognize the ‘REST’ command, an error reply
exception will be raised. If this happens, simply call transfercmd() without a rest argument.

ntransfercmd(cmd[, rest ])
Like transfercmd(), but returns a tuple of the data connection and the expected size of the data.
If the expected size could not be computed, None will be returned as the expected size. cmd and
rest means the same thing as in transfercmd().

nlst(argument[, . . . ])
Return a list of files as returned by the ‘NLST’ command. The optional argument is a directory to
list (default is the current server directory). Multiple arguments can be used to pass non-standard
options to the ‘NLST’ command.

dir(argument[, . . . ])

288 Chapter 11. Internet Protocols and Support



Produce a directory listing as returned by the ‘LIST’ command, printing it to standard output.
The optional argument is a directory to list (default is the current server directory). Multiple
arguments can be used to pass non-standard options to the ‘LIST’ command. If the last argument
is a function, it is used as a callback function as for retrlines(); the default prints to sys.stdout.
This method returns None.

rename(fromname, toname)
Rename file fromname on the server to toname.

delete(filename)
Remove the file named filename from the server. If successful, returns the text of the response,
otherwise raises error perm on permission errors or error reply on other errors.

cwd(pathname)
Set the current directory on the server.

mkd(pathname)
Create a new directory on the server.

pwd()
Return the pathname of the current directory on the server.

rmd(dirname)
Remove the directory named dirname on the server.

size(filename)
Request the size of the file named filename on the server. On success, the size of the file is returned
as an integer, otherwise None is returned. Note that the ‘SIZE’ command is not standardized, but
is supported by many common server implementations.

quit()
Send a ‘QUIT’ command to the server and close the connection. This is the “polite” way to close
a connection, but it may raise an exception of the server reponds with an error to the ‘QUIT’
command. This implies a call to the close() method which renders the FTP instance useless for
subsequent calls (see below).

close()
Close the connection unilaterally. This should not be applied to an already closed connection (e.g.
after a successful call to quit(). After this call the FTP instance should not be used any more (i.e.,
after a call to close() or quit() you cannot reopen the connection by issuing another login()
method).

11.7 gopherlib — Gopher protocol client

This module provides a minimal implementation of client side of the the Gopher protocol. It is used by
the module urllib to handle URLs that use the Gopher protocol.

The module defines the following functions:

send selector(selector, host[, port ])
Send a selector string to the gopher server at host and port (default 70). Returns an open file
object from which the returned document can be read.

send query(selector, query, host[, port ])
Send a selector string and a query string to a gopher server at host and port (default 70). Returns
an open file object from which the returned document can be read.

Note that the data returned by the Gopher server can be of any type, depending on the first character
of the selector string. If the data is text (first character of the selector is ‘0’), lines are terminated by
CRLF, and the data is terminated by a line consisting of a single ‘.’, and a leading ‘.’ should be stripped
from lines that begin with ‘..’. Directory listings (first character of the selector is ‘1’) are transferred
using the same protocol.

11.7. gopherlib — Gopher protocol client 289



11.8 poplib — POP3 protocol client

This module defines a class, POP3, which encapsulates a connection to an POP3 server and implements
protocol as defined in RFC 1725. The POP3 class supports both the minimal and optional command sets.

Note that POP3, though widely supported, is obsolescent. The implementation quality of POP3 servers
varies widely, and too many are quite poor. If your mailserver supports IMAP, you would be better off
using the imaplib.IMAP4 class, as IMAP servers tend to be better implemented.

A single class is provided by the poplib module:

class POP3(host[, port ])
This class implements the actual POP3 protocol. The connection is created when the instance is
initialized. If port is omitted, the standard POP3 port (110) is used.

One exception is defined as an attribute of the poplib module:

exception error proto
Exception raised on any errors. The reason for the exception is passed to the constructor as a
string.

See Also:

Module imaplib (section 11.9):
The standard Python IMAP module.

http://www.tuxedo.org/ esr/fetchail/fetchmail-FAQ.html
The FAQ for the fetchmail POP/IMAP client collects information on POP3 server variations and
RFC noncompliance that may be useful if you need to write an application based on poplib.

11.8.1 POP3 Objects

All POP3 commands are represented by methods of the same name, in lower-case; most return the
response text sent by the server.

An POP3 instance has the following methods:

getwelcome()
Returns the greeting string sent by the POP3 server.

user(username)
Send user command, response should indicate that a password is required.

pass (password)
Send password, response includes message count and mailbox size. Note: the mailbox on the server
is locked until quit() is called.

apop(user, secret)
Use the more secure APOP authentication to log into the POP3 server.

rpop(user)
Use RPOP authentication (similar to UNIX r-commands) to log into POP3 server.

stat()
Get mailbox status. The result is a tuple of 2 integers: (message count, mailbox size).

list([which ])
Request message list, result is in the form (response, [’mesg num octets’, ...]). If which is
set, it is the message to list.

retr(which)
Retrieve whole message number which, and set its seen flag. Result is in form (response, [’line’,
...], octets).

dele(which)
Flag message number which for deletion. On most servers deletions are not actually performed

290 Chapter 11. Internet Protocols and Support



until QUIT (the major exception is Eudora QPOP, which deliberately violates the RFCs by doing
pending deletes on any disconnect).

rset()
Remove any deletion marks for the mailbox.

noop()
Do nothing. Might be used as a keep-alive.

quit()
Signoff: commit changes, unlock mailbox, drop connection.

top(which, howmuch)
Retrieves the message header plus howmuch lines of the message after the header of message number
which. Result is in form (response, [’line’, ...], octets).

The POP3 TOP command this method uses, unlike the RETR command, doesn’t set the message’s
seen flag; unfortunately, TOP is poorly specified in the RFCs and is frequently broken in off-brand
servers. Test this method by hand against the POP3 servers you will use before trusting it.

uidl([which ])
Return message digest (unique id) list. If which is specified, result contains the unique id for
that message in the form ’response mesgnum uid , otherwise result is list (response, [’mesgnum
uid’, ...], octets).

11.8.2 POP3 Example

Here is a minimal example (without error checking) that opens a mailbox and retrieves and prints all
messages:

import getpass, poplib

M = poplib.POP3(’localhost’)

M.user(getpass.getuser())

M.pass_(getpass.getpass())

numMessages = len(M.list()[1])

for i in range(numMessages):

for j in M.retr(i+1)[1]:

print j

At the end of the module, there is a test section that contains a more extensive example of usage.

11.9 imaplib — IMAP4 protocol client

This module defines a class, IMAP4, which encapsulates a connection to an IMAP4 server and implements
a large subset of the IMAP4rev1 client protocol as defined in RFC 2060. It is backward compatible with
IMAP4 (RFC 1730) servers, but note that the ‘STATUS’ command is not supported in IMAP4.

A single class is provided by the imaplib module:

class IMAP4([host[, port ] ])
This class implements the actual IMAP4 protocol. The connection is created and protocol version
(IMAP4 or IMAP4rev1) is determined when the instance is initialized. If host is not specified, ’’
(the local host) is used. If port is omitted, the standard IMAP4 port (143) is used.

Two exceptions are defined as attributes of the IMAP4 class:

exception IMAP4.error
Exception raised on any errors. The reason for the exception is passed to the constructor as a
string.

11.9. imaplib — IMAP4 protocol client 291



exception IMAP4.abort
IMAP4 server errors cause this exception to be raised. This is a sub-class of IMAP4.error. Note
that closing the instance and instantiating a new one will usually allow recovery from this exception.

exception IMAP4.readonly
This exception is raised when a writable mailbox has its status changed by the server. This is a
sub-class of IMAP4.error. Some other client now has write permission, and the mailbox will need
to be re-opened to re-obtain write permission.

The following utility functions are defined:

Internaldate2tuple(datestr)
Converts an IMAP4 INTERNALDATE string to Coordinated Universal Time. Returns a time
module tuple.

Int2AP(num)
Converts an integer into a string representation using characters from the set [A .. P].

ParseFlags(flagstr)
Converts an IMAP4 ‘FLAGS’ response to a tuple of individual flags.

Time2Internaldate(date time)
Converts a time module tuple to an IMAP4 ‘INTERNALDATE’ representation. Returns a string in
the form: "DD-Mmm-YYYY HH:MM:SS +HHMM" (including double-quotes).

Note that IMAP4 message numbers change as the mailbox changes; in particular, after an ‘EXPUNGE’
command performs deletions the remaining messages are renumbered. So it is highly advisable to use
UIDs instead, with the UID command.

At the end of the module, there is a test section that contains a more extensive example of usage.

See Also:

Documents describing the protocol, and sources and binaries for servers implementing it, can all be found
at the University of Washington’s IMAP Information Center (http://www.cac.washington.edu/imap/).

11.9.1 IMAP4 Objects

All IMAP4rev1 commands are represented by methods of the same name, either upper-case or lower-case.

All arguments to commands are converted to strings, except for ‘AUTHENTICATE’, and the last argument
to ‘APPEND’ which is passed as an IMAP4 literal. If necessary (the string contains IMAP4 protocol-
sensitive characters and isn’t enclosed with either parentheses or double quotes) each string is quoted.
However, the password argument to the ‘LOGIN’ command is always quoted. If you want to avoid having
an argument string quoted (eg: the flags argument to ‘STORE’) then enclose the string in parentheses
(eg: r’(\Deleted)’).

Each command returns a tuple: (type, [data, ...]) where type is usually ’OK’ or ’NO’, and data is
either the text from the command response, or mandated results from the command.

An IMAP4 instance has the following methods:

append(mailbox, flags, date time, message)
Append message to named mailbox.

authenticate(func)
Authenticate command — requires response processing. This is currently unimplemented, and
raises an exception.

check()
Checkpoint mailbox on server.

close()
Close currently selected mailbox. Deleted messages are removed from writable mailbox. This is
the recommended command before ‘LOGOUT’.

copy(message set, new mailbox)

292 Chapter 11. Internet Protocols and Support



Copy message set messages onto end of new mailbox .

create(mailbox)
Create new mailbox named mailbox .

delete(mailbox)
Delete old mailbox named mailbox .

expunge()
Permanently remove deleted items from selected mailbox. Generates an ‘EXPUNGE’ response for each
deleted message. Returned data contains a list of ‘EXPUNGE’ message numbers in order received.

fetch(message set, message parts)
Fetch (parts of) messages. message parts should be a string of message part names enclosed within
parentheses, eg: ‘"(UID BODY[TEXT])"’. Returned data are tuples of message part envelope and
data.

list([directory[, pattern ] ])
List mailbox names in directory matching pattern. directory defaults to the top-level mail folder,
and pattern defaults to match anything. Returned data contains a list of ‘LIST’ responses.

login(user, password)
Identify the client using a plaintext password. The password will be quoted.

logout()
Shutdown connection to server. Returns server ‘BYE’ response.

lsub([directory[, pattern ] ])
List subscribed mailbox names in directory matching pattern. directory defaults to the top level
directory and pattern defaults to match any mailbox. Returned data are tuples of message part
envelope and data.

noop()
Send ‘NOOP’ to server.

open(host, port)
Opens socket to port at host . You may override this method.

partial(message num, message part, start, length)
Fetch truncated part of a message. Returned data is a tuple of message part envelope and data.

recent()
Prompt server for an update. Returned data is None if no new messages, else value of ‘RECENT’
response.

rename(oldmailbox, newmailbox)
Rename mailbox named oldmailbox to newmailbox .

response(code)
Return data for response code if received, or None. Returns the given code, instead of the usual
type.

search(charset, criterium[, ... ])
Search mailbox for matching messages. Returned data contains a space separated list of matching
message numbers. charset may be None, in which case no ‘CHARSET’ will be specified in the request
to the server. The IMAP protocol requires that at least one criterium be specified; an exception
will be raised when the server returns an error.

Example:

# M is a connected IMAP4 instance...

msgnums = M.search(None, ’FROM’, ’"LDJ"’)

# or:

msgnums = M.search(None, ’(FROM "LDJ")’)

11.9. imaplib — IMAP4 protocol client 293



select([mailbox [, readonly ] ])
Select a mailbox. Returned data is the count of messages in mailbox (‘EXISTS’ response). The
default mailbox is ’INBOX’. If the readonly flag is set, modifications to the mailbox are not allowed.

socket()
Returns socket instance used to connect to server.

status(mailbox, names)
Request named status conditions for mailbox .

store(message set, command, flag list)
Alters flag dispositions for messages in mailbox.

subscribe(mailbox)
Subscribe to new mailbox.

uid(command, arg[, ... ])
Execute command args with messages identified by UID, rather than message number. Returns
response appropriate to command. At least one argument must be supplied; if none are provided,
the server will return an error and an exception will be raised.

unsubscribe(mailbox)
Unsubscribe from old mailbox.

xatom(name[, arg[, ... ] ])
Allow simple extension commands notified by server in ‘CAPABILITY’ response.

The following attributes are defined on instances of IMAP4:

PROTOCOL VERSION
The most recent supported protocol in the ‘CAPABILITY’ response from the server.

debug
Integer value to control debugging output. The initialize value is taken from the module variable
Debug. Values greater than three trace each command.

11.9.2 IMAP4 Example

Here is a minimal example (without error checking) that opens a mailbox and retrieves and prints all
messages:

import getpass, imaplib, string

M = imaplib.IMAP4()

M.login(getpass.getuser(), getpass.getpass())

M.select()

typ, data = M.search(None, ’ALL’)

for num in string.split(data[0]):

typ, data = M.fetch(num, ’(RFC822)’)

print ’Message %s\n%s\n’ % (num, data[0][1])

M.logout()

11.10 nntplib — NNTP protocol client

This module defines the class NNTP which implements the client side of the NNTP protocol. It can be
used to implement a news reader or poster, or automated news processors. For more information on
NNTP (Network News Transfer Protocol), see Internet RFC 977.

Here are two small examples of how it can be used. To list some statistics about a newsgroup and print
the subjects of the last 10 articles:

294 Chapter 11. Internet Protocols and Support



>>> s = NNTP(’news.cwi.nl’)

>>> resp, count, first, last, name = s.group(’comp.lang.python’)

>>> print ’Group’, name, ’has’, count, ’articles, range’, first, ’to’, last

Group comp.lang.python has 59 articles, range 3742 to 3803

>>> resp, subs = s.xhdr(’subject’, first + ’-’ + last)

>>> for id, sub in subs[-10:]: print id, sub

...

3792 Re: Removing elements from a list while iterating...

3793 Re: Who likes Info files?

3794 Emacs and doc strings

3795 a few questions about the Mac implementation

3796 Re: executable python scripts

3797 Re: executable python scripts

3798 Re: a few questions about the Mac implementation

3799 Re: PROPOSAL: A Generic Python Object Interface for Python C Modules

3802 Re: executable python scripts

3803 Re: \POSIX{} wait and SIGCHLD

>>> s.quit()

’205 news.cwi.nl closing connection. Goodbye.’

To post an article from a file (this assumes that the article has valid headers):

>>> s = NNTP(’news.cwi.nl’)

>>> f = open(’/tmp/article’)

>>> s.post(f)

’240 Article posted successfully.’

>>> s.quit()

’205 news.cwi.nl closing connection. Goodbye.’

The module itself defines the following items:

class NNTP(host[, port [, user[, password [, readermode ] ] ] ])
Return a new instance of the NNTP class, representing a connection to the NNTP server running
on host host , listening at port port . The default port is 119. If the optional user and password
are provided, the ‘AUTHINFO USER’ and ‘AUTHINFO PASS’ commands are used to identify and au-
thenticate the user to the server. If the optional flag readermode is true, then a ‘mode reader’
command is sent before authentication is performed. Reader mode is sometimes necessary if you are
connecting to an NNTP server on the local machine and intend to call reader-specific commands,
such as ‘group’. If you get unexpected NNTPPermanentErrors, you might need to set readermode.
readermode defaults to None.

class NNTPError()
Derived from the standard exception Exception, this is the base class for all exceptions raised by
the nntplib module.

class NNTPReplyError()
Exception raised when an unexpected reply is received from the server. For backwards compati-
bility, the exception error reply is equivalent to this class.

class NNTPTemporaryError()
Exception raised when an error code in the range 400–499 is received. For backwards compatibility,
the exception error temp is equivalent to this class.

class NNTPPermanentError()
Exception raised when an error code in the range 500–599 is received. For backwards compatibility,
the exception error perm is equivalent to this class.

class NNTPProtocolError()
Exception raised when a reply is received from the server that does not begin with a digit in the
range 1–5. For backwards compatibility, the exception error proto is equivalent to this class.

11.10. nntplib — NNTP protocol client 295



class NNTPDataError()
Exception raised when there is some error in the response data. For backwards compatibility, the
exception error data is equivalent to this class.

11.10.1 NNTP Objects

NNTP instances have the following methods. The response that is returned as the first item in the return
tuple of almost all methods is the server’s response: a string beginning with a three-digit code. If the
server’s response indicates an error, the method raises one of the above exceptions.

getwelcome()
Return the welcome message sent by the server in reply to the initial connection. (This message
sometimes contains disclaimers or help information that may be relevant to the user.)

set debuglevel(level)
Set the instance’s debugging level. This controls the amount of debugging output printed. The
default, 0, produces no debugging output. A value of 1 produces a moderate amount of debugging
output, generally a single line per request or response. A value of 2 or higher produces the
maximum amount of debugging output, logging each line sent and received on the connection
(including message text).

newgroups(date, time)
Send a ‘NEWGROUPS’ command. The date argument should be a string of the form ’yymmdd’
indicating the date, and time should be a string of the form ’hhmmss’ indicating the time. Return
a pair (response, groups) where groups is a list of group names that are new since the given date
and time.

newnews(group, date, time)
Send a ‘NEWNEWS’ command. Here, group is a group name or ’*’, and date and time have the same
meaning as for newgroups(). Return a pair (response, articles) where articles is a list of article
ids.

list()
Send a ‘LIST’ command. Return a pair (response, list) where list is a list of tuples. Each tuple
has the form (group, last, first, flag), where group is a group name, last and first are the last
and first article numbers (as strings), and flag is ’y’ if posting is allowed, ’n’ if not, and ’m’ if
the newsgroup is moderated. (Note the ordering: last , first .)

group(name)
Send a ‘GROUP’ command, where name is the group name. Return a tuple (response, count,
first, last, name) where count is the (estimated) number of articles in the group, first is the first
article number in the group, last is the last article number in the group, and name is the group
name. The numbers are returned as strings.

help()
Send a ‘HELP’ command. Return a pair (response, list) where list is a list of help strings.

stat(id)
Send a ‘STAT’ command, where id is the message id (enclosed in ‘<’ and ‘>’) or an article number
(as a string). Return a triple (response, number, id) where number is the article number (as a
string) and id is the article id (enclosed in ‘<’ and ‘>’).

next()
Send a ‘NEXT’ command. Return as for stat().

last()
Send a ‘LAST’ command. Return as for stat().

head(id)
Send a ‘HEAD’ command, where id has the same meaning as for stat(). Return a tuple (response,
number, id, list) where the first three are the same as for stat(), and list is a list of the article’s
headers (an uninterpreted list of lines, without trailing newlines).

body(id)

296 Chapter 11. Internet Protocols and Support



Send a ‘BODY’ command, where id has the same meaning as for stat(). Return as for head().

article(id)
Send an ‘ARTICLE’ command, where id has the same meaning as for stat(). Return as for head().

slave()
Send a ‘SLAVE’ command. Return the server’s response.

xhdr(header, string)
Send an ‘XHDR’ command. This command is not defined in the RFC but is a common extension.
The header argument is a header keyword, e.g. ’subject’. The string argument should have the
form ’first-last’ where first and last are the first and last article numbers to search. Return a
pair (response, list), where list is a list of pairs (id, text), where id is an article id (as a string)
and text is the text of the requested header for that article.

post(file)
Post an article using the ‘POST’ command. The file argument is an open file object which is read
until EOF using its readline() method. It should be a well-formed news article, including the
required headers. The post() method automatically escapes lines beginning with ‘.’.

ihave(id, file)
Send an ‘IHAVE’ command. If the response is not an error, treat file exactly as for the post()
method.

date()
Return a triple (response, date, time), containing the current date and time in a form suitable
for the newnews() and newgroups() methods. This is an optional NNTP extension, and may not
be supported by all servers.

xgtitle(name)
Process an ‘XGTITLE’ command, returning a pair (response, list), where list is a list of tuples
containing (name, title). This is an optional NNTP extension, and may not be supported by all
servers.

xover(start, end)
Return a pair (resp, list). list is a list of tuples, one for each article in the range delimited by the
start and end article numbers. Each tuple is of the form (article number, subject, poster, date,
id, references, size, lines). This is an optional NNTP extension, and may not be supported by
all servers.

xpath(id)
Return a pair (resp, path), where path is the directory path to the article with message ID id .
This is an optional NNTP extension, and may not be supported by all servers.

quit()
Send a ‘QUIT’ command and close the connection. Once this method has been called, no other
methods of the NNTP object should be called.

11.11 smtplib — SMTP protocol client

The smtplib module defines an SMTP client session object that can be used to send mail to any Internet
machine with an SMTP or ESMTP listener daemon. For details of SMTP and ESMTP operation, consult
RFC 821 (Simple Mail Transfer Protocol) and RFC 1869 (SMTP Service Extensions).

class SMTP([host[, port ] ])
A SMTP instance encapsulates an SMTP connection. It has methods that support a full repertoire
of SMTP and ESMTP operations. If the optional host and port parameters are given, the SMTP
connect() method is called with those parameters during initialization. An SMTPConnectError is
raised if the specified host doesn’t respond correctly.

For normal use, you should only require the initialization/connect, sendmail(), and quit() meth-
ods. An example is included below.

11.11. smtplib — SMTP protocol client 297



A nice selection of exceptions is defined as well:

exception SMTPException
Base exception class for all exceptions raised by this module.

exception SMTPServerDisconnected
This exception is raised when the server unexpectedly disconnects, or when an attempt is made to
use the SMTP instance before connecting it to a server.

exception SMTPResponseException
Base class for all exceptions that include an SMTP error code. These exceptions are generated
in some instances when the SMTP server returns an error code. The error code is stored in the
smtp code attribute of the error, and the smtp error attribute is set to the error message.

exception SMTPSenderRefused
Sender address refused. In addition to the attributes set by on all SMTPResponseException excep-
tions, this sets ‘sender’ to the string that the SMTP server refused.

exception SMTPRecipientsRefused
All recipient addresses refused. The errors for each recipient are accessible through the attribute
recipients, which is a dictionary of exactly the same sort as SMTP.sendmail() returns.

exception SMTPDataError
The SMTP server refused to accept the message data.

exception SMTPConnectError
Error occurred during establishment of a connection with the server.

exception SMTPHeloError
The server refused our ‘HELO’ message.

See Also:

RFC 821, “Simple Mail Transfer Protocol”
Protocol definition for SMTP. This document covers the model, operating procedure, and protocol
details for SMTP.

RFC 1869, “SMTP Service Extensions”
Definition of the ESMTP extensions for SMTP. This describes a framework for extending SMTP
with new commands, supporting dynamic discovery of the commands provided by the server, and
defines a few additional commands.

11.11.1 SMTP Objects

An SMTP instance has the following methods:

set debuglevel(level)
Set the debug output level. A true value for level results in debug messages for connection and for
all messages sent to and received from the server.

connect([host[, port ] ])
Connect to a host on a given port. The defaults are to connect to the local host at the standard
SMTP port (25).

If the hostname ends with a colon (‘:’) followed by a number, that suffix will be stripped off and
the number interpreted as the port number to use.

Note: This method is automatically invoked by the constructor if a host is specified during instan-
tiation.

docmd(cmd, [, argstring ])
Send a command cmd to the server. The optional argument argstring is simply concatenated to
the command, separated by a space.

This returns a 2-tuple composed of a numeric response code and the actual response line (multiline
responses are joined into one long line.)

298 Chapter 11. Internet Protocols and Support



In normal operation it should not be necessary to call this method explicitly. It is used to implement
other methods and may be useful for testing private extensions.

If the connection to the server is lost while waiting for the reply, SMTPServerDisconnected will
be raised.

helo([hostname ])
Identify yourself to the SMTP server using ‘HELO’. The hostname argument defaults to the fully
qualified domain name of the local host.

In normal operation it should not be necessary to call this method explicitly. It will be implicitly
called by the sendmail() when necessary.

ehlo([hostname ])
Identify yourself to an ESMTP server using ‘EHLO’. The hostname argument defaults to the fully
qualified domain name of the local host. Examine the response for ESMTP option and store them
for use by has option().

Unless you wish to use has option() before sending mail, it should not be necessary to call this
method explicitly. It will be implicitly called by sendmail() when necessary.

has extn(name)
Return 1 if name is in the set of SMTP service extensions returned by the server, 0 otherwise.
Case is ignored.

verify(address)
Check the validity of an address on this server using SMTP ‘VRFY’. Returns a tuple consisting of
code 250 and a full RFC 822 address (including human name) if the user address is valid. Otherwise
returns an SMTP error code of 400 or greater and an error string.

Note: many sites disable SMTP ‘VRFY’ in order to foil spammers.

sendmail(from addr, to addrs, msg[, mail options, rcpt options ])
Send mail. The required arguments are an RFC 822 from-address string, a list of RFC 822 to-
address strings, and a message string. The caller may pass a list of ESMTP options (such as
‘8bitmime’) to be used in ‘MAIL FROM’ commands as mail options. ESMTP options (such as ‘DSN’
commands) that should be used with all ‘RCPT’ commands can be passed as rcpt options. (If you
need to use different ESMTP options to different recipients you have to use the low-level methods
such as mail, rcpt and data to send the message.)

Note: The from addr and to addrs parameters are used to construct the message envelope used
by the transport agents. The SMTP does not modify the message headers in any way.

If there has been no previous ‘EHLO’ or ‘HELO’ command this session, this method tries ESMTP
‘EHLO’ first. If the server does ESMTP, message size and each of the specified options will be passed
to it (if the option is in the feature set the server advertises). If ‘EHLO’ fails, ‘HELO’ will be tried
and ESMTP options suppressed.

This method will return normally if the mail is accepted for at least one recipient. Otherwise it
will throw an exception. That is, if this method does not throw an exception, then someone should
get your mail. If this method does not throw an exception, it returns a dictionary, with one entry
for each recipient that was refused. Each entry contains a tuple of the SMTP error code and the
accompanying error message sent by the server.

This method may raise the following exceptions:

SMTPRecipientsRefusedAll recipients were refused. Nobody got the mail. The recipients at-
tribute of the exception object is a dictionary with information about the refused recipients
(like the one returned when at least one recipient was accepted).

SMTPHeloErrorThe server didn’t reply properly to the ‘HELO’ greeting.

SMTPSenderRefusedThe server didn’t accept the from addr .

SMTPDataErrorThe server replied with an unexpected error code (other than a refusal of a recipi-
ent).

Unless otherwise noted, the connection will be open even after an exception is raised.

11.11. smtplib — SMTP protocol client 299



quit()
Terminate the SMTP session and close the connection.

Low-level methods corresponding to the standard SMTP/ESMTP commands ‘HELP’, ‘RSET’, ‘NOOP’,
‘MAIL’, ‘RCPT’, and ‘DATA’ are also supported. Normally these do not need to be called directly, so they
are not documented here. For details, consult the module code.

11.11.2 SMTP Example

This example prompts the user for addresses needed in the message envelope (‘To’ and ‘From’ addresses),
and the message to be delivered. Note that the headers to be included with the message must be included
in the message as entered; this example doesn’t do any processing of the RFC 822 headers. In particular,
the ‘To’ and ‘From’ addresses must be included in the message headers explicitly.

import smtplib

import string

def prompt(prompt):

return raw_input(prompt).strip()

fromaddr = prompt("From: ")

toaddrs = prompt("To: ").split()

print "Enter message, end with ^D:"

# Add the From: and To: headers at the start!

msg = ("From: %s\r\nTo: %s\r\n\r\n"

% (fromaddr, string.join(toaddrs, ", ")))

while 1:

try:

line = raw_input()

except EOFError:

break

if not line:

break

msg = msg + line

print "Message length is " + ‘len(msg)‘

server = smtplib.SMTP(’localhost’)

server.set_debuglevel(1)

server.sendmail(fromaddr, toaddrs, msg)

server.quit()

11.12 telnetlib — Telnet client

The telnetlib module provides a Telnet class that implements the Telnet protocol. See RFC 854 for
details about the protocol.

class Telnet([host[, port ] ])
Telnet represents a connection to a telnet server. The instance is initially not connected by
default; the open() method must be used to establish a connection. Alternatively, the host name
and optional port number can be passed to the constructor, to, in which case the connection to
the server will be established before the constructor returns.

Do not reopen an already connected instance.

This class has many read *() methods. Note that some of them raise EOFError when the end
of the connection is read, because they can return an empty string for other reasons. See the

300 Chapter 11. Internet Protocols and Support



individual descriptions below.

See Also:

RFC 854, “Telnet Protocol Specification”
Definition of the Telnet protocol.

11.12.1 Telnet Objects

Telnet instances have the following methods:

read until(expected[, timeout ])
Read until a given string is encountered or until timeout.

When no match is found, return whatever is available instead, possibly the empty string. Raise
EOFError if the connection is closed and no cooked data is available.

read all()
Read all data until eof; block until connection closed.

read some()
Read at least one byte of cooked data unless eof is hit. Return ’’ if eof is hit. Block if no data
is immediately available.

read very eager()
Read everything that can be without blocking in I/O (eager).

Raise EOFError if connection closed and no cooked data available. Return ’’ if no cooked data
available otherwise. Do not block unless in the midst of an IAC sequence.

read eager()
Read readily available data.

Raise EOFError if connection closed and no cooked data available. Return ’’ if no cooked data
available otherwise. Do not block unless in the midst of an IAC sequence.

read lazy()
Process and return data already in the queues (lazy).

Raise EOFError if connection closed and no data available. Return ’’ if no cooked data available
otherwise. Do not block unless in the midst of an IAC sequence.

read very lazy()
Return any data available in the cooked queue (very lazy).

Raise EOFError if connection closed and no data available. Return ’’ if no cooked data available
otherwise. This method never blocks.

open(host[, port ])
Connect to a host. The optional second argument is the port number, which defaults to the
standard telnet port (23).

Do not try to reopen an already connected instance.

msg(msg[, *args ])
Print a debug message when the debug level is > 0. If extra arguments are present, they are
substituted in the message using the standard string formatting operator.

set debuglevel(debuglevel)
Set the debug level. The higher the value of debuglevel , the more debug output you get (on
sys.stdout).

close()
Close the connection.

get socket()
Return the socket object used internally.

11.12. telnetlib — Telnet client 301



fileno()
Return the file descriptor of the socket object used internally.

write(buffer)
Write a string to the socket, doubling any IAC characters. This can block if the connection is
blocked. May raise socket.error if the connection is closed.

interact()
Interaction function, emulates a very dumb telnet client.

mt interact()
Multithreaded version of interact().

expect(list[, timeout ])
Read until one from a list of a regular expressions matches.

The first argument is a list of regular expressions, either compiled (re.RegexObject instances) or
uncompiled (strings). The optional second argument is a timeout, in seconds; the default is to
block indefinitely.

Return a tuple of three items: the index in the list of the first regular expression that matches; the
match object returned; and the text read up till and including the match.

If end of file is found and no text was read, raise EOFError. Otherwise, when nothing matches,
return (-1, None, text) where text is the text received so far (may be the empty string if a
timeout happened).

If a regular expression ends with a greedy match (e.g. d.*c) or if more than one expression can
match the same input, the results are indeterministic, and may depend on the I/O timing.

11.12.2 Telnet Example

A simple example illustrating typical use:

import getpass

import sys

import telnetlib

HOST = "localhost"

user = raw_input("Enter your remote account: ")

password = getpass.getpass()

tn = telnetlib.Telnet(HOST)

tn.read_until("login: ")

tn.write(user + "\n")

if password:

tn.read_until("Password: ")

tn.write(password + "\n")

tn.write("ls\n")

tn.write("exit\n")

print tn.read_all()

11.13 urlparse — Parse URLs into components

This module defines a standard interface to break Uniform Resource Locator (URL) strings up in com-
ponents (addressing scheme, network location, path etc.), to combine the components back into a URL
string, and to convert a “relative URL” to an absolute URL given a “base URL.”

302 Chapter 11. Internet Protocols and Support



The module has been designed to match the Internet RFC on Relative Uniform Resource Locators (and
discovered a bug in an earlier draft!).

It defines the following functions:

urlparse(urlstring[, default scheme[, allow fragments ] ])
Parse a URL into 6 components, returning a 6-tuple: (addressing scheme, network location, path,
parameters, query, fragment identifier). This corresponds to the general structure of a URL:
scheme://netloc/path;parameters?query#fragment . Each tuple item is a string, possibly empty.
The components are not broken up in smaller parts (e.g. the network location is a single string),
and % escapes are not expanded. The delimiters as shown above are not part of the tuple items,
except for a leading slash in the path component, which is retained if present.

Example:

urlparse(’http://www.cwi.nl:80/%7Eguido/Python.html’)

yields the tuple

(’http’, ’www.cwi.nl:80’, ’/%7Eguido/Python.html’, ’’, ’’, ’’)

If the default scheme argument is specified, it gives the default addressing scheme, to be used only
if the URL string does not specify one. The default value for this argument is the empty string.

If the allow fragments argument is zero, fragment identifiers are not allowed, even if the URL’s
addressing scheme normally does support them. The default value for this argument is 1.

urlunparse(tuple)
Construct a URL string from a tuple as returned by urlparse(). This may result in a slightly
different, but equivalent URL, if the URL that was parsed originally had redundant delimiters, e.g.
a ? with an empty query (the draft states that these are equivalent).

urljoin(base, url[, allow fragments ])
Construct a full (“absolute”) URL by combining a “base URL” (base) with a “relative URL” (url).
Informally, this uses components of the base URL, in particular the addressing scheme, the network
location and (part of) the path, to provide missing components in the relative URL.

Example:

urljoin(’http://www.cwi.nl/%7Eguido/Python.html’, ’FAQ.html’)

yields the string

’http://www.cwi.nl/%7Eguido/FAQ.html’

The allow fragments argument has the same meaning as for urlparse().

See Also:

RFC 1738, “Uniform Resource Locators (URL)”
This specifies the formal syntax and semantics of absolute URLs.

RFC 1808, “Relative Uniform Resource Locators”
This Request For Comments includes the rules for joining an absolute and a relative URL, including
a fair normal of “Abnormal Examples” which govern the treatment of border cases.

RFC 2396, “Uniform Resource Identifiers (URI): Generic Syntax”
Document describing the generic syntactic requirements for both Uniform Resource Names (URNs)
and Uniform Resource Locators (URLs).

11.14 SocketServer — A framework for network servers

11.14. SocketServer — A framework for network servers 303



The SocketServer module simplifies the task of writing network servers.

There are four basic server classes: TCPServer uses the Internet TCP protocol, which provides for
continuous streams of data between the client and server. UDPServer uses datagrams, which are discrete
packets of information that may arrive out of order or be lost while in transit. The more infrequently used
UnixStreamServer and UnixDatagramServer classes are similar, but use Unix domain sockets; they’re
not available on non-Unix platforms. For more details on network programming, consult a book such
as W. Richard Steven’s UNIX Network Programming or Ralph Davis’s Win32 Network Programming.

These four classes process requests synchronously; each request must be completed before the next request
can be started. This isn’t suitable if each request takes a long time to complete, because it requires a lot
of computation, or because it returns a lot of data which the client is slow to process. The solution is
to create a separate process or thread to handle each request; the ForkingMixIn and ThreadingMixIn
mix-in classes can be used to support asynchronous behaviour.

Creating a server requires several steps. First, you must create a request handler class by subclassing
the BaseRequestHandler class and overriding its handle() method; this method will process incoming
requests. Second, you must instantiate one of the server classes, passing it the server’s address and the
request handler class. Finally, call the handle request() or serve forever() method of the server
object to process one or many requests.

Server classes have the same external methods and attributes, no matter what network protocol they
use:

fileno()
Return an integer file descriptor for the socket on which the server is listening. This function
is most commonly passed to select.select(), to allow monitoring multiple servers in the same
process.

handle request()
Process a single request. This function calls the following methods in order: get request(),
verify request(), and process request(). If the user-provided handle() method of the han-
dler class raises an exception, the server’s handle error() method will be called.

serve forever()
Handle an infinite number of requests. This simply calls handle request() inside an infinite loop.

address family
The family of protocols to which the server’s socket belongs. socket.AF INET and
socket.AF UNIX are two possible values.

RequestHandlerClass
The user-provided request handler class; an instance of this class is created for each request.

server address
The address on which the server is listening. The format of addresses varies depending on the
protocol family; see the documentation for the socket module for details. For Internet protocols,
this is a tuple containing a string giving the address, and an integer port number: (’127.0.0.1’,
80), for example.

socket
The socket object on which the server will listen for incoming requests.

The server classes support the following class variables:

allow reuse address
Whether the server will allow the reuse of an address. This defaults to true, and can be set in
subclasses to change the policy.

request queue size
The size of the request queue. If it takes a long time to process a single request, any requests that
arrive while the server is busy are placed into a queue, up to request queue size requests. Once
the queue is full, further requests from clients will get a “Connection denied” error. The default
value is usually 5, but this can be overridden by subclasses.

socket type

304 Chapter 11. Internet Protocols and Support



The type of socket used by the server; socket.SOCK STREAM and socket.SOCK DGRAM are two
possible values.

There are various server methods that can be overridden by subclasses of base server classes like
TCPServer; these methods aren’t useful to external users of the server object.

finish request()
Actually processes the request by instantiating RequestHandlerClass and calling its handle()
method.

get request()
Must accept a request from the socket, and return a 2-tuple containing the new socket object to
be used to communicate with the client, and the client’s address.

handle error(request, client address)
This function is called if the RequestHandlerClass’s handle() method raises an exception. The
default action is to print the traceback to standard output and continue handling further requests.

process request(request, client address)
Calls finish request() to create an instance of the RequestHandlerClass. If desired, this
function can create a new process or thread to handle the request; the ForkingMixIn and
ThreadingMixIn classes do this.

server activate()
Called by the server’s constructor to activate the server. May be overridden.

server bind()
Called by the server’s constructor to bind the socket to the desired address. May be overridden.

verify request(request, client address)
Must return a Boolean value; if the value is true, the request will be processed, and if it’s false, the
request will be denied. This function can be overridden to implement access controls for a server.
The default implementation always return true.

The request handler class must define a new handle() method, and can override any of the following
methods. A new instance is created for each request.

finish()
Called after the handle() method to perform any clean-up actions required. The default imple-
mentation does nothing. If setup() or handle() raise an exception, this function will not be
called.

handle()
This function must do all the work required to service a request. Several instance at-
tributes are available to it; the request is available as self.request; the client address as
self.client address; and the server instance as self.server, in case it needs access to per-
server information.

The type of self.request is different for datagram or stream services. For stream services,
self.request is a socket object; for datagram services, self.request is a string. How-
ever, this can be hidden by using the mix-in request handler classes StreamRequestHandler or
DatagramRequestHandler, which override the setup() and finish() methods, and provides
self.rfile and self.wfile attributes. self.rfile and self.wfile can be read or written,
respectively, to get the request data or return data to the client.

setup()
Called before the handle() method to perform any initialization actions required. The default
implementation does nothing.

11.15 BaseHTTPServer — Basic HTTP server

This module defines two classes for implementing HTTP servers (web servers). Usually, this module isn’t
used directly, but is used as a basis for building functioning web servers. See the SimpleHTTPServer and
CGIHTTPServer modules.

11.15. BaseHTTPServer — Basic HTTP server 305



The first class, HTTPServer, is a SocketServer.TCPServer subclass. It creates and listens at the web
socket, dispatching the requests to a handler. Code to create and run the server looks like this:

def run(server_class=BaseHTTPServer.HTTPServer,

handler_class=BaseHTTPServer.BaseHTTPRequestHandler):

server_address = (’’, 8000)

httpd = server_class(server_address, handler_class)

httpd.serve_forever()

class HTTPServer(server address, RequestHandlerClass)
This class builds on the TCPServer class by storing the server address as instance variables named
server name and server port. The server is accessible by the handler, typically through the
handler’s server instance variable.

class BaseHTTPRequestHandler(request, client address, server)
This class is used to handle the HTTP requests that arrive at the server. By itself, it cannot
respond to any actual HTTP requests; it must be subclassed to handle each request method (e.g.
GET or POST). BaseHTTPRequestHandler provides a number of class and instance variables, and
methods for use by subclasses.

The handler will parse the request and the headers, then call a method specific to the request
type. The method name is constructed from the request. For example, for the request method
‘SPAM’, the do SPAM() method will be called with no arguments. All of the relevant information is
stored in instance variables of the handler. Subclasses should not need to override or extend the

init () method.

BaseHTTPRequestHandler has the following instance variables:

client address
Contains a tuple of the form (host, port) referring to the client’s address.

command
Contains the command (request type). For example, ’GET’.

path
Contains the request path.

request version
Contains the version string from the request. For example, ’HTTP/1.0’.

headers
Holds an instance of the class specified by the MessageClass class variable. This instance parses
and manages the headers in the HTTP request.

rfile
Contains an input stream, positioned at the start of the optional input data.

wfile
Contains the output stream for writing a response back to the client. Proper adherence to the
HTTP protocol must be used when writing to this stream.

BaseHTTPRequestHandler has the following class variables:

server version
Specifies the server software version. You may want to override this. The format is multi-
ple whitespace-separated strings, where each string is of the form name[/version]. For example,
’BaseHTTP/0.2’.

sys version
Contains the Python system version, in a form usable by the version string method and the
server version class variable. For example, ’Python/1.4’.

error message format
Specifies a format string for building an error response to the client. It uses parenthesized, keyed
format specifiers, so the format operand must be a dictionary. The code key should be an integer,

306 Chapter 11. Internet Protocols and Support



specifying the numeric HTTP error code value. message should be a string containing a (detailed)
error message of what occurred, and explain should be an explanation of the error code number.
Default message and explain values can found in the responses class variable.

protocol version
This specifies the HTTP protocol version used in responses. Typically, this should not be overrid-
den. Defaults to ’HTTP/1.0’.

MessageClass
Specifies a rfc822.Message-like class to parse HTTP headers. Typically, this is not overridden,
and it defaults to mimetools.Message.

responses
This variable contains a mapping of error code integers to two-element tuples containing a short
and long message. For example, {code: (shortmessage, longmessage)}. The shortmessage is
usually used as the message key in an error response, and longmessage as the explain key (see the
error message format class variable).

A BaseHTTPRequestHandler instance has the following methods:

handle()
Overrides the superclass’ handle() method to provide the specific handler behavior. This method
will parse and dispatch the request to the appropriate do *() method.

send error(code[, message ])
Sends and logs a complete error reply to the client. The numeric code specifies the HTTP error
code, with message as optional, more specific text. A complete set of headers is sent, followed by
text composed using the error message format class variable.

send response(code[, message ])
Sends a response header and logs the accepted request. The HTTP response line is sent, fol-
lowed by Server and Date headers. The values for these two headers are picked up from the
version string() and date time string() methods, respectively.

send header(keyword, value)
Writes a specific MIME header to the output stream. keyword should specify the header keyword,
with value specifying its value.

end headers()
Sends a blank line, indicating the end of the MIME headers in the response.

log request([code[, size ] ])
Logs an accepted (successful) request. code should specify the numeric HTTP code associated with
the response. If a size of the response is available, then it should be passed as the size parameter.

log error(...)
Logs an error when a request cannot be fulfilled. By default, it passes the message to
log message(), so it takes the same arguments (format and additional values).

log message(format, ...)
Logs an arbitrary message to sys.stderr. This is typically overridden to create custom error
logging mechanisms. The format argument is a standard printf-style format string, where the
additional arguments to log message() are applied as inputs to the formatting. The client address
and current date and time are prefixed to every message logged.

version string()
Returns the server software’s version string. This is a combination of the server version and
sys version class variables.

date time string()
Returns the current date and time, formatted for a message header.

log data time string()
Returns the current date and time, formatted for logging.

address string()

11.15. BaseHTTPServer — Basic HTTP server 307



Returns the client address, formatted for logging. A name lookup is performed on the client’s IP
address.

See Also:

Module CGIHTTPServer (section 11.17):
Extended request handler that supports CGI scripts.

Module SimpleHTTPServer (section 11.16):
Basic request handler that limits response to files actually under the document root.

11.16 SimpleHTTPServer — Simple HTTP request handler

The SimpleHTTPServer module defines a request-handler class, interface compatible with
BaseHTTPServer.BaseHTTPRequestHandler which serves files only from a base directory.

The SimpleHTTPServer module defines the following class:

class SimpleHTTPRequestHandler(request, client address, server)
This class is used, to serve files from current directory and below, directly mapping the directory
structure to HTTP requests.

A lot of the work is done by the base class BaseHTTPServer.BaseHTTPRequestHandler, such as
parsing the request. This class implements the do GET() and do HEAD() functions.

The SimpleHTTPRequestHandler defines the following member variables:

server version
This will be "SimpleHTTP/" + version , where version is defined in the module.

extensions map
A dictionary mapping suffixes into MIME types. Default is signified by an empty string, and is
considered to be text/plain. The mapping is used case-insensitively, and so should contain only
lower-cased keys.

The SimpleHTTPRequestHandler defines the following methods:

do HEAD()
This method serves the ’HEAD’ request type: it sends the headers it would send for the equivalent
GET request. See the do GET() method for more complete explanation of the possible headers.

do GET()
The request is mapped to a local file by interpreting the request as a path relative to the current
working directory.

If the request was mapped to a directory, a 403 respond is output, followed by the explanation
’Directory listing not supported’. Any IOError exception in opening the requested file, is
mapped to a 404, ’File not found’ error. Otherwise, the content type is guessed using the
extensions map variable.

A ’Content-type:’ with the guessed content type is output, and then a blank line, signifying end
of headers, and then the contents of the file. The file is always opened in binary mode.

For example usage, see the implementation of the test() function.

See Also:

Module BaseHTTPServer (section 11.15):
Base class implementation for Web server and request handler.

11.17 CGIHTTPServer — CGI-capable HTTP request handler

The CGIHTTPServer module defines a request-handler class, interface compat-
ible with BaseHTTPServer.BaseHTTPRequestHandler and inherits behavior from
SimpleHTTPServer.SimpleHTTPRequestHandler but can also run CGI scripts.

308 Chapter 11. Internet Protocols and Support



Note: This module can run CGI scripts on Unix and Windows systems; on Mac OS it will only be able
to run Python scripts within the same process as itself.

The CGIHTTPServer module defines the following class:

class CGIHTTPRequestHandler(request, client address, server)
This class is used to serve either files or output of CGI scripts from the current directory and
below. Note that mapping HTTP hierarchic structure to local directory structure is exactly as in
SimpleHTTPServer.SimpleHTTPRequestHandler.

The class will however, run the CGI script, instead of serving it as a file, if it guesses it to be a
CGI script. Only directory-based CGI are used — the other common server configuration is to
treat special extensions as denoting CGI scripts.

The do GET() and do HEAD() functions are modified to run CGI scripts and serve the output,
instead of serving files, if the request leads to somewhere below the cgi directories path.

The CGIHTTPRequestHandler defines the following data member:

cgi directories
This defaults to [’/cgi-bin’, ’/htbin’] and describes directories to treat as containing CGI
scripts.

The CGIHTTPRequestHandler defines the following methods:

do POST()
This method serves the ’POST’ request type, only allowed for CGI scripts. Error 501, ”Can only
POST to CGI scripts”, is output when trying to POST to a non-CGI url.

Note that CGI scripts will be run with UID of user nobody, for security reasons. Problems with the CGI
script will be translated to error 403.

For example usage, see the implementation of the test() function.

See Also:

Module BaseHTTPServer (section 11.15):
Base class implementation for Web server and request handler.

11.18 Cookie — HTTP state management

The Cookie module defines classes for abstracting the concept of cookies, an HTTP state management
mechanism. It supports both simple string-only cookies, and provides an abstraction for having any
serializable data-type as cookie value.

The module formerly strictly applied the parsing rules described in in the RFC 2109 and RFC 2068
specifications. It has since been discovered that MSIE 3.0x doesn’t follow the character rules outlined in
those specs. As a result, the parsing rules used are a bit less strict.

exception CookieError
Exception failing because of RFC 2109 invalidity: incorrect attributes, incorrect Set-Cookie
header, etc.

class BaseCookie([input ])
This class is a dictionary-like object whose keys are strings and whose values are Morsels. Note
that upon setting a key to a value, the value is first converted to a Morsel containing the key and
the value.

If input is given, it is passed to the load() method.

class SimpleCookie([input ])
This class derives from BaseCookie and overrides value decode() and value encode() to be
the identity and str() respectively.

class SerialCookie([input ])
This class derives from BaseCookie and overrides value decode() and value encode() to be

11.18. Cookie — HTTP state management 309



the pickle.loads() and pickle.dumps().

Do not use this class. Reading pickled values from a cookie is a security hole, as arbitrary client-code
can be run on pickle.loads(). It is supported for backwards compatibility.

class SmartCookie([input ])
This class derives from BaseCookie. It overrides value decode() to be pickle.loads() if it is
a valid pickle, and otherwise the value itself. It overrides value encode() to be pickle.dumps()
unless it is a string, in which case it returns the value itself.

The same security warning from SerialCookie applies here.

See Also:

RFC 2109, “HTTP State Management Mechanism”
This is the state management specification implemented by this module.

11.18.1 Cookie Objects

value decode(val)
Return a decoded value from a string representation. Return value can be any type. This method
does nothing in BaseCookie — it exists so it can be overridden.

value encode(val)
Return an encoded value. val can be any type, but return value must be a string. This method
does nothing in BaseCookie — it exists so it can be overridden

In general, it should be the case that value encode() and value decode() are inverses on the
range of value decode.

output([attrs[, header[, sep ] ] ])
Return a string representation suitable to be sent as HTTP headers. attrs and header are sent
to each Morsel’s output() method. sep is used to join the headers together, and is by default a
newline.

js output([attrs ])
Return an embeddable JavaScript snippet, which, if run on a browser which supports JavaScript,
will act the same as if the HTTP headers was sent.

The meaning for attrs is the same as in output().

load(rawdata)
If rawdata is a string, parse it as an HTTP COOKIE and add the values found there as Morsels. If
it is a dictionary, it is equivalent to:

for k, v in rawdata.items():

cookie[k] = v

11.18.2 Morsel Objects

class Morsel()
Abstract a key/value pair, which has some RFC 2109 attributes.

Morsels are dictionary-like objects, whose set of keys is constant — the valid RFC 2109 attributes,
which are

•expires
•path
•comment
•domain
•max-age

310 Chapter 11. Internet Protocols and Support



•secure
•version

The keys are case-insensitive.

value
The value of the cookie.

coded value
The encoded value of the cookie — this is what should be sent.

key
The name of the cookie.

set(key, value, coded value)
Set the key , value and coded value members.

isReservedKey(K)
Whether K is a member of the set of keys of a Morsel.

output([attrs[, header ] ])
Return a string representation of the Morsel, suitable to be sent as an HTTP header. By default,
all the attributes are included, unless attrs is given, in which case it should be a list of attributes
to use. header is by default "Set-Cookie:".

js output([attrs ])
Return an embeddable JavaScript snippet, which, if run on a browser which supports JavaScript,
will act the same as if the HTTP header was sent.

The meaning for attrs is the same as in output().

OutputString([attrs ])
Return a string representing the Morsel, without any surrounding HTTP or JavaScript.

The meaning for attrs is the same as in output().

11.18.3 Example

The following example demonstrates how to use the Cookie module.

11.18. Cookie — HTTP state management 311



>>> import Cookie

>>> C = Cookie.SimpleCookie()

>>> C = Cookie.SerialCookie()

>>> C = Cookie.SmartCookie()

>>> C = Cookie.Cookie() # backwards-compatible alias for SmartCookie

>>> C = Cookie.SmartCookie()

>>> C["fig"] = "newton"

>>> C["sugar"] = "wafer"

>>> print C # generate HTTP headers

Set-Cookie: sugar=wafer;

Set-Cookie: fig=newton;

>>> print C.output() # same thing

Set-Cookie: sugar=wafer;

Set-Cookie: fig=newton;

>>> C = Cookie.SmartCookie()

>>> C["rocky"] = "road"

>>> C["rocky"]["path"] = "/cookie"

>>> print C.output(header="Cookie:")

Cookie: rocky=road; Path=/cookie;

>>> print C.output(attrs=[], header="Cookie:")

Cookie: rocky=road;

>>> C = Cookie.SmartCookie()

>>> C.load("chips=ahoy; vienna=finger") # load from a string (HTTP header)

>>> print C

Set-Cookie: vienna=finger;

Set-Cookie: chips=ahoy;

>>> C = Cookie.SmartCookie()

>>> C.load(’keebler="E=everybody; L=\\"Loves\\"; fudge=\\012;";’)

>>> print C

Set-Cookie: keebler="E=everybody; L=\"Loves\"; fudge=\012;";

>>> C = Cookie.SmartCookie()

>>> C["oreo"] = "doublestuff"

>>> C["oreo"]["path"] = "/"

>>> print C

Set-Cookie: oreo=doublestuff; Path=/;

>>> C = Cookie.SmartCookie()

>>> C["twix"] = "none for you"

>>> C["twix"].value

’none for you’

>>> C = Cookie.SimpleCookie()

>>> C["number"] = 7 # equivalent to C["number"] = str(7)

>>> C["string"] = "seven"

>>> C["number"].value

’7’

>>> C["string"].value

’seven’

>>> print C

Set-Cookie: number=7;

Set-Cookie: string=seven;

>>> C = Cookie.SerialCookie()

>>> C["number"] = 7

>>> C["string"] = "seven"

>>> C["number"].value

7

>>> C["string"].value

’seven’

>>> print C

Set-Cookie: number="I7\012.";

Set-Cookie: string="S’seven’\012p1\012.";

>>> C = Cookie.SmartCookie()

>>> C["number"] = 7

>>> C["string"] = "seven"

>>> C["number"].value

7

>>> C["string"].value

’seven’

>>> print C

Set-Cookie: number="I7\012.";

Set-Cookie: string=seven;

312 Chapter 11. Internet Protocols and Support



11.19 asyncore — Asynchronous socket handler

This module provides the basic infrastructure for writing asynchronous socket service clients and servers.

There are only two ways to have a program on a single processor do “more than one thing at a time.”
Multi-threaded programming is the simplest and most popular way to do it, but there is another very
different technique, that lets you have nearly all the advantages of multi-threading, without actually
using multiple threads. It’s really only practical if your program is largely I/O bound. If your program
is CPU bound, then pre-emptive scheduled threads are probably what you really need. Network servers
are rarely CPU-bound, however.

If your operating system supports the select() system call in its I/O library (and nearly all do), then
you can use it to juggle multiple communication channels at once; doing other work while your I/O is
taking place in the “background.” Although this strategy can seem strange and complex, especially at
first, it is in many ways easier to understand and control than multi-threaded programming. The module
documented here solves many of the difficult problems for you, making the task of building sophisticated
high-performance network servers and clients a snap.

class dispatcher()
The first class we will introduce is the dispatcher class. This is a thin wrapper around a low-level
socket object. To make it more useful, it has a few methods for event-handling on it. Otherwise,
it can be treated as a normal non-blocking socket object.

The direct interface between the select loop and the socket object are the handle read event()
and handle write event() methods. These are called whenever an object ‘fires’ that event.

The firing of these low-level events can tell us whether certain higher-level events have taken place,
depending on the timing and the state of the connection. For example, if we have asked for a socket
to connect to another host, we know that the connection has been made when the socket fires a
write event (at this point you know that you may write to it with the expectation of success). The
implied higher-level events are:

Event Description
handle connect() Implied by a write event
handle close() Implied by a read event with no data available
handle accept() Implied by a read event on a listening socket

This set of user-level events is larger than the basics. The full set of methods that can be overridden in
your subclass are:

handle read()
Called when there is new data to be read from a socket.

handle write()
Called when there is an attempt to write data to the object. Often this method will implement
the necessary buffering for performance. For example:

def handle_write(self):

sent = self.send(self.buffer)

self.buffer = self.buffer[sent:]

handle expt()
Called when there is out of band (OOB) data for a socket connection. This will almost never
happen, as OOB is tenuously supported and rarely used.

handle connect()
Called when the socket actually makes a connection. This might be used to send a “welcome”
banner, or something similar.

handle close()
Called when the socket is closed.

handle accept()
Called on listening sockets when they actually accept a new connection.

11.19. asyncore — Asynchronous socket handler 313



readable()
Each time through the select() loop, the set of sockets is scanned, and this method is called to
see if there is any interest in reading. The default method simply returns 1, indicating that by
default, all channels will be interested.

writable()
Each time through the select() loop, the set of sockets is scanned, and this method is called to
see if there is any interest in writing. The default method simply returns 1, indicating that by
default, all channels will be interested.

In addition, there are the basic methods needed to construct and manipulate “channels,” which are what
we will call the socket connections in this context. Note that most of these are nearly identical to their
socket partners.

create socket(family, type)
This is identical to the creation of a normal socket, and will use the same options for creation.
Refer to the socket documentation for information on creating sockets.

connect(address)
As with the normal socket object, address is a tuple with the first element the host to connect to,
and the second the port.

send(data)
Send data out the socket.

recv(buffer size)
Read at most buffer size bytes from the socket.

listen(backlog)
Listen for connections made to the socket. The backlog argument specifies the maximum number
of queued connections and should be at least 1; the maximum value is system-dependent (usually
5).

bind(address)
Bind the socket to address. The socket must not already be bound. (The format of address depends
on the address family — see above.)

accept()
Accept a connection. The socket must be bound to an address and listening for connections. The
return value is a pair (conn, address) where conn is a new socket object usable to send and receive
data on the connection, and address is the address bound to the socket on the other end of the
connection.

close()
Close the socket. All future operations on the socket object will fail. The remote end will receive
no more data (after queued data is flushed). Sockets are automatically closed when they are
garbage-collected.

11.19.1 Example basic HTTP client

As a basic example, below is a very basic HTTP client that uses the dispatcher class to implement its
socket handling:

314 Chapter 11. Internet Protocols and Support



class http_client(asyncore.dispatcher):

def __init__(self, host,path):

asyncore.dispatcher.__init__(self)

self.path = path

self.create_socket(socket.AF_INET, socket.SOCK_STREAM)

self.connect( (host, 80) )

self.buffer = ’GET %s HTTP/1.0\r\n\r\n’ % self.path

def handle_connect(self):

pass

def handle_read(self):

data = self.recv(8192)

print data

def writable(self):

return (len(self.buffer) > 0)

def handle_write(self):

sent = self.send(self.buffer)

self.buffer = self.buffer[sent:]

11.19. asyncore — Asynchronous socket handler 315



316



CHAPTER

TWELVE

Internet Data Handling

This chapter describes modules which support handling data formats commonly used on the internet.
Some, like SGML and XML, may be useful for other applications as well.

formatter Generic output formatter and device interface.
rfc822 Parse RFC 822 style mail headers.
mimetools Tools for parsing MIME-style message bodies.
MimeWriter Generic MIME file writer.
multifile Support for reading files which contain distinct parts, such as some MIME data.
binhex Encode and decode files in binhex4 format.
uu Encode and decode files in uuencode format.
binascii Tools for converting between binary and various ascii-encoded binary representations.
xdrlib Encoders and decoders for the External Data Representation (XDR).
mailcap Mailcap file handling.
mimetypes Mapping of filename extensions to MIME types.
base64 Encode and decode files using the MIME base64 data.
quopri Encode and decode files using the MIME quoted-printable encoding.
mailbox Read various mailbox formats.
mhlib Manipulate MH mailboxes from Python.
mimify Mimification and unmimification of mail messages.
netrc Loading of ‘.netrc’ files.
robotparser Accepts as input a list of lines or URL that refers to a robots.txt file, parses the file, then builds a set of rules from that list and answers questions about fetchability of other URLs.

12.1 formatter — Generic output formatting

This module supports two interface definitions, each with multiple implementations. The formatter
interface is used by the HTMLParser class of the htmllib module, and the writer interface is required by
the formatter interface.

Formatter objects transform an abstract flow of formatting events into specific output events on writer
objects. Formatters manage several stack structures to allow various properties of a writer object to be
changed and restored; writers need not be able to handle relative changes nor any sort of “change back”
operation. Specific writer properties which may be controlled via formatter objects are horizontal align-
ment, font, and left margin indentations. A mechanism is provided which supports providing arbitrary,
non-exclusive style settings to a writer as well. Additional interfaces facilitate formatting events which
are not reversible, such as paragraph separation.

Writer objects encapsulate device interfaces. Abstract devices, such as file formats, are supported as well
as physical devices. The provided implementations all work with abstract devices. The interface makes
available mechanisms for setting the properties which formatter objects manage and inserting data into
the output.

317



12.1.1 The Formatter Interface

Interfaces to create formatters are dependent on the specific formatter class being instantiated. The
interfaces described below are the required interfaces which all formatters must support once initialized.

One data element is defined at the module level:

AS IS
Value which can be used in the font specification passed to the push font() method described
below, or as the new value to any other push property() method. Pushing the AS IS value
allows the corresponding pop property() method to be called without having to track whether the
property was changed.

The following attributes are defined for formatter instance objects:

writer
The writer instance with which the formatter interacts.

end paragraph(blanklines)
Close any open paragraphs and insert at least blanklines before the next paragraph.

add line break()
Add a hard line break if one does not already exist. This does not break the logical paragraph.

add hor rule(*args, **kw)
Insert a horizontal rule in the output. A hard break is inserted if there is data in the current
paragraph, but the logical paragraph is not broken. The arguments and keywords are passed on
to the writer’s send line break() method.

add flowing data(data)
Provide data which should be formatted with collapsed whitespace. Whitespace from preceding
and successive calls to add flowing data() is considered as well when the whitespace collapse
is performed. The data which is passed to this method is expected to be word-wrapped by the
output device. Note that any word-wrapping still must be performed by the writer object due to
the need to rely on device and font information.

add literal data(data)
Provide data which should be passed to the writer unchanged. Whitespace, including newline and
tab characters, are considered legal in the value of data.

add label data(format, counter)
Insert a label which should be placed to the left of the current left margin. This should be used
for constructing bulleted or numbered lists. If the format value is a string, it is interpreted as a
format specification for counter , which should be an integer. The result of this formatting becomes
the value of the label; if format is not a string it is used as the label value directly. The label
value is passed as the only argument to the writer’s send label data() method. Interpretation
of non-string label values is dependent on the associated writer.

Format specifications are strings which, in combination with a counter value, are used to compute
label values. Each character in the format string is copied to the label value, with some characters
recognized to indicate a transform on the counter value. Specifically, the character ‘1’ represents
the counter value formatter as an Arabic number, the characters ‘A’ and ‘a’ represent alphabetic
representations of the counter value in upper and lower case, respectively, and ‘I’ and ‘i’ represent
the counter value in Roman numerals, in upper and lower case. Note that the alphabetic and
roman transforms require that the counter value be greater than zero.

flush softspace()
Send any pending whitespace buffered from a previous call to add flowing data() to the associ-
ated writer object. This should be called before any direct manipulation of the writer object.

push alignment(align)
Push a new alignment setting onto the alignment stack. This may be AS IS if no change is desired.
If the alignment value is changed from the previous setting, the writer’s new alignment() method
is called with the align value.

pop alignment()

318 Chapter 12. Internet Data Handling



Restore the previous alignment.

push font((size, italic, bold, teletype) )
Change some or all font properties of the writer object. Properties which are not set to AS IS
are set to the values passed in while others are maintained at their current settings. The writer’s
new font() method is called with the fully resolved font specification.

pop font()
Restore the previous font.

push margin(margin)
Increase the number of left margin indentations by one, associating the logical tag margin with
the new indentation. The initial margin level is 0. Changed values of the logical tag must be true
values; false values other than AS IS are not sufficient to change the margin.

pop margin()
Restore the previous margin.

push style(*styles)
Push any number of arbitrary style specifications. All styles are pushed onto the styles stack in
order. A tuple representing the entire stack, including AS IS values, is passed to the writer’s
new styles() method.

pop style([n = 1 ])
Pop the last n style specifications passed to push style(). A tuple representing the revised stack,
including AS IS values, is passed to the writer’s new styles() method.

set spacing(spacing)
Set the spacing style for the writer.

assert line data([flag = 1 ])
Inform the formatter that data has been added to the current paragraph out-of-band. This should
be used when the writer has been manipulated directly. The optional flag argument can be set to
false if the writer manipulations produced a hard line break at the end of the output.

12.1.2 Formatter Implementations

Two implementations of formatter objects are provided by this module. Most applications may use one
of these classes without modification or subclassing.

class NullFormatter([writer ])
A formatter which does nothing. If writer is omitted, a NullWriter instance is created. No
methods of the writer are called by NullFormatter instances. Implementations should inherit
from this class if implementing a writer interface but don’t need to inherit any implementation.

class AbstractFormatter(writer)
The standard formatter. This implementation has demonstrated wide applicability to many writers,
and may be used directly in most circumstances. It has been used to implement a full-featured
world-wide web browser.

12.1.3 The Writer Interface

Interfaces to create writers are dependent on the specific writer class being instantiated. The interfaces
described below are the required interfaces which all writers must support once initialized. Note that
while most applications can use the AbstractFormatter class as a formatter, the writer must typically
be provided by the application.

flush()
Flush any buffered output or device control events.

new alignment(align)
Set the alignment style. The align value can be any object, but by convention is a string or None,

12.1. formatter — Generic output formatting 319



where None indicates that the writer’s “preferred” alignment should be used. Conventional align
values are ’left’, ’center’, ’right’, and ’justify’.

new font(font)
Set the font style. The value of font will be None, indicating that the device’s default font should
be used, or a tuple of the form (size, italic, bold , teletype). Size will be a string indicating the
size of font that should be used; specific strings and their interpretation must be defined by the
application. The italic, bold , and teletype values are boolean indicators specifying which of those
font attributes should be used.

new margin(margin, level)
Set the margin level to the integer level and the logical tag to margin. Interpretation of the logical
tag is at the writer’s discretion; the only restriction on the value of the logical tag is that it not be
a false value for non-zero values of level .

new spacing(spacing)
Set the spacing style to spacing .

new styles(styles)
Set additional styles. The styles value is a tuple of arbitrary values; the value AS IS should
be ignored. The styles tuple may be interpreted either as a set or as a stack depending on the
requirements of the application and writer implementation.

send line break()
Break the current line.

send paragraph(blankline)
Produce a paragraph separation of at least blankline blank lines, or the equivalent. The blankline
value will be an integer. Note that the implementation will receive a call to send line break()
before this call if a line break is needed; this method should not include ending the last line of the
paragraph. It is only responsible for vertical spacing between paragraphs.

send hor rule(*args, **kw)
Display a horizontal rule on the output device. The arguments to this method are entirely
application- and writer-specific, and should be interpreted with care. The method implementa-
tion may assume that a line break has already been issued via send line break().

send flowing data(data)
Output character data which may be word-wrapped and re-flowed as needed. Within any sequence
of calls to this method, the writer may assume that spans of multiple whitespace characters have
been collapsed to single space characters.

send literal data(data)
Output character data which has already been formatted for display. Generally, this should be
interpreted to mean that line breaks indicated by newline characters should be preserved and no
new line breaks should be introduced. The data may contain embedded newline and tab characters,
unlike data provided to the send formatted data() interface.

send label data(data)
Set data to the left of the current left margin, if possible. The value of data is not restricted;
treatment of non-string values is entirely application- and writer-dependent. This method will
only be called at the beginning of a line.

12.1.4 Writer Implementations

Three implementations of the writer object interface are provided as examples by this module. Most
applications will need to derive new writer classes from the NullWriter class.

class NullWriter()
A writer which only provides the interface definition; no actions are taken on any methods. This
should be the base class for all writers which do not need to inherit any implementation methods.

class AbstractWriter()
A writer which can be used in debugging formatters, but not much else. Each method simply

320 Chapter 12. Internet Data Handling



announces itself by printing its name and arguments on standard output.

class DumbWriter([file[, maxcol = 72 ] ])
Simple writer class which writes output on the file object passed in as file or, if file is omitted,
on standard output. The output is simply word-wrapped to the number of columns specified by
maxcol . This class is suitable for reflowing a sequence of paragraphs.

12.2 rfc822 — Parse RFC 822 mail headers

This module defines a class, Message, which represents a collection of “email headers” as defined by the
Internet standard RFC 822. It is used in various contexts, usually to read such headers from a file. This
module also defines a helper class AddressList for parsing RFC 822 addresses. Please refer to the RFC
for information on the specific syntax of RFC 822 headers.

The mailbox module provides classes to read mailboxes produced by various end-user mail programs.

class Message(file[, seekable ])
A Message instance is instantiated with an input object as parameter. Message relies only on the
input object having a readline() method; in particular, ordinary file objects qualify. Instantiation
reads headers from the input object up to a delimiter line (normally a blank line) and stores them
in the instance. The message body, following the headers, is not consumed.

This class can work with any input object that supports a readline() method. If the input object
has seek and tell capability, the rewindbody() method will work; also, illegal lines will be pushed
back onto the input stream. If the input object lacks seek but has an unread() method that can
push back a line of input, Message will use that to push back illegal lines. Thus this class can be
used to parse messages coming from a buffered stream.

The optional seekable argument is provided as a workaround for certain stdio libraries in which
tell() discards buffered data before discovering that the lseek() system call doesn’t work. For
maximum portability, you should set the seekable argument to zero to prevent that initial tell()
when passing in an unseekable object such as a a file object created from a socket object.

Input lines as read from the file may either be terminated by CR-LF or by a single linefeed; a
terminating CR-LF is replaced by a single linefeed before the line is stored.

All header matching is done independent of upper or lower case; e.g. m[’From’], m[’from’] and
m[’FROM’] all yield the same result.

class AddressList(field)
You may instantiate the AddressList helper class using a single string parameter, a comma-
separated list of RFC 822 addresses to be parsed. (The parameter None yields an empty list.)

parsedate(date)
Attempts to parse a date according to the rules in RFC 822. however, some mailers don’t follow
that format as specified, so parsedate() tries to guess correctly in such cases. date is a string
containing an RFC 822 date, such as ’Mon, 20 Nov 1995 19:12:08 -0500’. If it succeeds in
parsing the date, parsedate() returns a 9-tuple that can be passed directly to time.mktime();
otherwise None will be returned. Note that fields 6, 7, and 8 of the result tuple are not usable.

parsedate tz(date)
Performs the same function as parsedate(), but returns either None or a 10-tuple; the first 9
elements make up a tuple that can be passed directly to time.mktime(), and the tenth is the offset
of the date’s timezone from UTC (which is the official term for Greenwich Mean Time). (Note
that the sign of the timezone offset is the opposite of the sign of the time.timezone variable for
the same timezone; the latter variable follows the POSIX standard while this module follows RFC
822.) If the input string has no timezone, the last element of the tuple returned is None. Note that
fields 6, 7, and 8 of the result tuple are not usable.

mktime tz(tuple)
Turn a 10-tuple as returned by parsedate tz() into a UTC timestamp. If the timezone item in
the tuple is None, assume local time. Minor deficiency: this first interprets the first 8 elements as

12.2. rfc822 — Parse RFC 822 mail headers 321



a local time and then compensates for the timezone difference; this may yield a slight error around
daylight savings time switch dates. Not enough to worry about for common use.

See Also:

Module mailbox (section 12.14):
Classes to read various mailbox formats produced by end-user mail programs.

Module mimetools (section 12.3):
Subclass of rfc.Message that handles MIME encoded messages.

12.2.1 Message Objects

A Message instance has the following methods:

rewindbody()
Seek to the start of the message body. This only works if the file object is seekable.

isheader(line)
Returns a line’s canonicalized fieldname (the dictionary key that will be used to index it) if the
line is a legal RFC 822 header; otherwise returns None (implying that parsing should stop here
and the line be pushed back on the input stream). It is sometimes useful to override this method
in a subclass.

islast(line)
Return true if the given line is a delimiter on which Message should stop. The delimiter line
is consumed, and the file object’s read location positioned immediately after it. By default this
method just checks that the line is blank, but you can override it in a subclass.

iscomment(line)
Return true if the given line should be ignored entirely, just skipped. By default this is a stub that
always returns false, but you can override it in a subclass.

getallmatchingheaders(name)
Return a list of lines consisting of all headers matching name, if any. Each physical line, whether
it is a continuation line or not, is a separate list item. Return the empty list if no header matches
name.

getfirstmatchingheader(name)
Return a list of lines comprising the first header matching name, and its continuation line(s), if
any. Return None if there is no header matching name.

getrawheader(name)
Return a single string consisting of the text after the colon in the first header matching name. This
includes leading whitespace, the trailing linefeed, and internal linefeeds and whitespace if there any
continuation line(s) were present. Return None if there is no header matching name.

getheader(name[, default ])
Like getrawheader(name), but strip leading and trailing whitespace. Internal whitespace is not
stripped. The optional default argument can be used to specify a different default to be returned
when there is no header matching name.

get(name[, default ])
An alias for getheader(), to make the interface more compatible with regular dictionaries.

getaddr(name)
Return a pair (full name, email address) parsed from the string returned by getheader(name).
If no header matching name exists, return (None, None); otherwise both the full name and the
address are (possibly empty) strings.

Example: If m’s first From header contains the string ’jack@cwi.nl (Jack Jansen)’, then
m.getaddr(’From’) will yield the pair (’Jack Jansen’, ’jack@cwi.nl’). If the header con-
tained ’Jack Jansen <jack@cwi.nl>’ instead, it would yield the exact same result.

getaddrlist(name)

322 Chapter 12. Internet Data Handling



This is similar to getaddr(list), but parses a header containing a list of email addresses (e.g. a To
header) and returns a list of (full name, email address) pairs (even if there was only one address
in the header). If there is no header matching name, return an empty list.

If multiple headers exist that match the named header (e.g. if there are several Cc headers), all are
parsed for addresses. Any continuation lines the named headers contain are also parsed.

getdate(name)
Retrieve a header using getheader() and parse it into a 9-tuple compatible with time.mktime();
note that fields 6, 7, and 8 are not usable. If there is no header matching name, or it is unparsable,
return None.

Date parsing appears to be a black art, and not all mailers adhere to the standard. While it has
been tested and found correct on a large collection of email from many sources, it is still possible
that this function may occasionally yield an incorrect result.

getdate tz(name)
Retrieve a header using getheader() and parse it into a 10-tuple; the first 9 elements will make
a tuple compatible with time.mktime(), and the 10th is a number giving the offset of the date’s
timezone from UTC. Note that fields 6, 7, and 8 are not usable. Similarly to getdate(), if there
is no header matching name, or it is unparsable, return None.

Message instances also support a limited mapping interface. In particular: m[name] is
like m.getheader(name) but raises KeyError if there is no matching header; and len(m),
m.has key(name), m.keys(), m.values() and m.items() act as expected (and consistently).
Message instances also support the mapping writable interface m[name] = value and del m[name].
Message objects do not support the clear(), copy(), get(), popitem(), setdefault(), or update()
methods of the mapping interface.

Finally, Message instances have two public instance variables:

headers
A list containing the entire set of header lines, in the order in which they were read (except
that setitem calls may disturb this order). Each line contains a trailing newline. The blank line
terminating the headers is not contained in the list.

fp
The file or file-like object passed at instantiation time. This can be used to read the message
content.

12.2.2 AddressList Objects

An AddressList instance has the following methods:

len ()
Return the number of addresses in the address list.

str ()
Return a canonicalized string representation of the address list. Addresses are rendered in ”name”
¡host@domain¿ form, comma-separated.

add (alist)
Return a new AddressList instance that contains all addresses in both AddressList operands,
with duplicates removed (set union).

iadd (alist)
In-place version of add (); turns this AddressList instance into the union of itself and the
right-hand instance, alist .

sub (alist)
Return a new AddressList instance that contains every address in the left-hand AddressList
operand that is not present in the right-hand address operand (set difference).

isub (alist)
In-place version of sub (), removing addresses in this list which are also in alist .

12.2. rfc822 — Parse RFC 822 mail headers 323



Finally, AddressList instances have one public instance variable:

addresslist
A list of tuple string pairs, one per address. In each member, the first is the canonicalized name
part, the second is the actual route-address (‘@’-separated username-host.domain pair).

12.3 mimetools — Tools for parsing MIME messages

This module defines a subclass of the rfc822 module’s Message class and a number of utility functions
that are useful for the manipulation for MIME multipart or encoded message.

It defines the following items:

class Message(fp[, seekable ])
Return a new instance of the Message class. This is a subclass of the rfc822.Message class,
with some additional methods (see below). The seekable argument has the same meaning as for
rfc822.Message.

choose boundary()
Return a unique string that has a high likelihood of being usable as a part boundary. The string
has the form ’hostipaddr.uid.pid.timestamp.random’.

decode(input, output, encoding)
Read data encoded using the allowed MIME encoding from open file object input and write
the decoded data to open file object output . Valid values for encoding include ’base64’,
’quoted-printable’ and ’uuencode’.

encode(input, output, encoding)
Read data from open file object input and write it encoded using the allowed MIME encoding to
open file object output . Valid values for encoding are the same as for decode().

copyliteral(input, output)
Read lines from open file input until eof and write them to open file output .

copybinary(input, output)
Read blocks until eof from open file input and write them to open file output . The block size is
currently fixed at 8192.

See Also:

Module rfc822 (section 12.2):
Provides the base class for mimetools.Message.

Module multifile (section 12.5):
Support for reading files which contain distinct parts, such as MIME data.

http://www.cs.uu.nl/wais/html/na-dir/mail/mime-faq/.html

The MIME Frequently Asked Questions document. For an overview of MIME, see the answer to
question 1.1 in Part 1 of this document.

12.3.1 Additional Methods of Message Objects

The Message class defines the following methods in addition to the rfc822.Message methods:

getplist()
Return the parameter list of the content-type header. This is a list of strings. For parameters of
the form ‘key=value’, key is converted to lower case but value is not. For example, if the message
contains the header ‘Content-type: text/html; spam=1; Spam=2; Spam’ then getplist() will
return the Python list [’spam=1’, ’spam=2’, ’Spam’].

getparam(name)
Return the value of the first parameter (as returned by getplist() of the form ‘name=value’ for
the given name. If value is surrounded by quotes of the form ‘<...>’ or ‘"..."’, these are removed.

324 Chapter 12. Internet Data Handling



getencoding()
Return the encoding specified in the content-transfer-encoding message header. If no such
header exists, return ’7bit’. The encoding is converted to lower case.

gettype()
Return the message type (of the form ‘type/subtype’) as specified in the content-type header. If
no such header exists, return ’text/plain’. The type is converted to lower case.

getmaintype()
Return the main type as specified in the content-type header. If no such header exists, return
’text’. The main type is converted to lower case.

getsubtype()
Return the subtype as specified in the content-type header. If no such header exists, return
’plain’. The subtype is converted to lower case.

12.4 MimeWriter — Generic MIME file writer

This module defines the class MimeWriter. The MimeWriter class implements a basic formatter for
creating MIME multi-part files. It doesn’t seek around the output file nor does it use large amounts
of buffer space. You must write the parts out in the order that they should occur in the final file.
MimeWriter does buffer the headers you add, allowing you to rearrange their order.

class MimeWriter(fp)
Return a new instance of the MimeWriter class. The only argument passed, fp, is a file object to
be used for writing. Note that a StringIO object could also be used.

12.4.1 MimeWriter Objects

MimeWriter instances have the following methods:

addheader(key, value[, prefix ])
Add a header line to the MIME message. The key is the name of the header, where the value
obviously provides the value of the header. The optional argument prefix determines where the
header is inserted; ‘0’ means append at the end, ‘1’ is insert at the start. The default is to append.

flushheaders()
Causes all headers accumulated so far to be written out (and forgotten). This is useful if you don’t
need a body part at all, e.g. for a subpart of type message/rfc822 that’s (mis)used to store some
header-like information.

startbody(ctype[, plist[, prefix ] ])
Returns a file-like object which can be used to write to the body of the message. The content-type
is set to the provided ctype, and the optional parameter plist provides additional parameters for the
content-type declaration. prefix functions as in addheader() except that the default is to insert
at the start.

startmultipartbody(subtype[, boundary[, plist[, prefix ] ] ])
Returns a file-like object which can be used to write to the body of the message. Additionally, this
method initializes the multi-part code, where subtype provides the multipart subtype, boundary
may provide a user-defined boundary specification, and plist provides optional parameters for the
subtype. prefix functions as in startbody(). Subparts should be created using nextpart().

nextpart()
Returns a new instance of MimeWriter which represents an individual part in a multipart message.
This may be used to write the part as well as used for creating recursively complex multipart mes-
sages. The message must first be initialized with startmultipartbody() before using nextpart().

lastpart()
This is used to designate the last part of a multipart message, and should always be used when
writing multipart messages.

12.4. MimeWriter — Generic MIME file writer 325



12.5 multifile — Support for files containing distinct parts

The MultiFile object enables you to treat sections of a text file as file-like input objects, with ’’ being
returned by readline() when a given delimiter pattern is encountered. The defaults of this class are
designed to make it useful for parsing MIME multipart messages, but by subclassing it and overriding
methods it can be easily adapted for more general use.

class MultiFile(fp[, seekable ])
Create a multi-file. You must instantiate this class with an input object argument for the MultiFile
instance to get lines from, such as as a file object returned by open().

MultiFile only ever looks at the input object’s readline(), seek() and tell() methods, and
the latter two are only needed if you want random access to the individual MIME parts. To use
MultiFile on a non-seekable stream object, set the optional seekable argument to false; this will
prevent using the input object’s seek() and tell() methods.

It will be useful to know that in MultiFile’s view of the world, text is composed of three kinds of lines:
data, section-dividers, and end-markers. MultiFile is designed to support parsing of messages that may
have multiple nested message parts, each with its own pattern for section-divider and end-marker lines.

12.5.1 MultiFile Objects

A MultiFile instance has the following methods:

readline(str)
Read a line. If the line is data (not a section-divider or end-marker or real EOF) return it. If the
line matches the most-recently-stacked boundary, return ’’ and set self.last to 1 or 0 according
as the match is or is not an end-marker. If the line matches any other stacked boundary, raise an
error. On encountering end-of-file on the underlying stream object, the method raises Error unless
all boundaries have been popped.

readlines(str)
Return all lines remaining in this part as a list of strings.

read()
Read all lines, up to the next section. Return them as a single (multiline) string. Note that this
doesn’t take a size argument!

seek(pos[, whence ])
Seek. Seek indices are relative to the start of the current section. The pos and whence arguments
are interpreted as for a file seek.

tell()
Return the file position relative to the start of the current section.

next()
Skip lines to the next section (that is, read lines until a section-divider or end-marker has been
consumed). Return true if there is such a section, false if an end-marker is seen. Re-enable the
most-recently-pushed boundary.

is data(str)
Return true if str is data and false if it might be a section boundary. As written, it tests for a
prefix other than ’--’ at start of line (which all MIME boundaries have) but it is declared so it
can be overridden in derived classes.

Note that this test is used intended as a fast guard for the real boundary tests; if it always returns
false it will merely slow processing, not cause it to fail.

push(str)
Push a boundary string. When an appropriately decorated version of this boundary is found as
an input line, it will be interpreted as a section-divider or end-marker. All subsequent reads will
return the empty string to indicate end-of-file, until a call to pop() removes the boundary a or
next() call reenables it.

326 Chapter 12. Internet Data Handling



It is possible to push more than one boundary. Encountering the most-recently-pushed boundary
will return EOF; encountering any other boundary will raise an error.

pop()
Pop a section boundary. This boundary will no longer be interpreted as EOF.

section divider(str)
Turn a boundary into a section-divider line. By default, this method prepends ’--’ (which MIME
section boundaries have) but it is declared so it can be overridden in derived classes. This method
need not append LF or CR-LF, as comparison with the result ignores trailing whitespace.

end marker(str)
Turn a boundary string into an end-marker line. By default, this method prepends ’--’ and
appends ’--’ (like a MIME-multipart end-of-message marker) but it is declared so it can be be
overridden in derived classes. This method need not append LF or CR-LF, as comparison with the
result ignores trailing whitespace.

Finally, MultiFile instances have two public instance variables:

level
Nesting depth of the current part.

last
True if the last end-of-file was for an end-of-message marker.

12.5.2 MultiFile Example

import mimetools

import multifile

import StringIO

def extract_mime_part_matching(stream, mimetype):

"""Return the first element in a multipart MIME message on stream

matching mimetype."""

msg = mimetools.Message(stream)

msgtype = msg.gettype()

params = msg.getplist()

data = StringIO.StringIO()

if msgtype[:10] == "multipart/":

file = multifile.MultiFile(stream)

file.push(msg.getparam("boundary"))

while file.next():

submsg = mimetools.Message(file)

try:

data = StringIO.StringIO()

mimetools.decode(file, data, submsg.getencoding())

except ValueError:

continue

if submsg.gettype() == mimetype:

break

file.pop()

return data.getvalue()

12.6 binhex — Encode and decode binhex4 files

12.6. binhex — Encode and decode binhex4 files 327



This module encodes and decodes files in binhex4 format, a format allowing representation of Macintosh
files in ascii. On the Macintosh, both forks of a file and the finder information are encoded (or decoded),
on other platforms only the data fork is handled.

The binhex module defines the following functions:

binhex(input, output)
Convert a binary file with filename input to binhex file output . The output parameter can either
be a filename or a file-like object (any object supporting a write() and close() method).

hexbin(input[, output ])
Decode a binhex file input . input may be a filename or a file-like object supporting read() and
close() methods. The resulting file is written to a file named output , unless the argument is
omitted in which case the output filename is read from the binhex file.

See Also:

Module binascii (section 12.8):
Support module containing ascii-to-binary and binary-to-ascii conversions.

12.6.1 Notes

There is an alternative, more powerful interface to the coder and decoder, see the source for details.

If you code or decode textfiles on non-Macintosh platforms they will still use the Macintosh newline
convention (carriage-return as end of line).

As of this writing, hexbin() appears to not work in all cases.

12.7 uu — Encode and decode uuencode files

This module encodes and decodes files in uuencode format, allowing arbitrary binary data to be trans-
ferred over ascii-only connections. Wherever a file argument is expected, the methods accept a file-like
object. For backwards compatibility, a string containing a pathname is also accepted, and the cor-
responding file will be opened for reading and writing; the pathname ’-’ is understood to mean the
standard input or output. However, this interface is deprecated; it’s better for the caller to open the file
itself, and be sure that, when required, the mode is ’rb’ or ’wb’ on Windows or DOS.

This code was contributed by Lance Ellinghouse, and modified by Jack Jansen.

The uu module defines the following functions:

encode(in file, out file[, name[, mode ] ])
Uuencode file in file into file out file. The uuencoded file will have the header specifying name
and mode as the defaults for the results of decoding the file. The default defaults are taken from
in file, or ’-’ and 0666 respectively.

decode(in file[, out file[, mode ] ])
This call decodes uuencoded file in file placing the result on file out file. If out file is a pathname,
mode is used to set the permission bits if the file must be created. Defaults for out file and mode
are taken from the uuencode header.

See Also:

Module binascii (section 12.8):
Support module containing ascii-to-binary and binary-to-ascii conversions.

12.8 binascii — Convert between binary and ascii

The binascii module contains a number of methods to convert between binary and various ascii-
encoded binary representations. Normally, you will not use these functions directly but use wrapper

328 Chapter 12. Internet Data Handling



modules like uu or binhex instead, this module solely exists because bit-manipulation of large amounts
of data is slow in Python.

The binascii module defines the following functions:

a2b uu(string)
Convert a single line of uuencoded data back to binary and return the binary data. Lines normally
contain 45 (binary) bytes, except for the last line. Line data may be followed by whitespace.

b2a uu(data)
Convert binary data to a line of ascii characters, the return value is the converted line, including
a newline char. The length of data should be at most 45.

a2b base64(string)
Convert a block of base64 data back to binary and return the binary data. More than one line
may be passed at a time.

b2a base64(data)
Convert binary data to a line of ascii characters in base64 coding. The return value is the converted
line, including a newline char. The length of data should be at most 57 to adhere to the base64
standard.

a2b hqx(string)
Convert binhex4 formatted ascii data to binary, without doing RLE-decompression. The string
should contain a complete number of binary bytes, or (in case of the last portion of the binhex4
data) have the remaining bits zero.

rledecode hqx(data)
Perform RLE-decompression on the data, as per the binhex4 standard. The algorithm uses 0x90
after a byte as a repeat indicator, followed by a count. A count of 0 specifies a byte value of 0x90.
The routine returns the decompressed data, unless data input data ends in an orphaned repeat
indicator, in which case the Incomplete exception is raised.

rlecode hqx(data)
Perform binhex4 style RLE-compression on data and return the result.

b2a hqx(data)
Perform hexbin4 binary-to-ascii translation and return the resulting string. The argument should
already be RLE-coded, and have a length divisible by 3 (except possibly the last fragment).

crc hqx(data, crc)
Compute the binhex4 crc value of data, starting with an initial crc and returning the result.

crc32(data[, crc ])
Compute CRC-32, the 32-bit checksum of data, starting with an initial crc. This is consistent with
the ZIP file checksum. Use as follows:

print binascii.crc32("hello world")

# Or, in two pieces:

crc = binascii.crc32("hello")

crc = binascii.crc32(" world", crc)

print crc

b2a hex(data)
hexlify(data)

Return the hexadecimal representation of the binary data. Every byte of data is converted into
the corresponding 2-digit hex representation. The resulting string is therefore twice as long as the
length of data.

a2b hex(hexstr)
unhexlify(hexstr)

Return the binary data represented by the hexadecimal string hexstr . This function is the inverse
of b2a hex(). hexstr must contain an even number of hexadecimal digits (which can be upper or
lower case), otherwise a TypeError is raised.

12.8. binascii — Convert between binary and ascii 329



exception Error
Exception raised on errors. These are usually programming errors.

exception Incomplete
Exception raised on incomplete data. These are usually not programming errors, but may be
handled by reading a little more data and trying again.

See Also:

Module base64 (section 12.12):
Support for base64 encoding used in MIME email messages.

Module binhex (section 12.6):
Support for the binhex format used on the Macintosh.

Module uu (section 12.7):
Support for UU encoding used on Unix.

12.9 xdrlib — Encode and decode XDR data

The xdrlib module supports the External Data Representation Standard as described in RFC 1014,
written by Sun Microsystems, Inc. June 1987. It supports most of the data types described in the RFC.

The xdrlib module defines two classes, one for packing variables into XDR representation, and another
for unpacking from XDR representation. There are also two exception classes.

class Packer()
Packer is the class for packing data into XDR representation. The Packer class is instantiated
with no arguments.

class Unpacker(data)
Unpacker is the complementary class which unpacks XDR data values from a string buffer. The
input buffer is given as data.

See Also:

RFC 1014, “XDR: External Data Representation Standard”
This RFC defined the encoding of data which was XDR at the time this module was originally
written. It has appearantly been obsoleted by RFC 1832.

RFC 1832, “XDR: External Data Representation Standard”
Newer RFC that provides a revised definition of XDR.

12.9.1 Packer Objects

Packer instances have the following methods:

get buffer()
Returns the current pack buffer as a string.

reset()
Resets the pack buffer to the empty string.

In general, you can pack any of the most common XDR data types by calling the appropriate pack type()
method. Each method takes a single argument, the value to pack. The following simple data type packing
methods are supported: pack uint(), pack int(), pack enum(), pack bool(), pack uhyper(), and
pack hyper().

pack float(value)
Packs the single-precision floating point number value.

pack double(value)
Packs the double-precision floating point number value.

The following methods support packing strings, bytes, and opaque data:

330 Chapter 12. Internet Data Handling



pack fstring(n, s)
Packs a fixed length string, s. n is the length of the string but it is not packed into the data buffer.
The string is padded with null bytes if necessary to guaranteed 4 byte alignment.

pack fopaque(n, data)
Packs a fixed length opaque data stream, similarly to pack fstring().

pack string(s)
Packs a variable length string, s. The length of the string is first packed as an unsigned integer,
then the string data is packed with pack fstring().

pack opaque(data)
Packs a variable length opaque data string, similarly to pack string().

pack bytes(bytes)
Packs a variable length byte stream, similarly to pack string().

The following methods support packing arrays and lists:

pack list(list, pack item)
Packs a list of homogeneous items. This method is useful for lists with an indeterminate size; i.e.
the size is not available until the entire list has been walked. For each item in the list, an unsigned
integer 1 is packed first, followed by the data value from the list. pack item is the function that is
called to pack the individual item. At the end of the list, an unsigned integer 0 is packed.

For example, to pack a list of integers, the code might appear like this:

import xdrlib

p = xdrlib.Packer()

p.pack_list([1, 2, 3], p.pack_int)

pack farray(n, array, pack item)
Packs a fixed length list (array) of homogeneous items. n is the length of the list; it is not packed
into the buffer, but a ValueError exception is raised if len(array) is not equal to n. As above,
pack item is the function used to pack each element.

pack array(list, pack item)
Packs a variable length list of homogeneous items. First, the length of the list is packed as an
unsigned integer, then each element is packed as in pack farray() above.

12.9.2 Unpacker Objects

The Unpacker class offers the following methods:

reset(data)
Resets the string buffer with the given data.

get position()
Returns the current unpack position in the data buffer.

set position(position)
Sets the data buffer unpack position to position. You should be careful about using
get position() and set position().

get buffer()
Returns the current unpack data buffer as a string.

done()
Indicates unpack completion. Raises an Error exception if all of the data has not been unpacked.

In addition, every data type that can be packed with a Packer, can be unpacked with an Unpacker.
Unpacking methods are of the form unpack type(), and take no arguments. They return the unpacked
object.

unpack float()

12.9. xdrlib — Encode and decode XDR data 331



Unpacks a single-precision floating point number.

unpack double()
Unpacks a double-precision floating point number, similarly to unpack float().

In addition, the following methods unpack strings, bytes, and opaque data:

unpack fstring(n)
Unpacks and returns a fixed length string. n is the number of characters expected. Padding with
null bytes to guaranteed 4 byte alignment is assumed.

unpack fopaque(n)
Unpacks and returns a fixed length opaque data stream, similarly to unpack fstring().

unpack string()
Unpacks and returns a variable length string. The length of the string is first unpacked as an
unsigned integer, then the string data is unpacked with unpack fstring().

unpack opaque()
Unpacks and returns a variable length opaque data string, similarly to unpack string().

unpack bytes()
Unpacks and returns a variable length byte stream, similarly to unpack string().

The following methods support unpacking arrays and lists:

unpack list(unpack item)
Unpacks and returns a list of homogeneous items. The list is unpacked one element at a time by
first unpacking an unsigned integer flag. If the flag is 1, then the item is unpacked and appended
to the list. A flag of 0 indicates the end of the list. unpack item is the function that is called to
unpack the items.

unpack farray(n, unpack item)
Unpacks and returns (as a list) a fixed length array of homogeneous items. n is number of list
elements to expect in the buffer. As above, unpack item is the function used to unpack each
element.

unpack array(unpack item)
Unpacks and returns a variable length list of homogeneous items. First, the length of the list is
unpacked as an unsigned integer, then each element is unpacked as in unpack farray() above.

12.9.3 Exceptions

Exceptions in this module are coded as class instances:

exception Error
The base exception class. Error has a single public data member msg containing the description
of the error.

exception ConversionError
Class derived from Error. Contains no additional instance variables.

Here is an example of how you would catch one of these exceptions:

import xdrlib

p = xdrlib.Packer()

try:

p.pack_double(8.01)

except xdrlib.ConversionError, instance:

print ’packing the double failed:’, instance.msg

12.10 mailcap — Mailcap file handling.

332 Chapter 12. Internet Data Handling



Mailcap files are used to configure how MIME-aware applications such as mail readers and Web browsers
react to files with different MIME types. (The name “mailcap” is derived from the phrase “mail capabil-
ity”.) For example, a mailcap file might contain a line like ‘video/mpeg; xmpeg %s’. Then, if the user
encounters an email message or Web document with the MIME type video/mpeg, ‘%s’ will be replaced
by a filename (usually one belonging to a temporary file) and the xmpeg program can be automatically
started to view the file.

The mailcap format is documented in RFC 1524, “A User Agent Configuration Mechanism For Multi-
media Mail Format Information,” but is not an Internet standard. However, mailcap files are supported
on most Unix systems.

findmatch(caps, MIMEtype[, key[, filename[, plist ] ] ])
Return a 2-tuple; the first element is a string containing the command line to be executed (which
can be passed to os.system()), and the second element is the mailcap entry for a given MIME
type. If no matching MIME type can be found, (None, None) is returned.

key is the name of the field desired, which represents the type of activity to be performed; the
default value is ’view’, since in the most common case you simply want to view the body of the
MIME-typed data. Other possible values might be ’compose’ and ’edit’, if you wanted to create a
new body of the given MIME type or alter the existing body data. See RFC 1524 for a complete
list of these fields.

filename is the filename to be substituted for ‘%s’ in the command line; the default value is
’/dev/null’ which is almost certainly not what you want, so usually you’ll override it by specifying
a filename.

plist can be a list containing named parameters; the default value is simply an empty list. Each
entry in the list must be a string containing the parameter name, an equals sign (=), and the
parameter’s value. Mailcap entries can contain named parameters like %{foo}, which will be
replaced by the value of the parameter named ’foo’. For example, if the command line ‘showpartial
%{id} %{number} %{total}’ was in a mailcap file, and plist was set to [’id=1’, ’number=2’,
’total=3’], the resulting command line would be "showpartial 1 2 3".

In a mailcap file, the ”test” field can optionally be specified to test some external condition (e.g.,
the machine architecture, or the window system in use) to determine whether or not the mailcap
line applies. findmatch() will automatically check such conditions and skip the entry if the check
fails.

getcaps()
Returns a dictionary mapping MIME types to a list of mailcap file entries. This dictionary must
be passed to the findmatch() function. An entry is stored as a list of dictionaries, but it shouldn’t
be necessary to know the details of this representation.

The information is derived from all of the mailcap files found on the system. Settings in the
user’s mailcap file ‘$HOME/.mailcap’ will override settings in the system mailcap files ‘/etc/mailcap’,
‘/usr/etc/mailcap’, and ‘/usr/local/etc/mailcap’.

An example usage:

>>> import mailcap

>>> d=mailcap.getcaps()

>>> mailcap.findmatch(d, ’video/mpeg’, filename=’/tmp/tmp1223’)

(’xmpeg /tmp/tmp1223’, {’view’: ’xmpeg %s’})

12.11 mimetypes — Map filenames to MIME types

The mimetypes converts between a filename or URL and the MIME type associated with the filename
extension. Conversions are provided from filename to MIME type and from MIME type to filename
extension; encodings are not supported for the later conversion.

12.11. mimetypes — Map filenames to MIME types 333



The functions described below provide the primary interface for this module. If the module has not been
initialized, they will call init().

guess type(filename)
Guess the type of a file based on its filename or URL, given by filename. The return value is a
tuple (type, encoding) where type is None if the type can’t be guessed (no or unknown suffix) or
a string of the form ’type/subtype’, usable for a MIME content-type header; and encoding is
None for no encoding or the name of the program used to encode (e.g. compress or gzip). The
encoding is suitable for use as a content-encoding header, not as a content-transfer-encoding
header. The mappings are table driven. Encoding suffixes are case sensitive; type suffixes are first
tried case sensitive, then case insensitive.

guess extension(type)
Guess the extension for a file based on its MIME type, given by type. The return value is a string
giving a filename extension, including the leading dot (‘.’). The extension is not guaranteed to
have been associated with any particular data stream, but would be mapped to the MIME type
type by guess type(). If no extension can be guessed for type, None is returned.

Some additional functions and data items are available for controlling the behavior of the module.

init([files ])
Initialize the internal data structures. If given, files must be a sequence of file names which
should be used to augment the default type map. If omitted, the file names to use are taken from
knownfiles. Each file named in files or knownfiles takes precedence over those named before it.
Calling init() repeatedly is allowed.

read mime types(filename)
Load the type map given in the file filename, if it exists. The type map is returned as a dictionary
mapping filename extensions, including the leading dot (‘.’), to strings of the form ’type/subtype’.
If the file filename does not exist or cannot be read, None is returned.

inited
Flag indicating whether or not the global data structures have been initialized. This is set to true
by init().

knownfiles
List of type map file names commonly installed. These files are typically named ‘mime.types’ and
are installed in different locations by different packages.

suffix map
Dictionary mapping suffixes to suffixes. This is used to allow recognition of encoded files for which
the encoding and the type are indicated by the same extension. For example, the ‘.tgz’ extension
is mapped to ‘.tar.gz’ to allow the encoding and type to be recognized separately.

encodings map
Dictionary mapping filename extensions to encoding types.

types map
Dictionary mapping filename extensions to MIME types.

12.12 base64 — Encode and decode MIME base64 data

This module performs base64 encoding and decoding of arbitrary binary strings into text strings that can
be safely emailed or posted. The encoding scheme is defined in RFC 1521 (MIME (Multipurpose Internet
Mail Extensions) Part One: Mechanisms for Specifying and Describing the Format of Internet Message
Bodies, section 5.2, “Base64 Content-Transfer-Encoding”) and is used for MIME email and various other
Internet-related applications; it is not the same as the output produced by the uuencode program. For
example, the string ’www.python.org’ is encoded as the string ’d3d3LnB5dGhvbi5vcmc=\n’.

decode(input, output)
Decode the contents of the input file and write the resulting binary data to the output file. input
and output must either be file objects or objects that mimic the file object interface. input will be

334 Chapter 12. Internet Data Handling



read until input.read() returns an empty string.

decodestring(s)
Decode the string s, which must contain one or more lines of base64 encoded data, and return a
string containing the resulting binary data.

encode(input, output)
Encode the contents of the input file and write the resulting base64 encoded data to the output
file. input and output must either be file objects or objects that mimic the file object interface.
input will be read until input.read() returns an empty string.

encodestring(s)
Encode the string s, which can contain arbitrary binary data, and return a string containing one
or more lines of base64 encoded data.

See Also:

Module binascii (section 12.8):
Support module containing ascii-to-binary and binary-to-ascii conversions.

RFC 1521, “MIME (Multipurpose Internet Mail Extensions) Part One: Mechanisms for Specifying and Describing the Format of Internet Message Bodies”
Section 5.2, “Base64 Content-Transfer-Encoding,” provides the definition of the base64 encoding.

12.13 quopri — Encode and decode MIME quoted-printable data

This module performs quoted-printable transport encoding and decoding, as defined in RFC 1521:
“MIME (Multipurpose Internet Mail Extensions) Part One”. The quoted-printable encoding is designed
for data where there are relatively few nonprintable characters; the base64 encoding scheme available
via the base64 module is more compact if there are many such characters, as when sending a graphics
file.

decode(input, output)
Decode the contents of the input file and write the resulting decoded binary data to the output file.
input and output must either be file objects or objects that mimic the file object interface. input
will be read until input.read() returns an empty string.

encode(input, output, quotetabs)
Encode the contents of the input file and write the resulting quoted-printable data to the output
file. input and output must either be file objects or objects that mimic the file object interface.
input will be read until input.read() returns an empty string.

See Also:

Module mimify (section 12.16):
General utilities for processing of MIME messages.

12.14 mailbox — Read various mailbox formats

This module defines a number of classes that allow easy and uniform access to mail messages in a (Unix)
mailbox.

class UnixMailbox(fp[, factory ])
Access to a classic Unix-style mailbox, where all messages are contained in a single file and sepa-
rated by ‘From ’ (a.k.a. ‘From ’) lines. The file object fp points to the mailbox file. The optional
factory parameter is a callable that should create new message objects. factory is called with one
argument, fp by the next() method of the mailbox object. The default is the rfc822.Message
class (see the rfc822 module).

For maximum portability, messages in a Unix-style mailbox are separated by any line that begins
exactly with the string ’From ’ (note the trailing space) if preceded by exactly two newlines.
Because of the wide-range of variations in practice, nothing else on the From line should be

12.13. quopri — Encode and decode MIME quoted-printable data 335



considered. However, the current implementation doesn’t check for the leading two newlines. This
is usually fine for most applications.

The UnixMailbox class implements a more strict version of From line checking, using a regular
expression that usually correctly matched From delimiters. It considers delimiter line to be
separated by ‘From name time’ lines. For maximum portability, use the PortableUnixMailbox
class instead. This class is identical to UnixMailbox except that individual messages are separated
by only ‘From ’ lines.

For more information, see Configuring Netscape Mail on Unix: Why the Content-Length Format
is Bad.

class PortableUnixMailbox(fp[, factory ])
A less-strict version of UnixMailbox, which considers only the ‘From ’ at the beginning of the line
separating messages. The “name time” portion of the From line is ignored, to protect against some
variations that are observed in practice. This works since lines in the message which begin with
’From ’ are quoted by mail handling software well before delivery.

class MmdfMailbox(fp[, factory ])
Access an MMDF-style mailbox, where all messages are contained in a single file and separated by
lines consisting of 4 control-A characters. The file object fp points to the mailbox file. Optional
factory is as with the UnixMailbox class.

class MHMailbox(dirname[, factory ])
Access an MH mailbox, a directory with each message in a separate file with a numeric name. The
name of the mailbox directory is passed in dirname. factory is as with the UnixMailbox class.

class Maildir(dirname[, factory ])
Access a Qmail mail directory. All new and current mail for the mailbox specified by dirname is
made available. factory is as with the UnixMailbox class.

class BabylMailbox(fp[, factory ])
Access a Babyl mailbox, which is similar to an MMDF mailbox. In Babyl format, each message
has two sets of headers, the original headers and the visible headers. The original headers appear
before a a line containing only ’*** EOOH ***’ (End-Of-Original-Headers) and the visible headers
appear after the EOOH line. Babyl-compliant mail readers will show you only the visible headers,
and BabylMailbox objects will return messages containing only the visible headers. You’ll have to
do your own parsing of the mailbox file to get at the original headers. Mail messages start with the
EOOH line and end with a line containing only ’\037\014’. factory is as with the UnixMailbox
class.

12.14.1 Mailbox Objects

All implementations of Mailbox objects have one externally visible method:

next()
Return the next message in the mailbox, created with the optional factory argument passed into
the mailbox object’s constructor. By defaul this is an rfc822.Message object (see the rfc822
module). Depending on the mailbox implementation the fp attribute of this object may be a true
file object or a class instance simulating a file object, taking care of things like message boundaries
if multiple mail messages are contained in a single file, etc. If no more messages are available, this
method returns None.

12.15 mhlib — Access to MH mailboxes

The mhlib module provides a Python interface to MH folders and their contents.

The module contains three basic classes, MH, which represents a particular collection of folders, Folder,
which represents a single folder, and Message, which represents a single message.

336 Chapter 12. Internet Data Handling



class MH([path[, profile ] ])
MH represents a collection of MH folders.

class Folder(mh, name)
The Folder class represents a single folder and its messages.

class Message(folder, number[, name ])
Message objects represent individual messages in a folder. The Message class is derived from
mimetools.Message.

12.15.1 MH Objects

MH instances have the following methods:

error(format[, ... ])
Print an error message – can be overridden.

getprofile(key)
Return a profile entry (None if not set).

getpath()
Return the mailbox pathname.

getcontext()
Return the current folder name.

setcontext(name)
Set the current folder name.

listfolders()
Return a list of top-level folders.

listallfolders()
Return a list of all folders.

listsubfolders(name)
Return a list of direct subfolders of the given folder.

listallsubfolders(name)
Return a list of all subfolders of the given folder.

makefolder(name)
Create a new folder.

deletefolder(name)
Delete a folder – must have no subfolders.

openfolder(name)
Return a new open folder object.

12.15.2 Folder Objects

Folder instances represent open folders and have the following methods:

error(format[, ... ])
Print an error message – can be overridden.

getfullname()
Return the folder’s full pathname.

getsequencesfilename()
Return the full pathname of the folder’s sequences file.

getmessagefilename(n)
Return the full pathname of message n of the folder.

12.15. mhlib — Access to MH mailboxes 337



listmessages()
Return a list of messages in the folder (as numbers).

getcurrent()
Return the current message number.

setcurrent(n)
Set the current message number to n.

parsesequence(seq)
Parse msgs syntax into list of messages.

getlast()
Get last message, or 0 if no messages are in the folder.

setlast(n)
Set last message (internal use only).

getsequences()
Return dictionary of sequences in folder. The sequence names are used as keys, and the values are
the lists of message numbers in the sequences.

putsequences(dict)
Return dictionary of sequences in folder name: list.

removemessages(list)
Remove messages in list from folder.

refilemessages(list, tofolder)
Move messages in list to other folder.

movemessage(n, tofolder, ton)
Move one message to a given destination in another folder.

copymessage(n, tofolder, ton)
Copy one message to a given destination in another folder.

12.15.3 Message Objects

The Message class adds one method to those of mimetools.Message:

openmessage(n)
Return a new open message object (costs a file descriptor).

12.16 mimify — MIME processing of mail messages

The mimify module defines two functions to convert mail messages to and from MIME format. The mail
message can be either a simple message or a so-called multipart message. Each part is treated separately.
Mimifying (a part of) a message entails encoding the message as quoted-printable if it contains any
characters that cannot be represented using 7-bit ascii. Unmimifying (a part of) a message entails
undoing the quoted-printable encoding. Mimify and unmimify are especially useful when a message has
to be edited before being sent. Typical use would be:

unmimify message

edit message

mimify message

send message

The modules defines the following user-callable functions and user-settable variables:

mimify(infile, outfile)
Copy the message in infile to outfile, converting parts to quoted-printable and adding MIME mail

338 Chapter 12. Internet Data Handling



headers when necessary. infile and outfile can be file objects (actually, any object that has a
readline() method (for infile) or a write() method (for outfile)) or strings naming the files. If
infile and outfile are both strings, they may have the same value.

unmimify(infile, outfile[, decode base64 ])
Copy the message in infile to outfile, decoding all quoted-printable parts. infile and outfile can be
file objects (actually, any object that has a readline() method (for infile) or a write() method
(for outfile)) or strings naming the files. If infile and outfile are both strings, they may have the
same value. If the decode base64 argument is provided and tests true, any parts that are coded in
the base64 encoding are decoded as well.

mime decode header(line)
Return a decoded version of the encoded header line in line.

mime encode header(line)
Return a MIME-encoded version of the header line in line.

MAXLEN
By default, a part will be encoded as quoted-printable when it contains any non-ascii characters
(i.e., characters with the 8th bit set), or if there are any lines longer than MAXLEN characters (default
value 200).

CHARSET
When not specified in the mail headers, a character set must be filled in. The string used is stored
in CHARSET, and the default value is ISO-8859-1 (also known as Latin1 (latin-one)).

This module can also be used from the command line. Usage is as follows:

mimify.py -e [-l length] [infile [outfile]]

mimify.py -d [-b] [infile [outfile]]

to encode (mimify) and decode (unmimify) respectively. infile defaults to standard input, outfile defaults
to standard output. The same file can be specified for input and output.

If the -l option is given when encoding, if there are any lines longer than the specified length, the
containing part will be encoded.

If the -b option is given when decoding, any base64 parts will be decoded as well.

See Also:

Module quopri (section 12.13):
Encode and decode MIME quoted-printable files.

12.17 netrc — netrc file processing

New in version 1.5.2.

The netrc class parses and encapsulates the netrc file format used by the Unix ftp program and other
FTP clients.

class netrc([file ])
A netrc instance or subclass instance encapsulates data from a netrc file. The initialization
argument, if present, specifies the file to parse. If no argument is given, the file ‘.netrc’ in the user’s
home directory will be read. Parse errors will raise NetrcParseError with diagnostic information
including the file name, line number, and terminating token.

exception NetrcParseError
Exception raised by the netrc class when syntactical errors are encountered in source text. In-
stances of this exception provide three interesting attributes: msg is a textual explanation of the
error, filename is the name of the source file, and lineno gives the line number on which the error
was found.

12.17. netrc — netrc file processing 339



12.17.1 netrc Objects

A netrc instance has the following methods:

authenticators(host)
Return a 3-tuple (login, account, password) of authenticators for host . If the netrc file did not
contain an entry for the given host, return the tuple associated with the ‘default’ entry. If neither
matching host nor default entry is available, return None.

repr ()
Dump the class data as a string in the format of a netrc file. (This discards comments and may
reorder the entries.)

Instances of netrc have public instance variables:

hosts
Dictionary mapping host names to (login, account, password) tuples. The ‘default’ entry, if any,
is represented as a pseudo-host by that name.

macros
Dictionary mapping macro names to string lists.

12.18 robotparser — Parser for robots.txt

This module provides a single class, RobotFileParser, which answers questions about whether or not
a particular user agent can fetch a URL on the web site that published the ‘robots.txt’ file. For more
details on the structure of ‘robots.txt’ files, see http://info.webcrawler.com/mak/projects/robots/norobots.html.

class RobotFileParser()
This class provides a set of methods to read, parse and answer questions about a single ‘robots.txt’
file.

set url(url)
Sets the URL referring to a ‘robots.txt’ file.

read()
Reads the ‘robots.txt’ URL and feeds it to the parser.

parse(lines)
Parses the lines argument.

can fetch(useragent, url)
Returns true if the useragent is allowed to fetch the url according to the rules contained in
the parsed ‘robots.txt’ file.

mtime()
Returns the time the robots.txt file was last fetched. This is useful for long-running web
spiders that need to check for new robots.txt files periodically.

modified()
Sets the time the robots.txt file was last fetched to the current time.

The following example demonstrates basic use of the RobotFileParser class.

>>> import robotparser

>>> rp = robotparser.RobotFileParser()

>>> rp.set_url("http://www.musi-cal.com/robots.txt")

>>> rp.read()

>>> rp.can_fetch("*", "http://www.musi-cal.com/cgi-bin/search?city=San+Francisco")

0

>>> rp.can_fetch("*", "http://www.musi-cal.com/")

1

340 Chapter 12. Internet Data Handling



CHAPTER

THIRTEEN

Structured Markup Processing Tools

Python supports a variety of modules to work with various forms of structured data markup. This
includes modules to work with the Standard Generalized Markup Language (SGML) and the Hypertext
Markup Language (HTML), and several interfaces for working with the Extensible Markup Language
(XML).

sgmllib Only as much of an SGML parser as needed to parse HTML.
htmllib A parser for HTML documents.
htmlentitydefs Definitions of HTML general entities.
xml.parsers.expat An interface to the Expat non-validating XML parser.
xml.dom Document Object Model API for Python.
xml.dom.minidom Lightweight Document Object Model (DOM) implementation.
xml.dom.pulldom Support for building partial DOM trees from SAX events.
xml.sax Package containing SAX2 base classes and convenience functions.
xml.sax.handler Base classes for SAX event handlers.
xml.sax.saxutils Convenience functions and classes for use with SAX.
xml.sax.xmlreader Interface which SAX-compliant XML parsers must implement.
xmllib A parser for XML documents.

13.1 sgmllib — Simple SGML parser

This module defines a class SGMLParser which serves as the basis for parsing text files formatted in
SGML (Standard Generalized Mark-up Language). In fact, it does not provide a full SGML parser — it
only parses SGML insofar as it is used by HTML, and the module only exists as a base for the htmllib
module.

class SGMLParser()
The SGMLParser class is instantiated without arguments. The parser is hardcoded to recognize the
following constructs:

•Opening and closing tags of the form ‘<tag attr="value" ...>’ and ‘</tag>’, respectively.

•Numeric character references of the form ‘&#name;’.

•Entity references of the form ‘&name;’.

•SGML comments of the form ‘<!--text-->’. Note that spaces, tabs, and newlines are allowed
between the trailing ‘>’ and the immediately preceding ‘--’.

SGMLParser instances have the following interface methods:

reset()
Reset the instance. Loses all unprocessed data. This is called implicitly at instantiation time.

setnomoretags()
Stop processing tags. Treat all following input as literal input (CDATA). (This is only provided so
the HTML tag <PLAINTEXT> can be implemented.)

341



setliteral()
Enter literal mode (CDATA mode).

feed(data)
Feed some text to the parser. It is processed insofar as it consists of complete elements; incomplete
data is buffered until more data is fed or close() is called.

close()
Force processing of all buffered data as if it were followed by an end-of-file mark. This method
may be redefined by a derived class to define additional processing at the end of the input, but the
redefined version should always call close().

get starttag text()
Return the text of the most recently opened start tag. This should not normally be needed for
structured processing, but may be useful in dealing with HTML “as deployed” or for re-generating
input with minimal changes (whitespace between attributes can be preserved, etc.).

handle starttag(tag, method, attributes)
This method is called to handle start tags for which either a start tag() or do tag() method has
been defined. The tag argument is the name of the tag converted to lower case, and the method argu-
ment is the bound method which should be used to support semantic interpretation of the start tag.
The attributes argument is a list of (name, value) pairs containing the attributes found inside the
tag’s <> brackets. The name has been translated to lower case and double quotes and backslashes in
the value have been interpreted. For instance, for the tag <A HREF="http://www.cwi.nl/">, this
method would be called as ‘unknown starttag(’a’, [(’href’, ’http://www.cwi.nl/’)])’.
The base implementation simply calls method with attributes as the only argument.

handle endtag(tag, method)
This method is called to handle endtags for which an end tag() method has been defined. The tag
argument is the name of the tag converted to lower case, and the method argument is the bound
method which should be used to support semantic interpretation of the end tag. If no end tag()
method is defined for the closing element, this handler is not called. The base implementation
simply calls method .

handle data(data)
This method is called to process arbitrary data. It is intended to be overridden by a derived class;
the base class implementation does nothing.

handle charref(ref )
This method is called to process a character reference of the form ‘&#ref ;’. In the base implemen-
tation, ref must be a decimal number in the range 0-255. It translates the character to ascii and
calls the method handle data() with the character as argument. If ref is invalid or out of range,
the method unknown charref(ref ) is called to handle the error. A subclass must override this
method to provide support for named character entities.

handle entityref(ref )
This method is called to process a general entity reference of the form ‘&ref ;’ where ref is
an general entity reference. It looks for ref in the instance (or class) variable entitydefs
which should be a mapping from entity names to corresponding translations. If a translation
is found, it calls the method handle data() with the translation; otherwise, it calls the method
unknown entityref(ref ). The default entitydefs defines translations for &amp;, &apos, &gt;,
&lt;, and &quot;.

handle comment(comment)
This method is called when a comment is encountered. The comment argument is a string contain-
ing the text between the ‘<!--’ and ‘-->’ delimiters, but not the delimiters themselves. For example,
the comment ‘<!--text-->’ will cause this method to be called with the argument ’text’. The
default method does nothing.

handle decl(data)
Method called when an SGML declaration is read by the parser. In practice, the DOCTYPE decla-
ration is the only thing observed in HTML, but the parser does not discriminate among different
(or broken) declarations. Internal subsets in a DOCTYPE declaration are not supported. The data

342 Chapter 13. Structured Markup Processing Tools



parameter will be the entire contents of the declaration inside the <!...> markup. The default
implementation does nothing.

report unbalanced(tag)
This method is called when an end tag is found which does not correspond to any open element.

unknown starttag(tag, attributes)
This method is called to process an unknown start tag. It is intended to be overridden by a derived
class; the base class implementation does nothing.

unknown endtag(tag)
This method is called to process an unknown end tag. It is intended to be overridden by a derived
class; the base class implementation does nothing.

unknown charref(ref )
This method is called to process unresolvable numeric character references. Refer to
handle charref() to determine what is handled by default. It is intended to be overridden
by a derived class; the base class implementation does nothing.

unknown entityref(ref )
This method is called to process an unknown entity reference. It is intended to be overridden by
a derived class; the base class implementation does nothing.

Apart from overriding or extending the methods listed above, derived classes may also define methods
of the following form to define processing of specific tags. Tag names in the input stream are case
independent; the tag occurring in method names must be in lower case:

start tag(attributes)
This method is called to process an opening tag tag . It has preference over do tag(). The attributes
argument has the same meaning as described for handle starttag() above.

do tag(attributes)
This method is called to process an opening tag tag that does not come with a matching closing
tag. The attributes argument has the same meaning as described for handle starttag() above.

end tag()
This method is called to process a closing tag tag .

Note that the parser maintains a stack of open elements for which no end tag has been found yet. Only
tags processed by start tag() are pushed on this stack. Definition of an end tag() method is optional
for these tags. For tags processed by do tag() or by unknown tag(), no end tag() method must be
defined; if defined, it will not be used. If both start tag() and do tag() methods exist for a tag, the
start tag() method takes precedence.

13.2 htmllib — A parser for HTML documents

This module defines a class which can serve as a base for parsing text files formatted in the HyperText
Mark-up Language (HTML). The class is not directly concerned with I/O — it must be provided with
input in string form via a method, and makes calls to methods of a “formatter” object in order to produce
output. The HTMLParser class is designed to be used as a base class for other classes in order to add
functionality, and allows most of its methods to be extended or overridden. In turn, this class is derived
from and extends the SGMLParser class defined in module sgmllib. The HTMLParser implementation
supports the HTML 2.0 language as described in RFC 1866. Two implementations of formatter objects
are provided in the formatter module; refer to the documentation for that module for information on
the formatter interface.

The following is a summary of the interface defined by sgmllib.SGMLParser:

• The interface to feed data to an instance is through the feed() method, which takes a string
argument. This can be called with as little or as much text at a time as desired; ‘p.feed(a);
p.feed(b)’ has the same effect as ‘p.feed(a+b)’. When the data contains complete HTML tags,
these are processed immediately; incomplete elements are saved in a buffer. To force processing of

13.2. htmllib — A parser for HTML documents 343



all unprocessed data, call the close() method.

For example, to parse the entire contents of a file, use:

parser.feed(open(’myfile.html’).read())

parser.close()

• The interface to define semantics for HTML tags is very simple: derive a class and define methods
called start tag(), end tag(), or do tag(). The parser will call these at appropriate moments:
start tag or do tag() is called when an opening tag of the form <tag ...> is encountered;
end tag() is called when a closing tag of the form <tag> is encountered. If an opening tag requires
a corresponding closing tag, like <H1> ... </H1>, the class should define the start tag() method;
if a tag requires no closing tag, like <P>, the class should define the do tag() method.

The module defines a single class:

class HTMLParser(formatter)
This is the basic HTML parser class. It supports all entity names required by the HTML 2.0
specification (RFC 1866). It also defines handlers for all HTML 2.0 and many HTML 3.0 and 3.2
elements.

See Also:

Module htmlentitydefs (section 13.3):
Definition of replacement text for HTML 2.0 entities.

Module sgmllib (section 13.1):
Base class for HTMLParser.

13.2.1 HTMLParser Objects

In addition to tag methods, the HTMLParser class provides some additional methods and instance vari-
ables for use within tag methods.

formatter
This is the formatter instance associated with the parser.

nofill
Boolean flag which should be true when whitespace should not be collapsed, or false when it should
be. In general, this should only be true when character data is to be treated as “preformatted” text,
as within a <PRE> element. The default value is false. This affects the operation of handle data()
and save end().

anchor bgn(href, name, type)
This method is called at the start of an anchor region. The arguments correspond to the attributes
of the <A> tag with the same names. The default implementation maintains a list of hyperlinks
(defined by the HREF attribute for <A> tags) within the document. The list of hyperlinks is available
as the data attribute anchorlist.

anchor end()
This method is called at the end of an anchor region. The default implementation adds a textual
footnote marker using an index into the list of hyperlinks created by anchor bgn().

handle image(source, alt[, ismap[, align[, width[, height ] ] ] ])
This method is called to handle images. The default implementation simply passes the alt value
to the handle data() method.

save bgn()
Begins saving character data in a buffer instead of sending it to the formatter object. Retrieve the
stored data via save end(). Use of the save bgn() / save end() pair may not be nested.

save end()
Ends buffering character data and returns all data saved since the preceding call to save bgn().

344 Chapter 13. Structured Markup Processing Tools



If the nofill flag is false, whitespace is collapsed to single spaces. A call to this method without
a preceding call to save bgn() will raise a TypeError exception.

13.3 htmlentitydefs — Definitions of HTML general entities

This module defines a single dictionary, entitydefs, which is used by the htmllib module to provide
the entitydefs member of the HTMLParser class. The definition provided here contains all the entities
defined by HTML 2.0 that can be handled using simple textual substitution in the Latin-1 character set
(ISO-8859-1).

entitydefs
A dictionary mapping HTML 2.0 entity definitions to their replacement text in ISO Latin-1.

13.4 xml.parsers.expat — Fast XML parsing using Expat

New in version 2.0.

The xml.parsers.expat module is a Python interface to the Expat non-validating XML parser. The
module provides a single extension type, xmlparser, that represents the current state of an XML parser.
After an xmlparser object has been created, various attributes of the object can be set to handler
functions. When an XML document is then fed to the parser, the handler functions are called for the
character data and markup in the XML document.

This module uses the pyexpat module to provide access to the Expat parser. Direct use of the pyexpat
module is deprecated.

This module provides one exception and one type object:

exception ExpatError
The exception raised when Expat reports an error.

exception error
Alias for ExpatError.

XMLParserType
The type of the return values from the ParserCreate() function.

The xml.parsers.expat module contains two functions:

ErrorString(errno)
Returns an explanatory string for a given error number errno.

ParserCreate([encoding[, namespace separator ] ])
Creates and returns a new xmlparser object. encoding , if specified, must be a string naming the
encoding used by the XML data. Expat doesn’t support as many encodings as Python does, and
its repertoire of encodings can’t be extended; it supports UTF-8, UTF-16, ISO-8859-1 (Latin1),
and ASCII. If encoding is given it will override the implicit or explicit encoding of the document.

Expat can optionally do XML namespace processing for you, enabled by providing a value for
namespace separator . The value must be a one-character string; a ValueError will be raised if the
string has an illegal length (None is considered the same as omission). When namespace processing
is enabled, element type names and attribute names that belong to a namespace will be expanded.
The element name passed to the element handlers StartElementHandler and EndElementHandler
will be the concatenation of the namespace URI, the namespace separator character, and the local
part of the name. If the namespace separator is a zero byte (chr(0)) then the namespace URI and
the local part will be concatenated without any separator.

For example, if namespace separator is set to a space character (‘ ’) and the following document
is parsed:

13.3. htmlentitydefs — Definitions of HTML general entities 345



<?xml version="1.0"?>

<root xmlns = "http://default-namespace.org/"

xmlns:py = "http://www.python.org/ns/">

<py:elem1 />

<elem2 xmlns="" />

</root>

StartElementHandler will receive the following strings for each element:

http://default-namespace.org/ root

http://www.python.org/ns/ elem1

elem2

13.4.1 XMLParser Objects

xmlparser objects have the following methods:

Parse(data[, isfinal ])
Parses the contents of the string data, calling the appropriate handler functions to process the
parsed data. isfinal must be true on the final call to this method. data can be the empty string at
any time.

ParseFile(file)
Parse XML data reading from the object file. file only needs to provide the read(nbytes) method,
returning the empty string when there’s no more data.

SetBase(base)
Sets the base to be used for resolving relative URIs in system identifiers in declarations. Resolving
relative identifiers is left to the application: this value will be passed through as the base argument
to the ExternalEntityRefHandler, NotationDeclHandler, and UnparsedEntityDeclHandler
functions.

GetBase()
Returns a string containing the base set by a previous call to SetBase(), or None if SetBase()
hasn’t been called.

GetInputContext()
Returns the input data that generated the current event as a string. The data is in the encoding
of the entity which contains the text. When called while an event handler is not active, the return
value is None. New in version 2.1.

ExternalEntityParserCreate(context[, encoding ])
Create a “child” parser which can be used to parse an external parsed entity referred to by con-
tent parsed by the parent parser. The context parameter should be the string passed to the
ExternalEntityRefHandler() handler function, described below. The child parser is created
with the ordered attributes, returns unicode and specified attributes set to the values
of this parser.

xmlparser objects have the following attributes:

ordered attributes
Setting this attribute to a non-zero integer causes the attributes to be reported as a list rather
than a dictionary. The attributes are presented in the order found in the document text. For
each attribute, two list entries are presented: the attribute name and the attribute value. (Older
versions of this module also used this format.) By default, this attribute is false; it may be changed
at any time. New in version 2.1.

returns unicode
If this attribute is set to a non-zero integer, the handler functions will be passed Unicode strings. If
returns unicode is 0, 8-bit strings containing UTF-8 encoded data will be passed to the handlers.
Changed in version 1.6: Can be changed at any time to affect the result type..

346 Chapter 13. Structured Markup Processing Tools



specified attributes
If set to a non-zero integer, the parser will report only those attributes which were specified in
the document instance and not those which were derived from attribute declarations. Applications
which set this need to be especially careful to use what additional information is available from
the declarations as needed to comply with the standards for the behavior of XML processors. By
default, this attribute is false; it may be changed at any time. New in version 2.1.

The following attributes contain values relating to the most recent error encountered by an xmlparser
object, and will only have correct values once a call to Parse() or ParseFile() has raised a
xml.parsers.expat.ExpatError exception.

ErrorByteIndex
Byte index at which an error occurred.

ErrorCode
Numeric code specifying the problem. This value can be passed to the ErrorString() function,
or compared to one of the constants defined in the errors object.

ErrorColumnNumber
Column number at which an error occurred.

ErrorLineNumber
Line number at which an error occurred.

Here is the list of handlers that can be set. To set a handler on an xmlparser object o, use o.handlername
= func. handlername must be taken from the following list, and func must be a callable object accepting
the correct number of arguments. The arguments are all strings, unless otherwise stated.

XmlDeclHandler(version, encoding, standalone)
Called when the XML declaration is parsed. The XML declaration is the (optional) declaration of
the applicable version of the XML recommendation, the encoding of the document text, and an
optional “standalone” declaration. version and encoding will be strings of the type dictated by
the returns unicode attribute, and standalone will be 1 if the document is declared standalone,
0 if it is declared not to be standalone, or -1 if the standalone clause was omitted. This is only
available with Expat version 1.95.0 or newer. New in version 2.1.

StartDoctypeDeclHandler(doctypeName, systemId, publicId, has internal subset)
Called when Expat begins parsing the document type declaration (<!DOCTYPE ...). The doctype-
Name is provided exactly as presented. The systemId and publicId parameters give the system and
public identifiers if specified, or None if omitted. has internal subset will be true if the document
contains and internal document declaration subset. This requires Expat version 1.2 or newer.

EndDoctypeDeclHandler()
Called when Expat is done parsing the document type delaration. This requires Expat version 1.2
or newer.

ElementDeclHandler(name, model)
Called once for each element type declaration. name is the name of the element type, and model
is a representation of the content model.

AttlistDeclHandler(elname, attname, type, default, required)
Called for each declared attribute for an element type. If an attribute list declaration declares three
attributes, this handler is called three times, once for each attribute. elname is the name of the
element to which the declaration applies and attname is the name of the attribute declared. The
attribute type is a string passed as type; the possible values are ’CDATA’, ’ID’, ’IDREF’, ... default
gives the default value for the attribute used when the attribute is not specified by the document
instance, or None if there is no default value (#IMPLIED values). If the attribute is required to be
given in the document instance, required will be true. This requires Expat version 1.95.0 or newer.

StartElementHandler(name, attributes)
Called for the start of every element. name is a string containing the element name, and attributes
is a dictionary mapping attribute names to their values.

EndElementHandler(name)
Called for the end of every element.

13.4. xml.parsers.expat — Fast XML parsing using Expat 347



ProcessingInstructionHandler(target, data)
Called for every processing instruction.

CharacterDataHandler(data)
Called for character data. This will be called for normal character data, CDATA marked con-
tent, and ignorable whitespace. Applications which must distinguish these cases can use the
StartCdataSectionHandler, EndCdataSectionHandler, and ElementDeclHandler callbacks to
collect the required information.

UnparsedEntityDeclHandler(entityName, base, systemId, publicId, notationName)
Called for unparsed (NDATA) entity declarations. This is only present for version 1.2 of the Expat
library; for more recent versions, use EntityDeclHandler instead. (The underlying function in the
Expat library has been declared obsolete.)

EntityDeclHandler(entityName, is parameter entity, value, base, systemId, publicId, notationName)
Called for all entity declarations. For parameter and internal entities, value will be a string giving
the declared contents of the entity; this will be None for external entities. The notationName
parameter will be None for parsed entities, and the name of the notation for unparsed entities.
is parameter entity will be true if the entity is a paremeter entity or false for general entities
(most applications only need to be concerned with general entities). This is only available starting
with version 1.95.0 of the Expat library. New in version 2.1.

NotationDeclHandler(notationName, base, systemId, publicId)
Called for notation declarations. notationName, base, and systemId , and publicId are strings if
given. If the public identifier is omitted, publicId will be None.

StartNamespaceDeclHandler(prefix, uri)
Called when an element contains a namespace declaration. Namespace declarations are processed
before the StartElementHandler is called for the element on which declarations are placed.

EndNamespaceDeclHandler(prefix)
Called when the closing tag is reached for an element that contained a namespace declaration. This
is called once for each namespace declaration on the element in the reverse of the order for which
the StartNamespaceDeclHandler was called to indicate the start of each namespace declaration’s
scope. Calls to this handler are made after the corresponding EndElementHandler for the end of
the element.

CommentHandler(data)
Called for comments. data is the text of the comment, excluding the leading ‘<!--’ and trailing
‘-->’.

StartCdataSectionHandler()
Called at the start of a CDATA section. This and StartCdataSectionHandler are needed to be
able to identify the syntactical start and end for CDATA sections.

EndCdataSectionHandler()
Called at the end of a CDATA section.

DefaultHandler(data)
Called for any characters in the XML document for which no applicable handler has been specified.
This means characters that are part of a construct which could be reported, but for which no handler
has been supplied.

DefaultHandlerExpand(data)
This is the same as the DefaultHandler, but doesn’t inhibit expansion of internal entities. The
entity reference will not be passed to the default handler.

NotStandaloneHandler()
Called if the XML document hasn’t been declared as being a standalone document. This happens
when there is an external subset or a reference to a parameter entity, but the XML declaration
does not set standalone to yes in an XML declaration. If this handler returns 0, then the parser
will throw an XML ERROR NOT STANDALONE error. If this handler is not set, no exception is raised
by the parser for this condition.

ExternalEntityRefHandler(context, base, systemId, publicId)

348 Chapter 13. Structured Markup Processing Tools



Called for references to external entities. base is the current base, as set by a previous call to
SetBase(). The public and system identifiers, systemId and publicId , are strings if given; if the
public identifier is not given, publicId will be None. The context value is opaque and should only
be used as described below.

For external entities to be parsed, this handler must be implemented. It is responsible for creating
the sub-parser using ExternalEntityParserCreate(context), initializing it with the appropriate
callbacks, and parsing the entity. This handler should return an integer; if it returns 0, the parser
will throw an XML ERROR EXTERNAL ENTITY HANDLING error, otherwise parsing will continue.

If this handler is not provided, external entities are reported by the DefaultHandler callback, if
provided.

13.4.2 ExpatError Exceptions

ExpatError exceptions have a number of interesting attributes:

code
Expat’s internal error number for the specific error. This will match one of the constants defined
in the errors object from this module. New in version 2.1.

lineno
Line number on which the error was detected. The first line is numbered 1. New in version 2.1.

offset
Character offset into the line where the error occurred. The first column is numbered 0. New in
version 2.1.

13.4.3 Example

The following program defines three handlers that just print out their arguments.

import xml.parsers.expat

# 3 handler functions

def start_element(name, attrs):

print ’Start element:’, name, attrs

def end_element(name):

print ’End element:’, name

def char_data(data):

print ’Character data:’, repr(data)

p = xml.parsers.expat.ParserCreate()

p.StartElementHandler = start_element

p.EndElementHandler = end_element

p.CharacterDataHandler = char_data

p.Parse("""<?xml version="1.0"?>

<parent id="top"><child1 name="paul">Text goes here</child1>

<child2 name="fred">More text</child2>

</parent>""")

The output from this program is:

13.4. xml.parsers.expat — Fast XML parsing using Expat 349



Start element: parent {’id’: ’top’}

Start element: child1 {’name’: ’paul’}

Character data: ’Text goes here’

End element: child1

Character data: ’\n’

Start element: child2 {’name’: ’fred’}

Character data: ’More text’

End element: child2

Character data: ’\n’

End element: parent

13.4.4 Content Model Descriptions

Content modules are described using nested tuples. Each tuple contains four values: the type, the
quantifier, the name, and a tuple of children. Children are simply additional content module descriptions.

The values of the first two fields are constants defined in the model object of the xml.parsers.expat
module. These constants can be collected in two groups: the model type group and the quantifier group.

The constants in the model type group are:

XML CTYPE ANY
The element named by the model name was declared to have a content model of ANY.

XML CTYPE CHOICE
The named element allows a choice from a number of options; this is used for content models such
as (A | B | C).

XML CTYPE EMPTY
Elements which are declared to be EMPTY have this model type.

XML CTYPE MIXED

XML CTYPE NAME

XML CTYPE SEQ
Models which represent a series of models which follow one after the other are indicated with this
model type. This is used for models such as (A, B, C).

The constants in the quantifier group are:

XML CQUANT NONE

XML CQUANT OPT
The model is option: it can appear once or not at all, as for A?.

XML CQUANT PLUS
The model must occur one or more times (A+).

XML CQUANT REP
The model must occur zero or more times, as for A*.

13.4.5 Expat error constants

The following constants are provided in the errors object of the xml.parsers.expat module. These
constants are useful in interpreting some of the attributes of the ExpatError exception objects raised
when an error has occurred.

The errors object has the following attributes:

XML ERROR ASYNC ENTITY

XML ERROR ATTRIBUTE EXTERNAL ENTITY REF

350 Chapter 13. Structured Markup Processing Tools



An entity reference in an attribute value referred to an external entity instead of an internal entity.

XML ERROR BAD CHAR REF

XML ERROR BINARY ENTITY REF

XML ERROR DUPLICATE ATTRIBUTE
An attribute was used more than once in a start tag.

XML ERROR INCORRECT ENCODING

XML ERROR INVALID TOKEN

XML ERROR JUNK AFTER DOC ELEMENT
Something other than whitespace occurred after the document element.

XML ERROR MISPLACED XML PI

XML ERROR NO ELEMENTS
The document contains no elements.

XML ERROR NO MEMORY
Expat was not able to allocate memory internally.

XML ERROR PARAM ENTITY REF

XML ERROR PARTIAL CHAR

XML ERROR RECURSIVE ENTITY REF

XML ERROR SYNTAX
Some unspecified syntax error was encountered.

XML ERROR TAG MISMATCH
An end tag did not match the innermost open start tag.

XML ERROR UNCLOSED TOKEN

XML ERROR UNDEFINED ENTITY
A reference was made to a entity which was not defined.

XML ERROR UNKNOWN ENCODING
The document encoding is not supported by Expat.

13.5 xml.dom — The Document Object Model API

New in version 2.0.

The Document Object Model, or “DOM,” is a cross-language API from the World Wide Web Consor-
tium (W3C) for accessing and modifying XML documents. A DOM implementation presents an XML
document as a tree structure, or allows client code to build such a structure from scratch. It then gives
access to the structure through a set of objects which provided well-known interfaces.

The DOM is extremely useful for random-access applications. SAX only allows you a view of one bit
of the document at a time. If you are looking at one SAX element, you have no access to another. If
you are looking at a text node, you have no access to a containing element. When you write a SAX
application, you need to keep track of your program’s position in the document somewhere in your own
code. SAX does not do it for you. Also, if you need to look ahead in the XML document, you are just
out of luck.

Some applications are simply impossible in an event driven model with no access to a tree. Of course
you could build some sort of tree yourself in SAX events, but the DOM allows you to avoid writing that
code. The DOM is a standard tree representation for XML data.

The Document Object Model is being defined by the W3C in stages, or “levels” in their terminology.
The Python mapping of the API is substantially based on the DOM Level 2 recommendation. Some
aspects of the API will only become available in Python 2.1, or may only be available in particular DOM
implementations.

13.5. xml.dom — The Document Object Model API 351



DOM applications typically start by parsing some XML into a DOM. How this is accomplished is
not covered at all by DOM Level 1, and Level 2 provides only limited improvements. There is a
DOMImplementation object class which provides access to Document creation methods, but these meth-
ods were only added in DOM Level 2 and were not implemented in time for Python 2.0. There is also
no well-defined way to access these methods without an existing Document object. For Python 2.0, con-
sult the documentation for each particular DOM implementation to determine the bootstrap procedure
needed to create and initialize Document and DocumentType instances.

Once you have a DOM document object, you can access the parts of your XML document through its
properties and methods. These properties are defined in the DOM specification; this portion of the
reference manual describes the interpretation of the specification in Python.

The specification provided by the W3C defines the DOM API for Java, ECMAScript, and OMG IDL.
The Python mapping defined here is based in large part on the IDL version of the specification, but
strict compliance is not required (though implementations are free to support the strict mapping from
IDL). See section 13.5.3, “Conformance,” for a detailed discussion of mapping requirements.

See Also:

Document Object Model (DOM) Level 2 Specification
(http://www.w3.org/TR/DOM-Level-2-Core/)

The W3C recommendation upon which the Python DOM API is based.

Document Object Model (DOM) Level 1 Specification
(http://www.w3.org/TR/REC-DOM-Level-1/)

The W3C recommendation for the DOM supported by xml.dom.minidom.

PyXML
(http://pyxml.sourceforge.net)

Users that require a full-featured implementation of DOM should use the PyXML package.

CORBA Scripting with Python
(http://cgi.omg.org/cgi-bin/doc?orbos/99-08-02.pdf)

This specifies the mapping from OMG IDL to Python.

13.5.1 Module Contents

The xml.dom contains the following functions:

registerDOMImplementation(name, factory)
Register the factory function with the name name. The factory function should return an object
which implements the DOMImplementation interface. The factory function can return the same
object every time, or a new one for each call, as appropriate for the specific implementation (e.g.
if that implementation supports some customization).

getDOMImplementation(name = None, features = ())
Return a suitable DOM implementation. The name is either well-known, the module name of a
DOM implementation, or None. If it is not None, imports the corresponding module and returns
a DOMImplementation object if the import succeeds. If no name is given, and if the environment
variable PYTHON DOM is set, this variable is used to find the implementation.

If name is not given, consider the available implementations to find one with the required feature
set. If no implementation can be found, raise an ImportError. The features list must be a sequence
of (feature, version) pairs which are passed to hasFeature.

In addition, xml.dom contains the Node, and the DOM exceptions.

13.5.2 Objects in the DOM

The definitive documentation for the DOM is the DOM specification from the W3C.

Note that DOM attributes may also be manipulated as nodes instead of as simple strings. It is fairly
rare that you must do this, however, so this usage is not yet documented.

352 Chapter 13. Structured Markup Processing Tools



Interface Section Purpose
DOMImplementation 13.5.2 Interface to the underlying implementation.
Node 13.5.2 Base interface for most objects in a document.
NodeList 13.5.2 Interface for a sequence of nodes.
DocumentType 13.5.2 Information about the declarations needed to process a document.
Document 13.5.2 Object which represents an entire document.
Element 13.5.2 Element nodes in the document hierarchy.
Attr 13.5.2 Attribute value nodes on element nodes.
Comment 13.5.2 Representation of comments in the source document.
Text 13.5.2 Nodes containing textual content from the document.
ProcessingInstruction 13.5.2 Processing instruction representation.

An additional section describes the exceptions defined for working with the DOM in Python.

DOMImplementation Objects

The DOMImplementation interface provides a way for applications to determine the availability of par-
ticular features in the DOM they are using. DOM Level 2 added the ability to create new Document and
DocumentType objects using the DOMImplementation as well.

hasFeature(feature, version)

Node Objects

All of the components of an XML document are subclasses of Node.

nodeType
An integer representing the node type. Symbolic constants for the types are on the Node
object: ELEMENT NODE, ATTRIBUTE NODE, TEXT NODE, CDATA SECTION NODE, ENTITY NODE,
PROCESSING INSTRUCTION NODE, COMMENT NODE, DOCUMENT NODE, DOCUMENT TYPE NODE,
NOTATION NODE. This is a read-only attribute.

parentNode
The parent of the current node, or None for the document node. The value is always a Node object
or None. For Element nodes, this will be the parent element, except for the root element, in which
case it will be the Document object. For Attr nodes, this is always None. This is a read-only
attribute.

attributes
A NamedNodeMap of attribute objects. Only elements have actual values for this; others provide
None for this attribute. This is a read-only attribute.

previousSibling
The node that immediately precedes this one with the same parent. For instance the element with
an end-tag that comes just before the self element’s start-tag. Of course, XML documents are made
up of more than just elements so the previous sibling could be text, a comment, or something else.
If this node is the first child of the parent, this attribute will be None. This is a read-only attribute.

nextSibling
The node that immediately follows this one with the same parent. See also previousSibling. If
this is the last child of the parent, this attribute will be None. This is a read-only attribute.

childNodes
A list of nodes contained within this node. This is a read-only attribute.

firstChild
The first child of the node, if there are any, or None. This is a read-only attribute.

lastChild
The last child of the node, if there are any, or None. This is a read-only attribute.

13.5. xml.dom — The Document Object Model API 353



localName
The part of the tagName following the colon if there is one, else the entire tagName. The value is
a string.

prefix
The part of the tagName preceding the colon if there is one, else the empty string. The value is a
string, or None

namespaceURI
The namespace associated with the element name. This will be a string or None. This is a read-only
attribute.

nodeName
This has a different meaning for each node type; see the DOM specification for details. You can
always get the information you would get here from another property such as the tagName property
for elements or the name property for attributes. For all node types, the value of this attribute will
be either a string or None. This is a read-only attribute.

nodeValue
This has a different meaning for each node type; see the DOM specification for details. The
situation is similar to that with nodeName. The value is a string or None.

hasAttributes()
Returns true if the node has any attributes.

hasChildNodes()
Returns true if the node has any child nodes.

isSameNode(other)
Returns true if other refers to the same node as this node. This is especially useful for DOM
implementations which use any sort of proxy architecture (because more than one object can refer
to the same node).

Note: This is based on a proposed DOM Level 3 API which is still in the “working draft” stage,
but this particular interface appears uncontroversial. Changes from the W3C will not necessarily
affect this method in the Python DOM interface (though any new W3C API for this would also
be supported).

appendChild(newChild)
Add a new child node to this node at the end of the list of children, returning newChild .

insertBefore(newChild, refChild)
Insert a new child node before an existing child. It must be the case that refChild is a child of this
node; if not, ValueError is raised. newChild is returned.

removeChild(oldChild)
Remove a child node. oldChild must be a child of this node; if not, ValueError is raised. oldChild
is returned on success. If oldChild will not be used further, its unlink() method should be called.

replaceChild(newChild, oldChild)
Replace an existing node with a new node. It must be the case that oldChild is a child of this
node; if not, ValueError is raised.

normalize()
Join adjacent text nodes so that all stretches of text are stored as single Text instances. This
simplifies processing text from a DOM tree for many applications. New in version 2.1.

cloneNode(deep)
Clone this node. Setting deep means to clone all child nodes as well. This returns the clone.

NodeList Objects

A NodeList represents a sequence of nodes. These objects are used in two ways in the DOM Core recom-
mendation: the Element objects provides one as it’s list of child nodes, and the getElementsByTagName()
and getElementsByTagNameNS() methods of Node return objects with this interface to represent query

354 Chapter 13. Structured Markup Processing Tools



results.

The DOM Level 2 recommendation defines one method and one attribute for these objects:

item(i)
Return the i ’th item from the sequence, if there is one, or None. The index i is not allowed to be
less then zero or greater than or equal to the length of the sequence.

length
The number of nodes in the sequence.

In addition, the Python DOM interface requires that some additional support is provided to allow
NodeList objects to be used as Python sequences. All NodeList implementations must include support
for len () and getitem (); this allows iteration over the NodeList in for statements and
proper support for the len() built-in function.

If a DOM implementation supports modification of the document, the NodeList implementation must
also support the setitem () and delitem () methods.

DocumentType Objects

Information about the notations and entities declared by a document (including the external subset
if the parser uses it and can provide the information) is available from a DocumentType object. The
DocumentType for a document is available from the Document object’s doctype attribute.

DocumentType is a specialization of Node, and adds the following attributes:

publicId
The public identifier for the external subset of the document type definition. This will be a string
or None.

systemId
The system identifier for the external subset of the document type definition. This will be a URI
as a string, or None.

internalSubset
A string giving the complete internal subset from the document. This does not include the brackets
which enclose the subset. If the document has no internal subset, this should be None.

name
The name of the root element as given in the DOCTYPE declaration, if present. If the was no DOCTYPE
declaration, this will be None.

entities
This is a NamedNodeMap giving the definitions of external entities. For entity names defined more
than once, only the first definition is provided (others are ignored as required by the XML recom-
mendation). This may be None if the information is not provided by the parser, or if no entities
are defined.

notations
This is a NamedNodeMap giving the definitions of notations. For notation names defined more than
once, only the first definition is provided (others are ignored as required by the XML recommen-
dation). This may be None if the information is not provided by the parser, or if no notations are
defined.

Document Objects

A Document represents an entire XML document, including its constituent elements, attributes, process-
ing instructions, comments etc. Remeber that it inherits properties from Node.

documentElement
The one and only root element of the document.

createElement(tagName)

13.5. xml.dom — The Document Object Model API 355



Create and return a new element node. The element is not inserted into the document when it is
created. You need to explicitly insert it with one of the other methods such as insertBefore()
or appendChild().

createElementNS(namespaceURI, tagName)
Create and return a new element with a namespace. The tagName may have a prefix. The element
is not inserted into the document when it is created. You need to explicitly insert it with one of
the other methods such as insertBefore() or appendChild().

createTextNode(data)
Create and return a text node containing the data passed as a parameter. As with the other
creation methods, this one does not insert the node into the tree.

createComment(data)
Create and return a comment node containing the data passed as a parameter. As with the other
creation methods, this one does not insert the node into the tree.

createProcessingInstruction(target, data)
Create and return a processing instruction node containing the target and data passed as parame-
ters. As with the other creation methods, this one does not insert the node into the tree.

createAttribute(name)
Create and return an attribute node. This method does not associate the attribute node with any
particular element. You must use setAttributeNode() on the appropriate Element object to use
the newly created attribute instance.

createAttributeNS(namespaceURI, qualifiedName)
Create and return an attribute node with a namespace. The tagName may have a prefix.
This method does not associate the attribute node with any particular element. You must use
setAttributeNode() on the appropriate Element object to use the newly created attribute in-
stance.

getElementsByTagName(tagName)
Search for all descendants (direct children, children’s children, etc.) with a particular element type
name.

getElementsByTagNameNS(namespaceURI, localName)
Search for all descendants (direct children, children’s children, etc.) with a particular namespace
URI and localname. The localname is the part of the namespace after the prefix.

Element Objects

Element is a subclass of Node, so inherits all the attributes of that class.

tagName
The element type name. In a namespace-using document it may have colons in it. The value is a
string.

getElementsByTagName(tagName)
Same as equivalent method in the Document class.

getElementsByTagNameNS(tagName)
Same as equivalent method in the Document class.

getAttribute(attname)
Return an attribute value as a string.

getAttributeNode(attrname)
Return the Attr node for the attribute named by attrname.

getAttributeNS(namespaceURI, localName)
Return an attribute value as a string, given a namespaceURI and localName.

getAttributeNodeNS(namespaceURI, localName)
Return an attribute value as a node, given a namespaceURI and localName.

356 Chapter 13. Structured Markup Processing Tools



removeAttribute(attname)
Remove an attribute by name. No exception is raised if there is no matching attribute.

removeAttributeNode(oldAttr)
Remove and return oldAttr from the attribute list, if present. If oldAttr is not present, NotFoundErr
is raised.

removeAttributeNS(namespaceURI, localName)
Remove an attribute by name. Note that it uses a localName, not a qname. No exception is raised
if there is no matching attribute.

setAttribute(attname, value)
Set an attribute value from a string.

setAttributeNode(newAttr)
Add a new attibute node to the element, replacing an existing attribute if necessary if the name
attribute matches. If a replacement occurs, the old attribute node will be returned. If newAttr is
already in use, InuseAttributeErr will be raised.

setAttributeNodeNS(newAttr)
Add a new attibute node to the element, replacing an existing attribute if necessary if the
namespaceURI and localName attributes match. If a replacement occurs, the old attribute node
will be returned. If newAttr is already in use, InuseAttributeErr will be raised.

setAttributeNS(namespaceURI, qname, value)
Set an attribute value from a string, given a namespaceURI and a qname. Note that a qname is
the whole attribute name. This is different than above.

Attr Objects

Attr inherits from Node, so inherits all its attributes.

name
The attribute name. In a namespace-using document it may have colons in it.

localName
The part of the name following the colon if there is one, else the entire name. This is a read-only
attribute.

prefix
The part of the name preceding the colon if there is one, else the empty string.

NamedNodeMap Objects

NamedNodeMap does not inherit from Node.

length
The length of the attribute list.

item(index)
Return an attribute with a particular index. The order you get the attributes in is arbitrary but
will be consistent for the life of a DOM. Each item is an attribute node. Get its value with the
value attribbute.

There are also experimental methods that give this class more mapping behavior. You can use them or
you can use the standardized getAttribute*()-family methods on the Element objects.

Comment Objects

Comment represents a comment in the XML document. It is a subclass of Node, but cannot have child
nodes.

data

13.5. xml.dom — The Document Object Model API 357



The content of the comment as a string. The attribute contains all characters between the leading
<!-- and trailing -->, but does not include them.

Text and CDATASection Objects

The Text interface represents text in the XML document. If the parser and DOM implementation
support the DOM’s XML extension, portions of the text enclosed in CDATA marked sections are stored
in CDATASection objects. These two interfaces are identical, but provide different values for the nodeType
attribute.

These interfaces extend the Node interface. They cannot have child nodes.

data
The content of the text node as a string.

Note: The use of a CDATASection node does not indicate that the node represents a complete CDATA
marked section, only that the content of the node was part of a CDATA section. A single CDATA section
may be represented by more than one node in the document tree. There is no way to determine whether
two adjacent CDATASection nodes represent different CDATA marked sections.

ProcessingInstruction Objects

Represents a processing instruction in the XML document; this inherits from the Node interface and
cannot have child nodes.

target
The content of the processing instruction up to the first whitespace character. This is a read-only
attribute.

data
The content of the processing instruction following the first whitespace character.

Exceptions

New in version 2.1.

The DOM Level 2 recommendation defines a single exception, DOMException, and a number of constants
that allow applications to determine what sort of error occurred. DOMException instances carry a code
attribute that provides the appropriate value for the specific exception.

The Python DOM interface provides the constants, but also expands the set of exceptions so that a
specific exception exists for each of the exception codes defined by the DOM. The implementations
must raise the appropriate specific exception, each of which carries the appropriate value for the code
attribute.

exception DOMException
Base exception class used for all specific DOM exceptions. This exception class cannot be directly
instantiated.

exception DomstringSizeErr
Raised when a specified range of text does not fit into a string. This is not known to be used in
the Python DOM implementations, but may be received from DOM implementations not written
in Python.

exception HierarchyRequestErr
Raised when an attempt is made to insert a node where the node type is not allowed.

exception IndexSizeErr
Raised when an index or size parameter to a method is negative or exceeds the allowed values.

exception InuseAttributeErr
Raised when an attempt is made to insert an Attr node that is already present elsewhere in the
document.

358 Chapter 13. Structured Markup Processing Tools



exception InvalidAccessErr
Raised if a parameter or an operation is not supported on the underlying object.

exception InvalidCharacterErr
This exception is raised when a string parameter contains a character that is not permitted in the
context it’s being used in by the XML 1.0 recommendation. For example, attempting to create an
Element node with a space in the element type name will cause this error to be raised.

exception InvalidModificationErr
Raised when an attempt is made to modify the type of a node.

exception InvalidStateErr
Raised when an attempt is made to use an object that is not or is no longer usable.

exception NamespaceErr
If an attempt is made to change any object in a way that is not permitted with regard to the
Namespaces in XML recommendation, this exception is raised.

exception NotFoundErr
Exception when a node does not exist in the referenced context. For example,
NamedNodeMap.removeNamedItem() will raise this if the node passed in does not exist in the map.

exception NotSupportedErr
Raised when the implementation does not support the requested type of object or operation.

exception NoDataAllowedErr
This is raised if data is specified for a node which does not support data.

exception NoModificationAllowedErr
Raised on attempts to modify an object where modifications are not allowed (such as for read-only
nodes).

exception SyntaxErr
Raised when an invalid or illegal string is specified.

exception WrongDocumentErr
Raised when a node is inserted in a different document than it currently belongs to, and the
implementation does not support migrating the node from one document to the other.

The exception codes defined in the DOM recommendation map to the exceptions described above ac-
cording to this table:

Constant Exception
DOMSTRING SIZE ERR DomstringSizeErr
HIERARCHY REQUEST ERR HierarchyRequestErr
INDEX SIZE ERR IndexSizeErr
INUSE ATTRIBUTE ERR InuseAttributeErr
INVALID ACCESS ERR InvalidAccessErr
INVALID CHARACTER ERR InvalidCharacterErr
INVALID MODIFICATION ERR InvalidModificationErr
INVALID STATE ERR InvalidStateErr
NAMESPACE ERR NamespaceErr
NOT FOUND ERR NotFoundErr
NOT SUPPORTED ERR NotSupportedErr
NO DATA ALLOWED ERR NoDataAllowedErr
NO MODIFICATION ALLOWED ERR NoModificationAllowedErr
SYNTAX ERR SyntaxErr
WRONG DOCUMENT ERR WrongDocumentErr

13.5.3 Conformance

This section describes the conformance requirements and relationships between the Python DOM API,
the W3C DOM recommendations, and the OMG IDL mapping for Python.

13.5. xml.dom — The Document Object Model API 359



Type Mapping

The primitive IDL types used in the DOM specification are mapped to Python types according to the
following table.

IDL Type Python Type
boolean IntegerType (with a value of 0 or 1)
int IntegerType
long int IntegerType
unsigned int IntegerType

Additionally, the DOMString defined in the recommendation is mapped to a Python string or Unicode
string. Applications should be able to handle Unicode whenever a string is returned from the DOM.

The IDL null value is mapped to None, which may be accepted or provided by the implementation
whenever null is allowed by the API.

Accessor Methods

The mapping from OMG IDL to Python defines accessor functions for IDL attribute declarations in
much the way the Java mapping does. Mapping the IDL declarations

readonly attribute string someValue;

attribute string anotherValue;

yeilds three accessor functions: a “get” method for someValue ( get someValue()), and “get” and
“set” methods for anotherValue ( get anotherValue() and set anotherValue()). The mapping,
in particular, does not require that the IDL attributes are accessible as normal Python attributes:
object.someValue is not required to work, and may raise an AttributeError.

The Python DOM API, however, does require that normal attribute access work. This means that the
typical surrogates generated by Python IDL compilers are not likely to work, and wrapper objects may
be needed on the client if the DOM objects are accessed via CORBA. While this does require some
additional consideration for CORBA DOM clients, the implementers with experience using DOM over
CORBA from Python do not consider this a problem. Attributes that are declared readonly may not
restrict write access in all DOM implementations.

Additionally, the accessor functions are not required. If provided, they should take the form defined
by the Python IDL mapping, but these methods are considered unnecessary since the attributes are
accessible directly from Python. “Set” accessors should never be provided for readonly attributes.

13.6 xml.dom.minidom — Lightweight DOM implementation

New in version 2.0.

xml.dom.minidom is a light-weight implementation of the Document Object Model interface. It is in-
tended to be simpler than the full DOM and also significantly smaller.

DOM applications typically start by parsing some XML into a DOM. With xml.dom.minidom, this is
done through the parse functions:

360 Chapter 13. Structured Markup Processing Tools



from xml.dom.minidom import parse, parseString

dom1 = parse(’c:\\temp\\mydata.xml’) # parse an XML file by name

datasource = open(’c:\\temp\\mydata.xml’)

dom2 = parse(datasource) # parse an open file

dom3 = parseString(’<myxml>Some data<empty/> some more data</myxml>’)

The parse function can take either a filename or an open file object.

parse(filename or file, parser)
Return a Document from the given input. filename or file may be either a file name, or a file-like
object. parser , if given, must be a SAX2 parser object. This function will change the document
handler of the parser and activate namespace support; other parser configuration (like setting an
entity resolver) must have been done in advance.

If you have XML in a string, you can use the parseString() function instead:

parseString(string[, parser ])
Return a Document that represents the string . This method creates a StringIO object for the
string and passes that on to parse.

Both functions return a Document object representing the content of the document.

You can also create a Document node merely by instantiating a document object. Then you could add
child nodes to it to populate the DOM:

from xml.dom.minidom import Document

newdoc = Document()

newel = newdoc.createElement("some_tag")

newdoc.appendChild(newel)

Once you have a DOM document object, you can access the parts of your XML document through its
properties and methods. These properties are defined in the DOM specification. The main property
of the document object is the documentElement property. It gives you the main element in the XML
document: the one that holds all others. Here is an example program:

dom3 = parseString("<myxml>Some data</myxml>")

assert dom3.documentElement.tagName == "myxml"

When you are finished with a DOM, you should clean it up. This is necessary because some versions
of Python do not support garbage collection of objects that refer to each other in a cycle. Until this
restriction is removed from all versions of Python, it is safest to write your code as if cycles would not
be cleaned up.

The way to clean up a DOM is to call its unlink() method:

dom1.unlink()

dom2.unlink()

dom3.unlink()

unlink() is a xml.dom.minidom-specific extension to the DOM API. After calling unlink() on a node,
the node and its descendents are essentially useless.

See Also:

Document Object Model (DOM) Level 1 Specification

13.6. xml.dom.minidom — Lightweight DOM implementation 361



(http://www.w3.org/TR/REC-DOM-Level-1/)

The W3C recommendation for the DOM supported by xml.dom.minidom.

13.6.1 DOM objects

The definition of the DOM API for Python is given as part of the xml.dom module documentation. This
section lists the differences between the API and xml.dom.minidom.

unlink()
Break internal references within the DOM so that it will be garbage collected on versions of Python
without cyclic GC. Even when cyclic GC is available, using this can make large amounts of memory
available sooner, so calling this on DOM objects as soon as they are no longer needed is good
practice. This only needs to be called on the Document object, but may be called on child nodes
to discard children of that node.

writexml(writer)
Write XML to the writer object. The writer should have a write() method which matches that
of the file object interface.

toxml()
Return the XML that the DOM represents as a string.

The following standard DOM methods have special considerations with xml.dom.minidom:

cloneNode(deep)
Although this method was present in the version of xml.dom.minidom packaged with Python 2.0,
it was seriously broken. This has been corrected for subsequent releases.

13.6.2 DOM Example

This example program is a fairly realistic example of a simple program. In this particular case, we do
not take much advantage of the flexibility of the DOM.

362 Chapter 13. Structured Markup Processing Tools



import xml.dom.minidom

document = """\

<slideshow>

<title>Demo slideshow</title>

<slide><title>Slide title</title>

<point>This is a demo</point>

<point>Of a program for processing slides</point>

</slide>

<slide><title>Another demo slide</title>

<point>It is important</point>

<point>To have more than</point>

<point>one slide</point>

</slide>

</slideshow>

"""

dom = xml.dom.minidom.parseString(document)

space = " "

def getText(nodelist):

rc = ""

for node in nodelist:

if node.nodeType == node.TEXT_NODE:

rc = rc + node.data

return rc

def handleSlideshow(slideshow):

print "<html>"

handleSlideshowTitle(slideshow.getElementsByTagName("title")[0])

slides = slideshow.getElementsByTagName("slide")

handleToc(slides)

handleSlides(slides)

print "</html>"

def handleSlides(slides):

for slide in slides:

handleSlide(slide)

def handleSlide(slide):

handleSlideTitle(slide.getElementsByTagName("title")[0])

handlePoints(slide.getElementsByTagName("point"))

def handleSlideshowTitle(title):

print "<title>%s</title>" % getText(title.childNodes)

def handleSlideTitle(title):

print "<h2>%s</h2>" % getText(title.childNodes)

def handlePoints(points):

print "<ul>"

for point in points:

handlePoint(point)

print "</ul>"

def handlePoint(point):

print "<li>%s</li>" % getText(point.childNodes)

def handleToc(slides):

for slide in slides:

title = slide.getElementsByTagName("title")[0]

print "<p>%s</p>" % getText(title.childNodes)

handleSlideshow(dom)
13.6. xml.dom.minidom — Lightweight DOM implementation 363



13.6.3 minidom and the DOM standard

The xml.dom.minidom module is essentially a DOM 1.0-compatible DOM with some DOM 2 features
(primarily namespace features).

Usage of the DOM interface in Python is straight-forward. The following mapping rules apply:

• Interfaces are accessed through instance objects. Applications should not instantiate the classes
themselves; they should use the creator functions available on the Document object. Derived
interfaces support all operations (and attributes) from the base interfaces, plus any new operations.

• Operations are used as methods. Since the DOM uses only in parameters, the arguments are
passed in normal order (from left to right). There are no optional arguments. void operations
return None.

• IDL attributes map to instance attributes. For compatibility with the OMG IDL language mapping
for Python, an attribute foo can also be accessed through accessor methods get foo() and
set foo(). readonly attributes must not be changed; this is not enforced at runtime.

• The types short int, unsigned int, unsigned long long, and boolean all map to Python
integer objects.

• The type DOMString maps to Python strings. xml.dom.minidom supports either byte or Unicode
strings, but will normally produce Unicode strings. Attributes of type DOMString may also be
None.

• const declarations map to variables in their respective scope (e.g.
xml.dom.minidom.Node.PROCESSING INSTRUCTION NODE); they must not be changed.

• DOMException is currently not supported in xml.dom.minidom. Instead, xml.dom.minidom uses
standard Python exceptions such as TypeError and AttributeError.

• NodeList objects are implemented as Python’s built-in list type, so don’t support the official API,
but are much more “Pythonic.”

The following interfaces have no implementation in xml.dom.minidom:

• DOMTimeStamp

• DocumentType (added in Python 2.1)

• DOMImplementation (added in Python 2.1)

• CharacterData

• CDATASection

• Notation

• Entity

• EntityReference

• DocumentFragment

Most of these reflect information in the XML document that is not of general utility to most DOM users.

364 Chapter 13. Structured Markup Processing Tools



13.7 xml.dom.pulldom — Support for building partial DOM trees

New in version 2.0.

xml.dom.pulldom allows building only selected portions of a Document Object Model representation of
a document from SAX events.

class PullDOM([documentFactory ])
xml.sax.handler.ContentHandler implementation that ...

class DOMEventStream(stream, parser, bufsize)
...

class SAX2DOM([documentFactory ])
xml.sax.handler.ContentHandler implementation that ...

parse(stream or string[, parser[, bufsize ] ])
...

parseString(string[, parser ])
...

default bufsize
Default value for the busize parameter to parse(). Changed in version 2.1: The value of this
variable can be changed before calling parse() and the new value will take effect.

13.7.1 DOMEventStream Objects

getEvent()
...

expandNode(node)
...

reset()
...

13.8 xml.sax — Support for SAX2 parsers

New in version 2.0.

The xml.sax package provides a number of modules which implement the Simple API for XML (SAX)
interface for Python. The package itself provides the SAX exceptions and the convenience functions
which will be most used by users of the SAX API.

The convenience functions are:

make parser([parser list ])
Create and return a SAX XMLReader object. The first parser found will be used. If parser list
is provided, it must be a sequence of strings which name modules that have a function named
create parser(). Modules listed in parser list will be used before modules in the default list of
parsers.

parse(filename or stream, handler[, error handler ])
Create a SAX parser and use it to parse a document. The document, passed in as file-
name or stream, can be a filename or a file object. The handler parameter needs to be a SAX
ContentHandler instance. If error handler is given, it must be a SAX ErrorHandler instance; if
omitted, SAXParseException will be raised on all errors. There is no return value; all work must
be done by the handler passed in.

parseString(string, handler[, error handler ])
Similar to parse(), but parses from a buffer string received as a parameter.

13.7. xml.dom.pulldom — Support for building partial DOM trees 365



A typical SAX application uses three kinds of objects: readers, handlers and input sources. “Reader” in
this context is another term for parser, i.e. some piece of code that reads the bytes or characters from the
input source, and produces a sequence of events. The events then get distributed to the handler objects,
i.e. the reader invokes a method on the handler. A SAX application must therefore obtain a reader
object, create or open the input sources, create the handlers, and connect these objects all together. As
the final step of preparation, the reader is called to parse the input. During parsing, methods on the
handler objects are called based on structural and syntactic events from the input data.

For these objects, only the interfaces are relevant; they are normally not instantiated by the applica-
tion itself. Since Python does not have an explicit notion of interface, they are formally introduced as
classes, but applications may use implementations which do not inherit from the provided classes. The
InputSource, Locator, AttributesImpl, AttributesNSImpl, and XMLReader interfaces are defined in
the module xml.sax.xmlreader. The handler interfaces are defined in xml.sax.handler. For conve-
nience, InputSource (which is often instantiated directly) and the handler classes are also available from
xml.sax. These interfaces are described below.

In addition to these classes, xml.sax provides the following exception classes.

exception SAXException(msg[, exception ])
Encapsulate an XML error or warning. This class can contain basic error or warning information
from either the XML parser or the application: it can be subclassed to provide additional function-
ality or to add localization. Note that although the handlers defined in the ErrorHandler interface
receive instances of this exception, it is not required to actually raise the exception — it is also
useful as a container for information.

When instantiated, msg should be a human-readable description of the error. The optional excep-
tion parameter, if given, should be None or an exception that was caught by the parsing code and
is being passed along as information.

This is the base class for the other SAX exception classes.

exception SAXParseException(msg, exception, locator)
Subclass of SAXException raised on parse errors. Instances of this class are passed to the methods
of the SAX ErrorHandler interface to provide information about the parse error. This class
supports the SAX Locator interface as well as the SAXException interface.

exception SAXNotRecognizedException(msg[, exception ])
Subclass of SAXException raised when a SAX XMLReader is confronted with an unrecognized
feature or property. SAX applications and extensions may use this class for similar purposes.

exception SAXNotSupportedException(msg[, exception ])
Subclass of SAXException raised when a SAX XMLReader is asked to enable a feature that is
not supported, or to set a property to a value that the implementation does not support. SAX
applications and extensions may use this class for similar purposes.

See Also:

SAX: The Simple API for XML
(http://www.megginson.com/SAX/)

This site is the focal point for the definition of the SAX API. It provides a Java implementation
and online documentation. Links to implementations and historical information are also available.

13.8.1 SAXException Objects

The SAXException exception class supports the following methods:

getMessage()
Return a human-readable message describing the error condition.

getException()
Return an encapsulated exception object, or None.

366 Chapter 13. Structured Markup Processing Tools



13.9 xml.sax.handler — Base classes for SAX handlers

New in version 2.0.

The SAX API defines four kinds of handlers: content handlers, DTD handlers, error handlers, and entity
resolvers. Applications normally only need to implement those interfaces whose events they are interested
in; they can implement the interfaces in a single object or in multiple objects. Handler implementations
should inherit from the base classes provided in the module xml.sax, so that all methods get default
implementations.

class ContentHandler()
This is the main callback interface in SAX, and the one most important to applications. The order
of events in this interface mirrors the order of the information in the document.

class DTDHandler()
Handle DTD events.

This interface specifies only those DTD events required for basic parsing (unparsed entities and
attributes).

class EntityResolver()
Basic interface for resolving entities. If you create an object implementing this interface, then
register the object with your Parser, the parser will call the method in your object to resolve all
external entities.

class ErrorHandler()
Interface used by the parser to present error and warning messages to the application. The methods
of this object control whether errors are immediately converted to exceptions or are handled in
some other way.

In addition to these classes, xml.sax.handler provides symbolic constants for the feature and property
names.

feature namespaces
Value: "http://xml.org/sax/features/namespaces"
true: Perform Namespace processing (default).
false: Optionally do not perform Namespace processing (implies namespace-prefixes).
access: (parsing) read-only; (not parsing) read/write

feature namespace prefixes
Value: "http://xml.org/sax/features/namespace-prefixes"
true: Report the original prefixed names and attributes used for Namespace declarations.
false: Do not report attributes used for Namespace declarations, and optionally do not report
original prefixed names (default).
access: (parsing) read-only; (not parsing) read/write

feature string interning
Value: "http://xml.org/sax/features/string-interning" true: All element names, prefixes,
attribute names, Namespace URIs, and local names are interned using the built-in intern function.
false: Names are not necessarily interned, although they may be (default).
access: (parsing) read-only; (not parsing) read/write

feature validation
Value: "http://xml.org/sax/features/validation"
true: Report all validation errors (implies external-general-entities and external-parameter-
entities).
false: Do not report validation errors.
access: (parsing) read-only; (not parsing) read/write

feature external ges
Value: "http://xml.org/sax/features/external-general-entities"
true: Include all external general (text) entities.
false: Do not include external general entities.

13.9. xml.sax.handler — Base classes for SAX handlers 367



access: (parsing) read-only; (not parsing) read/write

feature external pes
Value: "http://xml.org/sax/features/external-parameter-entities"
true: Include all external parameter entities, including the external DTD subset.
false: Do not include any external parameter entities, even the external DTD subset.
access: (parsing) read-only; (not parsing) read/write

all features
List of all features.

property lexical handler
Value: "http://xml.org/sax/properties/lexical-handler"
data type: xml.sax.sax2lib.LexicalHandler (not supported in Python 2)
description: An optional extension handler for lexical events like comments.
access: read/write

property declaration handler
Value: "http://xml.org/sax/properties/declaration-handler"
data type: xml.sax.sax2lib.DeclHandler (not supported in Python 2)
description: An optional extension handler for DTD-related events other than notations and un-
parsed entities.
access: read/write

property dom node
Value: "http://xml.org/sax/properties/dom-node"
data type: org.w3c.dom.Node (not supported in Python 2)
description: When parsing, the current DOM node being visited if this is a DOM iterator; when
not parsing, the root DOM node for iteration.
access: (parsing) read-only; (not parsing) read/write

property xml string
Value: "http://xml.org/sax/properties/xml-string"
data type: String
description: The literal string of characters that was the source for the current event.
access: read-only

all properties
List of all known property names.

13.9.1 ContentHandler Objects

Users are expected to subclass ContentHandler to support their application. The following methods are
called by the parser on the appropriate events in the input document:

setDocumentLocator(locator)
Called by the parser to give the application a locator for locating the origin of document events.

SAX parsers are strongly encouraged (though not absolutely required) to supply a locator: if it
does so, it must supply the locator to the application by invoking this method before invoking any
of the other methods in the DocumentHandler interface.

The locator allows the application to determine the end position of any document-related event,
even if the parser is not reporting an error. Typically, the application will use this information for
reporting its own errors (such as character content that does not match an application’s business
rules). The information returned by the locator is probably not sufficient for use with a search
engine.

Note that the locator will return correct information only during the invocation of the events in
this interface. The application should not attempt to use it at any other time.

startDocument()
Receive notification of the beginning of a document.

The SAX parser will invoke this method only once, before any other methods in this interface or

368 Chapter 13. Structured Markup Processing Tools



in DTDHandler (except for setDocumentLocator()).

endDocument()
Receive notification of the end of a document.

The SAX parser will invoke this method only once, and it will be the last method invoked during
the parse. The parser shall not invoke this method until it has either abandoned parsing (because
of an unrecoverable error) or reached the end of input.

startPrefixMapping(prefix, uri)
Begin the scope of a prefix-URI Namespace mapping.

The information from this event is not necessary for normal Namespace processing: the SAX
XML reader will automatically replace prefixes for element and attribute names when the
http://xml.org/sax/features/namespaces feature is true (the default).

There are cases, however, when applications need to use prefixes in character data or in attribute
values, where they cannot safely be expanded automatically; the start/endPrefixMapping event
supplies the information to the application to expand prefixes in those contexts itself, if necessary.

Note that start/endPrefixMapping events are not guaranteed to be properly nested relative to
each-other: all startPrefixMapping() events will occur before the corresponding startElement
event, and all endPrefixMapping() events will occur after the corresponding endElement() event,
but their order is not guaranteed.

endPrefixMapping(prefix)
End the scope of a prefix-URI mapping.

See startPrefixMapping() for details. This event will always occur after the corresponding en-
dElement event, but the order of endPrefixMapping events is not otherwise guaranteed.

startElement(name, attrs)
Signals the start of an element in non-namespace mode.

The name parameter contains the raw XML 1.0 name of the element type as a string and the attrs
parameter holds an instance of the Attributes class containing the attributes of the element.

endElement(name)
Signals the end of an element in non-namespace mode.

The name parameter contains the name of the element type, just as with the startElement event.

startElementNS(name, qname, attrs)
Signals the start of an element in namespace mode.

The name parameter contains the name of the element type as a (uri, localname) tuple, the qname
parameter the raw XML 1.0 name used in the source document, and the attrs parameter holds an
instance of the AttributesNS class containing the attributes of the element.

Parsers may set the qname parameter to None, unless the
http://xml.org/sax/features/namespace-prefixes feature is activated.

endElementNS(name, qname)
Signals the end of an element in namespace mode.

The name parameter contains the name of the element type, just as with the startElementNS
event, likewise the qname parameter.

characters(content)
Receive notification of character data.

The Parser will call this method to report each chunk of character data. SAX parsers may return
all contiguous character data in a single chunk, or they may split it into several chunks; however, all
of the characters in any single event must come from the same external entity so that the Locator
provides useful information.

content may be a Unicode string or a byte string; the expat reader module produces always Unicode
strings.

Note: The earlier SAX 1 interface provided by the Python XML Special Interest Group used
a more Java-like interface for this method. Since most parsers used from Python did not take

13.9. xml.sax.handler — Base classes for SAX handlers 369



advantage of the older interface, the simpler signature was chosen to replace it. To convert old
code to the new interface, use content instead of slicing content with the old offset and length
parameters.

ignorableWhitespace()
Receive notification of ignorable whitespace in element content.

Validating Parsers must use this method to report each chunk of ignorable whitespace (see the
W3C XML 1.0 recommendation, section 2.10): non-validating parsers may also use this method if
they are capable of parsing and using content models.

SAX parsers may return all contiguous whitespace in a single chunk, or they may split it into
several chunks; however, all of the characters in any single event must come from the same external
entity, so that the Locator provides useful information.

processingInstruction(target, data)
Receive notification of a processing instruction.

The Parser will invoke this method once for each processing instruction found: note that processing
instructions may occur before or after the main document element.

A SAX parser should never report an XML declaration (XML 1.0, section 2.8) or a text declaration
(XML 1.0, section 4.3.1) using this method.

skippedEntity(name)
Receive notification of a skipped entity.

The Parser will invoke this method once for each entity skipped. Non-validating processors
may skip entities if they have not seen the declarations (because, for example, the entity
was declared in an external DTD subset). All processors may skip external entities, depend-
ing on the values of the http://xml.org/sax/features/external-general-entities and the
http://xml.org/sax/features/external-parameter-entities properties.

13.9.2 DTDHandler Objects

DTDHandler instances provide the following methods:

notationDecl(name, publicId, systemId)
Handle a notation declaration event.

unparsedEntityDecl(name, publicId, systemId, ndata)
Handle an unparsed entity declaration event.

13.9.3 EntityResolver Objects

resolveEntity(publicId, systemId)
Resolve the system identifier of an entity and return either the system identifier to read from as a
string, or an InputSource to read from. The default implementation returns systemId .

13.9.4 ErrorHandler Objects

Objects with this interface are used to receive error and warning information from the XMLReader. If
you create an object that implements this interface, then register the object with your XMLReader, the
parser will call the methods in your object to report all warnings and errors. There are three levels of
errors available: warnings, (possibly) recoverable errors, and unrecoverable errors. All methods take a
SAXParseException as the only parameter. Errors and warnings may be converted to an exception by
raising the passed-in exception object.

error(exception)
Called when the parser encounters a recoverable error. If this method does not raise an exception,
parsing may continue, but further document information should not be expected by the application.
Allowing the parser to continue may allow additional errors to be discovered in the input document.

370 Chapter 13. Structured Markup Processing Tools



fatalError(exception)
Called when the parser encounters an error it cannot recover from; parsing is expected to terminate
when this method returns.

warning(exception)
Called when the parser presents minor warning information to the application. Parsing is expected
to continue when this method returns, and document information will continue to be passed to the
application. Raising an exception in this method will cause parsing to end.

13.10 xml.sax.saxutils — SAX Utilities

New in version 2.0.

The module xml.sax.saxutils contains a number of classes and functions that are commonly useful
when creating SAX applications, either in direct use, or as base classes.

escape(data[, entities ])
Escape &, ¡, and ¿ in a string of data.

You can escape other strings of data by passing a dictionary as the optional entities parameter.
The keys and values must all be strings; each key will be replaced with its corresponding value.

class XMLGenerator([out[, encoding ] ])
This class implements the ContentHandler interface by writing SAX events back into an XML
document. In other words, using an XMLGenerator as the content handler will reproduce the
original document being parsed. out should be a file-like object which will default to sys.stdout .
encoding is the encoding of the output stream which defaults to ’iso-8859-1’.

class XMLFilterBase(base)
This class is designed to sit between an XMLReader and the client application’s event handlers. By
default, it does nothing but pass requests up to the reader and events on to the handlers unmodi-
fied, but subclasses can override specific methods to modify the event stream or the configuration
requests as they pass through.

prepare input source(source[, base ])
This function takes an input source and an optional base URL and returns a fully resolved
InputSource object ready for reading. The input source can be given as a string, a file-like
object, or an InputSource object; parsers will use this function to implement the polymorphic
source argument to their parse() method.

13.11 xml.sax.xmlreader — Interface for XML parsers

New in version 2.0.

SAX parsers implement the XMLReader interface. They are implemented in a Python module, which
must provide a function create parser(). This function is invoked by xml.sax.make parser() with
no arguments to create a new parser object.

class XMLReader()
Base class which can be inherited by SAX parsers.

class IncrementalParser()
In some cases, it is desirable not to parse an input source at once, but to feed chunks of the
document as they get available. Note that the reader will normally not read the entire file, but
read it in chunks as well; still parse() won’t return until the entire document is processed. So
these interfaces should be used if the blocking behaviour of parse() is not desirable.

When the parser is instantiated it is ready to begin accepting data from the feed method immedi-
ately. After parsing has been finished with a call to close the reset method must be called to make
the parser ready to accept new data, either from feed or using the parse method.

13.10. xml.sax.saxutils — SAX Utilities 371



Note that these methods must not be called during parsing, that is, after parse has been called and
before it returns.

By default, the class also implements the parse method of the XMLReader interface using the feed,
close and reset methods of the IncrementalParser interface as a convenience to SAX 2.0 driver
writers.

class Locator()
Interface for associating a SAX event with a document location. A locator object will return
valid results only during calls to DocumentHandler methods; at any other time, the results are
unpredictable. If information is not available, methods may return None.

class InputSource([systemId ])
Encapsulation of the information needed by the XMLReader to read entities.

This class may include information about the public identifier, system identifier, byte stream (pos-
sibly with character encoding information) and/or the character stream of an entity.

Applications will create objects of this class for use in the XMLReader.parse() method and for
returning from EntityResolver.resolveEntity.

An InputSource belongs to the application, the XMLReader is not allowed to modify InputSource
objects passed to it from the application, although it may make copies and modify those.

class AttributesImpl(attrs)
This is a dictionary-like object which represents the element attributes in a startElement() call.
In addition to the most useful dictionary operations, it supports a number of other methods as
described below. Objects of this class should be instantiated by readers; attrs must be a dictionary-
like object.

class AttributesNSImpl(attrs, qnames)
Namespace-aware variant of attributes, which will be passed to startElementNS(). It is derived
from AttributesImpl, but understands attribute names as two-tuples of namespaceURI and lo-
calname. In addition, it provides a number of methods expecting qualified names as they appear
in the original document.

13.11.1 XMLReader Objects

The XMLReader interface supports the following methods:

parse(source)
Process an input source, producing SAX events. The source object can be a system identifier (i.e.
a string identifying the input source – typically a file name or an URL), a file-like object, or an
InputSource object. When parse() returns, the input is completely processed, and the parser
object can be discarded or reset. As a limitation, the current implementation only accepts byte
streams; processing of character streams is for further study.

getContentHandler()
Return the current ContentHandler.

setContentHandler(handler)
Set the current ContentHandler. If no ContentHandler is set, content events will be discarded.

getDTDHandler()
Return the current DTDHandler.

setDTDHandler(handler)
Set the current DTDHandler. If no DTDHandler is set, DTD events will be discarded.

getEntityResolver()
Return the current EntityResolver.

setEntityResolver(handler)
Set the current EntityResolver. If no EntityResolver is set, attempts to resolve an external
entity will result in opening the system identifier for the entity, and fail if it is not available.

372 Chapter 13. Structured Markup Processing Tools



getErrorHandler()
Return the current ErrorHandler.

setErrorHandler(handler)
Set the current error handler. If no ErrorHandler is set, errors will be raised as exceptions, and
warnings will be printed.

setLocale(locale)
Allow an application to set the locale for errors and warnings.

SAX parsers are not required to provide localization for errors and warnings; if they cannot support
the requested locale, however, they must throw a SAX exception. Applications may request a locale
change in the middle of a parse.

getFeature(featurename)
Return the current setting for feature featurename. If the feature is not recognized,
SAXNotRecognizedException is raised. The well-known featurenames are listed in the module
xml.sax.handler.

setFeature(featurename, value)
Set the featurename to value. If the feature is not recognized, SAXNotRecognizedException is
raised. If the feature or its setting is not supported by the parser, SAXNotSupportedException is
raised.

getProperty(propertyname)
Return the current setting for property propertyname. If the property is not recognized, a
SAXNotRecognizedException is raised. The well-known propertynames are listed in the module
xml.sax.handler.

setProperty(propertyname, value)
Set the propertyname to value. If the property is not recognized, SAXNotRecognizedException is
raised. If the property or its setting is not supported by the parser, SAXNotSupportedException is
raised.

13.11.2 IncrementalParser Objects

Instances of IncrementalParser offer the following additional methods:

feed(data)
Process a chunk of data.

close()
Assume the end of the document. That will check well-formedness conditions that can be checked
only at the end, invoke handlers, and may clean up resources allocated during parsing.

reset()
This method is called after close has been called to reset the parser so that it is ready to parse new
documents. The results of calling parse or feed after close without calling reset are undefined.”””

13.11.3 Locator Objects

Instances of Locator provide these methods:

getColumnNumber()
Return the column number where the current event ends.

getLineNumber()
Return the line number where the current event ends.

getPublicId()
Return the public identifier for the current event.

getSystemId()
Return the system identifier for the current event.

13.11. xml.sax.xmlreader — Interface for XML parsers 373



13.11.4 InputSource Objects

setPublicId(id)
Sets the public identifier of this InputSource.

getPublicId()
Returns the public identifier of this InputSource.

setSystemId(id)
Sets the system identifier of this InputSource.

getSystemId()
Returns the system identifier of this InputSource.

setEncoding(encoding)
Sets the character encoding of this InputSource.

The encoding must be a string acceptable for an XML encoding declaration (see section 4.3.3 of
the XML recommendation).

The encoding attribute of the InputSource is ignored if the InputSource also contains a character
stream.

getEncoding()
Get the character encoding of this InputSource.

setByteStream(bytefile)
Set the byte stream (a Python file-like object which does not perform byte-to-character conversion)
for this input source.

The SAX parser will ignore this if there is also a character stream specified, but it will use a byte
stream in preference to opening a URI connection itself.

If the application knows the character encoding of the byte stream, it should set it with the
setEncoding method.

getByteStream()
Get the byte stream for this input source.

The getEncoding method will return the character encoding for this byte stream, or None if un-
known.

setCharacterStream(charfile)
Set the character stream for this input source. (The stream must be a Python 1.6 Unicode-wrapped
file-like that performs conversion to Unicode strings.)

If there is a character stream specified, the SAX parser will ignore any byte stream and will not
attempt to open a URI connection to the system identifier.

getCharacterStream()
Get the character stream for this input source.

13.11.5 AttributesImpl Objects

AttributesImpl objects implement a portion of the mapping protocol, and the methods copy(), get(),
has key(), items(), keys(), and values(). The following methods are also provided:

getLength()
Return the number of attributes.

getNames()
Return the names of the attributes.

getType(name)
Returns the type of the attribute name, which is normally ’CDATA’.

getValue(name)
Return the value of attribute name.

374 Chapter 13. Structured Markup Processing Tools



13.11.6 AttributesNSImpl Objects

getValueByQName(name)
Return the value for a qualified name.

getNameByQName(name)
Return the (namespace, localname) pair for a qualified name.

getQNameByName(name)
Return the qualified name for a (namespace, localname) pair.

getQNames()
Return the qualified names of all attributes.

13.12 xmllib — A parser for XML documents

Deprecated since release 2.0. Use xml.sax instead. The newer XML package includes full support
for XML 1.0.

Changed in version 1.5.2: Added namespace support..

This module defines a class XMLParser which serves as the basis for parsing text files formatted in XML
(Extensible Markup Language).

class XMLParser()
The XMLParser class must be instantiated without arguments.1

This class provides the following interface methods and instance variables:

attributes
A mapping of element names to mappings. The latter mapping maps attribute names that are
valid for the element to the default value of the attribute, or if there is no default to None. The
default value is the empty dictionary. This variable is meant to be overridden, not extended since
the default is shared by all instances of XMLParser.

elements
A mapping of element names to tuples. The tuples contain a function for handling the start and end
tag respectively of the element, or None if the method unknown starttag() or unknown endtag()
is to be called. The default value is the empty dictionary. This variable is meant to be overridden,
not extended since the default is shared by all instances of XMLParser.

entitydefs
A mapping of entitynames to their values. The default value contains definitions for ’lt’, ’gt’,
’amp’, ’quot’, and ’apos’.

reset()
Reset the instance. Loses all unprocessed data. This is called implicitly at the instantiation time.

setnomoretags()
Stop processing tags. Treat all following input as literal input (CDATA).

setliteral()
Enter literal mode (CDATA mode). This mode is automatically exited when the close tag matching
the last unclosed open tag is encountered.

1Actually, a number of keyword arguments are recognized which influence the parser to accept certain non-standard

constructs. The following keyword arguments are currently recognized. The defaults for all of these is 0 (false) except

for the last one for which the default is 1 (true). accept unquoted attributes (accept certain attribute values
without requiring quotes), accept missing endtag name (accept end tags that look like </>), map case
(map upper case to lower case in tags and attributes), accept utf8 (allow UTF-8 characters in input;
this is required according to the XML standard, but Python does not as yet deal properly with these
characters, so this is not the default), translate attribute references (don’t attempt to translate character
and entity references in attribute values).

13.12. xmllib — A parser for XML documents 375



feed(data)
Feed some text to the parser. It is processed insofar as it consists of complete tags; incomplete
data is buffered until more data is fed or close() is called.

close()
Force processing of all buffered data as if it were followed by an end-of-file mark. This method
may be redefined by a derived class to define additional processing at the end of the input, but the
redefined version should always call close().

translate references(data)
Translate all entity and character references in data and return the translated string.

getnamespace()
Return a mapping of namespace abbreviations to namespace URIs that are currently in effect.

handle xml(encoding, standalone)
This method is called when the ‘<?xml ...?>’ tag is processed. The arguments are the values of
the encoding and standalone attributes in the tag. Both encoding and standalone are optional.
The values passed to handle xml() default to None and the string ’no’ respectively.

handle doctype(tag, pubid, syslit, data)
This method is called when the ‘<!DOCTYPE...>’ declaration is processed. The arguments are the
tag name of the root element, the Formal Public Identifier (or None if not specified), the system
identifier, and the uninterpreted contents of the internal DTD subset as a string (or None if not
present).

handle starttag(tag, method, attributes)
This method is called to handle start tags for which a start tag handler is defined in the instance
variable elements. The tag argument is the name of the tag, and the method argument is the
function (method) which should be used to support semantic interpretation of the start tag. The
attributes argument is a dictionary of attributes, the key being the name and the value being the
value of the attribute found inside the tag’s <> brackets. Character and entity references in the
value have been interpreted. For instance, for the start tag <A HREF="http://www.cwi.nl/">,
this method would be called as handle starttag(’A’, self.elements[’A’][0], {’HREF’:
’http://www.cwi.nl/’}). The base implementation simply calls method with attributes as the
only argument.

handle endtag(tag, method)
This method is called to handle endtags for which an end tag handler is defined in the instance vari-
able elements. The tag argument is the name of the tag, and the method argument is the function
(method) which should be used to support semantic interpretation of the end tag. For instance, for
the endtag </A>, this method would be called as handle endtag(’A’, self.elements[’A’][1]).
The base implementation simply calls method .

handle data(data)
This method is called to process arbitrary data. It is intended to be overridden by a derived class;
the base class implementation does nothing.

handle charref(ref )
This method is called to process a character reference of the form ‘&#ref ;’. ref can either be a
decimal number, or a hexadecimal number when preceded by an ‘x’. In the base implementation,
ref must be a number in the range 0-255. It translates the character to ascii and calls the method
handle data() with the character as argument. If ref is invalid or out of range, the method
unknown charref(ref ) is called to handle the error. A subclass must override this method to
provide support for character references outside of the ascii range.

handle comment(comment)
This method is called when a comment is encountered. The comment argument is a string contain-
ing the text between the ‘<!--’ and ‘-->’ delimiters, but not the delimiters themselves. For example,
the comment ‘<!--text-->’ will cause this method to be called with the argument ’text’. The
default method does nothing.

handle cdata(data)
This method is called when a CDATA element is encountered. The data argument is a string

376 Chapter 13. Structured Markup Processing Tools



containing the text between the ‘<![CDATA[’ and ‘]]>’ delimiters, but not the delimiters themselves.
For example, the entity ‘<![CDATA[text]]>’ will cause this method to be called with the argument
’text’. The default method does nothing, and is intended to be overridden.

handle proc(name, data)
This method is called when a processing instruction (PI) is encountered. The name is the PI
target, and the data argument is a string containing the text between the PI target and the closing
delimiter, but not the delimiter itself. For example, the instruction ‘<?XML text?>’ will cause this
method to be called with the arguments ’XML’ and ’text’. The default method does nothing.
Note that if a document starts with ‘<?xml ..?>’, handle xml() is called to handle it.

handle special(data)
This method is called when a declaration is encountered. The data argument is a string containing
the text between the ‘<!’ and ‘>’ delimiters, but not the delimiters themselves. For example, the
entity declaration ‘<!ENTITY text>’ will cause this method to be called with the argument ’ENTITY
text’. The default method does nothing. Note that ‘<!DOCTYPE ...>’ is handled separately if it
is located at the start of the document.

syntax error(message)
This method is called when a syntax error is encountered. The message is a description of what
was wrong. The default method raises a RuntimeError exception. If this method is overridden, it
is permissible for it to return. This method is only called when the error can be recovered from.
Unrecoverable errors raise a RuntimeError without first calling syntax error().

unknown starttag(tag, attributes)
This method is called to process an unknown start tag. It is intended to be overridden by a derived
class; the base class implementation does nothing.

unknown endtag(tag)
This method is called to process an unknown end tag. It is intended to be overridden by a derived
class; the base class implementation does nothing.

unknown charref(ref )
This method is called to process unresolvable numeric character references. It is intended to be
overridden by a derived class; the base class implementation does nothing.

unknown entityref(ref )
This method is called to process an unknown entity reference. It is intended to be overridden by
a derived class; the base class implementation calls syntax error() to signal an error.

See Also:

Extensible Markup Language (XML) 1.0
(http://www.w3.org/TR/REC-xml)

The XML specification, published by the World Wide Web Consortium (W3C), defines the syn-
tax and processor requirements for XML. References to additional material on XML, including
translations of the specification, are available at http://www.w3.org/XML/.

Python and XML Processing
(http://www.python.org/topics/xml/)

The Python XML Topic Guide provides a great deal of information on using XML from Python
and links to other sources of information on XML.

SIG for XML Processing in Python
(http://www.python.org/sigs/xml-sig/)

The Python XML Special Interest Group is developing substantial support for processing XML
from Python.

13.12.1 XML Namespaces

This module has support for XML namespaces as defined in the XML Namespaces proposed recommen-
dation.

Tag and attribute names that are defined in an XML namespace are handled as if the

13.12. xmllib — A parser for XML documents 377



name of the tag or element consisted of the namespace (i.e. the URL that defines the
namespace) followed by a space and the name of the tag or attribute. For instance, the
tag <html xmlns=’http://www.w3.org/TR/REC-html40’> is treated as if the tag name was
’http://www.w3.org/TR/REC-html40 html’, and the tag <html:a href=’http://frob.com’> inside
the above mentioned element is treated as if the tag name were ’http://www.w3.org/TR/REC-html40
a’ and the attribute name as if it were ’http://www.w3.org/TR/REC-html40 href’.

An older draft of the XML Namespaces proposal is also recognized, but triggers a warning.

See Also:

Namespaces in XML
(http://www.w3.org/TR/REC-xml-names/)

This World-Wide Web Consortium recommendation describes the proper syntax and processing
requirements for namespaces in XML.

378 Chapter 13. Structured Markup Processing Tools



CHAPTER

FOURTEEN

Multimedia Services

The modules described in this chapter implement various algorithms or interfaces that are mainly useful
for multimedia applications. They are available at the discretion of the installation. Here’s an overview:

audioop Manipulate raw audio data.
imageop Manipulate raw image data.
aifc Read and write audio files in AIFF or AIFC format.
sunau Provide an interface to the Sun AU sound format.
wave Provide an interface to the WAV sound format.
chunk Module to read IFF chunks.
colorsys Conversion functions between RGB and other color systems.
rgbimg Read and write image files in “SGI RGB” format (the module is not SGI specific though!).
imghdr Determine the type of image contained in a file or byte stream.
sndhdr Determine type of a sound file.

14.1 audioop — Manipulate raw audio data

The audioop module contains some useful operations on sound fragments. It operates on sound fragments
consisting of signed integer samples 8, 16 or 32 bits wide, stored in Python strings. This is the same
format as used by the al and sunaudiodev modules. All scalar items are integers, unless specified
otherwise.

This module provides support for u-LAW and Intel/DVI ADPCM encodings.

A few of the more complicated operations only take 16-bit samples, otherwise the sample size (in bytes)
is always a parameter of the operation.

The module defines the following variables and functions:

exception error
This exception is raised on all errors, such as unknown number of bytes per sample, etc.

add(fragment1, fragment2, width)
Return a fragment which is the addition of the two samples passed as parameters. width is the
sample width in bytes, either 1, 2 or 4. Both fragments should have the same length.

adpcm2lin(adpcmfragment, width, state)
Decode an Intel/DVI ADPCM coded fragment to a linear fragment. See the description of
lin2adpcm() for details on ADPCM coding. Return a tuple (sample, newstate) where the sample
has the width specified in width.

adpcm32lin(adpcmfragment, width, state)
Decode an alternative 3-bit ADPCM code. See lin2adpcm3() for details.

avg(fragment, width)
Return the average over all samples in the fragment.

avgpp(fragment, width)
Return the average peak-peak value over all samples in the fragment. No filtering is done, so the

379



usefulness of this routine is questionable.

bias(fragment, width, bias)
Return a fragment that is the original fragment with a bias added to each sample.

cross(fragment, width)
Return the number of zero crossings in the fragment passed as an argument.

findfactor(fragment, reference)
Return a factor F such that rms(add(fragment, mul(reference, -F))) is minimal, i.e., return the
factor with which you should multiply reference to make it match as well as possible to fragment .
The fragments should both contain 2-byte samples.

The time taken by this routine is proportional to len(fragment).

findfit(fragment, reference)
Try to match reference as well as possible to a portion of fragment (which should be the longer
fragment). This is (conceptually) done by taking slices out of fragment , using findfactor() to
compute the best match, and minimizing the result. The fragments should both contain 2-byte
samples. Return a tuple (offset, factor) where offset is the (integer) offset into fragment where
the optimal match started and factor is the (floating-point) factor as per findfactor().

findmax(fragment, length)
Search fragment for a slice of length length samples (not bytes!) with maximum energy, i.e., return
i for which rms(fragment[i*2:(i+length)*2]) is maximal. The fragments should both contain
2-byte samples.

The routine takes time proportional to len(fragment).

getsample(fragment, width, index)
Return the value of sample index from the fragment.

lin2lin(fragment, width, newwidth)
Convert samples between 1-, 2- and 4-byte formats.

lin2adpcm(fragment, width, state)
Convert samples to 4 bit Intel/DVI ADPCM encoding. ADPCM coding is an adaptive coding
scheme, whereby each 4 bit number is the difference between one sample and the next, divided by
a (varying) step. The Intel/DVI ADPCM algorithm has been selected for use by the IMA, so it
may well become a standard.

state is a tuple containing the state of the coder. The coder returns a tuple (adpcmfrag, newstate),
and the newstate should be passed to the next call of lin2adpcm(). In the initial call, None can
be passed as the state. adpcmfrag is the ADPCM coded fragment packed 2 4-bit values per byte.

lin2adpcm3(fragment, width, state)
This is an alternative ADPCM coder that uses only 3 bits per sample. It is not compatible with the
Intel/DVI ADPCM coder and its output is not packed (due to laziness on the side of the author).
Its use is discouraged.

lin2ulaw(fragment, width)
Convert samples in the audio fragment to u-LAW encoding and return this as a Python string.
u-LAW is an audio encoding format whereby you get a dynamic range of about 14 bits using only
8 bit samples. It is used by the Sun audio hardware, among others.

minmax(fragment, width)
Return a tuple consisting of the minimum and maximum values of all samples in the sound fragment.

max(fragment, width)
Return the maximum of the absolute value of all samples in a fragment.

maxpp(fragment, width)
Return the maximum peak-peak value in the sound fragment.

mul(fragment, width, factor)
Return a fragment that has all samples in the original fragment multiplied by the floating-point
value factor . Overflow is silently ignored.

380 Chapter 14. Multimedia Services



ratecv(fragment, width, nchannels, inrate, outrate, state[, weightA[, weightB ] ])
Convert the frame rate of the input fragment.

state is a tuple containing the state of the converter. The converter returns a tuple (newfragment,
newstate), and newstate should be passed to the next call of ratecv().

The weightA and weightB arguments are parameters for a simple digital filter and default to 1 and
0 respectively.

reverse(fragment, width)
Reverse the samples in a fragment and returns the modified fragment.

rms(fragment, width)
Return the root-mean-square of the fragment, i.e.√∑

Si
2

n

This is a measure of the power in an audio signal.

tomono(fragment, width, lfactor, rfactor)
Convert a stereo fragment to a mono fragment. The left channel is multiplied by lfactor and the
right channel by rfactor before adding the two channels to give a mono signal.

tostereo(fragment, width, lfactor, rfactor)
Generate a stereo fragment from a mono fragment. Each pair of samples in the stereo fragment
are computed from the mono sample, whereby left channel samples are multiplied by lfactor and
right channel samples by rfactor .

ulaw2lin(fragment, width)
Convert sound fragments in u-LAW encoding to linearly encoded sound fragments. u-LAW encod-
ing always uses 8 bits samples, so width refers only to the sample width of the output fragment
here.

Note that operations such as mul() or max() make no distinction between mono and stereo fragments,
i.e. all samples are treated equal. If this is a problem the stereo fragment should be split into two mono
fragments first and recombined later. Here is an example of how to do that:

def mul_stereo(sample, width, lfactor, rfactor):

lsample = audioop.tomono(sample, width, 1, 0)

rsample = audioop.tomono(sample, width, 0, 1)

lsample = audioop.mul(sample, width, lfactor)

rsample = audioop.mul(sample, width, rfactor)

lsample = audioop.tostereo(lsample, width, 1, 0)

rsample = audioop.tostereo(rsample, width, 0, 1)

return audioop.add(lsample, rsample, width)

If you use the ADPCM coder to build network packets and you want your protocol to be stateless (i.e.
to be able to tolerate packet loss) you should not only transmit the data but also the state. Note that
you should send the initial state (the one you passed to lin2adpcm()) along to the decoder, not the
final state (as returned by the coder). If you want to use struct.struct() to store the state in binary
you can code the first element (the predicted value) in 16 bits and the second (the delta index) in 8.

The ADPCM coders have never been tried against other ADPCM coders, only against themselves. It
could well be that I misinterpreted the standards in which case they will not be interoperable with the
respective standards.

The find*() routines might look a bit funny at first sight. They are primarily meant to do echo
cancellation. A reasonably fast way to do this is to pick the most energetic piece of the output sample,
locate that in the input sample and subtract the whole output sample from the input sample:

14.1. audioop — Manipulate raw audio data 381



def echocancel(outputdata, inputdata):

pos = audioop.findmax(outputdata, 800) # one tenth second

out_test = outputdata[pos*2:]

in_test = inputdata[pos*2:]

ipos, factor = audioop.findfit(in_test, out_test)

# Optional (for better cancellation):

# factor = audioop.findfactor(in_test[ipos*2:ipos*2+len(out_test)],

# out_test)

prefill = ’\0’*(pos+ipos)*2

postfill = ’\0’*(len(inputdata)-len(prefill)-len(outputdata))

outputdata = prefill + audioop.mul(outputdata,2,-factor) + postfill

return audioop.add(inputdata, outputdata, 2)

14.2 imageop — Manipulate raw image data

The imageop module contains some useful operations on images. It operates on images consisting of 8
or 32 bit pixels stored in Python strings. This is the same format as used by gl.lrectwrite() and the
imgfile module.

The module defines the following variables and functions:

exception error
This exception is raised on all errors, such as unknown number of bits per pixel, etc.

crop(image, psize, width, height, x0, y0, x1, y1)
Return the selected part of image, which should by width by height in size and consist of pixels
of psize bytes. x0 , y0 , x1 and y1 are like the gl.lrectread() parameters, i.e. the boundary is
included in the new image. The new boundaries need not be inside the picture. Pixels that fall
outside the old image will have their value set to zero. If x0 is bigger than x1 the new image is
mirrored. The same holds for the y coordinates.

scale(image, psize, width, height, newwidth, newheight)
Return image scaled to size newwidth by newheight . No interpolation is done, scaling is done by
simple-minded pixel duplication or removal. Therefore, computer-generated images or dithered
images will not look nice after scaling.

tovideo(image, psize, width, height)
Run a vertical low-pass filter over an image. It does so by computing each destination pixel as the
average of two vertically-aligned source pixels. The main use of this routine is to forestall excessive
flicker if the image is displayed on a video device that uses interlacing, hence the name.

grey2mono(image, width, height, threshold)
Convert a 8-bit deep greyscale image to a 1-bit deep image by thresholding all the pixels. The
resulting image is tightly packed and is probably only useful as an argument to mono2grey().

dither2mono(image, width, height)
Convert an 8-bit greyscale image to a 1-bit monochrome image using a (simple-minded) dithering
algorithm.

mono2grey(image, width, height, p0, p1)
Convert a 1-bit monochrome image to an 8 bit greyscale or color image. All pixels that are zero-
valued on input get value p0 on output and all one-value input pixels get value p1 on output. To
convert a monochrome black-and-white image to greyscale pass the values 0 and 255 respectively.

grey2grey4(image, width, height)
Convert an 8-bit greyscale image to a 4-bit greyscale image without dithering.

grey2grey2(image, width, height)
Convert an 8-bit greyscale image to a 2-bit greyscale image without dithering.

dither2grey2(image, width, height)

382 Chapter 14. Multimedia Services



Convert an 8-bit greyscale image to a 2-bit greyscale image with dithering. As for dither2mono(),
the dithering algorithm is currently very simple.

grey42grey(image, width, height)
Convert a 4-bit greyscale image to an 8-bit greyscale image.

grey22grey(image, width, height)
Convert a 2-bit greyscale image to an 8-bit greyscale image.

14.3 aifc — Read and write AIFF and AIFC files

This module provides support for reading and writing AIFF and AIFF-C files. AIFF is Audio Interchange
File Format, a format for storing digital audio samples in a file. AIFF-C is a newer version of the format
that includes the ability to compress the audio data.

Caveat: Some operations may only work under IRIX; these will raise ImportError when attempting
to import the cl module, which is only available on IRIX.

Audio files have a number of parameters that describe the audio data. The sampling rate or frame rate
is the number of times per second the sound is sampled. The number of channels indicate if the audio
is mono, stereo, or quadro. Each frame consists of one sample per channel. The sample size is the size
in bytes of each sample. Thus a frame consists of nchannels*samplesize bytes, and a second’s worth of
audio consists of nchannels*samplesize*framerate bytes.

For example, CD quality audio has a sample size of two bytes (16 bits), uses two channels (stereo) and
has a frame rate of 44,100 frames/second. This gives a frame size of 4 bytes (2*2), and a second’s worth
occupies 2*2*44100 bytes, i.e. 176,400 bytes.

Module aifc defines the following function:

open(file[, mode ])
Open an AIFF or AIFF-C file and return an object instance with methods that are described
below. The argument file is either a string naming a file or a file object. mode must be ’r’ or
’rb’ when the file must be opened for reading, or ’w’ or ’wb’ when the file must be opened for
writing. If omitted, file.mode is used if it exists, otherwise ’rb’ is used. When used for writing,
the file object should be seekable, unless you know ahead of time how many samples you are going
to write in total and use writeframesraw() and setnframes().

Objects returned by open() when a file is opened for reading have the following methods:

getnchannels()
Return the number of audio channels (1 for mono, 2 for stereo).

getsampwidth()
Return the size in bytes of individual samples.

getframerate()
Return the sampling rate (number of audio frames per second).

getnframes()
Return the number of audio frames in the file.

getcomptype()
Return a four-character string describing the type of compression used in the audio file. For AIFF
files, the returned value is ’NONE’.

getcompname()
Return a human-readable description of the type of compression used in the audio file. For AIFF
files, the returned value is ’not compressed’.

getparams()
Return a tuple consisting of all of the above values in the above order.

getmarkers()
Return a list of markers in the audio file. A marker consists of a tuple of three elements. The first

14.3. aifc — Read and write AIFF and AIFC files 383



is the mark ID (an integer), the second is the mark position in frames from the beginning of the
data (an integer), the third is the name of the mark (a string).

getmark(id)
Return the tuple as described in getmarkers() for the mark with the given id .

readframes(nframes)
Read and return the next nframes frames from the audio file. The returned data is a string
containing for each frame the uncompressed samples of all channels.

rewind()
Rewind the read pointer. The next readframes() will start from the beginning.

setpos(pos)
Seek to the specified frame number.

tell()
Return the current frame number.

close()
Close the AIFF file. After calling this method, the object can no longer be used.

Objects returned by open() when a file is opened for writing have all the above methods, except for
readframes() and setpos(). In addition the following methods exist. The get*() methods can only
be called after the corresponding set*() methods have been called. Before the first writeframes() or
writeframesraw(), all parameters except for the number of frames must be filled in.

aiff()
Create an AIFF file. The default is that an AIFF-C file is created, unless the name of the file ends
in ’.aiff’ in which case the default is an AIFF file.

aifc()
Create an AIFF-C file. The default is that an AIFF-C file is created, unless the name of the file
ends in ’.aiff’ in which case the default is an AIFF file.

setnchannels(nchannels)
Specify the number of channels in the audio file.

setsampwidth(width)
Specify the size in bytes of audio samples.

setframerate(rate)
Specify the sampling frequency in frames per second.

setnframes(nframes)
Specify the number of frames that are to be written to the audio file. If this parameter is not set,
or not set correctly, the file needs to support seeking.

setcomptype(type, name)
Specify the compression type. If not specified, the audio data will not be compressed. In AIFF files,
compression is not possible. The name parameter should be a human-readable description of the
compression type, the type parameter should be a four-character string. Currently the following
compression types are supported: NONE, ULAW, ALAW, G722.

setparams(nchannels, sampwidth, framerate, comptype, compname)
Set all the above parameters at once. The argument is a tuple consisting of the various parameters.
This means that it is possible to use the result of a getparams() call as argument to setparams().

setmark(id, pos, name)
Add a mark with the given id (larger than 0), and the given name at the given position. This
method can be called at any time before close().

tell()
Return the current write position in the output file. Useful in combination with setmark().

writeframes(data)
Write data to the output file. This method can only be called after the audio file parameters have
been set.

384 Chapter 14. Multimedia Services



writeframesraw(data)
Like writeframes(), except that the header of the audio file is not updated.

close()
Close the AIFF file. The header of the file is updated to reflect the actual size of the audio data.
After calling this method, the object can no longer be used.

14.4 sunau — Read and write Sun AU files

The sunau module provides a convenient interface to the Sun AU sound format. Note that this module
is interface-compatible with the modules aifc and wave.

An audio file consists of a header followed by the data. The fields of the header are:

Field Contents
magic word The four bytes ‘.snd’.
header size Size of the header, including info, in bytes.
data size Physical size of the data, in bytes.
encoding Indicates how the audio samples are encoded.
sample rate The sampling rate.
# of channels The number of channels in the samples.
info ascii string giving a description of the audio file (padded with null bytes).

Apart from the info field, all header fields are 4 bytes in size. They are all 32-bit unsigned integers
encoded in big-endian byte order.

The sunau module defines the following functions:

open(file, mode)
If file is a string, open the file by that name, otherwise treat it as a seekable file-like object. mode
can be any of

’r’Read only mode.

’w’Write only mode.

Note that it does not allow read/write files.

A mode of ’r’ returns a AU read object, while a mode of ’w’ or ’wb’ returns a AU write object.

openfp(file, mode)
A synonym for open, maintained for backwards compatibility.

The sunau module defines the following exception:

exception Error
An error raised when something is impossible because of Sun AU specs or implementation deficiency.

The sunau module defines the following data items:

AUDIO FILE MAGIC
An integer every valid Sun AU file begins with, stored in big-endian form. This is the string ‘.snd’
interpreted as an integer.

AUDIO FILE ENCODING MULAW 8
AUDIO FILE ENCODING LINEAR 8
AUDIO FILE ENCODING LINEAR 16
AUDIO FILE ENCODING LINEAR 24
AUDIO FILE ENCODING LINEAR 32
AUDIO FILE ENCODING ALAW 8

Values of the encoding field from the AU header which are supported by this module.

AUDIO FILE ENCODING FLOAT
AUDIO FILE ENCODING DOUBLE

14.4. sunau — Read and write Sun AU files 385



AUDIO FILE ENCODING ADPCM G721
AUDIO FILE ENCODING ADPCM G722
AUDIO FILE ENCODING ADPCM G723 3
AUDIO FILE ENCODING ADPCM G723 5

Additional known values of the encoding field from the AU header, but which are not supported
by this module.

14.4.1 AU read Objects

AU read objects, as returned by open() above, have the following methods:

close()
Close the stream, and make the instance unusable. (This is called automatically on deletion.)

getnchannels()
Returns number of audio channels (1 for mone, 2 for stereo).

getsampwidth()
Returns sample width in bytes.

getframerate()
Returns sampling frequency.

getnframes()
Returns number of audio frames.

getcomptype()
Returns compression type. Supported compression types are ’ULAW’, ’ALAW’ and ’NONE’.

getcompname()
Human-readable version of getcomptype(). The supported types have the respective names
’CCITT G.711 u-law’, ’CCITT G.711 A-law’ and ’not compressed’.

getparams()
Returns a tuple (nchannels, sampwidth, framerate, nframes, comptype, compname), equiva-
lent to output of the get*() methods.

readframes(n)
Reads and returns at most n frames of audio, as a string of bytes. The data will be returned in
linear format. If the original data is in u-LAW format, it will be converted.

rewind()
Rewind the file pointer to the beginning of the audio stream.

The following two methods define a term “position” which is compatible between them, and is otherwise
implementation dependent.

setpos(pos)
Set the file pointer to the specified position. Only values returned from tell() should be used for
pos.

tell()
Return current file pointer position. Note that the returned value has nothing to do with the actual
position in the file.

The following two functions are defined for compatibility with the aifc, and don’t do anything interesting.

getmarkers()
Returns None.

getmark(id)
Raise an error.

386 Chapter 14. Multimedia Services



14.4.2 AU write Objects

AU write objects, as returned by open() above, have the following methods:

setnchannels(n)
Set the number of channels.

setsampwidth(n)
Set the sample width (in bytes.)

setframerate(n)
Set the frame rate.

setnframes(n)
Set the number of frames. This can be later changed, when and if more frames are written.

setcomptype(type, name)
Set the compression type and description. Only ’NONE’ and ’ULAW’ are supported on output.

setparams(tuple)
The tuple should be (nchannels, sampwidth, framerate, nframes, comptype, compname),
with values valid for the set*() methods. Set all parameters.

tell()
Return current position in the file, with the same disclaimer for the AU read.tell() and
AU read.setpos() methods.

writeframesraw(data)
Write audio frames, without correcting nframes.

writeframes(data)
Write audio frames and make sure nframes is correct.

close()
Make sure nframes is correct, and close the file.

This method is called upon deletion.

Note that it is invalid to set any parameters after calling writeframes() or writeframesraw().

14.5 wave — Read and write WAV files

The wave module provides a convenient interface to the WAV sound format. It does not support com-
pression/decompression, but it does support mono/stereo.

The wave module defines the following function and exception:

open(file[, mode ])
If file is a string, open the file by that name, other treat it as a seekable file-like object. mode can
be any of

’r’, ’rb’Read only mode.

’w’, ’wb’Write only mode.

Note that it does not allow read/write WAV files.

A mode of ’r’ or ’rb’ returns a Wave read object, while a mode of ’w’ or ’wb’ returns a
Wave write object. If mode is omitted and a file-like object is passed as file, file.mode is used as
the default value for mode (the ‘b’ flag is still added if necessary).

openfp(file, mode)
A synonym for open(), maintained for backwards compatibility.

exception Error
An error raised when something is impossible because it violates the WAV specification or hits an
implementation deficiency.

14.5. wave — Read and write WAV files 387



14.5.1 Wave read Objects

Wave read objects, as returned by open(), have the following methods:

close()
Close the stream, and make the instance unusable. This is called automatically on object collection.

getnchannels()
Returns number of audio channels (1 for mono, 2 for stereo).

getsampwidth()
Returns sample width in bytes.

getframerate()
Returns sampling frequency.

getnframes()
Returns number of audio frames.

getcomptype()
Returns compression type (’NONE’ is the only supported type).

getcompname()
Human-readable version of getcomptype(). Usually ’not compressed’ parallels ’NONE’.

getparams()
Returns a tuple (nchannels, sampwidth, framerate, nframes, comptype, compname), equiva-
lent to output of the get*() methods.

readframes(n)
Reads and returns at most n frames of audio, as a string of bytes.

rewind()
Rewind the file pointer to the beginning of the audio stream.

The following two methods are defined for compatibility with the aifc module, and don’t do anything
interesting.

getmarkers()
Returns None.

getmark(id)
Raise an error.

The following two methods define a term “position” which is compatible between them, and is otherwise
implementation dependent.

setpos(pos)
Set the file pointer to the specified position.

tell()
Return current file pointer position.

14.5.2 Wave write Objects

Wave write objects, as returned by open(), have the following methods:

close()
Make sure nframes is correct, and close the file. This method is called upon deletion.

setnchannels(n)
Set the number of channels.

setsampwidth(n)
Set the sample width to n bytes.

setframerate(n)
Set the frame rate to n.

388 Chapter 14. Multimedia Services



setnframes(n)
Set the number of frames to n. This will be changed later if more frames are written.

setcomptype(type, name)
Set the compression type and description.

setparams(tuple)
The tuple should be (nchannels, sampwidth, framerate, nframes, comptype, compname),
with values valid for the set*() methods. Sets all parameters.

tell()
Return current position in the file, with the same disclaimer for the Wave read.tell() and
Wave read.setpos() methods.

writeframesraw(data)
Write audio frames, without correcting nframes.

writeframes(data)
Write audio frames and make sure nframes is correct.

Note that it is invalid to set any parameters after calling writeframes() or writeframesraw(), and
any attempt to do so will raise wave.Error.

14.6 chunk — Read IFF chunked data

This module provides an interface for reading files that use EA IFF 85 chunks.1 This format is used in
at least the Audio Interchange File Format (AIFF/AIFF-C) and the Real Media File Format (RMFF).
The WAVE audio file format is closely related and can also be read using this module.

A chunk has the following structure:

Offset Length Contents
0 4 Chunk ID
4 4 Size of chunk in big-endian byte order, not including the header
8 n Data bytes, where n is the size given in the preceding field

8 + n 0 or 1 Pad byte needed if n is odd and chunk alignment is used

The ID is a 4-byte string which identifies the type of chunk.

The size field (a 32-bit value, encoded using big-endian byte order) gives the size of the chunk data, not
including the 8-byte header.

Usually an IFF-type file consists of one or more chunks. The proposed usage of the Chunk class defined
here is to instantiate an instance at the start of each chunk and read from the instance until it reaches
the end, after which a new instance can be instantiated. At the end of the file, creating a new instance
will fail with a EOFError exception.

class Chunk(file[, align, bigendian, inclheader ])
Class which represents a chunk. The file argument is expected to be a file-like object. An instance
of this class is specifically allowed. The only method that is needed is read(). If the methods
seek() and tell() are present and don’t raise an exception, they are also used. If these methods
are present and raise an exception, they are expected to not have altered the object. If the optional
argument align is true, chunks are assumed to be aligned on 2-byte boundaries. If align is false,
no alignment is assumed. The default value is true. If the optional argument bigendian is false,
the chunk size is assumed to be in little-endian order. This is needed for WAVE audio files. The
default value is true. If the optional argument inclheader is true, the size given in the chunk header
includes the size of the header. The default value is false.

A Chunk object supports the following methods:

getname()
Returns the name (ID) of the chunk. This is the first 4 bytes of the chunk.

1“EA IFF 85” Standard for Interchange Format Files, Jerry Morrison, Electronic Arts, January 1985.

14.6. chunk — Read IFF chunked data 389



getsize()
Returns the size of the chunk.

close()
Close and skip to the end of the chunk. This does not close the underlying file.

The remaining methods will raise IOError if called after the close() method has been called.

isatty()
Returns 0.

seek(pos[, whence ])
Set the chunk’s current position. The whence argument is optional and defaults to 0 (absolute file
positioning); other values are 1 (seek relative to the current position) and 2 (seek relative to the
file’s end). There is no return value. If the underlying file does not allow seek, only forward seeks
are allowed.

tell()
Return the current position into the chunk.

read([size ])
Read at most size bytes from the chunk (less if the read hits the end of the chunk before obtaining
size bytes). If the size argument is negative or omitted, read all data until the end of the chunk.
The bytes are returned as a string object. An empty string is returned when the end of the chunk
is encountered immediately.

skip()
Skip to the end of the chunk. All further calls to read() for the chunk will return ’’. If you are
not interested in the contents of the chunk, this method should be called so that the file points to
the start of the next chunk.

14.7 colorsys — Conversions between color systems

The colorsys module defines bidirectional conversions of color values between colors expressed in the
RGB (Red Green Blue) color space used in computer monitors and three other coordinate systems:
YIQ, HLS (Hue Lightness Saturation) and HSV (Hue Saturation Value). Coordinates in all of these
color spaces are floating point values. In the YIQ space, the Y coordinate is between 0 and 1, but the
I and Q coordinates can be positive or negative. In all other spaces, the coordinates are all between 0
and 1.

More information about color spaces can be found at http://www.inforamp.net/%7epoynton/ColorFAQ.html.

The colorsys module defines the following functions:

rgb to yiq(r, g, b)
Convert the color from RGB coordinates to YIQ coordinates.

yiq to rgb(y, i, q)
Convert the color from YIQ coordinates to RGB coordinates.

rgb to hls(r, g, b)
Convert the color from RGB coordinates to HLS coordinates.

hls to rgb(h, l, s)
Convert the color from HLS coordinates to RGB coordinates.

rgb to hsv(r, g, b)
Convert the color from RGB coordinates to HSV coordinates.

hsv to rgb(h, s, v)
Convert the color from HSV coordinates to RGB coordinates.

Example:

390 Chapter 14. Multimedia Services



>>> import colorsys

>>> colorsys.rgb_to_hsv(.3, .4, .2)

(0.25, 0.5, 0.4)

>>> colorsys.hsv_to_rgb(0.25, 0.5, 0.4)

(0.3, 0.4, 0.2)

14.8 rgbimg — Read and write “SGI RGB” files

The rgbimg module allows Python programs to access SGI imglib image files (also known as ‘.rgb’ files).
The module is far from complete, but is provided anyway since the functionality that there is enough in
some cases. Currently, colormap files are not supported.

The module defines the following variables and functions:

exception error
This exception is raised on all errors, such as unsupported file type, etc.

sizeofimage(file)
This function returns a tuple (x, y) where x and y are the size of the image in pixels. Only 4
byte RGBA pixels, 3 byte RGB pixels, and 1 byte greyscale pixels are currently supported.

longimagedata(file)
This function reads and decodes the image on the specified file, and returns it as a Python string.
The string has 4 byte RGBA pixels. The bottom left pixel is the first in the string. This format is
suitable to pass to gl.lrectwrite(), for instance.

longstoimage(data, x, y, z, file)
This function writes the RGBA data in data to image file file. x and y give the size of the image.
z is 1 if the saved image should be 1 byte greyscale, 3 if the saved image should be 3 byte RGB
data, or 4 if the saved images should be 4 byte RGBA data. The input data always contains 4
bytes per pixel. These are the formats returned by gl.lrectread().

ttob(flag)
This function sets a global flag which defines whether the scan lines of the image are read or
written from bottom to top (flag is zero, compatible with SGI GL) or from top to bottom(flag is
one, compatible with X). The default is zero.

14.9 imghdr — Determine the type of an image

The imghdr module determines the type of image contained in a file or byte stream.

The imghdr module defines the following function:

what(filename[, h ])
Tests the image data contained in the file named by filename, and returns a string describing the
image type. If optional h is provided, the filename is ignored and h is assumed to contain the byte
stream to test.

The following image types are recognized, as listed below with the return value from what():

14.8. rgbimg — Read and write “SGI RGB” files 391



Value Image format
’rgb’ SGI ImgLib Files
’gif’ GIF 87a and 89a Files
’pbm’ Portable Bitmap Files
’pgm’ Portable Graymap Files
’ppm’ Portable Pixmap Files
’tiff’ TIFF Files
’rast’ Sun Raster Files
’xbm’ X Bitmap Files
’jpeg’ JPEG data in JFIF format
’bmp’ BMP files
’png’ Portable Network Graphics

You can extend the list of file types imghdr can recognize by appending to this variable:

tests
A list of functions performing the individual tests. Each function takes two arguments: the byte-
stream and an open file-like object. When what() is called with a byte-stream, the file-like object
will be None.

The test function should return a string describing the image type if the test succeeded, or None if
it failed.

Example:

>>> import imghdr

>>> imghdr.what(’/tmp/bass.gif’)

’gif’

14.10 sndhdr — Determine type of sound file

The sndhdr provides utility functions which attempt to determine the type of sound data which is in a
file. When these functions are able to determine what type of sound data is stored in a file, they return
a tuple (type, sampling rate, channels, frames, bits per sample). The value for type indicates the
data type and will be one of the strings ’aifc’, ’aiff’, ’au’, ’hcom’, ’sndr’, ’sndt’, ’voc’, ’wav’,
’8svx’, ’sb’, ’ub’, or ’ul’. The sampling rate will be either the actual value or 0 if unknown or difficult
to decode. Similarly, channels will be either the number of channels or 0 if it cannot be determined or
if the value is difficult to decode. The value for frames will be either the number of frames or -1. The
last item in the tuple, bits per sample, will either be the sample size in bits or ’A’ for A-LAW or ’U’
for u-LAW.

what(filename)
Determines the type of sound data stored in the file filename using whathdr(). If it succeeds,
returns a tuple as described above, otherwise None is returned.

whathdr(filename)
Determines the type of sound data stored in a file based on the file header. The name of the file is
given by filename. This function returns a tuple as described above on success, or None.

392 Chapter 14. Multimedia Services



CHAPTER

FIFTEEN

Cryptographic Services

The modules described in this chapter implement various algorithms of a cryptographic nature. They
are available at the discretion of the installation. Here’s an overview:
md5 RSA’s MD5 message digest algorithm.
sha NIST’s secure hash algorithm, SHA.
mpz Interface to the GNU MP library for arbitrary precision arithmetic.
rotor Enigma-like encryption and decryption.

Hardcore cypherpunks will probably find the cryptographic modules written by Andrew Kuchling of
further interest; the package adds built-in modules for DES and IDEA encryption, provides a Python
module for reading and decrypting PGP files, and then some. These modules are not distributed with
Python but available separately. See the URL http://starship.python.net/crew/amk/python/code/crypto.html

or send email to amk1@bigfoot.com for more information.

15.1 md5 — MD5 message digest algorithm

This module implements the interface to RSA’s MD5 message digest algorithm (see also Internet RFC
1321). Its use is quite straightforward: use new() to create an md5 object. You can now feed this object
with arbitrary strings using the update() method, and at any point you can ask it for the digest (a
strong kind of 128-bit checksum, a.k.a. “fingerprint”) of the concatenation of the strings fed to it so far
using the digest() method.

For example, to obtain the digest of the string ’Nobody inspects the spammish repetition’:

>>> import md5

>>> m = md5.new()

>>> m.update("Nobody inspects")

>>> m.update(" the spammish repetition")

>>> m.digest()

’\xbbd\x9c\x83\xdd\x1e\xa5\xc9\xd9\xde\xc9\xa1\x8d\xf0\xff\xe9’

More condensed:

>>> md5.new("Nobody inspects the spammish repetition").digest()

’\xbbd\x9c\x83\xdd\x1e\xa5\xc9\xd9\xde\xc9\xa1\x8d\xf0\xff\xe9’

new([arg ])
Return a new md5 object. If arg is present, the method call update(arg) is made.

md5([arg ])
For backward compatibility reasons, this is an alternative name for the new() function.

An md5 object has the following methods:

393



update(arg)
Update the md5 object with the string arg . Repeated calls are equivalent to a single call
with the concatenation of all the arguments, i.e. m.update(a); m.update(b) is equivalent to
m.update(a+b).

digest()
Return the digest of the strings passed to the update() method so far. This is a 16-byte string
which may contain non-ascii characters, including null bytes.

hexdigest()
Like digest() except the digest is returned as a string of length 32, containing only hexadecimal
digits. This may be used to exchange the value safely in email or other non-binary environments.

copy()
Return a copy (“clone”) of the md5 object. This can be used to efficiently compute the digests of
strings that share a common initial substring.

See Also:

Module sha (section 15.2):
Similar module implementing the Secure Hash Algorithm (SHA). The SHA algorithm is considered
a more secure hash.

15.2 sha — SHA message digest algorithm

This module implements the interface to NIST’s secure hash algorithm, known as SHA. It is used in the
same way as the md5 module: use new() to create an sha object, then feed this object with arbitrary
strings using the update() method, and at any point you can ask it for the digest of the concatenation
of the strings fed to it so far. SHA digests are 160 bits instead of MD5’s 128 bits.

new([string ])
Return a new sha object. If string is present, the method call update(string) is made.

The following values are provided as constants in the module and as attributes of the sha objects returned
by new():

blocksize
Size of the blocks fed into the hash function; this is always 1. This size is used to allow an arbitrary
string to be hashed.

digestsize
The size of the resulting digest in bytes. This is always 20.

An sha object has the same methods as md5 objects:

update(arg)
Update the sha object with the string arg . Repeated calls are equivalent to a single call with the con-
catenation of all the arguments, i.e. m.update(a); m.update(b) is equivalent to m.update(a+b).

digest()
Return the digest of the strings passed to the update() method so far. This is a 20-byte string
which may contain non-ascii characters, including null bytes.

hexdigest()
Like digest() except the digest is returned as a string of length 40, containing only hexadecimal
digits. This may be used to exchange the value safely in email or other non-binary environments.

copy()
Return a copy (“clone”) of the sha object. This can be used to efficiently compute the digests of
strings that share a common initial substring.

See Also:

Secure Hash Standard
(http://csrc.nist.gov/fips/fip180-1.txt)

394 Chapter 15. Cryptographic Services



The Secure Hash Algorithm is defined by NIST document FIPS PUB 180-1: Secure Hash Standard,
published in April of 1995. It is available online as plain text (at least one diagram was omitted)
and as PDF at http://csrc.nist.gov/fips/fip180-1.pdf.

15.3 mpz — GNU arbitrary magnitude integers

This is an optional module. It is only available when Python is configured to include it, which requires
that the GNU MP software is installed.

This module implements the interface to part of the GNU MP library, which defines arbitrary precision
integer and rational number arithmetic routines. Only the interfaces to the integer (mpz *()) routines
are provided. If not stated otherwise, the description in the GNU MP documentation can be applied.

Support for rational numbers can be implemented in Python. For an example, see the Rat module,
provided as ‘Demos/classes/Rat.py’ in the Python source distribution.

In general, mpz-numbers can be used just like other standard Python numbers, e.g., you can use the built-
in operators like +, *, etc., as well as the standard built-in functions like abs(), int(), . . . , divmod(),
pow(). Please note: the bitwise-xor operation has been implemented as a bunch of ands, inverts and
ors, because the library lacks an mpz xor() function, and I didn’t need one.

You create an mpz-number by calling the function mpz() (see below for an exact description). An
mpz-number is printed like this: mpz(value).

mpz(value)
Create a new mpz-number. value can be an integer, a long, another mpz-number, or even a string.
If it is a string, it is interpreted as an array of radix-256 digits, least significant digit first, resulting
in a positive number. See also the binary() method, described below.

MPZType
The type of the objects returned by mpz() and most other functions in this module.

A number of extra functions are defined in this module. Non mpz-arguments are converted to mpz-values
first, and the functions return mpz-numbers.

powm(base, exponent, modulus)
Return pow(base, exponent) % modulus. If exponent == 0, return mpz(1). In contrast to the C
library function, this version can handle negative exponents.

gcd(op1, op2)
Return the greatest common divisor of op1 and op2 .

gcdext(a, b)
Return a tuple (g, s, t), such that a*s + b*t == g == gcd(a, b).

sqrt(op)
Return the square root of op. The result is rounded towards zero.

sqrtrem(op)
Return a tuple (root, remainder), such that root*root + remainder == op.

divm(numerator, denominator, modulus)
Returns a number q such that q * denominator % modulus == numerator . One could also im-
plement this function in Python, using gcdext().

An mpz-number has one method:

binary()
Convert this mpz-number to a binary string, where the number has been stored as an array of
radix-256 digits, least significant digit first.

The mpz-number must have a value greater than or equal to zero, otherwise ValueError will be
raised.

See Also:

15.3. mpz — GNU arbitrary magnitude integers 395



General Multiprecision Python
(http://gmpy.sourceforge.net/)

This project is building new numeric types to allow arbitrary-precision arithmetic in Python. Their
first efforts are also based on the GNU MP library.

mxNumber — Extended Numeric Types for Python
(http://www.egenix.com/files/python/mxNumber.html)

Another wrapper around the GNU MP library, including a port of that library to Windows.

15.4 rotor — Enigma-like encryption and decryption

This module implements a rotor-based encryption algorithm, contributed by Lance Ellinghouse. The
design is derived from the Enigma device, a machine used during World War II to encipher messages. A
rotor is simply a permutation. For example, if the character ‘A’ is the origin of the rotor, then a given
rotor might map ‘A’ to ‘L’, ‘B’ to ‘Z’, ‘C’ to ‘G’, and so on. To encrypt, we choose several different
rotors, and set the origins of the rotors to known positions; their initial position is the ciphering key. To
encipher a character, we permute the original character by the first rotor, and then apply the second
rotor’s permutation to the result. We continue until we’ve applied all the rotors; the resulting character
is our ciphertext. We then change the origin of the final rotor by one position, from ‘A’ to ‘B’; if the
final rotor has made a complete revolution, then we rotate the next-to-last rotor by one position, and
apply the same procedure recursively. In other words, after enciphering one character, we advance the
rotors in the same fashion as a car’s odometer. Decoding works in the same way, except we reverse the
permutations and apply them in the opposite order.

The available functions in this module are:

newrotor(key[, numrotors ])
Return a rotor object. key is a string containing the encryption key for the object; it can contain
arbitrary binary data. The key will be used to randomly generate the rotor permutations and their
initial positions. numrotors is the number of rotor permutations in the returned object; if it is
omitted, a default value of 6 will be used.

Rotor objects have the following methods:

setkey(key)
Sets the rotor’s key to key .

encrypt(plaintext)
Reset the rotor object to its initial state and encrypt plaintext , returning a string containing the
ciphertext. The ciphertext is always the same length as the original plaintext.

encryptmore(plaintext)
Encrypt plaintext without resetting the rotor object, and return a string containing the ciphertext.

decrypt(ciphertext)
Reset the rotor object to its initial state and decrypt ciphertext , returning a string containing the
plaintext. The plaintext string will always be the same length as the ciphertext.

decryptmore(ciphertext)
Decrypt ciphertext without resetting the rotor object, and return a string containing the plaintext.

An example usage:

396 Chapter 15. Cryptographic Services



>>> import rotor

>>> rt = rotor.newrotor(’key’, 12)

>>> rt.encrypt(’bar’)

’\xab4\xf3’

>>> rt.encryptmore(’bar’)

’\xef\xfd$’

>>> rt.encrypt(’bar’)

’\xab4\xf3’

>>> rt.decrypt(’\xab4\xf3’)

’bar’

>>> rt.decryptmore(’\xef\xfd$’)

’bar’

>>> rt.decrypt(’\xef\xfd$’)

’l(\xcd’

>>> del rt

The module’s code is not an exact simulation of the original Enigma device; it implements the rotor
encryption scheme differently from the original. The most important difference is that in the original
Enigma, there were only 5 or 6 different rotors in existence, and they were applied twice to each character;
the cipher key was the order in which they were placed in the machine. The Python rotor module uses the
supplied key to initialize a random number generator; the rotor permutations and their initial positions
are then randomly generated. The original device only enciphered the letters of the alphabet, while this
module can handle any 8-bit binary data; it also produces binary output. This module can also operate
with an arbitrary number of rotors.

The original Enigma cipher was broken in 1944. The version implemented here is probably a good deal
more difficult to crack (especially if you use many rotors), but it won’t be impossible for a truly skillful
and determined attacker to break the cipher. So if you want to keep the NSA out of your files, this rotor
cipher may well be unsafe, but for discouraging casual snooping through your files, it will probably be
just fine, and may be somewhat safer than using the Unix crypt command.

15.4. rotor — Enigma-like encryption and decryption 397



398



CHAPTER

SIXTEEN

Restricted Execution

In general, Python programs have complete access to the underlying operating system throug the various
functions and classes, For example, a Python program can open any file for reading and writing by using
the open() built-in function (provided the underlying OS gives you permission!). This is exactly what
you want for most applications.

There exists a class of applications for which this “openness” is inappropriate. Take Grail: a web browser
that accepts “applets,” snippets of Python code, from anywhere on the Internet for execution on the
local system. This can be used to improve the user interface of forms, for instance. Since the originator of
the code is unknown, it is obvious that it cannot be trusted with the full resources of the local machine.

Restricted execution is the basic framework in Python that allows for the segregation of trusted and un-
trusted code. It is based on the notion that trusted Python code (a supervisor) can create a “padded cell’
(or environment) with limited permissions, and run the untrusted code within this cell. The untrusted
code cannot break out of its cell, and can only interact with sensitive system resources through interfaces
defined and managed by the trusted code. The term “restricted execution” is favored over “safe-Python”
since true safety is hard to define, and is determined by the way the restricted environment is created.
Note that the restricted environments can be nested, with inner cells creating subcells of lesser, but never
greater, privilege.

An interesting aspect of Python’s restricted execution model is that the interfaces presented to untrusted
code usually have the same names as those presented to trusted code. Therefore no special interfaces need
to be learned to write code designed to run in a restricted environment. And because the exact nature of
the padded cell is determined by the supervisor, different restrictions can be imposed, depending on the
application. For example, it might be deemed “safe” for untrusted code to read any file within a specified
directory, but never to write a file. In this case, the supervisor may redefine the built-in open() function
so that it raises an exception whenever the mode parameter is ’w’. It might also perform a chroot()-like
operation on the filename parameter, such that root is always relative to some safe “sandbox” area of the
filesystem. In this case, the untrusted code would still see an built-in open() function in its environment,
with the same calling interface. The semantics would be identical too, with IOErrors being raised when
the supervisor determined that an unallowable parameter is being used.

The Python run-time determines whether a particular code block is executing in restricted execution
mode based on the identity of the builtins object in its global variables: if this is (the dictionary
of) the standard builtin module, the code is deemed to be unrestricted, else it is deemed to be
restricted.

Python code executing in restricted mode faces a number of limitations that are designed to prevent it
from escaping from the padded cell. For instance, the function object attribute func globals and the
class and instance object attribute dict are unavailable.

Two modules provide the framework for setting up restricted execution environments:

rexec Basic restricted execution framework.
Bastion Providing restricted access to objects.

See Also:

Andrew Kuchling, “Restricted Execution HOWTO.” Available online at
http://www.python.org/doc/howto/rexec/.

399



Grail, an Internet browser written in Python, is available at http://grail.cnri.reston.va.us/grail/. More
information on the use of Python’s restricted execution mode in Grail is available on the Web site.

16.1 rexec — Restricted execution framework

This module contains the RExec class, which supports r eval(), r execfile(), r exec(), and
r import() methods, which are restricted versions of the standard Python functions eval(),
execfile() and the exec and import statements. Code executed in this restricted environment will
only have access to modules and functions that are deemed safe; you can subclass RExec to add or remove
capabilities as desired.

Note: The RExec class can prevent code from performing unsafe operations like reading or writing disk
files, or using TCP/IP sockets. However, it does not protect against code using extremely large amounts
of memory or CPU time.

class RExec([hooks[, verbose ] ])
Returns an instance of the RExec class.

hooks is an instance of the RHooks class or a subclass of it. If it is omitted or None, the default
RHooks class is instantiated. Whenever the rexec module searches for a module (even a built-in
one) or reads a module’s code, it doesn’t actually go out to the file system itself. Rather, it calls
methods of an RHooks instance that was passed to or created by its constructor. (Actually, the
RExec object doesn’t make these calls — they are made by a module loader object that’s part of
the RExec object. This allows another level of flexibility, e.g. using packages.)

By providing an alternate RHooks object, we can control the file system accesses made to import
a module, without changing the actual algorithm that controls the order in which those accesses
are made. For instance, we could substitute an RHooks object that passes all filesystem requests
to a file server elsewhere, via some RPC mechanism such as ILU. Grail’s applet loader uses this to
support importing applets from a URL for a directory.

If verbose is true, additional debugging output may be sent to standard output.

It is important to be aware that code running in a restricted environment can still call the sys.exit()
function. To disallow restricted code from exiting the interpreter, always protect calls that cause re-
stricted code to run with a try/except statement that catches the SystemExit exception. Removing
the sys.exit() function from the restricted environment is not sufficient — the restricted code could
still use raise SystemExit. Removing SystemExit is not a reasonable option; some library code makes
use of this and would break were it not available.

See Also:

Grail Home Page
(http://grail.sourceforge.net/)

Grail is a Web browser written entirely in Python. It uses the rexec module as a foundation for
supporting Python applets, and can be used as an example usage of this module.

16.1.1 RExec Objects

RExec instances support the following methods:

r eval(code)
code must either be a string containing a Python expression, or a compiled code object, which will
be evaluated in the restricted environment’s main module. The value of the expression or
code object will be returned.

r exec(code)
code must either be a string containing one or more lines of Python code, or a compiled code object,
which will be executed in the restricted environment’s main module.

r execfile(filename)
Execute the Python code contained in the file filename in the restricted environment’s main

400 Chapter 16. Restricted Execution



module.

Methods whose names begin with ‘s ’ are similar to the functions beginning with ‘r ’, but the code
will be granted access to restricted versions of the standard I/O streams sys.stdin, sys.stderr, and
sys.stdout.

s eval(code)
code must be a string containing a Python expression, which will be evaluated in the restricted
environment.

s exec(code)
code must be a string containing one or more lines of Python code, which will be executed in the
restricted environment.

s execfile(code)
Execute the Python code contained in the file filename in the restricted environment.

RExec objects must also support various methods which will be implicitly called by code executing in the
restricted environment. Overriding these methods in a subclass is used to change the policies enforced
by a restricted environment.

r import(modulename[, globals[, locals[, fromlist ] ] ])
Import the module modulename, raising an ImportError exception if the module is considered
unsafe.

r open(filename[, mode[, bufsize ] ])
Method called when open() is called in the restricted environment. The arguments are identical
to those of open(), and a file object (or a class instance compatible with file objects) should
be returned. RExec’s default behaviour is allow opening any file for reading, but forbidding any
attempt to write a file. See the example below for an implementation of a less restrictive r open().

r reload(module)
Reload the module object module, re-parsing and re-initializing it.

r unload(module)
Unload the module object module (i.e., remove it from the restricted environment’s sys.modules
dictionary).

And their equivalents with access to restricted standard I/O streams:

s import(modulename[, globals[, locals[, fromlist ] ] ])
Import the module modulename, raising an ImportError exception if the module is considered
unsafe.

s reload(module)
Reload the module object module, re-parsing and re-initializing it.

s unload(module)
Unload the module object module.

16.1.2 Defining restricted environments

The RExec class has the following class attributes, which are used by the init () method. Changing
them on an existing instance won’t have any effect; instead, create a subclass of RExec and assign them
new values in the class definition. Instances of the new class will then use those new values. All these
attributes are tuples of strings.

nok builtin names
Contains the names of built-in functions which will not be available to programs running in the
restricted environment. The value for RExec is (’open’, ’reload’, ’ import ’). (This
gives the exceptions, because by far the majority of built-in functions are harmless. A subclass
that wants to override this variable should probably start with the value from the base class and
concatenate additional forbidden functions — when new dangerous built-in functions are added to
Python, they will also be added to this module.)

16.1. rexec — Restricted execution framework 401



ok builtin modules
Contains the names of built-in modules which can be safely imported. The value for RExec is
(’audioop’, ’array’, ’binascii’, ’cmath’, ’errno’, ’imageop’, ’marshal’, ’math’,
’md5’, ’operator’, ’parser’, ’regex’, ’rotor’, ’select’, ’strop’, ’struct’,
’time’). A similar remark about overriding this variable applies — use the value from the
base class as a starting point.

ok path
Contains the directories which will be searched when an import is performed in the restricted
environment. The value for RExec is the same as sys.path (at the time the module is loaded) for
unrestricted code.

ok posix names
Contains the names of the functions in the os module which will be available to programs
running in the restricted environment. The value for RExec is (’error’, ’fstat’, ’listdir’,
’lstat’, ’readlink’, ’stat’, ’times’, ’uname’, ’getpid’, ’getppid’, ’getcwd’,
’getuid’, ’getgid’, ’geteuid’, ’getegid’).

ok sys names
Contains the names of the functions and variables in the sys module which will be available
to programs running in the restricted environment. The value for RExec is (’ps1’, ’ps2’,
’copyright’, ’version’, ’platform’, ’exit’, ’maxint’).

16.1.3 An example

Let us say that we want a slightly more relaxed policy than the standard RExec class. For example, if
we’re willing to allow files in ‘/tmp’ to be written, we can subclass the RExec class:

class TmpWriterRExec(rexec.RExec):

def r_open(self, file, mode=’r’, buf=-1):

if mode in (’r’, ’rb’):

pass

elif mode in (’w’, ’wb’, ’a’, ’ab’):

# check filename : must begin with /tmp/

if file[:5]!=’/tmp/’:

raise IOError, "can’t write outside /tmp"

elif (string.find(file, ’/../’) >= 0 or

file[:3] == ’../’ or file[-3:] == ’/..’):

raise IOError, "’..’ in filename forbidden"

else: raise IOError, "Illegal open() mode"

return open(file, mode, buf)

Notice that the above code will occasionally forbid a perfectly valid filename; for example, code in the
restricted environment won’t be able to open a file called ‘/tmp/foo/../bar’. To fix this, the r open()
method would have to simplify the filename to ‘/tmp/bar’, which would require splitting apart the filename
and performing various operations on it. In cases where security is at stake, it may be preferable to write
simple code which is sometimes overly restrictive, instead of more general code that is also more complex
and may harbor a subtle security hole.

16.2 Bastion — Restricting access to objects

According to the dictionary, a bastion is “a fortified area or position”, or “something that is considered
a stronghold.” It’s a suitable name for this module, which provides a way to forbid access to certain
attributes of an object. It must always be used with the rexec module, in order to allow restricted-mode
programs access to certain safe attributes of an object, while denying access to other, unsafe attributes.

Bastion(object[, filter[, name[, class ] ] ])
Protect the object object , returning a bastion for the object. Any attempt to access one of the

402 Chapter 16. Restricted Execution



object’s attributes will have to be approved by the filter function; if the access is denied an
AttributeError exception will be raised.

If present, filter must be a function that accepts a string containing an attribute name, and returns
true if access to that attribute will be permitted; if filter returns false, the access is denied. The
default filter denies access to any function beginning with an underscore (‘ ’). The bastion’s
string representation will be ‘<Bastion for name>’ if a value for name is provided; otherwise,
‘repr(object)’ will be used.

class, if present, should be a subclass of BastionClass; see the code in ‘bastion.py’ for the details.
Overriding the default BastionClass will rarely be required.

class BastionClass(getfunc, name)
Class which actually implements bastion objects. This is the default class used by Bastion(). The
getfunc parameter is a function which returns the value of an attribute which should be exposed
to the restricted execution environment when called with the name of the attribute as the only
parameter. name is used to construct the repr() of the BastionClass instance.

16.2. Bastion — Restricting access to objects 403



404



CHAPTER

SEVENTEEN

Python Language Services

Python provides a number of modules to assist in working with the Python language. These module
support tokenizing, parsing, syntax analysis, bytecode disassembly, and various other facilities.

These modules include:
parser Access parse trees for Python source code.
symbol Constants representing internal nodes of the parse tree.
token Constants representing terminal nodes of the parse tree.
keyword Test whether a string is a keyword in Python.
tokenize Lexical scanner for Python source code.
tabnanny Tool for detecting white space related problems in Python source files in a directory tree.
pyclbr Supports information extraction for a Python class browser.
py compile Compile Python source files to byte-code files.
compileall Tools for byte-compiling all Python source files in a directory tree.
dis Disassembler for Python byte code.

17.1 parser — Access Python parse trees

The parser module provides an interface to Python’s internal parser and byte-code compiler. The
primary purpose for this interface is to allow Python code to edit the parse tree of a Python expression
and create executable code from this. This is better than trying to parse and modify an arbitrary Python
code fragment as a string because parsing is performed in a manner identical to the code forming the
application. It is also faster.

There are a few things to note about this module which are important to making use of the data structures
created. This is not a tutorial on editing the parse trees for Python code, but some examples of using
the parser module are presented.

Most importantly, a good understanding of the Python grammar processed by the internal parser is
required. For full information on the language syntax, refer to the Python Language Reference. The
parser itself is created from a grammar specification defined in the file ‘Grammar/Grammar’ in the standard
Python distribution. The parse trees stored in the AST objects created by this module are the actual
output from the internal parser when created by the expr() or suite() functions, described below. The
AST objects created by sequence2ast() faithfully simulate those structures. Be aware that the values
of the sequences which are considered “correct” will vary from one version of Python to another as the
formal grammar for the language is revised. However, transporting code from one Python version to
another as source text will always allow correct parse trees to be created in the target version, with the
only restriction being that migrating to an older version of the interpreter will not support more recent
language constructs. The parse trees are not typically compatible from one version to another, whereas
source code has always been forward-compatible.

Each element of the sequences returned by ast2list() or ast2tuple() has a simple form. Sequences
representing non-terminal elements in the grammar always have a length greater than one. The first
element is an integer which identifies a production in the grammar. These integers are given symbolic
names in the C header file ‘Include/graminit.h’ and the Python module symbol. Each additional element

405



of the sequence represents a component of the production as recognized in the input string: these are
always sequences which have the same form as the parent. An important aspect of this structure which
should be noted is that keywords used to identify the parent node type, such as the keyword if in an
if stmt, are included in the node tree without any special treatment. For example, the if keyword
is represented by the tuple (1, ’if’), where 1 is the numeric value associated with all NAME tokens,
including variable and function names defined by the user. In an alternate form returned when line
number information is requested, the same token might be represented as (1, ’if’, 12), where the 12
represents the line number at which the terminal symbol was found.

Terminal elements are represented in much the same way, but without any child elements and the addition
of the source text which was identified. The example of the if keyword above is representative. The
various types of terminal symbols are defined in the C header file ‘Include/token.h’ and the Python module
token.

The AST objects are not required to support the functionality of this module, but are provided for three
purposes: to allow an application to amortize the cost of processing complex parse trees, to provide
a parse tree representation which conserves memory space when compared to the Python list or tuple
representation, and to ease the creation of additional modules in C which manipulate parse trees. A
simple “wrapper” class may be created in Python to hide the use of AST objects.

The parser module defines functions for a few distinct purposes. The most important purposes are to
create AST objects and to convert AST objects to other representations such as parse trees and compiled
code objects, but there are also functions which serve to query the type of parse tree represented by an
AST object.

See Also:

Module symbol (section 17.2):
Useful constants representing internal nodes of the parse tree.

Module token (section 17.3):
Useful constants representing leaf nodes of the parse tree and functions for testing node values.

17.1.1 Creating AST Objects

AST objects may be created from source code or from a parse tree. When creating an AST object from
source, different functions are used to create the ’eval’ and ’exec’ forms.

expr(source)
The expr() function parses the parameter source as if it were an input to ‘compile(source,
’file.py’, ’eval’)’. If the parse succeeds, an AST object is created to hold the internal parse
tree representation, otherwise an appropriate exception is thrown.

suite(source)
The suite() function parses the parameter source as if it were an input to ‘compile(source,
’file.py’, ’exec’)’. If the parse succeeds, an AST object is created to hold the internal parse
tree representation, otherwise an appropriate exception is thrown.

sequence2ast(sequence)
This function accepts a parse tree represented as a sequence and builds an internal representation
if possible. If it can validate that the tree conforms to the Python grammar and all nodes are valid
node types in the host version of Python, an AST object is created from the internal representation
and returned to the called. If there is a problem creating the internal representation, or if the tree
cannot be validated, a ParserError exception is thrown. An AST object created this way should
not be assumed to compile correctly; normal exceptions thrown by compilation may still be initiated
when the AST object is passed to compileast(). This may indicate problems not related to syntax
(such as a MemoryError exception), but may also be due to constructs such as the result of parsing
del f(0), which escapes the Python parser but is checked by the bytecode compiler.

Sequences representing terminal tokens may be represented as either two-element lists of the form
(1, ’name’) or as three-element lists of the form (1, ’name’, 56). If the third element is present,
it is assumed to be a valid line number. The line number may be specified for any subset of the
terminal symbols in the input tree.

406 Chapter 17. Python Language Services



tuple2ast(sequence)
This is the same function as sequence2ast(). This entry point is maintained for backward com-
patibility.

17.1.2 Converting AST Objects

AST objects, regardless of the input used to create them, may be converted to parse trees represented
as list- or tuple- trees, or may be compiled into executable code objects. Parse trees may be extracted
with or without line numbering information.

ast2list(ast[, line info ])
This function accepts an AST object from the caller in ast and returns a Python list representing
the equivalent parse tree. The resulting list representation can be used for inspection or the creation
of a new parse tree in list form. This function does not fail so long as memory is available to build
the list representation. If the parse tree will only be used for inspection, ast2tuple() should be
used instead to reduce memory consumption and fragmentation. When the list representation is
required, this function is significantly faster than retrieving a tuple representation and converting
that to nested lists.

If line info is true, line number information will be included for all terminal tokens as a third
element of the list representing the token. Note that the line number provided specifies the line on
which the token ends. This information is omitted if the flag is false or omitted.

ast2tuple(ast[, line info ])
This function accepts an AST object from the caller in ast and returns a Python tuple representing
the equivalent parse tree. Other than returning a tuple instead of a list, this function is identical
to ast2list().

If line info is true, line number information will be included for all terminal tokens as a third
element of the list representing the token. This information is omitted if the flag is false or omitted.

compileast(ast[, filename = ’<ast>’ ])
The Python byte compiler can be invoked on an AST object to produce code objects which can be
used as part of an exec statement or a call to the built-in eval() function. This function provides
the interface to the compiler, passing the internal parse tree from ast to the parser, using the source
file name specified by the filename parameter. The default value supplied for filename indicates
that the source was an AST object.

Compiling an AST object may result in exceptions related to compilation; an example would be
a SyntaxError caused by the parse tree for del f(0): this statement is considered legal within
the formal grammar for Python but is not a legal language construct. The SyntaxError raised for
this condition is actually generated by the Python byte-compiler normally, which is why it can be
raised at this point by the parser module. Most causes of compilation failure can be diagnosed
programmatically by inspection of the parse tree.

17.1.3 Queries on AST Objects

Two functions are provided which allow an application to determine if an AST was created as an expres-
sion or a suite. Neither of these functions can be used to determine if an AST was created from source
code via expr() or suite() or from a parse tree via sequence2ast().

isexpr(ast)
When ast represents an ’eval’ form, this function returns true, otherwise it returns false. This
is useful, since code objects normally cannot be queried for this information using existing built-in
functions. Note that the code objects created by compileast() cannot be queried like this either,
and are identical to those created by the built-in compile() function.

issuite(ast)
This function mirrors isexpr() in that it reports whether an AST object represents an ’exec’
form, commonly known as a “suite.” It is not safe to assume that this function is equivalent to
‘not isexpr(ast)’, as additional syntactic fragments may be supported in the future.

17.1. parser — Access Python parse trees 407



17.1.4 Exceptions and Error Handling

The parser module defines a single exception, but may also pass other built-in exceptions from other
portions of the Python runtime environment. See each function for information about the exceptions it
can raise.

exception ParserError
Exception raised when a failure occurs within the parser module. This is generally produced
for validation failures rather than the built in SyntaxError thrown during normal parsing. The
exception argument is either a string describing the reason of the failure or a tuple containing
a sequence causing the failure from a parse tree passed to sequence2ast() and an explanatory
string. Calls to sequence2ast() need to be able to handle either type of exception, while calls to
other functions in the module will only need to be aware of the simple string values.

Note that the functions compileast(), expr(), and suite() may throw exceptions which are normally
thrown by the parsing and compilation process. These include the built in exceptions MemoryError,
OverflowError, SyntaxError, and SystemError. In these cases, these exceptions carry all the meaning
normally associated with them. Refer to the descriptions of each function for detailed information.

17.1.5 AST Objects

Ordered and equality comparisons are supported between AST objects. Pickling of AST objects (using
the pickle module) is also supported.

ASTType
The type of the objects returned by expr(), suite() and sequence2ast().

AST objects have the following methods:

compile([filename ])
Same as compileast(ast, filename).

isexpr()
Same as isexpr(ast).

issuite()
Same as issuite(ast).

tolist([line info ])
Same as ast2list(ast, line info).

totuple([line info ])
Same as ast2tuple(ast, line info).

17.1.6 Examples

The parser modules allows operations to be performed on the parse tree of Python source code before the
bytecode is generated, and provides for inspection of the parse tree for information gathering purposes.
Two examples are presented. The simple example demonstrates emulation of the compile() built-in
function and the complex example shows the use of a parse tree for information discovery.

Emulation of compile()

While many useful operations may take place between parsing and bytecode generation, the simplest
operation is to do nothing. For this purpose, using the parser module to produce an intermediate data
structure is equivalent to the code

408 Chapter 17. Python Language Services



>>> code = compile(’a + 5’, ’file.py’, ’eval’)

>>> a = 5

>>> eval(code)

10

The equivalent operation using the parser module is somewhat longer, and allows the intermediate
internal parse tree to be retained as an AST object:

>>> import parser

>>> ast = parser.expr(’a + 5’)

>>> code = ast.compile(’file.py’)

>>> a = 5

>>> eval(code)

10

An application which needs both AST and code objects can package this code into readily available
functions:

import parser

def load_suite(source_string):

ast = parser.suite(source_string)

return ast, ast.compile()

def load_expression(source_string):

ast = parser.expr(source_string)

return ast, ast.compile()

Information Discovery

Some applications benefit from direct access to the parse tree. The remainder of this section demonstrates
how the parse tree provides access to module documentation defined in docstrings without requiring that
the code being examined be loaded into a running interpreter via import. This can be very useful for
performing analyses of untrusted code.

Generally, the example will demonstrate how the parse tree may be traversed to distill interesting infor-
mation. Two functions and a set of classes are developed which provide programmatic access to high
level function and class definitions provided by a module. The classes extract information from the parse
tree and provide access to the information at a useful semantic level, one function provides a simple
low-level pattern matching capability, and the other function defines a high-level interface to the classes
by handling file operations on behalf of the caller. All source files mentioned here which are not part of
the Python installation are located in the ‘Demo/parser/’ directory of the distribution.

The dynamic nature of Python allows the programmer a great deal of flexibility, but most modules need
only a limited measure of this when defining classes, functions, and methods. In this example, the only
definitions that will be considered are those which are defined in the top level of their context, e.g., a
function defined by a def statement at column zero of a module, but not a function defined within a
branch of an if ... else construct, though there are some good reasons for doing so in some situations.
Nesting of definitions will be handled by the code developed in the example.

To construct the upper-level extraction methods, we need to know what the parse tree structure looks
like and how much of it we actually need to be concerned about. Python uses a moderately deep parse
tree so there are a large number of intermediate nodes. It is important to read and understand the
formal grammar used by Python. This is specified in the file ‘Grammar/Grammar’ in the distribution.
Consider the simplest case of interest when searching for docstrings: a module consisting of a docstring

17.1. parser — Access Python parse trees 409



and nothing else. (See file ‘docstring.py’.)

"""Some documentation.

"""

Using the interpreter to take a look at the parse tree, we find a bewildering mass of numbers and
parentheses, with the documentation buried deep in nested tuples.

>>> import parser

>>> import pprint

>>> ast = parser.suite(open(’docstring.py’).read())

>>> tup = ast.totuple()

>>> pprint.pprint(tup)

(257,

(264,

(265,

(266,

(267,

(307,

(287,

(288,

(289,

(290,

(292,

(293,

(294,

(295,

(296,

(297,

(298,

(299,

(300, (3, ’"""Some documentation.\n"""’))))))))))))))))),

(4, ’’))),

(4, ’’),

(0, ’’))

The numbers at the first element of each node in the tree are the node types; they map directly to
terminal and non-terminal symbols in the grammar. Unfortunately, they are represented as integers
in the internal representation, and the Python structures generated do not change that. However, the
symbol and token modules provide symbolic names for the node types and dictionaries which map from
the integers to the symbolic names for the node types.

In the output presented above, the outermost tuple contains four elements: the integer 257 and three
additional tuples. Node type 257 has the symbolic name file input. Each of these inner tuples contains
an integer as the first element; these integers, 264, 4, and 0, represent the node types stmt, NEWLINE,
and ENDMARKER, respectively. Note that these values may change depending on the version of Python
you are using; consult ‘symbol.py’ and ‘token.py’ for details of the mapping. It should be fairly clear that
the outermost node is related primarily to the input source rather than the contents of the file, and may
be disregarded for the moment. The stmt node is much more interesting. In particular, all docstrings
are found in subtrees which are formed exactly as this node is formed, with the only difference being
the string itself. The association between the docstring in a similar tree and the defined entity (class,
function, or module) which it describes is given by the position of the docstring subtree within the tree
defining the described structure.

By replacing the actual docstring with something to signify a variable component of the tree, we allow a
simple pattern matching approach to check any given subtree for equivalence to the general pattern for
docstrings. Since the example demonstrates information extraction, we can safely require that the tree be
in tuple form rather than list form, allowing a simple variable representation to be [’variable name’].
A simple recursive function can implement the pattern matching, returning a boolean and a dictionary

410 Chapter 17. Python Language Services



of variable name to value mappings. (See file ‘example.py’.)

from types import ListType, TupleType

def match(pattern, data, vars=None):

if vars is None:

vars = {}

if type(pattern) is ListType:

vars[pattern[0]] = data

return 1, vars

if type(pattern) is not TupleType:

return (pattern == data), vars

if len(data) != len(pattern):

return 0, vars

for pattern, data in map(None, pattern, data):

same, vars = match(pattern, data, vars)

if not same:

break

return same, vars

Using this simple representation for syntactic variables and the symbolic node types, the pattern for the
candidate docstring subtrees becomes fairly readable. (See file ‘example.py’.)

import symbol

import token

DOCSTRING_STMT_PATTERN = (

symbol.stmt,

(symbol.simple_stmt,

(symbol.small_stmt,

(symbol.expr_stmt,

(symbol.testlist,

(symbol.test,

(symbol.and_test,

(symbol.not_test,

(symbol.comparison,

(symbol.expr,

(symbol.xor_expr,

(symbol.and_expr,

(symbol.shift_expr,

(symbol.arith_expr,

(symbol.term,

(symbol.factor,

(symbol.power,

(symbol.atom,

(token.STRING, [’docstring’])

)))))))))))))))),

(token.NEWLINE, ’’)

))

Using the match() function with this pattern, extracting the module docstring from the parse tree
created previously is easy:

>>> found, vars = match(DOCSTRING_STMT_PATTERN, tup[1])

>>> found

1

>>> vars

{’docstring’: ’"""Some documentation.\n"""’}

Once specific data can be extracted from a location where it is expected, the question of where information

17.1. parser — Access Python parse trees 411



can be expected needs to be answered. When dealing with docstrings, the answer is fairly simple: the
docstring is the first stmt node in a code block (file input or suite node types). A module consists
of a single file input node, and class and function definitions each contain exactly one suite node.
Classes and functions are readily identified as subtrees of code block nodes which start with (stmt,
(compound stmt, (classdef, ... or (stmt, (compound stmt, (funcdef, .... Note that these
subtrees cannot be matched by match() since it does not support multiple sibling nodes to match without
regard to number. A more elaborate matching function could be used to overcome this limitation, but
this is sufficient for the example.

Given the ability to determine whether a statement might be a docstring and extract the actual string
from the statement, some work needs to be performed to walk the parse tree for an entire module and
extract information about the names defined in each context of the module and associate any docstrings
with the names. The code to perform this work is not complicated, but bears some explanation.

The public interface to the classes is straightforward and should probably be somewhat more flexible.
Each “major” block of the module is described by an object providing several methods for inquiry and
a constructor which accepts at least the subtree of the complete parse tree which it represents. The
ModuleInfo constructor accepts an optional name parameter since it cannot otherwise determine the
name of the module.

The public classes include ClassInfo, FunctionInfo, and ModuleInfo. All objects provide the meth-
ods get name(), get docstring(), get class names(), and get class info(). The ClassInfo
objects support get method names() and get method info() while the other classes provide
get function names() and get function info().

Within each of the forms of code block that the public classes represent, most of the required information
is in the same form and is accessed in the same way, with classes having the distinction that functions
defined at the top level are referred to as “methods.” Since the difference in nomenclature reflects a real
semantic distinction from functions defined outside of a class, the implementation needs to maintain the
distinction. Hence, most of the functionality of the public classes can be implemented in a common base
class, SuiteInfoBase, with the accessors for function and method information provided elsewhere. Note
that there is only one class which represents function and method information; this parallels the use of
the def statement to define both types of elements.

Most of the accessor functions are declared in SuiteInfoBase and do not need to be overridden by
subclasses. More importantly, the extraction of most information from a parse tree is handled through
a method called by the SuiteInfoBase constructor. The example code for most of the classes is clear
when read alongside the formal grammar, but the method which recursively creates new information
objects requires further examination. Here is the relevant part of the SuiteInfoBase definition from
‘example.py’:

412 Chapter 17. Python Language Services



class SuiteInfoBase:

_docstring = ’’

_name = ’’

def __init__(self, tree = None):

self._class_info = {}

self._function_info = {}

if tree:

self._extract_info(tree)

def _extract_info(self, tree):

# extract docstring

if len(tree) == 2:

found, vars = match(DOCSTRING_STMT_PATTERN[1], tree[1])

else:

found, vars = match(DOCSTRING_STMT_PATTERN, tree[3])

if found:

self._docstring = eval(vars[’docstring’])

# discover inner definitions

for node in tree[1:]:

found, vars = match(COMPOUND_STMT_PATTERN, node)

if found:

cstmt = vars[’compound’]

if cstmt[0] == symbol.funcdef:

name = cstmt[2][1]

self._function_info[name] = FunctionInfo(cstmt)

elif cstmt[0] == symbol.classdef:

name = cstmt[2][1]

self._class_info[name] = ClassInfo(cstmt)

After initializing some internal state, the constructor calls the extract info() method. This method
performs the bulk of the information extraction which takes place in the entire example. The extraction
has two distinct phases: the location of the docstring for the parse tree passed in, and the discovery of
additional definitions within the code block represented by the parse tree.

The initial if test determines whether the nested suite is of the “short form” or the “long form.” The
short form is used when the code block is on the same line as the definition of the code block, as in

def square(x): "Square an argument."; return x ** 2

while the long form uses an indented block and allows nested definitions:

def make_power(exp):

"Make a function that raises an argument to the exponent ‘exp’."

def raiser(x, y=exp):

return x ** y

return raiser

When the short form is used, the code block may contain a docstring as the first, and possibly only,
small stmt element. The extraction of such a docstring is slightly different and requires only a portion
of the complete pattern used in the more common case. As implemented, the docstring will only be found
if there is only one small stmt node in the simple stmt node. Since most functions and methods which
use the short form do not provide a docstring, this may be considered sufficient. The extraction of the
docstring proceeds using the match() function as described above, and the value of the docstring is
stored as an attribute of the SuiteInfoBase object.

After docstring extraction, a simple definition discovery algorithm operates on the stmt nodes of the

17.1. parser — Access Python parse trees 413



suite node. The special case of the short form is not tested; since there are no stmt nodes in the short
form, the algorithm will silently skip the single simple stmt node and correctly not discover any nested
definitions.

Each statement in the code block is categorized as a class definition, function or method definition,
or something else. For the definition statements, the name of the element defined is extracted and a
representation object appropriate to the definition is created with the defining subtree passed as an
argument to the constructor. The representation objects are stored in instance variables and may be
retrieved by name using the appropriate accessor methods.

The public classes provide any accessors required which are more specific than those provided by the
SuiteInfoBase class, but the real extraction algorithm remains common to all forms of code blocks. A
high-level function can be used to extract the complete set of information from a source file. (See file
‘example.py’.)

def get_docs(fileName):

import os

import parser

source = open(fileName).read()

basename = os.path.basename(os.path.splitext(fileName)[0])

ast = parser.suite(source)

return ModuleInfo(ast.totuple(), basename)

This provides an easy-to-use interface to the documentation of a module. If information is required
which is not extracted by the code of this example, the code may be extended at clearly defined points
to provide additional capabilities.

17.2 symbol — Constants used with Python parse trees

This module provides constants which represent the numeric values of internal nodes of the parse tree.
Unlike most Python constants, these use lower-case names. Refer to the file ‘Grammar/Grammar’ in the
Python distribution for the definitions of the names in the context of the language grammar. The specific
numeric values which the names map to may change between Python versions.

This module also provides one additional data object:

sym name
Dictionary mapping the numeric values of the constants defined in this module back to name
strings, allowing more human-readable representation of parse trees to be generated.

See Also:

Module parser (section 17.1):
The second example for the parser module shows how to use the symbol module.

17.3 token — Constants used with Python parse trees

This module provides constants which represent the numeric values of leaf nodes of the parse tree
(terminal tokens). Refer to the file ‘Grammar/Grammar’ in the Python distribution for the definitions of
the names in the context of the language grammar. The specific numeric values which the names map
to may change between Python versions.

This module also provides one data object and some functions. The functions mirror definitions in the
Python C header files.

tok name
Dictionary mapping the numeric values of the constants defined in this module back to name
strings, allowing more human-readable representation of parse trees to be generated.

414 Chapter 17. Python Language Services



ISTERMINAL(x)
Return true for terminal token values.

ISNONTERMINAL(x)
Return true for non-terminal token values.

ISEOF(x)
Return true if x is the marker indicating the end of input.

See Also:

Module parser (section 17.1):
The second example for the parser module shows how to use the symbol module.

17.4 keyword — Testing for Python keywords

This module allows a Python program to determine if a string is a keyword. A single function is provided:

iskeyword(s)
Return true if s is a Python keyword.

17.5 tokenize — Tokenizer for Python source

The tokenize module provides a lexical scanner for Python source code, implemented in Python. The
scanner in this module returns comments as tokens as well, making it useful for implementing “pretty-
printers,” including colorizers for on-screen displays.

The scanner is exposed by a single function:

tokenize(readline[, tokeneater ])
The tokenize() function accepts two parameters: one representing the input stream, and one
providing an output mechanism for tokenize().

The first parameter, readline, must be a callable object which provides the same interface as the
readline() method of built-in file objects (see section 2.1.7). Each call to the function should
return one line of input as a string.

The second parameter, tokeneater , must also be a callable object. It is called with five parameters:
the token type, the token string, a tuple (srow, scol) specifying the row and column where the
token begins in the source, a tuple (erow, ecol) giving the ending position of the token, and
the line on which the token was found. The line passed is the logical line; continuation lines are
included.

All constants from the token module are also exported from tokenize, as are two additional token type
values that might be passed to the tokeneater function by tokenize():

COMMENT
Token value used to indicate a comment.

NL
Token value used to indicate a non-terminating newline. The NEWLINE token indicates the end
of a logical line of Python code; NL tokens are generated when a logical line of code is continued
over multiple physical lines.

17.6 tabnanny — Detection of ambiguous indentation

For the time being this module is intended to be called as a script. However it is possible to import it
into an IDE and use the function check() described below.

Warning: The API provided by this module is likely to change in future releases; such changes may
not be backward compatible.

17.4. keyword — Testing for Python keywords 415



check(file or dir)
If file or dir is a directory and not a symbolic link, then recursively descend the directory tree
named by file or dir , checking all ‘.py’ files along the way. If file or dir is an ordinary Python
source file, it is checked for whitespace related problems. The diagnostic messages are written to
standard output using the print statement.

verbose
Flag indicating whether to print verbose messages. This is set to true by the -v option if called as
a script.

filename only
Flag indicating whether to print only the filenames of files containing whitespace related problems.
This is set to true by the -q option if called as a script.

exception NannyNag
Raised by tokeneater() if detecting an ambiguous indent. Captured and handled in check().

tokeneater(type, token, start, end, line)
This function is used by check() as a callback parameter to the function tokenize.tokenize().

See Also:

Module tokenize (section 17.5):
Lexical scanner for Python source code.

17.7 pyclbr — Python class browser support

The pyclbr can be used to determine some limited information about the classes and methods defined
in a module. The information provided is sufficient to implement a traditional three-pane class browser.
The information is extracted from the source code rather than from an imported module, so this module
is safe to use with untrusted source code. This restriction makes it impossible to use this module with
modules not implemented in Python, including many standard and optional extension modules.

readmodule(module[, path ])
Read a module and return a dictionary mapping class names to class descriptor objects. The
parameter module should be the name of a module as a string; it may be the name of a module
within a package. The path parameter should be a sequence, and is used to augment the value of
sys.path, which is used to locate module source code.

17.7.1 Class Descriptor Objects

The class descriptor objects used as values in the dictionary returned by readmodule() provide the
following data members:

module
The name of the module defining the class described by the class descriptor.

name
The name of the class.

super
A list of class descriptors which describe the immediate base classes of the class being described.
Classes which are named as superclasses but which are not discoverable by readmodule() are listed
as a string with the class name instead of class descriptors.

methods
A dictionary mapping method names to line numbers.

file
Name of the file containing the class statement defining the class.

lineno
The line number of the class statement within the file named by file.

416 Chapter 17. Python Language Services



17.8 py compile — Compile Python source files

The py compile module provides a single function to generate a byte-code file from a source file.

Though not often needed, this function can be useful when installing modules for shared use, especially if
some of the users may not have permission to write the byte-code cache files in the directory containing
the source code.

compile(file[, cfile[, dfile ] ])
Compile a source file to byte-code and write out the byte-code cache file. The source code is loaded
from the file name file. The byte-code is written to cfile, which defaults to file + ’c’ (’o’ if
optimization is enabled in the current interpreter). If dfile is specified, it is used as the name of
the source file in error messages instead of file.

See Also:

Module compileall (section 17.9):
Utilities to compile all Python source files in a directory tree.

17.9 compileall — Byte-compile Python libraries

This module provides some utility functions to support installing Python libraries. These functions
compile Python source files in a directory tree, allowing users without permission to write to the libraries
to take advantage of cached byte-code files.

The source file for this module may also be used as a script to compile Python sources in directories
named on the command line or in sys.path.

compile dir(dir[, maxlevels[, ddir[, force ] ] ])
Recursively descend the directory tree named by dir , compiling all ‘.py’ files along the way. The
maxlevels parameter is used to limit the depth of the recursion; it defaults to 10. If ddir is given,
it is used as the base path from which the filenames used in error messages will be generated. If
force is true, modules are re-compiled even if the timestamps are up to date.

compile path([skip curdir[, maxlevels[, force ] ] ])
Byte-compile all the ‘.py’ files found along sys.path. If skip curdir is true (the default), the
current directory is not included in the search. The maxlevels and force parameters default to 0
and are passed to the compile dir() function.

See Also:

Module py compile (section 17.8):
Byte-compile a single source file.

17.10 dis — Disassembler for Python byte code

The dis module supports the analysis of Python byte code by disassembling it. Since there is no Python
assembler, this module defines the Python assembly language. The Python byte code which this module
takes as an input is defined in the file ‘Include/opcode.h’ and used by the compiler and the interpreter.

Example: Given the function myfunc:

def myfunc(alist):

return len(alist)

the following command can be used to get the disassembly of myfunc():

17.8. py compile — Compile Python source files 417



>>> dis.dis(myfunc)

0 SET_LINENO 1

3 SET_LINENO 2

6 LOAD_GLOBAL 0 (len)

9 LOAD_FAST 0 (alist)

12 CALL_FUNCTION 1

15 RETURN_VALUE

16 LOAD_CONST 0 (None)

19 RETURN_VALUE

The dis module defines the following functions and constants:

dis([bytesource ])
Disassemble the bytesource object. bytesource can denote either a class, a method, a function, or
a code object. For a class, it disassembles all methods. For a single code sequence, it prints one
line per byte code instruction. If no object is provided, it disassembles the last traceback.

distb([tb ])
Disassembles the top-of-stack function of a traceback, using the last traceback if none was passed.
The instruction causing the exception is indicated.

disassemble(code[, lasti ])
Disassembles a code object, indicating the last instruction if lasti was provided. The output is
divided in the following columns:

1.the current instruction, indicated as ‘-->’,

2.a labelled instruction, indicated with ‘>>’,

3.the address of the instruction,

4.the operation code name,

5.operation parameters, and

6.interpretation of the parameters in parentheses.

The parameter interpretation recognizes local and global variable names, constant values, branch
targets, and compare operators.

disco(code[, lasti ])
A synonym for disassemble. It is more convenient to type, and kept for compatibility with earlier
Python releases.

opname
Sequence of operation names, indexable using the byte code.

cmp op
Sequence of all compare operation names.

hasconst
Sequence of byte codes that have a constant parameter.

hasname
Sequence of byte codes that access an attribute by name.

hasjrel
Sequence of byte codes that have a relative jump target.

hasjabs
Sequence of byte codes that have an absolute jump target.

haslocal
Sequence of byte codes that access a local variable.

418 Chapter 17. Python Language Services



hascompare
Sequence of byte codes of boolean operations.

17.10.1 Python Byte Code Instructions

The Python compiler currently generates the following byte code instructions.

STOP CODE
Indicates end-of-code to the compiler, not used by the interpreter.

POP TOP
Removes the top-of-stack (TOS) item.

ROT TWO
Swaps the two top-most stack items.

ROT THREE
Lifts second and third stack item one position up, moves top down to position three.

ROT FOUR
Lifts second, third and forth stack item one position up, moves top down to position four.

DUP TOP
Duplicates the reference on top of the stack.

Unary Operations take the top of the stack, apply the operation, and push the result back on the stack.

UNARY POSITIVE
Implements TOS = +TOS.

UNARY NEGATIVE
Implements TOS = -TOS.

UNARY NOT
Implements TOS = not TOS.

UNARY CONVERT
Implements TOS = ‘TOS‘.

UNARY INVERT
Implements TOS = ~TOS.

Binary operations remove the top of the stack (TOS) and the second top-most stack item (TOS1) from
the stack. They perform the operation, and put the result back on the stack.

BINARY POWER
Implements TOS = TOS1 ** TOS.

BINARY MULTIPLY
Implements TOS = TOS1 * TOS.

BINARY DIVIDE
Implements TOS = TOS1 / TOS.

BINARY MODULO
Implements TOS = TOS1 % TOS.

BINARY ADD
Implements TOS = TOS1 + TOS.

BINARY SUBTRACT
Implements TOS = TOS1 - TOS.

BINARY SUBSCR
Implements TOS = TOS1[TOS].

BINARY LSHIFT
Implements TOS = TOS1 << TOS.

17.10. dis — Disassembler for Python byte code 419



BINARY RSHIFT
Implements TOS = TOS1 >> TOS.

BINARY AND
Implements TOS = TOS1 & TOS.

BINARY XOR
Implements TOS = TOS1 ^ TOS.

BINARY OR
Implements TOS = TOS1 | TOS.

In-place operations are like binary operations, in that they remove TOS and TOS1, and push the result
back on the stack, but the operation is done in-place when TOS1 supports it, and the resulting TOS
may be (but does not have to be) the original TOS1.

INPLACE POWER
Implements in-place TOS = TOS1 ** TOS.

INPLACE MULTIPLY
Implements in-place TOS = TOS1 * TOS.

INPLACE DIVIDE
Implements in-place TOS = TOS1 / TOS.

INPLACE MODULO
Implements in-place TOS = TOS1 % TOS.

INPLACE ADD
Implements in-place TOS = TOS1 + TOS.

INPLACE SUBTRACT
Implements in-place TOS = TOS1 - TOS.

INPLACE LSHIFT
Implements in-place TOS = TOS1 << TOS.

INPLACE RSHIFT
Implements in-place TOS = TOS1 >> TOS.

INPLACE AND
Implements in-place TOS = TOS1 & TOS.

INPLACE XOR
Implements in-place TOS = TOS1 ^ TOS.

INPLACE OR
Implements in-place TOS = TOS1 | TOS.

The slice opcodes take up to three parameters.

SLICE+0
Implements TOS = TOS[:].

SLICE+1
Implements TOS = TOS1[TOS:].

SLICE+2
Implements TOS = TOS1[:TOS1].

SLICE+3
Implements TOS = TOS2[TOS1:TOS].

Slice assignment needs even an additional parameter. As any statement, they put nothing on the stack.

STORE SLICE+0
Implements TOS[:] = TOS1.

STORE SLICE+1
Implements TOS1[TOS:] = TOS2.

420 Chapter 17. Python Language Services



STORE SLICE+2
Implements TOS1[:TOS] = TOS2.

STORE SLICE+3
Implements TOS2[TOS1:TOS] = TOS3.

DELETE SLICE+0
Implements del TOS[:].

DELETE SLICE+1
Implements del TOS1[TOS:].

DELETE SLICE+2
Implements del TOS1[:TOS].

DELETE SLICE+3
Implements del TOS2[TOS1:TOS].

STORE SUBSCR
Implements TOS1[TOS] = TOS2.

DELETE SUBSCR
Implements del TOS1[TOS].

PRINT EXPR
Implements the expression statement for the interactive mode. TOS is removed from the stack and
printed. In non-interactive mode, an expression statement is terminated with POP STACK.

PRINT ITEM
Prints TOS to the file-like object bound to sys.stdout. There is one such instruction for each
item in the print statement.

PRINT ITEM TO
Like PRINT ITEM, but prints the item second from TOS to the file-like object at TOS. This is used
by the extended print statement.

PRINT NEWLINE
Prints a new line on sys.stdout. This is generated as the last operation of a print statement,
unless the statement ends with a comma.

PRINT NEWLINE TO
Like PRINT NEWLINE, but prints the new line on the file-like object on the TOS. This is used by
the extended print statement.

BREAK LOOP
Terminates a loop due to a break statement.

LOAD LOCALS
Pushes a reference to the locals of the current scope on the stack. This is used in the code for a
class definition: After the class body is evaluated, the locals are passed to the class definition.

RETURN VALUE
Returns with TOS to the caller of the function.

IMPORT STAR
Loads all symbols not starting with ‘ ’ directly from the module TOS to the local namespace. The
module is popped after loading all names. This opcode implements from module import *.

EXEC STMT
Implements exec TOS2,TOS1,TOS. The compiler fills missing optional parameters with None.

POP BLOCK
Removes one block from the block stack. Per frame, there is a stack of blocks, denoting nested
loops, try statements, and such.

END FINALLY
Terminates a finally clause. The interpreter recalls whether the exception has to be re-raised, or
whether the function returns, and continues with the outer-next block.

17.10. dis — Disassembler for Python byte code 421



BUILD CLASS
Creates a new class object. TOS is the methods dictionary, TOS1 the tuple of the names of the
base classes, and TOS2 the class name.

All of the following opcodes expect arguments. An argument is two bytes, with the more significant byte
last.

STORE NAME namei
Implements name = TOS. namei is the index of name in the attribute co names of the code object.
The compiler tries to use STORE LOCAL or STORE GLOBAL if possible.

DELETE NAME namei
Implements del name, where namei is the index into co names attribute of the code object.

UNPACK SEQUENCE count
Unpacks TOS into count individual values, which are put onto the stack right-to-left.

DUP TOPX count
Duplicate count items, keeping them in the same order. Due to implementation limits, count
should be between 1 and 5 inclusive.

STORE ATTR namei
Implements TOS.name = TOS1, where namei is the index of name in co names.

DELETE ATTR namei
Implements del TOS.name, using namei as index into co names.

STORE GLOBAL namei
Works as STORE NAME, but stores the name as a global.

DELETE GLOBAL namei
Works as DELETE NAME, but deletes a global name.

LOAD CONST consti
Pushes ‘co consts[consti]’ onto the stack.

LOAD NAME namei
Pushes the value associated with ‘co names[namei]’ onto the stack.

BUILD TUPLE count
Creates a tuple consuming count items from the stack, and pushes the resulting tuple onto the
stack.

BUILD LIST count
Works as BUILD TUPLE, but creates a list.

BUILD MAP zero
Pushes a new empty dictionary object onto the stack. The argument is ignored and set to zero by
the compiler.

LOAD ATTR namei
Replaces TOS with getattr(TOS, co names[namei].

COMPARE OP opname
Performs a boolean operation. The operation name can be found in cmp op[opname].

IMPORT NAME namei
Imports the module co names[namei]. The module object is pushed onto the stack. The current
namespace is not affected: for a proper import statement, a subsequent STORE FAST instruction
modifies the namespace.

IMPORT FROM namei
Loads the attribute co names[namei] from the module found in TOS. The resulting object is
pushed onto the stack, to be subsequently stored by a STORE FAST instruction.

JUMP FORWARD delta
Increments byte code counter by delta.

JUMP IF TRUE delta

422 Chapter 17. Python Language Services



If TOS is true, increment the byte code counter by delta. TOS is left on the stack.

JUMP IF FALSE delta
If TOS is false, increment the byte code counter by delta. TOS is not changed.

JUMP ABSOLUTE target
Set byte code counter to target .

FOR LOOP delta
Iterate over a sequence. TOS is the current index, TOS1 the sequence. First, the next element is
computed. If the sequence is exhausted, increment byte code counter by delta. Otherwise, push
the sequence, the incremented counter, and the current item onto the stack.

LOAD GLOBAL namei
Loads the global named co names[namei] onto the stack.

SETUP LOOP delta
Pushes a block for a loop onto the block stack. The block spans from the current instruction with
a size of delta bytes.

SETUP EXCEPT delta
Pushes a try block from a try-except clause onto the block stack. delta points to the first except
block.

SETUP FINALLY delta
Pushes a try block from a try-except clause onto the block stack. delta points to the finally block.

LOAD FAST var num
Pushes a reference to the local co varnames[var num] onto the stack.

STORE FAST var num
Stores TOS into the local co varnames[var num].

DELETE FAST var num
Deletes local co varnames[var num].

LOAD CLOSURE i
Pushes a reference to the cell contained in slot i of the cell and free variable storage. The name
of the variable is co cellvars[i] if i is less than the length of co cellvars. Otherwise it is
co freevars[i - len(co cellvars)].

LOAD DEREF i
Loads the cell contained in slot i of the cell and free variable storage. Pushes a reference to the
object the cell contains on the stack.

STORE DEREF i
Stores TOS into the cell contained in slot i of the cell and free variable storage.

SET LINENO lineno
Sets the current line number to lineno.

RAISE VARARGS argc
Raises an exception. argc indicates the number of parameters to the raise statement, ranging from
0 to 3. The handler will find the traceback as TOS2, the parameter as TOS1, and the exception
as TOS.

CALL FUNCTION argc
Calls a function. The low byte of argc indicates the number of positional parameters, the high
byte the number of keyword parameters. On the stack, the opcode finds the keyword parameters
first. For each keyword argument, the value is on top of the key. Below the keyword parameters,
the positional parameters are on the stack, with the right-most parameter on top. Below the
parameters, the function object to call is on the stack.

MAKE FUNCTION argc
Pushes a new function object on the stack. TOS is the code associated with the function. The
function object is defined to have argc default parameters, which are found below TOS.

MAKE CLOSURE argc

17.10. dis — Disassembler for Python byte code 423



Creates a new function object, sets its func closure slot, and pushes it on the stack. TOS is the
code associated with the function. If the code object has N free variables, the next N items on the
stack are the cells for these variables. The function also has argc default parameters, where are
found before the cells.

BUILD SLICE argc
Pushes a slice object on the stack. argc must be 2 or 3. If it is 2, slice(TOS1, TOS) is pushed; if it
is 3, slice(TOS2, TOS1, TOS) is pushed. See the slice() built-in function for more information.

EXTENDED ARG ext
Prefixes any opcode which has an argument too big to fit into the default two bytes. ext holds
two additional bytes which, taken together with the subsequent opcode’s argument, comprise a
four-byte argument, ext being the two most-significant bytes.

CALL FUNCTION VAR argc
Calls a function. argc is interpreted as in CALL FUNCTION. The top element on the stack contains
the variable argument list, followed by keyword and positional arguments.

CALL FUNCTION KW argc
Calls a function. argc is interpreted as in CALL FUNCTION. The top element on the stack contains
the keyword arguments dictionary, followed by explicit keyword and positional arguments.

CALL FUNCTION VAR KW argc
Calls a function. argc is interpreted as in CALL FUNCTION. The top element on the stack contains
the keyword arguments dictionary, followed by the variable-arguments tuple, followed by explicit
keyword and positional arguments.

424 Chapter 17. Python Language Services



CHAPTER

EIGHTEEN

SGI IRIX Specific Services

The modules described in this chapter provide interfaces to features that are unique to SGI’s IRIX
operating system (versions 4 and 5).

al Audio functions on the SGI.
AL Constants used with the al module.
cd Interface to the CD-ROM on Silicon Graphics systems.
fl FORMS library interface for GUI applications.
FL Constants used with the fl module.
flp Functions for loading stored FORMS designs.
fm Font Manager interface for SGI workstations.
gl Functions from the Silicon Graphics Graphics Library.
DEVICE Constants used with the gl module.
GL Constants used with the gl module.
imgfile Support for SGI imglib files.
jpeg Read and write image files in compressed JPEG format.

18.1 al — Audio functions on the SGI

This module provides access to the audio facilities of the SGI Indy and Indigo workstations. See section
3A of the IRIX man pages for details. You’ll need to read those man pages to understand what these
functions do! Some of the functions are not available in IRIX releases before 4.0.5. Again, see the manual
to check whether a specific function is available on your platform.

All functions and methods defined in this module are equivalent to the C functions with ‘AL’ prefixed to
their name.

Symbolic constants from the C header file <audio.h> are defined in the standard module AL, see below.

Warning: the current version of the audio library may dump core when bad argument values are passed
rather than returning an error status. Unfortunately, since the precise circumstances under which this
may happen are undocumented and hard to check, the Python interface can provide no protection against
this kind of problems. (One example is specifying an excessive queue size — there is no documented
upper limit.)

The module defines the following functions:

openport(name, direction[, config ])
The name and direction arguments are strings. The optional config argument is a configuration
object as returned by newconfig(). The return value is an audio port object; methods of audio
port objects are described below.

newconfig()
The return value is a new audio configuration object; methods of audio configuration objects are
described below.

queryparams(device)
The device argument is an integer. The return value is a list of integers containing the data returned

425



by ALqueryparams().

getparams(device, list)
The device argument is an integer. The list argument is a list such as returned by queryparams();
it is modified in place (!).

setparams(device, list)
The device argument is an integer. The list argument is a list such as returned by queryparams().

18.1.1 Configuration Objects

Configuration objects (returned by newconfig() have the following methods:

getqueuesize()
Return the queue size.

setqueuesize(size)
Set the queue size.

getwidth()
Get the sample width.

setwidth(width)
Set the sample width.

getchannels()
Get the channel count.

setchannels(nchannels)
Set the channel count.

getsampfmt()
Get the sample format.

setsampfmt(sampfmt)
Set the sample format.

getfloatmax()
Get the maximum value for floating sample formats.

setfloatmax(floatmax)
Set the maximum value for floating sample formats.

18.1.2 Port Objects

Port objects, as returned by openport(), have the following methods:

closeport()
Close the port.

getfd()
Return the file descriptor as an int.

getfilled()
Return the number of filled samples.

getfillable()
Return the number of fillable samples.

readsamps(nsamples)
Read a number of samples from the queue, blocking if necessary. Return the data as a string
containing the raw data, (e.g., 2 bytes per sample in big-endian byte order (high byte, low byte) if
you have set the sample width to 2 bytes).

writesamps(samples)
Write samples into the queue, blocking if necessary. The samples are encoded as described for the

426 Chapter 18. SGI IRIX Specific Services



readsamps() return value.

getfillpoint()
Return the ‘fill point’.

setfillpoint(fillpoint)
Set the ‘fill point’.

getconfig()
Return a configuration object containing the current configuration of the port.

setconfig(config)
Set the configuration from the argument, a configuration object.

getstatus(list)
Get status information on last error.

18.2 AL — Constants used with the al module

This module defines symbolic constants needed to use the built-in module al (see above); they are
equivalent to those defined in the C header file <audio.h> except that the name prefix ‘AL ’ is omitted.
Read the module source for a complete list of the defined names. Suggested use:

import al

from AL import *

18.3 cd — CD-ROM access on SGI systems

This module provides an interface to the Silicon Graphics CD library. It is available only on Silicon
Graphics systems.

The way the library works is as follows. A program opens the CD-ROM device with open() and creates
a parser to parse the data from the CD with createparser(). The object returned by open() can be
used to read data from the CD, but also to get status information for the CD-ROM device, and to get
information about the CD, such as the table of contents. Data from the CD is passed to the parser,
which parses the frames, and calls any callback functions that have previously been added.

An audio CD is divided into tracks or programs (the terms are used interchangeably). Tracks can be
subdivided into indices. An audio CD contains a table of contents which gives the starts of the tracks
on the CD. Index 0 is usually the pause before the start of a track. The start of the track as given by
the table of contents is normally the start of index 1.

Positions on a CD can be represented in two ways. Either a frame number or a tuple of three values,
minutes, seconds and frames. Most functions use the latter representation. Positions can be both relative
to the beginning of the CD, and to the beginning of the track.

Module cd defines the following functions and constants:

createparser()
Create and return an opaque parser object. The methods of the parser object are described below.

msftoframe(minutes, seconds, frames)
Converts a (minutes, seconds, frames) triple representing time in absolute time code into the
corresponding CD frame number.

open([device[, mode ] ])
Open the CD-ROM device. The return value is an opaque player object; methods of the player ob-
ject are described below. The device is the name of the SCSI device file, e.g. ’/dev/scsi/sc0d4l0’,
or None. If omitted or None, the hardware inventory is consulted to locate a CD-ROM drive. The

18.2. AL — Constants used with the al module 427



mode, if not omited, should be the string ’r’.

The module defines the following variables:

exception error
Exception raised on various errors.

DATASIZE
The size of one frame’s worth of audio data. This is the size of the audio data as passed to the
callback of type audio.

BLOCKSIZE
The size of one uninterpreted frame of audio data.

The following variables are states as returned by getstatus():

READY
The drive is ready for operation loaded with an audio CD.

NODISC
The drive does not have a CD loaded.

CDROM
The drive is loaded with a CD-ROM. Subsequent play or read operations will return I/O errors.

ERROR
An error occurred while trying to read the disc or its table of contents.

PLAYING
The drive is in CD player mode playing an audio CD through its audio jacks.

PAUSED
The drive is in CD layer mode with play paused.

STILL
The equivalent of PAUSED on older (non 3301) model Toshiba CD-ROM drives. Such drives have
never been shipped by SGI.

audio
pnum
index
ptime
atime
catalog
ident
control

Integer constants describing the various types of parser callbacks that can be set by the
addcallback() method of CD parser objects (see below).

18.3.1 Player Objects

Player objects (returned by open()) have the following methods:

allowremoval()
Unlocks the eject button on the CD-ROM drive permitting the user to eject the caddy if desired.

bestreadsize()
Returns the best value to use for the num frames parameter of the readda() method. Best is
defined as the value that permits a continuous flow of data from the CD-ROM drive.

close()
Frees the resources associated with the player object. After calling close(), the methods of the
object should no longer be used.

eject()
Ejects the caddy from the CD-ROM drive.

428 Chapter 18. SGI IRIX Specific Services



getstatus()
Returns information pertaining to the current state of the CD-ROM drive. The returned informa-
tion is a tuple with the following values: state, track , rtime, atime, ttime, first , last , scsi audio,
cur block . rtime is the time relative to the start of the current track; atime is the time relative to
the beginning of the disc; ttime is the total time on the disc. For more information on the meaning
of the values, see the man page CDgetstatus(3dm). The value of state is one of the following:
ERROR, NODISC, READY, PLAYING, PAUSED, STILL, or CDROM.

gettrackinfo(track)
Returns information about the specified track. The returned information is a tuple consisting of
two elements, the start time of the track and the duration of the track.

msftoblock(min, sec, frame)
Converts a minutes, seconds, frames triple representing a time in absolute time code into the
corresponding logical block number for the given CD-ROM drive. You should use msftoframe()
rather than msftoblock() for comparing times. The logical block number differs from the frame
number by an offset required by certain CD-ROM drives.

play(start, play)
Starts playback of an audio CD in the CD-ROM drive at the specified track. The audio output
appears on the CD-ROM drive’s headphone and audio jacks (if fitted). Play stops at the end of
the disc. start is the number of the track at which to start playing the CD; if play is 0, the CD
will be set to an initial paused state. The method togglepause() can then be used to commence
play.

playabs(minutes, seconds, frames, play)
Like play(), except that the start is given in minutes, seconds, and frames instead of a track
number.

playtrack(start, play)
Like play(), except that playing stops at the end of the track.

playtrackabs(track, minutes, seconds, frames, play)
Like play(), except that playing begins at the specified absolute time and ends at the end of the
specified track.

preventremoval()
Locks the eject button on the CD-ROM drive thus preventing the user from arbitrarily ejecting
the caddy.

readda(num frames)
Reads the specified number of frames from an audio CD mounted in the CD-ROM drive. The
return value is a string representing the audio frames. This string can be passed unaltered to the
parseframe() method of the parser object.

seek(minutes, seconds, frames)
Sets the pointer that indicates the starting point of the next read of digital audio data from a
CD-ROM. The pointer is set to an absolute time code location specified in minutes, seconds, and
frames. The return value is the logical block number to which the pointer has been set.

seekblock(block)
Sets the pointer that indicates the starting point of the next read of digital audio data from a
CD-ROM. The pointer is set to the specified logical block number. The return value is the logical
block number to which the pointer has been set.

seektrack(track)
Sets the pointer that indicates the starting point of the next read of digital audio data from a
CD-ROM. The pointer is set to the specified track. The return value is the logical block number
to which the pointer has been set.

stop()
Stops the current playing operation.

togglepause()
Pauses the CD if it is playing, and makes it play if it is paused.

18.3. cd — CD-ROM access on SGI systems 429



18.3.2 Parser Objects

Parser objects (returned by createparser()) have the following methods:

addcallback(type, func, arg)
Adds a callback for the parser. The parser has callbacks for eight different types of data in the
digital audio data stream. Constants for these types are defined at the cd module level (see above).
The callback is called as follows: func(arg, type, data), where arg is the user supplied argument,
type is the particular type of callback, and data is the data returned for this type of callback. The
type of the data depends on the type of callback as follows:

Type Value
audio String which can be passed unmodified to al.writesamps().
pnum Integer giving the program (track) number.
index Integer giving the index number.
ptime Tuple consisting of the program time in minutes, seconds, and

frames.
atime Tuple consisting of the absolute time in minutes, seconds, and

frames.
catalog String of 13 characters, giving the catalog number of the CD.
ident String of 12 characters, giving the ISRC identification number of

the recording. The string consists of two characters country code,
three characters owner code, two characters giving the year, and
five characters giving a serial number.

control Integer giving the control bits from the CD subcode data

deleteparser()
Deletes the parser and frees the memory it was using. The object should not be used after this
call. This call is done automatically when the last reference to the object is removed.

parseframe(frame)
Parses one or more frames of digital audio data from a CD such as returned by readda(). It
determines which subcodes are present in the data. If these subcodes have changed since the last
frame, then parseframe() executes a callback of the appropriate type passing to it the subcode
data found in the frame. Unlike the C function, more than one frame of digital audio data can be
passed to this method.

removecallback(type)
Removes the callback for the given type.

resetparser()
Resets the fields of the parser used for tracking subcodes to an initial state. resetparser() should
be called after the disc has been changed.

18.4 fl — FORMS library interface for GUI applications

This module provides an interface to the FORMS Library by Mark Overmars. The source for the library
can be retrieved by anonymous ftp from host ‘ftp.cs.ruu.nl’, directory ‘SGI/FORMS’. It was last tested
with version 2.0b.

Most functions are literal translations of their C equivalents, dropping the initial ‘fl ’ from their name.
Constants used by the library are defined in module FL described below.

The creation of objects is a little different in Python than in C: instead of the ‘current form’ maintained
by the library to which new FORMS objects are added, all functions that add a FORMS object to a form
are methods of the Python object representing the form. Consequently, there are no Python equivalents
for the C functions fl addto form() and fl end form(), and the equivalent of fl bgn form() is
called fl.make form().

Watch out for the somewhat confusing terminology: FORMS uses the word object for the buttons, sliders
etc. that you can place in a form. In Python, ‘object’ means any value. The Python interface to FORMS
introduces two new Python object types: form objects (representing an entire form) and FORMS objects

430 Chapter 18. SGI IRIX Specific Services



(representing one button, slider etc.). Hopefully this isn’t too confusing.

There are no ‘free objects’ in the Python interface to FORMS, nor is there an easy way to add object
classes written in Python. The FORMS interface to GL event handling is available, though, so you can
mix FORMS with pure GL windows.

Please note: importing fl implies a call to the GL function foreground() and to the FORMS routine
fl init().

18.4.1 Functions Defined in Module fl

Module fl defines the following functions. For more information about what they do, see the description
of the equivalent C function in the FORMS documentation:

make form(type, width, height)
Create a form with given type, width and height. This returns a form object, whose methods are
described below.

do forms()
The standard FORMS main loop. Returns a Python object representing the FORMS object needing
interaction, or the special value FL.EVENT.

check forms()
Check for FORMS events. Returns what do forms() above returns, or None if there is no event
that immediately needs interaction.

set event call back(function)
Set the event callback function.

set graphics mode(rgbmode, doublebuffering)
Set the graphics modes.

get rgbmode()
Return the current rgb mode. This is the value of the C global variable fl rgbmode.

show message(str1, str2, str3)
Show a dialog box with a three-line message and an OK button.

show question(str1, str2, str3)
Show a dialog box with a three-line message and YES and NO buttons. It returns 1 if the user
pressed YES, 0 if NO.

show choice(str1, str2, str3, but1 [, but2 [, but3 ] ])
Show a dialog box with a three-line message and up to three buttons. It returns the number of the
button clicked by the user (1, 2 or 3).

show input(prompt, default)
Show a dialog box with a one-line prompt message and text field in which the user can enter a
string. The second argument is the default input string. It returns the string value as edited by
the user.

show file selector(message, directory, pattern, default)
Show a dialog box in which the user can select a file. It returns the absolute filename selected by
the user, or None if the user presses Cancel.

get directory()
get pattern()
get filename()

These functions return the directory, pattern and filename (the tail part only) selected by the user
in the last show file selector() call.

qdevice(dev)
unqdevice(dev)
isqueued(dev)
qtest()

18.4. fl — FORMS library interface for GUI applications 431



qread()
qreset()
qenter(dev, val)
get mouse()
tie(button, valuator1, valuator2)

These functions are the FORMS interfaces to the corresponding GL functions. Use these if you
want to handle some GL events yourself when using fl.do events(). When a GL event is detected
that FORMS cannot handle, fl.do forms() returns the special value FL.EVENT and you should
call fl.qread() to read the event from the queue. Don’t use the equivalent GL functions!

color()
mapcolor()
getmcolor()

See the description in the FORMS documentation of fl color(), fl mapcolor() and
fl getmcolor().

18.4.2 Form Objects

Form objects (returned by make form() above) have the following methods. Each method corresponds
to a C function whose name is prefixed with ‘fl ’; and whose first argument is a form pointer; please
refer to the official FORMS documentation for descriptions.

All the add *() methods return a Python object representing the FORMS object. Methods of FORMS
objects are described below. Most kinds of FORMS object also have some methods specific to that kind;
these methods are listed here.

show form(placement, bordertype, name)
Show the form.

hide form()
Hide the form.

redraw form()
Redraw the form.

set form position(x, y)
Set the form’s position.

freeze form()
Freeze the form.

unfreeze form()
Unfreeze the form.

activate form()
Activate the form.

deactivate form()
Deactivate the form.

bgn group()
Begin a new group of objects; return a group object.

end group()
End the current group of objects.

find first()
Find the first object in the form.

find last()
Find the last object in the form.

add box(type, x, y, w, h, name)
Add a box object to the form. No extra methods.

432 Chapter 18. SGI IRIX Specific Services



add text(type, x, y, w, h, name)
Add a text object to the form. No extra methods.

add clock(type, x, y, w, h, name)
Add a clock object to the form.
Method: get clock().

add button(type, x, y, w, h, name)
Add a button object to the form.
Methods: get button(), set button().

add lightbutton(type, x, y, w, h, name)
Add a lightbutton object to the form.
Methods: get button(), set button().

add roundbutton(type, x, y, w, h, name)
Add a roundbutton object to the form.
Methods: get button(), set button().

add slider(type, x, y, w, h, name)
Add a slider object to the form.
Methods: set slider value(), get slider value(), set slider bounds(),
get slider bounds(), set slider return(), set slider size(),
set slider precision(), set slider step().

add valslider(type, x, y, w, h, name)
Add a valslider object to the form.
Methods: set slider value(), get slider value(), set slider bounds(),
get slider bounds(), set slider return(), set slider size(),
set slider precision(), set slider step().

add dial(type, x, y, w, h, name)
Add a dial object to the form.
Methods: set dial value(), get dial value(), set dial bounds(), get dial bounds().

add positioner(type, x, y, w, h, name)
Add a positioner object to the form.
Methods: set positioner xvalue(), set positioner yvalue(),
set positioner xbounds(), set positioner ybounds(), get positioner xvalue(),
get positioner yvalue(), get positioner xbounds(), get positioner ybounds().

add counter(type, x, y, w, h, name)
Add a counter object to the form.
Methods: set counter value(), get counter value(), set counter bounds(),
set counter step(), set counter precision(), set counter return().

add input(type, x, y, w, h, name)
Add a input object to the form.
Methods: set input(), get input(), set input color(), set input return().

add menu(type, x, y, w, h, name)
Add a menu object to the form.
Methods: set menu(), get menu(), addto menu().

add choice(type, x, y, w, h, name)
Add a choice object to the form.
Methods: set choice(), get choice(), clear choice(), addto choice(),
replace choice(), delete choice(), get choice text(), set choice fontsize(),
set choice fontstyle().

add browser(type, x, y, w, h, name)
Add a browser object to the form.
Methods: set browser topline(), clear browser(), add browser line(),
addto browser(), insert browser line(), delete browser line(),
replace browser line(), get browser line(), load browser(), get browser maxline(),

18.4. fl — FORMS library interface for GUI applications 433



select browser line(), deselect browser line(), deselect browser(),
isselected browser line(), get browser(), set browser fontsize(),
set browser fontstyle(), set browser specialkey().

add timer(type, x, y, w, h, name)
Add a timer object to the form.
Methods: set timer(), get timer().

Form objects have the following data attributes; see the FORMS documentation:

Name C Type Meaning
window int (read-only) GL window id
w float form width
h float form height
x float form x origin
y float form y origin
deactivated int nonzero if form is deactivated
visible int nonzero if form is visible
frozen int nonzero if form is frozen
doublebuf int nonzero if double buffering on

18.4.3 FORMS Objects

Besides methods specific to particular kinds of FORMS objects, all FORMS objects also have the fol-
lowing methods:

set call back(function, argument)
Set the object’s callback function and argument. When the object needs interaction, the callback
function will be called with two arguments: the object, and the callback argument. (FORMS
objects without a callback function are returned by fl.do forms() or fl.check forms() when
they need interaction.) Call this method without arguments to remove the callback function.

delete object()
Delete the object.

show object()
Show the object.

hide object()
Hide the object.

redraw object()
Redraw the object.

freeze object()
Freeze the object.

unfreeze object()
Unfreeze the object.

FORMS objects have these data attributes; see the FORMS documentation:

434 Chapter 18. SGI IRIX Specific Services



Name C Type Meaning
objclass int (read-only) object class
type int (read-only) object type
boxtype int box type
x float x origin
y float y origin
w float width
h float height
col1 int primary color
col2 int secondary color
align int alignment
lcol int label color
lsize float label font size
label string label string
lstyle int label style
pushed int (read-only) (see FORMS docs)
focus int (read-only) (see FORMS docs)
belowmouse int (read-only) (see FORMS docs)
frozen int (read-only) (see FORMS docs)
active int (read-only) (see FORMS docs)
input int (read-only) (see FORMS docs)
visible int (read-only) (see FORMS docs)
radio int (read-only) (see FORMS docs)
automatic int (read-only) (see FORMS docs)

18.5 FL — Constants used with the fl module

This module defines symbolic constants needed to use the built-in module fl (see above); they are
equivalent to those defined in the C header file <forms.h> except that the name prefix ‘FL ’ is omitted.
Read the module source for a complete list of the defined names. Suggested use:

import fl

from FL import *

18.6 flp — Functions for loading stored FORMS designs

This module defines functions that can read form definitions created by the ‘form designer’ (fdesign)
program that comes with the FORMS library (see module fl above).

For now, see the file ‘flp.doc’ in the Python library source directory for a description.

XXX A complete description should be inserted here!

18.7 fm — Font Manager interface

This module provides access to the IRIS Font Manager library. It is available only on Silicon Graphics
machines. See also: 4Sight User’s Guide, section 1, chapter 5: “Using the IRIS Font Manager.”

This is not yet a full interface to the IRIS Font Manager. Among the unsupported features are: matrix
operations; cache operations; character operations (use string operations instead); some details of font
info; individual glyph metrics; and printer matching.

It supports the following operations:

18.5. FL — Constants used with the fl module 435



init()
Initialization function. Calls fminit(). It is normally not necessary to call this function, since it
is called automatically the first time the fm module is imported.

findfont(fontname)
Return a font handle object. Calls fmfindfont(fontname).

enumerate()
Returns a list of available font names. This is an interface to fmenumerate().

prstr(string)
Render a string using the current font (see the setfont() font handle method below). Calls
fmprstr(string).

setpath(string)
Sets the font search path. Calls fmsetpath(string). (XXX Does not work!?!)

fontpath()
Returns the current font search path.

Font handle objects support the following operations:

scalefont(factor)
Returns a handle for a scaled version of this font. Calls fmscalefont(fh, factor).

setfont()
Makes this font the current font. Note: the effect is undone silently when the font handle object is
deleted. Calls fmsetfont(fh).

getfontname()
Returns this font’s name. Calls fmgetfontname(fh).

getcomment()
Returns the comment string associated with this font. Raises an exception if there is none. Calls
fmgetcomment(fh).

getfontinfo()
Returns a tuple giving some pertinent data about this font. This is an interface to
fmgetfontinfo(). The returned tuple contains the following numbers: (printermatched ,
fixed width, xorig , yorig , xsize, ysize, height , nglyphs).

getstrwidth(string)
Returns the width, in pixels, of string when drawn in this font. Calls fmgetstrwidth(fh, string).

18.8 gl — Graphics Library interface

This module provides access to the Silicon Graphics Graphics Library. It is available only on Silicon
Graphics machines.

Warning: Some illegal calls to the GL library cause the Python interpreter to dump core. In particular,
the use of most GL calls is unsafe before the first window is opened.

The module is too large to document here in its entirety, but the following should help you to get started.
The parameter conventions for the C functions are translated to Python as follows:

• All (short, long, unsigned) int values are represented by Python integers.

• All float and double values are represented by Python floating point numbers. In most cases,
Python integers are also allowed.

• All arrays are represented by one-dimensional Python lists. In most cases, tuples are also allowed.

• All string and character arguments are represented by Python strings, for instance, winopen(’Hi
There!’) and rotate(900, ’z’).

436 Chapter 18. SGI IRIX Specific Services



• All (short, long, unsigned) integer arguments or return values that are only used to specify the
length of an array argument are omitted. For example, the C call

lmdef(deftype, index, np, props)

is translated to Python as

lmdef(deftype, index, props)

• Output arguments are omitted from the argument list; they are transmitted as function return
values instead. If more than one value must be returned, the return value is a tuple. If the C
function has both a regular return value (that is not omitted because of the previous rule) and an
output argument, the return value comes first in the tuple. Examples: the C call

getmcolor(i, &red, &green, &blue)

is translated to Python as

red, green, blue = getmcolor(i)

The following functions are non-standard or have special argument conventions:

varray(argument)
Equivalent to but faster than a number of v3d() calls. The argument is a list (or tuple) of points.
Each point must be a tuple of coordinates (x, y, z) or (x, y). The points may be 2- or 3-
dimensional but must all have the same dimension. Float and int values may be mixed however.
The points are always converted to 3D double precision points by assuming z = 0.0 if necessary
(as indicated in the man page), and for each point v3d() is called.

nvarray()
Equivalent to but faster than a number of n3f and v3f calls. The argument is an array (list or
tuple) of pairs of normals and points. Each pair is a tuple of a point and a normal for that point.
Each point or normal must be a tuple of coordinates (x, y, z). Three coordinates must be given.
Float and int values may be mixed. For each pair, n3f() is called for the normal, and then v3f()
is called for the point.

vnarray()
Similar to nvarray() but the pairs have the point first and the normal second.

nurbssurface(s k, t k, ctl, s ord, t ord, type)
Defines a nurbs surface. The dimensions of ctl[][] are computed as follows: [len(s k) - s ord],
[len(t k) - t ord].

nurbscurve(knots, ctlpoints, order, type)
Defines a nurbs curve. The length of ctlpoints is len(knots) - order .

pwlcurve(points, type)
Defines a piecewise-linear curve. points is a list of points. type must be N ST.

pick(n)
select(n)

The only argument to these functions specifies the desired size of the pick or select buffer.

endpick()
endselect()

These functions have no arguments. They return a list of integers representing the used part of
the pick/select buffer. No method is provided to detect buffer overrun.

18.8. gl — Graphics Library interface 437



Here is a tiny but complete example GL program in Python:

import gl, GL, time

def main():

gl.foreground()

gl.prefposition(500, 900, 500, 900)

w = gl.winopen(’CrissCross’)

gl.ortho2(0.0, 400.0, 0.0, 400.0)

gl.color(GL.WHITE)

gl.clear()

gl.color(GL.RED)

gl.bgnline()

gl.v2f(0.0, 0.0)

gl.v2f(400.0, 400.0)

gl.endline()

gl.bgnline()

gl.v2f(400.0, 0.0)

gl.v2f(0.0, 400.0)

gl.endline()

time.sleep(5)

main()

See Also:

An interface to OpenGL is also available; see information about David Ascher’s PyOpenGL online at
http://starship.python.net/crew/da/PyOpenGL/. This may be a better option if support for SGI hardware
from before about 1996 is not required.

18.9 DEVICE — Constants used with the gl module

This modules defines the constants used by the Silicon Graphics Graphics Library that C programmers
find in the header file <gl/device.h>. Read the module source file for details.

18.10 GL — Constants used with the gl module

This module contains constants used by the Silicon Graphics Graphics Library from the C header file
<gl/gl.h>. Read the module source file for details.

18.11 imgfile — Support for SGI imglib files

The imgfile module allows Python programs to access SGI imglib image files (also known as ‘.rgb’ files).
The module is far from complete, but is provided anyway since the functionality that there is is enough
in some cases. Currently, colormap files are not supported.

The module defines the following variables and functions:

exception error
This exception is raised on all errors, such as unsupported file type, etc.

getsizes(file)
This function returns a tuple (x, y, z) where x and y are the size of the image in pixels and z
is the number of bytes per pixel. Only 3 byte RGB pixels and 1 byte greyscale pixels are currently
supported.

438 Chapter 18. SGI IRIX Specific Services



read(file)
This function reads and decodes the image on the specified file, and returns it as a Python string.
The string has either 1 byte greyscale pixels or 4 byte RGBA pixels. The bottom left pixel is the
first in the string. This format is suitable to pass to gl.lrectwrite(), for instance.

readscaled(file, x, y, filter[, blur ])
This function is identical to read but it returns an image that is scaled to the given x and y sizes.
If the filter and blur parameters are omitted scaling is done by simply dropping or duplicating
pixels, so the result will be less than perfect, especially for computer-generated images.

Alternatively, you can specify a filter to use to smoothen the image after scaling. The filter forms
supported are ’impulse’, ’box’, ’triangle’, ’quadratic’ and ’gaussian’. If a filter is specified
blur is an optional parameter specifying the blurriness of the filter. It defaults to 1.0.

readscaled() makes no attempt to keep the aspect ratio correct, so that is the users’ responsibility.

ttob(flag)
This function sets a global flag which defines whether the scan lines of the image are read or
written from bottom to top (flag is zero, compatible with SGI GL) or from top to bottom(flag is
one, compatible with X). The default is zero.

write(file, data, x, y, z)
This function writes the RGB or greyscale data in data to image file file. x and y give the size of
the image, z is 1 for 1 byte greyscale images or 3 for RGB images (which are stored as 4 byte values
of which only the lower three bytes are used). These are the formats returned by gl.lrectread().

18.12 jpeg — Read and write JPEG files

The module jpeg provides access to the jpeg compressor and decompressor written by the Independent
JPEG Group (IJG). JPEG is a standard for compressing pictures; it is defined in ISO 10918. For details
on JPEG or the Independent JPEG Group software refer to the JPEG standard or the documentation
provided with the software.

A portable interface to JPEG image files is available with the Python Imaging Library (PIL) by Fredrik
Lundh. Information on PIL is available at http://www.pythonware.com/products/pil/.

The jpeg module defines an exception and some functions.

exception error
Exception raised by compress() and decompress() in case of errors.

compress(data, w, h, b)
Treat data as a pixmap of width w and height h, with b bytes per pixel. The data is in SGI GL
order, so the first pixel is in the lower-left corner. This means that gl.lrectread() return data
can immediately be passed to compress(). Currently only 1 byte and 4 byte pixels are allowed,
the former being treated as greyscale and the latter as RGB color. compress() returns a string
that contains the compressed picture, in JFIF format.

decompress(data)
Data is a string containing a picture in JFIF format. It returns a tuple (data, width, height,
bytesperpixel). Again, the data is suitable to pass to gl.lrectwrite().

setoption(name, value)
Set various options. Subsequent compress() and decompress() calls will use these options. The
following options are available:

18.12. jpeg — Read and write JPEG files 439



Option Effect
’forcegray’ Force output to be grayscale, even if input is RGB.
’quality’ Set the quality of the compressed image to a value

between 0 and 100 (default is 75). This only af-
fects compression.

’optimize’ Perform Huffman table optimization. Takes
longer, but results in smaller compressed image.
This only affects compression.

’smooth’ Perform inter-block smoothing on uncompressed
image. Only useful for low-quality images. This
only affects decompression.

See Also:

JPEG Still Image Data Compression Standard
The canonical reference for the JPEG image format, by Pennebaker and Mitchell.

Information Technology - Digital Compression and Coding of Continuous-tone Still Images - Requirements and Guidelines
(http://www.w3.org/Graphics/JPEG/itu-t81.pdf)

The ISO standard for JPEG is also published as ITU T.81. This is available online in PDF form.

440 Chapter 18. SGI IRIX Specific Services



CHAPTER

NINETEEN

SunOS Specific Services

The modules described in this chapter provide interfaces to features that are unique to the SunOS
operating system (versions 4 and 5; the latter is also known as Solaris version 2).

19.1 sunaudiodev — Access to Sun audio hardware

This module allows you to access the Sun audio interface. The Sun audio hardware is capable of recording
and playing back audio data in u-LAW format with a sample rate of 8K per second. A full description
can be found in the audio(7I) manual page.

The module SUNAUDIODEV defines constants which may be used with this module.

This module defines the following variables and functions:

exception error
This exception is raised on all errors. The argument is a string describing what went wrong.

open(mode)
This function opens the audio device and returns a Sun audio device object. This object can then
be used to do I/O on. The mode parameter is one of ’r’ for record-only access, ’w’ for play-only
access, ’rw’ for both and ’control’ for access to the control device. Since only one process is
allowed to have the recorder or player open at the same time it is a good idea to open the device
only for the activity needed. See audio(7I) for details.

As per the manpage, this module first looks in the environment variable AUDIODEV for the base
audio device filename. If not found, it falls back to ‘/dev/audio’. The control device is calculated
by appending “ctl” to the base audio device.

19.1.1 Audio Device Objects

The audio device objects are returned by open() define the following methods (except control objects
which only provide getinfo(), setinfo(), fileno(), and drain()):

close()
This method explicitly closes the device. It is useful in situations where deleting the object does
not immediately close it since there are other references to it. A closed device should not be used
again.

fileno()
Returns the file descriptor associated with the device. This can be used to set up SIGPOLL notifi-
cation, as described below.

drain()
This method waits until all pending output is processed and then returns. Calling this method is
often not necessary: destroying the object will automatically close the audio device and this will
do an implicit drain.

flush()

441



This method discards all pending output. It can be used avoid the slow response to a user’s stop
request (due to buffering of up to one second of sound).

getinfo()
This method retrieves status information like input and output volume, etc. and returns it in
the form of an audio status object. This object has no methods but it contains a number of
attributes describing the current device status. The names and meanings of the attributes are
described in <sun/audioio.h> and in the audio(7I) manual page. Member names are slightly
different from their C counterparts: a status object is only a single structure. Members of the play
substructure have ‘o ’ prepended to their name and members of the record structure have ‘i ’.
So, the C member play.sample rate is accessed as o sample rate, record.gain as i gain and
monitor gain plainly as monitor gain.

ibufcount()
This method returns the number of samples that are buffered on the recording side, i.e. the program
will not block on a read() call of so many samples.

obufcount()
This method returns the number of samples buffered on the playback side. Unfortunately, this
number cannot be used to determine a number of samples that can be written without blocking
since the kernel output queue length seems to be variable.

read(size)
This method reads size samples from the audio input and returns them as a Python string. The
function blocks until enough data is available.

setinfo(status)
This method sets the audio device status parameters. The status parameter is an device status
object as returned by getinfo() and possibly modified by the program.

write(samples)
Write is passed a Python string containing audio samples to be played. If there is enough buffer
space free it will immediately return, otherwise it will block.

The audio device supports asynchronous notification of various events, through the SIGPOLL signal.
Here’s an example of how you might enable this in Python:

def handle_sigpoll(signum, frame):

print ’I got a SIGPOLL update’

import fcntl, signal, STROPTS

signal.signal(signal.SIGPOLL, handle_sigpoll)

fcntl.ioctl(audio_obj.fileno(), STROPTS.I_SETSIG, STROPTS.S_MSG)

19.2 SUNAUDIODEV — Constants used with sunaudiodev

This is a companion module to sunaudiodev which defines useful symbolic constants like MIN GAIN,
MAX GAIN, SPEAKER, etc. The names of the constants are the same names as used in the C include file
<sun/audioio.h>, with the leading string ‘AUDIO ’ stripped.

442 Chapter 19. SunOS Specific Services



CHAPTER

TWENTY

MS Windows Specific Services

This chapter describes modules that are only available on MS Windows platforms.

msvcrt Miscellaneous useful routines from the MS VC++ runtime.
winreg Routines and objects for manipulating the Windows registry.

winsound Access to the sound-playing machinery for Windows.

20.1 msvcrt – Useful routines from the MS VC++ runtime

These functions provide access to some useful capabilities on Windows platforms. Some higher-level
modules use these functions to build the Windows implementations of their services. For example, the
getpass module uses this in the implementation of the getpass() function.

Further documentation on these functions can be found in the Platform API documentation.

20.1.1 File Operations

locking(fd, mode, nbytes)
Lock part of a file based on file descriptor fd from the C runtime. Raises IOError on failure. The
locked region of the file extends from the current file position for nbytes bytes, and may continue
beyond the end of the file. mode must be one of the LK * constants listed below. Multiple regions
in a file may be locked at the same time, but may not overlap. Adjacent regions are not merged;
they must be unlocked individually.

LK LOCK
LK RLCK

Locks the specified bytes. If the bytes cannot be locked, the program immediately tries again after
1 second. If, after 10 attempts, the bytes cannot be locked, IOError is raised.

LK NBLCK
LK NBRLCK

Locks the specified bytes. If the bytes cannot be locked, IOError is raised.

LK UNLCK
Unlocks the specified bytes, which must have been previously locked.

setmode(fd, flags)
Set the line-end translation mode for the file descriptor fd . To set it to text mode, flags should be
os.O TEXT; for binary, it should be os.O BINARY.

open osfhandle(handle, flags)
Create a C runtime file descriptor from the file handle handle. The flags parameter should be a
bit-wise OR of os.O APPEND, os.O RDONLY, and os.O TEXT. The returned file descriptor may be
used as a parameter to os.fdopen() to create a file object.

get osfhandle(fd)
Return the file handle for the file descriptor fd . Raises IOError if fd is not recognized.

443



20.1.2 Console I/O

kbhit()
Return true if a keypress is waiting to be read.

getch()
Read a keypress and return the resulting character. Nothing is echoed to the console. This call
will block if a keypress is not already available, but will not wait for Enter to be pressed. If the
pressed key was a special function key, this will return ’\000’ or ’\xe0’; the next call will return
the keycode. The Control-C keypress cannot be read with this function.

getche()
Similar to getch(), but the keypress will be echoed if it represents a printable character.

putch(char)
Print the character char to the console without buffering.

ungetch(char)
Cause the character char to be “pushed back” into the console buffer; it will be the next character
read by getch() or getche().

20.1.3 Other Functions

heapmin()
Force the malloc() heap to clean itself up and return unused blocks to the operating system. This
only works on Windows NT. On failure, this raises IOError.

20.2 winreg – Windows registry access

New in version 2.0.

These functions expose the Windows registry API to Python. Instead of using an integer as the registry
handle, a handle object is used to ensure that the handles are closed correctly, even if the programmer
neglects to explicitly close them.

This module exposes a very low-level interface to the Windows registry; it is expected that in the future
a new winreg module will be created offering a higher-level interface to the registry API.

This module offers the following functions:

CloseKey(hkey)
Closes a previously opened registry key. The hkey argument specifies a previously opened key.

Note that if hkey is not closed using this method, (or the handle.Close() closed when the hkey
object is destroyed by Python.

ConnectRegistry(computer name, key)
Establishes a connection to a predefined registry handle on another computer, and returns a handle
object

computer name is the name of the remote computer, of the form ‘\\computername’. If None, the
local computer is used.

key is the predefined handle to connect to.

The return value is the handle of the opened key. If the function fails, an EnvironmentError
exception is raised.

CreateKey(key, sub key)
Creates or opens the specified key, returning a handle object

key is an already open key, or one of the predefined HKEY * constants.

sub key is a string that names the key this method opens or creates.

If key is one of the predefined keys, sub key may be None. In that case, the handle returned is the
same key handle passed in to the function.

444 Chapter 20. MS Windows Specific Services



If the key already exists, this function opens the existing key

The return value is the handle of the opened key. If the function fails, an EnvironmentError
exception is raised.

DeleteKey(key, sub key)
Deletes the specified key.

key is an already open key, or any one of the predefined HKEY * constants.

sub key is a string that must be a subkey of the key identified by the key parameter. This value
must not be None, and the key may not have subkeys.

This method can not delete keys with subkeys.

If the method succeeds, the entire key, including all of its values, is removed. If the method fails,
an EnvironmentError exception is raised.

DeleteValue(key, value)
Removes a named value from a registry key.

key is an already open key, or one of the predefined HKEY * constants.

value is a string that identifies the value to remove.

EnumKey(key, index)
Enumerates subkeys of an open registry key, returning a string.

key is an already open key, or any one of the predefined HKEY * constants.

index is an integer that identifies the index of the key to retrieve.

The function retrieves the name of one subkey each time it is called. It is typically called repeatedly
until an EnvironmentError exception is raised, indicating, no more values are available.

EnumValue(key, index)
Enumerates values of an open registry key, returning a tuple.

key is an already open key, or any one of the predefined HKEY * constants.

index is an integer that identifies the index of the value to retrieve.

The function retrieves the name of one subkey each time it is called. It is typically called repeatedly,
until an EnvironmentError exception is raised, indicating no more values.

The result is a tuple of 3 items:

Index Meaning
0 A string that identifies the value name
1 An object that holds the value data, and whose

type depends on the underlying registry type
2 An integer that identifies the type of the value

data

FlushKey(key)
Writes all the attributes of a key to the registry.

key is an already open key, or one of the predefined HKEY * constants.

It is not necessary to call RegFlushKey to change a key. Registry changes are flushed to disk by
the registry using its lazy flusher. Registry changes are also flushed to disk at system shutdown.
Unlike CloseKey(), the FlushKey() method returns only when all the data has been written to the
registry. An application should only call FlushKey() if it requires absolute certainty that registry
changes are on disk.

If you don’t know whether a FlushKey() call is required, it probably isn’t.

RegLoadKey(key, sub key, file name)
Creates a subkey under the specified key and stores registration information from a specified file
into that subkey.

key is an already open key, or any of the predefined HKEY * constants.

sub key is a string that identifies the sub key to load

20.2. winreg – Windows registry access 445



file name is the name of the file to load registry data from. This file must have been created with
the SaveKey() function. Under the file allocation table (FAT) file system, the filename may not
have an extension.

A call to LoadKey() fails if the calling process does not have the SE RESTORE PRIVILEGE privilege.
Note that privileges are different than permissions - see the Win32 documentation for more details.

If key is a handle returned by ConnectRegistry(), then the path specified in fileName is relative
to the remote computer.

The Win32 documentation implies key must be in the HKEY USER or HKEY LOCAL MACHINE tree.
This may or may not be true.

OpenKey(key, sub key[, res = 0 ][, sam = KEY READ ])
Opens the specified key, returning a handle object

key is an already open key, or any one of the predefined HKEY * constants.

sub key is a string that identifies the sub key to open

res is a reserved integer, and must be zero. The default is zero.

sam is an integer that specifies an access mask that describes the desired security access for the
key. Default is KEY READ

The result is a new handle to the specified key

If the function fails, EnvironmentError is raised.

OpenKeyEx()
The functionality of OpenKeyEx() is provided via OpenKey(), by the use of default arguments.

QueryInfoKey(key)
Returns information about a key, as a tuple.

key is an already open key, or one of the predefined HKEY * constants.

The result is a tuple of 3 items:

Index Meaning
0 An integer giving the number of sub keys this key

has.
1 An integer giving the number of values this key

has.
2 A long integer giving when the key was last modi-

fied (if available) as 100’s of nanoseconds since Jan
1, 1600.

QueryValue(key, sub key)
Retrieves the unnamed value for a key, as a string

key is an already open key, or one of the predefined HKEY * constants.

sub key is a string that holds the name of the subkey with which the value is associated. If this
parameter is None or empty, the function retrieves the value set by the SetValue() method for the
key identified by key .

Values in the registry have name, type, and data components. This method retrieves the data for
a key’s first value that has a NULL name. But the underlying API call doesn’t return the type,
Lame Lame Lame, DO NOT USE THIS!!!

QueryValueEx(key, value name)
Retrieves the type and data for a specified value name associated with an open registry key.

key is an already open key, or one of the predefined HKEY * constants.

value name is a string indicating the value to query.

The result is a tuple of 2 items:

Index Meaning
0 The value of the registry item.
1 An integer giving the registry type for this value.

446 Chapter 20. MS Windows Specific Services



SaveKey(key, file name)
Saves the specified key, and all its subkeys to the specified file.

key is an already open key, or one of the predefined HKEY * constants.

file name is the name of the file to save registry data to. This file cannot already exist. If this
filename includes an extension, it cannot be used on file allocation table (FAT) file systems by the
LoadKey(), ReplaceKey() or RestoreKey() methods.

If key represents a key on a remote computer, the path described by file name is relative to
the remote computer. The caller of this method must possess the SeBackupPrivilege security
privilege. Note that privileges are different than permissions - see the Win32 documentation for
more details.

This function passes NULL for security attributes to the API.

SetValue(key, sub key, type, value)
Associates a value with a specified key.

key is an already open key, or one of the predefined HKEY * constants.

sub key is a string that names the subkey with which the value is associated.

type is an integer that specifies the type of the data. Currently this must be REG SZ, meaning only
strings are supported. Use the SetValueEx() function for support for other data types.

value is a string that specifies the new value.

If the key specified by the sub key parameter does not exist, the SetValue function creates it.

Value lengths are limited by available memory. Long values (more than 2048 bytes) should be
stored as files with the filenames stored in the configuration registry. This helps the registry
perform efficiently.

The key identified by the key parameter must have been opened with KEY SET VALUE access.

SetValueEx(key, value name, reserved, type, value)
Stores data in the value field of an open registry key.

key is an already open key, or one of the predefined HKEY * constants.

sub key is a string that names the subkey with which the value is associated.

type is an integer that specifies the type of the data. This should be one of the following constants
defined in this module:

Constant Meaning
REG BINARY Binary data in any form.
REG DWORD A 32-bit number.
REG DWORD LITTLE ENDIAN A 32-bit number in little-endian format.
REG DWORD BIG ENDIAN A 32-bit number in big-endian format.
REG EXPAND SZ Null-terminated string containing references to en-

vironment variables (‘%PATH%’).
REG LINK A Unicode symbolic link.
REG MULTI SZ A sequence of null-terminated strings, terminated

by two null characters. (Python handles this ter-
mination automatically.)

REG NONE No defined value type.
REG RESOURCE LIST A device-driver resource list.
REG SZ A null-terminated string.

reserved can be anything - zero is always passed to the API.

value is a string that specifies the new value.

This method can also set additional value and type information for the specified key. The key
identified by the key parameter must have been opened with KEY SET VALUE access.

To open the key, use the CreateKeyEx() or OpenKey() methods.

Value lengths are limited by available memory. Long values (more than 2048 bytes) should be
stored as files with the filenames stored in the configuration registry. This helps the registry
perform efficiently.

20.2. winreg – Windows registry access 447



20.2.1 Registry Handle Objects

This object wraps a Windows HKEY object, automatically closing it when the object is destroyed. To
guarantee cleanup, you can call either the Close() method on the object, or the CloseKey() function.

All registry functions in this module return one of these objects.

All registry functions in this module which accept a handle object also accept an integer, however, use
of the handle object is encouraged.

Handle objects provide semantics for nonzero () - thus

if handle:

print "Yes"

will print Yes if the handle is currently valid (i.e., has not been closed or detached).

The object also support comparison semantics, so handle objects will compare true if they both reference
the same underlying Windows handle value.

Handle objects can be converted to an integer (eg, using the builtin int() function, in which case the
underlying Windows handle value is returned. You can also use the Detach() method to return the
integer handle, and also disconnect the Windows handle from the handle object.

Close()
Closes the underlying Windows handle.

If the handle is already closed, no error is raised.

Detach()
Detaches the Windows handle from the handle object.

The result is an integer (or long on 64 bit Windows) that holds the value of the handle before it is
detached. If the handle is already detached or closed, this will return zero.

After calling this function, the handle is effectively invalidated, but the handle is not closed. You
would call this function when you need the underlying Win32 handle to exist beyond the lifetime
of the handle object.

20.3 winsound — Sound-playing interface for Windows

New in version 1.5.2.

The winsound module provides access to the basic sound-playing machinery provided by Windows plat-
forms. It includes two functions and several constants.

Beep(frequency, duration)
Beep the PC’s speaker. The frequency parameter specifies frequency, in hertz, of the sound,
and must be in the range 37 through 32,767. The duration parameter specifies the number of
milliseconds the sound should last. If the system is not able to beep the speaker, RuntimeError is
raised. Note: Under Windows 95 and 98, the Windows Beep() function exists but is useless (it
ignores its arguments). In that case Python simulates it via direct port manipulation (added in
version 2.1). It’s unknown whether that will work on all systems. New in version 1.6.

PlaySound(sound, flags)
Call the underlying PlaySound() function from the Platform API. The sound parameter may be
a filename, audio data as a string, or None. Its interpretation depends on the value of flags, which
can be a bit-wise ORed combination of the constants described below. If the system indicates an
error, RuntimeError is raised.

SND FILENAME
The sound parameter is the name of a WAV file. Do not use with SND ALIAS.

SND ALIAS

448 Chapter 20. MS Windows Specific Services



The sound parameter is a sound association name from the registry. If the registry contains no
such name, play the system default sound unless SND NODEFAULT is also specified. If no default
sound is registered, raise RuntimeError. Do not use with SND FILENAME.

All Win32 systems support at least the following; most systems support many more:

PlaySound() name Corresponding Control Panel Sound name
’SystemAsterisk’ Asterisk
’SystemExclamation’ Exclamation
’SystemExit’ Exit Windows
’SystemHand’ Critical Stop
’SystemQuestion’ Question

For example:

import winsound

# Play Windows exit sound.

winsound.PlaySound("SystemExit", winsound.SND_ALIAS)

# Probably play Windows default sound, if any is registered (because

# "*" probably isn’t the registered name of any sound).

winsound.PlaySound("*", winsound.SND_ALIAS)

SND LOOP
Play the sound repeatedly. The SND ASYNC flag must also be used to avoid blocking. Cannot be
used with SND MEMORY.

SND MEMORY
The sound parameter to PlaySound() is a memory image of a WAV file, as a string.

Note: This module does not support playing from a memory image asynchronously, so a combi-
nation of this flag and SND ASYNC will raise RuntimeError.

SND PURGE
Stop playing all instances of the specified sound.

SND ASYNC
Return immediately, allowing sounds to play asynchronously.

SND NODEFAULT
If the specified sound cannot be found, do not play the system default sound.

SND NOSTOP
Do not interrupt sounds currently playing.

SND NOWAIT
Return immediately if the sound driver is busy.

20.3. winsound — Sound-playing interface for Windows 449



450



APPENDIX

A

Undocumented Modules

Here’s a quick listing of modules that are currently undocumented, but that should be documented. Feel
free to contribute documentation for them! (Send via email to python-docs@python.org.)

The idea and original contents for this chapter were taken from a posting by Fredrik Lundh; the specific
contents of this chapter have been substantially revised.

A.1 Frameworks

Frameworks tend to be harder to document, but are well worth the effort spent.

Tkinter — Interface to Tcl/Tk for graphical user interfaces; Fredrik Lundh is working on this one! See
An Introduction to Tkinter at http://www.pythonware.com/library.htm for on-line reference material.

Tkdnd — Drag-and-drop support for Tkinter.

turtle — Turtle graphics in a Tk window.

test — Regression testing framework. This is used for the Python regression test, but is useful for other
Python libraries as well. This is a package rather than a single module.

A.2 Miscellaneous useful utilities

Some of these are very old and/or not very robust; marked with “hmm.”

bdb — A generic Python debugger base class (used by pdb).

ihooks — Import hook support (for rexec; may become obsolete).

A.3 Platform specific modules

These modules are used to implement the os.path module, and are not documented beyond this mention.
There’s little need to document these.

dospath — Implementation of os.path on MS-DOS.

ntpath — Implementation on os.path on Win32, Win64, WinCE, and OS/2 platforms.

posixpath — Implementation on os.path on POSIX.

451



A.4 Multimedia

audiodev — Platform-independent API for playing audio data.

sunaudio — Interpret Sun audio headers (may become obsolete or a tool/demo).

toaiff — Convert ”arbitrary” sound files to AIFF files; should probably become a tool or demo. Re-
quires the external program sox.

A.5 Obsolete

These modules are not normally available for import; additional work must be done to make them
available.

Those which are written in Python will be installed into the directory ‘lib-old/’ installed as part of the
standard library. To use these, the directory must be added to sys.path, possibly using PYTHONPATH.

Obsolete extension modules written in C are not built by default. Under Unix, these must be enabled by
uncommenting the appropriate lines in ‘Modules/Setup’ in the build tree and either rebuilding Python if
the modules are statically linked, or building and installing the shared object if using dynamically-loaded
extensions.

addpack — Alternate approach to packages. Use the built-in package support instead.

cmp — File comparison function. Use the newer filecmp instead.

cmpcache — Caching version of the obsolete cmp module. Use the newer filecmp instead.

codehack — Extract function name or line number from a function code object (these are now accessible
as attributes: co.co name, func.func name, co.co firstlineno).

dircmp — Class to build directory diff tools on (may become a demo or tool). Deprecated since
release 2.0. The filecmp module replaces dircmp.

dump — Print python code that reconstructs a variable.

fmt — Text formatting abstractions (too slow).

lockfile — Wrapper around FCNTL file locking (use fcntl.lockf()/flock() instead; see fcntl).

newdir — New dir() function (the standard dir() is now just as good).

Para — Helper for fmt.

poly — Polynomials.

regex — Emacs-style regular expression support; may still be used in some old code (extension module).
Refer to the Python 1.6 Documentation for documentation.

regsub — Regular expression based string replacement utilities, for use with regex (extension module).
Refer to the Python 1.6 Documentation for documentation.

tb — Print tracebacks, with a dump of local variables (use pdb.pm() or traceback instead).

timing — Measure time intervals to high resolution (use time.clock() instead). (This is an extension
module.)

tzparse — Parse a timezone specification (unfinished; may disappear in the future, and does not work
when the TZ environment variable is not set).

util — Useful functions that don’t fit elsewhere.

whatsound — Recognize sound files; use sndhdr instead.

452 Appendix A. Undocumented Modules



zmod — Compute properties of mathematical “fields.”

The following modules are obsolete, but are likely to re-surface as tools or scripts:

find — Find files matching pattern in directory tree.

grep — grep implementation in Python.

packmail — Create a self-unpacking Unix shell archive.

The following modules were documented in previous versions of this manual, but are now considered
obsolete. The source for the documentation is still available as part of the documentation source archive.

ni — Import modules in “packages.” Basic package support is now built in. The built-in support is
very similar to what is provided in this module.

rand — Old interface to the random number generator.

soundex — Algorithm for collapsing names which sound similar to a shared key. The specific algorithm
doesn’t seem to match any published algorithm. (This is an extension module.)

A.6 SGI-specific Extension modules

The following are SGI specific, and may be out of touch with the current version of reality.

cl — Interface to the SGI compression library.

sv — Interface to the “simple video” board on SGI Indigo (obsolete hardware).

A.6. SGI-specific Extension modules 453



454



APPENDIX

B

Reporting Bugs

Python is a mature programming language which has established a reputation for stability. In order to
maintain this reputation, the developers would like to know of any deficiencies you find in Python or its
documentation.

All bug reports should be submitted via the Python Bug Tracker on SourceForge
(http://sourceforge.net/bugs/?group id=5470). The bug tracker offers a Web form which allows per-
tinent information to be entered and submitted to the developers.

Before submitting a report, please log into SourceForge if you are a member; this will make it possible
for the developers to contact you for additional information if needed. If you are not a SourceForge
member but would not mind the developers contacting you, you may include your email address in your
bug description. In this case, please realize that the information is publically available and cannot be
protected.

The first step in filing a report is to determine whether the problem has already been reported. The
advantage in doing so, aside from saving the developers time, is that you learn what has been done to
fix it; it may be that the problem has already been fixed for the next release, or additional information
is needed (in which case you are welcome to provide it if you can!). To do this, search the bug database
using the search box near the bottom of the page.

If the problem you’re reporting is not already in the bug tracker, go back to the Python Bug Tracker
(http://sourceforge.net/bugs/?group id=5470). Select the “Submit a Bug” link at the top of the page to
open the bug reporting form.

The submission form has a number of fields. The only fields that are required are the “Summary” and
“Details” fields. For the summary, enter a very short description of the problem; less than ten words is
good. In the Details field, describe the problem in detail, including what you expected to happen and
what did happen. Be sure to include the version of Python you used, whether any extension modules
were involved, and what hardware and software platform you were using (including version information
as appropriate).

The only other field that you may want to set is the “Category” field, which allows you to place the bug
report into a broad category (such as “Documentation” or “Library”).

Each bug report will be assigned to a developer who will determine what needs to be done to correct
the problem. If you have a SourceForge account and logged in to report the problem, you will receive an
update each time action is taken on the bug.

See Also:

How to Report Bugs Effectively
(http://www-mice.cs.ucl.ac.uk/multimedia/software/documentation/ReportingBugs.html)

Article which goes into some detail about how to create a useful bug report. This describes what
kind of information is useful and why it is useful.

Bug Writing Guidelines
(http://www.mozilla.org/quality/bug-writing-guidelines.html)

Information about writing a good bug report. Some of this is specific to the Mozilla project, but
describes general good practices.

455



456



MODULE INDEX

Symbols
builtin , 73
main , 73

winreg, 444

A
aifc, 383
AL, 427
al, 425
anydbm, 219
array, 122
asyncore, 313
atexit, 40
audioop, 379

B
base64, 334
BaseHTTPServer, 305
Bastion, 402
binascii, 328
binhex, 327
bisect, 121
bsddb, 221

C
calendar, 128
cd, 427
cgi, 269
CGIHTTPServer, 308
chunk, 389
cmath, 116
cmd, 129
code, 65
codecs, 93
codeop, 67
colorsys, 390
commands, 246
compileall, 417
ConfigParser, 124
Cookie, 309
copy, 58
copy reg, 57
cPickle, 57
crypt, 233
cStringIO, 92

curses, 160
curses.ascii, 176
curses.panel, 178
curses.textpad, 174
curses.wrapper, 175

D
dbhash, 220
dbm, 235
DEVICE, 438
difflib, 88
dircache, 148
dis, 417
dl, 234
doctest, 99
dumbdbm, 220

E
errno, 181
exceptions, 16

F
fcntl, 239
filecmp, 152
fileinput, 126
FL, 435
fl, 430
flp, 435
fm, 435
fnmatch, 187
formatter, 317
fpectl, 38
fpformat, 91
ftplib, 286

G
gc, 34
gdbm, 236
getopt, 179
getpass, 160
gettext, 193
GL, 438
gl, 436
glob, 187
gopherlib, 289

457



grp, 233
gzip, 225

H
htmlentitydefs, 345
htmllib, 343
httplib, 284

I
imageop, 382
imaplib, 291
imgfile, 438
imghdr, 391
imp, 63
inspect, 47

J
jpeg, 439

K
keyword, 415

L
linecache, 52
locale, 189

M
mailbox, 335
mailcap, 332
marshal, 59
math, 115
md5, 393
mhlib, 336
mimetools, 324
mimetypes, 333
MimeWriter, 325
mimify, 338
mmap, 218
mpz, 395
msvcrt, 443
multifile, 326
mutex, 159

N
netrc, 339
new, 71
nis, 245
nntplib, 294

O
operator, 43
os, 135
os.path, 146

P
parser, 405
pdb, 249

pickle, 53
pipes, 240
popen2, 153
poplib, 290
posix, 231
posixfile, 241
pprint, 67
profile, 258
pstats, 259
pty, 238
pwd, 232
py compile, 417
pyclbr, 416

Q
Queue, 217
quopri, 335

R
random, 117
re, 78
readline, 228
repr, 69
resource, 243
rexec, 400
rfc822, 321
rgbimg, 391
rlcompleter, 230
robotparser, 340
rotor, 396

S
sched, 158
select, 208
sgmllib, 341
sha, 394
shelve, 57
shlex, 131
shutil, 188
signal, 201
SimpleHTTPServer, 308
site, 71
smtplib, 297
sndhdr, 392
socket, 203
SocketServer, 303
stat, 149
statcache, 151
statvfs, 151
string, 75
StringIO, 92
struct, 86
sunau, 385
SUNAUDIODEV, 442
sunaudiodev, 441
symbol, 414
sys, 29
syslog, 246

458 Module Index



T
tabnanny, 415
telnetlib, 300
tempfile, 180
TERMIOS, 238
termios, 237
thread, 209
threading, 211
time, 154
token, 414
tokenize, 415
traceback, 50
tty, 238
types, 40

U
unicodedata, 97
unittest, 106
urllib, 274
urllib2, 278
urlparse, 302
user, 72
UserDict, 42
UserList, 42
UserString, 43
uu, 328

W
warnings, 60
wave, 387
weakref, 35
webbrowser, 267
whichdb, 221
whrandom, 120
winsound, 448

X
xdrlib, 330
xml.dom, 351
xml.dom.minidom, 360
xml.dom.pulldom, 365
xml.parsers.expat, 345
xml.sax, 365
xml.sax.handler, 367
xml.sax.saxutils, 371
xml.sax.xmlreader, 371
xmllib, 375
xreadlines, 128

Z
zipfile, 225
zlib, 223

Module Index 459



460



INDEX

Symbols
.ini

file, 124
.pdbrc

file, 250
.pythonrc.py

file, 72
==

operator, 4
abs () (in module operator), 44
add () (AddressList method), 323
add () (in module operator), 43
and () (in module operator), 44
bases (class attribute), 16
builtin (built-in module), 73
class (instance attribute), 16
cmp () (instance method), 4
concat () (in module operator), 44
contains () (in module operator), 45
copy () (copy protocol), 59
deepcopy () (copy protocol), 59
delitem () (in module operator), 45
delslice () (in module operator), 45
dict (instance attribute), 54
dict (object attribute), 16
displayhook (data in sys), 30
div () (in module operator), 44
excepthook (data in sys), 30
getinitargs () (copy protocol), 54, 59
getitem () (in module operator), 45
getslice () (in module operator), 45
getstate () (copy protocol), 54, 59
iadd () (AddressList method), 323
import () (in module ), 20
init () (NullTranslations method), 194
init () (instance constructor), 54
inv () (in module operator), 44
invert () (in module operator), 44
isub () (AddressList method), 323
len () (AddressList method), 323
lshift () (in module operator), 44
main (built-in module), 73
members (object attribute), 16
methods (object attribute), 16
mod () (in module operator), 44
mul () (in module operator), 44

neg () (in module operator), 44
not () (in module operator), 44
or () (in module operator), 44
pos () (in module operator), 44
repeat () (in module operator), 45
repr () (netrc method), 340
rshift () (in module operator), 44
setitem () (in module operator), 45
setslice () (in module operator), 45
setstate () (copy protocol), 54, 59
stderr (data in sys), 33
stdin (data in sys), 33
stdout (data in sys), 33
str () (AddressList method), 323
sub () (AddressList method), 323
sub () (in module operator), 44
xor () (in module operator), 44

exit() (in module os), 143
getframe() (in module sys), 31
locale (built-in module), 189
parse() (NullTranslations method), 194
winreg (extension module), 444

A
A-LAW, 384, 392
a2b base64() (in module binascii), 329
a2b hex() (in module binascii), 329
a2b hqx() (in module binascii), 329
a2b uu() (in module binascii), 329
abc language, 4
abort()

FTP method, 288
in module os, 143

above() ( method), 178
abs()

in module , 20
in module operator, 44

abspath() (in module os.path), 146
AbstractBasicAuthHandler (class in urllib2),

279
AbstractDigestAuthHandler (class in urllib2),

280
AbstractFormatter (class in formatter), 319
AbstractWriter (class in formatter), 320
accept()

dispatcher method, 314

461



socket method, 206
accept2dyear (data in time), 155
access() (in module os), 140
acos()

in module cmath, 116
in module math, 115

acosh() (in module cmath), 116
acquire()

Condition method, 214
lock method, 210
Semaphore method, 214
Thread method, 212

activate form() (form method), 432
activeCount() (in module threading), 211
add()

in module audioop, 379
in module operator, 43
Stats method, 259

add box() (form method), 432
add browser() (form method), 433
add button() (form method), 433
add choice() (form method), 433
add clock() (form method), 433
add counter() (form method), 433
add data() (Request method), 280
add dial() (form method), 433
add flowing data() (formatter method), 318
add handler() (OpenerDirector method), 281
add header() (Request method), 280
add hor rule() (formatter method), 318
add input() (form method), 433
add label data() (formatter method), 318
add lightbutton() (form method), 433
add line break() (formatter method), 318
add literal data() (formatter method), 318
add menu() (form method), 433
add parent() (BaseHandler method), 281
add password() (HTTPPasswordMgr

method), 283
add positioner() (form method), 433
add roundbutton() (form method), 433
add section() (ConfigParser method), 125
add slider() (form method), 433
add text() (form method), 433
add timer() (form method), 434
add valslider() (form method), 433
addcallback() (CD parser method), 430
addch() (window method), 166
addError() (TestResult method), 114
addFailure() (TestResult method), 114
addheader() (MimeWriter method), 325
addnstr() (window method), 166
address family (data in SocketServer), 304
address string() (BaseHTTPRequestHand-

ler method), 307
AddressList (class in rfc822), 321
addresslist (AddressList attribute), 324
addstr() (window method), 166

addSuccess() (TestResult method), 114
addTest() (TestSuite method), 113
addTests() (TestSuite method), 113
adler32() (in module zlib), 223
ADPCM, Intel/DVI, 379
adpcm2lin() (in module audioop), 379
adpcm32lin() (in module audioop), 379
AF INET (data in socket), 204
AF UNIX (data in socket), 204
aifc() (aifc method), 384
aifc (standard module), 383
AIFF, 383, 389
aiff() (aifc method), 384
AIFF-C, 383, 389
AL (standard module), 425, 427
al (built-in module), 425
alarm() (in module signal), 202
all errors (data in ftplib), 287
all features (data in xml.sax.handler), 368
all properties (data in xml.sax.handler), 368
allocate lock() (in module thread), 210
allow reuse address (data in SocketServer),

304
allowremoval() (CD player method), 428
alt() (in module curses.ascii), 177
altsep (data in os), 146
altzone (data in time), 155
anchor bgn() (HTMLParser method), 344
anchor end() (HTMLParser method), 344
and

operator, 3, 4
and () (in module operator), 44
annotate() (in module dircache), 148
anydbm (standard module), 219
apop() (POP3 method), 290
append()

array method, 123
IMAP4 method, 292
list method, 11
Template method, 241

appendChild() (Node method), 354
apply() (in module ), 20
arbitrary precision integers, 395
aRepr (data in repr), 69
argv (data in sys), 29
arithmetic, 5
ArithmeticError (exception in exceptions), 17
array() (in module array), 122
array (built-in module), 122
arrays, 122
ArrayType (data in array), 122
article() (NNTPDataError method), 297
AS IS (data in formatter), 318
Ascher, David, 438
ascii() (in module curses.ascii), 177
asctime() (in module time), 155
asin()

in module cmath, 116

462 Index



in module math, 115
asinh() (in module cmath), 116
assert

statement, 17
assert () (TestCase method), 112
assert line data() (formatter method), 319
assertEqual() (TestCase method), 112
AssertionError (exception in exceptions), 17
assertNotEqual() (TestCase method), 112
assertRaises() (TestCase method), 112
assignment

slice, 11
subscript, 11

ast2list() (in module parser), 407
ast2tuple() (in module parser), 407
ASTType (data in parser), 408
asyncore (built-in module), 313
atan()

in module cmath, 116
in module math, 115

atan2() (in module math), 115
atanh() (in module cmath), 117
atexit (standard module), 40
atime (data in cd), 428
atof()

in module locale, 191
in module string, 76

atoi()
in module locale, 191
in module string, 76

atol() (in module string), 76
AttlistDeclHandler() (xmlparser method),

347
AttributeError (exception in exceptions), 17
attributes

Node attribute, 353
XMLParser attribute, 375

AttributesImpl (class in xml.sax.xmlreader),
372

AttributesNSImpl (class in
xml.sax.xmlreader), 372

attroff() (window method), 166
attron() (window method), 166
attrset() (window method), 166
audio (data in cd), 428
Audio Interchange File Format, 383, 389
AUDIO FILE ENCODING ADPCM G721 (data in

sunau), 386
AUDIO FILE ENCODING ADPCM G722 (data in

sunau), 386
AUDIO FILE ENCODING ADPCM G723 3 (data

in sunau), 386
AUDIO FILE ENCODING ADPCM G723 5 (data

in sunau), 386
AUDIO FILE ENCODING ALAW 8 (data in

sunau), 385
AUDIO FILE ENCODING DOUBLE (data in

sunau), 385

AUDIO FILE ENCODING FLOAT (data in sunau),
385

AUDIO FILE ENCODING LINEAR 16 (data in
sunau), 385

AUDIO FILE ENCODING LINEAR 24 (data in
sunau), 385

AUDIO FILE ENCODING LINEAR 32 (data in
sunau), 385

AUDIO FILE ENCODING LINEAR 8 (data in
sunau), 385

AUDIO FILE ENCODING MULAW 8 (data in
sunau), 385

AUDIO FILE MAGIC (data in sunau), 385
audioop (built-in module), 379
authenticate() (IMAP4 method), 292
authenticators() (netrc method), 340
avg() (in module audioop), 379
avgpp() (in module audioop), 379

B
b2a base64() (in module binascii), 329
b2a hex() (in module binascii), 329
b2a hqx() (in module binascii), 329
b2a uu() (in module binascii), 329
BabylMailbox (class in mailbox), 336
base64

encoding, 334
base64 (standard module), 334
BaseCookie (class in Cookie), 309
BaseHandler (class in urllib2), 279
BaseHTTPRequestHandler (class in Base-

HTTPServer), 306
BaseHTTPServer (standard module), 305
basename() (in module os.path), 146
Bastion() (in module Bastion), 402
Bastion (standard module), 402
BastionClass (class in Bastion), 403
baudrate() (in module curses), 161
bdb (standard module), 249
Beep() (in module winsound), 448
beep() (in module curses), 161
below() ( method), 178
benchmarking, 156
bestreadsize() (CD player method), 428
betavariate() (in module random), 119
bgn group() (form method), 432
bias() (in module audioop), 380
bidirectional() (in module unicodedata), 97
binary

data, packing, 86
binary() (mpz method), 395
binary semaphores, 210
binascii (built-in module), 328
bind()

dispatcher method, 314
socket method, 206

bindtextdomain() (in module gettext), 193
binhex() (in module binhex), 328

Index 463



binhex (standard module), 327, 329
bisect() (in module bisect), 121
bisect (standard module), 121
bisect left() (in module bisect), 121
bisect right() (in module bisect), 121
bit-string

operations, 6
bkgd() (window method), 166
bkgdset() (window method), 166
BLOCKSIZE (data in cd), 428
blocksize (data in sha), 394
body() (NNTPDataError method), 296
BOM (data in codecs), 94
BOM32 BE (data in codecs), 94
BOM32 LE (data in codecs), 94
BOM64 BE (data in codecs), 94
BOM64 LE (data in codecs), 94
BOM BE (data in codecs), 94
BOM LE (data in codecs), 94
Boolean

operations, 3, 4
type, 3

border() (window method), 166
bottom() ( method), 178
bottom panel() (in module curses.panel), 178
box() (window method), 166
BROWSER, 267, 268
bsddb

built-in module, 219, 220
extension module, 221

btopen() (in module bsddb), 222
buffer

object, 6
buffer()

built-in function, 6, 42
in module , 21

buffer size, I/O, 24
buffer info() (array method), 123
BufferType (data in types), 42
build opener() (in module urllib2), 279
built-in

exceptions, 3
functions, 3
types, 3

builtin module names (data in sys), 30
BuiltinFunctionType (data in types), 41
BuiltinMethodType (data in types), 42
byte-code

file, 63, 64, 417
byteorder (data in sys), 30
byteswap() (array method), 123

C
C

language, 4, 5
structures, 86

C BUILTIN (data in imp), 64
C EXTENSION (data in imp), 64

CacheFTPHandler (class in urllib2), 280
calcsize() (in module struct), 86
calendar() (in module calendar), 129
calendar (standard module), 128
call() ( method), 235
callable() (in module ), 21
CallableProxyType (data in weakref), 36
can change color() (in module curses), 161
can fetch() (RobotFileParser method), 340
cancel() (scheduler method), 159
capitalize()

in module string, 76
string method, 7

capwords() (in module string), 76
cat() (in module nis), 246
catalog (data in cd), 428
category() (in module unicodedata), 97
cbreak() (in module curses), 161
cd (built-in module), 427
CDROM (data in cd), 428
ceil()

in module math, 115
in module math, 5

center()
in module string, 77
string method, 7

CGI
protocol, 269

cgi (standard module), 269
cgi directories (CGIHTTPRequestHandler

attribute), 309
CGIHTTPRequestHandler (class in CGI-

HTTPServer), 309
CGIHTTPServer (standard module), 305, 308
chaining

comparisons, 4
CHAR MAX (data in locale), 191
character, 97
CharacterDataHandler() (xmlparser method),

348
characters() (ContentHandler method), 369
CHARSET (data in mimify), 339
charset() (NullTranslations method), 195
chdir() (in module os), 140
check()

IMAP4 method, 292
in module tabnanny, 416

check forms() (in module fl), 431
checkcache() (in module linecache), 52
checksum

Cyclic Redundancy Check, 223
MD5, 393
SHA, 394

childerr (Popen4 attribute), 154
childNodes (Node attribute), 353
chmod() (in module os), 140
choice()

in module random, 119

464 Index



in module whrandom, 120
choose boundary() (in module mimetools),

324
chown() (in module os), 140
chr() (in module ), 21
Chunk (class in chunk), 389
chunk (standard module), 389
cipher

DES, 233, 393
Enigma, 396
IDEA, 393

classobj() (in module new), 71
ClassType (data in types), 41
clear()

dictionary method, 11
Event method, 215
window method, 167

clearcache() (in module linecache), 52
clearok() (window method), 167
client address (BaseHTTPRequestHandler

attribute), 306
clock() (in module time), 156
clone() (Template method), 241
cloneNode()

method, 362
Node method, 354

Close() ( method), 448
close()

method, 218, 222, 235
aifc method, 384, 385
AU read method, 386
AU write method, 387
audio device method, 441
BaseHandler method, 281
CD player method, 428
Chunk method, 390
dispatcher method, 314
file method, 14
FTP method, 289
IMAP4 method, 292
in module fileinput, 127
in module os, 138
IncrementalParser method, 373
OpenerDirector method, 281
SGMLParser method, 342
socket method, 206
StringIO method, 92
Telnet method, 301
Wave read method, 388
Wave write method, 388
XMLParser method, 376
ZipFile method, 226

closed (file attribute), 15
CloseKey() (in module winreg), 444
closelog() (in module syslog), 246
closeport() (audio port method), 426
clrtobot() (window method), 167
clrtoeol() (window method), 167

cmath (built-in module), 116
Cmd (class in cmd), 129
cmd (standard module), 129, 249
cmdloop() (Cmd method), 130
cmp()

built-in function, 191
in module , 21
in module filecmp, 152

cmp op (data in dis), 418
cmpfiles() (in module filecmp), 152
code

object, 13, 14, 60
code() (in module new), 71
code

ExpatError attribute, 349
standard module, 65

Codecs, 93
decode, 93
encode, 93

codecs (standard module), 93
coded value (Morsel attribute), 311
codeop (standard module), 67
CodeType (data in types), 41
coerce() (in module ), 21
collect() (in module gc), 34
color() (in module fl), 432
color content() (in module curses), 161
color pair() (in module curses), 161
colorsys (standard module), 390
COLUMNS, 165
combining() (in module unicodedata), 97
command (BaseHTTPRequestHandler at-

tribute), 306
commands (standard module), 246
COMMENT (data in tokenize), 415
comment (ZipInfo attribute), 228
commenters (shlex attribute), 132
CommentHandler() (xmlparser method), 348
common (dircmp attribute), 153
Common Gateway Interface, 269
common dirs (dircmp attribute), 153
common files (dircmp attribute), 153
common funny (dircmp attribute), 153
commonprefix() (in module os.path), 146
comparing

objects, 4
comparison

operator, 4
comparisons

chaining, 4
compile()

AST method, 408
built-in function, 14, 41, 407, 408
in module , 21
in module py compile, 417
in module re, 81

compile command()
in module code, 65

Index 465



in module codeop, 67
compile dir() (in module compileall), 417
compile path() (in module compileall), 417
compileall (standard module), 417
compileast() (in module parser), 407
complete() (Completer method), 230
complex()

built-in function, 5
in module , 21

complex number
literals, 5
object, 5

ComplexType (data in types), 41
compress()

Compress method, 224
in module jpeg, 439
in module zlib, 223

compress size (ZipInfo attribute), 228
compress type (ZipInfo attribute), 228
compressobj() (in module zlib), 223
concat() (in module operator), 44
concatenation

operation, 6
Condition() (in module threading), 211
Condition (class in threading), 213
ConfigParser

class in ConfigParser, 124
standard module, 124

configuration
file, 124
file, debugger, 250
file, path, 72
file, user, 72

confstr() (in module os), 145
confstr names (data in os), 145
conjugate() (complex number method), 5
connect()

dispatcher method, 314
FTP method, 287
HTTP method, 285
SMTP method, 298
socket method, 206

connect ex() (socket method), 206
ConnectRegistry() (in module winreg), 444
constructor() (in module copy reg), 57
contains() (in module operator), 45
content type

MIME, 333
ContentHandler (class in xml.sax.handler), 367
control (data in cd), 428
controlnames (data in curses.ascii), 178
ConversionError (exception in xdrlib), 332
conversions

numeric, 5
Cookie (standard module), 309
CookieError (exception in Cookie), 309
Coordinated Universal Time, 155
copy()

IMAP4 method, 292
in module shutil, 188
md5 method, 394
sha method, 394
Template method, 241

copy (standard module), 54, 57, 58
copy()

dictionary method, 11
in copy, 58

copy2() (in module shutil), 188
copy reg (standard module), 57
copybinary() (in module mimetools), 324
copyfile() (in module shutil), 188
copyfileobj() (in module shutil), 188
copying files, 188
copyliteral() (in module mimetools), 324
copymessage() (Folder method), 338
copymode() (in module shutil), 188
copyright (data in sys), 30
copystat() (in module shutil), 188
copytree() (in module shutil), 188
cos()

in module cmath, 117
in module math, 115

cosh()
in module cmath, 117
in module math, 115

count()
array method, 123
in module string, 77
list method, 11
string method, 7

countOf() (in module operator), 45
countTestCases() (TestCase method), 113
cPickle (built-in module), 53, 57, 57
CPU time, 156
CRC (ZipInfo attribute), 228
crc32()

in module binascii, 329
in module zlib, 223

crc hqx() (in module binascii), 329
create() (IMAP4 method), 293
create socket() (dispatcher method), 314
create system (ZipInfo attribute), 228
create version (ZipInfo attribute), 228
createAttribute() (Document method), 356
createAttributeNS() (Document method),

356
createComment() (Document method), 356
createElement() (Document method), 355
createElementNS() (Document method), 356
CreateKey() (in module winreg), 444
createparser() (in module cd), 427
createProcessingInstruction() (Document

method), 356
createTextNode() (Document method), 356
crop() (in module imageop), 382
cross() (in module audioop), 380

466 Index



crypt() (in module crypt), 233
crypt (built-in module), 232, 233
crypt(3), 233
cryptography, 393
cStringIO (built-in module), 92
ctermid() (in module os), 136
ctime() (in module time), 156
ctrl() (in module curses.ascii), 177
cunifvariate() (in module random), 119
curdir (data in os), 146
currentframe() (in module inspect), 50
currentThread() (in module threading), 211
curs set() (in module curses), 161
curses (standard module), 160
curses.ascii (standard module), 176
curses.panel (standard module), 178
curses.textpad (standard module), 174
curses.wrapper (standard module), 175
cursyncup() (window method), 167
cwd() (FTP method), 289
Cyclic Redundancy Check, 223

D
data

packing binary, 86
data

Comment attribute, 357
MutableString attribute, 43
ProcessingInstruction attribute, 358
Text attribute, 358
UserDict attribute, 42
UserList attribute, 43

database
Unicode, 97

DATASIZE (data in cd), 428
date() (NNTPDataError method), 297
date time (ZipInfo attribute), 227
date time string() (BaseHTTPRequest-

Handler method), 307
daylight (data in time), 156
Daylight Saving Time, 155
dbhash (standard module), 219, 220
dbm (built-in module), 58, 219, 235, 236
deactivate form() (form method), 432
debug()

Template method, 241
TestCase method, 112

debug
IMAP4 attribute, 294
shlex attribute, 133
ZipFile attribute, 227

DEBUG COLLECTABLE (data in gc), 35
DEBUG INSTANCES (data in gc), 35
DEBUG LEAK (data in gc), 35
DEBUG OBJECTS (data in gc), 35
DEBUG SAVEALL (data in gc), 35
DEBUG STATS (data in gc), 35
DEBUG UNCOLLECTABLE (data in gc), 35

debugger, 33
configuration file, 250

debugging, 249
decimal() (in module unicodedata), 97
decode

Codecs, 93
decode()

method, 94
in module base64, 334
in module mimetools, 324
in module quopri, 335
in module uu, 328

decodestring() (in module base64), 335
decomposition() (in module unicodedata), 98
decompress()

Decompress method, 224
in module jpeg, 439
in module zlib, 224

decompressobj() (in module zlib), 224
decrypt() (rotor method), 396
decryptmore() (rotor method), 396
deepcopy() (in copy), 58
def prog mode() (in module curses), 161
def shell mode() (in module curses), 161
default() (Cmd method), 130
default bufsize (data in xml.dom.pulldom),

365
default open() (BaseHandler method), 282
DefaultHandler() (xmlparser method), 348
DefaultHandlerExpand() (xmlparser method),

348
defaults() (ConfigParser method), 125
defaultTestLoader (data in unittest), 111
defaultTestResult() (TestCase method), 113
defpath (data in os), 146
del

statement, 11
delattr() (in module ), 21
delay output() (in module curses), 161
delch() (window method), 167
dele() (POP3 method), 290
delete()

FTP method, 289
IMAP4 method, 293

delete object() (FORMS object method),
434

deletefolder() (MH method), 337
DeleteKey() (in module winreg), 445
deleteln() (window method), 167
deleteparser() (CD parser method), 430
DeleteValue() (in module winreg), 445
delitem() (in module operator), 45
delslice() (in module operator), 45
DeprecationWarning (exception in exceptions),

20
derwin() (window method), 167
DES

cipher, 233, 393

Index 467



descriptor, file, 14
Detach() ( method), 448
deterministic profiling, 255
DEVICE (standard module), 438
device

Enigma, 396
dgettext() (in module gettext), 193
dictionary

object, 11
type, operations on, 11

DictionaryType (data in types), 41
DictType (data in types), 41
diff files (dircmp attribute), 153
difflib (standard module), 88
digest()

md5 method, 394
sha method, 394

digestsize (data in sha), 394
digit() (in module unicodedata), 97
digits (data in string), 75
dir()

FTP method, 288
in module , 21

dircache (standard module), 148
dircmp (class in filecmp), 152
directory

changing, 140
creating, 141
deleting, 141, 188
site-packages, 72
site-python, 72

dirname() (in module os.path), 147
dis() (in module dis), 418
dis (standard module), 417
disable() (in module gc), 34
disassemble() (in module dis), 418
disco() (in module dis), 418
dispatcher (class in asyncore), 313
displayhook() (in module sys), 30
distb() (in module dis), 418
dither2grey2() (in module imageop), 382
dither2mono() (in module imageop), 382
div() (in module operator), 44
division

integer, 5
long integer, 5

divm() (in module mpz), 395
divmod() (in module ), 21
dl (extension module), 234
dllhandle (data in sys), 30
do command() (Textbox method), 175
do forms() (in module fl), 431
do GET() (SimpleHTTPRequestHandler

method), 308
do HEAD() (SimpleHTTPRequestHandler

method), 308
do POST() (CGIHTTPRequestHandler

method), 309

doc header (Cmd attribute), 131
docmd() (SMTP method), 298
docstrings, 409
doctest (standard module), 99
DOCTYPE declaration, 376
documentElement (Document attribute), 355
DOMEventStream (class in xml.dom.pulldom),

365
DOMException (exception in xml.dom), 358
DomstringSizeErr (exception in xml.dom), 358
done() (Unpacker method), 331
DOTALL (data in re), 82
doupdate() (in module curses), 161
drain() (audio device method), 441
DTDHandler (class in xml.sax.handler), 367
dumbdbm (standard module), 219, 220
DumbWriter (class in formatter), 321
dump()

in module marshal, 60
in module pickle, 55

dumps()
in module marshal, 60
in module pickle, 55

dup()
in module os, 138
in module posixfile, 242

dup2()
in module os, 138
in module posixfile, 242

DuplicateSectionError (exception in Config-
Parser), 125

E
e

data in cmath, 117
data in math, 116

E2BIG (data in errno), 182
EACCES (data in errno), 182
EADDRINUSE (data in errno), 186
EADDRNOTAVAIL (data in errno), 186
EADV (data in errno), 184
EAFNOSUPPORT (data in errno), 186
EAGAIN (data in errno), 182
EALREADY (data in errno), 186
EBADE (data in errno), 184
EBADF (data in errno), 182
EBADFD (data in errno), 185
EBADMSG (data in errno), 185
EBADR (data in errno), 184
EBADRQC (data in errno), 184
EBADSLT (data in errno), 184
EBFONT (data in errno), 184
EBUSY (data in errno), 182
ECHILD (data in errno), 182
echo() (in module curses), 161
echochar() (window method), 167
ECHRNG (data in errno), 183
ECOMM (data in errno), 184

468 Index



ECONNABORTED (data in errno), 186
ECONNREFUSED (data in errno), 186
ECONNRESET (data in errno), 186
EDEADLK (data in errno), 183
EDEADLOCK (data in errno), 184
EDESTADDRREQ (data in errno), 185
edit() (Textbox method), 175
EDOM (data in errno), 183
EDOTDOT (data in errno), 184
EDQUOT (data in errno), 187
EEXIST (data in errno), 182
EFAULT (data in errno), 182
EFBIG (data in errno), 183
ehlo() (SMTP method), 299
EHOSTDOWN (data in errno), 186
EHOSTUNREACH (data in errno), 186
EIDRM (data in errno), 183
EILSEQ (data in errno), 185
EINPROGRESS (data in errno), 186
EINTR (data in errno), 182
EINVAL (data in errno), 182
EIO (data in errno), 182
EISCONN (data in errno), 186
EISDIR (data in errno), 182
EISNAM (data in errno), 186
eject() (CD player method), 428
EL2HLT (data in errno), 184
EL2NSYNC (data in errno), 183
EL3HLT (data in errno), 183
EL3RST (data in errno), 183
ElementDeclHandler() (xmlparser method),

347
elements (XMLParser attribute), 375
ELIBACC (data in errno), 185
ELIBBAD (data in errno), 185
ELIBEXEC (data in errno), 185
ELIBMAX (data in errno), 185
ELIBSCN (data in errno), 185
Ellinghouse, Lance, 328, 396
EllipsisType (data in types), 42
ELNRNG (data in errno), 183
ELOOP (data in errno), 183
EMFILE (data in errno), 182
EMLINK (data in errno), 183
Empty (exception in Queue), 217
empty()

Queue method, 217
scheduler method, 159

emptyline() (Cmd method), 130
EMSGSIZE (data in errno), 185
EMULTIHOP (data in errno), 184
enable() (in module gc), 34
ENAMETOOLONG (data in errno), 183
ENAVAIL (data in errno), 186
enclose() (window method), 167
encode

Codecs, 93
encode()

method, 94
in module base64, 335
in module mimetools, 324
in module quopri, 335
in module uu, 328
string method, 7

EncodedFile() (in module codecs), 93
encodestring() (in module base64), 335
encoding

base64, 334
quoted-printable, 335

encodings map (data in mimetypes), 334
encrypt() (rotor method), 396
encryptmore() (rotor method), 396
end() (in module re), 85
end group() (form method), 432
end headers() (BaseHTTPRequestHandler

method), 307
end marker() (MultiFile method), 327
end paragraph() (formatter method), 318
EndCdataSectionHandler() (xmlparser

method), 348
EndDoctypeDeclHandler() (xmlparser

method), 347
endDocument() (ContentHandler method), 369
endElement() (ContentHandler method), 369
EndElementHandler() (xmlparser method), 347
endElementNS() (ContentHandler method), 369
endheaders() (HTTP method), 285
EndNamespaceDeclHandler() (xmlparser

method), 348
endpick() (in module gl), 437
endpos (MatchObject attribute), 85
endPrefixMapping() (ContentHandler

method), 369
endselect() (in module gl), 437
endswith() (string method), 7
endwin() (in module curses), 162
ENETDOWN (data in errno), 186
ENETRESET (data in errno), 186
ENETUNREACH (data in errno), 186
ENFILE (data in errno), 182
Enigma

cipher, 396
device, 396

ENOANO (data in errno), 184
ENOBUFS (data in errno), 186
ENOCSI (data in errno), 184
ENODATA (data in errno), 184
ENODEV (data in errno), 182
ENOENT (data in errno), 181
ENOEXEC (data in errno), 182
ENOLCK (data in errno), 183
ENOLINK (data in errno), 184
ENOMEM (data in errno), 182
ENOMSG (data in errno), 183
ENONET (data in errno), 184
ENOPKG (data in errno), 184

Index 469



ENOPROTOOPT (data in errno), 185
ENOSPC (data in errno), 183
ENOSR (data in errno), 184
ENOSTR (data in errno), 184
ENOSYS (data in errno), 183
ENOTBLK (data in errno), 182
ENOTCONN (data in errno), 186
ENOTDIR (data in errno), 182
ENOTEMPTY (data in errno), 183
ENOTNAM (data in errno), 186
ENOTSOCK (data in errno), 185
ENOTTY (data in errno), 182
ENOTUNIQ (data in errno), 185
enter() (scheduler method), 159
enterabs() (scheduler method), 159
entities (DocumentType attribute), 355
ENTITY declaration, 377
EntityDeclHandler() (xmlparser method), 348
entitydefs

data in htmlentitydefs, 345
XMLParser attribute, 375

EntityResolver (class in xml.sax.handler), 367
enumerate()

in module fm, 436
in module threading, 211

EnumKey() (in module winreg), 445
EnumValue() (in module winreg), 445
environ

data in os, 136
data in posix, 232

environment variables
BROWSER, 267, 268
COLUMNS, 165
HOME, 73, 147
KDEDIR, 268
LANGUAGE, 193, 194
LANG, 189, 190, 193, 194
LC ALL, 193, 194
LC MESSAGES, 193, 194
LINES, 165
LNAME, 160
LOGNAME, 160, 287
PAGER, 250
PATH, 146, 272, 274
PYTHONPATH, 32, 272, 452
PYTHONSTARTUP, 72, 229, 230
PYTHONY2K, 155
PYTHON DOM, 352
TMPDIR, 181
TZ, 452
USERNAME, 160
USER, 160, 287
ftp proxy, 275
gopher proxy, 275
http proxy, 275
setting, 137

EnvironmentError (exception in exceptions), 17
ENXIO (data in errno), 182

EOFError (exception in exceptions), 17
EOPNOTSUPP (data in errno), 185
EOVERFLOW (data in errno), 185
EPERM (data in errno), 181
EPFNOSUPPORT (data in errno), 185
EPIPE (data in errno), 183
epoch, 154
EPROTO (data in errno), 184
EPROTONOSUPPORT (data in errno), 185
EPROTOTYPE (data in errno), 185
ERANGE (data in errno), 183
erase() (window method), 167
erasechar() (in module curses), 162
EREMCHG (data in errno), 185
EREMOTE (data in errno), 184
EREMOTEIO (data in errno), 187
ERESTART (data in errno), 185
EROFS (data in errno), 183
ERR (data in curses), 170
errno

built-in module, 136, 204
standard module, 181

ERROR (data in cd), 428
Error

exception in binascii, 330
exception in locale, 189
exception in sunau, 385
exception in wave, 387
exception in webbrowser, 268
exception in xdrlib, 332

error()
ErrorHandler method, 370
Folder method, 337
MH method, 337
OpenerDirector method, 281

error
exception in anydbm, 219
exception in audioop, 379
exception in cd, 428
exception in curses, 161
exception in dbhash, 220
exception in dbm, 235
exception in dl, 234
exception in dumbdbm, 220
exception in gdbm, 236
exception in getopt, 179
exception in imageop, 382
exception in imgfile, 438
exception in jpeg, 439
exception in nis, 246
exception in os, 136
exception in re, 83
exception in resource, 243
exception in rgbimg, 391
exception in select, 208
exception in socket, 203
exception in struct, 86
exception in sunaudiodev, 441

470 Index



exception in thread, 210
exception in xml.parsers.expat, 345
exception in zipfile, 225
exception in zlib, 223

error leader() (shlex method), 132
error message format (BaseHTTPRequest-

Handler attribute), 306
error perm (exception in ftplib), 287
error proto

exception in ftplib, 287
exception in poplib, 290

error reply (exception in ftplib), 287
error temp (exception in ftplib), 287
ErrorByteIndex (xmlparser attribute), 347
ErrorCode (xmlparser attribute), 347
errorcode (data in errno), 181
ErrorColumnNumber (xmlparser attribute), 347
ErrorHandler (class in xml.sax.handler), 367
ErrorLineNumber (xmlparser attribute), 347
errors (TestResult attribute), 113
ErrorString() (in module xml.parsers.expat),

345
escape()

in module cgi, 272
in module re, 83
in module xml.sax.saxutils, 371

ESHUTDOWN (data in errno), 186
ESOCKTNOSUPPORT (data in errno), 185
ESPIPE (data in errno), 183
ESRCH (data in errno), 182
ESRMNT (data in errno), 184
ESTALE (data in errno), 186
ESTRPIPE (data in errno), 185
ETIME (data in errno), 184
ETIMEDOUT (data in errno), 186
ETOOMANYREFS (data in errno), 186
ETXTBSY (data in errno), 182
EUCLEAN (data in errno), 186
EUNATCH (data in errno), 183
EUSERS (data in errno), 185
eval()

built-in function, 14, 69, 76, 407
in module , 22

Event() (in module threading), 211
Event (class in threading), 215
event scheduling, 158
EWOULDBLOCK (data in errno), 183
exc info() (in module sys), 30
exc traceback (data in sys), 30
exc type (data in sys), 30
exc value (data in sys), 30
except

statement, 17
excepthook() (in module sys), 30
Exception (exception in exceptions), 17
exceptions

built-in, 3
exceptions (standard module), 16

EXDEV (data in errno), 182
exec

statement, 14
exec prefix (data in sys), 31
execfile()

built-in function, 73
in module , 22

execl() (in module os), 143
execle() (in module os), 143
execlp() (in module os), 143
executable (data in sys), 31
execv() (in module os), 143
execve() (in module os), 143
execvp() (in module os), 143
execvpe() (in module os), 143
EXFULL (data in errno), 184
exists() (in module os.path), 147
exit()

in module sys, 31
in module thread, 210

exit thread() (in module thread), 210
exitfunc

data in sys, 31
in sys, 40

exp()
in module cmath, 117
in module math, 115

expand() (MatchObject method), 84
expandNode() (DOMEventStream method),

365
expandtabs()

in module string, 76
string method, 7

expanduser() (in module os.path), 147
expandvars() (in module os.path), 147
Expat, 345
ExpatError (exception in xml.parsers.expat),

345
expect() (Telnet method), 302
expovariate() (in module random), 119
expr() (in module parser), 406
expunge() (IMAP4 method), 293
extend()

array method, 123
list method, 11

Extensible Markup Language, 375
extensions map (SimpleHTTPRequestHandler

attribute), 308
External Data Representation, 53, 330
external attr (ZipInfo attribute), 228
ExternalEntityParserCreate() (xmlparser

method), 346
ExternalEntityRefHandler() (xmlparser

method), 348
extra (ZipInfo attribute), 228
extract stack() (in module traceback), 51
extract tb() (in module traceback), 51
extract version (ZipInfo attribute), 228

Index 471



F
F BAVAIL (data in statvfs), 151
F BFREE (data in statvfs), 151
F BLOCKS (data in statvfs), 151
F BSIZE (data in statvfs), 151
F FAVAIL (data in statvfs), 152
F FFREE (data in statvfs), 151
F FILES (data in statvfs), 151
F FLAG (data in statvfs), 152
F FRSIZE (data in statvfs), 151
F NAMEMAX (data in statvfs), 152
F OK (data in os), 140
fabs() (in module math), 115
fail() (TestCase method), 112
failIf() (TestCase method), 112
failIfEqual() (TestCase method), 112
failUnless() (TestCase method), 112
failUnlessEqual() (TestCase method), 112
failUnlessRaises() (TestCase method), 112
failureException (TestCase attribute), 112
failures (TestResult attribute), 113
false, 3
FancyURLopener (class in urllib), 277
fatalError() (ErrorHandler method), 371
FCNTL (standard module), 239, 240
fcntl() (in module fcntl), 239
fcntl (built-in module), 15, 239
fcntl() (in module fcntl), 241
fdopen() (in module os), 137
feature external ges (data in

xml.sax.handler), 367
feature external pes (data in

xml.sax.handler), 368
feature namespace prefixes (data in

xml.sax.handler), 367
feature namespaces (data in

xml.sax.handler), 367
feature string interning (data in

xml.sax.handler), 367
feature validation (data in

xml.sax.handler), 367
feed()

IncrementalParser method, 373
SGMLParser method, 342
XMLParser method, 376

fetch() (IMAP4 method), 293
file

.ini, 124

.pdbrc, 250

.pythonrc.py, 72
byte-code, 63, 64, 417
configuration, 124
copying, 188
debugger configuration, 250
large files, 231
mime.types, 334
object, 14
path configuration, 72

temporary, 180
user configuration, 72

file() (in module posixfile), 242
file (class descriptor attribute), 416
file control

Unix, 239
file descriptor, 14
file name

temporary, 180
file object

POSIX, 241
file offset (ZipInfo attribute), 228
file open() (FileHandler method), 284
file size (ZipInfo attribute), 228
filecmp (standard module), 152
FileHandler (class in urllib2), 280
FileInput (class in fileinput), 127
fileinput (standard module), 126
filelineno() (in module fileinput), 127
filename() (in module fileinput), 127
filename (ZipInfo attribute), 227
filename only (data in tabnanny), 416
filenames

pathname expansion, 187
wildcard expansion, 187

fileno()
audio device method, 441
file method, 14
in module SocketServer, 304
socket method, 206
Telnet method, 302

fileopen() (in module posixfile), 242
FileType (data in types), 42
filter()

in module , 22
in module curses, 162

filterwarnings() (in module warnings), 62
find()

method, 218
in module gettext, 194
in module string, 76
string method, 7

find first() (form method), 432
find last() (form method), 432
find longest match() (SequenceMatcher

method), 89
find module() (in module imp), 63
find user password() (HTTPPasswordMgr

method), 283
findall()

in module re, 83
RegexObject method, 84

findfactor() (in module audioop), 380
findfit() (in module audioop), 380
findfont() (in module fm), 436
findmatch() (in module mailcap), 333
findmax() (in module audioop), 380
finish() (in module SocketServer), 305

472 Index



finish request() (in module SocketServer),
305

first()
method, 222

dbhash method, 221
firstChild (Node attribute), 353
firstkey() (in module gdbm), 236
firstweekday() (in module calendar), 129
fix() (in module fpformat), 91
FL (standard module), 435
fl (built-in module), 430
flag bits (ZipInfo attribute), 228
flags() (in module posixfile), 242
flags (RegexObject attribute), 84
flash() (in module curses), 162
flattening

objects, 53
float()

built-in function, 5, 76
in module , 22

floating point
literals, 5
object, 5

FloatingPointError
exception in exceptions, 18
exception in fpectl, 39

FloatType (data in types), 41
flock() (in module fcntl), 239
floor()

in module math, 115
in module math, 5

flp (standard module), 435
flush()

method, 218
audio device method, 441
Compress method, 224
Decompress method, 224
file method, 14
writer method, 319

flush softspace() (formatter method), 318
flushheaders() (MimeWriter method), 325
flushinp() (in module curses), 162
FlushKey() (in module winreg), 445
fm (built-in module), 435
fmod() (in module math), 115
fnmatch() (in module fnmatch), 187
fnmatch (standard module), 187
fnmatchcase() (in module fnmatch), 188
Folder (class in mhlib), 337
Font Manager, IRIS, 435
fontpath() (in module fm), 436
forget() (in module statcache), 151
forget dir() (in module statcache), 151
forget except prefix() (in module stat-

cache), 151
forget prefix() (in module statcache), 151
fork()

in module os, 143

in module pty, 239
forkpty() (in module os), 143
Formal Public Identifier, 376
format() (in module locale), 191
format exception() (in module traceback), 51
format exception only() (in module trace-

back), 51
format list() (in module traceback), 51
format stack() (in module traceback), 52
format tb() (in module traceback), 52
formatargspec() (in module inspect), 50
formatargvalues() (in module inspect), 50
formatter

HTMLParser attribute, 344
standard module, 317, 343

formatting, string, 9
formatwarning() (in module warnings), 62
FORMS Library, 430
fp (AddressList attribute), 323
fpathconf() (in module os), 138
fpectl (extension module), 38
fpformat (standard module), 91
frame

object, 202
FrameType (data in types), 42
freeze form() (form method), 432
freeze object() (FORMS object method),

434
frexp() (in module math), 115
fromchild (Popen4 attribute), 154
fromfd() (in module socket), 205
fromfile() (array method), 123
fromlist() (array method), 123
fromstring() (array method), 123
fstat() (in module os), 139
fstatvfs() (in module os), 139
FTP

protocol, 277, 286
FTP (class in ftplib), 286
ftp open() (FTPHandler method), 284
ftp proxy, 275
FTPHandler (class in urllib2), 280
ftplib (standard module), 286
ftpmirror.py, 287
ftruncate() (in module os), 139
Full (exception in Queue), 217
full() (Queue method), 217
func code (function object attribute), 14
function() (in module new), 71
functions

built-in, 3
FunctionTestCase (class in unittest), 111
FunctionType (data in types), 41
funny files (dircmp attribute), 153

G
G.722, 384
gamma() (in module random), 120

Index 473



garbage (data in gc), 35
gather() (Textbox method), 175
gauss() (in module random), 120
gc (extension module), 34
gcd() (in module mpz), 395
gcdext() (in module mpz), 395
gdbm (built-in module), 58, 219, 236
get()

AddressList method, 322
ConfigParser method, 126
dictionary method, 11
in module webbrowser, 268
Queue method, 217

get begidx() (in module readline), 229
get buffer()

Packer method, 330
Unpacker method, 331

get close matches() (in module difflib), 88
get completer delims() (in module read-

line), 229
get data() (Request method), 280
get debug() (in module gc), 34
get directory() (in module fl), 431
get endidx() (in module readline), 229
get filename() (in module fl), 431
get full url() (Request method), 281
get history length() (in module readline),

229
get host() (Request method), 281
get ident() (in module thread), 210
get line buffer() (in module readline), 229
get magic() (in module imp), 63
get matching blocks() (SequenceMatcher

method), 89
get mouse() (in module fl), 432
get nowait() (Queue method), 217
get opcodes() (SequenceMatcher method), 90
get osfhandle() (in module msvcrt), 443
get pattern() (in module fl), 431
get position() (Unpacker method), 331
get request() (in module SocketServer), 305
get rgbmode() (in module fl), 431
get selector() (Request method), 281
get socket() (Telnet method), 301
get starttag text() (SGMLParser method),

342
get suffixes() (in module imp), 63
get threshold() (in module gc), 35
get token() (shlex method), 131
get type() (Request method), 281
getaddr() (AddressList method), 322
getaddrlist() (AddressList method), 322
getallmatchingheaders() (AddressList

method), 322
getargspec() (in module inspect), 50
getargvalues() (in module inspect), 50
getatime() (in module os.path), 147
getattr() (in module ), 22

getAttribute() (Element method), 356
getAttributeNode() (Element method), 356
getAttributeNodeNS() (Element method), 356
getAttributeNS() (Element method), 356
GetBase() (xmlparser method), 346
getbegyx() (window method), 167
getboolean() (ConfigParser method), 126
getByteStream() (InputSource method), 374
getcaps() (in module mailcap), 333
getch()

in module msvcrt, 444
window method, 167

getchannels() (audio configuration method),
426

getCharacterStream() (InputSource method),
374

getche() (in module msvcrt), 444
getclasstree() (in module inspect), 50
getColumnNumber() (Locator method), 373
getcomment() (in module fm), 436
getcomments() (in module inspect), 49
getcompname()

aifc method, 383
AU read method, 386
Wave read method, 388

getcomptype()
aifc method, 383
AU read method, 386
Wave read method, 388

getconfig() (audio port method), 427
getContentHandler() (XMLReader method),

372
getcontext() (MH method), 337
getcurrent() (Folder method), 338
getcwd() (in module os), 140
getdate() (AddressList method), 323
getdate tz() (AddressList method), 323
getdefaultencoding() (in module sys), 31
getdefaultlocale() (in module locale), 190
getdoc() (in module inspect), 49
getDOMImplementation() (in module

xml.dom), 352
getDTDHandler() (XMLReader method), 372
getegid() (in module os), 136
getElementsByTagName()

Document method, 356
Element method, 356

getElementsByTagNameNS()
Document method, 356
Element method, 356

getEncoding() (InputSource method), 374
getencoding() (Message method), 325
getEntityResolver() (XMLReader method),

372
getenv() (in module os), 137
getErrorHandler() (XMLReader method), 373
geteuid() (in module os), 136
getEvent() (DOMEventStream method), 365

474 Index



getException() (SAXException method), 366
getfd() (audio port method), 426
getFeature() (XMLReader method), 373
getfile()

HTTP method, 285
in module inspect, 49

getfillable() (audio port method), 426
getfilled() (audio port method), 426
getfillpoint() (audio port method), 427
getfirstmatchingheader() (AddressList

method), 322
getfloat() (ConfigParser method), 126
getfloatmax() (audio configuration method),

426
getfontinfo() (in module fm), 436
getfontname() (in module fm), 436
getfqdn() (in module socket), 204
getframerate()

aifc method, 383
AU read method, 386
Wave read method, 388

getfullname() (Folder method), 337
getgid() (in module os), 136
getgrall() (in module grp), 233
getgrgid() (in module grp), 233
getgrnam() (in module grp), 233
getgroups() (in module os), 136
getheader() (AddressList method), 322
gethostbyaddr()

in module socket, 137
in module socket, 204

gethostbyname() (in module socket), 204
gethostbyname ex() (in module socket), 204
gethostname()

in module socket, 137
in module socket, 204

getinfo()
audio device method, 442
ZipFile method, 226

getinnerframes() (in module inspect), 50
GetInputContext() (xmlparser method), 346
getint() (ConfigParser method), 126
getitem() (in module operator), 45
getkey() (window method), 167
getlast() (Folder method), 338
getLength() (AttributesImpl method), 374
getline() (in module linecache), 52
getLineNumber() (Locator method), 373
getlocale() (in module locale), 190
getlogin() (in module os), 136
getmaintype() (Message method), 325
getmark()

aifc method, 384
AU read method, 386
Wave read method, 388

getmarkers()
aifc method, 383
AU read method, 386

Wave read method, 388
getmaxyx() (window method), 167
getmcolor() (in module fl), 432
getmembers() (in module inspect), 48
getMessage() (SAXException method), 366
getmessagefilename() (Folder method), 337
getmodule() (in module inspect), 49
getmoduleinfo() (in module inspect), 48
getmodulename() (in module inspect), 49
getmouse() (in module curses), 162
getmtime() (in module os.path), 147
getName() (Thread method), 216
getname() (Chunk method), 389
getNameByQName() (AttributesNSImpl

method), 375
getNames() (AttributesImpl method), 374
getnamespace() (XMLParser method), 376
getnchannels()

aifc method, 383
AU read method, 386
Wave read method, 388

getnframes()
aifc method, 383
AU read method, 386
Wave read method, 388

getopt() (in module getopt), 179
getopt (standard module), 179
GetoptError (exception in getopt), 179
getouterframes() (in module inspect), 50
getoutput() (in module commands), 247
getpagesize() (in module resource), 245
getparam() (Message method), 324
getparams()

aifc method, 383
AU read method, 386
in module al, 426
Wave read method, 388

getparyx() (window method), 167
getpass() (in module getpass), 160
getpass (standard module), 160
getpath() (MH method), 337
getpeername() (socket method), 206
getpgrp() (in module os), 136
getpid() (in module os), 137
getplist() (Message method), 324
getppid() (in module os), 137
getprofile() (MH method), 337
getProperty() (XMLReader method), 373
getprotobyname() (in module socket), 204
getPublicId()

InputSource method, 374
Locator method, 373

getpwall() (in module pwd), 233
getpwnam() (in module pwd), 233
getpwuid() (in module pwd), 233
getQNameByName() (AttributesNSImpl

method), 375
getQNames() (AttributesNSImpl method), 375

Index 475



getqueuesize() (audio configuration method),
426

getrawheader() (AddressList method), 322
getrecursionlimit() (in module sys), 31
getrefcount() (in module sys), 31
getreply() (HTTP method), 285
getrlimit() (in module resource), 243
getrusage() (in module resource), 244
getsampfmt() (audio configuration method),

426
getsample() (in module audioop), 380
getsampwidth()

aifc method, 383
AU read method, 386
Wave read method, 388

getsequences() (Folder method), 338
getsequencesfilename() (Folder method), 337
getservbyname() (in module socket), 205
getsignal() (in module signal), 202
getsize()

Chunk method, 390
in module os.path, 147

getsizes() (in module imgfile), 438
getslice() (in module operator), 45
getsockname() (socket method), 206
getsockopt() (socket method), 206
getsource() (in module inspect), 49
getsourcefile() (in module inspect), 49
getsourcelines() (in module inspect), 49
getstate() (in module random), 119
getstatus()

audio port method, 427
CD player method, 429
in module commands, 247

getstatusoutput() (in module commands),
247

getstr() (window method), 167
getstrwidth() (in module fm), 436
getsubtype() (Message method), 325
getSystemId()

InputSource method, 374
Locator method, 373

getsyx() (in module curses), 162
gettempprefix() (in module tempfile), 181
getTestCaseNames() (TestLoader method), 114
gettext()

in module gettext, 193
NullTranslations method, 195

gettext (standard module), 193
gettrackinfo() (CD player method), 429
getType() (AttributesImpl method), 374
gettype() (Message method), 325
getuid() (in module os), 137
getuser() (in module getpass), 160
getValue() (AttributesImpl method), 374
getvalue() (StringIO method), 92
getValueByQName() (AttributesNSImpl

method), 375

getweakrefcount() (in module weakref), 36
getweakrefs() (in module weakref), 36
getwelcome()

FTP method, 287
NNTPDataError method, 296
POP3 method, 290

getwidth() (audio configuration method), 426
getwin() (in module curses), 162
getyx() (window method), 167
GL (standard module), 438
gl (built-in module), 436
glob() (in module glob), 187
glob (standard module), 187, 187
globals() (in module ), 22
gmtime() (in module time), 156
GNOME, 195
Gopher

protocol, 277, 289
gopher open() (GopherHandler method), 284
gopher proxy, 275
GopherError (exception in urllib2), 279
GopherHandler (class in urllib2), 280
gopherlib (standard module), 289
Greenwich Mean Time, 155
grey22grey() (in module imageop), 383
grey2grey2() (in module imageop), 382
grey2grey4() (in module imageop), 382
grey2mono() (in module imageop), 382
grey42grey() (in module imageop), 383
group()

MatchObject method, 84
NNTPDataError method, 296

groupdict() (MatchObject method), 85
groupindex (RegexObject attribute), 84
groups() (MatchObject method), 85
grp (built-in module), 233
guess extension() (in module mimetypes),

334
guess type() (in module mimetypes), 334
gzip (standard module), 225
GzipFile (class in gzip), 225

H
halfdelay() (in module curses), 162
handle()

BaseHTTPRequestHandler method, 307
in module SocketServer, 305

handle accept() (dispatcher method), 313
handle authentication request() (Ab-

stractBasicAuthHandler method),
283

handle authentication request() (Ab-
stractDigestAuthHandler method),
283

handle cdata() (XMLParser method), 376
handle charref()

SGMLParser method, 342
XMLParser method, 376

476 Index



handle close() (dispatcher method), 313
handle comment()

SGMLParser method, 342
XMLParser method, 376

handle connect() (dispatcher method), 313
handle data()

SGMLParser method, 342
XMLParser method, 376

handle decl() (SGMLParser method), 342
handle doctype() (XMLParser method), 376
handle endtag()

SGMLParser method, 342
XMLParser method, 376

handle entityref() (SGMLParser method),
342

handle error() (in module SocketServer), 305
handle expt() (dispatcher method), 313
handle image() (HTMLParser method), 344
handle proc() (XMLParser method), 377
handle read() (dispatcher method), 313
handle request() (in module SocketServer),

304
handle special() (XMLParser method), 377
handle starttag()

SGMLParser method, 342
XMLParser method, 376

handle write() (dispatcher method), 313
handle xml() (XMLParser method), 376
has colors() (in module curses), 162
has data() (Request method), 280
has extn() (SMTP method), 299
has ic() (in module curses), 162
has il() (in module curses), 162
has key()

method, 222
dictionary method, 11
in module curses, 162

has option() (ConfigParser method), 125
has section() (ConfigParser method), 125
hasattr() (in module ), 23
hasAttributes() (Node method), 354
hasChildNodes() (Node method), 354
hascompare (data in dis), 419
hasconst (data in dis), 418
hasFeature() (DOMImplementation method),

353
hash() (in module ), 23
hashopen() (in module bsddb), 221
hasjabs (data in dis), 418
hasjrel (data in dis), 418
haslocal (data in dis), 418
hasname (data in dis), 418
head() (NNTPDataError method), 296
header offset (ZipInfo attribute), 228
headers

MIME, 269, 334
headers

AddressList attribute, 323

BaseHTTPRequestHandler attribute, 306
heapmin() (in module msvcrt), 444
helo() (SMTP method), 299
help() (NNTPDataError method), 296
hex() (in module ), 23
hexadecimal

literals, 5
hexbin() (in module binhex), 328
hexdigest()

md5 method, 394
sha method, 394

hexdigits (data in string), 75
hexlify() (in module binascii), 329
hexversion (data in sys), 31
hidden() ( method), 178
hide() ( method), 178
hide form() (form method), 432
hide object() (FORMS object method), 434
HierarchyRequestErr (exception in xml.dom),

358
hline() (window method), 167
hls to rgb() (in module colorsys), 390
HOME, 73, 147
hosts (netrc attribute), 340
hsv to rgb() (in module colorsys), 390
HTML, 277, 343
htmlentitydefs (standard module), 345
htmllib (standard module), 277, 341, 343
HTMLParser (class in htmllib), 317, 344
htonl() (in module socket), 205
htons() (in module socket), 205
HTTP

protocol, 269, 277, 284, 305
HTTP (class in httplib), 284
http error 301() (HTTPRedirectHandler

method), 282
http error 302() (HTTPRedirectHandler

method), 282
http error 401() (HTTPBasicAuthHandler

method), 283
http error 401() (HTTPDigestAuthHandler

method), 283
http error 407() (ProxyBasicAuthHandler

method), 283
http error 407() (ProxyDigestAuthHandler

method), 283
http error default() (BaseHandler

method), 282
http open() (HTTPHandler method), 284
http proxy, 275
HTTPBasicAuthHandler (class in urllib2), 280
httpd, 305
HTTPDefaultErrorHandler (class in urllib2),

279
HTTPDigestAuthHandler (class in urllib2), 280
HTTPError (exception in urllib2), 279
HTTPHandler (class in urllib2), 280
httplib (standard module), 284

Index 477



HTTPPasswordMgr (class in urllib2), 279
HTTPPasswordMgrWithDefaultRealm (class in

urllib2), 279
HTTPRedirectHandler (class in urllib2), 279
https open() (HTTPSHandler method), 284
HTTPServer (class in BaseHTTPServer), 306
HTTPSHandler (class in urllib2), 280
hypertext, 343
hypot() (in module math), 115

I
I (data in re), 82
I/O control

buffering, 24, 138, 207
POSIX, 237, 238
tty, 237, 238
Unix, 239

ibufcount() (audio device method), 442
id()

in module , 23
TestCase method, 113

idcok() (window method), 168
IDEA

cipher, 393
ident (data in cd), 428
identchars (Cmd attribute), 131
idlok() (window method), 168
IEEE-754, 38
if

statement, 3
ignorableWhitespace() (ContentHandler

method), 370
ignore() (Stats method), 261
IGNORECASE (data in re), 82
ihave() (NNTPDataError method), 297
ihooks (standard module), 20
imageop (built-in module), 382
IMAP4

protocol, 291
IMAP4 (class in imaplib), 291
IMAP4.abort (exception in imaplib), 292
IMAP4.error (exception in imaplib), 291
IMAP4.readonly (exception in imaplib), 292
imaplib (standard module), 291
imgfile (built-in module), 438
imghdr (standard module), 391
immedok() (window method), 168
imp (built-in module), 20, 63
import

statement, 20, 63
ImportError (exception in exceptions), 18
in

operator, 4, 6
INADDR * (data in socket), 204
inch() (window method), 168
Incomplete (exception in binascii), 330
IncrementalParser (class in

xml.sax.xmlreader), 371

Independent JPEG Group, 439
index()

array method, 123
in module string, 76
string method, 7

index (data in cd), 428
index() (list method), 11
IndexError (exception in exceptions), 18
indexOf() (in module operator), 45
IndexSizeErr (exception in xml.dom), 358
inet aton() (in module socket), 205
inet ntoa() (in module socket), 205
infile (shlex attribute), 132
Infinity, 22, 76
info() (NullTranslations method), 195
infolist() (ZipFile method), 226
InfoSeek Corporation, 255
ini file, 124
init()

in module fm, 436
in module mimetypes, 334

init builtin() (in module imp), 64
init color() (in module curses), 162
init frozen() (in module imp), 64
init pair() (in module curses), 163
inited (data in mimetypes), 334
initscr() (in module curses), 163
input()

built-in function, 33
in module , 23
in module fileinput, 127

InputSource (class in xml.sax.xmlreader), 372
InputType (data in cStringIO), 92
insch() (window method), 168
insdelln() (window method), 168
insert()

array method, 123
list method, 11

insert text() (in module readline), 229
insertBefore() (Node method), 354
insertln() (window method), 168
insnstr() (window method), 168
insort() (in module bisect), 121
insort left() (in module bisect), 121
insort right() (in module bisect), 121
inspect (standard module), 47
insstr() (window method), 168
install()

in module gettext, 194
NullTranslations method, 195

install opener() (in module urllib2), 279
instance() (in module new), 71
instancemethod() (in module new), 71
InstanceType (data in types), 41
instr() (window method), 168
instream (shlex attribute), 132
int()

built-in function, 5

478 Index



in module , 23
Int2AP() (in module imaplib), 292
integer

arbitrary precision, 395
division, 5
division, long, 5
literals, 5
literals, long, 5
object, 5
types, operations on, 6

Intel/DVI ADPCM, 379
interact()

in module code, 65
InteractiveConsole method, 67
Telnet method, 302

InteractiveConsole (class in code), 65
InteractiveInterpreter (class in code), 65
intern() (in module ), 23
internal attr (ZipInfo attribute), 228
Internaldate2tuple() (in module imaplib),

292
internalSubset (DocumentType attribute),

355
Internet, 267
Internet Config, 275
InterpolationDepthError (exception in Con-

figParser), 125
InterpolationError (exception in Config-

Parser), 125
interpreter prompts, 32
intro (Cmd attribute), 131
IntType (data in types), 41
InuseAttributeErr (exception in xml.dom),

358
inv() (in module operator), 44
InvalidAccessErr (exception in xml.dom), 359
InvalidCharacterErr (exception in xml.dom),

359
InvalidModificationErr (exception in

xml.dom), 359
InvalidStateErr (exception in xml.dom), 359
invert() (in module operator), 44
IOCTL (standard module), 240
ioctl() (in module fcntl), 239
IOError (exception in exceptions), 18
IP * (data in socket), 204
IPPORT * (data in socket), 204
IPPROTO * (data in socket), 204
IRIS Font Manager, 435
IRIX

threads, 211
is

operator, 4
is not

operator, 4
is builtin() (in module imp), 64
is data() (MultiFile method), 326
is frozen() (in module imp), 64

is linetouched() (window method), 168
is wintouched() (window method), 168
is zipfile() (in module zipfile), 226
isabs() (in module os.path), 147
isAlive() (Thread method), 216
isalnum()

in module curses.ascii, 176
string method, 7

isalpha()
in module curses.ascii, 176
string method, 7

isascii() (in module curses.ascii), 177
isatty()

Chunk method, 390
file method, 14
in module os, 139

isblank() (in module curses.ascii), 177
isbuiltin() (in module inspect), 49
isCallable() (in module operator), 45
isclass() (in module inspect), 49
iscntrl() (in module curses.ascii), 177
iscode() (in module inspect), 49
iscomment() (AddressList method), 322
isctrl() (in module curses.ascii), 177
isDaemon() (Thread method), 216
isdigit()

in module curses.ascii, 177
string method, 7

isdir() (in module os.path), 147
isenabled() (in module gc), 34
isendwin() (in module curses), 163
ISEOF() (in module token), 415
isexpr()

AST method, 408
in module parser, 407

isfile() (in module os.path), 147
isfirstline() (in module fileinput), 127
isframe() (in module inspect), 49
isfunction() (in module inspect), 49
isgraph() (in module curses.ascii), 177
isheader() (AddressList method), 322
isinstance() (in module ), 23
iskeyword() (in module keyword), 415
islast() (AddressList method), 322
isleap() (in module calendar), 129
islink() (in module os.path), 147
islower()

in module curses.ascii, 177
string method, 7

isMappingType() (in module operator), 46
ismeta() (in module curses.ascii), 177
ismethod() (in module inspect), 49
ismodule() (in module inspect), 49
ismount() (in module os.path), 147
ISNONTERMINAL() (in module token), 415
isNumberType() (in module operator), 46
isprint() (in module curses.ascii), 177
ispunct() (in module curses.ascii), 177

Index 479



isqueued() (in module fl), 431
isreadable()

in module pprint, 68
PrettyPrinter method, 69

isrecursive()
in module pprint, 69
PrettyPrinter method, 69

isReservedKey() (Morsel method), 311
isroutine() (in module inspect), 49
isSameNode() (Node method), 354
isSequenceType() (in module operator), 46
isSet() (Event method), 215
isspace()

in module curses.ascii, 177
string method, 7

isstdin() (in module fileinput), 127
issubclass() (in module ), 23
issuite()

AST method, 408
in module parser, 407

ISTERMINAL() (in module token), 415
istitle() (string method), 7
istraceback() (in module inspect), 49
isupper()

in module curses.ascii, 177
string method, 8

isxdigit() (in module curses.ascii), 177
item()

NamedNodeMap method, 357
NodeList method, 355

items() (dictionary method), 11
itemsize (array attribute), 122

J
Jansen, Jack, 328
JFIF, 439
join()

in module os.path, 147
in module string, 77
string method, 8
Thread method, 216

joinfields() (in module string), 77
jpeg (built-in module), 439
js output()

BaseCookie method, 310
Morsel method, 311

jumpahead() (in module random), 119

K
kbhit() (in module msvcrt), 444
KDEDIR, 268
key (Morsel attribute), 311
KeyboardInterrupt (exception in exceptions),

18
KeyError (exception in exceptions), 18
keyname() (in module curses), 163
keypad() (window method), 168
keys()

method, 222
dictionary method, 11

keyword (standard module), 415
kill() (in module os), 143
killchar() (in module curses), 163
knee (standard module), 65
knownfiles (data in mimetypes), 334
Kuchling, Andrew, 393

L
L (data in re), 82
LambdaType (data in types), 41
LANG, 189, 190, 193, 194
LANGUAGE, 193, 194
language

abc, 4
C, 4, 5

large files, 231
last()

method, 222
dbhash method, 221
NNTPDataError method, 296

last (MultiFile attribute), 327
last traceback (data in sys), 32
last type (data in sys), 32
last value (data in sys), 32
lastChild (Node attribute), 353
lastcmd (Cmd attribute), 131
lastgroup (MatchObject attribute), 85
lastindex (MatchObject attribute), 85
lastpart() (MimeWriter method), 325
LC ALL, 193, 194
LC ALL (data in locale), 191
LC COLLATE (data in locale), 191
LC CTYPE (data in locale), 191
LC MESSAGES, 193, 194
LC MESSAGES (data in locale), 191
LC MONETARY (data in locale), 191
LC NUMERIC (data in locale), 191
LC TIME (data in locale), 191
ldexp() (in module math), 116
leapdays() (in module calendar), 129
leaveok() (window method), 168
left list (dircmp attribute), 153
left only (dircmp attribute), 153
len()

built-in function, 6, 11
in module , 24

length
NamedNodeMap attribute, 357
NodeList attribute, 355

letters (data in string), 75
level (MultiFile attribute), 327
library (data in dbm), 235
light-weight processes, 210
lin2adpcm() (in module audioop), 380
lin2adpcm3() (in module audioop), 380
lin2lin() (in module audioop), 380

480 Index



lin2ulaw() (in module audioop), 380
line-buffered I/O, 24
linecache (standard module), 52
lineno() (in module fileinput), 127
lineno

class descriptor attribute, 416
ExpatError attribute, 349
shlex attribute, 133

LINES, 165
linesep (data in os), 146
link() (in module os), 140
list

object, 6, 10
type, operations on, 11

list()
IMAP4 method, 293
in module , 24
NNTPDataError method, 296
POP3 method, 290

listallfolders() (MH method), 337
listallsubfolders() (MH method), 337
listdir()

in module dircache, 148
in module os, 141

listen()
dispatcher method, 314
socket method, 206

listfolders() (MH method), 337
listmessages() (Folder method), 338
listsubfolders() (MH method), 337
ListType (data in types), 41
literals

complex number, 5
floating point, 5
hexadecimal, 5
integer, 5
long integer, 5
numeric, 5
octal, 5

ljust()
in module string, 77
string method, 8

LK LOCK (data in msvcrt), 443
LK NBLCK (data in msvcrt), 443
LK NBRLCK (data in msvcrt), 443
LK RLCK (data in msvcrt), 443
LK UNLCK (data in msvcrt), 443
LNAME, 160
load()

BaseCookie method, 310
in module marshal, 60
in module pickle, 55

load compiled() (in module imp), 64
load dynamic() (in module imp), 64
load module() (in module imp), 63
load source() (in module imp), 64
loads()

in module marshal, 60

in module pickle, 55
loadTestsFromModule() (TestLoader method),

114
loadTestsFromName() (TestLoader method),

114
loadTestsFromNames() (TestLoader method),

114
loadTestsFromTestCase() (TestLoader

method), 114
LOCALE (data in re), 82
locale (standard module), 189
localeconv() (in module locale), 189
localName

Attr attribute, 357
Node attribute, 354

locals() (in module ), 24
localtime() (in module time), 156
Locator (class in xml.sax.xmlreader), 372
Lock() (in module threading), 211
lock()

in module posixfile, 242
mutex method, 160

locked() (lock method), 210
lockf()

in module fcntl, 239
in module fcntl, 241

locking() (in module msvcrt), 443
LockType (data in thread), 210
log()

in module cmath, 117
in module math, 116

log10()
in module cmath, 117
in module math, 116

log data time string() (BaseHTTPRe-
questHandler method), 307

log error() (BaseHTTPRequestHandler
method), 307

log message() (BaseHTTPRequestHandler
method), 307

log request() (BaseHTTPRequestHandler
method), 307

login()
FTP method, 287
IMAP4 method, 293

LOGNAME, 160, 287
lognormvariate() (in module random), 120
logout() (IMAP4 method), 293
long

integer division, 5
integer literals, 5

long()
built-in function, 5, 76
in module , 24

long integer
object, 5

longimagedata() (in module rgbimg), 391
longname() (in module curses), 163

Index 481



longstoimage() (in module rgbimg), 391
LongType (data in types), 41
lookup()

in module codecs, 93
in module unicodedata, 97

LookupError (exception in exceptions), 17
lower()

in module string, 77
string method, 8

lowercase (data in string), 75
lseek() (in module os), 139
lshift() (in module operator), 44
lstat() (in module os), 141
lstrip()

in module string, 77
string method, 8

lsub() (IMAP4 method), 293
Lundh, Fredrik, 439

M
M (data in re), 82
macros (netrc attribute), 340
mailbox (standard module), 321, 335
mailcap (standard module), 332
Maildir (class in mailbox), 336
main() (in module unittest), 111
make form() (in module fl), 431
make parser() (in module xml.sax), 365
makedirs() (in module os), 141
makefile() (socket method), 206
makefolder() (MH method), 337
maketrans() (in module string), 77
map() (in module ), 24
mapcolor() (in module fl), 432
mapping

object, 11
types, operations on, 11

maps() (in module nis), 246
marshal (built-in module), 53, 59
marshalling

objects, 53
masking

operations, 6
match()

in module nis, 245
in module re, 82
RegexObject method, 84

math (built-in module), 5, 115, 117
max()

built-in function, 6
in module , 24
in module audioop, 380

MAX INTERPOLATION DEPTH (data in Config-
Parser), 125

maxdict (Repr attribute), 70
maxint (data in sys), 32
MAXLEN (data in mimify), 339
maxlevel (Repr attribute), 70

maxlist (Repr attribute), 70
maxlong (Repr attribute), 70
maxother (Repr attribute), 70
maxpp() (in module audioop), 380
maxstring (Repr attribute), 70
maxtuple (Repr attribute), 70
md5() (in module md5), 393
md5 (built-in module), 393
MemoryError (exception in exceptions), 18
Message

class in mhlib, 337
class in mimetools, 324
class in rfc822, 321
in module mimetools, 307

message digest, MD5, 393
MessageClass (BaseHTTPRequestHandler at-

tribute), 307
meta() (in module curses), 163
method

object, 13
methods (class descriptor attribute), 416
MethodType (data in types), 41
MH (class in mhlib), 337
mhlib (standard module), 336
MHMailbox (class in mailbox), 336
MIME

base64 encoding, 334
content type, 333
headers, 269, 334
quoted-printable encoding, 335

mime decode header() (in module mimify),
339

mime encode header() (in module mimify),
339

mimetools (standard module), 275, 285, 324
mimetypes (standard module), 333
MimeWriter

class in MimeWriter, 325
standard module, 325

mimify() (in module mimify), 338
mimify (standard module), 338
min()

built-in function, 6
in module , 24

minmax() (in module audioop), 380
mirrored() (in module unicodedata), 97
misc header (Cmd attribute), 131
MissingSectionHeaderError (exception in

ConfigParser), 125
mkd() (FTP method), 289
mkdir() (in module os), 141
mkfifo() (in module os), 141
mktemp() (in module tempfile), 180
mktime() (in module time), 156
mktime tz() (in module rfc822), 321
mmap() (in module mmap), 218
mmap (built-in module), 218
MmdfMailbox (class in mailbox), 336

482 Index



mod() (in module operator), 44
mode (file attribute), 16
modf() (in module math), 116
modified() (RobotFileParser method), 340
module

search path, 32, 52, 71
module() (in module new), 71
module (class descriptor attribute), 416
modules (data in sys), 32
ModuleType (data in types), 42
mono2grey() (in module imageop), 382
month() (in module calendar), 129
monthcalendar() (in module calendar), 129
monthrange() (in module calendar), 129
Morsel (class in Cookie), 310
mouseinterval() (in module curses), 163
mousemask() (in module curses), 163
move()

method, 178, 218
window method, 169

movemessage() (Folder method), 338
MP, GNU library, 395
mpz() (in module mpz), 395
mpz (built-in module), 395
MPZType (data in mpz), 395
msftoblock() (CD player method), 429
msftoframe() (in module cd), 427
msg() (Telnet method), 301
MSG * (data in socket), 204
msvcrt (built-in module), 443
mt interact() (Telnet method), 302
mtime() (RobotFileParser method), 340
mul()

in module audioop, 380
in module operator, 44

MultiFile (class in multifile), 326
multifile (standard module), 326
MULTILINE (data in re), 82
mutable

sequence types, 10
sequence types, operations on, 11

MutableString (class in UserString), 43
mutex

class in mutex, 159
standard module, 159

mvderwin() (window method), 169
mvwin() (window method), 169

N
name() (in module unicodedata), 97
name

Attr attribute, 357
class descriptor attribute, 416
data in os, 136
DocumentType attribute, 355
file attribute, 16

NameError (exception in exceptions), 18
namelist() (ZipFile method), 226

NamespaceErr (exception in xml.dom), 359
namespaces

XML, 377
namespaceURI (Node attribute), 354
NaN, 22, 76
NannyNag (exception in tabnanny), 416
napms() (in module curses), 163
National Security Agency, 397
neg() (in module operator), 44
netrc

class in netrc, 339
standard module, 339

NetrcParseError (exception in netrc), 339
Network News Transfer Protocol, 294
new()

in module md5, 393
in module sha, 394

new (built-in module), 71
new alignment() (writer method), 319
new font() (writer method), 320
new margin() (writer method), 320
new module() (in module imp), 63
new panel() (in module curses.panel), 178
new spacing() (writer method), 320
new styles() (writer method), 320
newconfig() (in module al), 425
newgroups() (NNTPDataError method), 296
newnews() (NNTPDataError method), 296
newpad() (in module curses), 163
newrotor() (in module rotor), 396
newwin() (in module curses), 164
next()

method, 222
dbhash method, 221
mailbox method, 336
MultiFile method, 326
NNTPDataError method, 296

nextfile() (in module fileinput), 127
nextkey() (in module gdbm), 236
nextpart() (MimeWriter method), 325
nextSibling (Node attribute), 353
nice() (in module os), 144
nis (extension module), 245
NIST, 394
NL (data in tokenize), 415
nl() (in module curses), 164
nlst() (FTP method), 288
NNTP

protocol, 294
NNTP (class in nntplib), 295
NNTPDataError (class in nntplib), 296
NNTPError (class in nntplib), 295
nntplib (standard module), 294
NNTPPermanentError (class in nntplib), 295
NNTPProtocolError (class in nntplib), 295
NNTPReplyError (class in nntplib), 295
NNTPTemporaryError (class in nntplib), 295
nocbreak() (in module curses), 164

Index 483



NoDataAllowedErr (exception in xml.dom), 359
nodelay() (window method), 169
nodeName (Node attribute), 354
nodeType (Node attribute), 353
nodeValue (Node attribute), 354
NODISC (data in cd), 428
noecho() (in module curses), 164
nofill (HTMLParser attribute), 344
nok builtin names (RExec attribute), 401
NoModificationAllowedErr (exception in

xml.dom), 359
None (Built-in object), 3
NoneType (data in types), 41
nonl() (in module curses), 164
noop()

IMAP4 method, 293
POP3 method, 291

NoOptionError (exception in ConfigParser), 125
noqiflush() (in module curses), 164
noraw() (in module curses), 164
normalize()

in module locale, 190
Node method, 354

normalvariate() (in module random), 120
normcase() (in module os.path), 147
normpath() (in module os.path), 147
NoSectionError (exception in ConfigParser),

125
not

operator, 4
not in

operator, 4, 6
not () (in module operator), 44
NotANumber (exception in fpformat), 92
notationDecl() (DTDHandler method), 370
NotationDeclHandler() (xmlparser method),

348
notations (DocumentType attribute), 355
NotFoundErr (exception in xml.dom), 359
notify() (Condition method), 214
notifyAll() (Condition method), 214
notimeout() (window method), 169
NotImplementedError (exception in excep-

tions), 18
NotStandaloneHandler() (xmlparser method),

348
NotSupportedErr (exception in xml.dom), 359
noutrefresh() (window method), 169
NSA, 397
NSIG (data in signal), 202
ntohl() (in module socket), 205
ntohs() (in module socket), 205
ntransfercmd() (FTP method), 288
NullFormatter (class in formatter), 319
NullWriter (class in formatter), 320
numeric

conversions, 5
literals, 5

object, 4, 5
types, operations on, 5

numeric() (in module unicodedata), 97
Numerical Python, 26
nurbscurve() (in module gl), 437
nurbssurface() (in module gl), 437
nvarray() (in module gl), 437

O
O APPEND (data in os), 140
O BINARY (data in os), 140
O CREAT (data in os), 140
O DSYNC (data in os), 140
O EXCL (data in os), 140
O NDELAY (data in os), 140
O NOCTTY (data in os), 140
O NONBLOCK (data in os), 140
O RDONLY (data in os), 140
O RDWR (data in os), 140
O RSYNC (data in os), 140
O SYNC (data in os), 140
O TRUNC (data in os), 140
O WRONLY (data in os), 140
object

buffer, 6
code, 13, 14, 60
complex number, 5
dictionary, 11
file, 14
floating point, 5
frame, 202
integer, 5
list, 6, 10
long integer, 5
mapping, 11
method, 13
numeric, 4, 5
sequence, 6
socket, 203
string, 6
traceback, 30, 51
tuple, 6
type, 27
Unicode, 6
xrange, 6, 10

objects
comparing, 4
flattening, 53
marshalling, 53
persistent, 53
pickling, 53
serializing, 53

obufcount() (audio device method), 442
oct() (in module ), 24
octal

literals, 5
octdigits (data in string), 75
offset (ExpatError attribute), 349

484 Index



OK (data in curses), 171
ok builtin modules (RExec attribute), 402
ok path (RExec attribute), 402
ok posix names (RExec attribute), 402
ok sys names (RExec attribute), 402
onecmd() (Cmd method), 130
open()

built-in function, 14
IMAP4 method, 293
in module , 24
in module aifc, 383
in module anydbm, 219
in module cd, 427
in module codecs, 93
in module dbhash, 220
in module dbm, 235
in module dl, 234
in module dumbdbm, 220
in module gdbm, 236
in module gzip, 225
in module os, 139
in module posixfile, 241
in module sunau, 385
in module sunaudiodev, 441
in module wave, 387
in module webbrowser, 268
OpenerDirector method, 281
Telnet method, 301
Template method, 241
URLopener method, 277

open new() (in module webbrowser), 268, 269
open osfhandle() (in module msvcrt), 443
open unknown() (URLopener method), 277
opendir() (in module dircache), 148
OpenerDirector (class in urllib2), 279
openfolder() (MH method), 337
openfp()

in module sunau, 385
in module wave, 387

OpenGL, 438
OpenKey() (in module winreg), 446
OpenKeyEx() (in module winreg), 446
openlog() (in module syslog), 246
openmessage() (Message method), 338
openport() (in module al), 425
openpty()

in module os, 139
in module pty, 239

operation
concatenation, 6
repetition, 6
slice, 6
subscript, 6

operations
bit-string, 6
Boolean, 3, 4
masking, 6
shifting, 6

operations on
dictionary type, 11
integer types, 6
list type, 11
mapping types, 11
mutable sequence types, 11
numeric types, 5
sequence types, 6, 11

operator
==, 4
and, 3, 4
comparison, 4
in, 4, 6
is, 4
is not, 4
not, 4
not in, 4, 6
or, 3, 4

operator (built-in module), 43
opname (data in dis), 418
options() (ConfigParser method), 125
optionxform() (ConfigParser method), 126
or

operator, 3, 4
or () (in module operator), 44
ord() (in module ), 25
ordered attributes (xmlparser attribute),

346
os (standard module), 14, 33, 135, 231
os.path (standard module), 146
OSError (exception in exceptions), 18
output()

BaseCookie method, 310
Morsel method, 311

OutputString() (Morsel method), 311
OutputType (data in cStringIO), 92
OverflowError (exception in exceptions), 18
overlay() (window method), 169
Overmars, Mark, 430
overwrite() (window method), 169

P
P DETACH (data in os), 144
P NOWAIT (data in os), 144
P NOWAITO (data in os), 144
P OVERLAY (data in os), 144
P WAIT (data in os), 144
pack() (in module struct), 86
pack array() (Packer method), 331
pack bytes() (Packer method), 331
pack double() (Packer method), 330
pack farray() (Packer method), 331
pack float() (Packer method), 330
pack fopaque() (Packer method), 331
pack fstring() (Packer method), 331
pack list() (Packer method), 331
pack opaque() (Packer method), 331
pack string() (Packer method), 331

Index 485



package, 72
Packer (class in xdrlib), 330
packing

binary data, 86
PAGER, 250
pair content() (in module curses), 164
pair number() (in module curses), 164
pardir (data in os), 146
parent (BaseHandler attribute), 282
parentNode (Node attribute), 353
paretovariate() (in module random), 120
Parse() (xmlparser method), 346
parse()

in module cgi, 271
in module xml.dom.minidom, 361
in module xml.dom.pulldom, 365
in module xml.sax, 365
RobotFileParser method, 340
XMLReader method, 372

parse and bind() (in module readline), 228
parse header() (in module cgi), 271
parse multipart() (in module cgi), 271
parse qs() (in module cgi), 271
parse qsl() (in module cgi), 271
parsedate() (in module rfc822), 321
parsedate tz() (in module rfc822), 321
ParseFile() (xmlparser method), 346
ParseFlags() (in module imaplib), 292
parseframe() (CD parser method), 430
parser (built-in module), 405
ParserCreate() (in module xml.parsers.expat),

345
ParserError (exception in parser), 408
parsesequence() (Folder method), 338
parseString()

in module xml.dom.minidom, 361
in module xml.dom.pulldom, 365
in module xml.sax, 365

parsing
Python source code, 405
URL, 302

ParsingError (exception in ConfigParser), 125
partial() (IMAP4 method), 293
pass () (POP3 method), 290
PATH, 146, 272, 274
path

configuration file, 72
module search, 32, 52, 71
operations, 146

path
BaseHTTPRequestHandler attribute, 306
data in os, 136
data in sys, 32

pathconf() (in module os), 141
pathconf names (data in os), 141
pathsep (data in os), 146
pattern (RegexObject attribute), 84
pause() (in module signal), 202

PAUSED (data in cd), 428
Pdb (class in pdb), 249
pdb (standard module), 32, 249
persistence, 53
persistent

objects, 53
pformat()

in module pprint, 68
PrettyPrinter method, 69

PGP, 393
pi

data in cmath, 117
data in math, 116

pick() (in module gl), 437
pickle() (in module copy reg), 57
pickle (standard module), 53, 57, 59, 60
Pickler (class in pickle), 54
pickling

objects, 53
PicklingError (exception in pickle), 55
pid (Popen4 attribute), 154
PIL (the Python Imaging Library), 439
pipe() (in module os), 139
pipes (standard module), 240
PKG DIRECTORY (data in imp), 64
platform (data in sys), 32
play() (CD player method), 429
playabs() (CD player method), 429
PLAYING (data in cd), 428
PlaySound() (in module winsound), 448
playtrack() (CD player method), 429
playtrackabs() (CD player method), 429
plock() (in module os), 144
pm() (in module pdb), 250
pnum (data in cd), 428
poll()

method, 209
in module select, 208
Popen4 method, 154

pop()
array method, 123
list method, 11
MultiFile method, 327

POP3
protocol, 290

POP3 (class in poplib), 290
pop alignment() (formatter method), 318
pop font() (formatter method), 319
pop margin() (formatter method), 319
pop source() (shlex method), 132
pop style() (formatter method), 319
popen()

in module os, 138
in module os, 209

popen2()
in module os, 138
in module popen2, 153

popen2 (standard module), 153

486 Index



Popen3 (class in popen2), 154
popen3()

in module os, 138
in module popen2, 153

Popen4 (class in popen2), 154
popen4()

in module os, 138
in module popen2, 153

poplib (standard module), 290
PortableUnixMailbox (class in mailbox), 336
pos() (in module operator), 44
pos (MatchObject attribute), 85
posix (built-in module), 231
posixfile (built-in module), 241
POSIX

file object, 241
I/O control, 237, 238
threads, 210

post() (NNTPDataError method), 297
post mortem() (in module pdb), 250
postcmd() (Cmd method), 130
postloop() (Cmd method), 130
pow()

in module , 25
in module math, 116

powm() (in module mpz), 395
pprint()

in module pprint, 68
PrettyPrinter method, 69

pprint (standard module), 67
prcal() (in module calendar), 129
pre (standard module), 78
precmd() (Cmd method), 130
prefix

Attr attribute, 357
data in sys, 32
Node attribute, 354

preloop() (Cmd method), 130
prepare input source() (in module

xml.sax.saxutils), 371
prepend() (Template method), 241
Pretty Good Privacy, 393
PrettyPrinter (class in pprint), 68
preventremoval() (CD player method), 429
previous()

method, 222
dbhash method, 221

previousSibling (Node attribute), 353
print

statement, 3
print callees() (Stats method), 260
print callers() (Stats method), 260
print directory() (in module cgi), 272
print environ() (in module cgi), 271
print environ usage() (in module cgi), 272
print exc() (in module traceback), 51
print exception() (in module traceback), 51
print form() (in module cgi), 272

print last() (in module traceback), 51
print stack() (in module traceback), 51
print stats() (Stats method), 260
print tb() (in module traceback), 51
printable (data in string), 75
printdir() (ZipFile method), 226
printf-style formatting, 9
prmonth() (in module calendar), 129
process

group, 136
id, 137
id of parent, 137
killing, 143
signalling, 143

process request() (in module SocketServer),
305

processes, light-weight, 210
processingInstruction() (ContentHandler

method), 370
ProcessingInstructionHandler() (xmlparser

method), 347
processor time, 156
profile (standard module), 258
profile function, 33
profiler, 33
profiling, deterministic, 255
prompt (Cmd attribute), 131
prompt user passwd() (FancyURLopener

method), 278
prompts, interpreter, 32
property declaration handler (data in

xml.sax.handler), 368
property dom node (data in xml.sax.handler),

368
property lexical handler (data in

xml.sax.handler), 368
property xml string (data in

xml.sax.handler), 368
protocol

CGI, 269
FTP, 277, 286
Gopher, 277, 289
HTTP, 269, 277, 284, 305
IMAP4, 291
NNTP, 294
POP3, 290
SMTP, 297

PROTOCOL VERSION (IMAP4 attribute), 294
protocol version (BaseHTTPRequestHand-

ler attribute), 307
proxy() (in module weakref), 36
ProxyBasicAuthHandler (class in urllib2), 280
ProxyDigestAuthHandler (class in urllib2), 280
ProxyHandler (class in urllib2), 279
ProxyType (data in weakref), 36
ProxyTypes (data in weakref), 36
prstr() (in module fm), 436
ps1 (data in sys), 32

Index 487



ps2 (data in sys), 32
pstats (standard module), 259
pthreads, 210
ptime (data in cd), 428
pty (standard module), 139, 238
publicId (DocumentType attribute), 355
PullDOM (class in xml.dom.pulldom), 365
punctuation (data in string), 75
push()

InteractiveConsole method, 67
MultiFile method, 326

push alignment() (formatter method), 318
push font() (formatter method), 319
push margin() (formatter method), 319
push source() (shlex method), 132
push style() (formatter method), 319
push token() (shlex method), 131
put() (Queue method), 217
put nowait() (Queue method), 217
putch() (in module msvcrt), 444
putenv() (in module os), 137
putheader() (HTTP method), 285
putp() (in module curses), 164
putrequest() (HTTP method), 285
putsequences() (Folder method), 338
putwin() (window method), 169
pwd() (FTP method), 289
pwd (built-in module), 147, 232
pwlcurve() (in module gl), 437
py compile (standard module), 417
PY COMPILED (data in imp), 63
PY FROZEN (data in imp), 64
PY RESOURCE (data in imp), 64
PY SOURCE (data in imp), 63
pyclbr (standard module), 416
pyexpat (built-in module), 345
PyOpenGL, 438
Python Enhancement Proposals

PEP 0205, 36
Python Imaging Library, 439
PYTHON DOM, 352
PYTHONPATH, 32, 272, 452
PYTHONSTARTUP, 72, 229, 230
PYTHONY2K, 155
PyZipFile (class in zipfile), 226

Q
qdevice() (in module fl), 431
qenter() (in module fl), 432
qiflush() (in module curses), 164
qread() (in module fl), 432
qreset() (in module fl), 432
qsize() (Queue method), 217
qtest() (in module fl), 431
QueryInfoKey() (in module winreg), 446
queryparams() (in module al), 425
QueryValue() (in module winreg), 446
QueryValueEx() (in module winreg), 446

Queue
class in Queue, 217
standard module, 217

quick ratio() (SequenceMatcher method), 90
quit()

FTP method, 289
NNTPDataError method, 297
POP3 method, 291
SMTP method, 300

quopri (standard module), 335
quote() (in module urllib), 276
quote plus() (in module urllib), 276
quoted-printable

encoding, 335
quotes (shlex attribute), 132

R
r eval() (RExec method), 400
r exec() (RExec method), 400
r execfile() (RExec method), 400
r import() (RExec method), 401
R OK (data in os), 140
r open() (RExec method), 401
r reload() (RExec method), 401
r unload() (RExec method), 401
raise

statement, 17
randint()

in module random, 119
in module whrandom, 120

random()
in module random, 119
in module whrandom, 120

random (standard module), 117
randrange() (in module random), 119
range() (in module ), 25
Rat (demo module), 395
ratecv() (in module audioop), 381
ratio() (SequenceMatcher method), 90
rational numbers, 395
raw() (in module curses), 164
raw input()

built-in function, 33
in module , 25
InteractiveConsole method, 67

re
MatchObject attribute, 85
standard module, 10, 75, 78, 187

read()
method, 218

array method, 123
audio device method, 442
Chunk method, 390
ConfigParser method, 125
file method, 15
in module imgfile, 439
in module os, 139
MultiFile method, 326

488 Index



RobotFileParser method, 340
StreamReader method, 96
ZipFile method, 227

read all() (Telnet method), 301
read byte() ( method), 218
read eager() (Telnet method), 301
read history file() (in module readline),

229
read init file() (in module readline), 229
read lazy() (Telnet method), 301
read mime types() (in module mimetypes),

334
read some() (Telnet method), 301
read token() (shlex method), 132
read until() (Telnet method), 301
read very eager() (Telnet method), 301
read very lazy() (Telnet method), 301
readable() (dispatcher method), 314
readda() (CD player method), 429
readfp() (ConfigParser method), 126
readframes()

aifc method, 384
AU read method, 386
Wave read method, 388

readline()
method, 218

file method, 15
MultiFile method, 326
StreamReader method, 96

readline (built-in module), 228
readlines()

file method, 15
MultiFile method, 326
StreamReader method, 96

readlink() (in module os), 141
readmodule() (in module pyclbr), 416
readsamps() (audio port method), 426
readscaled() (in module imgfile), 439
READY (data in cd), 428
Real Media File Format, 389
real quick ratio() (SequenceMatcher

method), 90
recent() (IMAP4 method), 293
rectangle() (in module curses.textpad), 174
recv()

dispatcher method, 314
socket method, 207

recvfrom() (socket method), 207
redraw form() (form method), 432
redraw object() (FORMS object method),

434
redrawln() (window method), 169
redrawwin() (window method), 169
reduce() (in module ), 25
ref() (in module weakref), 35
ReferenceError (exception in weakref), 36
ReferenceType (data in weakref), 36
refilemessages() (Folder method), 338

refresh() (window method), 169
register()

method, 209
in module atexit, 40
in module codecs, 93
in module webbrowser, 268

registerDOMImplementation() (in module
xml.dom), 352

RegLoadKey() (in module winreg), 445
relative

URL, 302
release()

Condition method, 214
lock method, 210
Semaphore method, 215
Thread method, 212, 213

reload()
built-in function, 32, 63, 65
in module , 25

remove()
array method, 123
in module os, 141
list method, 11

remove option() (ConfigParser method), 126
remove section() (ConfigParser method), 126
removeAttribute() (Element method), 357
removeAttributeNode() (Element method),

357
removeAttributeNS() (Element method), 357
removecallback() (CD parser method), 430
removeChild() (Node method), 354
removedirs() (in module os), 141
removemessages() (Folder method), 338
rename()

FTP method, 289
IMAP4 method, 293
in module os, 141

renames() (in module os), 142
reorganize() (in module gdbm), 237
repeat() (in module operator), 45
repetition

operation, 6
replace()

method, 178
in module string, 78
string method, 8

replaceChild() (Node method), 354
report() (dircmp method), 152
report full closure() (dircmp method), 152
report partial closure() (dircmp method),

152
report unbalanced() (SGMLParser method),

343
Repr (class in repr), 69
repr()

in module , 26
in module repr, 70
Repr method, 70

Index 489



repr (standard module), 69
repr1() (Repr method), 70
Request (class in urllib2), 279
request queue size (data in SocketServer),

304
request version (BaseHTTPRequestHandler

attribute), 306
RequestHandlerClass (data in SocketServer),

304
reserved (ZipInfo attribute), 228
reset()

DOMEventStream method, 365
in module statcache, 151
IncrementalParser method, 373
Packer method, 330
SGMLParser method, 341
StreamReader method, 96
StreamWriter method, 95
Template method, 241
Unpacker method, 331
XMLParser method, 375

reset prog mode() (in module curses), 164
reset shell mode() (in module curses), 164
resetbuffer() (InteractiveConsole method),

67
resetlocale() (in module locale), 191
resetparser() (CD parser method), 430
resetwarnings() (in module warnings), 62
resize() ( method), 219
resolveEntity() (EntityResolver method), 370
resource (built-in module), 243
response() (IMAP4 method), 293
responses (BaseHTTPRequestHandler at-

tribute), 307
retr() (POP3 method), 290
retrbinary() (FTP method), 288
retrieve() (URLopener method), 277
retrlines() (FTP method), 288
returns unicode (xmlparser attribute), 346
reverse()

array method, 123
in module audioop, 381
list method, 11

reverse order() (Stats method), 260
rewind()

aifc method, 384
AU read method, 386
Wave read method, 388

rewindbody() (AddressList method), 322
RExec (class in rexec), 400
rexec (standard module), 20, 400
RFC

RFC 1014, 330
RFC 1321, 393
RFC 1521, 334, 335
RFC 1524, 333
RFC 1725, 290
RFC 1730, 291

RFC 1738, 303
RFC 1766, 190
RFC 1808, 303
RFC 1832, 330
RFC 1866, 343, 344
RFC 1869, 297, 298
RFC 2060, 291
RFC 2068, 309
RFC 2109, 309, 310
RFC 2396, 303
RFC 2822, 157
RFC 821, 297, 298
RFC 822, 124, 157, 195, 285, 299, 300, 321,

322
RFC 854, 300, 301
RFC 959, 286
RFC 977, 294

rfc822 (standard module), 321, 324
rfile (BaseHTTPRequestHandler attribute),

306
rfind()

in module string, 76
string method, 8

rgb to hls() (in module colorsys), 390
rgb to hsv() (in module colorsys), 390
rgb to yiq() (in module colorsys), 390
rgbimg (built-in module), 391
right list (dircmp attribute), 153
right only (dircmp attribute), 153
rindex()

in module string, 76
string method, 8

rjust()
in module string, 77
string method, 8

rlcompleter (standard module), 230
rlecode hqx() (in module binascii), 329
rledecode hqx() (in module binascii), 329
RLIMIT AS (data in resource), 244
RLIMIT CORE (data in resource), 244
RLIMIT CPU (data in resource), 244
RLIMIT DATA (data in resource), 244
RLIMIT FSIZE (data in resource), 244
RLIMIT MEMLOC (data in resource), 244
RLIMIT NOFILE (data in resource), 244
RLIMIT NPROC (data in resource), 244
RLIMIT OFILE (data in resource), 244
RLIMIT RSS (data in resource), 244
RLIMIT STACK (data in resource), 244
RLIMIT VMEM (data in resource), 244
RLock() (in module threading), 211
rmd() (FTP method), 289
rmdir() (in module os), 142
RMFF, 389
rms() (in module audioop), 381
rmtree() (in module shutil), 188
rnopen() (in module bsddb), 222
RobotFileParser (class in robotparser), 340

490 Index



robotparser (standard module), 340
robots.txt, 340
rotor (built-in module), 396
round() (in module ), 26
rpop() (POP3 method), 290
rset() (POP3 method), 291
rshift() (in module operator), 44
rstrip()

in module string, 77
string method, 8

RTLD LAZY (data in dl), 234
RTLD NOW (data in dl), 234
ruler (Cmd attribute), 131
run()

in module pdb, 250
in module profile, 258
scheduler method, 159
TestCase method, 112
Thread method, 216

runcall() (in module pdb), 250
runcode() (InteractiveConsole method), 66
runeval() (in module pdb), 250
runsource() (InteractiveConsole method), 66
RuntimeError (exception in exceptions), 18
RuntimeWarning (exception in exceptions), 20
RUSAGE BOTH (data in resource), 245
RUSAGE CHILDREN (data in resource), 245
RUSAGE SELF (data in resource), 245

S
S (data in re), 82
s eval() (RExec method), 401
s exec() (RExec method), 401
s execfile() (RExec method), 401
S IFMT() (in module stat), 149
S IMODE() (in module stat), 149
s import() (RExec method), 401
S ISBLK() (in module stat), 149
S ISCHR() (in module stat), 149
S ISDIR() (in module stat), 149
S ISFIFO() (in module stat), 149
S ISLNK() (in module stat), 149
S ISREG() (in module stat), 149
S ISSOCK() (in module stat), 149
s reload() (RExec method), 401
s unload() (RExec method), 401
saferepr() (in module pprint), 69
same files (dircmp attribute), 153
samefile() (in module os.path), 148
sameopenfile() (in module os.path), 148
samestat() (in module os.path), 148
save bgn() (HTMLParser method), 344
save end() (HTMLParser method), 344
SaveKey() (in module winreg), 447
SAX2DOM (class in xml.dom.pulldom), 365
SAXException (exception in xml.sax), 366
SAXNotRecognizedException (exception in

xml.sax), 366

SAXNotSupportedException (exception in
xml.sax), 366

SAXParseException (exception in xml.sax), 366
scale() (in module imageop), 382
scalefont() (in module fm), 436
sched (standard module), 158
scheduler (class in sched), 158
sci() (in module fpformat), 92
scroll() (window method), 170
scrollok() (window method), 170
search

path, module, 32, 52, 71
search()

IMAP4 method, 293
in module re, 82
RegexObject method, 84

SEARCH ERROR (data in imp), 64
section divider() (MultiFile method), 327
sections() (ConfigParser method), 125
Secure Hash Algorithm, 394
seed()

in module random, 118
in module whrandom, 120
whrandom method, 120

seek()
method, 219

CD player method, 429
Chunk method, 390
file method, 15
MultiFile method, 326

SEEK CUR (data in posixfile), 241
SEEK END (data in posixfile), 241
SEEK SET (data in posixfile), 241
seekblock() (CD player method), 429
seektrack() (CD player method), 429
select()

IMAP4 method, 294
in module gl, 437
in module select, 208

select (built-in module), 208
Semaphore() (in module threading), 211
Semaphore (class in threading), 214
semaphores, binary, 210
send()

dispatcher method, 314
HTTP method, 285
socket method, 207

send error() (BaseHTTPRequestHandler
method), 307

send flowing data() (writer method), 320
send header() (BaseHTTPRequestHandler

method), 307
send hor rule() (writer method), 320
send label data() (writer method), 320
send line break() (writer method), 320
send literal data() (writer method), 320
send paragraph() (writer method), 320
send query() (in module gopherlib), 289

Index 491



send response() (BaseHTTPRequestHandler
method), 307

send selector() (in module gopherlib), 289
sendall() (socket method), 207
sendcmd() (FTP method), 288
sendmail() (SMTP method), 299
sendto() (socket method), 207
sep (data in os), 146
sequence

object, 6
types, mutable, 10
types, operations on, 6, 11
types, operations on mutable, 11

sequence2ast() (in module parser), 406
sequenceIncludes() (in module operator), 45
SequenceMatcher (class in difflib), 88, 89
SerialCookie (class in Cookie), 309
serializing

objects, 53
serve forever() (in module SocketServer),

304
server

WWW, 269, 305
server activate() (in module SocketServer),

305
server address (data in SocketServer), 304
server bind() (in module SocketServer), 305
server version

BaseHTTPRequestHandler attribute, 306
SimpleHTTPRequestHandler attribute,

308
set()

ConfigParser method, 126
Event method, 215
Morsel method, 311

set call back() (FORMS object method),
434

set completer() (in module readline), 229
set completer delims() (in module read-

line), 229
set debug() (in module gc), 34
set debuglevel()

FTP method, 287
HTTP method, 285
NNTPDataError method, 296
SMTP method, 298
Telnet method, 301

set event call back() (in module fl), 431
set form position() (form method), 432
set graphics mode() (in module fl), 431
set history length() (in module readline),

229
set location() ( method), 222
set pasv() (FTP method), 288
set position() (Unpacker method), 331
set proxy() (Request method), 281
set seq1() (SequenceMatcher method), 89
set seq2() (SequenceMatcher method), 89

set seqs() (SequenceMatcher method), 89
set spacing() (formatter method), 319
set threshold() (in module gc), 34
set trace() (in module pdb), 250
set url() (RobotFileParser method), 340
set userptr() ( method), 178
setattr() (in module ), 26
setAttribute() (Element method), 357
setAttributeNode() (Element method), 357
setAttributeNodeNS() (Element method), 357
setAttributeNS() (Element method), 357
SetBase() (xmlparser method), 346
setblocking() (socket method), 207
setByteStream() (InputSource method), 374
setcbreak() (in module tty), 238
setchannels() (audio configuration method),

426
setCharacterStream() (InputSource method),

374
setcheckinterval() (in module sys), 33
setcomptype()

aifc method, 384
AU write method, 387
Wave write method, 389

setconfig() (audio port method), 427
setContentHandler() (XMLReader method),

372
setcontext() (MH method), 337
setcurrent() (Folder method), 338
setDaemon() (Thread method), 217
setdefaultencoding() (in module sys), 33
setDocumentLocator() (ContentHandler

method), 368
setDTDHandler() (XMLReader method), 372
setegid() (in module os), 137
setEncoding() (InputSource method), 374
setEntityResolver() (XMLReader method),

372
setErrorHandler() (XMLReader method), 373
seteuid() (in module os), 137
setFeature() (XMLReader method), 373
setfillpoint() (audio port method), 427
setfirstweekday() (in module calendar), 129
setfloatmax() (audio configuration method),

426
setfont() (in module fm), 436
setframerate()

aifc method, 384
AU write method, 387
Wave write method, 388

setgid() (in module os), 137
setinfo() (audio device method), 442
setitem() (in module operator), 45
setkey() (rotor method), 396
setlast() (Folder method), 338
setliteral()

SGMLParser method, 342
XMLParser method, 375

492 Index



setLocale() (XMLReader method), 373
setlocale() (in module locale), 189
setlogmask() (in module syslog), 246
setmark() (aifc method), 384
setMaxConns() (CacheFTPHandler method),

284
setmode() (in module msvcrt), 443
setName() (Thread method), 216
setnchannels()

aifc method, 384
AU write method, 387
Wave write method, 388

setnframes()
aifc method, 384
AU write method, 387
Wave write method, 389

setnomoretags()
SGMLParser method, 341
XMLParser method, 375

setoption() (in module jpeg), 439
setparams()

aifc method, 384
AU write method, 387
in module al, 426
Wave write method, 389

setpath() (in module fm), 436
setpgid() (in module os), 137
setpgrp() (in module os), 137
setpos()

aifc method, 384
AU read method, 386
Wave read method, 388

setprofile() (in module sys), 33
setProperty() (XMLReader method), 373
setPublicId() (InputSource method), 374
setqueuesize() (audio configuration method),

426
setraw() (in module tty), 238
setrecursionlimit() (in module sys), 33
setregid() (in module os), 137
setreuid() (in module os), 137
setrlimit() (in module resource), 243
setsampfmt() (audio configuration method),

426
setsampwidth()

aifc method, 384
AU write method, 387
Wave write method, 388

setscrreg() (window method), 170
setsid() (in module os), 137
setslice() (in module operator), 45
setsockopt() (socket method), 207
setstate() (in module random), 119
setSystemId() (InputSource method), 374
setsyx() (in module curses), 164
setTimeout() (CacheFTPHandler method),

284
settrace() (in module sys), 33

setuid() (in module os), 137
setUp() (TestCase method), 112
setup() (in module SocketServer), 305
setupterm() (in module curses), 164
SetValue() (in module winreg), 447
SetValueEx() (in module winreg), 447
setwidth() (audio configuration method), 426
SGML, 341
sgmllib (standard module), 341, 343
SGMLParser

class in sgmllib, 341
in module sgmllib, 343

sha (built-in module), 394
shelve (standard module), 53, 57, 60
shifting

operations, 6
shlex

class in shlex, 131
standard module, 131

shortDescription() (TestCase method), 113
show() ( method), 178
show choice() (in module fl), 431
show file selector() (in module fl), 431
show form() (form method), 432
show input() (in module fl), 431
show message() (in module fl), 431
show object() (FORMS object method), 434
show question() (in module fl), 431
showsyntaxerror() (InteractiveConsole

method), 66
showtraceback() (InteractiveConsole method),

66
showwarning() (in module warnings), 62
shuffle() (in module random), 119
shutdown() (socket method), 207
shutil (standard module), 188
SIG* (data in signal), 202
SIG DFL (data in signal), 202
SIG IGN (data in signal), 202
signal() (in module signal), 202
signal (built-in module), 201, 210
Simple Mail Transfer Protocol, 297
SimpleCookie (class in Cookie), 309
SimpleHTTPRequestHandler (class in Simple-

HTTPServer), 308
SimpleHTTPServer (standard module), 305,

308
sin()

in module cmath, 117
in module math, 116

sinh()
in module cmath, 117
in module math, 116

site (standard module), 71
site-packages

directory, 72
site-python

directory, 72

Index 493



sitecustomize (module), 72
size()

method, 219
FTP method, 289

sizeofimage() (in module rgbimg), 391
skip() (Chunk method), 390
skippedEntity() (ContentHandler method),

370
slave() (NNTPDataError method), 297
sleep() (in module time), 156
slice

assignment, 11
operation, 6

slice()
built-in function, 42, 424
in module , 26

SliceType (data in types), 42
SmartCookie (class in Cookie), 310
SMTP

protocol, 297
SMTP (class in smtplib), 297
SMTPConnectError (exception in smtplib), 298
SMTPDataError (exception in smtplib), 298
SMTPException (exception in smtplib), 298
SMTPHeloError (exception in smtplib), 298
smtplib (standard module), 297
SMTPRecipientsRefused (exception in smt-

plib), 298
SMTPResponseException (exception in smt-

plib), 298
SMTPSenderRefused (exception in smtplib), 298
SMTPServerDisconnected (exception in smt-

plib), 298
SND ALIAS (data in winsound), 448
SND ASYNC (data in winsound), 449
SND FILENAME (data in winsound), 448
SND LOOP (data in winsound), 449
SND MEMORY (data in winsound), 449
SND NODEFAULT (data in winsound), 449
SND NOSTOP (data in winsound), 449
SND NOWAIT (data in winsound), 449
SND PURGE (data in winsound), 449
sndhdr (standard module), 392
SO * (data in socket), 204
SOCK DGRAM (data in socket), 204
SOCK RAW (data in socket), 204
SOCK RDM (data in socket), 204
SOCK SEQPACKET (data in socket), 204
SOCK STREAM (data in socket), 204
socket

object, 203
socket()

IMAP4 method, 294
in module socket, 205

socket
built-in module, 14, 203, 267
data in SocketServer, 304

socket() (in module socket), 209

socket type (data in SocketServer), 304
SocketServer (standard module), 303
SocketType (data in socket), 205
softspace (file attribute), 16
SOL * (data in socket), 204
SOMAXCONN (data in socket), 204
sort() (list method), 11
sort stats() (Stats method), 259
sortTestMethodsUsing (TestLoader attribute),

115
source (shlex attribute), 133
sourcehook() (shlex method), 132
span() (MatchObject method), 85
spawn() (in module pty), 239
spawnv() (in module os), 144
spawnve() (in module os), 144
specified attributes (xmlparser attribute),

347
split()

in module os.path, 148
in module re, 82
in module string, 77
RegexObject method, 84
string method, 8

splitdrive() (in module os.path), 148
splitext() (in module os.path), 148
splitfields() (in module string), 77
splitlines() (string method), 8
sprintf-style formatting, 9
sqrt()

in module cmath, 117
in module math, 116
in module mpz, 395

sqrtrem() (in module mpz), 395
ST ATIME (data in stat), 150
ST CTIME (data in stat), 150
ST DEV (data in stat), 150
ST GID (data in stat), 150
ST INO (data in stat), 150
ST MODE (data in stat), 149
ST MTIME (data in stat), 150
ST NLINK (data in stat), 150
ST SIZE (data in stat), 150
ST UID (data in stat), 150
stack() (in module inspect), 50
stackable

streams, 93
StandardError (exception in exceptions), 17
standend() (window method), 170
standout() (window method), 170
start()

MatchObject method, 85
Thread method, 216

start color() (in module curses), 165
start new thread() (in module thread), 210
startbody() (MimeWriter method), 325
StartCdataSectionHandler() (xmlparser

method), 348

494 Index



StartDoctypeDeclHandler() (xmlparser
method), 347

startDocument() (ContentHandler method),
368

startElement() (ContentHandler method), 369
StartElementHandler() (xmlparser method),

347
startElementNS() (ContentHandler method),

369
startfile() (in module os), 144
startmultipartbody() (MimeWriter method),

325
StartNamespaceDeclHandler() (xmlparser

method), 348
startPrefixMapping() (ContentHandler

method), 369
startswith() (string method), 8
startTest() (TestResult method), 114
stat()

in module os, 142
in module statcache, 151
NNTPDataError method, 296
POP3 method, 290

stat (standard module), 142, 149
statcache (standard module), 151
statement

assert, 17
del, 11
except, 17
exec, 14
if, 3
import, 20, 63
print, 3
raise, 17
try, 17
while, 3

Stats (class in pstats), 259
status() (IMAP4 method), 294
statvfs() (in module os), 142
statvfs (standard module), 142, 151
stderr (data in sys), 33
stdin (data in sys), 33
stdout (data in sys), 33
STILL (data in cd), 428
stop()

CD player method, 429
TestResult method, 114

stopTest() (TestResult method), 114
storbinary() (FTP method), 288
store() (IMAP4 method), 294
storlines() (FTP method), 288
str()

in module , 26
in module locale, 191

strcoll() (in module locale), 191
StreamReader (class in codecs), 95
StreamReaderWriter (class in codecs), 96
StreamRecoder (class in codecs), 97

streams, 93
stackable, 93

StreamWriter (class in codecs), 95
strerror() (in module os), 137
strftime() (in module time), 156
string

documentation, 409
formatting, 9
object, 6

string
MatchObject attribute, 85
standard module, 10, 75, 191, 192

StringIO
class in StringIO, 92
standard module, 92

StringType (data in types), 41
strip()

in module string, 77
string method, 8

strip dirs() (Stats method), 259
stripspaces (Textbox attribute), 175
strptime() (in module time), 157
struct (built-in module), 86, 207
structures

C, 86
strxfrm() (in module locale), 191
sub()

in module operator, 44
in module re, 83
RegexObject method, 84

subdirs (dircmp attribute), 153
subn()

in module re, 83
RegexObject method, 84

subpad() (window method), 170
subscribe() (IMAP4 method), 294
subscript

assignment, 11
operation, 6

subwin() (window method), 170
suffix map (data in mimetypes), 334
suite() (in module parser), 406
suiteClass (TestLoader attribute), 115
sunau (standard module), 385
SUNAUDIODEV (standard module), 441, 442
sunaudiodev (built-in module), 441, 442
super (class descriptor attribute), 416
swapcase()

in module string, 77
string method, 8

sym() ( method), 235
sym name (data in symbol), 414
symbol (standard module), 414
symbol table, 3
symlink() (in module os), 142
sync()

method, 222
dbhash method, 221

Index 495



in module gdbm, 237
syncdown() (window method), 170
syncok() (window method), 170
syncup() (window method), 170
syntax error() (XMLParser method), 377
SyntaxErr (exception in xml.dom), 359
SyntaxError (exception in exceptions), 19
SyntaxWarning (exception in exceptions), 20
sys (built-in module), 29
sys version (BaseHTTPRequestHandler at-

tribute), 306
sysconf() (in module os), 146
sysconf names (data in os), 146
syslog() (in module syslog), 246
syslog (built-in module), 246
system() (in module os), 144
SystemError (exception in exceptions), 19
SystemExit (exception in exceptions), 19
systemId (DocumentType attribute), 355

T
tabnanny (standard module), 415
tagName (Element attribute), 356
tan()

in module cmath, 117
in module math, 116

tanh()
in module cmath, 117
in module math, 116

target (ProcessingInstruction attribute), 358
tb lineno() (in module traceback), 52
tcdrain() (in module termios), 237
tcflow() (in module termios), 237
tcflush() (in module termios), 237
tcgetattr() (in module termios), 237
tcgetpgrp() (in module os), 139
tcsendbreak() (in module termios), 237
tcsetattr() (in module termios), 237
tcsetpgrp() (in module os), 139
tearDown() (TestCase method), 112
tell()

method, 219
aifc method, 384
AU read method, 386
AU write method, 387
Chunk method, 390
file method, 15
MultiFile method, 326
Wave read method, 388
Wave write method, 389

Telnet (class in telnetlib), 300
telnetlib (standard module), 300
tempdir (data in tempfile), 181
tempfile (standard module), 180
Template (class in pipes), 240
template (data in tempfile), 181
tempnam() (in module os), 142
temporary

file, 180
file name, 180

TemporaryFile() (in module tempfile), 181
termattrs() (in module curses), 165
TERMIOS (standard module), 238
termios (built-in module), 237, 238
termname() (in module curses), 165
test()

in module cgi, 271
mutex method, 159

testandset() (mutex method), 159
TestCase (class in unittest), 111
TestLoader (class in unittest), 111
testMethodPrefix (TestLoader attribute), 115
tests (data in imghdr), 392
testsRun (TestResult attribute), 113
TestSuite (class in unittest), 111
testzip() (ZipFile method), 227
Textbox (class in curses.textpad), 174
textdomain() (in module gettext), 193
TextTestRunner (class in unittest), 111
Thread (class in threading), 211, 216
thread (built-in module), 209
threading (standard module), 211
threads

IRIX, 211
POSIX, 210

tie() (in module fl), 432
tigetflag() (in module curses), 165
tigetnum() (in module curses), 165
tigetstr() (in module curses), 165
time() (in module time), 158
time (built-in module), 154
Time2Internaldate() (in module imaplib), 292
timegm() (in module calendar), 129
timeout() (window method), 170
times() (in module os), 144
timezone (data in time), 158
title() (string method), 8
TMP MAX (data in os), 142
TMPDIR, 181
tmpfile() (in module os), 138
tmpnam() (in module os), 142
tochild (Popen4 attribute), 154
tofile() (array method), 123
togglepause() (CD player method), 429
tok name (data in token), 414
token

shlex attribute, 133
standard module, 414

tokeneater() (in module tabnanny), 416
tokenize() (in module tokenize), 415
tokenize (standard module), 415
tolist()

array method, 123
AST method, 408
xrange method, 10

tomono() (in module audioop), 381

496 Index



top()
method, 179

POP3 method, 291
top panel() (in module curses.panel), 178
tostereo() (in module audioop), 381
tostring() (array method), 123
totuple() (AST method), 408
touchline() (window method), 170
touchwin() (window method), 170
tovideo() (in module imageop), 382
toxml() ( method), 362
tparm() (in module curses), 165
trace() (in module inspect), 50
trace function, 33
traceback

object, 30, 51
traceback (standard module), 50
tracebacklimit (data in sys), 33
TracebackType (data in types), 42
transfercmd() (FTP method), 288
translate()

in module string, 77
string method, 8

translate references() (XMLParser
method), 376

translation() (in module gettext), 194
true, 3
truncate() (file method), 15
truth

value, 3
truth() (in module operator), 44
try

statement, 17
ttob()

in module imgfile, 439
in module rgbimg, 391

tty
I/O control, 237, 238

tty (standard module), 238
ttyname() (in module os), 139
tuple

object, 6
tuple() (in module ), 26
tuple2ast() (in module parser), 407
TupleType (data in types), 41
turnoff sigfpe() (in module fpectl), 39
turnon sigfpe() (in module fpectl), 39
type

Boolean, 3
object, 27
operations on dictionary, 11
operations on list, 11

type()
built-in function, 14, 41
in module , 27

typeahead() (in module curses), 165
typecode (array attribute), 122
TypeError (exception in exceptions), 19

types
built-in, 3
mutable sequence, 10
operations on integer, 6
operations on mapping, 11
operations on mutable sequence, 11
operations on numeric, 5
operations on sequence, 6, 11

types (standard module), 14, 27, 40
types map (data in mimetypes), 334
TypeType (data in types), 41
TZ, 452
tzname (data in time), 158

U
U (data in re), 82
u-LAW, 379, 384, 392, 441
ugettext() (NullTranslations method), 195
uid() (IMAP4 method), 294
uidl() (POP3 method), 291
ulaw2lin() (in module audioop), 381
umask() (in module os), 137
uname() (in module os), 137
UnboundLocalError (exception in exceptions),

19
UnboundMethodType (data in types), 41
unbuffered I/O, 24
unctrl()

in module curses, 165
in module curses.ascii, 177

undoc header (Cmd attribute), 131
unfreeze form() (form method), 432
unfreeze object() (FORMS object method),

434
ungetch()

in module curses, 165
in module msvcrt, 444

ungetmouse() (in module curses), 165
unhexlify() (in module binascii), 329
unichr() (in module ), 27
UNICODE (data in re), 82
Unicode, 93, 97

database, 97
object, 6

unicode() (in module ), 27
unicodedata (standard module), 97
UnicodeError (exception in exceptions), 19
UnicodeType (data in types), 41
uniform()

in module random, 119
in module whrandom, 121

unittest (standard module), 106
Unix

file control, 239
I/O control, 239

UnixMailbox (class in mailbox), 335
unknown charref()

SGMLParser method, 343

Index 497



XMLParser method, 377
unknown endtag()

SGMLParser method, 343
XMLParser method, 377

unknown entityref()
SGMLParser method, 343
XMLParser method, 377

unknown open()
BaseHandler method, 282
UnknownHandler method, 284

unknown starttag()
SGMLParser method, 343
XMLParser method, 377

UnknownHandler (class in urllib2), 280
unlink()

method, 362
in module os, 142

unlock() (mutex method), 160
unmimify() (in module mimify), 339
unpack() (in module struct), 86
unpack array() (Unpacker method), 332
unpack bytes() (Unpacker method), 332
unpack double() (Unpacker method), 332
unpack farray() (Unpacker method), 332
unpack float() (Unpacker method), 331
unpack fopaque() (Unpacker method), 332
unpack fstring() (Unpacker method), 332
unpack list() (Unpacker method), 332
unpack opaque() (Unpacker method), 332
unpack string() (Unpacker method), 332
Unpacker (class in xdrlib), 330
unparsedEntityDecl() (DTDHandler

method), 370
UnparsedEntityDeclHandler() (xmlparser

method), 348
Unpickler (class in pickle), 54
unqdevice() (in module fl), 431
unquote() (in module urllib), 276
unquote plus() (in module urllib), 276
unregister() ( method), 209
unsubscribe() (IMAP4 method), 294
untouchwin() (window method), 170
unused data ( attribute), 224
update()

dictionary method, 11
md5 method, 393
sha method, 394

update panels() (in module curses.panel), 178
upper()

in module string, 77
string method, 8

uppercase (data in string), 75
URL, 269, 274, 302, 305, 340

parsing, 302
relative, 302

urlcleanup() (in module urllib), 276
urlencode() (in module urllib), 276
URLError (exception in urllib2), 279

urljoin() (in module urlparse), 303
urllib (standard module), 274, 284
urllib2 (standard module), 278
urlopen()

in module urllib, 275
in module urllib2, 278

URLopener (class in urllib), 276
urlparse() (in module urlparse), 303
urlparse (standard module), 277, 302
urlretrieve() (in module urllib), 275
urlunparse() (in module urlparse), 303
use env() (in module curses), 165
use rawinput (Cmd attribute), 131
USER, 160, 287
user

configuration file, 72
effective id, 136
id, 137
id, setting, 137

user() (POP3 method), 290
user (standard module), 72
UserDict

class in UserDict, 42
standard module, 42

UserList
class in UserList, 42
standard module, 42

USERNAME, 160
userptr() ( method), 179
UserString

class in UserString, 43
standard module, 43

UserWarning (exception in exceptions), 20
UTC, 155
utime() (in module os), 142
uu (standard module), 328, 329

V
value

truth, 3
value (Morsel attribute), 311
value decode() (BaseCookie method), 310
value encode() (BaseCookie method), 310
ValueError (exception in exceptions), 19
values() (dictionary method), 11
varray() (in module gl), 437
vars() (in module ), 27
VERBOSE (data in re), 82
verbose (data in tabnanny), 416
verify() (SMTP method), 299
verify request() (in module SocketServer),

305
version

data in curses, 171
data in sys, 33
URLopener attribute, 278

version info (data in sys), 34

498 Index



version string() (BaseHTTPRequestHand-
ler method), 307

vline() (window method), 170
vnarray() (in module gl), 437
voidcmd() (FTP method), 288
volume (ZipInfo attribute), 228
vonmisesvariate() (in module random), 120

W
W OK (data in os), 140
wait()

Condition method, 214
Event method, 215
in module os, 145
Popen4 method, 154

waitpid() (in module os), 145
walk() (in module os.path), 148
warn() (in module warnings), 62
warn explicit() (in module warnings), 62
Warning (exception in exceptions), 19
warning() (ErrorHandler method), 371
warnings, 60
warnings (standard module), 60
wasSuccessful() (TestResult method), 113
wave (standard module), 387
WeakKeyDictionary (class in weakref), 36
weakref (extension module), 35
WeakValueDictionary (class in weakref), 36
webbrowser (standard module), 267
weekday() (in module calendar), 129
weibullvariate() (in module random), 120
WEXITSTATUS() (in module os), 145
wfile (BaseHTTPRequestHandler attribute),

306
what()

in module imghdr, 391
in module sndhdr, 392

whathdr() (in module sndhdr), 392
whichdb() (in module whichdb), 221
whichdb (standard module), 221
while

statement, 3
whitespace

data in string, 76
shlex attribute, 132

whrandom (standard module), 120
whseed() (in module random), 118
WIFEXITED() (in module os), 145
WIFSIGNALED() (in module os), 145
WIFSTOPPED() (in module os), 145
window() ( method), 179
Windows ini file, 124
WindowsError (exception in exceptions), 19
WinSock, 209
winsound (built-in module), 448
winver (data in sys), 34
WNOHANG (data in os), 145
wordchars (shlex attribute), 132

World-Wide Web, 267, 274, 302, 340
wrapper() (in module curses.wrapper), 175
writable() (dispatcher method), 314
write()

method, 219
array method, 124
audio device method, 442
ConfigParser method, 126
file method, 15
in module imgfile, 439
in module os, 139
InteractiveConsole method, 66
StreamWriter method, 95
Telnet method, 302
ZipFile method, 227

write byte() ( method), 219
write history file() (in module readline),

229
writeframes()

aifc method, 384
AU write method, 387
Wave write method, 389

writeframesraw()
aifc method, 385
AU write method, 387
Wave write method, 389

writelines()
file method, 15
StreamWriter method, 95

writepy() (PyZipFile method), 227
writer (formatter attribute), 318
writesamps() (audio port method), 426
writestr() (ZipFile method), 227
writexml() ( method), 362
WrongDocumentErr (exception in xml.dom), 359
WSTOPSIG() (in module os), 145
WTERMSIG() (in module os), 145
WWW, 267, 274, 302, 340

server, 269, 305

X
X (data in re), 82
X OK (data in os), 140
xatom() (IMAP4 method), 294
XDR, 53, 330
xdrlib (standard module), 330
xgtitle() (NNTPDataError method), 297
xhdr() (NNTPDataError method), 297
XML, 375

namespaces, 377
xml.dom (standard module), 351
xml.dom.minidom (standard module), 360
xml.dom.pulldom (standard module), 365
xml.parsers.expat (standard module), 345
xml.sax (standard module), 365
xml.sax.handler (standard module), 367
xml.sax.saxutils (standard module), 371
xml.sax.xmlreader (standard module), 371

Index 499



XmlDeclHandler() (xmlparser method), 347
XMLFilterBase (class in xml.sax.saxutils), 371
XMLGenerator (class in xml.sax.saxutils), 371
xmllib (standard module), 375
XMLParser (class in xmllib), 375
XMLParserType (data in xml.parsers.expat), 345
XMLReader (class in xml.sax.xmlreader), 371
xor() (in module operator), 44
xover() (NNTPDataError method), 297
xpath() (NNTPDataError method), 297
xrange

object, 6, 10
xrange()

built-in function, 6, 42
in module , 27

XRangeType (data in types), 42
xreadlines()

file method, 15
in module xreadlines, 128

xreadlines
extension module, 128
standard module, 15

Y
Y2K, 154
Year 2000, 154
Year 2038, 154
yiq to rgb() (in module colorsys), 390

Z
ZeroDivisionError (exception in exceptions),

19
zfill() (in module string), 77
zip() (in module ), 27
ZIP DEFLATED (data in zipfile), 226
ZIP STORED (data in zipfile), 226
ZipFile (class in zipfile), 225, 226
zipfile (standard module), 225
ZipInfo (class in zipfile), 226
zlib (built-in module), 223

500 Index


	1 Introduction
	2 Built-in Types, Exceptions and Functions
	2.1 Built-in Types 
	2.1.1 Truth Value Testing 
	2.1.2 Boolean Operations 
	2.1.3 Comparisons 
	2.1.4 Numeric Types 
	Bit-string Operations on Integer Types 

	2.1.5 Sequence Types 
	String Methods 
	String Formatting Operations 
	XRange Type 
	Mutable Sequence Types 

	2.1.6 Mapping Types 
	2.1.7 Other Built-in Types 
	Modules 
	Classes and Class Instances 
	Functions 
	Methods 
	Code Objects 
	Type Objects 
	The Null Object 
	The Ellipsis Object 
	File Objects 
	Internal Objects 

	2.1.8 Special Attributes 

	2.2 Built-in Exceptions
	2.3 Built-in Functions 

	3 Python Runtime Services 
	3.1 sys --- System-specific parameters and functions
	3.2 gc --- Garbage Collector interface
	3.3 weakref --- Weak references
	3.3.1 Weak Reference Objects 
	3.3.2 Example 
	3.3.3 Weak References in Extension Types 

	3.4 fpectl --- Floating point exception control
	3.4.1 Example 
	3.4.2 Limitations and other considerations

	3.5 atexit --- Exit handlers
	3.5.1 atexit Example 

	3.6 types --- Names for all built-in types
	3.7 UserDict --- Class wrapper for dictionary objects
	3.8 UserList --- Class wrapper for list objects
	3.9 UserString --- Class wrapper for string objects
	3.10 operator --- Standard operators as functions.
	3.10.1 Mapping Operators to Functions 

	3.11 inspect --- Inspect live objects
	3.11.1 Types and members 
	3.11.2 Retrieving source code 
	3.11.3 Classes and functions 
	3.11.4 The interpreter stack 

	3.12 traceback --- Print or retrieve a stack traceback
	3.12.1 Traceback Example 

	3.13 linecache --- Random access to text lines
	3.14 pickle --- Python object serialization
	3.14.1 Example 

	3.15 cPickle --- Alternate implementation of pickle
	3.16 copyprotect unhbox voidb@x kern .06emvbox {hrule width.55em}reg --- Register pickle support functions
	3.17 shelve --- Python object persistence
	3.18 copy --- Shallow and deep copy operations
	3.19 marshal --- Alternate Python object serialization
	3.20 warnings --- Warning control
	3.20.1 Warning Categories 
	3.20.2 The Warnings Filter 
	3.20.3 Available Functions 

	3.21 imp --- Access the import internals
	3.21.1 Examples

	3.22 code --- Interpreter base classes
	3.22.1 Interactive Interpreter Objects 
	3.22.2 Interactive Console Objects 

	3.23 codeop --- Compile Python code
	3.24 pprint --- Data pretty printer
	3.24.1 PrettyPrinter Objects

	3.25 repr --- Alternate repr() implementation
	3.25.1 Repr Objects 
	3.25.2 Subclassing Repr Objects 

	3.26 new --- Creation of runtime internal objects
	3.27 site --- Site-specific configuration hook
	3.28 user --- User-specific configuration hook
	3.29 protect unhbox voidb@x kern .06emvbox {hrule width.55em}protect unhbox voidb@x kern .06emvbox {hrule width.55em}builtinprotect unhbox voidb@x kern .06emvbox {hrule width.55em}protect unhbox voidb@x kern .06emvbox {hrule width.55em} --- Built-in functions
	3.30 protect unhbox voidb@x kern .06emvbox {hrule width.55em}protect unhbox voidb@x kern .06emvbox {hrule width.55em}mainprotect unhbox voidb@x kern .06emvbox {hrule width.55em}protect unhbox voidb@x kern .06emvbox {hrule width.55em} --- Top-level script environment

	4 String Services
	4.1 string --- Common string operations
	4.2 re --- Regular expression operations
	4.2.1 Regular Expression Syntax 
	4.2.2 Matching vs. Searching 
	4.2.3 Module Contents
	4.2.4 Regular Expression Objects 
	4.2.5 Match Objects 

	4.3 struct --- Interpret strings as packed binary data
	4.4 difflib --- Helpers for computing deltas
	4.4.1 SequenceMatcher Objects 
	4.4.2 Examples 

	4.5 fpformat --- Floating point conversions
	4.6 StringIO --- Read and write strings as files
	4.7 cStringIO --- Faster version of StringIO
	4.8 codecs --- Codec registry and base classes
	4.8.1 Codec Base Classes
	Codec Objects 
	StreamWriter Objects 
	StreamReader Objects 
	StreamReaderWriter Objects 
	StreamRecoder Objects 


	4.9 unicodedata --- Unicode Database

	5 Miscellaneous Services
	5.1 doctest --- Test docstrings represent reality
	5.1.1 Normal Usage
	5.1.2 Which Docstrings Are Examined?
	5.1.3 What's the Execution Context?
	5.1.4 What About Exceptions?
	5.1.5 Advanced Usage
	5.1.6 How are Docstring Examples Recognized?
	5.1.7 Warnings
	5.1.8 Soapbox

	5.2 unittest --- Unit testing framework
	5.2.1 Organizing test code 
	5.2.2 Re-using old test code 
	5.2.3 Classes and functions 
	5.2.4 TestCase Objects 
	5.2.5 TestSuite Objects 
	5.2.6 TestResult Objects 
	5.2.7 TestLoader Objects 

	5.3 math --- Mathematical functions
	5.4 cmath --- Mathematical functions for complex numbers
	5.5 random --- Generate pseudo-random numbers
	5.6 whrandom --- Pseudo-random number generator
	5.7 bisect --- Array bisection algorithm
	5.7.1 Example

	5.8 array --- Efficient arrays of numeric values
	5.9 ConfigParser --- Configuration file parser
	5.9.1 ConfigParser Objects 

	5.10 fileinput --- Iterate over lines from multiple input streams
	5.11 xreadlines --- Efficient iteration over a file
	5.12 calendar --- General calendar-related functions
	5.13 cmd --- Support for line-oriented command interpreters
	5.13.1 Cmd Objects

	5.14 shlex --- Simple lexical analysis
	5.14.1 shlex Objects 


	6 Generic Operating System Services 
	6.1 os --- Miscellaneous OS interfaces
	6.1.1 Process Parameters 
	6.1.2 File Object Creation 
	6.1.3 File Descriptor Operations 
	6.1.4 Files and Directories 
	6.1.5 Process Management 
	6.1.6 Miscellaneous System Information 

	6.2 os.path --- Common pathname manipulations
	6.3 dircache --- Cached directory listings
	6.4 stat --- Interpreting stat() results
	6.5 statcache --- An optimization of os.stat()
	6.6 statvfs --- Constants used with os.statvfs()
	6.7 filecmp --- File and Directory Comparisons
	6.7.1 The dircmp class 

	6.8 popen2 --- Subprocesses with accessible I/O streams
	6.8.1 Popen3 and Popen4 Objects 

	6.9 time --- Time access and conversions
	6.10 sched --- Event scheduler
	6.10.1 Scheduler Objects 

	6.11 mutex --- Mutual exclusion support
	6.11.1 Mutex Objects 

	6.12 getpass --- Portable password input
	6.13 curses --- Terminal handling for character-cell displays
	6.13.1 Functions 
	6.13.2 Window Objects 
	6.13.3 Constants

	6.14 curses.textpad --- Text input widget for curses programs
	6.14.1 Textbox objects 

	6.15 curses.wrapper --- Terminal handler for curses programs
	6.16 curses.ascii --- Utilities for ASCII characters
	6.17 curses.panel --- A panel stack extension for curses.
	6.17.1 Functions 
	6.17.2 Panel Objects 

	6.18 getopt --- Parser for command line options
	6.19 tempfile --- Generate temporary file names
	6.20 errno --- Standard errno system symbols
	6.21 glob --- Unix style pathname pattern expansion
	6.22 fnmatch --- Unix filename pattern matching
	6.23 shutil --- High-level file operations
	6.23.1 Example 

	6.24 locale --- Internationalization services
	6.24.1 Background, details, hints, tips and caveats
	6.24.2 For extension writers and programs that embed Python 

	6.25 gettext --- Multilingual internationalization services
	6.25.1 GNU gettext API
	6.25.2 Class-based API
	The NullTranslations class
	The GNUTranslations class
	Solaris message catalog support
	The Catalog constructor

	6.25.3 Internationalizing your programs and modules
	Localizing your module
	Localizing your application
	Changing languages on the fly
	Deferred translations

	6.25.4 Acknowledgements


	7 Optional Operating System Services
	7.1 signal --- Set handlers for asynchronous events
	7.1.1 Example

	7.2 socket --- Low-level networking interface
	7.2.1 Socket Objects 
	7.2.2 Example 

	7.3 select --- Waiting for I/O completion
	7.3.1 Polling Objects 

	7.4 thread --- Multiple threads of control
	7.5 threading --- Higher-level threading interface
	7.5.1 Lock Objects 
	7.5.2 RLock Objects 
	7.5.3 Condition Objects 
	7.5.4 Semaphore Objects 
	7.5.5 Event Objects 
	7.5.6 Thread Objects 

	7.6 Queue --- A synchronized queue class
	7.6.1 Queue Objects

	7.7 mmap --- Memory-mapped file support
	7.8 anydbm --- Generic access to DBM-style databases
	7.9 dumbdbm --- Portable DBM implementation
	7.10 dbhash --- DBM-style interface to the BSD database library
	7.10.1 Database Objects 

	7.11 whichdb --- Guess which DBM module created a database
	7.12 bsddb --- Interface to Berkeley DB library
	7.12.1 Hash, BTree and Record Objects 

	7.13 zlib --- Compression compatible with gzip
	7.14 gzip --- Support for gzip files
	7.15 zipfile --- Work with ZIP archives
	7.15.1 ZipFile Objects 
	7.15.2 PyZipFile Objects 
	7.15.3 ZipInfo Objects 

	7.16 readline --- GNU readline interface
	7.16.1 Example 

	7.17 rlcompleter --- Completion function for GNU readline
	7.17.1 Completer Objects 


	8 Unix Specific Services
	8.1 posix --- The most common POSIX system calls
	8.1.1 Large File Support 
	8.1.2 Module Contents 

	8.2 pwd --- The password database
	8.3 grp --- The group database
	8.4 crypt --- Function to check Unix passwords
	8.5 dl --- Call C functions in shared objects
	8.5.1 Dl Objects 

	8.6 dbm --- Simple ``database'' interface
	8.7 gdbm --- GNU's reinterpretation of dbm
	8.8 termios --- POSIX style tty control
	8.8.1 Example

	8.9 TERMIOS --- Constants used with the termios module
	8.10 tty --- Terminal control functions
	8.11 pty --- Pseudo-terminal utilities
	8.12 fcntl --- The fcntl() and ioctl() system calls
	8.13 pipes --- Interface to shell pipelines
	8.13.1 Template Objects 

	8.14 posixfile --- File-like objects with locking support
	8.15 resource --- Resource usage information
	8.15.1 Resource Limits
	8.15.2 Resource Usage

	8.16 nis --- Interface to Sun's NIS (Yellow Pages)
	8.17 syslog --- Unix syslog library routines
	8.18 commands --- Utilities for running commands

	9 The Python Debugger
	9.1 Debugger Commands 
	9.2 How It Works

	10 The Python Profiler 
	10.1 Introduction to the profiler
	10.2 How Is This Profiler Different From The Old Profiler?
	10.3 Instant Users Manual 
	10.4 What Is Deterministic Profiling?
	10.5 Reference Manual
	10.5.1 The Stats Class 

	10.6 Limitations 
	10.7 Calibration 
	10.8 Extensions --- Deriving Better Profilers
	10.8.1 OldProfile Class 
	10.8.2 HotProfile Class 


	11 Internet Protocols and Support 
	11.1 webbrowser --- Convenient Web-browser controller
	11.1.1 Browser Controller Objects 

	11.2 cgi --- Common Gateway Interface support.
	11.2.1 Introduction
	11.2.2 Using the cgi module
	11.2.3 Old classes
	11.2.4 Functions
	11.2.5 Caring about security
	11.2.6 Installing your CGI script on a Unix system
	11.2.7 Testing your CGI script
	11.2.8 Debugging CGI scripts
	11.2.9 Common problems and solutions

	11.3 urllib --- Open arbitrary resources by URL
	11.3.1 URLopener Objects 
	11.3.2 Examples

	11.4 urllib2 --- extensible library for opening URLs
	11.4.1 Request Objects 
	11.4.2 OpenerDirector Objects 
	11.4.3 BaseHandler Objects 
	11.4.4 HTTPRedirectHandler Objects 
	11.4.5 ProxyHandler Objects 
	11.4.6 HTTPPasswordMgr Objects 
	11.4.7 AbstractBasicAuthHandler Objects 
	11.4.8 HTTPBasicAuthHandler Objects 
	11.4.9 ProxyBasicAuthHandler Objects 
	11.4.10 AbstractDigestAuthHandler Objects 
	11.4.11 HTTPDigestAuthHandler Objects 
	11.4.12 ProxyDigestAuthHandler Objects 
	11.4.13 HTTPHandler Objects 
	11.4.14 HTTPSHandler Objects 
	11.4.15 FileHandler Objects 
	11.4.16 FTPHandler Objects 
	11.4.17 CacheFTPHandler Objects 
	11.4.18 GopherHandler Objects 
	11.4.19 UnknownHandler Objects 

	11.5 httplib --- HTTP protocol client
	11.5.1 HTTP Objects
	11.5.2 Examples 

	11.6 ftplib --- FTP protocol client
	11.6.1 FTP Objects 

	11.7 gopherlib --- Gopher protocol client
	11.8 poplib --- POP3 protocol client
	11.8.1 POP3 Objects 
	11.8.2 POP3 Example 

	11.9 imaplib --- IMAP4 protocol client
	11.9.1 IMAP4 Objects 
	11.9.2 IMAP4 Example 

	11.10 nntplib --- NNTP protocol client
	11.10.1 NNTP Objects 

	11.11 smtplib --- SMTP protocol client
	11.11.1 SMTP Objects 
	11.11.2 SMTP Example 

	11.12 telnetlib --- Telnet client
	11.12.1 Telnet Objects 
	11.12.2 Telnet Example 

	11.13 urlparse --- Parse URLs into components
	11.14 SocketServer --- A framework for network servers
	11.15 BaseHTTPServer --- Basic HTTP server
	11.16 SimpleHTTPServer --- Simple HTTP request handler
	11.17 CGIHTTPServer --- CGI-capable HTTP request handler
	11.18 Cookie --- HTTP state management
	11.18.1 Cookie Objects 
	11.18.2 Morsel Objects 
	11.18.3 Example 

	11.19 asyncore --- Asynchronous socket handler
	11.19.1 Example basic HTTP client 


	12 Internet Data Handling 
	12.1 formatter --- Generic output formatting
	12.1.1 The Formatter Interface 
	12.1.2 Formatter Implementations 
	12.1.3 The Writer Interface 
	12.1.4 Writer Implementations 

	12.2 rfc822 --- Parse RFC 822 mail headers
	12.2.1 Message Objects 
	12.2.2 AddressList Objects 

	12.3 mimetools --- Tools for parsing MIME messages
	12.3.1 Additional Methods of Message Objects 

	12.4 MimeWriter --- Generic MIME file writer
	12.4.1 MimeWriter Objects 

	12.5 multifile --- Support for files containing distinct parts
	12.5.1 MultiFile Objects 
	12.5.2 MultiFile Example 

	12.6 binhex --- Encode and decode binhex4 files
	12.6.1 Notes 

	12.7 uu --- Encode and decode uuencode files
	12.8 binascii --- Convert between binary and ascii
	12.9 xdrlib --- Encode and decode XDR data
	12.9.1 Packer Objects 
	12.9.2 Unpacker Objects 
	12.9.3 Exceptions 

	12.10 mailcap --- Mailcap file handling.
	12.11 mimetypes --- Map filenames to MIME types
	12.12 base64 --- Encode and decode MIME base64 data
	12.13 quopri --- Encode and decode MIME quoted-printable data
	12.14 mailbox --- Read various mailbox formats
	12.14.1 Mailbox Objects 

	12.15 mhlib --- Access to MH mailboxes
	12.15.1 MH Objects 
	12.15.2 Folder Objects 
	12.15.3 Message Objects 

	12.16 mimify --- MIME processing of mail messages
	12.17 netrc --- netrc file processing
	12.17.1 netrc Objects 

	12.18 robotparser --- Parser for robots.txt

	13 Structured Markup Processing Tools 
	13.1 sgmllib --- Simple SGML parser
	13.2 htmllib --- A parser for HTML documents
	13.2.1 HTMLParser Objects 

	13.3 htmlentitydefs --- Definitions of HTML general entities
	13.4 xml.parsers.expat --- Fast XML parsing using Expat
	13.4.1 XMLParser Objects 
	13.4.2 ExpatError Exceptions 
	13.4.3 Example 
	13.4.4 Content Model Descriptions 
	13.4.5 Expat error constants 

	13.5 xml.dom --- The Document Object Model API
	13.5.1 Module Contents
	13.5.2 Objects in the DOM 
	DOMImplementation Objects 
	Node Objects 
	NodeList Objects 
	DocumentType Objects 
	Document Objects 
	Element Objects 
	Attr Objects 
	NamedNodeMap Objects 
	Comment Objects 
	Text and CDATASection Objects 
	ProcessingInstruction Objects 
	Exceptions 

	13.5.3 Conformance 
	Type Mapping 
	Accessor Methods 


	13.6 xml.dom.minidom --- Lightweight DOM implementation
	13.6.1 DOM objects 
	13.6.2 DOM Example 
	13.6.3 minidom and the DOM standard 

	13.7 xml.dom.pulldom --- Support for building partial DOM trees
	13.7.1 DOMEventStream Objects 

	13.8 xml.sax --- Support for SAX2 parsers
	13.8.1 SAXException Objects 

	13.9 xml.sax.handler --- Base classes for SAX handlers
	13.9.1 ContentHandler Objects 
	13.9.2 DTDHandler Objects 
	13.9.3 EntityResolver Objects 
	13.9.4 ErrorHandler Objects 

	13.10 xml.sax.saxutils --- SAX Utilities
	13.11 xml.sax.xmlreader --- Interface for XML parsers
	13.11.1 XMLReader Objects 
	13.11.2 IncrementalParser Objects 
	13.11.3 Locator Objects 
	13.11.4 InputSource Objects 
	13.11.5 AttributesImpl Objects 
	13.11.6 AttributesNSImpl Objects 

	13.12 xmllib --- A parser for XML documents
	13.12.1 XML Namespaces 


	14 Multimedia Services
	14.1 audioop --- Manipulate raw audio data
	14.2 imageop --- Manipulate raw image data
	14.3 aifc --- Read and write AIFF and AIFC files
	14.4 sunau --- Read and write Sun AU files
	14.4.1 AUprotect unhbox voidb@x kern .06emvbox {hrule width.55em}read Objects 
	14.4.2 AUprotect unhbox voidb@x kern .06emvbox {hrule width.55em}write Objects 

	14.5 wave --- Read and write WAV files
	14.5.1 Waveprotect unhbox voidb@x kern .06emvbox {hrule width.55em}read Objects 
	14.5.2 Waveprotect unhbox voidb@x kern .06emvbox {hrule width.55em}write Objects 

	14.6 chunk --- Read IFF chunked data
	14.7 colorsys --- Conversions between color systems
	14.8 rgbimg --- Read and write ``SGI RGB'' files
	14.9 imghdr --- Determine the type of an image
	14.10 sndhdr --- Determine type of sound file

	15 Cryptographic Services
	15.1 md5 --- MD5 message digest algorithm
	15.2 sha --- SHA message digest algorithm
	15.3 mpz --- GNU arbitrary magnitude integers
	15.4 rotor --- Enigma-like encryption and decryption

	16 Restricted Execution 
	16.1 rexec --- Restricted execution framework
	16.1.1 RExec Objects 
	16.1.2 Defining restricted environments 
	16.1.3 An example

	16.2 Bastion --- Restricting access to objects

	17 Python Language Services 
	17.1 parser --- Access Python parse trees
	17.1.1 Creating AST Objects 
	17.1.2 Converting AST Objects 
	17.1.3 Queries on AST Objects 
	17.1.4 Exceptions and Error Handling 
	17.1.5 AST Objects 
	17.1.6 Examples 
	Emulation of compile()
	Information Discovery


	17.2 symbol --- Constants used with Python parse trees
	17.3 token --- Constants used with Python parse trees
	17.4 keyword --- Testing for Python keywords
	17.5 tokenize --- Tokenizer for Python source
	17.6 tabnanny --- Detection of ambiguous indentation
	17.7 pyclbr --- Python class browser support
	17.7.1 Class Descriptor Objects 

	17.8 pyprotect unhbox voidb@x kern .06emvbox {hrule width.55em}compile --- Compile Python source files
	17.9 compileall --- Byte-compile Python libraries
	17.10 dis --- Disassembler for Python byte code
	17.10.1 Python Byte Code Instructions


	18 SGI IRIX Specific Services
	18.1 al --- Audio functions on the SGI
	18.1.1 Configuration Objects 
	18.1.2 Port Objects 

	18.2 AL --- Constants used with the al module
	18.3 cd --- CD-ROM access on SGI systems
	18.3.1 Player Objects
	18.3.2 Parser Objects

	18.4 fl --- FORMS library interface for GUI applications
	18.4.1 Functions Defined in Module fl
	18.4.2 Form Objects
	18.4.3 FORMS Objects

	18.5 FL --- Constants used with the fl module
	18.6 flp --- Functions for loading stored FORMS designs
	18.7 fm --- Font Manager interface
	18.8 gl --- Graphics Library interface
	18.9 DEVICE --- Constants used with the gl module
	18.10 GL --- Constants used with the gl module
	18.11 imgfile --- Support for SGI imglib files
	18.12 jpeg --- Read and write JPEG files

	19 SunOS Specific Services
	19.1 sunaudiodev --- Access to Sun audio hardware
	19.1.1 Audio Device Objects 

	19.2 SUNAUDIODEV --- Constants used with sunaudiodev

	20 MS Windows Specific Services
	20.1 msvcrt -- Useful routines from the MS VC++ runtime
	20.1.1 File Operations 
	20.1.2 Console I/O 
	20.1.3 Other Functions 

	20.2 protect unhbox voidb@x kern .06emvbox {hrule width.55em}winreg -- Windows registry access
	20.2.1 Registry Handle Objects 

	20.3 winsound --- Sound-playing interface for Windows

	A Undocumented Modules 
	A.1 Frameworks
	A.2 Miscellaneous useful utilities
	A.3 Platform specific modules
	A.4 Multimedia
	A.5 Obsolete 
	A.6 SGI-specific Extension modules

	B Reporting Bugs
	Module Index
	Index

