
Package ‘dtComb’
October 11, 2024

Title Statistical Combination of Diagnostic Tests

Description A system for combining two diagnostic tests using various approaches
that include statistical and machine-learning-based methodologies.
These approaches are divided into four groups: linear combination
methods, non-linear combination methods, mathematical operators,
and machine learning algorithms. See
the <https://biotools.erciyes.edu.tr/dtComb/> website
for more information, documentation, and examples.

Version 1.0.4

URL https://github.com/gokmenzararsiz/dtComb

Language en-US

Depends R (>= 3.5.0)

Imports pROC (>= 1.18.0), caret, epiR, gam, ggplot2, ggpubr, glmnet,
OptimalCutpoints

License MIT + file LICENSE

Encoding UTF-8

LazyData true

RoxygenNote 7.3.1

NeedsCompilation no

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

Config/testthat/edition 3

VignetteBuilder knitr

Author Serra Ilayda Yerlitas [aut, ctb],
Serra Bersan Gengec [aut, ctb],
Necla Kochan [aut, ctb],
Gozde Erturk Zararsiz [aut, ctb],
Selcuk Korkmaz [aut, ctb],
Gokmen Zararsiz [aut, ctb, cre]

Maintainer Gokmen Zararsiz <gokmen.zararsiz@gmail.com>

Repository CRAN

Date/Publication 2024-10-11 06:20:06 UTC

1

https://biotools.erciyes.edu.tr/dtComb/
https://github.com/gokmenzararsiz/dtComb

2 allMethods

Contents

allMethods . 2
availableMethods . 3
dtComb . 3
exampleData1 . 4
exampleData2 . 5
exampleData3 . 5
helper_minimax . 6
helper_minmax . 7
helper_PCL . 8
helper_PT . 9
helper_TS . 10
kappa.accuracy . 11
linComb . 12
mathComb . 17
mlComb . 20
nonlinComb . 22
plotComb . 27
predict.dtComb . 28
print_train . 30
rocsum . 30
std.test . 31
std.train . 32
transform_math . 33

Index 35

allMethods Includes machine learning models used for the mlComb function

Description

Includes machine learning models used for the mlComb function

Usage

data(allMethods)

Format

A data frame with 113 rows and 2 variables:

Method Valid name for the function

Model Model name

availableMethods 3

Examples

data(allMethods)
allMethods

availableMethods Available classification/regression methods in dtComb

Description

This function returns a data.frame of available classification methods in dtComb. These methods
are imported from the caret package.

Usage

availableMethods()

Value

No return value contains the method names and explanations of the machine-learning models
available for the dtComb package.

Author(s)

Serra Ilayda Yerlitas, Serra Bersan Gengec, Necla Kochan, Gozde Erturk Zararsiz, Selcuk Korkmaz,
Gokmen Zararsiz

Examples

availableMethods()

dtComb dtComb: A Comprehensive R Library for Combining Diagnostic Tests

Description

The dtComb package calculates combination scores of two biomarkers given under four main cat-
egories: linear combinations with the linComb function, non-linear combinations with the nonlin-
Comb function, mathematical operators with the mathComb function, and machine learning algo-
rithms with the mlComb function.

4 exampleData1

Author(s)

Maintainer: Gokmen Zararsiz <gokmen.zararsiz@gmail.com> [contributor]

Authors:

• Serra Ilayda Yerlitas <ilaydayerlitas340@gmail.com> [contributor]

• Serra Bersan Gengec <serrabersan@gmail.com> [contributor]

• Necla Kochan <necla.kayaalp@gmail.com> [contributor]

• Gozde Erturk Zararsiz <gozdeerturk9@gmail.com> [contributor]

• Selcuk Korkmaz <selcukorkmaz@gmail.com> [contributor]

See Also

Useful links:

• https://github.com/gokmenzararsiz/dtComb

exampleData1 Examples data for the dtComb package

Description

A data set containing the results of diagnostic laparoscopy procedures for 225 patients.

Usage

data(exampleData1)

Format

A data frame with 225 rows and 3 variables:

group Indicator if the procedure was needed, values needed and not_needed

ddimer Biomarker 1, D-Dimer protein level in blood, ng/mL

log_leukocyte Biomarker 2, Logarithm of Leukocyte count in blood, per mcL

Examples

data(exampleData1)
exampleData1$group <- factor(exampleData1$group)
gcol <- c("#E69F00", "#56B4E9")
plot(exampleData1$ddimer, exampleData1$log_leukocyte,

col = gcol[as.numeric(exampleData1$group)]
)

https://github.com/gokmenzararsiz/dtComb

exampleData2 5

exampleData2 A data set containing the carriers of a rare genetic disorder for 120
samples.

Description

A data set containing the carriers of a rare genetic disorder for 120 samples.

Usage

data(exampleData2)

Format

A data frame with 120 rows and 5 variables:

Group Indicator if the person was carriers, values carriers and normals

m1 Biomarker 1, 1. measurement blood sample

m2 Biomarker 2, 2. measurement blood sample

m3 Biomarker 3, 3. measurement blood sample

m4 Biomarker 4, 4. measurement blood sample

Examples

data(exampleData2)
exampleData2$Group <- factor(exampleData2$Group)
gcol <- c("#E69F00", "#56B4E9")
plot(exampleData2$m1, exampleData2$m2,

col = gcol[as.numeric(exampleData2$Group)]
)

exampleData3 A simulation data containing 250 diseased and 250 healthy individu-
als.

Description

A simulation data containing 250 diseased and 250 healthy individuals.

Usage

data(exampleData3)

6 helper_minimax

Format

A data frame with 500 rows and 3 variables:

status Indicator of one’s condition, values healthy and diseased

marker1 1. biomarker

marker2 2. biomarker

Examples

data(exampleData3)
exampleData3$status <- factor(exampleData3$status)
gcol <- c("#E69F00", "#56B4E9")
plot(exampleData3$marker1, exampleData3$marker2,

col = gcol[as.numeric(exampleData3$status)]
)

helper_minimax Helper function for minimax method.

Description

The helper_minimax function calculates the combination coefficient and optimized value of given
biomarkers for the minimax method.

Usage

helper_minimax(t, neg.set, pos.set, markers, status)

Arguments

t a numeric parameter that will be estimated in minimax method for the combi-
nation score

neg.set a numeric data frame that contains the observation with negative status

pos.set a numeric data frame that contains the observation with positive status

markers a numeric data frame that contains the biomarkers

status a factor data frame that includes the actual disease status of the patients

Value

A numeric Optimized value calculated with combination scores using t

Author(s)

Serra Ilayda Yerlitas, Serra Bersan Gengec, Necla Kochan, Gozde Erturk Zararsiz, Selcuk Korkmaz,
Gokmen Zararsiz

helper_minmax 7

Examples

call data
data(exampleData1)

define the function parameters
markers <- cbind(exampleData1$ddimer, exampleData1$log_leukocyte)
status <- factor(exampleData1$group, levels = c("not_needed", "needed"))

neg.set <- markers[status == levels(status)[1],]
pos.set <- markers[status == levels(status)[2],]

t <- 0.5

stat <- helper_minimax(t,
neg.set = neg.set, pos.set = pos.set,
markers = markers, status

)

helper_minmax Helper function for minmax method.

Description

The helper_minmax function estimates optimized value of given biomarkers for the minmax method.

Usage

helper_minmax(lambda, neg.set, pos.set)

Arguments

lambda a numeric parameter that will be estimated in minmax method for the combina-
tion score

neg.set a numeric data frame that contains the observations with negative status

pos.set a numeric data frame that contains the observations with positive status

Value

A numeric value for the estimated optimized value

Author(s)

Serra Ilayda Yerlitas, Serra Bersan Gengec, Necla Kochan, Gozde Erturk Zararsiz, Selcuk Korkmaz,
Gokmen Zararsiz

8 helper_PCL

Examples

call data
data(exampleData1)

define the function parameters
markers <- cbind(exampleData1$ddimer, exampleData1$log_leukocyte)
status <- factor(exampleData1$group, levels = c("not_needed", "needed"))

neg.set <- markers[status == levels(status)[1],]
pos.set <- markers[status == levels(status)[2],]

lambda <- 0.5

stat <- helper_minmax(lambda, neg.set = neg.set, pos.set = pos.set)

helper_PCL Helper function for PCL method.

Description

The helper_PCL function estimates the optimized value of given biomarkers for the PCL method.

Usage

helper_PCL(lambda, neg.set, pos.set)

Arguments

lambda a numeric parameter that will be estimated in minmax method for the combina-
tion score

neg.set a numeric data frame that contains the observation with negative status

pos.set a numeric data frame that contains the observation with positive status

Value

A numeric value for the estimated optimized value

Author(s)

Serra Ilayda Yerlitas, Serra Bersan Gengec, Necla Kochan, Gozde Erturk Zararsiz, Selcuk Korkmaz,
Gokmen Zararsiz

helper_PT 9

Examples

call data
data(exampleData1)

define the function parameters
markers <- cbind(exampleData1$ddimer, exampleData1$log_leukocyte)
status <- factor(exampleData1$group, levels = c("not_needed", "needed"))

neg.set <- markers[status == levels(status)[1],]
pos.set <- markers[status == levels(status)[2],]

lambda <- 0.5

stat <- helper_PCL(lambda, neg.set = neg.set, pos.set = pos.set)

helper_PT Helper function for PT method.

Description

The helper_PT function estimates the optimized value of given biomarkers for the PT method.

Usage

helper_PT(lambda, neg.set, pos.set)

Arguments

lambda a numeric parameter that will be estimated in minmax method for the combina-
tion score

neg.set a numeric data frame that contains the observation with negative status

pos.set a numeric data frame that contains the observation with positive status

Value

A numeric value for the estimated optimized value

Author(s)

Serra Ilayda Yerlitas, Serra Bersan Gengec, Necla Kochan, Gozde Erturk Zararsiz, Selcuk Korkmaz,
Gokmen Zararsiz

10 helper_TS

Examples

call data
data(exampleData1)

define the function parameters
markers <- cbind(exampleData1$ddimer, exampleData1$log_leukocyte)
status <- factor(exampleData1$group, levels = c("not_needed", "needed"))

neg.set <- markers[status == levels(status)[1],]
pos.set <- markers[status == levels(status)[2],]

lambda <- 0.5

stat <- helper_PT(lambda, neg.set = neg.set, pos.set = pos.set)

helper_TS Helper function for TS method.

Description

The helper_TS function calculates the combination coefficient and optimized value of given biomark-
ers for the TS method.

Usage

helper_TS(theta, markers, status)

Arguments

theta a numeric parameter that will be estimated in TS method for the combination
score

markers a numeric data frame that contains the biomarkers

status a factor data frame that includes the actual disease status of the patients

Value

A numeric Optimized value calculated with combination scores using theta

Author(s)

Serra Ilayda Yerlitas, Serra Bersan Gengec, Necla Kochan, Gozde Erturk Zararsiz, Selcuk Korkmaz,
Gokmen Zararsiz

kappa.accuracy 11

Examples

call data
data(exampleData1)

define the function parameters
markers <- cbind(exampleData1$ddimer, exampleData1$log_leukocyte)
status <- factor(exampleData1$group, levels = c("not_needed", "needed"))

t <- 0.5

stat <- helper_TS(theta = t, markers = markers, status = status)

kappa.accuracy Calculate Cohen’s kappa and accuracy.

Description

The kappa.accuracy calculates Cohen’s kappa and accuracy.

Usage

S3 method for class 'accuracy'
kappa(DiagStatCombined)

Arguments

DiagStatCombined

a numeric table of confusion matrix of the calculated combination score.

Value

A list of Cohen’s kappa and accuracy values

Author(s)

Serra Ilayda Yerlitas, Serra Bersan Gengec, Necla Kochan, Gozde Erturk Zararsiz, Selcuk Korkmaz,
Gokmen Zararsiz

12 linComb

linComb Combine two diagnostic tests with several linear combination meth-
ods.

Description

The linComb function calculates the combination scores of two diagnostic tests selected among
several linear combination methods and standardization options.

Usage

linComb(
markers = NULL,
status = NULL,
event = NULL,
method = c("scoring", "SL", "logistic", "minmax", "PT", "PCL", "minimax", "TS"),
resample = c("none", "cv", "repeatedcv", "boot"),
nfolds = 5,
nrepeats = 3,
niters = 10,
standardize = c("none", "range", "zScore", "tScore", "mean", "deviance"),
ndigits = 0,
show.plot = TRUE,
direction = c("auto", "<", ">"),
conf.level = 0.95,
cutoff.method = c("CB", "MCT", "MinValueSp", "MinValueSe", "ValueSp", "ValueSe",
"MinValueSpSe", "MaxSp", "MaxSe", "MaxSpSe", "MaxProdSpSe", "ROC01", "SpEqualSe",
"Youden", "MaxEfficiency", "Minimax", "MaxDOR", "MaxKappa", "MinValueNPV",

"MinValuePPV", "ValueNPV", "ValuePPV", "MinValueNPVPPV", "PROC01", "NPVEqualPPV",
"MaxNPVPPV", "MaxSumNPVPPV", "MaxProdNPVPPV", "ValueDLR.Negative",

"ValueDLR.Positive", "MinPvalue", "ObservedPrev", "MeanPrev", "PrevalenceMatching"),
show.result = FALSE,
...

)

Arguments

markers a numeric a numeric data frame that includes two diagnostic tests results

status a factor vector that includes the actual disease status of the patients

event a character string that indicates the event in the status to be considered as
positive event

method a character string specifying the method used for combining the markers.
Notations: Before getting into these methods, let us first introduce some nota-
tions that will be used throughout this vignette. Let Di, i = 1, 2, . . . , n1 be the
marker values of ith individual in diseased group, where Di = (Di1, Di2) and
Hj , j = 1, 2, . . . , n2 be the marker values of jth individual in healthy group,

linComb 13

where Hj = Hj1, Hj2. Let xi1 = c(Di1, Hj1) be the values of the first marker,
and xi2 = c(Di2, Hj2) be values of the second marker for the ith individual i =
1, 2, . . . , n. Let Di,min = min(Di1, Di2), Di,max = max(Di1, Di2), Hj,min =
min(Hj1, Hj2), Hj,max = max(Hj1, Hj2) and ci be be the resulting combi-
nation score for the ith individual.
The available methods are:

• Logistic Regression (logistic): Combination score obtained by fitting a
logistic regression modelis as follows:

ci =

(
eβ0+β1xi1+β2xi2

1 + eβ0+β1xi1+β2xi2

)
A combination score obtained by fitting a logistic regression model typi-
cally refers to the predicted probability or score assigned to each observa-
tion in a dataset based on the logistic regression model’s fitted values

• Scoring based on Logistic Regression (scoring): Combination score is
obtained using the slope values of the relevant logistic regression model,
slope values are rounded to the number of digits taken from the user.

ci = β1xi1 + β2xi2

• Pepe & Thompson’s method (PT): The Pepe and Thompson combination
score, developed using their optimal linear combination technique, aims to
maximize the Mann-Whitney statistic in the same way that the Min-max
method does. Unlike the Min-max method, the Pepe and Thomson method
takes into account all marker values instead of just the lowest and maximum
values.

maximize U(α) =

(
1

n1, n2

) n1∑
i=1

n2∑
j=1

I(Di1 + αDi2 >= Hj1 + αHj2)

ci = xi1 + αxi2

• Pepe, Cai & Langton’s method (PCL): Pepe, Cai and Langton combina-
tion score obtained by using AUC as the parameter of a logistic regression
model.

maximize U(α) =

(
1

n1, n2

) n1∑
i=1

n2∑
j=1

I(Di1 + αDi2 >

Hj1 + αHj2) +

(
1

2

)
I(Di1 + αDi2 = Hj1 + αHj2)

• Min-Max method (minmax): This method linearly combines the mini-
mum and maximum values of the markers by finding a parameter,α , that
maximizes the Mann-Whitney statistic, an empirical estimate of the ROC
area.

maximize U(α) =

(
1

n1, n2

) n1∑
i=1

n2∑
j=1

I(Di,max + αDi,min > Hj,max + αHj,min)

14 linComb

ci = xi,max + αxi,min

where xi,max = max(xi1, xi2) and xi,min = min(xi1, xi2)

• Su & Liu’s method (SL): The Su and Liu combination score is computed
through Fisher’s discriminant coefficients, which assumes that the underly-
ing data follow a multivariate normal distribution, and the covariance ma-
trices across different classes are assumed to be proportional.Assuming that
D ∼ N(µD,

∑
D) and H ∼ N(µH ,

∑
H) represent the multivariate nor-

mal distributions for the diseased and non-diseased groups, respectively.
The Fisher’s coefficients are as follows:

(α, β) = (
∑

D +
∑

H) −1µ

whereµ=µD − µH .The combination score in this case is:

ci = αxi1 + βxi2

• Minimax approach (minimax): Combination score obtained with the Min-
imax procedure; t parameter is chosen as the value that gives the maximum
AUC from the combination score. Suppose that D follows a multivariate
normal distribution D ∼ N(µD,

∑
D), representing diseased group and H

follows a multivariate normal distribution H ∼ N(µH ,
∑

H) , representing
the non-diseased group. Then Fisher’s coefficients are as follows:

(α, β) = [t
∑

D + (1− t)
∑

H]−1(µD − µH)

ci = b1x1 + b2x2

• Todor & Saplacan’s method (TS):Combination score obtained by using
the trigonometric functions of the Θ value that optimizes the corresponding
AUC.

ci = sin(θ)xi1 + cos(θ)xi2

resample a character string indicating the name of the resampling options. Bootstrap-
ping Cross-validation and repeated cross-validation are given as the options for
resampling, along with the number of folds and number of repeats.

• boot: Bootstrapping is performed similarly; the dataset is divided into folds
with replacement and models are trained and tested in these folds to deter-
mine the best parameters for the given method and dataset.

• cv: Cross-validation resampling, the dataset is divided into the number of
folds given without replacement; in each iteration, one fold is selected as
the test set, and the model is built using the remaining folds and tested on
the test set. The corresponding AUC values and the parameters used for the
combination are kept in a list. The best-performed model is selected, and
the combination score is returned for the whole dataset.

• repeatedcv: Repeated cross-validation the process is repeated, and the
best-performed models selected at each step are stored in another list; the
best performed among these models is selected to be applied to the entire
dataset.

linComb 15

nfolds a numeric value that indicates the number of folds for cross validation based
resampling methods (5, default)

nrepeats a numeric value that indicates the number of repeats for "repeatedcv" option of
resampling methods (3, default)

niters a numeric value that indicates the number of bootstrapped resampling iterations
(10, default)

standardize a character string indicating the name of the standardization method. The
default option is no standardization applied. Available options are:

• Z-score (zScore): This method scales the data to have a mean of 0 and a
standard deviation of 1. It subtracts the mean and divides by the standard
deviation for each feature. Mathematically,

Z − score =
x− (x)

sd(x)

where x is the value of a marker, x is the mean of the marker and sd(x) is
the standard deviation of the marker.

• T-score (tScore): T-score is commonly used in data analysis to transform
raw scores into a standardized form. The standard formula for converting a
raw score x into a T-score is:

T − score =

(
x− (x)

sd(x)
× 10

)
+50

where x is the value of a marker, x is the mean of the marker and sd(x) is
the standard deviation of the marker.

• Range (a.k.a. min-max scaling) (range): This method transforms data to
a specific range, between 0 and 1. The formula for this method is:

Range =
x−min(x)

max(x)−min(x)

• Mean (mean): This method, which helps to understand the relative size of
a single observation concerning the mean of dataset, calculates the ratio of
each data point to the mean value of the dataset.

Mean =
x

x

where x is the value of a marker and x is the mean of the marker.
• Deviance (deviance): This method, which allows for comparison of indi-

vidual data points in relation to the overall spread of the data, calculates the
ratio of each data point to the standard deviation of the dataset.

Deviance =
x

sd(x)

where x is the value of a marker and sd(x) is the standard deviation of the
marker.

16 linComb

ndigits a integer value to indicate the number of decimal places to be used for round-
ing in Scoring method (0, default)

show.plot a logical. If TRUE, a ROC curve is plotted. Default is TRUE

direction a character string determines in which direction the comparison will be made.
">": if the predictor values for the control group are higher than the values of the
case group (controls > cases). "<": if the predictor values for the control group
are lower or equal than the values of the case group (controls < cases).

conf.level a numeric values determines the confidence interval for the roc curve(0.95, de-
fault).

cutoff.method a character string determines the cutoff method for the roc curve.

show.result a logical string indicating whether the results should be printed to the console.

... further arguments. Currently has no effect on the results.

Value

A list of numeric linear combination scores calculated according to the given method and standard-
ization option.

Author(s)

Serra Ilayda Yerlitas, Serra Bersan Gengec, Necla Kochan, Gozde Erturk Zararsiz, Selcuk Korkmaz,
Gokmen Zararsiz

Examples

call data
data(exampleData1)

define the function parameters
markers <- exampleData1[, -1]
status <- factor(exampleData1$group, levels = c("not_needed", "needed"))
event <- "needed"

score1 <- linComb(
markers = markers, status = status, event = event,
method = "logistic", resample = "none", show.plot = TRUE,
standardize = "none", direction = "<", cutoff.method = "Youden"

)

call data
data(exampleData2)

define the function parameters
markers <- exampleData2[, -c(1:3, 6:7)]
status <- factor(exampleData2$Group, levels = c("normals", "carriers"))
event <- "carriers"

score2 <- linComb(
markers = markers, status = status, event = event,

mathComb 17

method = "PT", resample = "none", standardize = "none", direction = "<",
cutoff.method = "Youden", show.result = "TRUE"

)

score3 <- linComb(
markers = markers, status = status, event = event,
method = "minmax", resample = "none", direction = "<",
cutoff.method = "Youden"

)

mathComb Combine two diagnostic tests with several mathematical operators and
distance measures.

Description

The mathComb function returns the combination results of two diagnostic tests with different math-
ematical operators, distance measures, standardization, and transform options.

Usage

mathComb(
markers = NULL,
status = NULL,
event = NULL,
method = c("add", "multiply", "divide", "subtract", "distance", "baseinexp",
"expinbase"),

distance = c("euclidean", "manhattan", "chebyshev", "kulczynski_d", "lorentzian",
"avg", "taneja", "kumar-johnson"),

standardize = c("none", "range", "zScore", "tScore", "mean", "deviance"),
transform = c("none", "log", "exp", "sin", "cos"),
show.plot = TRUE,
direction = c("auto", "<", ">"),
conf.level = 0.95,
cutoff.method = c("CB", "MCT", "MinValueSp", "MinValueSe", "ValueSp", "ValueSe",
"MinValueSpSe", "MaxSp", "MaxSe", "MaxSpSe", "MaxProdSpSe", "ROC01", "SpEqualSe",
"Youden", "MaxEfficiency", "Minimax", "MaxDOR", "MaxKappa", "MinValueNPV",

"MinValuePPV", "ValueNPV", "ValuePPV", "MinValueNPVPPV", "PROC01", "NPVEqualPPV",
"MaxNPVPPV", "MaxSumNPVPPV", "MaxProdNPVPPV", "ValueDLR.Negative",

"ValueDLR.Positive", "MinPvalue", "ObservedPrev", "MeanPrev", "PrevalenceMatching"),
show.result = FALSE,
...

)

Arguments

markers a numeric data frame that includes two diagnostic tests results

18 mathComb

status a factor vector that includes the actual disease status of the patients
event a character string that indicates the event in the status to be considered as

positive event
method a character string specifying the method used for combining the markers. The

available methods are:
• add: Combination score obtained by adding markers
• multiply: Combination score obtained by multiplying markers
• divide: Combination score obtained by dividing markers
• subtract: Combination score obtained by subtracting markers
• distance: Combination score obtained with the help of distance measures.
• baseinexp: Combination score obtained by marker1 power marker2.
• expinbase: Combination score obtained by marker2 power marker1.

distance a character string specifying the method used for combining the markers. The
available methods are:

• Euclidean (euclidean): ci =
√
(xi1 − 0)2 + (xi2 − 0)2

• Manhattan(manhattan): ci = |xi1 − 0|+ |xi2 − 0|
• Chebyshev (chebyshev): ci = max|xi1 − 0|, |xi2 − 0|
• Kulczynski (kulczynski_d): ci =

|xi1−0|+|xi2−0|
min(xi1,xi2)

• Lorentzian (lorentzian): ci = (ln(1 + |xi1 − 0|)) + (ln(1 + |xi2 − 0|))

• Taneja (taneja): ci = z1 ×

(
log z1√

(xi1×ϵ)

)
+z2 ×

(
log z2√

(xi2×ϵ)

)
• Kumar-Johnson (kumar-johnson): ci =

(xi1−0)2

2(xi1×ϵ)+
(xi2−0)2

2(xi2×ϵ) , ϵ = 0.00001

• Avg (avg):

(L1, Ln) =
|xi1 − 0|+ |xi2 − 0|+max(xi1 − 0), (xi2 − 0)

2

standardize a character string indicating the name of the standardization method. The
default option is no standardization applied. Available options are:

• Z-score (zScore): This method scales the data to have a mean of 0 and a
standard deviation of 1. It subtracts the mean and divides by the standard
deviation for each feature. Mathematically,

Z − score =
x− (x)

sd(x)

where x is the value of a marker, x is the mean of the marker and sd(x) is
the standard deviation of the marker.

• T-score (tScore): T-score is commonly used in data analysis to transform
raw scores into a standardized form. The standard formula for converting a
raw score x into a T-score is:

T − score =

(
x− (x)

sd(x)
× 10

)
+50

where x is the value of a marker, x is the mean of the marker and sd(x) is
the standard deviation of the marker.

mathComb 19

• Range (a.k.a. min-max scaling) (range): This method transforms data to
a specific range, between 0 and 1. The formula for this method is:

Range =
x−min(x)

max(x)−min(x)

• Mean (mean): This method, which helps to understand the relative size of
a single observation concerning the mean of dataset, calculates the ratio of
each data point to the mean value of the dataset.

Mean =
x

x

where x is the value of a marker and x is the mean of the marker.
• Deviance (deviance): This method, which allows for comparison of indi-

vidual data points in relation to the overall spread of the data, calculates the
ratio of each data point to the standard deviation of the dataset.

Deviance =
x

sd(x)

where x is the value of a marker and sd(x) is the standard deviation of the
marker.

transform a character string indicating the name of the standardization method. The
default option is no standardization applied. Available options are:

• log: Applies logarithm transform to markers before calculating combina-
tion score

• exp: Applies exponential transform to markers before calculating combi-
nation score

• sin: Applies sinus trigonometric transform to markers before calculatin
combination score

• cos: Applies cosinus trigonometric transform to markers before calculating
combination score

show.plot a logical. If TRUE, a ROC curve is plotted. Default is TRUE

direction a character string determines in which direction the comparison will be made.
">": if the predictor values for the control group are higher than the values of the
case group (controls > cases). "<": if the predictor values for the control group
are lower or equal than the values of the case group (controls < cases).

conf.level a numeric values determines the confidence interval for the roc curve(0.95, de-
fault).

cutoff.method a character string determines the cutoff method for the roc curve.

show.result a logical string indicating whether the results should be printed to the console.

... further arguments. Currently has no effect on the results.

Value

A list of numeric mathematical combination scores calculated according to the given method and
standardization option

20 mlComb

Author(s)

Serra Ilayda Yerlitas, Serra Bersan Gengec, Necla Kochan, Gozde Erturk Zararsiz, Selcuk Korkmaz,
Gokmen Zararsiz

Examples

data(exampleData1)
markers <- exampleData1[, -1]
status <- factor(exampleData1$group, levels = c("not_needed", "needed"))
event <- "needed"
direction <- "<"
cutoff.method <- "Youden"

score1 <- mathComb(
markers = markers, status = status, event = event,
method = "distance", distance = "avg", direction = direction, show.plot = FALSE,
standardize = "none", cutoff.method = cutoff.method

)

score2 <- mathComb(
markers = markers, status = status, event = event,
method = "baseinexp", transform = "exp", direction = direction,
cutoff.method = cutoff.method

)

score3 <- mathComb(
markers = markers, status = status, event = event,
method = "subtract", direction = "auto", cutoff.method = "MinValueSp", transform = "sin"

)

mlComb Combine two diagnostic tests with Machine Learning Algorithms.

Description

The mlComb function calculates the combination scores of two diagnostic tests selected among sev-
eral Machine Learning Algorithms

Usage

mlComb(
markers = NULL,
status = NULL,
event = NULL,
method = NULL,
resample = NULL,
niters = 5,
nfolds = 5,

mlComb 21

nrepeats = 3,
preProcess = NULL,
show.plot = TRUE,
B = 25,
direction = c("auto", "<", ">"),
conf.level = 0.95,
cutoff.method = c("CB", "MCT", "MinValueSp", "MinValueSe", "ValueSp", "ValueSe",
"MinValueSpSe", "MaxSp", "MaxSe", "MaxSpSe", "MaxProdSpSe", "ROC01", "SpEqualSe",
"Youden", "MaxEfficiency", "Minimax", "MaxDOR", "MaxKappa", "MinValueNPV",

"MinValuePPV", "ValueNPV", "ValuePPV", "MinValueNPVPPV", "PROC01", "NPVEqualPPV",
"MaxNPVPPV", "MaxSumNPVPPV", "MaxProdNPVPPV", "ValueDLR.Negative",

"ValueDLR.Positive", "MinPvalue", "ObservedPrev", "MeanPrev", "PrevalenceMatching"),
show.result = FALSE,
...

)

Arguments

markers a numeric data frame that includes two diagnostic tests results

status a factor vector that includes the actual disease status of the patients

event a character string that indicates the event in the status to be considered as
positive event

method a character string specifying the method used for combining the markers. For
the available methods see availableMethods()
IMPORTANT: See https://topepo.github.io/caret/available-models.html for fur-
ther information about the methods used in this function.

resample a character string that indicates the resampling method used while training
the model. The available methods are "boot", "boot632", "optimism_boot",
"boot_all", "cv", "repeatedcv", "LOOCV", "LGOCV", "none", "oob", "adap-
tive_cv", "adaptive_boot" and "adaptive_LGOCV". for details of these resam-
pling methods see ?caret::trainControl

niters a numeric value that indicates the number of bootstrapped resampling iterations
(10, default)

nfolds a numeric value that indicates the number of folds for cross validation based
resampling methods (5, default)

nrepeats a numeric value that indicates the number of repeats for "repeatedcv" option of
resampling methods (3, default)

preProcess a character string that indicates the pre-processing options to be applied in the
data before training the model. Available pre-processing methods are: "Box-
Cox", "YeoJohnson", "expoTrans", "center", "scale", "range", "knnImpute", "bag-
Impute", "medianImpute", "pca", "ica", "spatialSign", "corr", "zv", "nzv", and
"conditionalX". For detailed information about the methods see ?caret::preProcess

show.plot a logical. If TRUE, a ROC curve is plotted. Default is TRUE

B a numeric value that is the number of bootstrap samples for bagging classifiers,
"bagFDA", "bagFDAGCV", "bagEarth" and "bagEarthGCV". (25, default)

22 nonlinComb

direction a character string determines in which direction the comparison will be made.
">": if the predictor values for the control group are higher than the values of the
case group (controls > cases). "<": if the predictor values for the control group
are lower or equal than the values of the case group (controls < cases).

conf.level a numeric value to determine the confidence interval for the ROC curve(0.95,
default).

cutoff.method a character string determines the cutoff method for the ROC curve.

show.result a logical string indicating whether the results should be printed to the console.

... optional arguments passed to selected classifiers.

Value

A list of AUC values, diagnostic statistics, coordinates of the ROC curve for the combination
score obtained using Machine Learning Algorithms as well as the given biomarkers individually, a
comparison table for the AUC values of individual biomarkers and combination score obtained and
the fitted model.

Author(s)

Serra Ilayda Yerlitas, Serra Bersan Gengec, Necla Kochan, Gozde Erturk Zararsiz, Selcuk Korkmaz,
Gokmen Zararsiz

Examples

call data
data(exampleData1)

define the function parameters
markers <- exampleData1[, -1]
status <- factor(exampleData1$group, levels = c("not_needed", "needed"))
event <- "needed"

model <- mlComb(
markers = markers, status = status, event = event,
method = "knn", resample = "repeatedcv", nfolds = 10, nrepeats = 5,
preProcess = c("center", "scale"), direction = "<", cutoff.method = "Youden"

)

nonlinComb Combine two diagnostic tests with several non-linear combination
methods.

Description

The nonlinComb function calculates the combination scores of two diagnostic tests selected among
several non-linear combination methods and standardization options

nonlinComb 23

Usage

nonlinComb(
markers = NULL,
status = NULL,
event = NULL,
method = c("polyreg", "ridgereg", "lassoreg", "elasticreg", "splines", "sgam", "nsgam"),
degree1 = 3,
degree2 = 3,
df1 = 4,
df2 = 4,
resample = c("none", "cv", "repeatedcv", "boot"),
nfolds = 5,
nrepeats = 3,
niters = 10,
standardize = c("none", "range", "zScore", "tScore", "mean", "deviance"),
include.interact = FALSE,
alpha = 0.5,
show.plot = TRUE,
direction = c("auto", "<", ">"),
conf.level = 0.95,
cutoff.method = c("CB", "MCT", "MinValueSp", "MinValueSe", "ValueSp", "ValueSe",
"MinValueSpSe", "MaxSp", "MaxSe", "MaxSpSe", "MaxProdSpSe", "ROC01", "SpEqualSe",
"Youden", "MaxEfficiency", "Minimax", "MaxDOR", "MaxKappa", "MinValueNPV",

"MinValuePPV", "ValueNPV", "ValuePPV", "MinValueNPVPPV", "PROC01", "NPVEqualPPV",
"MaxNPVPPV", "MaxSumNPVPPV", "MaxProdNPVPPV", "ValueDLR.Negative",

"ValueDLR.Positive", "MinPvalue", "ObservedPrev", "MeanPrev", "PrevalenceMatching"),
show.result = FALSE,
...

)

Arguments

markers a numeric data frame that includes two diagnostic tests results

status a factor vector that includes the actual disease status of the patients

event a character string that indicates the event in the status to be considered as
positive event

method a character string specifying the method used for combining the markers. The
available methods are:

• Logistic Regression with Polynomial Feature Space (polyreg): The
method builds a logistic regression model with the polynomial feature space
and returns the probability of a positive event for each observation.

• Ridge Regression with Polynomial Feature Space (ridgereg): Ridge
regression is a shrinkage method used to estimate the coefficients of highly
correlated variables and in this case the polynomial feature space created
from two markers. For the implementation of the method, glmnet() library
is used with two functions: cv.glmnet() to run a cross validation model to
determine the tuning parameter λ and glmnet() to fit the model with the

24 nonlinComb

selected tuning parameter. For Ridge regression, the glmnet() package is
integrated into the dtComb package to facilitate the implementation of this
method.

• Lasso Regression with Polynomial Feature Space (lassoreg): Lasso
regression, like Ridge regression, is a type of shrinkage method. How-
ever, a notable difference is that Lasso tends to set some feature coeffi-
cients to zero, making it useful for feature elimination. It also employs
cross-validation for parameter selection and model fitting using the glmnet
library.

• Elastic Net Regression with Polynomial Feature Space (elasticreg):
Elastic Net regression is a hybrid model that merges the penalties from
Ridge and Lasso regression, aiming to leverage the strengths of both ap-
proaches. This model involves two parameters: λ, similar to Ridge and
Lasso, and α, a user-defined mixing parameter ranging between 0 (repre-
senting Ridge) and 1 (representing Lasso). The α parameter determines the
balance or weights between the loss functions of Ridge and Lasso regres-
sions.

• Splines (splines): Another non-linear approach to combine markers in-
volves employing regression models within a polynomial feature space.
This approach applies multiple regression models to the dataset using a
function derived from piecewise polynomials. This implementation uses
splines with user-defined degrees of freedom and degrees for the fitted poly-
nomials. The splines library is employed to construct piecewise logistic
regression models using base splines.

• Generalized Additive Models with Smoothing Splines and Generalized
Additive Models with Natural Cubic Splines (sgam & nsgam): In addi-
tion to the basic spline structure, Generalized Additive Models are applied
with natural cubic splines and smoothing splines using the gam library in
R.

degree1 a numeric value for polynomial based methods indicates the degree of the fea-
ture space created for marker 1, for spline based methods the degree of the fitted
polynomial between each node for marker 1. (3, default)

degree2 a numeric value for polynomial based methods indicates the degree of the fea-
ture space created for marker 2, for spline based methods the degree of the fitted
polynomial between each node for marker 2 (3, default)

df1 a numeric value that indicates the number of knots as the degrees of freedom in
spline based methods for marker 1 (4, default)

df2 a numeric value that indicates the number of knots as the degrees of freedom in
spline based methods for marker 2 (4, default)

resample a character string indicating the name of the resampling options. Bootstrap-
ping Cross-validation and repeated cross-validation are given as the options for
resampling, along with the number of folds and number of repeats.

• boot: Bootstrapping is performed similarly; the dataset is divided into folds
with replacement and models are trained and tested in these folds to deter-
mine the best parameters for the given method and dataset.

nonlinComb 25

• cv: Cross-validation resampling, the dataset is divided into the number of
folds given without replacement; in each iteration, one fold is selected as
the test set, and the model is built using the remaining folds and tested on
the test set. The corresponding AUC values and the parameters used for the
combination are kept in a list. The best-performed model is selected, and
the combination score is returned for the whole dataset.

• repeatedcv: Repeated cross-validation the process is repeated, and the
best-performed models selected at each step are stored in another list; the
best performed among these models is selected to be applied to the entire
dataset.

nfolds a numeric value that indicates the number of folds for cross validation based
resampling methods (5, default)

nrepeats a numeric value that indicates the number of repeats for "repeatedcv" option of
resampling methods (3, default)

niters a numeric value that indicates the number of bootstrapped resampling iterations
(10, default)

standardize a character string indicating the name of the standardization method. The
default option is no standardization applied. Available options are:

• Z-score (zScore): This method scales the data to have a mean of 0 and a
standard deviation of 1. It subtracts the mean and divides by the standard
deviation for each feature. Mathematically,

Z − score =
x− (x)

sd(x)

where x is the value of a marker, x is the mean of the marker and sd(x) is
the standard deviation of the marker.

• T-score (tScore): T-score is commonly used in data analysis to transform
raw scores into a standardized form. The standard formula for converting a
raw score x into a T-score is:

T − score =

(
x− (x)

sd(x)
× 10

)
+50

where x is the value of a marker, x is the mean of the marker and sd(x) is
the standard deviation of the marker.

• Range (a.k.a. min-max scaling) (range): This method transforms data to
a specific range, between 0 and 1. The formula for this method is:

Range =
x−min(x)

max(x)−min(x)

• Mean (mean): This method, which helps to understand the relative size of
a single observation concerning the mean of dataset, calculates the ratio of
each data point to the mean value of the dataset.

Mean =
x

x

where x is the value of a marker and x is the mean of the marker.

26 nonlinComb

• Deviance (deviance): This method, which allows for comparison of indi-
vidual data points in relation to the overall spread of the data, calculates the
ratio of each data point to the standard deviation of the dataset.

Deviance =
x

sd(x)

where x is the value of a marker and sd(x) is the standard deviation of the
marker.

include.interact

a logical indicator that specifies whether to include the interaction between
the markers to the feature space created for polynomial based methods (FALSE,
default)

alpha a numeric value as the mixing parameter in Elastic Net Regression method (0.5,
default)

show.plot a logical. If TRUE, a ROC curve is plotted. Default is TRUE

direction a character string determines in which direction the comparison will be made.
">": if the predictor values for the control group are higher than the values of the
case group (controls > cases). "<": if the predictor values for the control group
are lower or equal than the values of the case group (controls < cases).

conf.level a numeric values determines the confidence interval for the ROC curve(0.95,
default).

cutoff.method a character string determines the cutoff method for the ROC curve.

show.result a logical string indicating whether the results should be printed to the console.

... further arguments. Currently has no effect on the results.

Value

A list of numeric nonlinear combination scores calculated according to the given method and stan-
dardization option

Author(s)

Serra Ilayda Yerlitas, Serra Bersan Gengec, Necla Kochan, Gozde Erturk Zararsiz, Selcuk Korkmaz,
Gokmen Zararsiz

Examples

data("exampleData1")
data <- exampleData1

markers <- data[, -1]
status <- factor(data$group, levels = c("not_needed", "needed"))
event <- "needed"
cutoff.method <- "Youden"

score1 <- nonlinComb(
markers = markers, status = status, event = event,
method = "lassoreg", include.interact = FALSE, resample = "boot", niters = 5,

plotComb 27

degree1 = 4, degree2 = 4, cutoff.method = cutoff.method,
direction = "<"

)

score2 <- nonlinComb(
markers = markers, status = status, event = event,
method = "splines", resample = "none", cutoff.method = cutoff.method,
standardize = "tScore", direction = "<"

)

score3 <- nonlinComb(
markers = markers, status = status, event = event,
method = "lassoreg", resample = "repeatedcv", include.interact = TRUE,
cutoff.method = "ROC01", standardize = "zScore", direction = "auto"

)

plotComb Plot the combination scores using the training model

Description

The plotComb a function that generates plots from the training model. The function takes argument
model. The outputs of the function are three different plots generated from the combination scores.

Usage

plotComb(model, status)

Arguments

model a list object where the parameters from the training model are saved.

status a factor vector that includes the actual disease status of the patients

Value

A data.frame plots

Author(s)

Serra Ilayda Yerlitas, Serra Bersan Gengec, Necla Kochan, Gozde Erturk Zararsiz, Selcuk Korkmaz,
Gokmen Zararsiz

28 predict.dtComb

Examples

call data
data(exampleData1)

define the function parameters
markers <- exampleData1[, -1]
status <- factor(exampleData1$group, levels = c("not_needed", "needed"))
event <- "needed"

score1 <- linComb(
markers = markers, status = status, event = event,
method = "scoring", resample = "none",
standardize = "none", direction = "<", cutoff.method = "Youden"

)

plotComb(score1, status)

score2 <- nonlinComb(
markers = markers, status = status, event = event,
method = "nsgam", resample = "cv", include.interact = FALSE, direction = "<",
standardize = "zScore", cutoff.method = "Youden"

)

plot.score2 <- plotComb(score2, status)

score3 <- mathComb(
markers = markers, status = status, event = event,
method = "distance", distance = "euclidean", direction = "auto",
standardize = "tScore", cutoff.method = "Youden"

)

plot.score3 <- plotComb(score3, status)

predict.dtComb Predict combination scores and labels for new data sets using the
training model

Description

The predict.dtComb is a function that generates predictions for a new dataset of biomarkers using
the parameters from the fitted model. The function takes arguments newdata and model. The
function’s output is the combination scores and labels of object type.

Usage

S3 method for class 'dtComb'
predict(object, newdata = NULL, ...)

predict.dtComb 29

Arguments

object a list object where the parameters from the training model are saved.

newdata a numeric new data set that includes biomarkers that have not been introduced
to the model before.

... further arguments. Currently has no effect on the results.

Value

A data.frame predicted combination scores (or probabilities) and labels

Author(s)

Serra Ilayda Yerlitas, Serra Bersan Gengec, Necla Kochan, Gozde Erturk Zararsiz, Selcuk Korkmaz,
Gokmen Zararsiz

Examples

call data
data(exampleData1)

define the function parameters
markers <- exampleData1[, -1]
status <- factor(exampleData1$group, levels = c("not_needed", "needed"))
event <- "needed"

score1 <- linComb(
markers = markers, status = status, event = event,
method = "logistic", resample = "none",
standardize = "none", direction = "<", cutoff.method = "Youden"

)

comb.score1 <- predict(score1, markers)

score2 <- nonlinComb(
markers = markers, status = status, event = "needed", include.interact = TRUE,
method = "polyreg", resample = "repeatedcv", nfolds = 5,
nrepeats = 10, cutoff.method = "Youden", direction = "auto"

)

comb.score2 <- predict(score2, markers)

score3 <- mathComb(
markers = markers, status = status, event = event,
method = "distance", distance = "euclidean", direction = "auto",
standardize = "tScore", cutoff.method = "Youden"

)

comb.score3 <- predict(score3, markers)

30 rocsum

print_train Print the summary of linComb, nonlinComb, mlComb and mathComb
functions.

Description

The print_train function prints the summary statistics of the fitted model

Usage

print_train(print_model)

Arguments

print_model a list of parameters taken from the fitted model that includes the combination
method, resampling method, pre-processing method, selected optimum param-
eters and the results of fit.

Value

No return value writes a summary of the results to the console.

Author(s)

Serra Ilayda Yerlitas, Serra Bersan Gengec, Necla Kochan, Gozde Erturk Zararsiz, Selcuk Korkmaz,
Gokmen Zararsiz

rocsum Generate ROC curves and related statistics for the given markers and
Combination score.

Description

The rocsum function returns the ROC curves with coordinates, Area Under the Curves of mark-
ers and combination score, Area Under the Curve comparison of markers and combination score,
Confusion matrices for both markers and combination score with the cutoff values derived from the
ROC Curves.

Usage

rocsum(
markers = NULL,
comb.score = NULL,
status = NULL,
event = NULL,
direction = c("auto", "<", ">"),

std.test 31

conf.level = 0.95,
cutoff.method = c("CB", "MCT", "MinValueSp", "MinValueSe", "ValueSp", "ValueSe",
"MinValueSpSe", "MaxSp", "MaxSe", "MaxSpSe", "MaxProdSpSe", "ROC01", "SpEqualSe",
"Youden", "MaxEfficiency", "Minimax", "MaxDOR", "MaxKappa", "MinValueNPV",

"MinValuePPV", "ValueNPV", "ValuePPV", "MinValueNPVPPV", "PROC01", "NPVEqualPPV",
"MaxNPVPPV", "MaxSumNPVPPV", "MaxProdNPVPPV", "ValueDLR.Negative",

"ValueDLR.Positive", "MinPvalue", "ObservedPrev", "MeanPrev", "PrevalenceMatching"),
show.plot = show.plot

)

Arguments

markers a numeric data frame that includes two diagnostic tests results

comb.score a matrix of numeric combination scores calculated according to the given method

status a factor vector that includes the actual disease status of the patients

event a character string that indicates the event in the status to be considered as
positive event

direction a character string determines in which direction the comparison will be made.
“>”: if the predictor values for the control group are higher than the values of
the case group (controls > cases). “<”: if the predictor values for the control
group are lower or equal than the values of the case group (controls < cases).

conf.level a numeric values determines the confidens interval for the ROC curve(0.95,
default).

cutoff.method a character string determines the cutoff method for the ROC curve.

show.plot a logical. If TRUE, a ROC curve is plotted. Default is FALSE.

Value

A list of numeric ROC Curves, AUC statistics and Confusion matrices.

Author(s)

Serra Ilayda Yerlitas, Serra Bersan Gengec, Necla Kochan, Gozde Erturk Zararsiz, Selcuk Korkmaz,
Gokmen Zararsiz

std.test Standardization according to the training model parameters.

Description

The std.test Standardization parameters will be taken from the fitted training model and applied
to the new data set.

Usage

std.test(newdata, model)

32 std.train

Arguments

newdata a numeric data frame of biomarkers
model a list of parameters from the output of linComb, nonlinComb, mlComb or

mathComb functions.

Value

A numeric dataframe of standardized biomarkers

Author(s)

Serra Ilayda Yerlitas, Serra Bersan Gengec, Necla Kochan, Gozde Erturk Zararsiz, Selcuk Korkmaz,
Gokmen Zararsiz

std.train Standardization according to the chosen method.

Description

The std.train Standardization (range, zScore etc.) can be estimated from the training data and
applied to any dataset with the same variables.

Usage

std.train(data, standardize = NULL)

Arguments

data a numeric data frame of biomarkers
standardize a character string indicating the name of the standardization method. The

default option is no standardization applied. Available options are:
• Z-score (zScore): This method scales the data to have a mean of 0 and a

standard deviation of 1. It subtracts the mean and divides by the standard
deviation for each feature. Mathematically,

Z − score =
x− (x)

sd(x)

where x is the value of a marker, x is the mean of the marker and sd(x) is
the standard deviation of the marker.

• T-score (tScore): T-score is commonly used in data analysis to transform
raw scores into a standardized form. The standard formula for converting a
raw score x into a T-score is:

T − score =

(
x− (x)

sd(x)
× 10

)
+50

where x is the value of a marker, x is the mean of the marker and sd(x) is
the standard deviation of the marker.

transform_math 33

• Range (a.k.a. min-max scaling) (range): This method transforms data to
a specific range, between 0 and 1. The formula for this method is:

Range =
x−min(x)

max(x)−min(x)

• Mean (mean): This method, which helps to understand the relative size of
a single observation concerning the mean of dataset, calculates the ratio of
each data point to the mean value of the dataset.

Mean =
x

x

where x is the value of a marker and x is the mean of the marker.
• Deviance (deviance): This method, which allows for comparison of indi-

vidual data points in relation to the overall spread of the data, calculates the
ratio of each data point to the standard deviation of the dataset.

Deviance =
x

sd(x)

where x is the value of a marker and sd(x) is the standard deviation of the
marker.

Value

A numeric data.frame of standardized biomarkers

Author(s)

Serra Ilayda Yerlitas, Serra Bersan Gengec, Necla Kochan, Gozde Erturk Zararsiz, Selcuk Korkmaz,
Gokmen Zararsiz

Examples

call data
data(exampleData1)

define the function parameters
markers <- exampleData1[, -1]
markers2 <- std.train(markers, "deviance")

transform_math Mathematical transformations for biomarkers.

Description

The transform_math function applies a user preference transformation from log exp sin cos
transformations for biomarkers.

34 transform_math

Usage

transform_math(markers, transform)

Arguments

markers a numeric data frame that contains the biomarkers

transform a numeric string specifying the method used for transform the markers. The
available methods are: log exp sin cos.

Value

A numeric dataframe of standardized biomarkers

Author(s)

Serra Ilayda Yerlitas, Serra Bersan Gengec, Necla Kochan, Gozde Erturk Zararsiz, Selcuk Korkmaz,
Gokmen Zararsiz

Examples

data(exampleData1)
markes <- exampleData1[, -1]
transform_math(markes, transform = "log")

Index

∗ datasets
allMethods, 2
exampleData1, 4
exampleData2, 5
exampleData3, 5

allMethods, 2
availableMethods, 3

dtComb, 3
dtComb-package (dtComb), 3

exampleData1, 4
exampleData2, 5
exampleData3, 5

helper_minimax, 6
helper_minmax, 7
helper_PCL, 8
helper_PT, 9
helper_TS, 10

kappa.accuracy, 11

linComb, 12

mathComb, 17
mlComb, 20

nonlinComb, 22

plotComb, 27
predict.dtComb, 28
print_train, 30

rocsum, 30

std.test, 31
std.train, 32

transform_math, 33

35

	allMethods
	availableMethods
	dtComb
	exampleData1
	exampleData2
	exampleData3
	helper_minimax
	helper_minmax
	helper_PCL
	helper_PT
	helper_TS
	kappa.accuracy
	linComb
	mathComb
	mlComb
	nonlinComb
	plotComb
	predict.dtComb
	print_train
	rocsum
	std.test
	std.train
	transform_math
	Index

