Python Library Reference
Release 2.2.2

Guido van Rossum
Fred L. Drake, Jr., editor

October 14, 2002

PythonLabs
Email: python-docs@python.org



Copyright (©) 2001 Python Software Foundation. All rights reserved.

Copyright (© 2000 BeOpen.com. All rights reserved.

Copyright (©) 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright (©) 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See the end of this document for complete license and permissions information.



Abstract

Python is an extensible, interpreted, object-oriented programming language. It supports a wide range
of applications, from simple text processing scripts to interactive Web browsers.

While the Python Reference Manual describes the exact syntax and semantics of the language, it does
not describe the standard library that is distributed with the language, and which greatly enhances its
immediate usability. This library contains built-in modules (written in C) that provide access to system
functionality such as file I/O that would otherwise be inaccessible to Python programmers, as well as
modules written in Python that provide standardized solutions for many problems that occur in everyday
programming. Some of these modules are explicitly designed to encourage and enhance the portability
of Python programs.

This library reference manual documents Python’s standard library, as well as many optional library
modules (which may or may not be available, depending on whether the underlying platform supports
them and on the configuration choices made at compile time). It also documents the standard types of the
language and its built-in functions and exceptions, many of which are not or incompletely documented
in the Reference Manual.

This manual assumes basic knowledge about the Python language. For an informal introduction to
Python, see the Python Tutorial; the Python Reference Manual remains the highest authority on syntactic
and semantic questions. Finally, the manual entitled Eztending and Embedding the Python Interpreter
describes how to add new extensions to Python and how to embed it in other applications.






CONTENTS

1 Introduction 1
2 Built-in Functions, Types, and Exceptions 3
2.1 Built-in Functions . . . . . . . .. L 3
2.2 Built-in Types . . . . . . o e e e e e 12
2.3 Built-in Exceptions . . . . ... oL 27
3 Python Runtime Services 31
3.1 sys — System-specific parameters and functions . . . . . . ... ..o 31
3.2 gc — Garbage Collector interface . . . . . . . .. ... 36
3.3 weakref — Weak references . . . . . .. . L L L 38
3.4 fpectl — Floating point exception control . . . . . . . ... ... oo 41
3.5 atexit — Exit handlers . . . . . .. .. 43
3.6 types — Names for all built-in types . . . . . . . ... . o oo 43
3.7 UserDict — Class wrapper for dictionary objects . . . . . .. .. ... ... ... .... 45
3.8 UserList — Class wrapper for list objects . . . . . .. .. ... .. .. ... 46
3.9 UserString — Class wrapper for string objects . . . . . . ... . ... ... 46
3.10 operator — Standard operators as functions. . . . ... ... Lo oL 47
3.11 imspect — Inspect live objects . . . . . . . . .. Lo 51
3.12 traceback — Print or retrieve a stack traceback . . . . . ... o000 55
3.13 linecache — Random access to text lines . . . . . .. ... ... .. .. ... 57
3.14 pickle — Python object serialization . . . . . .. ... .. ..o oL 57
3.15 cPickle — A faster pickle . . . . . . . . . ... 65
3.16 copy_reg — Register pickle support functions . . . . .. ... . ... Lo 66
3.17 shelve — Python object persistence . . . . . .. . .. ... .. . 66
3.18 copy — Shallow and deep copy operations . . . . . . . .. .. . ... 67
3.19 marshal — Internal Python object serialization . . . ... .. ... .. ... ...... 68
3.20 warnings — Warning control . . . . . ... oL oL o 69
3.21 imp — Access the import internals . . . . . . . . .. oL Lo 71
3.22 code — Interpreter base classes . . . . . . . ... L 74
3.23 codeop — Compile Python code . . . . . . .. ... 76
3.24 pprint — Data pretty printer . . . . ... ..o Lo 7
3.25 repr — Alternate repr () implementation . . .. ... ... ... ... 79
3.26 new — Creation of runtime internal objects . . . . . . . . . ... L o oL 80
3.27 site — Site-specific configuration hook . . . . . . ... oo o000 81
3.28 user — User-specific configuration hook . . . . . ... .. ... 0oL 82
3.29 __builtin__ — Built-in functions . . . . . .. ... oo o 82
3.30 __main__ — Top-level script environment . . . . . .. .. . Lo oo 82
4 String Services 85
4.1  string — Common string operations . . . . . . . . . . ... e 85
4.2 re — Regular expression operations . . . . . .. ... L Lo 88
4.3 struct — Interpret strings as packed binary data . . . . . . ... ... 97




4.4
4.5
4.6
4.7
4.8
4.9

difflib — Helpers for computing deltas . . . . . . . . . ... ... ... ... ......
fpformat — Floating point conversions . . . . . . ... ... . oL 0oL
StringI0 — Read and write strings as files . . . . .. .. ... o oL
cStringI0 — Faster version of StringI0 . . . . . . . . . . . .. . oo
codecs — Codec registry and base classes . . . . . . . ... o o
unicodedata — Unicode Database . . . ... .. ... .. ... . .. ..

Miscellaneous Services

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15

pydoc — Documentation generator and online help system . . . .. .. .. ... .. ...
doctest — Test docstrings represent reality . . . . . . . .. ... Lo oL
unittest — Unit testing framework . . . . . . . . . ...
math — Mathematical functions . . . . . . . . . . . ... .. .. e
cmath — Mathematical functions for complex numbers . . . . . ... .. ... ... ...
random — Generate pseudo-random numbers . . . . .. ..o
whrandom — Pseudo-random number generator . . . . . . . . . .. ... L.
bisect — Array bisection algorithm . . . . . . . . ... ...
array — BEfficient arrays of numeric values . . . . . .. ..o oL
ConfigParser — Configuration file parser . . . . . .. .. ... ... ... ... .....
fileinput — Iterate over lines from multiple input streams . . . . .. ... .. .. ...
xreadlines — Efficient iteration over afile . . . . . . .. .. ... oL
calendar — General calendar-related functions . . . . . . ... ... Lo
cmd — Support for line-oriented command interpreters . . . . . .. ... ... ... ...
shlex — Simple lexical analysis . . . . . . . . . ... L

Generic Operating System Services

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25

os — Miscellaneous operating system interfaces . . . . . . ... ... ... ... ... ..
os.path — Common pathname manipulations . . . . . . .. .. .. ... ... .. ....
dircache — Cached directory listings . . . . . . . . .. .. .. o oL
stat — Interpreting stat() results . . . . . . . ... Lo
statcache — An optimization of os.stat() . . . . . . . . ... ... ...
statvfs — Constants used with os.statvfs() . . .. ... ... ... ... ... ...,
filecmp — File and Directory Comparisons . . . . . . ... ... ... ... ...
popen2 — Subprocesses with accessible I/O streams . . . . . ... ... ... ...
time — Time access and conversions . . . . . .. . . . . .o e e
sched — Event scheduler . . . . . . .. ...
mutex — Mutual exclusion support . . . . . . . .. Lo
getpass — Portable password input . . . . . ..o oo oo
curses — Terminal handling for character-cell displays . . . . . . .. .. ... ... ...
curses.textpad — Text input widget for curses programs . . . . . . ... ... ... ..
curses.wrapper — Terminal handler for curses programs. . . . . . . . .. .. ... ...
curses.ascii — Utilities for ASCII characters . . . . . ... ... ... ... ......
curses.panel — A panel stack extension for curses. . . . ... ... L.
getopt — Parser for command line options . . . . . .. ..o oL
tempfile — Generate temporary filenames . . . . .. .. ... oo
errno — Standard errno system symbols . . . . ... L oL
glob — UNIX style pathname pattern expansion . . . . . . .. ... .. .. ... .....
fnmatch — UNIX filename pattern matching . . . . . . ... .. .. ... L.
shutil — High-level file operations . . . . . . . . ... ... o
locale — Internationalization services . . . . . . . . . . .. .. .. .
gettext — Multilingual internationalization services . . . . . . .. .. ... ... ...

Optional Operating System Services

7.1
7.2
7.3
7.4
7.5
7.6
7.7

signal — Set handlers for asynchronous events . . . . . ... ... ... .. L.
socket — Low-level networking interface . . . . . . . . . ... ... ... ... ... ...
select — Waiting for I/O completion . . . . . . .. ... .. Lo
thread — Multiple threads of control . . . . . . . . . .. .. ... ... ... .......
threading — Higher-level threading interface . . . . ... ... ... ... ... .. ...
Queue — A synchronized queue class . . . . . .. ... . e
mmap — Memory-mapped file support . . . . ... oo

113
113
114
119
128
130
131
134
135
136
138
141
142
143
144
145




7.8 anydbm — Generic access to DBM-style databases . . . . . ... ... ... ... .. 240

7.9 dumbdbm — Portable DBM implementation . . . . . . ... ... ... 0L, 241
7.10 dbhash — DBM-style interface to the BSD database library . . . . ... ... ... ... 241
7.11 whichdb — Guess which DBM module created a database . . . .. ... .. ... .... 242
7.12 bsddb — Interface to Berkeley DB library . . . . . ... .. .. .. 0. 243
7.13 zlib — Compression compatible with gzip . . . . . . .. ... ... ... .. L. 244
7.14 gzip — Support for gzip files . . . . . ..o 246
7.15 zipfile — Work with ZIP archives . . . . . . ... ... . o o 247
7.16 readline — GNU readline interface . . . . . . . . . ... ... . . 250
7.17 rlcompleter — Completion function for GNU readline . . . . ... ... ... ... ... 251
8 Unix Specific Services 253
8.1 posix — The most common POSIX system calls . . . . ... ... ... ... ... .... 253
8.2 pwd — The password database . . . . . . .. ... . Lo 254
8.3 grp — The group database . . . . . . .. . ... L L 255
8.4 crypt — Function to check UNIX passwords . . . . .. ... ... ... .......... 255
8.5 dl — Call C functions in shared objects . . . . . . . ... ... Lo oL 256
8.6 dbm — Simple “database” interface . . . . . . ... Lo oL o 257
8.7 gdbm — GNU’s reinterpretation of dbm . . . . . .. ... o000 258
8.8 termios — POSIX style tty control . . . . . . . .. ... 259
8.9 TERMIOS — Constants used with the termios module . . . . . . . ... ... ... .... 260
8.10 tty — Terminal control functions . . . . . .. . . ... L o 260
8.11 pty — Pseudo-terminal utilities . . . . . . . ... . oL o 260
8.12 fcntl — The fentl() and ioctl() systemcalls. . . . . . ... .. ... L. 261
8.13 pipes — Interface to shell pipelines . . . . . . .. ... . o 262
8.14 posixfile — File-like objects with locking support . . . . .. . .. .. ... ... ... 263
8.15 resource — Resource usage information . . . . .. ... L L0000 265
8.16 nis — Interface to Sun’s NIS (Yellow Pages) . . . . . . . ... ... ... ... ... 267
8.17 syslog — UNIX syslog library routines . . . . . . . . ... ... ... . ... 268
8.18 commands — Utilities for running commands . . . . . . .. ... L oo 268
9 The Python Debugger 271
9.1 Debugger Commands . . . . . . . . .. L e 272
9.2 How It Works . . . . . . . e 274
10 The Python Profiler 275
10.1 Imtroduction to the profiler . . . . . . . . . . .. L 275
10.2 How Is This Profiler Different From The Old Profiler? . . . . . . .. ... ... ... ... 275
10.3 Imstant Users Manual . . . . . . .. .. . L L 276
10.4 What Is Deterministic Profiling? . . . . . . . . .. .. .. o 277
10.5 Reference Manual . . . . . . . . .. L 278
10.6 Limitations . . . . . . . e 280
10.7 Calibration . . . . . . . oL e 281
10.8 Extensions — Deriving Better Profilers . . . . . . . .. ... .. o oo 282
11 Internet Protocols and Support 283
11.1 webbrowser — Convenient Web-browser controller . . . . . . ... ... ... ... .... 283
11.2 cgi — Common Gateway Interface support. . . . . . ... . ... ... ... 285
11.3 cgitb — Traceback manager for CGL scripts . . . . . . . . ... ... ..., 291
11.4 urllib — Open arbitrary resources by URL . . . . . . ... ... .. . ... 292
11.5 urllib2 — extensible library for opening URLs . . . . . .. ... ... ... ... .... 296
11.6 httplib — HTTP protocol client . . . . . ... ... ... .. ... ... 302
11.7 ftplib — FTP protocol client . . . . . . . ... ... ... L o 305
11.8 gopherlib — Gopher protocol client . . . . . .. .. ... L oo 308
11.9 poplib — POP3 protocol client . . . . . . . . ... L 308
11.10 imaplib — IMAP4 protocol client . . . . . . . . . ... L 310
11.11 nntplib — NNTP protocol client . . . . . . .. ... ... .. . . ... 313
11.12 smtplib — SMTP protocol client . . . . . . .. ... ... ... . 316

11.13 telnetlib — Telnet client . . . . . . . . . . . . e e e 320




11.14 urlparse — Parse URLs into components . . . . . .. . .. .. ... ... ... ...
11.15 SocketServer — A framework for network servers . . . . . . . ... ... L.
11.16 BaseHTTPServer — Basic HTTP server . . . . . . . . . . .. . . . ...
11.17 SimpleHTTPServer — Simple HTTP request handler . . . . . .. .. .. ... ... ...
11.18 CGIHTTPServer — CGl-capable HTTP request handler . . . . . .. ... ... ... ...
11.19 Cookie — HTTP state management . . . . . . . . . .. . .. . .. .. ... ...
11.20 xmlrpclib — XML-RPC client access . . . . . . . . . ... ... ... .
11.21 SimpleXMLRPCServer — Basic XML-RPC server . . . . . . . ... .. ... ... ....
11.22 asyncore — Asynchronous socket handler . . . . .. ... ... ... . o 0oL,

12 Internet Data Handling

12.1 formatter — Generic output formatting . . . . . .. . ... oo
12.2 email — An email and MIME handling package . . . . . . . ... ... ... ... ....
12.3 mailcap — Mailcap file handling. . . . . . . . .. .. .. L
12.4 mailbox — Read various mailbox formats . . . . . .. ... ... 0oL
12.5 mhlib — Access to MH mailboxes . . . . . . . . . . . . . ...
12.6 mimetools — Tools for parsing MIME messages . . . . . . . . ... ... .. .......
12.7 mimetypes — Map filenames to MIME types . . . . . . ... ... . L.
12.8 MimeWriter — Generic MIME file writer . . . . . . . .. .. ... .. ..
12.9 mimify — MIME processing of mail messages . . . . . .. . ... .. ... ... ...,
12.10 multifile — Support for files containing distinct parts . . . . . . . . . .. .. ... ...
12.11 r£c822 — Parse RFC 2822 mail headers . . . . . . . . .. . ... ... ... ... ....
12.12 base64 — Encode and decode MIME base64 data . . . . . . ... ... ... ... ....
12.13 binascii — Convert between binary and ASCIT . . . . . . . .. ... .. .. ... ...,
12.14 binhex — Encode and decode binhex4 files . . . . . . . ... ... oL oL
12.15 quopri — Encode and decode MIME quoted-printable data . . . . . .. ... ... ...
12.16 uu — Encode and decode uuencode files . . . . . . . . . ... ..o
12.17 xdrlib — Encode and decode XDR data . . . . . . . .. .. .. ... ... ...
12.18 netrc — netrc file processing . . . . . . ...
12.19 robotparser — Parser for robots.txt . . . . .. ... L o oo oo

13 Structured Markup Processing Tools

13.1 HTMLParser — Simple HTML and XHTML parser . . . . . . . . . . ... .. ... ....
13.2 sgmllib — Simple SGML parser . . . . . . . . . ... L
13.3 htmllib — A parser for HTML documents . . . . . . . ... ... ... ... ....
13.4 htmlentitydefs — Definitions of HTML general entities . . . . . . ... ... ... ...
13.5 xml.parsers.expat — Fast XML parsing using Expat . . . . . . . ... ... ... ...
13.6 xml.dom — The Document Object Model APT . . . . . ... ... .. ... ... .....
13.7 xml.dom.minidom — Lightweight DOM implementation . . . . . . .. .. ... ... ...
13.8 zml.dom.pulldom — Support for building partial DOM trees . . . . . . ... .. .. ...
13.9 zml.sax — Support for SAX2 parsers . . . . . . ... Lo
13.10 xml.sax.handler — Base classes for SAX handlers . . . . . ... ... ... ... ....
13.11 xml.sax.saxutils — SAX Utilities . . . . . . . . . . . L
13.12 xml.sax.xmlreader — Interface for XML parsers . . . . . . .. ... .. .. ... ....
13.13 xm11ib — A parser for XML documents . . . . . . . . ... L Lo

14 Multimedia Services

14.1 audioop — Manipulate raw audio data . . . . . .. . ... Lo Lo
14.2 imageop — Manipulate raw image data . . . . . .. ... oL
14.3 aifc — Read and write AIFF and ATFC files. . . . . . . . . ... ... ... ...
14.4 sunau — Read and write Sun AU files . . . . . . . .. ... oL o o
14.5 wave — Read and write WAV files . . . . . . . . ... L
14.6 chunk — Read IFF chunked data . . . . .. ... ... ... ... ... ... ...
14.7 colorsys — Conversions between color systems . . . . . . .. .. ... ... ...
14.8 rgbimg — Read and write “SGI RGB” files . . . . . . . . .. ... ... ...
14.9 imghdr — Determine the type of an image . . . . . . . ... ... ... ...
14.10 sndhdr — Determine type of sound file . . . . . . ... ... oL oL oL

15 Cryptographic Services

339
339
343
369
369
371
373
374
376
376
378
379
383
384
385
386
386
387
390
390

393
393
395
397
398
398
405
414
418
419
420
424
425
429

433
433
436
437
439
441
443
444
445
445
446

447




15.1 hmac — Keyed-Hashing for Message Authentication . . . . . . ... ... ... ... ... 447

15.2 md5 — MD5 message digest algorithm . . . . . . .. ... oo 448
15.3 sha — SHA message digest algorithm . . . . . . ... ... ... ... ... ... 448
15.4 mpz — GNU arbitrary magnitude integers. . . . . . . . ... ... L oL 449
15.5 rotor — Enigma-like encryption and decryption . . . . . .. ... 450
16 Graphical User Interfaces with Tk 453
16.1 Tkinter — Python interface to Tcl/Tk . . . . . . .. ... o o oL 453
16.2 Tix — Extension widgets for Tk . . . . . . . . .. o 463
16.3 ScrolledText — Scrolled Text Widget . . . . . . . . ... . .. . ... 468
16.4 turtle — Turtle graphics for Tk . . . . . . . ... 468
16.5 Idle . . . . o o e 470
16.6 Other Graphical User Interface Packages . . . . . ... ... .. ... ... ... ... 473
17 Restricted Execution 475
17.1 rexec — Restricted execution framework . . . . . . . . ... 0oL 476
17.2 Bastion — Restricting access to objects . . . . . .. ... L oL oo 479
18 Python Language Services 481
18.1 parser — Access Python parse trees . . . . . . . . . ... o 481
18.2 symbol — Constants used with Python parse trees. . . . . . . . . .. .. ... ... ... 489
18.3 token — Constants used with Python parse trees . . . . . . ... ... ... ... .... 490
18.4 keyword — Testing for Python keywords . . . . . .. . ... ... ... ... 490
18.5 tokenize — Tokenizer for Python source . . . . . . . . ... ... . oL 490
18.6 tabnanny — Detection of ambiguous indentation . . . . . . ... ... 0oL 491
18.7 pyclbr — Python class browser support . . . . . . . .. ... o 492
18.8 py_compile — Compile Python source files . . . . . ... ... ... ... ... 492
18.9 compileall — Byte-compile Python libraries . . . . .. .. ... ... ... ... ... 493
18.10 dis — Disassembler for Python byte code . . . . . . . ... ... 0oL 493
18.11 distutils — Building and installing Python modules . . . . . . .. ... ... ... ... 500
19 Python compiler package 501
19.1 The basic interface . . . . . . . . . . L 501
19.2 Limitations . . . . . . . . Lo e e e 502
19.3 Python Abstract Syntax . . . . . . . . .. 502
19.4 Using Visitors to Walk ASTs . . . . . . . . . .o o 506
19.5 Bytecode Generation . . . . . . . . . Lo 507
20 SGI IRIX Specific Services 509
20.1 al — Audio functions on the SGI . . . . . . .. . .. Lo 509
20.2 AL — Constants used with the al module . . . . . . .. .. ... ... . L. 511
20.3 cd — CD-ROM access on SGI systems . . . . . .. ... . 0 e 511
20.4 £1 — FORMS library for graphical user interfaces . . . . . . . . . ... ... ... .... 514
20.5 FL — Constants used with the f1 module . . . . . . . . .. ... ... .. ... 519
20.6 flp — Functions for loading stored FORMS designs . . . . . . .. ... ... ... .... 519
20.7 fm — Font Manager interface . . . . . . . ... L 519
20.8 gl — Graphics Library interface . . . . . . . . ..o oL 520
20.9 DEVICE — Constants used with the gl module . . . . . .. ... ... ... ... ..... 522
20.10 GL — Constants used with the gl module . . . . . .. ... ... ... 000 522
20.11 imgfile — Support for SGI imglib files . . . . . . . .. ... oo oo 522
20.12 jpeg — Read and write JPEG files . . . . . . .. ... oo o 523
21 SunOS Specific Services 525
21.1 sunaudiodev — Access to Sun audio hardware . . . . . .. ... .00 525
21.2 SUNAUDIODEV — Constants used with sunaudiodev . . . . .. .. ... ... ... .... 526
22 MS Windows Specific Services 527
22.1 msvcrt — Useful routines from the MS VC++ runtime . . . . . . . .. .. ... ... .. 527
22.2 _winreg — Windows registry access . . . . . . .. ... L o e 528




22.3 winsound — Sound-playing interface for Windows . . . . . . . . .. ... ... ... ...
Undocumented Modules

A1 Frameworks . . . ..
A.2  Miscellaneous useful utilities . . . . . . . ... o o
A.3 Platform specific modules . . . . . . ...
A4 Multimedia . . . . . . . e e e e
A5 Obsolete . . . . . . e
A.6 SGIl-specific Extension modules . . . . . . . . ... Lo

B Reporting Bugs

History and License

C.1 History of the software . . . . . . . . . .
C.2  Terms and conditions for accessing or otherwise using Python . . . . ... .. ... ...

Module Index

Index

535
535
535
535
535
536
037

539

541
541
541

545

549

vi



CHAPTER
ONE

Introduction

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as
numbers and lists. For these types, the Python language core defines the form of literals and places some
constraints on their semantics, but does not fully define the semantics. (On the other hand, the language
core does define syntactic properties like the spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python
code without the need of an import statement. Some of these are defined by the core language, but
many are not essential for the core semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect
this collection. Some modules are written in C and built in to the Python interpreter; others are written
in Python and imported in source form. Some modules provide interfaces that are highly specific to
Python, like printing a stack trace; some provide interfaces that are specific to particular operating
systems, such as access to specific hardware; others provide interfaces that are specific to a particular
application domain, like the World Wide Web. Some modules are available in all versions and ports of
Python; others are only available when the underlying system supports or requires them; yet others are
available only when a particular configuration option was chosen at the time when Python was compiled
and installed.

This manual is organized “from the inside out:” it first describes the built-in data types, then the built-in
functions and exceptions, and finally the modules, grouped in chapters of related modules. The ordering
of the chapters as well as the ordering of the modules within each chapter is roughly from most relevant
to least important.

This means that if you start reading this manual from the start, and skip to the next chapter when
you get bored, you will get a reasonable overview of the available modules and application areas that
are supported by the Python library. Of course, you don’t have to read it like a novel — you can also
browse the table of contents (in front of the manual), or look for a specific function, module or term in
the index (in the back). And finally, if you enjoy learning about random subjects, you choose a random
page number (see module random) and read a section or two. Regardless of the order in which you read
the sections of this manual, it helps to start with chapter 2, “Built-in Types, Exceptions and Functions,”
as the remainder of the manual assumes familiarity with this material.

Let the show begin!







CHAPTER
TWO

Built-in Functions, Types, and Exceptions

Names for built-in exceptions and functions are found in a separate symbol table. This table is searched
last when the interpreter looks up the meaning of a name, so local and global user-defined names can
override built-in names. Built-in types are described together here for easy reference.!

The tables in this chapter document the priorities of operators by listing them in order of ascending
priority (within a table) and grouping operators that have the same priority in the same box. Binary
operators of the same priority group from left to right. (Unary operators group from right to left, but
there you have no real choice.) See chapter 5 of the Python Reference Manual for the complete picture
on operator priorities.

2.1 Built-in Functions

The Python interpreter has a number of functions built into it that are always available. They are listed
here in alphabetical order.

__import__(name [, globals[, locals[, fromlist] ] ])
This function is invoked by the import statement. It mainly exists so that you can replace it with
another function that has a compatible interface, in order to change the semantics of the import
statement. For examples of why and how you would do this, see the standard library modules
ihooks and rexec. See also the built-in module imp, which defines some useful operations out of
which you can build your own __import__() function.

For example, the statement ‘import spam’ results in the following call: __import__(’spam’,
globals(), locals(), [1); the statement ‘from spam.ham import eggs’ results in
‘__import__(’spam.ham’, globals(), locals(), [’eggs’])’. Note that even though

locals() and [’eggs’] are passed in as arguments, the __import__() function does not set
the local variable named eggs; this is done by subsequent code that is generated for the import
statement. (In fact, the standard implementation does not use its locals argument at all, and uses
its globals only to determine the package context of the import statement.)

When the name variable is of the form package.module, normally, the top-level package (the
name up till the first dot) is returned, not the module named by name. However, when a non-
empty fromlist argument is given, the module named by name is returned. This is done for
compatibility with the bytecode generated for the different kinds of import statement; when using
‘import spam.ham.eggs’, the top-level package spam must be placed in the importing namespace,
but when using ‘from spam.ham import eggs’, the spam.ham subpackage must be used to find the
eggs variable. As a workaround for this behavior, use getattr () to extract the desired components.
For example, you could define the following helper:

import string

def my_import (name) :

1 Most descriptions sorely lack explanations of the exceptions that may be raised — this will be fixed in a future version
of this manual.




mod = __import__(name)
components = string.split(name, ’.’)
for comp in components[1:]:
mod = getattr(mod, comp)
return mod

abs(z)
Return the absolute value of a number. The argument may be a plain or long integer or a floating
point number. If the argument is a complex number, its magnitude is returned.

apply (function, args [, keywords])

The function argument must be a callable object (a user-defined or built-in function or method,
or a class object) and the args argument must be a sequence. The function is called with args as
the argument list; the number of arguments is the length of the tuple. If the optional keywords
argument is present, it must be a dictionary whose keys are strings. It specifies keyword arguments
to be added to the end of the the argument list. Calling apply () is different from just calling
function Cargs), since in that case there is always exactly one argument. The use of apply() is
equivalent to function (xargs, **keywords). Use of apply() is not necessary since the “extended
call syntax,” as used in the last example, is completely equivalent.

buffer(object[, offset [, size] ])
The object argument must be an object that supports the buffer call interface (such as strings,
arrays, and buffers). A new buffer object will be created which references the object argument.
The buffer object will be a slice from the beginning of object (or from the specified offset). The
slice will extend to the end of object (or will have a length given by the size argument).

callable(object)
Return true if the object argument appears callable, false if not. If this returns true, it is still
possible that a call fails, but if it is false, calling object will never succeed. Note that classes
are callable (calling a class returns a new instance); class instances are callable if they have a
__call__ () method.

chr (¢)
Return a string of one character whose ASCII code is the integer . For example, chr(97) returns
the string ’a’. This is the inverse of ord(). The argument must be in the range [0..255], inclusive;
ValueError will be raised if 7 is outside that range.

cmp (z, y)
Compare the two objects x and y and return an integer according to the outcome. The return
value is negative if z < y, zero if z == y and strictly positive if z > y.

coerce(z, y)
Return a tuple consisting of the two numeric arguments converted to a common type, using the
same rules as used by arithmetic operations.

compile(string, filename, kind[, ﬂags[, dontfinherit] ])

Compile the string into a code object. Code objects can be executed by an exec statement or
evaluated by a call to eval(). The filename argument should give the file from which the code
was read; pass some recognizable value if it wasn’t read from a file (’<string>’ is commonly
used). The kind argument specifies what kind of code must be compiled; it can be ’exec’ if string
consists of a sequence of statements, ’eval’ if it consists of a single expression, or ’single’ if it
consists of a single interactive statement (in the latter case, expression statements that evaluate to
something else than None will printed).

When compiling multi-line statements, two caveats apply: line endings must be represented by a
single newline character (*\n’), and the input must be terminated by at least one newline character.
If line endings are represented by ’\r\n’, use the string replace() method to change them into
\n’.

The optional arguments flags and dont_inherit (which are new in Python 2.2) control which future
statements (see PEP 236) affect the compilation of string. If neither is present (or both are zero) the
code is compiled with those future statements that are in effect in the code that is calling compile. If
the flags argument is given and dont_inherit is not (or is zero) then the future statements specified
by the flags argument are used in addition to those that would be used anyway. If dont_inherit is

4 Chapter 2. Built-in Functions, Types, and Exceptions



a non-zero integer then the flags argument is it — the future statements in effect around the call to
compile are ignored.

Future statemants are specified by bits which can be bitwise or-ed together to specify multiple
statements. The bitfield required to specify a given feature can be found as the compiler_ flag
attribute on the _Feature instance in the __future__ module.

complex(real[, z'mag])
Create a complex number with the value real + imag*j or convert a string or number to a complex
number. If the first parameter is a string, it will be interpreted as a complex number and the
function must be called without a second parameter. The second parameter can never be a string.
Each argument may be any numeric type (including complex). If imag is omitted, it defaults to
zero and the function serves as a numeric conversion function like int (), long() and float().

delattr (object, name)
This is a relative of setattr(). The arguments are an object and a string. The string must be
the name of one of the object’s attributes. The function deletes the named attribute, provided the
object allows it. For example, delattr(z, ’foobar’) is equivalent to del x.foobar.

dict( [mapping—or—sequence ] )

Return a new dictionary initialized from the optional argument. If an argument is not specified,
return a new empty dictionary. If the argument is a mapping object, return a dictionary mapping
the same keys to the same values as does the mapping object. Else the argument must be a
sequence, a container that supports iteration, or an iterator object. The elements of the argument
must each also be of one of those kinds, and each must in turn contain exactly two objects. The
first is used as a key in the new dictionary, and the second as the key’s value. If a given key is seen
more than once, the last value associated with it is retained in the new dictionary. For example,
these all return a dictionary equal to {1: 2, 2: 3}

edict({1: 2, 2: 3}

edict({1: 2, 2: 3}.items())
edict({1: 2, 2: 3}.iteritems())
edict(zip((1, 2), (2, 3)))
edict([[2, 3], [1, 211)
edict([(i-1, i) for i in (2, 3)])

New in version 2.2.

dir([object])

Without arguments, return the list of names in the current local symbol table. With an argument,
attempts to return a list of valid attributes for that object. This information is gleaned from
the object’s __dict__ attribute, if defined, and from the class or type object. The list is not
necessarily complete. If the object is a module object, the list contains the names of the module’s
attributes. If the object is a type or class object, the list contains the names of its attributes, and
recursively of the attributes of its bases. Otherwise, the list contains the object’s attributes’ names,
the names of its class’s attributes, and recursively of the attributes of its class’s base classes. The
resulting list is sorted alphabetically. For example:

>>> import struct

>>> dir()

[’__builtins__’, ’__doc__’, ’__name__’, ’struct’]

>>> dir(struct)

[’__doc__’, ’__name__’, ’calcsize’, ’error’, ’pack’, ’unpack’]

Note: Because dir() is supplied primarily as a convenience for use at an interactive prompt, it
tries to supply an interesting set of names more than it tries to supply a rigorously or consistently
defined set of names, and its detailed behavior may change across releases.

divmod(a, b)
Take two numbers as arguments and return a pair of numbers consisting of their quotient and

2.1. Built-in Functions 5



remainder when using long division. With mixed operand types, the rules for binary arithmetic
operators apply. For plain and long integers, the result is the same as (a / b, a % b). For
floating point numbers the result is (¢, a % b), where ¢ is usually math.floor(a / b) but may
be 1 less than that. In any case ¢ * b + a % b is very close to a, if a % b is non-zero it has the
same sign as b, and 0 <= abs(a % b) < abs(b).

Changed in version 2.3: Using divmod () with complex numbers is deprecated.

eval(e:rpression[, globals[, locals] ])
The arguments are a string and two optional dictionaries. The expression argument is parsed and
evaluated as a Python expression (technically speaking, a condition list) using the globals and locals
dictionaries as global and local name space. If the locals dictionary is omitted it defaults to the
globals dictionary. If both dictionaries are omitted, the expression is executed in the environment
where eval is called. The return value is the result of the evaluated expression. Syntax errors are
reported as exceptions. Example:

>>> x =1
>>> print eval(’x+1’)
2

This function can also be used to execute arbitrary code objects (such as those created by
compile()). In this case pass a code object instead of a string. The code object must have
been compiled passing ’eval’ as the kind argument.

Hints: dynamic execution of statements is supported by the exec statement. Execution of state-
ments from a file is supported by the execfile () function. The globals() and locals() functions
returns the current global and local dictionary, respectively, which may be useful to pass around
for use by eval() or execfile().

execfile(ﬁle[, globals[, locals] ])
This function is similar to the exec statement, but parses a file instead of a string. It is different
from the import statement in that it does not use the module administration — it reads the file
unconditionally and does not create a new module.?

The arguments are a file name and two optional dictionaries. The file is parsed and evaluated as a
sequence of Python statements (similarly to a module) using the globals and locals dictionaries as
global and local namespace. If the locals dictionary is omitted it defaults to the globals dictionary.
If both dictionaries are omitted, the expression is executed in the environment where execfile ()
is called. The return value is None.

Warning: The default locals act as described for function locals() below: modifications to the
default locals dictionary should not be attempted. Pass an explicit locals dictionary if you need to
see effects of the code on locals after function execfile() returns. execfile() cannot be used
reliably to modify a function’s locals.

file(filename [, mode[, bufsize] ])
Return a new file object (described earlier under Built-in Types). The first two arguments are the
same as for stdio’s fopen(): filename is the file name to be opened, mode indicates how the file
is to be opened: ’r’ for reading, ’w’ for writing (truncating an existing file), and ’a’ opens it
for appending (which on some UNIX systems means that all writes append to the end of the file,
regardless of the current seek position).

Modes ’r+’, *w+’ and ’a+’ open the file for updating (note that *w+’ truncates the file). Append
’b’ to the mode to open the file in binary mode, on systems that differentiate between binary and
text files (else it is ignored). If the file cannot be opened, I0Error is raised.

If mode is omitted, it defaults to >r’. When opening a binary file, you should append ’b’ to the
mode value for improved portability. (It’s useful even on systems which don’t treat binary and text
files differently, where it serves as documentation.) The optional bufsize argument specifies the
file’s desired buffer size: 0 means unbuffered, 1 means line buffered, any other positive value means
use a buffer of (approximately) that size. A negative bufsize means to use the system default,

2Tt is used relatively rarely so does not warrant being made into a statement.

6 Chapter 2. Built-in Functions, Types, and Exceptions



which is usually line buffered for for tty devices and fully buffered for other files. If omitted, the
system default is used.?

The file() constructor is new in Python 2.2. The previous spelling, open(), is retained for
compatibility, and is an alias for file().

filter (function, list)
Construct a list from those elements of list for which function returns true. list may be either
a sequence, a container which supports iteration, or an iterator, If list is a string or a tuple, the
result also has that type; otherwise it is always a list. If function is None, the identity function is
assumed, that is, all elements of list that are false (zero or empty) are removed.

float(z)
Convert a string or a number to floating point. If the argument is a string, it must contain a
possibly signed decimal or floating point number, possibly embedded in whitespace; this behaves
identical to string.atof (z). Otherwise, the argument may be a plain or long integer or a floating
point number, and a floating point number with the same value (within Python’s floating point
precision) is returned.

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the
underlying C library. The specific set of strings accepted which cause these values to be returned
depends entirely on the C library and is known to vary.

getattr (object, name[, default])
Return the value of the named attributed of object. name must be a string. If the string is the
name of one of the object’s attributes, the result is the value of that attribute. For example,
getattr(x, ’foobar’) is equivalent to x.foobar. If the named attribute does not exist, default
is returned if provided, otherwise AttributeError is raised.

globals()
Return a dictionary representing the current global symbol table. This is always the dictionary of
the current module (inside a function or method, this is the module where it is defined, not the
module from which it is called).

hasattr(object, name)
The arguments are an object and a string. The result is 1 if the string is the name of one of the
object’s attributes, 0 if not. (This is implemented by calling getattr (object, name) and seeing
whether it raises an exception or not.)

hash (object)
Return the hash value of the object (if it has one). Hash values are integers. They are used to
quickly compare dictionary keys during a dictionary lookup. Numeric values that compare equal
have the same hash value (even if they are of different types, as is the case for 1 and 1.0).

help( [object])
Invoke the built-in help system. (This function is intended for interactive use.) If no argument is
given, the interactive help system starts on the interpreter console. If the argument is a string, then
the string is looked up as the name of a module, function, class, method, keyword, or documentation
topic, and a help page is printed on the console. If the argument is any other kind of object, a help
page on the object is generated. New in version 2.2.

hex(z)
Convert an integer number (of any size) to a hexadecimal string. The result is a valid Python
expression. Note: this always yields an unsigned literal. For example, on a 32-bit machine,
hex(-1) yields *0xffffffff’. When evaluated on a machine with the same word size, this literal
is evaluated as -1; at a different word size, it may turn up as a large positive number or raise an
OverflowError exception.

id (object)
Return the ‘identity’ of an object. This is an integer (or long integer) which is guaranteed to be
unique and constant for this object during its lifetime. Two objects whose lifetimes are disjunct

3Specifying a buffer size currently has no effect on systems that don’t have setvbuf (). The interface to specify the
buffer size is not done using a method that calls setvbuf (), because that may dump core when called after any I/O has
been performed, and there’s no reliable way to determine whether this is the case.

2.1. Built-in Functions 7



may have the same id() value. (Implementation note: this is the address of the object.)

input( [prompt ] )
Equivalent to eval (raw_input (prompt)). Warning: This function is not safe from user errors!
It expects a valid Python expression as input; if the input is not syntactically valid, a SyntaxError
will be raised. Other exceptions may be raised if there is an error during evaluation. (On the other
hand, sometimes this is exactly what you need when writing a quick script for expert use.)

If the readline module was loaded, then input () will use it to provide elaborate line editing and
history features.

Consider using the raw_input () function for general input from users.

int (;L’[, radix])

Convert a string or number to a plain integer. If the argument is a string, it must contain a pos-
sibly signed decimal number representable as a Python integer, possibly embedded in whitespace;
this behaves identical to string.atoi(q:[, mdix]). The radiz parameter gives the base for the
conversion and may be any integer in the range [2, 36], or zero. If radiz is zero, the proper radix
is guessed based on the contents of string; the interpretation is the same as for integer literals. If
radiz is specified and z is not a string, TypeError is raised. Otherwise, the argument may be a
plain or long integer or a floating point number. Conversion of floating point numbers to integers
truncates (towards zero).

intern(string)
Enter string in the table of “interned” strings and return the interned string — which is string itself
or a copy. Interning strings is useful to gain a little performance on dictionary lookup — if the keys
in a dictionary are interned, and the lookup key is interned, the key comparisons (after hashing)
can be done by a pointer compare instead of a string compare. Normally, the names used in Python
programs are automatically interned, and the dictionaries used to hold module, class or instance
attributes have interned keys. Interned strings are immortal (never get garbage collected).

isinstance (object, classinfo)

Return true if the object argument is an instance of the classinfo argument, or of a (direct or
indirect) subclass thereof. Also return true if classinfo is a type object and object is an object of
that type. If object is not a class instance or a object of the given type, the function always returns
false. If classinfo is neither a class object nor a type object, it may be a tuple of class or type
objects, or may recursively contain other such tuples (other sequence types are not accepted). If
classinfo is not a class, type, or tuple of classes, types, and such tuples, a TypeError exception is
raised. Changed in version 2.2: Support for a tuple of type information was added.

issubclass(classi, class2)
Return true if class! is a subclass (direct or indirect) of class2. A class is considered a subclass of
itself. If either argument is not a class object, a TypeError exception is raised.

iter(o[, sentinel])

Return an iterator object. The first argument is interpreted very differently depending on the
presence of the second argument. Without a second argument, o must be a collection object
which supports the iteration protocol (the —_iter__() method), or it must support the sequence
protocol (the __getitem__ () method with integer arguments starting at 0). If it does not support
either of those protocols, TypeError is raised. If the second argument, sentinel, is given, then o
must be a callable object. The iterator created in this case will call o with no arguments for each
call to its next () method; if the value returned is equal to sentinel, StopIteration will be raised,
otherwise the value will be returned. New in version 2.2.

len(s)
Return the length (the number of items) of an object. The argument may be a sequence (string,
tuple or list) or a mapping (dictionary).

list( [sequence ] )
Return a list whose items are the same and in the same order as sequence’s items. sequence may be
either a sequence, a container that supports iteration, or an iterator object. If sequence is already
a list, a copy is made and returned, similar to sequence[:]. For instance, list (’abc’) returns
[’a’, ’b’, ’c’] and 1list( (1, 2, 3) ) returns [1, 2, 3].

8 Chapter 2. Built-in Functions, Types, and Exceptions



locals()
Return a dictionary representing the current local symbol table. Warning: The contents of this
dictionary should not be modified; changes may not affect the values of local variables used by the
interpreter.

long(a:[, mdix])
Convert a string or number to a long integer. If the argument is a string, it must contain a
possibly signed number of arbitrary size, possibly embedded in whitespace; this behaves identical
to string.atol(z). The radiz argument is interpreted in the same way as for int (), and may
only be given when z is a string. Otherwise, the argument may be a plain or long integer or a
floating point number, and a long integer with the same value is returned. Conversion of floating
point numbers to integers truncates (towards zero).

map (function, list, ...)
Apply function to every item of list and return a list of the results. If additional list arguments are
passed, function must take that many arguments and is applied to the items of all lists in parallel;
if a list is shorter than another it is assumed to be extended with None items. If function is None,
the identity function is assumed; if there are multiple list arguments, map () returns a list consisting
of tuples containing the corresponding items from all lists (a kind of transpose operation). The list
arguments may be any kind of sequence; the result is always a list.

max(s[, args...])
With a single argument s, return the largest item of a non-empty sequence (such as a string, tuple
or list). With more than one argument, return the largest of the arguments.

min(s[, args...])
With a single argument s, return the smallest item of a non-empty sequence (such as a string,
tuple or list). With more than one argument, return the smallest of the arguments.

oct(x)
Convert an integer number (of any size) to an octal string. The result is a valid Python expression.
Note: this always yields an unsigned literal. For example, on a 32-bit machine, oct(-1) yields
2037777777777°. When evaluated on a machine with the same word size, this literal is evaluated
as -1; at a different word size, it may turn up as a large positive number or raise an OverflowError
exception.

open (filename [, mode [, bufsize] ])
An alias for the file() function above.

ord(c)
Return the AscII value of a string of one character or a Unicode character. E.g., ord(’a’) returns
the integer 97, ord(u’
u2020°) returns 8224. This is the inverse of chr() for strings and of unichr() for Unicode
characters.

pout, ] )
Return z to the power y; if z is present, return z to the power y, modulo z (computed more
efficiently than pow(z, y) % z). The arguments must have numeric types. With mixed operand
types, the coercion rules for binary arithmetic operators apply. For int and long int operands, the
result has the same type as the operands (after coercion) unless the second argument is negative;
in that case, all arguments are converted to float and a float result is delivered. For example,
10%*2 returns 100, but 10%*-2 returns 0.01. (This last feature was added in Python 2.2. In
Python 2.1 and before, if both arguments were of integer types and the second argument was
negative, an exception was raised.) If the second argument is negative, the third argument must
be omitted. If z is present, z and y must be of integer types, and y must be non-negative. (This
restriction was added in Python 2.2. In Python 2.1 and before, floating 3-argument pow() returned
platform-dependent results depending on floating-point rounding accidents.)

range([start,] stop [, step])
This is a versatile function to create lists containing arithmetic progressions. It is most often used
in for loops. The arguments must be plain integers. If the step argument is omitted, it defaults
to 1. If the start argument is omitted, it defaults to 0. The full form returns a list of plain integers

2.1. Built-in Functions 9



[start, start + step, start + 2 * step, ...]. If step is positive, the last element is the largest
start + i * step less than stop; if step is negative, the last element is the largest start + i * step
greater than stop. step must not be zero (or else ValueError is raised). Example:

>>> range(10)

(0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> range(1, 11)

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> range(0, 30, 5)

[0, 5, 10, 15, 20, 25]

>>> range(0, 10, 3)

o, 3, 6, 9]

>>> range(0, -10, -1)

o, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> range(0)

1

>>> range(1, 0)

1

raw_input ( [prompt ] )

If the prompt argument is present, it is written to standard output without a trailing newline. The
function then reads a line from input, converts it to a string (stripping a trailing newline), and
returns that. When EOF is read, EOFError is raised. Example:

>>> s = raw_input(’--> )

--> Monty Python’s Flying Circus
>>> s

"Monty Python’s Flying Circus"

If the readline module was loaded, then raw_input () will use it to provide elaborate line editing
and history features.

reduce (function, sequence[, z'm'tialz'zer])

Apply function of two arguments cumulatively to the items of sequence, from left to right, so as
to reduce the sequence to a single value. For example, reduce(lambda x, y: =x+y, [1, 2, 3,
4, 5]) calculates ((((1+2)+3)+4)+5). If the optional initializer is present, it is placed before the
items of the sequence in the calculation, and serves as a default when the sequence is empty. If
initializer is not given and sequence contains only one item, the first item is returned.

reload (module)

Re-parse and re-initialize an already imported module. The argument must be a module object,
so it must have been successfully imported before. This is useful if you have edited the module
source file using an external editor and want to try out the new version without leaving the Python
interpreter. The return value is the module object (the same as the module argument).

There are a number of caveats:

If a module is syntactically correct but its initialization fails, the first import statement for it does
not bind its name locally, but does store a (partially initialized) module object in sys.modules. To
reload the module you must first import it again (this will bind the name to the partially initialized
module object) before you can reload() it.

When a module is reloaded, its dictionary (containing the module’s global variables) is retained.
Redefinitions of names will override the old definitions, so this is generally not a problem. If the new
version of a module does not define a name that was defined by the old version, the old definition
remains. This feature can be used to the module’s advantage if it maintains a global table or cache
of objects — with a try statement it can test for the table’s presence and skip its initialization if
desired.

It is legal though generally not very useful to reload built-in or dynamically loaded modules, except
for sys, __main__ and __builtin__. In many cases, however, extension modules are not designed
to be initialized more than once, and may fail in arbitrary ways when reloaded.

10

Chapter 2. Built-in Functions, Types, and Exceptions



If a module imports objects from another module using from ... import ..., calling reload()

for the other module does not redefine the objects imported from it — one way around this is
to re-execute the from statement, another is to use import and qualified names (module.name)
instead.

If a module instantiates instances of a class, reloading the module that defines the class does not
affect the method definitions of the instances — they continue to use the old class definition. The
same is true for derived classes.

repr (object)
Return a string containing a printable representation of an object. This is the same value yielded
by conversions (reverse quotes). It is sometimes useful to be able to access this operation as an
ordinary function. For many types, this function makes an attempt to return a string that would
yield an object with the same value when passed to eval().

round(a:[, n])
Return the floating point value x rounded to n digits after the decimal point. If n is omitted, it
defaults to zero. The result is a floating point number. Values are rounded to the closest multiple
of 10 to the power minus n; if two multiples are equally close, rounding is done away from 0 (so.
for example, round (0.5) is 1.0 and round(-0.5) is -1.0).

setattr (object, name, value)
This is the counterpart of getattr(). The arguments are an object, a string and an arbitrary
value. The string may name an existing attribute or a new attribute. The function assigns the
value to the attribute, provided the object allows it. For example, setattr(z, ’foobar’, 123) is
equivalent to x . foobar = 123.

slice([start,] stop [, step])
Return a slice object representing the set of indices specified by range (start, stop, step). The
start and step arguments default to None. Slice objects have read-only data attributes start,
stop and step which merely return the argument values (or their default). They have no other
explicit functionality; however they are used by Numerical Python and other third party exten-
sions. Slice objects are also generated when extended indexing syntax is used. For example:
‘a[start:stop:step]’ or ‘al[start:stop, i]’.

str (object)
Return a string containing a nicely printable representation of an object. For strings, this returns
the string itself. The difference with repr (object) is that str(object) does not always attempt to
return a string that is acceptable to eval (); its goal is to return a printable string.

tuple( [sequence ] )
Return a tuple whose items are the same and in the same order as sequence’s items. sequence may
be a sequence, a container that supports iteration, or an iterator object. If sequence is already
a tuple, it is returned unchanged. For instance, tuple(’abc’) returns returns (’a’, ’b’, ’c’)
and tuple([1, 2, 3]) returns (1, 2, 3).

type (object)
Return the type of an object. The return value is a type object. The standard module types
defines names for all built-in types. For instance:

>>> import types
>>> if type(x) == types.StringType: print "It’s a string"

unichr(s)
Return the Unicode string of one character whose Unicode code is the integer i. For example,
unichr (97) returns the string u’a’. This is the inverse of ord() for Unicode strings. The argument
must be in the range [0..65535], inclusive. ValueError is raised otherwise. New in version 2.0.

unicode(object[, encoding[, errors] ])
Return the Unicode string version of object using one of the following modes:

If encoding and/or errors are given, unicode () will decode the object which can either be an 8-bit
string or a character buffer using the codec for encoding. The encoding parameter is a string giving

2.1. Built-in Functions 11



the name of an encoding; if the encoding is not known, LookupError is raised. Error handling is
done according to errors; this specifies the treatment of characters which are invalid in the input
encoding. If errors is *strict’ (the default), a ValueError is raised on errors, while a value of
>ignore’ causes errors to be silently ignored, and a value of ’replace’ causes the official Unicode
replacement character, U+FFFD, to be used to replace input characters which cannot be decoded.
See also the codecs module.

If no optional parameters are given, unicode () will mimic the behaviour of str() except that it
returns Unicode strings instead of 8-bit strings. More precisely, if object is a Unicode string or
subclass it will return that Unicode string without any additional decoding applied.

For objects which provide a __unicode__ () method, it will call this method without arguments to
create a Unicode string. For all other objects, the 8-bit string version or representation is requested
and then converted to a Unicode string using the codec for the default encoding in ’strict’ mode.

New in version 2.0. Changed in version 2.2: Support for __unicode__ () added.

vars ( [object ] )
Without arguments, return a dictionary corresponding to the current local symbol table. With a
module, class or class instance object as argument (or anything else that has a __dict__ attribute),
returns a dictionary corresponding to the object’s symbol table. The returned dictionary should
not be modified: the effects on the corresponding symbol table are undefined.*

xrange([start,] stop [, step])
This function is very similar to range (), but returns an “xrange object” instead of a list. This is
an opaque sequence type which yields the same values as the corresponding list, without actually
storing them all simultaneously. The advantage of xrange() over range() is minimal (since
xrange () still has to create the values when asked for them) except when a very large range
is used on a memory-starved machine or when all of the range’s elements are never used (such as
when the loop is usually terminated with break).

zip(seql, ...)
This function returns a list of tuples, where the i-th tuple contains the i-th element from each of
the argument sequences. At least one sequence is required, otherwise a TypeError is raised. The
returned list is truncated in length to the length of the shortest argument sequence. When there
are multiple argument sequences which are all of the same length, zip() is similar to map() with
an initial argument of None. With a single sequence argument, it returns a list of 1-tuples. New
in version 2.0.

2.2 Built-in Types

The following sections describe the standard types that are built into the interpreter. These are the
numeric types, sequence types, and several others, including types themselves. There is no explicit
Boolean type; use integers instead.

Some operations are supported by several object types; in particular, all objects can be compared, tested
for truth value, and converted to a string (with the ... ¢ notation). The latter conversion is implicitly
used when an object is written by the print statement.

2.2.1 Truth Value Testing

Any object can be tested for truth value, for use in an if or while condition or as operand of the Boolean
operations below. The following values are considered false:

e None

e False

4In the current implementation, local variable bindings cannot normally be affected this way, but variables retrieved
from other scopes (such as modules) can be. This may change.

12 Chapter 2. Built-in Functions, Types, and Exceptions



e zero of any numeric type, for example, 0, OL, 0.0, 0j.

e any empty sequence, for example, *’, (), [J.

e any empty mapping, for example, {3}.

e instances of user-defined classes, if the class defines a __nonzero__() or __len__ () method,

when that method returns the integer zero or bool value False.®

All other values are considered true — so objec