
dtComb: A Comprehensive R Package for Combining

Two Diagnostic Tests

S. İlayda YERLİTAŞ TAŞTAN1,2, Serra Berşan GENGEÇ2, Necla KOÇHAN3, Gözde

ERTÜRK ZARARSIZ1,2, Selçuk KORKMAZ4 and Gökmen ZARARSIZ1,2†

1Erciyes University Faculty of Medicine Department of Biostatistics, Kayseri, Türkiye
2Erciyes University Drug Application and Research Center (ERFARMA) , Kayseri, Türkiye

3Izmir University of Economics-Department of Mathematics, 35330, İzmir, Türkiye
4Trakya University Faculty of Medicine Department of Biostatistics, Edirne, Türkiye

October 10, 2024

Abstract

dtComb is a comprehensive R package that combines two different diagnostic tests. Using its
extensive collection of 143 combination methods, the dtComb package enables researchers to standard-
ize their data and merge diagnostic tests. Users can load the dataset containing the reference list
and the diagnostic tests they intend to utilize. The package includes combination methods grouped
into four main categories: linear combination methods (linComb), non-linear combination methods
(nonlinComb), mathematical operators (mathComb), and machine-learning algorithms (mlComb). The
package incorporates eight specific combination methods from the literature within the scope of linear
combination methods. Non-linear combination methods encompass statistical approaches like polyno-
mial regression, penalized regression methods, and splines, incorporating the interactions between the
diagnostic tests. Mathematical operators involve arithmetic operations and eight distance measures

adaptable to various data structures. Finally, machine-learning algorithms include 113 models from
the caret package tailored for dtComb’s data structure. The data standardization step includes five
different methods: Z-score, T-score, Mean, Deviance, and Range standardization. The dtComb in-
tegrates machine-learning approaches, enabling the utilization of preprocessing methods available in
the caret package for standardization purposes within the dtComb environment. The dtComb package
allows users to fine-tune hyperparameters while building a model. This is accomplished through resam-
pling techniques such as 10-fold cross-validation, bootstrapping, and 10-fold repeated cross-validation.
Since machine-learning algorithms are directly adapted from the caret package, all resampling meth-
ods available in the caret package are applicable within the dtComb environment. Following the model
building, the predict function predicts the class labels and returns the combination scores of new
observations from the test set. The dtComb package is designed to be user-friendly and easy to use and
is currently the most comprehensive package developed to combine diagnostic tests in the literature.
This vignette was created to guide researchers on how to use this package. dtComb version: 1.0.4

1 Introduction

Diagnostic tests are critical in distinguishing diseases and determining accurate diagnoses for patients,
and they significantly impact clinical decisions. Beyond their fundamental role in medical diagnosis,
these tests also aid in developing appropriate treatment strategies while lowering treatment costs. The
widespread availability of these diagnostic tests depends on their accuracy, performance, and reliability.
When it comes to diagnosing medical conditions, there may be several tests available, and some may
perform better than others and eventually replace established protocols. Studies have shown that using
multiple tests rather than relying on a single test improves diagnostic performance [1, 2, 3]. A number

1

https://cran.r-project.org/web/packages/dtComb/index.html
https://cran.r-project.org/web/packages/dtComb/index.html
https://cran.r-project.org/web/packages/caret/index.html
https://cran.r-project.org/web/packages/dtComb/index.html
https://cran.r-project.org/web/packages/dtComb/index.html
https://cran.r-project.org/web/packages/caret/index.html
https://cran.r-project.org/web/packages/dtComb/index.html
https://cran.r-project.org/web/packages/dtComb/index.html
https://cran.r-project.org/web/packages/caret/index.html
https://cran.r-project.org/web/packages/caret/index.html
https://cran.r-project.org/web/packages/dtComb/index.html
https://cran.r-project.org/web/packages/dtComb/index.html

of approaches to combining diagnostic tests are available in the literature. The dtComb package includes
a variety of combination methods existing in the literature, data standardization approaches for different
data structure, and resampling methods for model building. In this vignette, users will learn how to
combine two diagnostic tests with different combination methods. dtComb package can be loaded as
below:

library(dtComb)

2 Preparing the input data

The methods provided within this package are designed to require a DataFrame comprising three columns,
where the first column represents class labels, and the subsequent columns correspond to the values of
the corresponding markers. The class label is a binary variable (i.e., negative/positive, present/absent)
representing the outcomes of a reference test used in disease precision. This vignette will use the dataset
exampleData1, included in this package. This dataset contains information from patients admitted to the
General Surgery Department of Erciyes University Medical Faculty with complaints regarding abdominal
pain. The dataset comprises 225 patients split into two groups: those requiring immediate laparotomy
(110 patients) and those not requiring it (115 patients). Patients who had surgery due to postoperative
pathologies are in the first group, whereas those with negative laparotomy results belong to the second
group [4].

data(exampleData1)

head(exampleData1)

group ddimer log_leukocyte

1 needed 8.09 5.52

2 needed 5.16 4.43

3 needed 8.90 5.20

4 needed 10.17 5.39

5 needed 1.93 5.09

6 needed 3.63 4.68

The dataset is divided into two parts: the training and the test sets. The training set consists of 75%
of the dataset and is used to train classification models and to compare different model performances.
The remaining portion of the dataset is saved as the test set, which will later be used in the prediction
phase. The train and the test sets are built as follows:

train set from the exampleData1

set.seed(2128)

inTrain <- caret::createDataPartition(exampleData1$group, p = 3 / 4, list = FALSE)

trainData <- exampleData1[inTrain,]

head(trainData)

group ddimer log_leukocyte

2 needed 5.16 4.43

3 needed 8.90 5.20

4 needed 10.17 5.39

5 needed 1.93 5.09

6 needed 3.63 4.68

7 needed 3.12 5.20

test set from the exampleData1

set.seed(2128)

testData <- exampleData1[-inTrain, -1]

2

We have a total of 170 patients in the training set, with 83 requiring laparotomy and 87 not requiring
laparotomy. The training dataset is divided into two parts: markers (i.e., diagnostic test results) and
status (i.e., reference test results or class labels). The class label is also converted into a factor variable
if it is not a factor. The remaining 55 patients are assigned to the test set.

markers <- trainData[, -1]

status <- factor(trainData$group, levels = c("not_needed", "needed"))

3 Available methods

The dtComb package contains 143 methods for combining diagnostic tests. These methods are classified
as linear methods, non-linear methods, mathematical operators, and machine-learning (ML) algorithms,
each briefly explained below.
Notations:
Before getting into these methods, let us introduce some notations used throughout this vignette. Let
Di, i = 1, 2, . . . , n1 be the marker values of ith individual in diseased group, where Di = (Di1, Di2),
and Hj , j = 1, 2, . . . , n2 be the marker values of j th individual in healthy group, where Hj = Hj1, Hj2.
Let xi1 = c(Di1, Hj1) be the values of the first marker, and xi2 = c(Di2, Hj2) be values of the second
marker for the ith individual i = 1, 2, ..., n. Let Di,min = min(Di1, Di2), Di,max = max(Di1, Di2),
Hj,min = min(Hj1, Hj2), Hj,max = max(Hj1, Hj2) and ci be the resulting combination score for the ith
individual.

3.1 Linear combination methods:

• Logistic Regression (logistic): Combination score obtained by fitting a logistic regression model
is as follows:

ci =

(

eβ0+β1xi1+β2xi2

1 + eβ0+β1xi1+β2xi2

)

A combination score obtained by fitting a logistic regression model typically refers to the predicted
probability or score assigned to each observation in a dataset based on the logistic regression model’s
fitted values [5].

• Scoring based on Logistic Regression (scoring): The combination score is obtained using the
slope values of the relevant logistic regression model, slope values are rounded to the number of
digits taken from the user [6].

ci = β1xi1 + β2xi2

• Pepe & Thompson’s method (PT): The Pepe and Thompson combination score, developed using
their optimal linear combination technique, aims to maximize the Mann-Whitney U statistic like
the Min-max method. Unlike the Min-max method, the Pepe and Thomson method considers all
marker values instead of the lowest and maximum values [7].

maximize U(α) =

(

1

n1, n2

) n1
∑

i=1

n2
∑

j=1

I(Di1 + αDi2 >= Hj1 + αHj2)

ci = xi1 + αxi2

• Pepe, Cai & Langton’s method (PCL): Pepe, Cai and Langton combination score obtained by
using AUC as the parameter of a logistic regression model [8].

maximize U(α) =

(

1

n1, n2

) n1
∑

i=1

n2
∑

j=1

I(Di1 + αDi2 > Hj1 + αHj2) +

(

1

2

)

I(Di1 + αDi2 = Hj1 + αHj2)

ci = xi1 + αxi2

3

• Min-Max method (minmax): This method linearly combines the minimum and maximum values
of the markers by finding a parameter, α , that maximizes the Mann-Whitney statistic, an empirical
estimate of the ROC area [9].

maximize U(α) =

(

1

n1, n2

) n1
∑

i=1

n2
∑

j=1

I(Di,max + αDi,min > Hj,max + αHj,min)

ci = xi,max + αxi,min

where x,max = max(xi1, xi2) and x,min = min(xi1, xi2).

• Su & Liu’s method (SL): The Su and Liu combination score is computed through Fisher’s discrim-
inant coefficients, which assumes that the underlying data follow a multivariate normal distribution,
and the covariance matrices across different classes are assumed to be proportional [10]. Assuming
that D ∼ N(µD,

∑

D) and H ∼ N(µH ,
∑

H) represent the multivariate normal distributions for the
diseased and non-diseased groups, respectively. The Fisher’s coefficients are as follows:

(α, β) = (
∑

D +
∑

H) −1µ

where µ=µD − µH . The combination score in this case is:

ci = αxi1 + βxi2

• Minimax approach (minimax): Combination score obtained with the Minimax procedure; t pa-
rameter is chosen as the value that gives the maximum AUC from the combination score [11].
Suppose that D follows a multivariate normal distribution D ∼ N(µD,

∑

D), representing the dis-
eased group, and H follows a multivariate normal distribution H ∼ N(µH ,

∑

H), representing the
non-diseased group. Then Fisher’s coefficients are as follows:

(α, β) = [t
∑

D + (1− t)
∑

H]−1(µD − µH)

ci = b1x1 + b2x2

• Todor & Saplacan’s method (TS): Combination score obtained using the trigonometric functions
of the Θ value that optimizes the corresponding AUC [12].

ci = sin(θ)xi1 + cos(θ)xi2

3.2 Nonlinear combination methods:

• Logistic Regression with Polynomial Feature Space (polyreg): The method builds a logistic
regression model with the polynomial feature space and returns the probability of a positive event
for each observation.

• Ridge Regression with Polynomial Feature Space (ridgereg): Ridge regression is a shrink-
age method used to estimate the coefficients of highly correlated variables and in this case the
polynomial feature space created from two markers. For the implementation of the method, the
glmnet library is used with two functions: cv.glmnet to run a cross-validation model to deter-
mine the tuning parameter λ and glmnet to fit the model with the selected tuning parameter [13].
For Ridge regression, the glmnet package is integrated into the dtComb package to facilitate the
implementation of this method.

• Lasso Regression with Polynomial Feature Space (lassoreg): Lasso regression, like Ridge
regression, is a type of shrinkage method. However, a notable difference is that Lasso tends to set
some feature coefficients to zero, making it useful for feature elimination. It also employs cross-
validation for parameter selection and model fitting using the glmnet library [13].

4

https://cran.r-project.org/web/packages/glmnet/index.html
https://cran.r-project.org/web/packages/glmnet/index.html
https://cran.r-project.org/web/packages/glmnet/index.html

• Elastic-Net Regression with Polynomial Feature Space (elasticreg): Elastic-Net Regres-
sion is a hybrid model that merges the penalties from Ridge and Lasso regression, aiming to leverage
the strengths of both approaches. This model involves two parameters: λ, similar to Ridge and Lasso,
and α, a user-defined mixing parameter ranging between 0 (representing Ridge) and 1 (representing
Lasso). The α parameter determines the balance or weights between the loss functions of Ridge and
Lasso regressions [13].

• Splines (splines): Another non-linear approach to combining markers involves employing regres-
sion models within a polynomial feature space. This approach applies multiple regression models to
the dataset using a function derived from piecewise polynomials. This implementation uses splines
with user-defined degrees of freedom and degrees for the fitted polynomials. The splines library is
employed to construct piecewise logistic regression models using base splines [14].

• Generalized Additive Models with Smoothing Splines and Generalized Additive Models
with Natural Cubic Splines (sgam and nsgam): In addition to the basic spline structure,
Generalized Additive Models are applied with natural cubic splines and smoothing splines using the
gam library in R [15].

Possible interactions between the two diagnostic tests can also be considered within the non-linear ap-
proach. This may be advantageous, particularly if there is a correlation between these two markers. The
include.interact option in the nonlinComb function can be set to TRUE to include interactions when
building the model.

3.3 Mathematical operators:

• Arithmetic Operators : Arithmetic operators such as addition (add), subtraction (subtract),
multiplication (multiply), and division (divide) can be used as mathematical operators within the
dtComb package.

• Distance Measures: The combination of markers using these mathematical operators is evaluated
based on distance measures, which assess the relationships between marker values [16, 17, 18]. The
included distance measures with their respective formulas within the package are outlined as follows:

– Euclidean(euclidean): ci =
√

(xi1 − 0)2 + (xi2 − 0)2

– Manhattan(manhattan): ci = |xi1 − 0|+ |xi2 − 0|
– Chebyshev(chebyshev): ci = max|xi1 − 0|, |xi2 − 0|
– Kulczynski d(kulczynski-d): ci =

|xi1−0|+|xi2−0|
min(xi1,xi2)

– Lorentzian(lorentzian): ci = (ln(1 + |xi1 − 0|)) + (ln(1 + |xi2 − 0|))

– Taneja(taneja): ci = z1 ×
(

log z1√
(xi1×ϵ)

)

+z2 ×
(

log z2√
(xi2×ϵ)

)

where z1 = (xi1−0)
2 , z2 = (xi2−0)

2

– Kumar-Johnson(kumar-johnson): ci =
(xi1−0)2

2(xi1×ϵ) +
(xi2−0)2

2(xi2×ϵ) , ϵ = 0.00001

– Avg(avg): ci =
|xi1−0|+|xi2−0|+max(xi1−0),(xi2−0)

2

• Exponential approach: This method combines diagnostic tests to examine relationships between
diagnostic measurements (i.e., markers). In this approach, one of the two diagnostic tests is consid-
ered the base, and the other is an exponent. This relationship is denoted by the terms baseinexp
(xxi2

i1) and expinbase (xxi1

i2), respectively.

To increase the performance of the diagnostic test results, one can transform the values of markers before
applying mathematical operators. It is possible to apply transformations like cosine (cos), sine (sin),
exponential (exp), and logarithmic (log). Similarly, when using add and subtract operators, the exponents
of markers are iteratively adjusted by 0.1 within the range [-3, 3]. This adjustment aims to optimize the
AUC, and the model with the highest AUC is chosen as the final model.

5

https://cran.r-project.org/web/packages/splines/index.html
https://cran.r-project.org/web/packages/gam/index.html
https://cran.r-project.org/web/packages/dtComb/index.html

3.4 Machine-learning algorithms:

Given that the diagnostic test data consists of numerical inputs and aims to predict binary outcomes, we
selected 113 models from the caret package that meet these criteria. We benefit from these 113 models
to create the mlComb function, which combines diagnostic tests using machine-learning algorithms. For a
list of machine learning algorithms included in the dtComb package, users can run the availableMethods
function [19].

4 Standardization

Standardization is critical in data analysis, especially when dealing with variables with different units
or scales. Standardization plays a vital role in ensuring fair comparisons and accurate modeling in the
context of diagnostic tests containing multiple variables measured in different units. In dtComb, while
standardization is optional, certain combination methods within the dtComb package such as minmax, PCL,
PT enforce standardization by default. For linear and non-linear combination methods and mathematical
operators, five different standardization methods are available, listed as follows:

• Z-score: This method scales the data to have a mean of 0 and a standard deviation of 1. It subtracts
the mean and divides by the standard deviation for each feature. Mathematically,

Z − score =
x− (x)

sd(x)

where x is the value of a marker, x is the mean of the marker, and sd(x) is the standard deviation
of the marker.

• T-score: T-score is commonly used in data analysis to transform raw scores into a standardized
form. The standard formula for converting a raw score x into a T-score is:

T − score =

(

x− (x)

sd(x)
× 10

)

+50

where x is the value of a marker, x is the mean of the marker, and sd(x) is the standard deviation
of the marker.

• Range (a.k.a. min-max scaling): This method transforms data to a specific range between 0
and 1. The formula for this method is:

Range =
x−min(x)

max(x)−min(x)

• Mean: This method, which helps to understand the relative size of a single observation concerning
the mean of the dataset, calculates the ratio of each data point to the mean value of the dataset.

Mean =
x

x

where x is the value of a marker and x is the mean of the marker.

• Deviance: This method, which allows for the comparison of individual data points about the overall
spread of the data, calculates the ratio of each data point to the standard deviation of the dataset.

Deviance =
x

sd(x)

where x is the value of a marker and sd(x) is the standard deviation of the marker.

The mlComb function, designed for combining two diagnostic tests using machine-learning approaches,
leverages the diverse set of standardization methods provided by the caret package. This empowers
users to choose the optimal method tailored to their data and model needs. For guidance on default
standardization methods or specifying particular standardization techniques for different models, users
can refer to the caret documentation.

6

https://cran.r-project.org/web/packages/caret/index.html
https://cran.r-project.org/web/packages/dtComb/index.html
https://cran.r-project.org/web/packages/caret/index.html
https://cran.r-project.org/web/packages/caret/index.html

5 Model building

The dtComb has four different functions (linComb, nonlinComb, mlComb, mathComb) for the model building
and evaluation process. These functions can be used to evaluate selected model providing a set of values
for the model parameters, return the optimal model as well as the overall performance of the model for
the training set.

5.1 Resampling methods to optimize the model parameters

The dtComb package optimizes model parameters for linear and non-linear approaches by employing
various validation techniques: (i) n-fold cross-validation, which involves splitting the training data into
nfolds groups for the model assessment, (ii) 10-fold repeated cross-validation where 10-fold division is
repeated nrepeat times to ensure robust model evaluation and (iii) bootstrapping which makes use of
niters subgroups from the training dataset to enhance parameter optimization and model validation.
The resampling function embedded within the caret package is used by the mlComb function to perform
resampling and hyper-parameter optimization. The relevant section of the caret package documentation
contains detailed information about this process [19].

5.2 Model evaluation in the training phase

Metrics such as Receiver Operating Characteristic (ROC) curves and Area Under the Curve (AUC)
values evaluate the model’s performance during training. These metrics provide insights into the model’s
ability to distinguish between different classes or categories, offering valuable information regarding its
performance characteristics. While measuring the ROC curves, an argument called direction argument
is given as input to the relevant function, and the default value of the direction is set to auto. Moreover,
the cut-off point which determines AUC is controlled by the cutoff.method argument within the package.
34 methods are available to determine the cut-off point, accessible through the OptimalCutpoints package
in R [20]. Now, we will provide examples of how to use each approach’s specific functions separately. We
selected the cutoff.method for each scenario as the Youden Index and specified the ROC curve’s direction
as <.
Using the training data provided earlier, for a linear combination approach, the linComb function is
employed with the range. Standardization method and 5-fold cross-validation in the following manner:

set.seed(2128)

linComb Function

fit.lin <- linComb(

markers = markers,

status = status,

event = "needed",

method = "scoring",

resample = "cv",

standardize = "range",

ndigits = 2, direction = "auto",

cutoff.method = "Youden"

)

7

https://cran.r-project.org/web/packages/caret/index.html
https://cran.r-project.org/web/packages/caret/index.html
https://cran.r-project.org/web/packages/OptimalCutpoints/index.html

ROC Curves for Combination Diagnostic Test

1 − Specificity

S
en

si
tiv

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AUC: 0.822

AUC: 0.795

AUC: 0.878

ddimer
log_leukocyte
Combination Score

Let us now assume that we aim to fit the same training data using the Lasso regression method, which
falls under the category of non-linear approaches. We’ll use the nonlinComb function for a non-linear
combination method, incorporating the bootstrapping resampling method with niter=10, and specifying
additional arguments as follows:

nonlinComb Function

set.seed(2128)

fit.nonlin <- nonlinComb(

markers = markers,

status = status,

event = "needed",

method = "lassoreg",

include.interact = "TRUE",

resample = "boot",

direction = "auto",

cutoff.method = "Youden"

)

8

ROC Curves for Combination Diagnostic Test

1 − Specificity

S
en

si
tiv

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AUC: 0.822

AUC: 0.795

AUC: 0.919

ddimer
log_leukocyte
Combination Score

In the following example, we fit the training data using the knn (K-Nearest Neighbors) method, a
machine-learning approach. We will use the mlComb function, incorporating the 10-folds repeated cross-
validation technique (i.e.,nfolds = 10, nrepeats = 5) as follows:

mlComb Function

set.seed(2128)

fit.ml <- mlComb(

markers = markers,

status = status,

event = "needed",

method = "knn",

resample = "repeatedcv", nfolds = 10, nrepeats = 5,

preProcess = c("center", "scale"),

direction = "<", cutoff.method = "Youden"

)

9

ROC Curves for Combination Diagnostic Test

1 − Specificity

S
en

si
tiv

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AUC: 0.822

AUC: 0.795

AUC: 0.910

ddimer
log_leukocyte
Combination Score

In the final example, we’ll implement the mathComb function, specifically designed for mathematical
operators. Using the same training dataset as in the previous examples, the chosen method involves
utilizing the Euclidean distance metric to train the model as follows:

mathComb Function

fit.math <- mathComb(

markers = markers,

status = status,

event = "needed",

method = "distance",

distance = "euclidean",

direction = "<",

cutoff.method = "Youden"

)

10

ROC Curves for Combination Diagnostic Test

1 − Specificity

S
en

si
tiv

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AUC: 0.822

AUC: 0.795

AUC: 0.880

ddimer
log_leukocyte
Combination Score

The results of the four described approaches and single diagnostic tests are summarized in Table 1.
The findings indicate that the combined diagnostic tests outperformed the individual ones. Notably, the
Lasso regression method had the highest AUC value among the combined approaches. In this vignette,
we compared only a few models and demonstrated how to train models. Acknowledging that different
data and models might yield different results is essential. We will use the model trained by the Lasso

regression method to make predictions on the test set since it exhibited superior performance on the
training set.

Table 1: Combination results for train data

Metot AUC Accuracy

D-dimer 0.822 0.77
log(leukocyte) 0.795 0.77
scoring 0.878 0.82
lassoreg 0.919 0.85
knn 0.910 0.81
distance(euclidean) 0.880 0.81

6 Predicting the class labels of test samples

We use the model parameters obtained during the training phase to predict the class labels of test samples.
For instance, when training a model using the Lasso regression method, the labels of the test set are
predicted based on the parameters optimized during training. However, the test set must undergo the
same standardization or preprocessing steps as the training set to ensure both sets are on the same scale

11

before making predictions. The predict function is then applied to the standardized test samples to
estimate the class label (status) of new samples, as shown below:

predict(fit.nonlin, testData)

comb.score labels

1 1.000000000 needed

2 0.996516222 needed

3 0.999999897 needed

4 0.623530874 needed

5 1.000000000 needed

6 0.986539360 needed

7 0.999999625 needed

8 1.000000000 needed

9 0.999945221 needed

10 0.683216423 needed

11 0.999822666 needed

12 0.079077514 not_needed

13 0.599066868 needed

14 0.460615670 not_needed

15 0.525039302 not_needed

16 1.000000000 needed

17 0.983148471 needed

18 1.000000000 needed

19 0.874697566 needed

20 1.000000000 needed

21 0.332037411 not_needed

22 0.073757039 not_needed

23 0.378202968 not_needed

24 1.000000000 needed

25 0.999836211 needed

26 0.324951786 not_needed

27 0.734074461 needed

28 0.016074836 not_needed

29 0.724199018 needed

30 0.628914315 needed

31 0.274151673 not_needed

32 0.329407757 not_needed

33 0.127206060 not_needed

34 0.028066565 not_needed

35 0.123377049 not_needed

36 0.093700644 not_needed

37 0.050466767 not_needed

38 0.074684122 not_needed

39 0.399087783 not_needed

40 0.499194405 not_needed

41 0.006978096 not_needed

42 0.017378012 not_needed

43 0.386983215 not_needed

44 0.339655425 not_needed

45 0.331853431 not_needed

46 1.000000000 needed

47 0.349232483 not_needed

48 0.430754820 not_needed

49 0.409973137 not_needed

50 0.369327194 not_needed

12

51 0.005090672 not_needed

52 0.592396072 needed

53 0.533448209 not_needed

54 0.025102711 not_needed

55 0.002066089 not_needed

When employed on models trained with the linComb or mathComb functions, the predict function
returns the combination score of the applied method and the estimated label. The predict function, on
the other hand, returns the probability of positive and negative cases for each test observation for models
trained with the nonlinComb or mlComb function.

7 Session info

sessionInfo()

R version 4.3.1 (2023-06-16)

Platform: aarch64-apple-darwin20 (64-bit)

Running under: macOS Sonoma 14.6.1

##

Matrix products: default

BLAS: /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRblas.0.dylib

LAPACK: /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRlapack.dylib; LAPACK

##

locale:

[1] C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

##

time zone: Europe/Istanbul

tzcode source: internal

##

attached base packages:

[1] stats graphics grDevices utils datasets methods base

##

other attached packages:

[1] caret_6.0-94 lattice_0.22-5 ggplot2_3.5.1 dtComb_1.0.4 knitr_1.46.3

##

loaded via a namespace (and not attached):

[1] DBI_1.2.1 pROC_1.18.5 BiasedUrn_2.0.11

[4] rlang_1.1.4 magrittr_2.0.3 e1071_1.7-14

[7] compiler_4.3.1 systemfonts_1.0.5 vctrs_0.6.5

[10] reshape2_1.4.4 stringr_1.5.1 httpcode_0.3.0

[13] shape_1.4.6 pkgconfig_2.0.3 crayon_1.5.3

[16] fastmap_1.1.1 ellipsis_0.3.2 pander_0.6.5

[19] utf8_1.2.4 promises_1.2.1 rmarkdown_2.25

[22] prodlim_2023.08.28 epiR_2.0.67 ragg_1.2.7

[25] purrr_1.0.2 glmnet_4.1-8 xfun_0.43

[28] jsonlite_1.8.8 recipes_1.0.9 highr_0.10

[31] later_1.3.2 uuid_1.2-0 parallel_4.3.1

[34] R6_2.5.1 stringi_1.8.4 parallelly_1.36.0

[37] rpart_4.1.23 lubridate_1.9.3 Rcpp_1.0.13

[40] iterators_1.0.14 future.apply_1.11.1 zoo_1.8-12

[43] httpuv_1.6.14 Matrix_1.6-5 splines_4.3.1

[46] nnet_7.3-19 timechange_0.2.0 tidyselect_1.2.1

[49] rstudioapi_0.15.0 timeDate_4032.109 codetools_0.2-19

[52] curl_5.2.0 listenv_0.9.0 tibble_3.2.1

13

[55] plyr_1.8.9 shiny_1.8.0 withr_3.0.1

[58] askpass_1.2.0 flextable_0.9.4 evaluate_0.23

[61] OptimalCutpoints_1.1-5 future_1.33.1 survival_3.5-7

[64] sf_1.0-15 units_0.8-5 proxy_0.4-27

[67] zip_2.3.0 xml2_1.3.6 pillar_1.9.0

[70] KernSmooth_2.23-22 foreach_1.5.2 stats4_4.3.1

[73] generics_0.1.3 munsell_0.5.1 scales_1.3.0

[76] globals_0.16.2 xtable_1.8-4 class_7.3-22

[79] glue_1.7.0 gdtools_0.3.5 tools_4.3.1

[82] gfonts_0.2.0 data.table_1.16.0 ModelMetrics_1.2.2.2

[85] gower_1.0.1 grid_4.3.1 ipred_0.9-14

[88] colorspace_2.1-1 nlme_3.1-164 cli_3.6.3

[91] textshaping_0.3.7 officer_0.6.3 fontBitstreamVera_0.1.1

[94] fansi_1.0.6 lava_1.7.3 dplyr_1.1.4

[97] gtable_0.3.5 digest_0.6.34 fontquiver_0.2.1

[100] classInt_0.4-10 crul_1.4.0 htmltools_0.5.7

[103] lifecycle_1.0.4 hardhat_1.3.0 mime_0.12

[106] fontLiberation_0.1.0 openssl_2.1.1 MASS_7.3-60.0.1

References

[1] Maedeh Amini, Anoshirvan Kazemnejad, Farid Zayeri, Azam Amirian, and Nourossadat Kariman.
Application of adjusted-receiver operating characteristic curve analysis in combination of biomarkers
for early detection of gestational diabetes mellitus. Koomesh, 2019.

[2] Suizhi Yu. A covariate-adjusted classi cation model for multiple biomarkers in disease screening and
diagnosis. Kansas State University, 2019.

[3] Roćıo Aznar-Gimeno, Luis M Esteban, Gerardo Sanz, Rafael del Hoyo-Alonso, and Ricardo Savirón-
Cornudella. Incorporating a new summary statistic into the min–max approach: a min–max–median,
min–max–iqr combination of biomarkers for maximising the youden index. Mathematics, 9(19):2497,
2021.

[4] Hizir Yakup Akyildiz, Erdogan Sozuer, Alper Akcan, Can Kuçuk, Tarik Artis, İsmail Biri, Namık
Yılmaz, et al. The value of d-dimer test in the diagnosis of patients with nontraumatic acute abdomen.
Turkish Journal of Trauma and Emergency Surgery, 16(1):22–26, 2010.

[5] Strother H Walker and David B Duncan. Estimation of the probability of an event as a function of
several independent variables. Biometrika, 54(1-2):167–179, 1967.

[6] Cristóbal León, Sergio Ruiz-Santana, Pedro Saavedra, Benito Almirante, Juan Nolla-Salas, Francisco
Álvarez-Lerma, José Garnacho-Montero, Maŕıa Ángeles León, EPCAN Study Group, et al. A bed-
side scoring system (“candida score”) for early antifungal treatment in nonneutropenic critically ill
patients with candida colonization. Critical care medicine, 34(3):730–737, 2006.

[7] Margaret Sullivan Pepe and Mary Lou Thompson. Combining diagnostic test results to increase
accuracy. Biostatistics, 1(2):123–140, 2000.

[8] Margaret Sullivan Pepe, Tianxi Cai, and Gary Longton. Combining predictors for classification using
the area under the receiver operating characteristic curve. Biometrics, 62(1):221–229, 2006.

[9] Chunling Liu, Aiyi Liu, and Susan Halabi. A min–max combination of biomarkers to improve diag-
nostic accuracy. Statistics in medicine, 30(16):2005–2014, 2011.

[10] John Q Su and Jun S Liu. Linear combinations of multiple diagnostic markers. Journal of the
American Statistical Association, 88(424):1350–1355, 1993.

14

[11] G Sameera, R Vishnu Vardhan, and KVS Sarma. Binary classification using multivariate receiver
operating characteristic curve for continuous data. Journal of biopharmaceutical statistics, 26(3):
421–431, 2016.

[12] Nicolae Todor, Irina Todor, and Gavril Săplăcan. Tools to identify linear combination of prognostic
factors which maximizes area under receiver operator curve. Journal of clinical bioinformatics, 4(1):
1–7, 2014.

[13] Jerome Friedman, Trevor Hastie, and Rob Tibshirani. Regularization paths for generalized linear
models via coordinate descent. Journal of statistical software, 33(1):1, 2010.

[14] R Core Team et al. R: A language and environment for statistical computing. 2013.

[15] Trevor Hastie. gam: Generalized additive models. r package version 1.16. 1. Von https://CRAN.
R-project. org/package= gam abgerufen, 2019.

[16] Sung-Hyuk Cha. Comprehensive survey on distance/similarity measures between probability density
functions. City, 1(2):1, 2007.

[17] Shraddha Pandit, Suchita Gupta, et al. A comparative study on distance measuring approaches for
clustering. International journal of research in computer science, 2(1):29–31, 2011.

[18] Georgy Minaev, Robert Piché, and Ari Visa. Distance measures for classification of numerical fea-
tures. Tampere University of Technology, Finland, 2018.

[19] Max Kuhn. Building predictive models in r using the caret package. Journal of statistical software,
28:1–26, 2008.

[20] Mónica López-Ratón, Maŕıa Xosé Rodŕıguez-Álvarez, Carmen Cadarso-Suárez, and Francisco Gude-
Sampedro. Optimalcutpoints: an r package for selecting optimal cutpoints in diagnostic tests. Journal
of statistical software, 61:1–36, 2014.

15

	Introduction
	Preparing the input data
	Available methods
	Linear combination methods:
	Nonlinear combination methods:
	Mathematical operators:
	Machine-learning algorithms:

	Standardization
	Model building
	Resampling methods to optimize the model parameters
	Model evaluation in the training phase

	Predicting the class labels of test samples
	Session info

