Non-Gaussian spatial regression using the spmoran package: Case study examples

Daisuke Murakami, Institute of Statistical Mathematics

The codes are available from https://github.com/dmuraka/spmoran

Table of Contents

1.	Intr	oduction	2
	1.1.	Outline	2
	1.2.	Model	2
	1.3.	Coding for specifying the transformation	4
2.	Exa	mple 1: Disease mapping and regression with count data	6
	2.1.	Data	6
	2.2.	Model	8
	2.3.	Regression and disease mapping	11
3.	Exa	ample 2: Spatial prediction and uncertainty analysis for non-Gaussian data	14
	3.1.	Data	14
	3.2.	Model	15
	3.3.	Spatial prediction and uncertainty analysis	20
	3.4.	Limitation	24
4.	Exa	mple 3: Non-Gaussian spatial hedonic analysis	.25
	4.1.	Data	25
	4.2.	Model	25

1. Introduction

1.1.Outline

This study presents application examples of generalized spatial regression modeling for count data and continuous non-Gaussian data using the spmoran package (version 0.2.2 onward). Section 2 introduces the model. The subsequent sections demonstrate applications of the model for disease mapping, spatial prediction and uncertainty modeling, and hedonic analysis.

The R codes used in this vignette are available from https://github.com/dmuraka/spmoran.

Another vignette focusing on Gaussian spatial regression modeling is also available from the same GitHub page (and Murakami 2017).

1.2.Model

We consider the following generalized spatial regression model (see Murakami et al., 2021):

$$\varphi_{\mathbf{\theta}}(y_i) = z_i, \quad z_i = \sum_{k=1}^K x_{i,k} \beta_{i,k} + w_i + \varepsilon_i, \quad w_i \sim N(0, c(d_{ij})), \quad \varepsilon_i \sim N(0, \sigma^2), \tag{1}$$

where $\varphi_{\theta}(\cdot)$ is a transformation function normalizing the *i*-th explained variable y_i . $x_{i,k}$ is the *k*-th explanatory variable, $\beta_{i,k}$ is a fixed or random coefficient, which may vary spatially and/or nonspatially (the distribution for $\beta_{i,k}$ is omitted from Eq. (1) for simplicity). w_i is a term capturing residual spatial dependence. Moran eigenvectors, which are spatial basis functions, are used to model the spatially dependent processes in $\beta_{i,k}$ and w_i . The model may be rewritten as follows:

$$y_i = \varphi_{\theta}^{-1}(z_i), \quad z_i = \sum_{k=1}^K x_{i,k} \beta_{i,k} + w_i + \varepsilon_i, \quad w_i \sim N(0, c(d_{ij})), \quad \varepsilon_i \sim N(0, \sigma^2).$$
 (2)

Eq. (2) suggests that y_i is assumed to have a distribution that is obtained by transforming a Gaussian distributed z_i using the $\varphi_{\theta}^{-1}(\cdot)$ function. This model describes a wide variety of non-Gaussian data including count data by flexibly specifying the transformation function.

The transformation function is defined by concatenating D sub-transformation functions:

$$\varphi_{\theta}(y_i) = \varphi_{\theta_D} \left(\varphi_{\theta_{D-1}} \left(\cdots \varphi_{\theta_2} \left(\varphi_{\theta_1}(y_i) \right) \cdots \right) \right), \tag{3}$$

where $\varphi_{\theta_d}(\cdot)$ is the *d*-th sub-transformation function depending on a set of parameters θ_d . For continuous explained variables, the spmoran package provides the following specifications for $\varphi_{\theta}(\cdot)$ (see Figure 1):

- (a) For non-negative y_i , the Box-Cox transformation is available (left of Figure 1).
- (b) For non-Gaussian y_i (e.g., skew and fat-tail distribution), the SAL transformation Eq. (4) (Rios and Tobar, 2019), which is a non-linear transformation, is iterated D times to accurately normalize y_i (middle of Figure 1):

$$\varphi_{\theta_d}(y_i) = \theta_{d,1} + \theta_{d,2} \sinh (\theta_{d,3} \operatorname{arcsinh}(y_i) - \theta_{d,4}), \tag{4}$$
 where $\theta_d \in \{\theta_{d,1}, \theta_{d,2}, \theta_{d,3}, \theta_{d,4}\}.$

(c) For non-negative and non-Gaussian y_i , the Box-Cox transformation is applied first, and the SAL transformation is iterated D times after that to accurately normalized y_i (right of Figure 1).

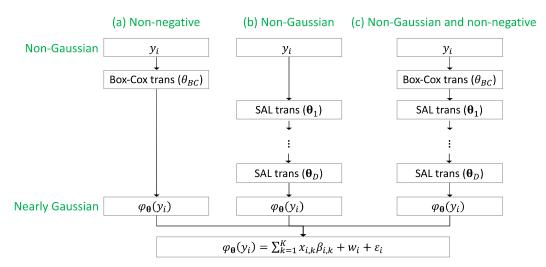


Figure 1: Transformation functions for continuous variables

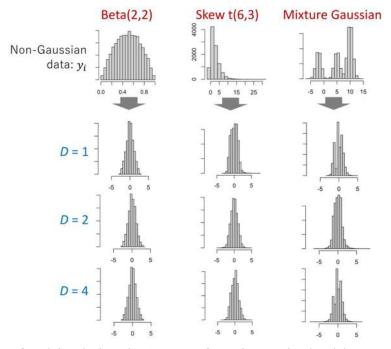


Figure 2: Results of applying the iterative SAL transformations to simulated data generated from beta, skew t, and Gaussian mixture distributions. The top three panels represent histograms of the simulated non-Gaussian data, and the bottom nine panels show the histograms after the transformations. *D* is the number of transformations.

As illustrated in Figure 2, the iteration of the SAL transformations converts a wide variety of non-Gaussian data y_i to Gaussian data $\varphi_{\theta}(y_i)$ quite flexibly. Thus, the generalized regression model Eq. (1) is available for a wide variety of non-Gaussian data.

This model Eq. (1) is also available for count data by applying a (log-)Gaussian transformation approximating a count data distribution. In the spmoran package, the following transformations are implemented:

- (d) For (over-dispersed) Poisson counts, a log-Gaussian approximation proposed by Murakami and Matsui (2021) is available (left of Figure 3). Based on them, accuracy of the approximate model is almost the same as the conventional over-dispersed Poisson regression.
- (e) For counts which do not obey the Poisson distribution, the log-Gaussian approximation is applied first to roughly normalize the data, and the SAL transformation is iterated after that to identify the most likely distribution (i.e., probability mass function) (right of Figure 3).

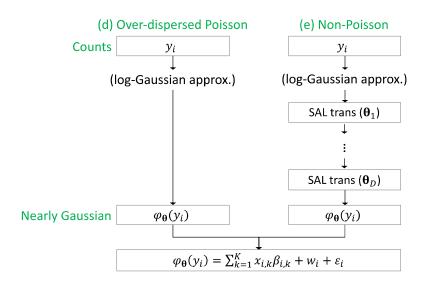


Figure 3: Transformation functions for count variables

1.3. Coding for specifying the transformation

In the spmoran package, the transformation function $\varphi_{\theta}(\cdot)$ in Eq. (1) is specified by using

the nongauss y function. Here is a code (blue part) to specify (a) for non-negative y_i :

```
    ng_a <- nongauss_y(y_nonneg=TRUE)</li>
    Box-cox transformation f() is applied to y to estimate y ~ P( xb, par ) (or f(y,par)~N(xb, sig) )
    P(): Distribution estimated through the transformation - xb : Regression term with fixed and random coefficients in b which is specified by resf or resf_vc function - par: Parameter estimating data distribution
```

y_nonneg = TRUE constraints the explained variables to not to have negative values. The output from the nongauss_y function is used as an input of the resf or resf_vc function to estimate Eq. (1). The transformation (b) for non-Gaussian y_i and (c) for non-negative and non-Gaussian y_i are specified as follows (D = 2 is assumed):

where tr_num (=D) specifies the number of SAL transformations. Finally, the transformation (d) for over-dispersed Poisson counts and (e) for other counts are specified as follows:

```
    > ng_e <- nongauss_y(y_type="count",tr_num=2)</li>
    Log-Gaussian and 2 SAL transformations are applied to y to estimate y ~ P( mu, par ), mu = exp( xb )
    - P(): Distribution estimated through the transformations
    - xb : Regression term with fixed and random coefficients in b which is specified by resf or resf_vc function
    - par: Parameters estimating data distribution
```

where y_type specifies data type ("count" for count variables and "continuous" for continuous variables (default)).

The subsequent sections present application examples of the model for count data (Section 2) and continuous data (Sections 3-4).

2. Example 1: Disease mapping and regression with count data

This section demonstrates a count regression modeling for epidemic data considering spatially varying coefficients, residual spatial dependence, and heterogeneity across years. The estimated model is used mainly for disease mapping and uncertainty modeling.

2.1.Data

This section uses sf, rgeos, CARBayesdata, spdep, spmoran packages:

```
> library(sf);library(rgeos);library(CARBayesdata);library(spdep);library(spmoran)
```

We employ the pollution-health data (pollutionhealthdata), which is available from the CARBayesdata package. The data consists of respiratory hospitalization data, air pollution, and covariate data for the Greater Glasgow (2007 - 2011) by 271 Intermediate Geographies (IG).

Explained variable (y) is the number of hospitalization due to respiratory disease (observed). Explanatory variables (x) are the average particulate matter concentration (pm10), the percentage of working age people who are in receipt of Job Seekers Allowance, a benefit paid to unemployed people looking for work (jsa), and average property price (divided by 100,000) (price). Random effects by years are considered to estimate heterogeneity across years (xgroup). Besides, the expected numbers of hospitalizations based on Scotland-wide respiratory hospitalization rates (expected) is used as an offset variable. These variables are specified as follows:

A binary contiguity matrix, which is generated from the spatial polygons by IGs (GGHB.IG), is used for modeling spatial dependence:

```
> data("GGHB.IG")
> W.nb <- poly2nb(GGHB.IG)
> W.list <- nb2listw(W.nb, style = "B")
> W <- nb2mat(W.nb, style = "B")</pre>
```

As explained, Moran eigenvectors are used to model spatially dependent process. Here is a code generating the eigenvectors from the W matrix:

```
> s_id <- pollutionhealthdata[,"IG"]
> meig <- meigen(cmat=W, s_id = s_id )
109/271 eigen-pairs are extracted</pre>
```

where cmat specifies a spatial proximity matrix, and s_id specifies zone ID (the i-th row of cmat and the element of s_id that appears in the i-th are associated).

2.2.Model

This section considers two specifications for y. The former (ng1) assumes y to obey an overdispersed Poisson distribution. The latter assumes a more general distribution, and estimates it through the SAL transformation (ng2):

The outputs ng1 and ng2 are used as inputs for the resf or resf_cv function. The resf function estimates spatial regression models without spatially varying coefficients (SVCs) while the resf_vc function estimates models with SVCs (see Murakami, 2017). Here, we estimate the following models:

mod1 and mod2 assume constant coefficients while mod3 and mod4 assume SVCs on x. For the distribution of y, mod1 and mod3 assume an over-dispersed Poisson distribution while mod2 and mod3 adjust the distribution using the SAL transformation to identify the most likely distribution. The BIC values are -260.1 (mod1), -256.2 (mod2), -274.2 (mod3), and -271.7 (mod4). mod3, which is an over-dispersed Poisson SVC model, is selected as the best model. Note that the BIC is based on a Gaussian likelihood approximating the Poisson model, which is different from the conventional Poisson likelihood.

The estimation result of mod3 is as below. The intercept and coefficient on price are estimated spatially varying while the coefficients on jsa and pm10 are estimated constant. As shown in the bottom, the BIC of mod3 is considerably better than the BIC of the NULL model (74.9), which is a log-Gaussian model approximating the conventional Poisson regression:

```
> mod3
Call:
resf_vc(y = y, x = x, xgroup = xgroup, offset = offset, meig = meig,
    nongauss = ng1)
----Spatially varying coefficients on x (summary)----
Coefficient estimates:
(Intercept) jsa price pm10
Min. :-0.6504 Min. :0.06149 Min. :-0.33538 Min. :0.02834
1st Qu.:-0.5831 1st Qu.:0.06149 1st Qu.:-0.23431 1st Qu.:0.02834
Median :-0.5526 Median :0.06149 Median :-0.19311 Median :0.02834
                                        price
                                                             pm10
 Mean :-0.5478 Mean :0.06149
                                     Mean :-0.18184 Mean :0.02834
 3rd Qu.:-0.5163 3rd Qu.:0.06149 3rd Qu.:-0.13469 3rd Qu.:0.02834
 Max. :-0.3929 Max. :0.06149 Max. :0.04439 Max. :0.02834
Statistical significance:
                       Intercept jsa price pm10
Not significant
Significant (10% level)
                                0 0
                                        70
                             0 0 180
Significant ( 5% level)
                                                0
                           1355 1355 900 1355
Significant ( 1% level)
----Variance parameters-----
Spatial effects (coefficients on x):
                                          price pm10
                     (Intercept) jsa
random SE
                     0.07496275 0 0.09383671 0
Moran.I/max(Moran.I) 0.72069442 NA 0.37600487 NA
Group effects:
            xgroup
random_SE 0.1219861
----Estimated probability distribution of y------
               Estimates
                1.026517
skewness
excess kurtosis 1.752394
----Error statistics-----
                                               stat
dispersion parameter
                                           3.132744
deviance explained (%)
Gaussian rlogLik approximating the model 173.152374
                                         -326.304748
AIC
BIC
                                         -274.189181
NULL model: glm(y \sim x, offset = log(offset), family = poisson)
  Gaussian (r)loglik approximating the model: -19.4258
 ( AIC: 48.85159, BIC: 74.90938 )
```

The estimated group effects are as follows:

```
> mod3$b_g

[[1]]

Estimate SE t_value

xgroup_2007 0.052882464 0.02678485 1.974343

xgroup_2008 0.107183516 0.02409724 4.447959

xgroup_2009 0.007175285 0.02767944 0.259228

xgroup_2010 -0.083975107 0.02474086 -3.394187

xgroup_2011 -0.083266159 NA NA
```

While regression coefficients for the transformed y is often difficult to interpret, marginal effect $dy_i/dx_{i,k}$ which quantifies the magnitude of change in *i*-th explained variable (y_i) for one unit change in the *k*-th explanatory variable $(x_{i,k})$, can be evaluated using the coef_marginal function if the resf function is used while the coef_marginal_vc function if the resf vc function is used:

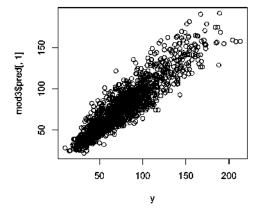
```
> coef_marginal_vc(mod3)
Call:
coef_marginal_vc(mod = mod3)
----Marginal effects from x (dy_i/dx_i) (summary)----
 (Intercept)
                    jsa
                                    price
                                                       pm10
                    : 1.333
Mode:logical
               Min.
                                Min. :-34.568
                                                  Min.
                                                        :0.6144
NA's:1355
               1st Qu.: 3.584
                               1st Qu.:-17.135
                                                 1st Qu.:1.6520
               Median: 4.652
                                Median :-12.722
                                                  Median :2.1441
                     : 4.915
                                Mean :-13.342
                                                        :2.2654
               Mean
                                                  Mean
               3rd Qu.: 5.979
                                3rd Qu.: -9.379
                                                  3rd Qu.:2.7556
               Max.
                      :11.795
                                Max.
                                       : 7.291
                                                  Max.
                                                        :5.4363
```

Note: Medians are recommended summary statistics

For example, the median of pm10 suggests that the number of hospitalizations increases 2.1441 for every 1.0 increase of pm10.

The explained variables and the predicted values are plotted below. This result confirms accuracy of the model:

> plot(y,mod3\$pred[,1])



In addition to the predicted values plotted above, the resf and resf_vc functions return quantiles of the predicted values, which are estimated based on the modeled probability density/mass function. They are displayed as follows:

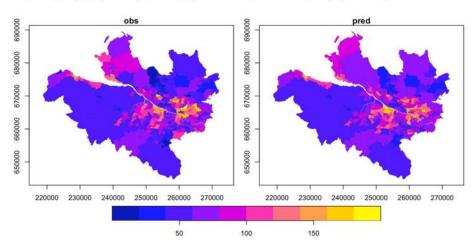
The quantiles are useful for evaluating uncertainty in disease mapping (see below).

2.3. Regression and disease mapping

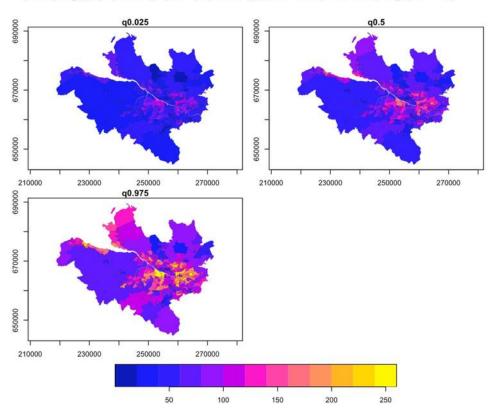
The predicted values are available for disease mapping. Here, we consider mapping the patterns in 2007. Here is a code to create a dataset including observed counts in 2007 (obs), predicted counts and their standard errors (pred), estimated varying coefficients (b_est), and quantiles of the predicted values (pred_qt), and convert the dataset to sf format, which is a spatial data format, for mapping:

The predicted counts are as mapped together with the observed counts below. The result suggests that the estimated model accurately identifies the spatial pattern underlying the respiratory disease.

> plot(poly[,c("obs","pred")],axes=TRUE, lwd=0.1, key.pos = 1)

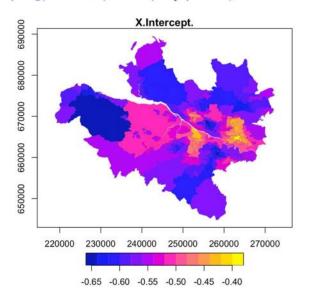


Here is a code to map percentile (0.025, 0.50, 0.975%) of the predicted values. This map suggests higher uncertainty in the central urban area while lower uncertainty in the suburban areas.

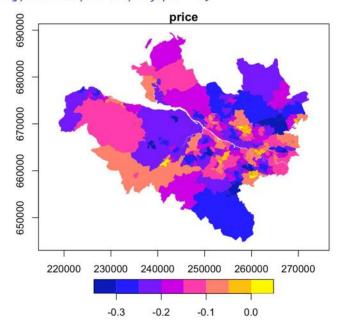


Finally, the estimated spatially varying intercept and coefficients on price are plotted below:

> plot(poly[,"X.Intercept."],axes=TRUE,lwd=0.1, key.pos = 1)



> plot(poly[,"price"],axes=TRUE,lwd=0.1, key.pos = 1)



3. Example 2: Spatial prediction and uncertainty analysis for non-Gaussian data

This section demonstrates a non-Gaussian spatial regression modeling for spatial interpolation and uncertainty modeling.

3.1.Data

This section uses the sf, automap, and spmoran packages:

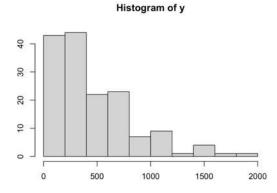
```
> library(sf); library(automap); library(spmoran)
```

The meuse data, which we will use in this section, consists of heavy metal concentrations (cadmium, copper, lead, zinc) measured in a flood plain along the river Meuse and explanatory variates:

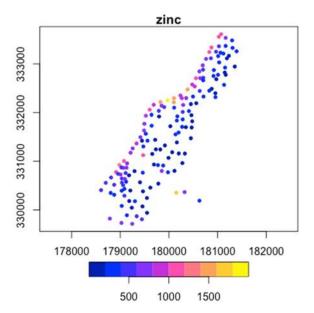
```
> data(meuse)
> meuse[1:5,]
             y cadmium copper lead zinc elev
                                                         om ffreq soil lime landuse dist.m
                                                  dist
1 181072 333611
                11.7
                          85 299 1022 7.909 0.00135803 13.6
                                                                    1
                                                               1
                                                                         1
2 181025 333558
                  8.6
                          81 277 1141 6.983 0.01222430 14.0
                                                                    1
                                                                                       30
                                                                         1
                                                                                Ah
3 181165 333537
                   6.5
                          68 199
                                   640 7.800 0.10302900 13.0
                                                                    1
                                                                         1
                                                                                Ah
                                                                                      150
                                                                    2
4 181298 333484
                   2.6
                          81 116
                                   257 7.655 0.19009400 8.0
                                                                                Ga
                                                                                      270
5 181307 333330
                   2.8
                          48 117 269 7.480 0.27709000 8.7
                                                                                      380
                                                                                Ah
```

We analyze the zinc concentration in ppm (zinc). As shown in the histogram below, the zinc data does not have a Gaussian distribution:

```
> y <-meuse$zinc
> hist(y)
```



Here is the spatial plot of the zinc concentration:



We use dist (distance to river Meuse), ffreq2 (1 if flooding frequency class is 2, and 0 otherwise), and ffreq3 (1 if flooding frequency class is 3) for the explanatory variables:

3.2.Model

The Moran eigenvectors, which are the basis functions used for spatial process modeling, are constructed as below:

```
> meig <-meigen(coords)
25/155 eigen-pairs are extracted</pre>
```

We first estimate the classical Gaussian regression model using the rest function. The error statistics including the restricted log-likelihood (rlogLik), Akaike Information Criterion (AIC), and Bayesian Information Criterion (BIC) are as follows:

Unfortunately, this model is not appropriate because of the non-Gaussianity of y. For non-negative explained variables like zinc concentration, user can specify y_nonneg = TRUE in the nongauss_y function. If it is specified, the explanatory variable y is assumed to be non-negative, and the Box-Cox transformation is applied:

```
    ng1 <-nongauss_y(y_nonneg=TRUE)</li>
    Box-cox transformation f() is applied to y to estimate y ~ P(xb, par) (or f(y,par)~N(xb, sig))
    - P(): Distribution estimated through the transformation - xb : Regression term with fixed and random coefficients in b which is specified by resf or resf_vc function - par: Parameter estimating data distribution
```

The output ng1 is used as an output of the resf function to estimate a regression model with residual spatial dependence and Box-Cox transformation for y:

```
> mod1 <-resf(y=y,x=x, meig=meig, nongauss=ng1)</pre>
> mod1
Call:
resf(y = y, x = x, meig = meig, nongauss = ng1)
----Coefficients-----
                       SE t_value
           Estimate
(Intercept) 3.1550749 0.01777841 177.466681 0.000000e+00
dist -0.5160247 0.07024097 -7.346492 1.956835e-11
ffreq2
ffreq3
         -0.1248181 0.01390843 -8.974277 2.664535e-15
         -0.1318089 0.02119947 -6.217554 6.298492e-09
----Variance parameter-----
Spatial effects (residuals):
          (Intercept)
random_SE
                   0.09615471
Moran.I/max(Moran.I) 0.41327562
```

```
----Estimated probability distribution of y------
              Estimates
skewness
              2.488325
excess kurtosis 7.972227
(Box-Cox parameter: -0.263962)
----Error statistics-----
                 stat
           0.0581104
resid_SE
adjR2(cond) 0.8453350
rlogLik -971.3835963
     1958.7671926
AIC
         1983.1145935
BIC
NULL model: lm(y \sim x)
  (r)loglik: -1083.605 ( AIC: 2177.211, BIC: 2192.428 )
```

The resf_vc function is available when assuming SVCs. The estimated skewness, excess kurtosis, and the Box-Cox parameter confirm non-Gaussianity of the data. BIC of the model (1983.114), which considers residual spatial dependence, is considerably better than the ordinary linear regression model (2192.428). Accuracy of the model is confirmed.

In addition to the Box-Cox transformation, the SAL transformation can be iterated to estimate the most likely probability density function (PDF) behind y. The number of iterations is specified by an argument tr num. We compare models with tr num=1 (ng2) and tr num=2 (ng3):

The following non-Gaussian models considering residual spatial dependence are estimated:

```
> mod2 <-resf(y=y, x=x,meig=meig, nongauss=ng2)
> mod3 <-resf(y=y, x=x,meig=meig, nongauss=ng3)</pre>
```

Model accuracy can be compared using the BIC (or AIC) value. Based on the BIC, mod2, which applies the Box-Cox transformation first and a SAL transformation after that, is the best model.

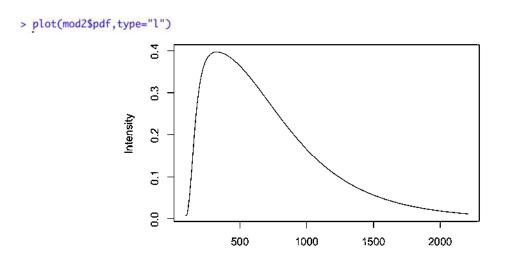
```
> mod2$e
                  stat
resid_SE
            0.3976609
adjR2(cond) 0.8341787
rlogLik
          -958.5890848
AIC
          1937.1781696
BIC
          1967.6124208
> mod3$e
                  stat
resid_SE 0.3996559
adjR2(cond) 0.8277254
        -958.8305130
rlogLik
AIC
         1945.6610260
BIC
          1988.2689776
```

The estimated parameters are as follows:

```
> mod2 <-resf(y=y, x=x,meig=meig, nongauss=ng2)</pre>
> mod2
Call:
resf(y = y, x = x, meig = meig, nongauss = ng2)
----Coefficients-----
            Estimate
                      SE t_value
                                            p_value
(Intercept) 1.2100004 0.11458914 10.559468 0.000000e+00
dist
          -3.5209129 0.45132654 -7.801254 1.716405e-12
ffreq2
          -0.7826159 0.09477395 -8.257712 1.421085e-13
ffreq3
          -0.8259699 0.14323514 -5.766531 5.544422e-08
----Variance parameter-----
Spatial effects (residuals):
                  (Intercept)
random_SE
                    0.6035734
Moran.I/max(Moran.I) 0.3693597
```

```
----Estimated probability distribution of y------
               Estimates
skewness
                1.717799
excess kurtosis 3.327901
(Box-Cox parameter: -0.2819055)
----Error statistics-----
                   stat
resid_SE
              0.3976609
adjRZ(cond)
              0.8341787
rlogLik
           -958.5890848
ΑIC
           1937.1781696
BIC
           1967.6124208
NULL model: lm(y \sim x)
   (r)loglik: -1083.605 ( AIC: 2177.211, BIC: 2192.428 )
```

The estimated PDF for y can be plotted as follows:



The estimated PDF is reasonably similar to the histogram of y.

While regression coefficients for transformed y is often difficult to interpret, the marginal effect of each explanatory variable $(dy_i/dx_{i,k})$ which quantifies the magnitude of change in *i*-th explained variable (y_i) for one unit change in the *k*-th explanatory variable $(x_{i,k})$, is evaluated by using the coef_marginal function:

Note: Medians are recommended summary statistics

For example, the median for ffreq2 suggests that areas with flooding frequency class 2 have 260.87 ppm smaller zinc concentration on median than other areas.

3.3. Spatial prediction and uncertainty analysis

The estimated model (mod2) is applied to spatially predict the zinc concentration on 3,103 grid points with 40 m \times 40 m spacing (meuse.grid). Spatial coordinates (coords0) and the explanatory variables in the grids are used for the prediction:

The Moran eigenvectors at the prediction sites are generated using the meigen0 function:

```
> meig0 <-meigen0(meig=meig, coords0=coords0)
> pres <-predict0(mod=mod2,x0=x0,meig0=meig0, compute_quantile = TRUE)</pre>
```

The spatial prediction is performed using the predict0 function. If compute_quantile=TRUE, quantiles for the predicted values are evaluated based on the PDF estimated in Section 1.2:

```
> meig0 <-meigen0(meig=meig, coords0=coords0)
> pres <-predict0(mod=mod2,x0=x0,meig0=meig0, compute_quantile = TRUE)</pre>
```

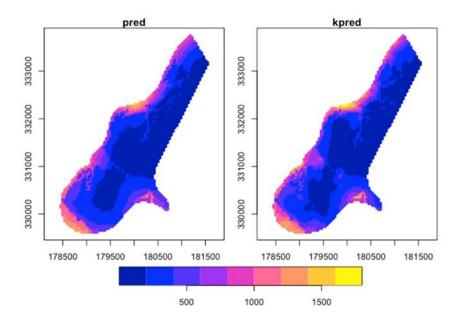
The outputs are as follows:

The output includes the predicted values on the original scale (pred), the predicted value on the transformed scale (pred_transG), and the standard error (pred_transG_se). The estimated quantiles for the predicted values are displayed as follows:

To map the outputs, pred_transG, pred_transG_se, quantiles for the predicted values (pred_quantile) are summarized into a data.frame object. As a measure of uncertainty, the length of the 95 % confidence interval for the predicted value (len95) is added. Besides, predicted values of a regression kriging, which is widely used for spatial prediction, is also added (kpred). The data.frame object is then converted to a sf object for mapping:

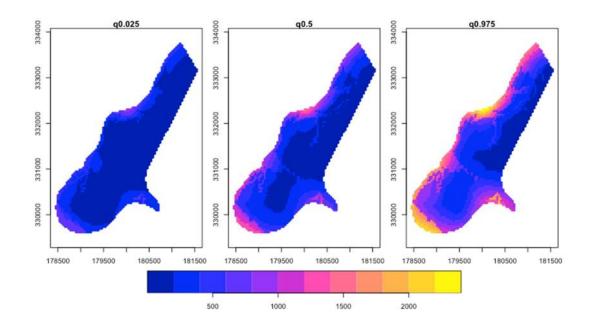
Our prediction result (pred) and the kriging-based prediction result (kpred) are quite similar:

```
> plot(pred_sf[,c("pred","kpred")], pch=20, axes=TRUE, key.pos = 1)
```

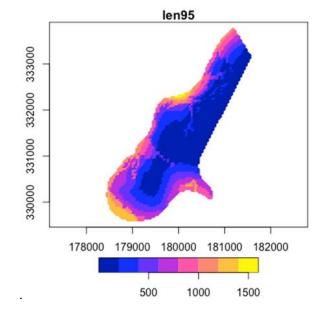


As shown in the maps below showing the 2.5%, 50%, and 97.5% quantiles, the predicted values have larger uncertainty in the north area that faces the river Meuse:

```
> plot(pred_sf[,c("q0.025","q0.5","q0.975")], pch=20, axes=TRUE, key.pos = 1)
```

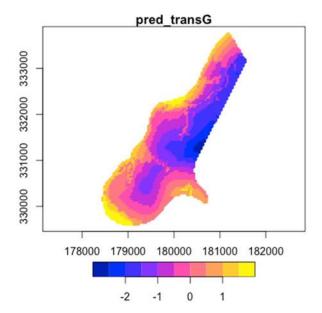


The map below is the length of the 95 % confidence interval (len95), which is another way to visualize the uncertainty in the original scale:

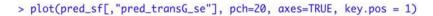


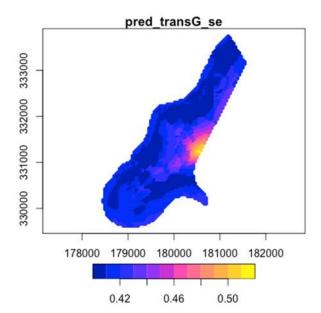
We can also visualize the predicted values in the transformed/normalized scale:

```
> plot(pred_sf[,"pred_transG"], pch=20, axes=TRUE, key.pos = 1)
```



As shown below, in the transformed scale, the predictive errors are large in the eastern central area where the samples are relatively limited (but, as far as we see the maps for len95 or the quantiles, this error has little impact in the original scale as a result of the rescaling/transformation to the real scale).





3.4.Limitation

The Moran eigenvector approach provides a kind of low rank approximation for spatial process modeling (just like fixed rank kriging and predictive process modeling; see Sun et al., 2012).

While the modeling accuracy is good enough in many cases, it can provide overly smoothed spatial prediction result for very large samples (e.g., N > 10,000; see, Stein, 2014). For spatial prediction using large samples, it should be used with caution (at least, this approach is still useful even in such a case to understand underlying map patterns computationally efficiently).

4. Example 3: Non-Gaussian spatial hedonic analysis

This section demonstrates the importance of considering non-Gaussianity in hedonic housing price analysis. Gaussian and non-Gaussian spatial varying coefficient (SVC) models are use in this section.

4.1.Data

This section uses the spdep, sf, spmoran packages:

```
> library(spdep);library(sf);library(spmoran)
```

This section analyzes the housing data for 506 census tracts in Boston in 1970. Explained variable (y) is the median housing value in USD 1000's (CMEDV). The explained variables whose coefficients are allowed to vary over space (x), those whose coefficients are assumed constant (xconst), and spatial coordinates (coords) are used in this analysis:

Moran eigenvectors are extracted as follows:

```
> meig <- meigen(coords=coords)
55/506 eigen-pairs are extracted</pre>
```

4.2.Model

This section considers three transformations functions:

```
<- nongauss_y(y_nonneg=TRUE)
> ng1
Box-cox transformation f() is applied to y to estimate
y \sim P(xb, par) (or f(y,par)\sim N(xb, sig))
- P(): Distribution estimated through the transformation
- xb : Regression term with fixed and random coefficients in b
        which is specified by resf or resf_vc function
 - par: Parameter estimating data distribution
> ng2
          <- nongauss_y(y_nonneg=TRUE,tr_num=1)</pre>
Box-Cox and 1 SAL transformations f() are applied to y to estimate
y \sim P(xb, par) (or f(y,par)\sim N(xb, sig))
- P(): Distribution estimated through the transformation(s)
 - xb : Regression term with fixed and random coefficients in b
        which is specified by resf or resf_vc function
 - par: Parameters estimating data distribution
          <- nongauss_y(y_nonneg=TRUE,tr_num=2)</pre>
> ng3
Box-Cox and 2 SAL transformations f() are applied to y to estimate
y \sim P(xb, par) (or f(y,par)\sim N(xb, sig))
- P(): Distribution estimated through the transformation(s)
- xb : Regression term with fixed and random coefficients in b
        which is specified by resf or resf_vc function
 - par: Parameters estimating data distribution
```

Although ng3 is the most flexible, it can lead to overfitting. To identify the best model, the Gaussian SVC model (mod0) and non-Gaussian SVC models (mod1, mod2, mod3) are fitted, and their BIC values are compared:

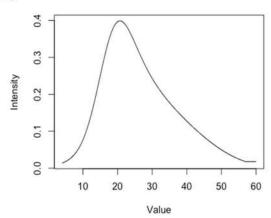
The resulting BICs are 3110.5 (mod0), 2950.5 (mod1), 2901.6 (mod2), 2931.4 (mod3), and 3178.4 for the ordinary liner regression model. mod2, which applies the Box-Cox transformation and a SAL transformation is selected as the best model.

The parameters estimated from mod2 are as follows:

```
> mod2
Call:
resf_vc(y = y, x = x, xconst = xconst, x_nvc = TRUE, meig = meig,
   nongauss = ng2)
----Spatially and non-spatially varying coefficients on x (summary)----
Coefficient estimates:
 (Intercept)
                      CRIM
                                         AGE
 Min. :-0.02244 Min. :-0.2740242 Min. :-0.018914
 Median :-0.02244 Median :-0.0322745 Median :-0.007599
 Mean :-0.02244 Mean :-0.0329763 Mean :-0.007425
 3rd Qu.:-0.02244 3rd Qu.: 0.0004135 3rd Qu.:-0.004354
 Max. :-0.02244 Max. : 0.1070968 Max. : 0.005453
Statistical significance:
                     Intercept CRIM AGE
Not significant
                          506 410 117
Significant (10% level)
                            0 18 24
Significant (5% level)
                            0 19 52
                           0 59 313
Significant ( 1% level)
----Constant coefficients on xconst------
                            SE t_value
           Estimate
                                            p_value
ZΝ
        0.002027180 0.0011645284 1.740773 8.243151e-02
DIS
       -0.131266652 0.0237841152 -5.519089 5.869668e-08
RAD
        0.052234354 0.0085592354 6.102689 2.312320e-09
NOX
       -3.124557004 0.4565365150 -6.844046 2.632916e-11
       -0.001635874 0.0003135737 -5.216872 2.823456e-07
TΔX
RM
        0.506995252 0.0296312602 17.110148 0.000000e+00
PTRATIO -0.056300954 0.0135694652 -4.149092 4.017337e-05
        0.002452484 0.0002849729 8.606026 0.0000000e+00
----Variance parameters-----
Spatial effects (coefficients on x):
                    (Intercept)
                                    CRIM
                   3.398454e-06 0.12892890 0.007028641
random SE
Moran.I/max(Moran.I) 4.631293e-01 0.05171784 0.273869153
Non-spatial effects (coefficients on x):
               CRIM AGE
random_SE 0.003807227
----Estimated probability distribution of y------
              Estimates
               1.200526
skewness
excess kurtosis 1.765607
(Box-Cox parameter: 1.691544)
----Error statistics------
                   stat
resid_SE
              0.3303358
              0.8881671
adjR2(cond)
           -1382.3284183
rlogLik
AIC
           2808.6568365
BIC
           2901.6406432
NULL model: lm(y \sim x + xconst)
   (r)loglik: -1551.857 ( AIC: 3127.715, BIC: 3178.433 )
```

The "Estimated probability distribution of y" section suggests that the data is positively skewed (skewness > 0) and fat tail (excess kurtosis > 0). The estimated probability density distribution can be visualized as follows:

> plot(mod2\$pdf,type="l")



Marginal effect of each explanatory variable $(dy_i/dx_{i,k})$ which quantifies the magnitude of change in i-th explained variable (y_i) for one unit change in the k-th explanatory variable $(x_{i,k})$, is evaluated using the coef_marginal function if the resf function is used while the coef_marginal_vc function if the resf vc function is used like our case:

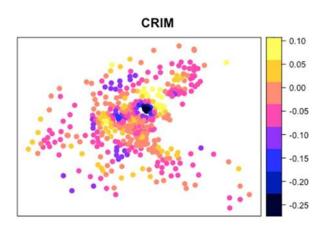
```
> coef_marginal_vc(mod2)
coef_marginal_vc(mod = mod2)
----Marginal effects from x (dy_i/dx_i) (summary)----
 (Intercept)
                     CRIM
                                          AGE
                       :-3.186702
                                            :-0.32519
Mode:logical
                Min.
                                     Min.
 NA's:506
                1st Qu.:-0.485693
                                     1st Qu.:-0.08374
                Median :-0.240681
                                     Median :-0.05859
                       :-0.285872
                                     Mean
                                            :-0.05956
                3rd Qu.: 0.003341
                                     3rd Qu.:-0.03813
                Max.
                       : 1.443992
                                     Max.
                                            : 0.09132
   -Marginal effects from xconst (dy_i/dx_i)(summary)-
      ΖN
                        DIS
                                           RAD
                                                             NOX
Min.
        :0.01145
                   Min.
                          :-2.7675
                                      Min.
                                             :0.2950
                                                        Min.
                                                               :-65.88
1st Qu.:0.01209
                   1st Qu.;-1.2022
                                      1st Qu.:0.3114
                                                        1st Qu.:-28.62
Median :0.01402
                   Median :-0.9079
                                      Median :0.3613
                                                        Median :-21.61
                                                              :-28.38
Mean
        :0.01841
                          :-1.1922
                                            :0.4744
                   Mean
                                      Mean
                                                        Mean
3rd Qu.:0.01857
                   3rd Qu.:-0.7826
                                      3rd Qu.:0.4784
                                                        3rd Qu.:-18.63
        :0.04274
                          :-0.7412
                                             :1.1013
                                                               :-17.64
Max.
                   Max.
                                      Max.
                                                        Max.
                           RM
                                          PTRATIO
Min.
        :-0.034490
                     Min.
                            : 2.863
                                       Min.
                                              :-1.1870
                                                          Mìn.
                                                                 :0.01385
1st Qu.:-0.014982
                     1st Qu.: 3.023
                                       1st Qu.:-0.5156
                                                          1st Qu.:0.01462
Median :-0.011315
                     Median : 3.507
                                       Median :-0.3894
                                                          Median :0.01696
                            : 4.605
Mean
        :-0.014857
                                              :-0.5113
                                                                 :0.02227
                     Mean
                                       Mean
                                                          Mean
3rd Qu.:-0.009753
                     3rd Qu.: 4.643
                                       3rd Qu.:-0.3357
                                                          3rd Qu.: 0.02246
Max.
        :-0.009238
                            :10.689
                                       Max.
                                              :-0.3179
                                                          Max.
                                                                 :0.05171
                     Max.
```

Note: Medians are recommended summary statistics

For example, the median of CRIM suggests that, on median, housing price decreases 0.24 (1,000 USD) for every 1.0 increase of CRIM (per capita crime rate).

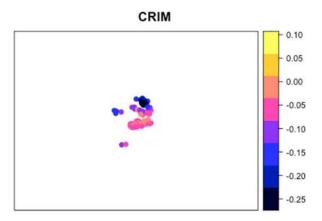
The estimated SVCs on x (CRIM, AGE, and Intercept) can be plotted using the plot_s function. For example, the SVC on CRIM, which is the first column of x, is mapped as follows:

> plot_s(mod2,1)



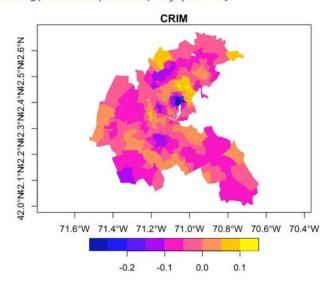
The output suggests the strong negative impact of CRIM in the central area. An argument pmax is useful to display statistically significant coefficients only. For example, here is the code to display the coefficients that are statistically significant at the 5 % level:

> plot_s(mod2,1,pmax=0.05)



This map demonstrates that the crime rate has statistically significant negative impact on housing price only in the central area. Alternatively, the SVCs can be plotted using the sf package as follows:

```
> boston.tr <- boston.tr0[order(boston.tr0$TOWNNO),1:8]
            <- mod2$b_vc
> b_est
> boston.tr <- cbind(boston.tr, b_est)</pre>
> names(boston.tr)
 [1] "poltract"
                     "TOWN"
                                     "TOWNNO"
 [4]
                     "LON"
                                     "LAT"
     "TRACT"
 [7] "MEDV"
                     "CMEDV"
                                     "X.Intercept."
[10] "CRIM"
                     "AGE"
                                     "geometry"
> plot(boston.tr[,"CRIM"],axes=TRUE,lwd=0.1, key.pos = 1)
```



Reference

- Murakami, D. (2017) spmoran: An R package for Moran's eigenvector-based spatial regression analysis. ArXiv 1703.04467.
- Murakami, D., Kajita, M., Kajita, S., and Matsui, T. (2021). Compositionally-warped additive mixed modeling for a wide variety of non-Gaussian spatial data. Spatial Statistics 43, 100520.
- Murakami, D. and Matsui, T. (2021). Improved log-Gaussian approximation for over-dispersed Poisson regression: application to spatial analysis of COVID-19. ArXiv 2104.13588.
- Rios, G. and Tobar, F. (2019). Compositionally-warped Gaussian processes. Neural Networks 118, 235-246.
- Stein, M.L. (2014). Limitations on low rank approximations for covariance matrices of spatial data. Spatial Statistics 8, 1-19.
- Sun, Y., Li, B., & Genton, M. G. (2012). Geostatistics for large datasets. In Advances and challenges in space-time modelling of natural events (pp. 55-77). Springer, Berlin, Heidelberg.