Provides a collection of functions for preparing data and fitting Bayesian count spatial regression models, with a specific focus on the Gamma-Count (GC) model. The GC model is well-suited for modeling dispersed count data, including under-dispersed or over-dispersed counts, or counts with equivalent dispersion, using Integrated Nested Laplace Approximations (INLA). The package includes functions for generating data from the GC model, as well as spatially correlated versions of the model. See Nadifar, Baghishani, Fallah (2023) <doi:10.1007/s13253-023-00550-5>.
Version: | 0.1.0 |
Depends: | R (≥ 4.0) |
Imports: | mvtnorm, stats, spdep, sf |
Suggests: | INLA (≥ 23.06.15) |
Published: | 2024-04-25 |
DOI: | 10.32614/CRAN.package.SpatGC |
Author: | Mahsa Nadifar [aut, cre], Hossein Baghishani [aut] |
Maintainer: | Mahsa Nadifar <mahsa.nst at gmail.com> |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
URL: | https://github.com/mahsanst/SpatGC |
NeedsCompilation: | no |
Additional_repositories: | https://inla.r-inla-download.org/R/testing |
Materials: | README NEWS |
CRAN checks: | SpatGC results |
Reference manual: | SpatGC.pdf |
Package source: | SpatGC_0.1.0.tar.gz |
Windows binaries: | r-devel: SpatGC_0.1.0.zip, r-release: SpatGC_0.1.0.zip, r-oldrel: SpatGC_0.1.0.zip |
macOS binaries: | r-release (arm64): SpatGC_0.1.0.tgz, r-oldrel (arm64): SpatGC_0.1.0.tgz, r-release (x86_64): SpatGC_0.1.0.tgz, r-oldrel (x86_64): SpatGC_0.1.0.tgz |
Please use the canonical form https://CRAN.R-project.org/package=SpatGC to link to this page.