
Package ‘superb’
November 10, 2024

Type Package

Title Summary Plots with Adjusted Error Bars

Version 0.95.19

Date 2024-10-31

Author Denis Cousineau [aut, cre],
Bradley Harding [ctb],
Marc-Andre Goulet [ctb],
Jesika Walker [art, pre]

Maintainer Denis Cousineau <denis.cousineau@uottawa.ca>

BugReports https://github.com/dcousin3/superb/issues/

URL https://dcousin3.github.io/superb/

Description Computes standard error and confidence interval of various descriptive statistics under
various designs and sampling schemes. The main function, superbPlot(), return a plot. superb-
Data()
returns a dataframe with the statistic and its precision interval so that other plotting package
can be used. See Cousineau and colleagues (2021) <doi:10.1177/25152459211035109>
or Cousineau (2017) <doi:10.5709/acp-0214-z> for a review as well as Cousineau (2005)
<doi:10.20982/tqmp.01.1.p042>, Morey (2008) <doi:10.20982/tqmp.04.2.p061>, Baguley (2012)
<doi:10.3758/s13428-011-0123-
7>, Cousineau & Laurencelle (2016) <doi:10.1037/met0000055>,
Cousineau & O'Brien (2014) <doi:10.3758/s13428-013-0441-z>, Calderini & Harding
<doi:10.20982/tqmp.15.1.p001> for specific references.

License GPL-3

Encoding UTF-8

VignetteBuilder knitr

LazyData true

RoxygenNote 7.3.1

Depends R (>= 4.1.0)

Imports methods, utils, stats, MASS, lsr (>= 0.5), plyr (>= 1.8.4),
ggplot2 (>= 3.5.0), stringr, foreign, shiny, shinyBS, rrapply,
Rdpack (>= 0.7)

1

https://github.com/dcousin3/superb/issues/
https://dcousin3.github.io/superb/
https://doi.org/10.1177/25152459211035109
https://doi.org/10.5709/acp-0214-z
https://doi.org/10.20982/tqmp.01.1.p042
https://doi.org/10.20982/tqmp.04.2.p061
https://doi.org/10.3758/s13428-011-0123-7
https://doi.org/10.3758/s13428-011-0123-7
https://doi.org/10.1037/met0000055
https://doi.org/10.3758/s13428-013-0441-z
https://doi.org/10.20982/tqmp.15.1.p001

2 Contents

Suggests dplyr, psych, emojifont, fMultivar, grid, gridExtra, knitr,
lattice, lawstat, boot, png, reshape2, rmarkdown, RColorBrewer,
sadists, scales, testthat, tibble

RdMacros Rdpack

NeedsCompilation no

Repository CRAN

Date/Publication 2024-11-10 18:10:02 UTC

Contents
biasCorrectionTransform . 3
bootstrapPrecisionMeasures . 4
CousineauLaurencelleLambda . 5
dataFigure1 . 6
dataFigure2 . 7
dataFigure3 . 8
dataFigure4 . 10
geom_flat_violin . 11
geom_superberrorbar . 13
GRD . 16
HyunhFeldtEpsilon . 19
is.formula . 20
makeTransparent . 21
MauchlySphericityTest . 22
measuresWithMissingData . 23
poolSDTransform . 24
precisionMeasures . 24
precisionMeasureWithCustomDF . 26
runDebug . 30
showSignificance . 30
ShroutFleissICC1 . 33
slope . 34
subjectCenteringTransform . 35
summaryStatistics . 35
superb . 36
superbData . 41
superbPlot . 43
superbPlot.bar . 47
superbPlot.boxplot . 48
superbPlot.circularline . 51
superbPlot.circularlineBand . 52
superbPlot.circularpoint . 54
superbPlot.circularpointjitter . 55
superbPlot.circularpointlinejitter . 57
superbPlot.corset . 58
superbPlot.halfwidthline . 61

biasCorrectionTransform 3

superbPlot.line . 62
superbPlot.lineBand . 64
superbPlot.point . 66
superbPlot.pointindividualline . 67
superbPlot.pointjitter . 69
superbPlot.pointjitterviolin . 70
superbPlot.pointlinejitter . 72
superbPlot.raincloud . 73
superbShiny . 75
superbToWide . 76
TMB1964r . 77
twoStepTransform . 80
WelchDegreeOfFreedom . 81
WinerCompoundSymmetryTest . 82

Index 83

biasCorrectionTransform

bias-correction transform

Description

biasCorrectionTransform is a transformation that can be applied to a matrix of data. The result-
ing matrix’s variance is corrected for bias (Morey 2008)

Usage

biasCorrectionTransform(dta, variables)

Arguments

dta a data.frame containing the data in wide format;

variables a vector of column names on which the transformation will be applied. the
remaining columns will be left unchanged

Value

a data.frame of the same form as dta with the variables transformed.

This function is useful when passed to the argument preprocessfct of superb() where it performs
a modification of the data matrix.

References

Morey RD (2008). “Confidence Intervals from Normalized Data: A correction to Cousineau
(2005).” Tutorials in Quantitative Methods for Psychology, 4, 61 – 64. doi:10.20982/tqmp.04.2.p061.

https://doi.org/10.20982/tqmp.04.2.p061

4 bootstrapPrecisionMeasures

bootstrapPrecisionMeasures

Bootstrapped measures of precision

Description

superb also comes with a few built-in measures of precisions that uses bootstrap. More can be
added based on users needs. All bootstrapSE.fct() functions produces an interval width; all
bootstrapPI.fct() produces the lower and upper limits of an interval. These estimates are based
on 5,000 sub-samples by default. Change this default withoptions("superb.bootstrapIter"
= number). See Efron and Tibshirani (1994) for a comprehensive introduction. The bootstrap
estimates are called PI which stands for Precision intervals. This is to denote that they estimate
the sampling distribution, not the predictive distribution on which all confidence intervals are based
(Rousselet et al. 2019; Poitevineau and Lecoutre 2010; Lecoutre 1999).

Usage

bootstrapSE.mean(x)

bootstrapPI.mean(x, gamma)

bootstrapSE.median(x)

bootstrapPI.median(x, gamma)

bootstrapSE.hmean(x)

bootstrapPI.hmean(x, gamma)

bootstrapSE.gmean(x)

bootstrapPI.gmean(x, gamma)

bootstrapSE.var(x)

bootstrapPI.var(x, gamma)

bootstrapSE.sd(x)

bootstrapPI.sd(x, gamma)

Arguments

x a vector of numbers, the sample data (mandatory);

gamma a confidence level for PI (default 0.95).

CousineauLaurencelleLambda 5

Value

a measure of precision (SE) or an interval of precision (PI).

References

Efron B, Tibshirani RJ (1994). An introduction to the bootstrap. CRC press.

Lecoutre B (1999). “Two useful distributions for Bayesian predictive procedures under normal
models.” Journal of Statistical Planning and Inference, 79, 93 – 105. doi:10.1016/S03783758(98)00231-
6.

Poitevineau J, Lecoutre B (2010). “Implementing Bayesian predictive procedures: The K-prime and
K-square distributions.” Computational Statistics and Data Analysis, 54, 724 – 731. doi:10.1016/
j.csda.2008.11.004.

Rousselet GA, Pernet CR, Wilcox RR (2019). “A practical introduction to the bootstrap: A ver-
satile method to make inferences by using data-driven simulations.” psyArXiv. doi:10.31234/osf.io/
h8ft7.

Examples

the confidence interval of the mean for default 95% and 90% confidence level
bootstrapPI.mean(c(1,2,3))
bootstrapPI.mean(c(1,2,3), gamma = 0.90)

Standard errors for standard deviation or variance
bootstrapSE.sd(c(1,2,3))
bootstrapSE.var(c(1,2,3))

CousineauLaurencelleLambda

Cousineau-Laurencelle’s lambda correction for cluster-randomized
sampling

Description

The functions CousineauLaurencelleLambda() returns the correction factor for cluster-randomized
sampling. This correction is then used in a variety of ways, for example, to get the effective number
of participants (in a power study) or to correct a t-test. See (Cousineau and Laurencelle 2016).

Usage

CousineauLaurencelleLambda(paramvector)

Arguments

paramvector A vector with, in that order, the intra-class correlation r, the number of clusters,
then the number of participants in all the clusters.

https://doi.org/10.1016/S0378-3758%2898%2900231-6
https://doi.org/10.1016/S0378-3758%2898%2900231-6
https://doi.org/10.1016/j.csda.2008.11.004
https://doi.org/10.1016/j.csda.2008.11.004
https://doi.org/10.31234/osf.io/h8ft7
https://doi.org/10.31234/osf.io/h8ft7

6 dataFigure1

Value

lambda the correction factor for cluster-randomized sampling.

References

Cousineau D, Laurencelle L (2016). “A Correction Factor for the Impact of Cluster Randomized
Sampling and Its Applications.” Psychological Methods, 21, 121 – 135. doi:10.1037/met0000055.

Examples

Example from Cousineau & Laurencelle, 2017, p. 124:
CousineauLaurencelleLambda(c(0.2, 5, 20, 20, 20, 20, 20))
2.234188

dataFigure1 Data for Figure 1

Description

The data, taken from (Cousineau 2017), is an example where the "stand-alone" 95\% confidence in-
terval of the means returns a result in contradiction with the result of a statistical test. The paradox-
ical result is resolved by using adjusted confidence intervals, here the different-adjusted confidence
interval.

Usage

data(dataFigure1)

Format

An object of class data.frame.

Source

doi:10.5709/acp0214z

References

Cousineau D (2017). “Varieties of confidence intervals.” Advances in Cognitive Psychology, 13,
140 – 155. doi:10.5709/acp0214z.

https://doi.org/10.1037/met0000055
https://doi.org/10.5709/acp-0214-z
https://doi.org/10.5709/acp-0214-z

dataFigure2 7

Examples

library(ggplot2)
library(gridExtra)
data(dataFigure1)

options(superb.feedback = 'none') # shut down 'warnings' and 'design' interpretation messages

realize the plot with unadjusted (left) and ajusted (right) 95% confidence intervals
plt1a <- superb(

score ~ grp,
dataFigure1,
adjustments=list(purpose = "single"),
plotStyle="bar") +

xlab("Group") + ylab("Score") + labs(title="95% CI\n") +
coord_cartesian(ylim = c(85,115)) +
geom_hline(yintercept = 100, colour = "black", linewidth = 0.5, linetype=2)

plt1b <- superb(
score ~ grp,
dataFigure1,
adjustments=list(purpose = "difference"),
plotStyle="bar") +

xlab("Group") + ylab("Score") + labs(title="Difference-adjusted 95% CI\n") +
coord_cartesian(ylim = c(85,115)) +
geom_hline(yintercept = 100, colour = "black", linewidth = 0.5, linetype=2)

plt1 <- grid.arrange(plt1a,plt1b,ncol=2)

realise the correct t-test to see the discrepancy
t.test(dataFigure1$score[dataFigure1$grp==1],

dataFigure1$score[dataFigure1$grp==2],
var.equal=TRUE)

dataFigure2 Data for Figure 2

Description

The data, taken from (Cousineau 2017)7, is an example where the "stand-alone" 95\% confidence
interval of the means returns a result in contradiction with the result of a statistical test. The para-
doxical result is resolved by using adjusted confidence intervals, here the correlation- and different-
adjusted confidence interval.

Usage

data(dataFigure2)

Format

An object of class data.frame.

8 dataFigure3

Source

doi:10.5709/acp0214z

References

Cousineau D (2017). “Varieties of confidence intervals.” Advances in Cognitive Psychology, 13,
140 – 155. doi:10.5709/acp0214z.

Examples

library(ggplot2)
library(gridExtra)
data(dataFigure2)

options(superb.feedback = 'none') # shut down 'warnings' and 'design' interpretation messages

realize the plot with unadjusted (left) and ajusted (right) 95% confidence intervals
plt2a <- superb(

cbind(pre, post) ~ .,
dataFigure2,
WSFactors = "Moment(2)",
adjustments=list(purpose = "difference"),
plotStyle="bar") +

xlab("Group") + ylab("Score") + labs(title="Difference-adjusted 95% CI\n") +
coord_cartesian(ylim = c(85,115)) +
geom_hline(yintercept = 100, colour = "black", linewidth = 0.5, linetype=2)

plt2b <- superb(
cbind(pre, post) ~ .,
dataFigure2,
WSFactors = "Moment(2)",
adjustments=list(purpose = "difference", decorrelation = "CA"),
plotStyle="bar") +

xlab("Group") + ylab("Score") + labs(title="Correlation and difference-adjusted\n95% CI") +
coord_cartesian(ylim = c(85,115)) +
geom_hline(yintercept = 100, colour = "black", linewidth = 0.5, linetype=2)

plt2 <- grid.arrange(plt2a,plt2b,ncol=2)

realise the correct t-test to see the discrepancy
t.test(dataFigure2$pre, dataFigure2$post, paired=TRUE)

dataFigure3 Data for Figure 3

Description

The data, inspired from (Cousineau and Laurencelle 2016), is an example where the "stand-alone"
95\ a result in contradiction with the result of a statistical test. The paradoxical result is resolved by
using adjusted confidence intervals, here the cluster- and different-adjusted confidence interval.

https://doi.org/10.5709/acp-0214-z
https://doi.org/10.5709/acp-0214-z

dataFigure3 9

Usage

data(dataFigure3)

Format

An object of class data.frame.

Source

doi:10.5709/acp0214z

References

Cousineau D, Laurencelle L (2016). “A Correction Factor for the Impact of Cluster Randomized
Sampling and Its Applications.” Psychological Methods, 21, 121 – 135. doi:10.1037/met0000055.

Examples

library(ggplot2)
library(gridExtra)
data(dataFigure3)

options(superb.feedback = 'none') # shut down 'warnings' and 'design' interpretation messages

realize the plot with unadjusted (left) and ajusted (right) 95% confidence intervals
plt3a <- superb(

VD ~ grp,
dataFigure3,
adjustments=list(purpose = "difference", samplingDesign = "SRS"),
plotStyle="bar") +

xlab("Group") + ylab("Score") + labs(title="Difference-adjusted 95% CI\n") +
coord_cartesian(ylim = c(85,115)) +
geom_hline(yintercept = 100, colour = "black", linewidth = 0.5, linetype=2)

plt3b <- superb(
VD ~ grp,
dataFigure3,
adjustments=list(purpose = "difference", samplingDesign = "CRS"),
plotStyle="bar", clusterColumn = "cluster") +

xlab("Group") + ylab("Score") + labs(title="Cluster and difference-adjusted\n95% CI") +
coord_cartesian(ylim = c(85,115)) +
geom_hline(yintercept = 100, colour = "black", linewidth = 0.5, linetype=2)

plt3 <- grid.arrange(plt3a,plt3b,ncol=2)

realise the correct t-test to see the discrepancy
res <- t.test(dataFigure3$VD[dataFigure3$grp==1],

dataFigure3$VD[dataFigure3$grp==2],
var.equal=TRUE)

micc <- mean(c(0.491334683772226, 0.20385744842838)) # mean ICC given by superbPlot
lam <- CousineauLaurencelleLambda(c(micc, 5,5,5,5,5,5))
tcorr <- res$statistic / lam
pcorr <- 1-pt(tcorr,4)
let's see the t value and its p value:

https://doi.org/10.5709/acp-0214-z
https://doi.org/10.1037/met0000055

10 dataFigure4

c(tcorr, pcorr)

dataFigure4 Data for Figure 4

Description

The data, inspired from (Cousineau 2017), shows an example where the "stand-alone" 95\ a result in
contradiction with the result of a statistical test. The paradoxical result is resolved by using adjusted
confidence intervals, here the population size-adjusted confidence interval.

Usage

data(dataFigure4)

Format

An object of class data.frame.

Source

doi:10.5709/acp0214z

References

Cousineau D (2017). “Varieties of confidence intervals.” Advances in Cognitive Psychology, 13,
140 – 155. doi:10.5709/acp0214z.

Examples

library(ggplot2)
library(gridExtra)
data(dataFigure4)

options(superb.feedback = 'none') # shut down 'warnings' and 'design' interpretation messages

realize the plot with unadjusted (left) and ajusted (right) 95% confidence intervals
plt4a = superb(

score ~ group,
dataFigure4,
adjustments=list(purpose = "single", popSize = Inf),
plotStyle="bar") +

xlab("Group") + ylab("Score") + labs(title="Difference-adjusted 95% CI\n") +
coord_cartesian(ylim = c(85,115)) +
geom_hline(yintercept = 100, colour = "black", linewidth = 0.5, linetype=2)

plt4b = superb(
score ~ group,
dataFigure4,

https://doi.org/10.5709/acp-0214-z
https://doi.org/10.5709/acp-0214-z

geom_flat_violin 11

adjustments=list(purpose = "single", popSize = 50),
plotStyle="bar") +

xlab("Group") + ylab("Score") + labs(title="Population size and difference-\nadjusted 95% CI") +
coord_cartesian(ylim = c(85,115)) +
geom_hline(yintercept = 100, colour = "black", linewidth = 0.5, linetype=2)

plt4 = grid.arrange(plt4a,plt4b,ncol=2)

realise the correct t-test to see the discrepancy
res = t.test(dataFigure4$score, mu=100)
tcorr = res$statistic /sqrt(1-25/50)
pcorr = 1-pt(tcorr,24)
c(tcorr, pcorr)

geom_flat_violin geom_flat_violin for expanded density displays

Description

geom_flat_violin() is a geom for ggplots; it is based on the original script to create raincloud
plots. It relies largely on code previously written by David Robinson (https://gist.github.com/dgrtwo/eb7750e74997891d7c20)
and the package ggplot2 by Hadley Wickham.

Code from Allen et al. (2019)

It is expanded in tow different ways. First, it is possible to decide the direction of the violin using
the direction argument (values are 0 = symmetrical; 1 = extending to the right; -1 = extending to
the left); the last two cases are "half"-violin. The second argument is push which pushed the violin
away from the median line (default = 0).

Usage

geom_flat_violin(
mapping = NULL,
data = NULL,
stat = "ydensity",
position = "dodge",
trim = TRUE,
scale = "area",
show.legend = NA,
inherit.aes = TRUE,
...

)

Arguments

mapping (as usual) see geom_violin()

data (as usual) see geom_violin()

12 geom_flat_violin

stat (as usual) see geom_violin()

position (as usual) see geom_violin()

trim If TRUE (default), trim the tails of the violins to the range of the data. If FALSE,
don’t trim the tails.

scale if "area" (default), all violins have the same area (before trimming the tails).
If "count", areas are scaled proportionally to the number of observations. If
"width", all violins have the same maximum width.

show.legend (as usual) see geom_violin()

inherit.aes (as usual) see geom_violin()

... all additional parameters are sent to the underlying geom_path(). It includes

• direction (NEW) either -1,0, or +1;
• push (NEW) a positive number.
• na.rm (as usual) see geom_violin()

• orientation (as usual) see geom_violin()

Value

a layer containing violins in a ggplot object

References

Allen M, Poggiali D, Whitaker K, Marshall TR, van Langen J, Kievit RA (2019). “Raincloud plots:
a multi-platform tool for robust data visualization.” Wellcome open research, 4.

Examples

library(superb) # to import the geom_flat_violin
library(ggplot2)

let's have a fake data frame with three groups:
dta <- dta <- GRD(SubjectsPerGroup = 20,

BSFactors = "Vacations(yes,no,maybe)",
RenameDV = "tiredeness",
Population = list(mean=75, stddev=15),
Effects = list("Vacations" = custom(-20,+20,+10))

)

The most basic plot = a regular error bar
superb(tiredeness ~ Vacations, dta)

an example with default violins
superb(tiredeness ~ Vacations, dta,

plotStyle = "pointjitterviolin")

the same with some ornementations:
superb(tiredeness ~ Vacations, dta,

plotStyle = "pointjitterviolin",
violinParams = list(direction = 1, push = 0.2, fill="green", alpha = 0.3)

geom_superberrorbar 13

) + theme_bw() + coord_flip() + ylab("Tiredeness")

This new geom is integrated inside superb() so that you can use it
directly. Let's see examples:

show the violins only
ggplot(dta, aes(y = tiredeness, x = Vacations)) +

geom_flat_violin()

change the parameters of the violins
ggplot(dta, aes(y = tiredeness, x = Vacations)) +

geom_flat_violin(fill = "green")

all the arguments manipulated
ggplot(dta, aes(y = tiredeness, x = Vacations)) +

geom_flat_violin(fill = "green", direction = 1, push =0.)

using direction within aes
dta <- transform(dta, dir = ifelse(Vacations == "no", 1, -1))

ggplot(dta, aes(y = tiredeness, x = Vacations, direction = dir)) +
geom_flat_violin(fill = "green", push =0.)

geom_superberrorbar geom_superberrorbar for expanded error bar displays

Description

geom_superberrorbar() is a geom for ggplots; it is based on the original geom_errorbar (and
is totally compatible with it) but expands this geom in four different ways. First, it is possible to
decide the error bar tips direction which can be unidirectional, pointing to the "left" or to the
"right" or go in "both" directions. Second, it is possible set tipformat to "double" or "triple"
the horizontal marks at the extremities of the error bar, with a tipgap of your liking. Third, an
additional characteristic is vcolour to set a different colour for the vertical part of the error bar
or the pair vcolour and wcolour for the top half and bottom half of the vertical error bar. The
colour(s) can also be "NA" to have it invisible. Lastly, the error bar can be pointing "up" and
"down" or go in "both" (the default)

Usage

geom_superberrorbar(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
na.rm = FALSE,
orientation = NA,

14 geom_superberrorbar

show.legend = NA,
inherit.aes = TRUE

)

Arguments

mapping (as usual) see geom_errorbar

data (as usual) see geom_errorbar

stat (as usual) see geom_errorbar

position (as usual) see geom_errorbar

... all additional parameters are sent to the underlying geom_path. Includes

• pointing (NEW) either "up", "down" or "both" up and down;
• direction (NEW) "left", "right" or "both" (Default is "both")
• tipformat (NEW) "single", "double" or "triple" to add additional marker

lines to the tips (default is "single")
• tipgap (NEW) The spacing between the markers when "double" or "triple"

is used (default 0.1)
• vcolour (NEW) for the vertical part of the error bar
• wcolour (NEW) if specified, for the second half of the vertical part of the

error bar.

na.rm (as usual) see geom_errorbar

orientation (as usual) see geom_errorbar

show.legend (as usual) see geom_errorbar

inherit.aes (as usual) see geom_errorbar

Value

a layer containing error bars in a ggplot object

Examples

library(superb) # to import the geom_superberrorbar
library(ggplot2)

let's have a fake data frame
dta <- data.frame(grp = c(1,2,3), center=c(1,2,3), width = c(1,1,1.5))

an example with none of the new features = a regular error bar
ggplot(dta, aes(ymin=center-width, ymax=center+width, x = grp)) +

geom_superberrorbar()

an example with left-pointing error bars
ggplot(dta, aes(ymin=center-width, ymax=center+width, x = grp)) +

geom_superberrorbar(direction="left", width = 0.1)

an example with doubled-tipped error bar and the default tipgap
ggplot(dta, aes(ymin=center-width, ymax=center+width, x = grp)) +

geom_superberrorbar 15

geom_superberrorbar(tipformat = "double", width = 0.1)

an example with left-pointing tripled-tip error bars with small gaps
ggplot(dta, aes(ymin=center-width, ymax=center+width, x = grp)) +
geom_superberrorbar(tipformat = "triple", width= 0.1, tipgap = 0.04, direction = "left")

an example with unidirectional error bars (here "up" bars)
ggplot(dta, aes(y= center, ymin=center-width, ymax=center+width, x = grp)) +

geom_bar(stat="identity", fill = "yellow") +
geom_superberrorbar(pointing = "up")

a final example with two-coloured, left-pointing tripled-tip error bars with small gaps
ggplot(dta, aes(ymin=center-width, ymax=center+width, x = grp)) +
geom_superberrorbar(tipformat = "triple", width= 0.1, tipgap = 0.04, direction = "left",

colour = "black", vcolour = "orange")

This new geom is integrated inside superb() so that you can vary the
error bar shapes. Let's see examples:

using GRD to generate random data with a moderate effect
options(superb.feedback = 'none') # shut down 'warnings' and 'design' interpretation messages
test <- GRD(SubjectsPerGroup = 20,

WSFactors = "Moment(5)",
Effects = list("Moment" = extent(10)),
Population = list(mean = 100, stddev = 15, rho = 0.8))

ornate = list(
labs(title =paste("(left) 95% confidence intervals",

"\n(right) 99% confidence intervals",
"\n(center, up) 99.9% confidence intervals")),

xlab("Moment"), ylab("Score"),
coord_cartesian(ylim = c(85,125))

)

plt1 <- superb(
crange(DV.1, DV.5) ~ .,
test,
WSFactors = "Moment(5)",
adjustments=list(purpose = "difference", decorrelation = "CA"),
errorbarParams = list(direction = "left", color="purple",

width = 0.2, position = position_nudge(-0.05)),
gamma = 0.95,
plotStyle = "line") + ornate

plt2 <- superb(
crange(DV.1, DV.5) ~ .,
test,
WSFactors = "Moment(5)",
adjustments=list(purpose = "difference", decorrelation = "CA"),

errorbarParams = list(direction = "right", tipgap = 0.25, tipformat = "double",
width = 0.2, position = position_nudge(+0.05)),

gamma = 0.99,
plotStyle = "line") + ornate

plt3 <- superb(

16 GRD

crange(DV.1, DV.5) ~ .,
test,
WSFactors = "Moment(5)",
adjustments=list(purpose = "difference", decorrelation = "CA"),

errorbarParams = list(direction = "both", tipformat = "single", pointing="up",
width = 0.2, position = position_nudge(0)),

gamma = 0.999,
plotStyle = "line") + ornate

transform the ggplots into "grob" so that they can be manipulated
plt1 <- ggplotGrob(plt1)
plt2 <- ggplotGrob(plt2 + makeTransparent())
plt3 <- ggplotGrob(plt3 + makeTransparent())

put the grobs onto an empty ggplot
ggplot() +

annotation_custom(grob=plt1) +
annotation_custom(grob=plt2) +
annotation_custom(grob=plt3)

all of them as aesthetics
set.seed(1)
library(dplyr)
dat <- data.frame(Trial = c(rep("Pre",9),rep("Post",9)),

Time = rep.int(seq(0,120,15),2),
var = c(rnorm(9,15,2),rnorm(9,22,2)),
var_sd = c(rnorm(18,3,1)))

dat <- mutate(dat, point = ifelse(Trial == "Pre","down","up"))
dat <- mutate(dat, direc = ifelse(Trial == "Pre","left","right"))
dat <- mutate(dat, tipfo = ifelse(Trial == "Pre","double","triple"))
dat <- mutate(dat, vcolo = ifelse(Trial == "Pre","red","blue"))

ggplot(data = dat,
aes(x = Time, y = var, group = Trial)) +

geom_line(aes(linetype = Trial)) +
geom_point(aes(shape= Trial, fill = Trial), size=2) +
geom_superberrorbar(aes(ymin=var-var_sd,

ymax=var+var_sd,
direction = direc,
pointing = point,
wcolour = vcolo,
vcolour = "green",
tipformat = tipfo

),
width = 4)

GRD Generate random data

GRD 17

Description

The function GRD() generates a data frame containing random data suitable for analyses. The data
can be from within-subject or between-group designs. Within-subject designs are in wide format.
The function was originally presented in Calderini and Harding (2019).

Usage

GRD(
RenameDV = "DV",
SubjectsPerGroup = 100,
BSFactors = "",
WSFactors = "",
Effects = list(),
Population = list(mean = 0, stddev = 1, rho = 0, scores =
"rnorm(1, mean = GM, sd = STDDEV)"),

Contaminant = list(mean = 0, stddev = 1, rho = 0, scores =
"rnorm(1, mean = CGM, sd = CSTDDEV)", proportion = 0)

)

Arguments

RenameDV provide a name for the dependent variable (default DV)

SubjectsPerGroup

indicates the number of simulated scores per group (default 100 in each group)

BSFactors a string indicating the between-subject factor(s) with, between parenthesis, the
number of levels or the list of level names. Multiple factors are separated with a
colon ":" or enumerated in a vector of strings.

WSFactors a string indicating the within-subject factor(s) in the same format as the between-
subject factors

Effects a list detailing the effects to apply to the data. The effects can be given with a list
of "factorname" = effect_specification or "factorname1*factorname2"
= effect_specification pairs, in which effect_specification can either be slope(),
extent(), custom() and Rexpression(). For slope and extent, provide a
range, for custom, indicate the deviation from the grand mean for each cell,
finally, for Rexpression, give between quote any R commands which returns the
deviation from the grand mean, using the factors. See the last example below.

Population a list providing the population characteristics (default is a normal distribution
with a mean of 0 and standard deviation of 1)

Contaminant a list providing the contaminant characteristics and the proportion of contami-
nant (default 0)

Value

a data.frame with the simulated scores.

18 GRD

Note

Note that the range effect specification has been renamed extent to avoid masking the base func-
tion base::range.

References

Calderini M, Harding B (2019). “GRD for R: An intuitive tool for generating random data in R.”
The Quantitative Methods for Psychology, 15(1), 1–11. doi:10.20982/tqmp.15.1.p001.

Examples

Simplest example using all the default arguments:
dta <- GRD()
head(dta)
hist(dta$DV)

Renaming the dependant variable and setting the group size:
dta <- GRD(RenameDV = "score", SubjectsPerGroup = 200)
hist(dta$score)

Examples for a between-subject design and for a within-subject design:
dta <- GRD(BSFactors = '3', SubjectsPerGroup = 20)
dta <- GRD(WSFactors = "Moment (2)", SubjectsPerGroup = 20)

A complex, 3 x 2 x (2) mixed design with a variable amount of participants in the 6 groups:
dta <- GRD(BSFactors = "difficulty(3) : gender (2)",

WSFactors="day(2)",
SubjectsPerGroup=c(20,24,12,13,28,29)

)

Defining population characteristics :
dta <- GRD(

RenameDV = "IQ",
SubjectsPerGroup = 20,

Population=list(
mean=100, # will set GM to 100
stddev=15 # will set STDDEV to 15

)
)

hist(dta$IQ)

This example adds an effect along the "Difficulty" factor with a slope of 15
dta <- GRD(BSFactors="Difficulty(5)", SubjectsPerGroup = 100,

Population=list(mean=50,stddev=5),
Effects = list("Difficulty" = slope(15)))

show the mean performance as a function of difficulty:
superb(DV ~ Difficulty, dta)

An example in which the moments are correlated
dta <- GRD(BSFactors = "Difficulty(2)",WSFactors = "Moment (2)",

SubjectsPerGroup = 250,
Effects = list("Difficulty" = slope(3), "Moment" = slope(1)),

https://doi.org/10.20982/tqmp.15.1.p001

HyunhFeldtEpsilon 19

Population=list(mean=50,stddev=20,rho=0.85)
)
the mean plot on the raw data...
superb(cbind(DV.1,DV.2) ~ Difficulty, dta, WSFactors = "Moment(2)",

plotStyle="line",
adjustments = list (purpose="difference"))

... and the mean plot on the decorrelated data;
because of high correlation, the error bars are markedly different
superb(cbind(DV.1,DV.2) ~ Difficulty, dta, WSFactors = "Moment(2)",

plotStyle="line",
adjustments = list (purpose="difference", decorrelation = "CM"))

This example creates a dataset in a 3 x 2 design. It has various effects,
one effect of difficulty, with an overall effect of 10 more (+3.33 per level),
one effect of gender, whose slope is 10 points (+10 points for each additional gender),
and finally one interacting effect, which is 0 for the last three cells of the design:
GRD(

SubjectsPerGroup = 10,
BSFactors = c("difficulty(3)","gender(2)"),
Population = list(mean=100,stddev=15),
Effects = list(

"difficulty" = extent(10),
"gender"=slope(10),
"difficulty*gender"=custom(-300,+200,-100,0,0,0)

)
)

HyunhFeldtEpsilon Hyunh and Feldt’s epsilon measure of sphericity

Description

HyunhFeldtEpsilon() is a measure of sphericity created by Geisser and Greenhouse (1958). The
original measure was biased and therefore, Huynh and Feldt (1976) produced a revised version
(note that the 1976 paper contained typos that were uncorrected in SPSS; Lecoutre (1991))

Usage

HyunhFeldtEpsilon(dta, cols)

Arguments

dta a data.frame

cols a vector of column names indicating the relevant columns on which to compute
epsilon. Any other columns are ignored.

20 is.formula

Value

returns the Hyunh-Feldt estimate of sphericity epsilon

References

Geisser S, Greenhouse SW (1958). “An extension of Box’s results on the use of the F distribution
in multivariate analysis.” Annals of Mathematical Statistics, 29(3), 885–891.

Huynh H, Feldt LS (1976). “Estimation of the Box correction for degrees of freedom from sample
data in randomized block and split-plot designs.” Journal of educational statistics, 1(1), 69–82.

Lecoutre B (1991). “A correction for the ε approximate test in repeated measures designs with
two or more independent groups.” Journal of Educational Statistics, 16(4), 371–372.

is.formula logical functions for formulas

Description

The functions is.formula(), is.one.sided(), has.nested.terms(), has.cbind.terms(), has.crange.terms(),
in.formula() and sub.formulas() performs checks or extract sub-formulas from a given for-
mula.

Usage

is.formula(frm)

is.one.sided(frm)

has.nested.terms(frm)

has.cbind.terms(frm)

has.crange.terms(frm)

in.formula(frm, whatsym)

sub.formulas(frm, head)

Arguments

frm a formula;

whatsym a symbol to search in the formula;

head the beginning of a sub-formula to extract

makeTransparent 21

Details

These formulas are for internal use.

Value

is.formula(frm), has.nested.terms(frm), has.crange.terms(frm) and has.cbind.terms(frm)
returns TRUE if frm is a formula, contains a | or a crange or a cbind respectively; in.formula(frm,
whatsym) returns TRUE if the symbol whatsym is somewhere in ’frm’; sub.formulas(frm, head)
returns a list of all the sub-formulas which contains head.

Examples

is.formula(Frequency ~ Intensity * Pitch)

has.nested.terms(Level ~ Factor | Level)

has.cbind.terms(Frequency ~ cbind(Low,Medium,High) * cbind(Soft, Hard))

has.crange.terms(Frequency ~ crange(Low,High) * cbind(Soft, Hard))

in.formula(Frequency ~ Intensity * Pitch, "Pitch")

sub.formulas(Frequency ~ cbind(Low,Medium,High) * cbind(Soft, Hard), "cbind")

makeTransparent makes ggplots with transparent elements

Description

makeTransparent is an extension to ggplots which makes all the elements of the plot transparent
except the data being displayed. This is useful to superimpose multiple plots, e.g. to generate plots
with multiple error bars for example.

Usage

makeTransparent()

Value

does not return anything; set the elements to transparent.

22 MauchlySphericityTest

Examples

make a basic plot
superb(len ~ dose + supp, ToothGrowth)
make a basic plot with transparent elements
superb(len ~ dose + supp, ToothGrowth,

) + makeTransparent()

MauchlySphericityTest Mauchly’s test of Sphericity

Description

Performs a test of sphericity on a dataframe with multiple measures, one subject per line. It assesses
the significance of the null hypothesis that the covariance matrix is spherical. This test is described
in (Abdi 2010)

Usage

MauchlySphericityTest(dta, cols)

Arguments

dta A data frame containing within-subject measures, one participant per line;

cols A vector indicating the columns containing the measures.

Value

p the p-value of the null hypothesis that the data are spherical.

References

Abdi H (2010). “The greenhouse-geisser correction.” Encyclopedia of research design, 1(1), 544–
548.

Examples

creates a small data frames with 4 subject's scores for 5 measures:
dta <- data.frame(cbind(

col1 <- c(3., 6., 2., 2., 5.),
col2 <- c(4., 5., 4., 4., 3.),
col3 <- c(2., 7., 7., 8., 6.),
col4 <- c(6., 8., 4., 6., 5.)

))
performs the test (here p = 0.5824)
MauchlySphericityTest(dta)

measuresWithMissingData 23

measuresWithMissingData

Measures with missing data

Description

The following three functions can be used with missing data. They return the mean, the standard er-
ror of the mean and the confidence interval of the mean.Note that we hesitated to provide these func-
tions: you should deal with missing data prior to making your plot. Removing NAs from the mean
in a univariate setting is equivalent to performing mean imputation. See @enwiki:1243866876 for
more. Also note that for repeated-measure design, only CA adjustment is available.

Usage

meanNArm(x)

SE.meanNArm(x)

CI.meanNArm(x, gamma)

Arguments

x a vector of numbers, the sample data (mandatory);

gamma a confidence level for CI (default 0.95).

Value

the means, a measure of precision (SE) or an interval of precision (CI) in the presence of missing
data.

References

There are no references for Rd macro \insertAllCites on this help page.

Examples

the confidence interval of the mean for default 95% and 90% confidence level
meanNArm(c(1,2,3, NA))
SE.meanNArm(c(1,2,3, NA))
CI.meanNArm(c(1,2,3, NA))
CI.meanNArm(c(1,2,3, NA), gamma = 0.90)

24 precisionMeasures

poolSDTransform pooled standard deviation transform

Description

poolSDTransform is a transformations that can be applied to a matrix of data. The resulting matrix
has the column- standard deviations equal to the pool standard deviations of the individual columns,
the solution adopted by (Loftus and Masson 1994).

Usage

poolSDTransform(dta, variables)

Arguments

dta a data.frame containing the data in wide format;

variables a vector of column names on which the transformation will be applied. the
remaining columns will be left unchanged

Value

a data.frame of the same form as dta with the variables transformed.

This function is useful when passed to the argument preprocessfct of superb() where it performs
a modification of the data matrix.

References

Loftus GR, Masson MEJ (1994). “Using confidence intervals in within-subject designs.” Psycho-
nomic Bulletin & Review, 1, 476 – 490. doi:10.3758/BF03210951.

precisionMeasures Precision measures

Description

superb comes with a few built-in measures of precisions. All SE.fct() functions produces an
interval width; all CI.fct() produces the lower and upper limits of an interval. See (Harding et al.
2014; Harding et al. 2015) for more. "superbPlot-compatible" precision measures must have these
parameters:

https://doi.org/10.3758/BF03210951

precisionMeasures 25

Usage

SE.mean(x)

CI.mean(x, gamma)

SE.median(x)

CI.median(x, gamma)

SE.hmean(x)

CI.hmean(x, gamma)

SE.gmean(x)

CI.gmean(x, gamma)

SE.var(x)

CI.var(x, gamma)

SE.sd(x)

CI.sd(x, gamma)

SE.MAD(x)

CI.MAD(x, gamma)

SE.IQR(x)

CI.IQR(x, gamma)

SE.fisherskew(x)

CI.fisherskew(x, gamma)

SE.pearsonskew(x)

CI.pearsonskew(x, gamma)

SE.fisherkurtosis(x)

CI.fisherkurtosis(x, gamma)

Arguments

x a vector of numbers, the sample data (mandatory);

26 precisionMeasureWithCustomDF

gamma a confidence level for CI (default 0.95).

Value

a measure of precision (SE) or an interval of precision (CI).

References

Harding B, Tremblay C, Cousineau D (2014). “Standard errors: A review and evaluation of stan-
dard error estimators using Monte Carlo simulations.” The Quantitative Methods for Psychology,
10(2), 107–123.

Harding B, Tremblay C, Cousineau D (2015). “The standard error of the Pearson skew.” The
Quantitative Methods for Psychology, 11(1), 32–36.

Examples

the confidence interval of the mean for default 95% and 90% confidence level
CI.mean(c(1,2,3))
CI.mean(c(1,2,3), gamma = 0.90)

Standard errors for standard deviation, for MAD and for fisher skew
SE.sd(c(1,2,3))
SE.MAD(c(1,2,3))
SE.fisherskew(c(1,2,3))

precisionMeasureWithCustomDF

Confidence intervals with custom degree of freedom

Description

The following function computes a confidence interval with custom degree of freedom. The default
is to use N-1 but this number is not quite appropriate. To get the exact critical value which is used
to construct the confidence interval, it is necessary to “pool” the degrees of freedom. This last
expression means that the degree of freedom is the total number of data minus 1 for each condition
except the last, and minus 1 for each participant except the last. In formula, if the number of repeated
measures is p, the number of participants is n, and the total sample size is N (with $N = p
x n$, then the pooled degree of freedom is $(p-1) x (n-1)$ or equivalently $N -p-n+1$. Another
example where custom degree of freedom can be used is when there are heterogeneous variances,
the confidence interval of the mean should mirror a Welsh test where the degrees of freedom are
altered based on variances. The function CIwithDF.mean() accept any arbitrary defined degree of
freedom (df). The df must be combined to the argument ‘gamma‘ after the confidence level.

Usage

CIwithDF.mean(x, gamma = 0.95)

precisionMeasureWithCustomDF 27

Arguments

x a vector of numbers, the sample data (mandatory);

gamma a vector containing first a confidence level for CI (default 0.95) and a custom
degree of freedom (when unspecified, it uses n-1 where n is the number of
observations in each of the condition).

Details

See the vignette "Unequal variances, Welch test, Tryon adjustment, and superb" for an example of
use.

Value

the confidence interval (CI) where the t value is based on the custom-set degree of freedom.

References

There are no references for Rd macro \insertAllCites on this help page.

Examples

this will issue a warning as no custom degree of freedom (df) is provided
CIwithDF.mean(c(1,2,3), gamma = 0.90)
the confidence interval of the mean for 90% confidence level
CIwithDF.mean(c(1,2,3), gamma = c(0.90, 1.5)) # uses 1.5 as df instead of 2.

==
A COMPLETE EXAMPLE:
==

Let's generate random measurements with GRD:
(we generate a very small group of 10 to have a chance to see differences)
dta <- GRD(WSFactors = "Moment (3)", SubjectsPerGroup = 10)

We need ggplotGrop
library(ggplot2)

First, a regular plot
plt1 <- superb(

cbind(DV.1,DV.2,DV.3) ~ .,
dta,
WSFactors = "Moment(3)",
plotStyle = "line",
adjustments = list (purpose="difference",decorrelation="CM"),
errorbar = "CI",
gamma = 0.95,
errorbarParams = list(color="orange", width= 0.1, direction = "both",

position = position_nudge(-0.0))
)

Second, a plot where the df are set to the default
plt2 <- superb(

28 precisionMeasureWithCustomDF

cbind(DV.1,DV.2,DV.3) ~ .,
dta,
WSFactors = "Moment(3)",
plotStyle = "line",
adjustments = list (purpose="difference",decorrelation="CM"),
errorbar = "CIwithDF", # NEW: change the CI computation
gamma = c(0.95, 10-1), # NEW: specify explicitely the unpooled df
errorbarParams = list(color="red", width= 0.1, direction = "left",

position = position_nudge(-0.05))
)

Third, a plot where the pooled df are explicitely set
plt3 <- superb(

cbind(DV.1,DV.2,DV.3) ~ .,
dta,
WSFactors = "Moment(3)",
plotStyle = "line",
adjustments = list (purpose="difference",decorrelation="CM"),
errorbar = "CIwithDF", # NEW: again, change the CI computation
gamma = c(0.95, 30-3-10+1), # NEW: this time, specify the pooled df
errorbarParams = list(color="blue", width= 0.1, direction = "right",

position = position_nudge(+0.05))
)

Convert the plots into grapphical objects all with the same scale...
plt1b <- ggplotGrob(plt1 + ylim(-1.65,1.65))
plt2b <- ggplotGrob(plt2 + ylim(-1.65,1.65) + makeTransparent())
plt3b <- ggplotGrob(plt3 + ylim(-1.65,1.65) + makeTransparent())

... and superimpose these grobs onto an empty ggplot
ggplot() +

annotation_custom(grob=plt1b) +
annotation_custom(grob=plt2b) +
annotation_custom(grob=plt3b)

As seen and as expected, the orange and red bars are identical;
The blue bars, based on the (correct) pooled degree of freedom
are just a little bit smaller because the pooled df are larger.
However, the difference is visible only because the group size
is ridiculously small (10 participants only).

==
AN EXAMPLE with heterogeneous variance
==

We create simulated scores with a large amount of heterogeneity
dta <- GRD(

BSFactors = "Group(3)",
SubjectsPerGroup = 10,
Population = list(

mean = 100, # will set GM to 100
stddev = 15, # will set STDDEV to 15
scores = "rnorm(1, mean = GM, sd = STDDEV*Group)"

)
)

precisionMeasureWithCustomDF 29

This computes the Welch's degree of freedom
wdf <- WelchDegreeOfFreedom(dta, "DV", "Group")
wdf # should be between n-1 and N-n-p+1.

A regular plot
plt1 <- superb(

DV ~ Group,
dta,
plotStyle = "line",
adjustments = list (purpose="difference"),
errorbar = "CI",
gamma = 0.95,
errorbarParams = list(color="orange", width= 0.1, direction = "both",

position = position_nudge(-0.0))
)

Second, a plot where the df are set to the pooled df
plt2 <- superb(

DV ~ Group,
dta,
plotStyle = "line",
adjustments = list (purpose="difference"),
errorbar = "CIwithDF", # NEW: change the CI computation
gamma = c(0.95, 30-10-3+1), # NEW: specify explicitely the unpooled df
errorbarParams = list(color="red", width= 0.1, direction = "left",

position = position_nudge(-0.05))
)

Third, a plot where the pooled df are explicitely set
plt3 <- superb(

DV ~ Group,
dta,
plotStyle = "line",
adjustments = list (purpose="difference"),
errorbar = "CIwithDF", # NEW: again, change the CI computation
gamma = c(0.95, wdf), # NEW: this time, specify the pooled df
errorbarParams = list(color="blue", width= 0.1, direction = "right",

position = position_nudge(+0.05))
)

Convert the plots into grapphical objects all with the same scale...
plt1b <- ggplotGrob(plt1 + ylim(25,175))
plt2b <- ggplotGrob(plt2 + ylim(25,175) + makeTransparent())
plt3b <- ggplotGrob(plt3 + ylim(25,175) + makeTransparent())

... and superimpose these grobs onto an empty ggplot
ggplot() +

annotation_custom(grob=plt1b) +
annotation_custom(grob=plt2b) +
annotation_custom(grob=plt3b)

As seen, the Welch's corrected df results in error bars (blue) which are
just a little bit longer than the pooled df bars (red). In all cases, the
unadjusted (default) error bars (n-1) are longer (orange bars), resulting in a more
conservative representation of the data.

30 showSignificance

runDebug runDebug

Description

runDebug is an internal function used by GRD and superb to help in debugging the functions. It
assigns in the global environment the variables that are local to a function so that they become
visible. Use options("superb.feedback" = "all") to turn all debug on.

Usage

runDebug(where, title, vars, vals)

Arguments

where indicates where in the program runDebug was called
title string text to be displayed when this function is triggered
vars strings names of the variables to be placed in the global environment
vals numeric values to be given to the variables.

Value

puts in the globalenvironment the variables named "vars"

showSignificance Annotate significance of results on plots

Description

showSignificance() is used to add an annotation to a ggplot in the form of a square bracket with
a text. The bracket extends from x range (left, right) with a heigth of width. It is also possible to
have the bracket and the text vertical when y is a range (bottom, top).

Usage

showSignificance(
x,
y,
width,
text = NULL,
panel = list(),
segmentParams = list(),
textParams = list()

)

showSignificance 31

Arguments

x (a vector of 2 when horizontal) indicates the limits of the annotation;

y (a vector of 2 when vertical) the location of the annotation in the y direction

width height of the annotation; for negative width, the legs extends towards the bot-
tom;

text (optional) string text to be display on the opposite side of width;

panel (optional) a list to identify in which panel to put the annotation;

segmentParams (optional) a list of directives that will be sent to the geom_segment() items;

textParams (optional) a list of directives that will be sent to the geom_text() item.

Value

adds an annotation in a ggplot

Examples

loading required libraries
library(superb)
library(ggplot2)
library(grid)

making one random data set with three factors 2 x 3 x (3)
dta <- GRD(

SubjectsPerGroup = 20,
BSFactors = c("Group(2)","Age(3)"),
WSFactors = c("Moment(3)"),
Population = list(mean = 75, stddev = 5),
Effects = list("Group" = slope(10))

)

making a two-factor plot and a three-factor plots (having panels)
plt2 <- superb(

cbind(DV.1,DV.2,DV.3) ~ Group,
dta,
WSFactor = c("Moment(3)"),
adjustments = list(purpose="difference"),
factorOrder = c("Moment","Group")

)
plt3 <- superb(

cbind(DV.1,DV.2,DV.3) ~ Group + Age,
dta,
WSFactor = c("Moment(3)"),
adjustments = list(purpose="difference"),
factorOrder = c("Moment","Group","Age")

)

lets decorate these plots a bit...
plt2 <- plt2 + scale_fill_manual(name = "Group",

labels = c("Easy", "Hard"),

32 showSignificance

values = c("blue", "purple")) +
scale_colour_manual(name = "Group",

labels = c("Easy", "Hard"),
values = c("blue", "purple")) +

coord_cartesian(ylim = c(50,100), xlim = c(0.5, 3.9))
plt3 <- plt3 + scale_fill_manual(name = "Group",

labels = c("Easy", "Hard"),
values = c("blue", "purple")) +

scale_colour_manual(name = "Group",
labels = c("Easy", "Hard"),
values = c("blue", "purple")) +

coord_cartesian(ylim = c(50,105))

a very basic example
plt2 + showSignificance(c(0.75, 1.25), 90, -1, "++1++")

the annotation can be vertical when y is a vector with bottom and top location:
plt2 + showSignificance(3.75, c(70,80), -0.1, "++1++")

an example with panels; the "panel" argument is used to identify on
which panel to put the annotation (or else they appear on all panels)
and with arms of differing lengths, and one flat ending
plt3 +

showSignificance(c(0.75, 1.25), 90, -2.5, "++1++", panel = list(Age= 1)) +
showSignificance(c(1.75, 2.25), 90, -2.5, "++2++", panel = list(Age= 2)) +
showSignificance(c(0.75, 1.25), 90, c(-10,-5), "++3++", panel = list(Age= 3)) +
showSignificance(c(2.00, 3.25), 95, -10, "++4++", panel = list(Age= 3)) +
showSignificance(c(1.75, 2.25), 85, 0, panel = list(Age= 3))

here, we send additional directives to the annotations
plt3 +

showSignificance(c(0.75, 1.25), 90, -5, "++1++", panel = list(Age= 1)) +
showSignificance(c(1.75, 2.25), 95, -10, "++2++", panel = list(Age = 2),

textParams = list(size = 3, # smaller font
family = "mono", # courrier font
colour= "chartreuse3" # dark green color

),
segmentParams = list(linewidth = 1., # thicker lines

arrow = arrow(length = unit(0.2, "cm")), # arrow heads
colour = "chartreuse3" # dark green color as well

)
) +
showSignificance(c(1.75, 3.25), 95, -30, "++3++", panel = list(Age = 3),

textParams = list(size = 5, # larger font
family = "serif", # times font
alpha = 0.3), # transparent

segmentParams = list(linewidth = 2.,
arrow = arrow(length = unit(0.2, "cm")),
alpha = 0.3,
lineend = "round" # so that line end overlap nicely

)
)

ShroutFleissICC1 33

ShroutFleissICC1 Shrout and Fleiss intra-class correlation functions

Description

The functions ShroutFleissICC1, ShroutFleissICC11 and ShroutFleissICC1k computes the intra-
class correlation ICC for a given data frame containing repeated measures in columns cols when
the measures are in distinct clusters, identified in column clustercol. See (Shrout and Fleiss 1979).

Usage

ShroutFleissICC1(dta, clustercol, cols)

Arguments

dta A data frame containing within-subject measures, one participant per line;

clustercol is the column index where cluster belonging are given;

cols A vector indicating the columns containing the measures.

Value

ICC the intra-class measure of association.

References

Shrout PE, Fleiss JL (1979). “Intraclass correlations: uses in assessing rater reliability.” Psycholog-
ical bulletin, 86(2), 420.

Shrout PE, Fleiss JL (1979). “Intraclass correlations: uses in assessing rater reliability.” Psycholog-
ical bulletin, 86(2), 420.

Examples

creates a small data frames with 4 subject's scores for 5 measures:
dta <- data.frame(cbind(

clus <- c(1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3),
col1 <- c(2, 4, 4, 6, 4, 5, 8, 8, 5, 8, 9, 9)

))

ShroutFleissICC1(dta, 1, 2)
0.434343434
ShroutFleissICC11(dta[, 1], dta[,2])
0.434343434

dta2 <- data.frame(cbind(
clus <- c(1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3),
col1 <- c(1, 3, 3, 5, 3, 4, 7, 7, 4, 7, 8, 8),
col1 <- c(2, 4, 4, 6, 4, 5, 8, 8, 5, 8, 9, 9),
col1 <- c(3, 5, 5, 7, 5, 6, 9, 9, 6, 9, 10, 10)

34 slope

))

ShroutFleissICC1(dta2, 1, 2:4)
0.7543859649
ShroutFleissICC1k(dta2[, 1], dta2[,2:4])
0.7543859649

slope Effect description

Description

There is four ways that effects can be defined in GRD. ‘"factor" = slope(s)‘ will vary the means by
an amount of s for each step of the factor; ‘"factor" = extent(s)‘ will vary the means uniformly so
that there is a difference of s between the first and the last factor level; ‘"factor" = custom(a,b,c..)‘
will alter each means by an amount of a for the first, b for the second, etc. Finally ‘"factor" =
Rexpression("R code")‘ will apply R code to all levels of the factors, altering the base mean.

Usage

slope(s)

extent(s)

custom(...)

Rexpression(str)

Arguments

s the size of the effect

... a sequence with the sizes of the effects

str R code string

Value

These internal functions are not meant to be used in isolation in any meaningful way...

subjectCenteringTransform 35

subjectCenteringTransform

subject-centering transform

Description

subjectCenteringTransform is a transformation that can be applied to a matrix of data. the
resulting matrix have means that are centered on the grand mean, subject-wise (Cousineau 2005).

Usage

subjectCenteringTransform(dta, variables)

Arguments

dta a data.frame containing the data in wide format;

variables a vector of column names on which the transformation will be applied. the
remaining columns will be left unchanged

Value

a data.frame of the same form as dta with the variables transformed.

This function is useful when passed to the argument preprocessfct of superb() where it performs
a modification of the data matrix.

References

Cousineau D (2005). “Confidence intervals in within-subject designs: A simpler solution to Loftus
and Masson’s method.” Tutorials in Quantitative Methods for Psychology, 1, 42 – 45. doi:10.20982/
tqmp.01.1.p042.

summaryStatistics Additional summary statistics

Description

superb adds a few summary statistics that can be used to characterize a dataset. All comes with
SE.fct() and CI.fct(). See (Harding et al. 2014; Harding et al. 2015) for more. superbPlot-
compatible summary statistics functions must have one parameter:

https://doi.org/10.20982/tqmp.01.1.p042
https://doi.org/10.20982/tqmp.01.1.p042

36 superb

Usage

hmean(x)

gmean(x)

MAD(x)

fisherskew(x)

pearsonskew(x)

fisherkurtosis(x)

Arguments

x a vector of numbers, the sample data (mandatory);

Value

a summary statistic describing the sample.

References

Harding B, Tremblay C, Cousineau D (2014). “Standard errors: A review and evaluation of stan-
dard error estimators using Monte Carlo simulations.” The Quantitative Methods for Psychology,
10(2), 107–123.

Harding B, Tremblay C, Cousineau D (2015). “The standard error of the Pearson skew.” The
Quantitative Methods for Psychology, 11(1), 32–36.

Examples

the confidence interval of the mean for default 95% and 90% confidence level
gmean(c(1,2,3)) # the geometric mean; also available in psych::geometric.mean
hmean(c(1,2,3)) # the harmonic mean; also available in psych::harmonic.mean
MAD(c(1,2,3)) # the median absolute deviation to the median (not the same as mad)
fisherskew(c(1,2,3)) # the Fisher skew corrected for sample size
fisherkurtosis(c(1,2,3)) # the Fisher kurtosis corrected for sample size
pearsonskew(c(1,2,3)) # the Pearson skew

superb superb

superb 37

Description

The function superb() plots standard error or confidence interval for various descriptive statistics
under various designs, sampling schemes, population size and purposes, according to the superb
framework. See (Cousineau et al. 2021) for more. The functions superb() is now the entry point
to realize summary plots. Compared to the previously documented superbPlot(), superb() is
based on formula and accept long and wide format.

Usage

superb(
formula,
data,
WSFactors = NULL,
WSDesign = "fullfactorial",
factorOrder = NULL,
statistic = "mean",
errorbar = "CI",
gamma = 0.95,
adjustments = list(purpose = "single", popSize = Inf, decorrelation = "none",
samplingDesign = "SRS"),

showPlot = TRUE,
plotStyle = "bar",
preprocessfct = NULL,
postprocessfct = NULL,
clusterColumn = NULL,
...

)

Arguments

formula a formula describing the design of the data frame

data Dataframe in wide or long format

WSFactors The name of the within-subject factor(s)

WSDesign the within-subject design if not a full factorial design (default "fullfactorial")

factorOrder Order of factors as shown in the graph (in that order: x axis, groups, horizontal
panels, vertical panels)

statistic The summary statistic function to use as a string

errorbar The function that computes the error bar. Should be "CI" or "SE" or any function
name if you defined a custom function. Default to "CI"

gamma The coverage factor; necessary when errorbar == "CI". Default is 0.95.

adjustments List of adjustments as described below. Default is adjustments = list(purpose
= "single", popSize = Inf, decorrelation = "none", samplingDesign = "SRS")

showPlot Defaults to TRUE. Set to FALSE if you want the output to be the summary
statistics and intervals.

plotStyle The type of object to plot on the graph. See full list below. Defaults to "bar".

38 superb

preprocessfct is a transform (or vector of) to be performed first on data matrix of each group

postprocessfct is a transform (or vector of)

clusterColumn used in conjunction with samplingDesign = "CRS", indicates which column
contains the cluster membership

... In addition to the parameters above, superbPlot also accept a number of optional
arguments that will be transmitted to the plotting function, such as pointParams
(a list of ggplot2 parameters to input inside geoms; see ?geom_bar2) and error-
barParams (a list of ggplot2 parameters for geom_errorbar; see ?geom_errorbar)

Details

The possible adjustements are the following

• popsize: Size of the population under study. Defaults to Inf

• purpose: The purpose of the comparisons. Defaults to "single". Can be "single", "difference",
or "tryon".

• decorrelation: Decorrelation method for repeated measure designs. Chooses among the meth-
ods "CM", "LM", "CA", "UA", "LDr" (with r an integer) or "none". Defaults to "none". "CA"
is correlation-adjusted (Cousineau 2019); "UA" is based on the unitary Alpha method (derived
from the Cronbach alpha; see (Laurencelle and Cousineau 2023)). "LDr" is local decorrela-
tion (useful for long time series with autoregressive correlation structures; see (Cousineau et
al. 2024)).

• samplingDesign: Sampling method to obtain the sample. implemented sampling is "SRS"
(Simple Randomize Sampling) and "CRS" (Cluster-Randomized Sampling).

The formulas can be for long format data using | notation, e.g.,

• superb(extra ~ group | ID, sleep)

or for wide format, using cbind() or crange() notation, e.g.,

• superb(cbind(DV.1.1, DV.2.1,DV.1.2, DV.2.2,DV.1.3, DV.2.3) ~ . , dta, WSFactors
= c("a(2)","b(3)"))

• superb(crange(DV.1.1, DV.2.3) ~ . , dta, WSFactors = c("a(2)","b(3)"))

The layouts for plots are the following:

• These are basic plots:

– "bar" Shows the summary statistics with bars and error bars;
– "line" Shows the summary statistics with lines connecting the conditions over the first

factor;
– "point" Shows the summary statistics with isolated points
– "lineband" illustrates the confidence intervals as a band;

• These plots add distributional information in addition

– "pointjitter" Shows the summary statistics along with jittered points depicting the raw
data;

– "pointjitterviolin" Also adds violin plots to the previous layout

superb 39

– "pointindividualline" Connects the raw data with line along the first factor (which should
be a repeated-measure factor)

– "raincloud" Illustrates the distribution with a cloud (half_violin_plot) and jittered dots
next to it. Looks better when coordinates are flipped +coord_flip()

– "corset" illustrates within-subject designs with individual lines and clouds.

• Circular plots (aka radar plots) results from the following layouts:

– "circularpoint" Shows the summary statistics with isolated points
– "circularline" Shows the summary statistics with lines;
– "circularlineband" Also adds error bands instead of error bars;
– "circularpointjitter" Shows summary statistics and error bars but also jittered dots;
– "circularpointlinejitter" Same as previous layout, but connect the points with lines. New

layouts are added from times to time. Personalized layouts can also be created (see Vi-
gnette5).

Value

a plot with the correct error bars or a table of those summary statistics. The plot is a ggplot2 object
with can be modified with additional declarations.

References

Cousineau D (2019). “Correlation-adjusted standard errors and confidence intervals for within-
subject designs: A simple multiplicative approach.” The Quantitative Methods for Psychology, 15,
226 – 241. doi:10.20982/tqmp.15.3.p226.

Cousineau D, Goulet M, Harding B (2021). “Summary plots with adjusted error bars: The superb
framework with an implementation in R.” Advances in Methods and Practices in Psychological
Science, 4, 1–18. doi:10.1177/25152459211035109.

Cousineau D, Proulx A, Potvin-Pilon A, Fiset D (2024). “Local decorrelation for error bars in time
series.” The Quantitative Methods for Psychology, 20(2), 173-185. doi:10.20982/tqmp.20.2.p173.

Laurencelle L, Cousineau D (2023). “Analysis of proportions using arcsine transform with any
experimental design.” Frontiers in Psychology, 13, 1045436. doi:10.3389/fpsyg.2022.1045436.

Examples

##

Basic example using a built-in dataframe as data.
By default, the mean is computed and the error bar are 95% confidence intervals
superb(len ~ dose + supp, ToothGrowth)

Example changing the summary statistics to the median and
the error bar to 80% confidence intervals
superb(len ~ dose + supp, ToothGrowth,

statistic = "median", errorbar = "CI", gamma = .80)

Example introducing adjustments for pairwise comparisons

https://doi.org/10.20982/tqmp.15.3.p226
https://doi.org/10.1177/25152459211035109
https://doi.org/10.20982/tqmp.20.2.p173
https://doi.org/10.3389/fpsyg.2022.1045436

40 superb

and assuming that the whole population is limited to 200 persons
superb(len ~ dose + supp, ToothGrowth,

adjustments = list(purpose = "difference", popSize = 200))

This example adds ggplot directives to the plot produced
library(ggplot2)
superb(len ~ dose + supp, ToothGrowth) +
xlab("Dose") + ylab("Tooth Growth") +
theme_bw()

##

The following examples are based on repeated measures
library(gridExtra)
options(superb.feedback = 'none') # shut down 'warnings' and 'design' interpretation messages

A simple example: The sleep data
The sleep data are paired data showing the additional time of sleep with
the soporific drug #1 (("group = 1") and with the soporific drug #2 ("group = 2").
There is 10 participants with two measurements.
sleep is available in long format

Makes the plots first without decorrelation:
superb(extra ~ group | ID, sleep)
As seen the error bar are very long. Lets take into consideration correlation...
... with decorrelation (technique Correlation-adjusted CA):
superb(extra ~ group | ID, sleep,

only difference:
adjustments = list(purpose = "difference", decorrelation = "CA")

)
The error bars shortened as the correlation is substantial (r = .795).

##

Another example: The Orange data
This example contains 5 trees whose diameter (in mm) has been measured at various age (in days):
data(Orange)

Makes the plots first without decorrelation:
p1 <- superb(circumference ~ age | Tree, Orange,

adjustments = list(purpose = "difference", decorrelation = "none")
) +

xlab("Age level") + ylab("Trunk diameter (mm)") +
coord_cartesian(ylim = c(0,250)) + labs(title="''Standalone'' confidence intervals")

... and then with decorrelation (technique Correlation-adjusted CA):
p2 <- superb(circumference ~ age | Tree, Orange,

adjustments = list(purpose = "difference", decorrelation = "CA")
) +

xlab("Age level") + ylab("Trunk diameter (mm)") +
coord_cartesian(ylim = c(0,250)) + labs(title="Decorrelated confidence intervals")

You can present both plots side-by-side

superbData 41

grid.arrange(p1, p2, ncol=2)

##

superbData Obtain summary statistics with correct error bars.

Description

The function suberbData() computes standard error or confidence interval for various descriptive
statistics under various designs, sampling schemes, population size and purposes, according to the
suberb framework. See (Cousineau et al. 2021) for more.

Usage

superbData(
data,
BSFactors = NULL,
WSFactors = NULL,
WSDesign = "fullfactorial",
factorOrder = NULL,
variables,
statistic = "mean",
errorbar = "CI",
gamma = 0.95,
adjustments = list(purpose = "single", popSize = Inf, decorrelation = "none",
samplingDesign = "SRS"),

preprocessfct = NULL,
postprocessfct = NULL,
clusterColumn = ""

)

Arguments

data Dataframe in wide format

BSFactors The name of the columns containing the between-subject factor(s)

WSFactors The name of the within-subject factor(s)

WSDesign the within-subject design if not a full factorial design (default "fullfactorial")

factorOrder Order of factors as shown in the graph (x axis, groups, horizontal panels, vertical
panels)

variables The dependent variable(s)

statistic The summary statistic function to use

42 superbData

errorbar The function that computes the error bar. Should be "CI" or "SE" or any function
name. Defaults to "CI"

gamma The coverage factor; necessary when errorbar == "CI". Default is 0.95.

adjustments List of adjustments as described below. Default is adjustments = list(purpose
= "single", popSize = Inf, decorrelation = "none", samplingDesign = "SRS")

preprocessfct is a transform (or vector of) to be performed first on data matrix of each group

postprocessfct is a transform (or vector of)

clusterColumn used in conjunction with samplingDesign = "CRS", indicates which column
contains the cluster membership

Details

The possible adjustements are the following

• popsize: Size of the population under study. Defaults to Inf

• purpose: The purpose of the comparisons. Defaults to "single". Can be "single", "difference",
or "tryon".

• decorrelation: Decorrelation method for repeated measure designs. Chooses among the meth-
ods "CM", "LM", "CA" or "none". Defaults to "none".

• samplingDesign: Sampling method to obtain the sample. implemented sampling is "SRS"
(Simple Randomize Sampling) and "CRS" (Cluster-Randomized Sampling).

Value

a list with (1) the summary statistics in summaryStatistics (2) the raw data in long format in rawData
(using numeric levels for repeated-measure variables).

References

Cousineau D, Goulet M, Harding B (2021). “Summary plots with adjusted error bars: The superb
framework with an implementation in R.” Advances in Methods and Practices in Psychological
Science, 4, 1–18. doi:10.1177/25152459211035109.

Examples

Basic example using a built-in dataframe as data;
by default, the mean is computed and the error bar are 95% confidence intervals
(it also produces a $rawData dataframe, not shown here)
res <- superbData(ToothGrowth, BSFactors = c("dose", "supp"),

variables = "len")
res$summaryStatistics

Example introducing adjustments for pairwise comparisons
and assuming that the whole population is limited to 200 persons
res <- superbData(ToothGrowth, BSFactors = c("dose", "supp"),

variables = "len",
statistic = "median", errorbar = "CI", gamma = .80,
adjustments = list(purpose = "difference", popSize = 200))

https://doi.org/10.1177/25152459211035109

superbPlot 43

res$summaryStatistics

Note that you can achieve the same with formulas
superb(len ~ dose + supp, ToothGrowth, showPlot=FALSE)

superbPlot summary plot of any statistics with adjusted error bars.

Description

The function superbPlot() plots standard error or confidence interval for various descriptive
statistics under various designs, sampling schemes, population size and purposes, according to
the suberb framework. See (Cousineau et al. 2021) for more. Note that this function has been
superseded by superb().

Usage

superbPlot(
data,
BSFactors = NULL,
WSFactors = NULL,
WSDesign = "fullfactorial",
factorOrder = NULL,
variables,
statistic = "mean",
errorbar = "CI",
gamma = 0.95,
adjustments = list(purpose = "single", popSize = Inf, decorrelation = "none",
samplingDesign = "SRS"),

showPlot = TRUE,
plotStyle = "bar",
preprocessfct = NULL,
postprocessfct = NULL,
clusterColumn = "",
...

)

Arguments

data Dataframe in wide format

BSFactors The name of the columns containing the between-subject factor(s)

WSFactors The name of the within-subject factor(s)

WSDesign the within-subject design if not a full factorial design (default "fullfactorial")

factorOrder Order of factors as shown in the graph (in that order: x axis, groups, horizontal
panels, vertical panels)

44 superbPlot

variables The dependent variable(s) as strings

statistic The summary statistic function to use as a string

errorbar The function that computes the error bar. Should be "CI" or "SE" or any function
name if you defined a custom function. Default to "CI"

gamma The coverage factor; necessary when errorbar == "CI". Default is 0.95.

adjustments List of adjustments as described below. Default is adjustments = list(purpose
= "single", popSize = Inf, decorrelation = "none", samplingDesign = "SRS")

showPlot Defaults to TRUE. Set to FALSE if you want the output to be the summary
statistics and intervals.

plotStyle The type of object to plot on the graph. See full list below. Defaults to "bar".

preprocessfct is a transform (or vector of) to be performed first on data matrix of each group

postprocessfct is a transform (or vector of)

clusterColumn used in conjunction with samplingDesign = "CRS", indicates which column
contains the cluster membership

... In addition to the parameters above, superbPlot also accept a number of optional
arguments that will be transmitted to the plotting function, such as pointParams
(a list of g‘lot2 parameters to input inside geoms; see ?geom_bar2) and error-
barParams (a list of ggplot2 parameters for geom_errorbar; see ?geom_errorbar)

Details

The possible adjustements are the following

• popsize: Size of the population under study. Defaults to Inf

• purpose: The purpose of the comparisons. Defaults to "single". Can be "single", "difference",
or "tryon".

• decorrelation: Decorrelation method for repeated measure designs. Chooses among the meth-
ods "CM", "LM", "CA", "UA", "LDr" (with r an integer) or "none". Defaults to "none". "CA"
is correlation-adjusted (Cousineau 2019); "UA" is based on the unitary Alpha method (derived
from the Cronbach alpha; see (Laurencelle and Cousineau 2023)). "LDr" is local decorrela-
tion (useful for long time series with autoregressive correlation structures; see (Cousineau et
al. 2024)); .

• samplingDesign: Sampling method to obtain the sample. implemented sampling is "SRS"
(Simple Randomize Sampling) and "CRS" (Cluster-Randomized Sampling).

As of version 0.97.15, the layouts for plots are the following:

• "bar" Shows the summary statistics with bars and error bars;

• "line" Shows the summary statistics with lines connecting the conditions over the first factor;

• "point" Shows the summary statistics with isolated points

• "pointjitter" Shows the summary statistics along with jittered points depicting the raw data;

• "pointjitterviolin" Also adds violin plots to the previous layout

• "pointindividualline" Connects the raw data with line along the first factor (which should be a
repeated-measure factor)

superbPlot 45

• "raincloud" Illustrates the distribution with a cloud (half_violin_plot) and jittered dots next to
it. Looks better when coordinates are flipped +coord_flip().

• "corset" Illustrates two repeated-measures with individual lines and clouds

• "boxplot" Illustrates the limits, the quartiles and the median using a box

but refer to superb() for a documentation that will be kept up do date.

Value

a plot with the correct error bars or a table of those summary statistics. The plot is a ggplot2 object
with can be modified with additional declarations.

References

Cousineau D (2019). “Correlation-adjusted standard errors and confidence intervals for within-
subject designs: A simple multiplicative approach.” The Quantitative Methods for Psychology, 15,
226 – 241. doi:10.20982/tqmp.15.3.p226.

Cousineau D, Goulet M, Harding B (2021). “Summary plots with adjusted error bars: The superb
framework with an implementation in R.” Advances in Methods and Practices in Psychological
Science, 4, 1–18. doi:10.1177/25152459211035109.

Cousineau D, Proulx A, Potvin-Pilon A, Fiset D (2024). “Local decorrelation for error bars in time
series.” The Quantitative Methods for Psychology, 20(2), 173-185. doi:10.20982/tqmp.20.2.p173.

Laurencelle L, Cousineau D (2023). “Analysis of proportions using arcsine transform with any
experimental design.” Frontiers in Psychology, 13, 1045436. doi:10.3389/fpsyg.2022.1045436.

Examples

##

Basic example using a built-in dataframe as data.
By default, the mean is computed and the error bar are 95% confidence intervals
superbPlot(ToothGrowth, BSFactors = c("dose", "supp"),

variables = "len")

Note that function superb() does the same with formula:
superb(len ~ dose + supp, ToothGrowth)

Example changing the summary statistics to the median and
the error bar to 80% confidence intervals
superbPlot(ToothGrowth, BSFactors = c("dose", "supp"),

variables = "len", statistic = "median", errorbar = "CI", gamma = .80)

Example introducing adjustments for pairwise comparisons
and assuming that the whole population is limited to 200 persons
superbPlot(ToothGrowth, BSFactors = c("dose", "supp"),

variables = "len",
adjustments = list(purpose = "difference", popSize = 200))

https://doi.org/10.20982/tqmp.15.3.p226
https://doi.org/10.1177/25152459211035109
https://doi.org/10.20982/tqmp.20.2.p173
https://doi.org/10.3389/fpsyg.2022.1045436

46 superbPlot

This example adds ggplot directives to the plot produced
library(ggplot2)
superbPlot(ToothGrowth, BSFactors = c("dose", "supp"),

variables = "len") +
xlab("Dose") + ylab("Tooth Growth") +
theme_bw()

##

The following examples are based on repeated measures
library(gridExtra)
options(superb.feedback = 'none') # shut down 'warnings' and 'design' interpretation messages

A simple example: The sleep data
The sleep data are paired data showing the additional time of sleep with
the soporific drugn #1 (("group = 1") and with the soporific drug #2 ("group = 2").
There is 10 participants with two measurements.

sleep is available in long format so we transform it to the in wide format:
sleep2 <- reshape(sleep, direction = "wide", idvar = "ID", timevar = "group")
sleep2

Makes the plots first without decorrelation:
superbPlot(sleep2,

WSFactors = "Times(2)",
variables = c("extra.1", "extra.2")

)
As seen the error bar are very long. Lets take into consideration correlation...
... with decorrelation (technique Correlation-adjusted CA):
superbPlot(sleep2,

WSFactors = "Times(2)",
variables = c("extra.1", "extra.2"),
only difference:
adjustments = list(purpose = "difference", decorrelation = "CA")

)
The error bars shortened as the correlation is substantial (r = .795).

##

Another example: The Orange data
data(Orange)
Use the Orange example, but let's define shorter column names...
names(Orange) <- c("Tree","age","circ")
... and turn the data into a wide format using superbToWide:
Orange.wide <- superbToWide(Orange, id = "Tree", WSFactors = "age", variable = "circ")

This example contains 5 trees whose diameter (in mm) has been measured at various age (in days):
Orange.wide

Makes the plots first without decorrelation:
p1 <- superbPlot(Orange.wide, WSFactors = "age(7)",
variables = c("circ.118","circ.484","circ.664","circ.1004","circ.1231","circ.1372","circ.1582"),

superbPlot.bar 47

adjustments = list(purpose = "difference", decorrelation = "none")
) +

xlab("Age level") + ylab("Trunk diameter (mm)") +
coord_cartesian(ylim = c(0,250)) + labs(title="''Standalone'' confidence intervals")

... and then with decorrelation (technique Correlation-adjusted CA):
p2 <- superbPlot(Orange.wide, WSFactors = "age(7)",
variables = c("circ.118","circ.484","circ.664","circ.1004","circ.1231","circ.1372","circ.1582"),
adjustments = list(purpose = "difference", decorrelation = "CA")

) +
xlab("Age level") + ylab("Trunk diameter (mm)") +
coord_cartesian(ylim = c(0,250)) + labs(title="Decorrelated confidence intervals")

You can present both plots side-by-side
grid.arrange(p1, p2, ncol=2)

##

superbPlot.bar superbPlot ’bar’ layout

Description

superbPlot comes with a few built-in templates for making the final plots. All produces ggplot
objects that can be further customized. Additionally, it is possible to add custom-make templates
(see vignette 6). The functions, to be "superbPlot-compatible", must have these parameters:

Usage

superbPlot.bar(
summarydata,
xfactor,
groupingfactor,
addfactors,
rawdata = NULL,
barParams = list(),
errorbarParams = list(),
facetParams = list(),
xAsFactor = TRUE

)

Arguments

summarydata a data.frame with columns "center", "lowerwidth" and "upperwidth" for each
level of the factors;

xfactor a string with the name of the column where the factor going on the horizontal
axis is given;

48 superbPlot.boxplot

groupingfactor a string with the name of the column for which the data will be grouped on the
plot;

addfactors a string with up to two additional factors to make the rows and columns panels,
in the form "fact1 ~ fact2";

rawdata always contains "DV" for each participants and each level of the factors

barParams (optional) list of graphic directives that are sent to the geom_bar layer

errorbarParams (optional) list of graphic directives that are sent to the geom_superberrorbar
layer

facetParams (optional) list of graphic directives that are sent to the facet_grid layer

xAsFactor (optional) Boolean to indicate if the factor on the horizontal should continuous
or discrete (default is discrete)

Value

a ggplot object

Examples

This will make a plot with bars
superb(

len ~ dose + supp,
ToothGrowth,
plotStyle="bar"

)

if you extract the data with superbData, you can
run this layout directly
#processedData <- superb(
len ~ dose + supp,
ToothGrowth,
showPlot = FALSE
#)
#
#superbPlot.bar(processedData$summaryStatistic,
"dose",
"supp",
".~.",
processedData$rawData)

superbPlot.boxplot superbPlot ’boxplot’ layout

Description

superbPlot comes with a few built-in templates for making the final plots. All produces ggplot
objects that can be further customized. Additionally, it is possible to create custom-make templates
(see vignette 5). The functions, to be "superbPlot-compatible", must have these parameters:

superbPlot.boxplot 49

Usage

superbPlot.boxplot(
summarydata,
xfactor,
groupingfactor,
addfactors,
rawdata = NULL,
pointParams = list(),
errorbarParams = list(),
facetParams = list(),
boxplotParams = list(),
xAsFactor = TRUE

)

Arguments

summarydata a data.frame with columns "center", "lowerwidth" and "upperwidth" for each
level of the factors;

xfactor a string with the name of the column where the factor going on the horizontal
axis is given;

groupingfactor a string with the name of the column for which the data will be grouped on the
plot;

addfactors a string with up to two additional factors to make the rows and columns panels,
in the form "fact1 ~ fact2";

rawdata always contains "DV" for each participants and each level of the factors;

pointParams (optional) list of graphic directives that are sent to the geom_bar layer;

errorbarParams (optional) list of graphic directives that are sent to the geom_superberrorbar
layer;

facetParams (optional) list of graphic directives that are sent to the facet_grid layer;

boxplotParams (optional) list f graphic directives that are sent to the geo_boxplot layer;

xAsFactor (optional) Boolean to indicate if the factor on the horizontal should continuous
or discrete (default is discrete).

Value

a ggplot object

Examples

This will make a plot with boxes for interquartile (box), median (line) and outliers (whiskers)
superb(

len ~ dose + supp,
ToothGrowth,
plotStyle = "boxplot"

)

50 superbPlot.boxplot

This layout of course is more meaningful if the statistic displayed is the median
superb(

len ~ dose + supp,
ToothGrowth,
statistic = "median",
plotStyle = "boxplot"

)

if you extracted the data with superbData, you can
run this layout directly
processedData <- superb(

len ~ dose + supp,
ToothGrowth,
statistic = "median",
showPlot = FALSE

)

superbPlot.boxplot(processedData$summaryStatistic,
"dose", "supp", ".~.",
processedData$rawData)

This will make a plot with customized boxplot parameters and black dots
superb(

len ~ dose + supp,
ToothGrowth,
statistic = "median",
plotStyle = "boxplot",
boxplotParams = list(outlier.shape=8, outlier.size=4),
pointParams = list(color="black")

)

You can customize the plot in various ways, e.g.
plt3 <- superb(

len ~ dose + supp,
ToothGrowth,
statistic = "median",
plotStyle = "boxplot",
pointParams = list(color="black")

)

... by changing the colors of the fillings
library(ggplot2) # for scale_fill_manual, geom_jitter and geom_dotplot
plt3 + scale_fill_manual(values=c("#999999", "#E69F00", "#56B4E9"))

... by overlaying jittered dots of the raw data
plt3 + geom_jitter(data = processedData$rawData, mapping=aes(x=dose, y=DV),

position= position_jitterdodge(jitter.width=0.5 , dodge.width=0.8))

... by overlaying dots of the raw data, aligned along the center of the box
plt3 + geom_dotplot(data = processedData$rawData, mapping=aes(x=dose, y=DV), dotsize=0.5,

binaxis='y', stackdir='center', position=position_dodge(0.8))

superbPlot.circularline 51

superbPlot.circularline

superbPlot ’circularline’ layout

Description

superb comes with a few circular layouts for making plots. It produces ggplot objects that can be
further customized.

Usage

superbPlot.circularline(
summarydata,
xfactor,
groupingfactor,
addfactors,
rawdata = NULL,
pointParams = list(),
lineParams = list(),
errorbarParams = list(),
facetParams = list(),
radarParams = list(),
xAsFactor = TRUE

)

Arguments

summarydata a data.frame with columns "center", "lowerwidth" and "upperwidth" for each
level of the factors;

xfactor a string with the name of the column where the factor going on the horizontal
axis is given;

groupingfactor a string with the name of the column for which the data will be grouped on the
plot;

addfactors a string with up to two additional factors to make the rows and columns panels,
in the form "fact1 ~ fact2";

rawdata always contains "DV" for each participants and each level of the factors

pointParams (optional) list of graphic directives that are sent to the geom_bar() layer

lineParams (optional) list of graphic directives that are sent to the geom_line() layer

errorbarParams (optional) list of graphic directives that are sent to the geom_superberrorbar()
layer

facetParams (optional) list of graphic directives that are sent to the facet_grid() layer

radarParams (optional) list of arguments to the radar coordinates (seel coord_radial()).

xAsFactor (optional) Boolean to indicate if the factor on the horizontal should be continu-
ous or discrete (default is discrete)

52 superbPlot.circularlineBand

Details

A few things to note:

• You can at any time undo the polar coordinates by using + coord_cartesian(). It is some-
times easier when developping the plots.

• Also, if ever you want to modify the scale post-hoc (e.g., to change the labels of the group), you
can, but your scale_x_continuous must absolutely contains the two arguments: scale_x_continuous(
oob = scales::oob_keep, limits = c(0, 0.00001+ NUMBER OF CONDITIONS), # any other
argument such as labels = c("",...))

It has these parameters:

Value

a ggplot object

Examples

This will make a plot with lines
superb(

len ~ dose + supp,
ToothGrowth,
plotStyle="circularline"

)

if you extract the data with superbData, you can
run this layout directly
#processedData <- superb(
len ~ dose + supp,
ToothGrowth,
showPlot = FALSE
#)
#
#superbPlot.circularline(processedData$summaryStatistic,
"dose",
"supp",
".~.",
processedData$rawData)

superbPlot.circularlineBand

superbPlot ’circularlineBand’ layout

Description

superb comes with a few circular layouts for making plots. It produces ggplot objects that can be
further customized.

It has these parameters:

superbPlot.circularlineBand 53

Usage

superbPlot.circularlineBand(
summarydata,
xfactor,
groupingfactor,
addfactors,
rawdata = NULL,
pointParams = list(),
lineParams = list(),
errorbandParams = list(),
facetParams = list(),
radarParams = list(),
xAsFactor = TRUE

)

Arguments

summarydata a data.frame with columns "center", "lowerwidth" and "upperwidth" for each
level of the factors;

xfactor a string with the name of the column where the factor going on the horizontal
axis is given;

groupingfactor a string with the name of the column for which the data will be grouped on the
plot;

addfactors a string with up to two additional factors to make the rows and columns panels,
in the form "fact1 ~ fact2";

rawdata always contains "DV" for each participants and each level of the factors

pointParams (optional) list of graphic directives that are sent to the geom_bar() layer

lineParams (optional) list of graphic directives that are sent to the geom_line() layer
errorbandParams

(optional) list of graphic directives that are sent to the geom_ribbon() layer

facetParams (optional) list of graphic directives that are sent to the facet_grid() layer

radarParams (optional) list of arguments to the radar coordinates (seel coord_radial()).

xAsFactor (optional) Boolean to indicate if the factor on the horizontal should continuous
or discrete (default is discrete)

Value

a ggplot object

Examples

This will make a plot with points
superbPlot(ToothGrowth,

BSFactors = c("dose","supp"), variables = "len",
plotStyle = "circularlineBand"

)

54 superbPlot.circularpoint

if you extract the data with superbData, you can
run this layout directly
#processedData <- superbData(ToothGrowth,
BSFactors = c("dose","supp"), variables = "len"
#)
#
#superbPlot.circularlineBand(processedData$summaryStatistic,
"dose",
"supp",
".~.",
processedData$rawData)

superbPlot.circularpoint

superbPlot ’circularpoint’ layout

Description

superb comes with a few circular layouts for making plots. It produces ggplot objects that can be
further customized.

It has these parameters:

Usage

superbPlot.circularpoint(
summarydata,
xfactor,
groupingfactor,
addfactors,
rawdata = NULL,
pointParams = list(),
errorbarParams = list(),
facetParams = list(),
radarParams = list(),
xAsFactor = TRUE

)

Arguments

summarydata a data.frame with columns "center", "lowerwidth" and "upperwidth" for each
level of the factors;

xfactor a string with the name of the column where the factor going on the horizontal
axis is given;

groupingfactor a string with the name of the column for which the data will be grouped on the
plot;

superbPlot.circularpointjitter 55

addfactors a string with up to two additional factors to make the rows and columns panels,
in the form "fact1 ~ fact2";

rawdata always contains "DV" for each participants and each level of the factors
pointParams (optional) list of graphic directives that are sent to the geom_bar layer
errorbarParams (optional) list of graphic directives that are sent to the geom_superberrorbar

layer
facetParams (optional) list of graphic directives that are sent to the facet_grid layer
radarParams (optional) list of arguments to the radar coordinates (seel coord_radial()).
xAsFactor (optional) Boolean to indicate if the factor on the horizontal should continuous

or discrete (default is discrete)

Value

a ggplot object

Examples

This will make a plot with bars
superb(

len ~ dose + supp,
ToothGrowth,
plotStyle="circularpoint"

)

if you extract the data with superbData, you can
run this layout directly
#processedData <- superb(
len ~ dose + supp,
ToothGrowth,
showPlot = FALSE
#)
#
#superbPlot.circularpoint(processedData$summaryStatistic,
"dose",
"supp",
".~.",
processedData$rawData)

superbPlot.circularpointjitter

superbPlot ’circularpointjitter’ layout

Description

superb comes with a few circular layouts for making plots. It produces ggplot objects that can be
further customized.

It has these parameters:

56 superbPlot.circularpointjitter

Usage

superbPlot.circularpointjitter(
summarydata,
xfactor,
groupingfactor,
addfactors,
rawdata = NULL,
pointParams = list(),
jitterParams = list(),
errorbarParams = list(),
facetParams = list(),
radarParams = list(),
xAsFactor = TRUE

)

Arguments

summarydata a data.frame with columns "center", "lowerwidth" and "upperwidth" for each
level of the factors;

xfactor a string with the name of the column where the factor going on the horizontal
axis is given;

groupingfactor a string with the name of the column for which the data will be grouped on the
plot;

addfactors a string with up to two additional factors to make the rows and columns panels,
in the form "fact1 ~ fact2";

rawdata always contains "DV" for each participants and each level of the factors

pointParams (optional) list of graphic directives that are sent to the geom_bar layer

jitterParams (optional) list of graphic directives that are sent to the geom_bar layer

errorbarParams (optional) list of graphic directives that are sent to the geom_superberrorbar
layer

facetParams (optional) list of graphic directives that are sent to the facet_grid layer

radarParams (optional) list of arguments to the radar coordinates (seel coord_radial()).

xAsFactor (optional) Boolean to indicate if the factor on the horizontal should continuous
or discrete (default is discrete)

Value

a ggplot object

Examples

This will make a plot with points
superbPlot(ToothGrowth,

BSFactors = c("dose","supp"), variables = "len",
plotStyle = "circularpointjitter"

)

superbPlot.circularpointlinejitter 57

if you extract the data with superbData, you can
run this layout directly
#processedData <- superbData(ToothGrowth,
BSFactors = c("dose","supp"), variables = "len"
#)
#
#superbPlot.circularpointjitter(processedData$summaryStatistic,
"dose",
"supp",
".~.",
processedData$rawData)

superbPlot.circularpointlinejitter

superbPlot ’circularpointlinejitter’ layout

Description

superb comes with a few circular layouts for making plots. It produces ggplot objects that can be
further customized.

It has these parameters:

Usage

superbPlot.circularpointlinejitter(
summarydata,
xfactor,
groupingfactor,
addfactors,
rawdata = NULL,
pointParams = list(),
lineParams = list(),
jitterParams = list(),
errorbarParams = list(),
facetParams = list(),
radarParams = list(),
xAsFactor = TRUE

)

Arguments

summarydata a data.frame with columns "center", "lowerwidth" and "upperwidth" for each
level of the factors;

xfactor a string with the name of the column where the factor going on the horizontal
axis is given;

58 superbPlot.corset

groupingfactor a string with the name of the column for which the data will be grouped on the
plot;

addfactors a string with up to two additional factors to make the rows and columns panels,
in the form "fact1 ~ fact2";

rawdata always contains "DV" for each participants and each level of the factors

pointParams (optional) list of graphic directives that are sent to the geom_bar layer

lineParams (optional) list of graphic directives that are sent to the geom_bar layer

jitterParams (optional) list of graphic directives that are sent to the geom_bar layer

errorbarParams (optional) list of graphic directives that are sent to the geom_superberrorbar
layer

facetParams (optional) list of graphic directives that are sent to the facet_grid layer

radarParams (optional) list of arguments to the radar coordinates (seel coord_radial()).

xAsFactor (optional) Boolean to indicate if the factor on the horizontal should continuous
or discrete (default is discrete)

Value

a ggplot object

Examples

This will make a plot with points
superbPlot(ToothGrowth,

BSFactors = c("dose","supp"), variables = "len",
plotStyle = "circularpointlinejitter"

)

if you extract the data with superbData, you can
run this layout directly
#processedData <- superbData(ToothGrowth,
BSFactors = c("dose","supp"), variables = "len"
#)
#
#superbPlot.circularpointlinejitter(processedData$summaryStatistic,
"dose",
"supp",
".~.",
processedData$rawData)

superbPlot.corset superbPlot ’corset’ layout

superbPlot.corset 59

Description

superbPlot comes with a few built-in templates for making the final plots. The corset plot is specifi-
cally devised for 2-repeated-measure design: it merges the "pointindividualline" layout with a rain-
cloud layout (Belisario 2021). All layout produces ggplot objects that can be further customized.
Additionally, it is possible to create custom-make templates (see vignette 5). The functions, to be
"superbPlot-compatible", must have these parameters:

Usage

superbPlot.corset(
summarydata,
xfactor,
groupingfactor,
addfactors,
rawdata = NULL,
lineParams = list(),
pointParams = list(),
errorbarParams = list(),
jitterParams = list(),
violinParams = list(),
facetParams = list(),
xAsFactor = TRUE

)

Arguments

summarydata a data.frame with columns "center", "lowerwidth" and "upperwidth" for each
level of the factors;

xfactor a string with the name of the column where the factor going on the horizontal
axis is given;

groupingfactor a string with the name of the column for which the data will be grouped on the
plot;

addfactors a string with up to two additional factors to make the rows and columns panels,
in the form "fact1 ~ fact2";

rawdata always contains "DV" for each participants and each level of the factors;

lineParams (optional) list of graphic directives that are sent to the geom_line layer;

pointParams (optional) list of graphic directives that are sent to the geom_bar layer;

errorbarParams (optional) list of graphic directives that are sent to the geom_superberrorbar
layer;

jitterParams (optional) list of graphic directives that are sent to the geom_jitter layer;

violinParams (optional) list of graphic directives that are sent to the geom_boxplot layer;

facetParams (optional) list of graphic directives that are sent to the facet_grid layer;

xAsFactor (optional) Boolean to indicate if the factor on the horizontal should continuous
or discrete (default is discrete).

60 superbPlot.corset

Value

a ggplot object

References

Belisario K (2021). Corset Plots: Visualizing Heterogeneity in Change Outcomes Across Two Time-
points. doi:10.5281/zenodo.4905031, https://cran.r-project.org/package=ggcorset.

Examples

We first generate randomly a 2-measurement dataset with 50 participants and a large effect
dta <- GRD(SubjectsPerGroup = 50, WSFactors = "moment(2)", Effects = list("moment"=slope(3)))

This will make a basic corset plot
superb(

cbind(DV.1, DV.2) ~ .,
dta,
WSFactors = "moment(2)",
plotStyle = "corset"

)

This will color the increasing and decreasing individuals
superb(

cbind(DV.1, DV.2) ~ .,
dta,
WSFactors = "moment(2)",
plotStyle = "corset",
lineParams = list(colorize=TRUE)

)

This layout has similarities with the "pointindividualline" layout
superb(

cbind(DV.1, DV.2) ~ .,
dta,
WSFactors = "moment(2)",
plotStyle = "pointindividualline"

)

if you extract the data with superbData, you can
run this layout directly
processedData <- superb(

cbind(DV.1, DV.2) ~ .,
dta,
WSFactors = "moment(2)",
showPlot = FALSE

)

superbPlot.corset(processedData$summaryStatistic,
"moment", NULL, ".~.",
processedData$rawData,
lineParams = list(colorize=TRUE))

https://doi.org/10.5281/zenodo.4905031
https://cran.r-project.org/package=ggcorset

superbPlot.halfwidthline 61

superbPlot.halfwidthline

superbPlot ’halfwidthline’ layout

Description

superbPlot comes with a few built-in templates for making the final plots. All produces ggplot
objects that can be further customized. The half-width confidence interval line plot is EXPERI-
MENTAL. It divides the CI length by two, one thick section and one thin section. The functions, to
be "superbPlot-compatible", must have these parameters:

Usage

superbPlot.halfwidthline(
summarydata,
xfactor,
groupingfactor,
addfactors,
rawdata = NULL,
pointParams = list(),
lineParams = list(),
errorbarParams = list(),
errorbarlightParams = list(),
facetParams = list(),
xAsFactor = TRUE

)

Arguments

summarydata a data.frame with columns "center", "lowerwidth" and "upperwidth" for each
level of the factors;

xfactor a string with the name of the column where the factor going on the horizontal
axis is given;

groupingfactor a string with the name of the column for which the data will be grouped on the
plot;

addfactors a string with up to two additional factors to make the rows and columns panels,
in the form "fact1 ~ fact2";

rawdata always contains "DV" for each participants and each level of the factors

pointParams (optional) list of graphic directives that are sent to the geom_bar layer

lineParams (optional) list of graphic directives that are sent to the geom_bar layer

errorbarParams (optional) list of graphic directives that are sent to the geom_superberrorbar
layer

62 superbPlot.line

errorbarlightParams

(optional) graphic directives for the second half of the error bar;

facetParams (optional) list of graphic directives that are sent to the facet_grid layer

xAsFactor (optional) Boolean to indicate if the factor on the horizontal should continuous
or discrete (default is discrete)

Value

a ggplot object

Examples

This will make a plot with lines
superb(

len ~ dose + supp,
ToothGrowth,
plotStyle="halfwidthline"

)

if you extract the data with superbData, you can
run this layout directly
#processedData <- superb(
len ~ dose + supp,
ToothGrowth,
showPlot = FALSE
#)
#
#superbPlot.halfwidthline(processedData$summaryStatistic,
"dose",
"supp",
".~.",
processedData$rawData)

superbPlot.line superbPlot ’line’ layout

Description

superbPlot comes with a few built-in templates for making the final plots. All produces ggplot
objects that can be further customized. Additionally, it is possible to add custom-make templates
(see vignette 6). The functions, to be "superbPlot-compatible", must have these parameters:

Usage

superbPlot.line(
summarydata,
xfactor,
groupingfactor,

superbPlot.line 63

addfactors,
rawdata = NULL,
pointParams = list(),
lineParams = list(),
errorbarParams = list(),
facetParams = list(),
xAsFactor = TRUE

)

Arguments

summarydata a data.frame with columns "center", "lowerwidth" and "upperwidth" for each
level of the factors;

xfactor a string with the name of the column where the factor going on the horizontal
axis is given;

groupingfactor a string with the name of the column for which the data will be grouped on the
plot;

addfactors a string with up to two additional factors to make the rows and columns panels,
in the form "fact1 ~ fact2";

rawdata always contains "DV" for each participants and each level of the factors

pointParams (optional) list of graphic directives that are sent to the geom_bar layer

lineParams (optional) list of graphic directives that are sent to the geom_bar layer

errorbarParams (optional) list of graphic directives that are sent to the geom_superberrorbar
layer

facetParams (optional) list of graphic directives that are sent to the facet_grid layer

xAsFactor (optional) Boolean to indicate if the factor on the horizontal should continuous
or discrete (default is discrete)

Value

a ggplot object

Examples

This will make a plot with lines
superb(

len ~ dose + supp,
ToothGrowth,
plotStyle="line"

)

if you extract the data with superbData, you can
run this layout directly
#processedData <- superb(
len ~ dose + supp,
ToothGrowth,
showPlot = FALSE
#)

64 superbPlot.lineBand

#
#superbPlot.line(processedData$summaryStatistic,
"dose",
"supp",
".~.",
processedData$rawData)

superbPlot.lineBand superbPlot ’lineBand’ layout

Description

The lineBand layout displays an error band instead of individual error bars. This layout is con-
venient when you have many points on your horizontal axis (so that the error bars are difficult to
distinguish) and when the results are fairly smooth.

The functions has these parameters:

Usage

superbPlot.lineBand(
summarydata,
xfactor,
groupingfactor,
addfactors,
rawdata,
pointParams = list(),
lineParams = list(),
errorbandParams = list(),
facetParams = list(),
xAsFactor = TRUE

)

Arguments

summarydata a data.frame with columns "center", "lowerwidth" and "upperwidth" for each
level of the factors;

xfactor a string with the name of the column where the factor going on the horizontal
axis is given;

groupingfactor a string with the name of the column for which the data will be grouped on the
plot;

addfactors a string with up to two additional factors to make the rows and columns panels,
in the form "fact1 ~ fact2";

rawdata always contains "DV" for each participants and each level of the factors

pointParams (optional) list of graphic directives that are sent to the geom_point layer

lineParams (optional) list of graphic directives that are sent to the geom_jitter layer

superbPlot.lineBand 65

errorbandParams

(optional) list of graphic directives that are sent to the geom_ribbon layer

facetParams (optional) list of graphic directives that are sent to the facet_grid layer

xAsFactor (optional) Boolean to indicate if the factor on the horizontal should continuous
or discrete (default is discrete)

Value

a ggplot object

References

There are no references for Rd macro \insertAllCites on this help page.

Examples

this creates a fictious time series at 100 time points obtained in two conditions:
dta <- GRD(WSFactors = "timepoints (50) : condition(2)",

SubjectsPerGroup = 20,
RenameDV = "activation",
Effects = list("timepoints" = extent(5), "condition" = extent(3)),
Population=list(mean=50,stddev=10,rho=0.75)

)

This will make a plot with error band
superb(

crange(activation.1.1, activation.50.2) ~ .,
dta,
WSFactors = c("timepoints(50)", "condition(2)"),
adjustments = list(

purpose = "single",
decorrelation = "CM" ## or none for no decorrelation

),
plotStyle="lineBand", # note the uppercase B
pointParams = list(size= 1) # making points smaller has better look

)

if you extract the data with superbData, you can
run this layout directly
#processedData <- superb(
crange(activation.1.1, activation.50.2) ~ .,
dta,
WSFactors = c("timepoints(50)", "condition(2)"), variables = colnames(dta)[2:101],
adjustments = list(
purpose = "single",
decorrelation = "CM" ## or none for no decorrelation
)
#)
#
#superbPlot.lineBand(processedData$summaryStatistic,
"timepoints",
"condition",

66 superbPlot.point

".~.",
processedData$rawData)

superbPlot.point superbPlot ’point’ layout

Description

superbPlot comes with a few built-in templates for making the final plots. All produces ggplot
objects that can be further customized. Additionally, it is possible to add custom-make templates
(see vignette 6). The functions, to be "superbPlot-compatible", must have these parameters:

Usage

superbPlot.point(
summarydata,
xfactor,
groupingfactor,
addfactors,
rawdata = NULL,
pointParams = list(),
errorbarParams = list(),
facetParams = list(),
xAsFactor = TRUE

)

Arguments

summarydata a data.frame with columns "center", "lowerwidth" and "upperwidth" for each
level of the factors;

xfactor a string with the name of the column where the factor going on the horizontal
axis is given;

groupingfactor a string with the name of the column for which the data will be grouped on the
plot;

addfactors a string with up to two additional factors to make the rows and columns panels,
in the form "fact1 ~ fact2";

rawdata always contains "DV" for each participants and each level of the factors

pointParams (optional) list of graphic directives that are sent to the geom_bar layer

errorbarParams (optional) list of graphic directives that are sent to the geom_superberrorbar
layer

facetParams (optional) list of graphic directives that are sent to the facet_grid layer

xAsFactor (optional) Boolean to indicate if the factor on the horizontal should continuous
or discrete (default is discrete)

superbPlot.pointindividualline 67

Value

a ggplot object

Examples

This will make a plot with points
superbPlot(ToothGrowth,

BSFactors = c("dose","supp"), variables = "len",
plotStyle = "point"

)

if you extract the data with superbData, you can
run this layout directly
#processedData <- superbData(ToothGrowth,
BSFactors = c("dose","supp"), variables = "len"
#)
#
#superbPlot.point(processedData$summaryStatistic,
"dose",
"supp",
".~.",
processedData$rawData)

superbPlot.pointindividualline

superbPlot point and individual-line layout for within-subject design

Description

superbPlot comes with a few built-in templates for making the final plots. All produces ggplot
objects that can be further customized. Additionally, it is possible to add custom-make templates
(see vignette 6). The functions, to be "superbPlot-compatible", must have these parameters:

Usage

superbPlot.pointindividualline(
summarydata,
xfactor,
groupingfactor,
addfactors,
rawdata,
datapointParams = list(),
pointParams = list(),
lineParams = list(),
errorbarParams = list(),
facetParams = list()

)

68 superbPlot.pointindividualline

Arguments

summarydata a data.frame with columns "center", "lowerwidth" and "upperwidth" for each
level of the factors;

xfactor a string with the name of the column where the factor going on the horizontal
axis is given;

groupingfactor a string with the name of the column for which the data will be grouped on the
plot;

addfactors a string with up to two additional factors to make the rows and columns panels,
in the form "fact1 ~ fact2";

rawdata always contains "DV" for each participants and each level of the factors
datapointParams

(optional) list of graphic directives that are sent to the geom_point layer of the
individual lines

pointParams (optional) list of graphic directives that are sent to the geom_point layer

lineParams (optional) list of graphic directives that are sent to the geom_bar layer; the pa-
rameter colorize=TRUE with use a distinct color for decreasing segments of line

errorbarParams (optional) list of graphic directives that are sent to the geom_superberrorbar
layer

facetParams (optional) list of graphic directives that are sent to the facet_grid layer

Value

a ggplot object

Examples

This will make a plot with points and individual lines for each subject's scores

we take the Orange built-in data.frame but shorten the names...
names(Orange) <- c("Tree","age","circ")
Makes the plot:
superb(circ ~ age | Tree,
Orange,
adjustments = list(purpose = "difference", decorrelation = "none"),
plotStyle= "pointindividualline"

)

if you extract the data, you can
run this layout directly
#processedData <- superb(circ ~ age | Tree,
Orange,
adjustments = list(purpose = "difference", decorrelation = "none"),
#)
#
#superbPlot.pointindividualline(processedData$summaryStatistic,
"age",
NULL,
".~.",

superbPlot.pointjitter 69

processedData$rawData)

superbPlot.pointjitter

superbPlot point-and-jitter dots layout

Description

superbPlot comes with a few built-in templates for making the final plots. All produces ggplot
objects that can be further customized. Additionally, it is possible to add custom-make templates
(see vignette 6). The functions, to be "superbPlot-compatible", must have these parameters:

Usage

superbPlot.pointjitter(
summarydata,
xfactor,
groupingfactor,
addfactors,
rawdata,
pointParams = list(),
jitterParams = list(),
errorbarParams = list(),
facetParams = list(),
xAsFactor = TRUE

)

Arguments

summarydata a data.frame with columns "center", "lowerwidth" and "upperwidth" for each
level of the factors;

xfactor a string with the name of the column where the factor going on the horizontal
axis is given;

groupingfactor a string with the name of the column for which the data will be grouped on the
plot;

addfactors a string with up to two additional factors to make the rows and columns panels,
in the form "fact1 ~ fact2";

rawdata always contains "DV" for each participants and each level of the factors
pointParams (optional) list of graphic directives that are sent to the geom_bar layer
jitterParams (optional) list of graphic directives that are sent to the geom_bar layer
errorbarParams (optional) list of graphic directives that are sent to the geom_superberrorbar

layer
facetParams (optional) list of graphic directives that are sent to the facet_grid layer
xAsFactor (optional) Boolean to indicate if the factor on the horizontal should continuous

or discrete (default is discrete)

70 superbPlot.pointjitterviolin

Value

a ggplot object

Examples

This will make a plot with jittered points, aka dot plots
superb(

len ~ dose + supp,
ToothGrowth,
plotStyle="pointjitter"

)

if you extract the data with superbData, you can
run this layout directly
#processedData <- superb(
len ~ dose + supp,
ToothGrowth,
showPlot = FALSE
#)
#
#superbPlot.pointjitter(processedData$summaryStatistic,
"dose",
"supp",
".~.",
processedData$rawData)

superbPlot.pointjitterviolin

superbPlot point, jitter and violin plot layout

Description

superbPlot comes with a few built-in templates for making the final plots. All produces ggplot
objects that can be further customized. Additionally, it is possible to add custom-make templates
(see vignette 6). The functions, to be "superbPlot-compatible", must have these parameters:

Usage

superbPlot.pointjitterviolin(
summarydata,
xfactor,
groupingfactor,
addfactors,
rawdata,
pointParams = list(),
jitterParams = list(),
violinParams = list(),

superbPlot.pointjitterviolin 71

errorbarParams = list(),
facetParams = list()

)

Arguments

summarydata a data.frame with columns "center", "lowerwidth" and "upperwidth" for each
level of the factors;

xfactor a string with the name of the column where the factor going on the horizontal
axis is given;

groupingfactor a string with the name of the column for which the data will be grouped on the
plot;

addfactors a string with up to two additional factors to make the rows and columns panels,
in the form "fact1 ~ fact2";

rawdata always contains "DV" for each participants and each level of the factors

pointParams (optional) list of graphic directives that are sent to the geom_bar layer

jitterParams (optional) list of graphic directives that are sent to the geom_bar layer

violinParams (optional) list of graphic directives that are sent to the geom_bar layer this mod-
ified geom_violin has additional options "direction"/"antagonize" and "push".

errorbarParams (optional) list of graphic directives that are sent to the geom_superberrorbar
layer

facetParams (optional) list of graphic directives that are sent to the facet_grid layer

Value

a ggplot object

Examples

This will make a plot with jittered points and violins for the overall distribution
superb(

len ~ dose + supp,
ToothGrowth,
plotStyle = "pointjitterviolin"

)

if you extract the data with superbData, you can
run this layout directly
#processedData <- superb(
len ~ dose + supp,
ToothGrowth,
showPlot = FALSE
#)
#
#superbPlot.pointjitterviolin(processedData$summaryStatistic,
"dose",
"supp",
".~.",

72 superbPlot.pointlinejitter

processedData$rawData)

superbPlot.pointlinejitter

superbPlot point-and-jitter lines layout

Description

superbPlot comes with a few built-in templates for making the final plots. All produces ggplot
objects that can be further customized. Additionally, it is possible to add custom-make templates
(see vignette 6). The functions, to be "superbPlot-compatible", must have these parameters:

Usage

superbPlot.pointlinejitter(
summarydata,
xfactor,
groupingfactor,
addfactors,
rawdata,
pointParams = list(),
lineParams = list(),
jitterParams = list(),
errorbarParams = list(),
facetParams = list(),
xAsFactor = TRUE

)

Arguments

summarydata a data.frame with columns "center", "lowerwidth" and "upperwidth" for each
level of the factors;

xfactor a string with the name of the column where the factor going on the horizontal
axis is given;

groupingfactor a string with the name of the column for which the data will be grouped on the
plot;

addfactors a string with up to two additional factors to make the rows and columns panels,
in the form "fact1 ~ fact2";

rawdata always contains "DV" for each participants and each level of the factors

pointParams (optional) list of graphic directives that are sent to the geom_bar layer

lineParams (optional) list of graphic directives that are sent to the geom_bar layer

jitterParams (optional) list of graphic directives that are sent to the geom_bar layer

errorbarParams (optional) list of graphic directives that are sent to the geom_superberrorbar
layer

superbPlot.raincloud 73

facetParams (optional) list of graphic directives that are sent to the facet_grid layer

xAsFactor (optional) Boolean to indicate if the factor on the horizontal should continuous
or discrete (default is discrete)

Value

a ggplot object

Examples

This will make a plot with jittered points, aka dot plots
superb(

len ~ dose + supp,
ToothGrowth,
plotStyle="pointlinejitter"

)

if you extract the data with superbData, you can
run this layout directly
#processedData <- superb(
len ~ dose + supp,
ToothGrowth,
showPlot = FALSE
#)
#
#superbPlot.pointlinejitter(processedData$summaryStatistic,
"dose",
"supp",
".~.",
processedData$rawData)

superbPlot.raincloud superbPlot ’raincloud’ layout

Description

The raincloud layout display jittered dots as well as a "cloud" (half of a violin) above them. See
@allen2019. The functions has these parameters:

Usage

superbPlot.raincloud(
summarydata,
xfactor,
groupingfactor,
addfactors,
rawdata = NULL,
violinParams = list(),

74 superbPlot.raincloud

jitterParams = list(),
pointParams = list(),
errorbarParams = list(),
facetParams = list(),
xAsFactor = TRUE

)

Arguments

summarydata a data.frame with columns "center", "lowerwidth" and "upperwidth" for each
level of the factors;

xfactor a string with the name of the column where the factor going on the horizontal
axis is given;

groupingfactor a string with the name of the column for which the data will be grouped on the
plot;

addfactors a string with up to two additional factors to make the rows and columns panels,
in the form "fact1 ~ fact2";

rawdata always contains "DV" for each participants and each level of the factors

violinParams (optional) list of graphic directives that are sent to the geom_violin layer; this
modified geom_violin has additional options "direction" and "push".

jitterParams (optional) list of graphic directives that are sent to the geom_jitter layer

pointParams (optional) list of graphic directives that are sent to the geom_point layer

errorbarParams (optional) list of graphic directives that are sent to the geom_superberrorbar
layer

facetParams (optional) list of graphic directives that are sent to the facet_grid layer

xAsFactor (optional) Boolean to indicate if the factor on the horizontal should continuous
or discrete (default is discrete)

Value

a ggplot object

References

There are no references for Rd macro \insertAllCites on this help page.

Examples

This will make a plot with raincloud; they are better seen rotated: +coord_flip()
superb(

len ~ dose + supp,
ToothGrowth,
plotStyle="raincloud"

)

if you extract the data with superbData, you can
run this layout directly

superbShiny 75

#processedData <- superb(ToothGrowth,
len ~ dose + supp,
showPlot = FALSE
#)
#
#superbPlot.raincloud(processedData$summaryStatistic,
"dose",
"supp",
".~.",
processedData$rawData)

superbShiny User Interface to get summary plot of any statistics with adjusted error
bars.

Description

The function suberbShiny() provides a simple user interface to plot standard error or confidence
interval for various descriptive statistics under various designs, population size and purposes, ac-
cording to the suberb framework. See (Cousineau et al. 2021) for more. Also see this video from
(Walker 2021) for a demo using the shinyapps.io installation accessible at dcousin3.shinyapps.io/superbshiny
Limitations: it is not possible to use custom-made statistics with the graphical user interface, nor is
it possible to request an adjustment for cluster- randomized sampling. These options are available
with superb().

Usage

superbShiny()

Value

A plot that can be cut-and-paste.

References

Cousineau D, Goulet M, Harding B (2021). “Summary plots with adjusted error bars: The superb
framework with an implementation in R.” Advances in Methods and Practices in Psychological
Science, 4, 1–18. doi:10.1177/25152459211035109.

Walker JAL (2021). Summary plots with adjusted error bars (superb). https://www.youtube.
com/watch?v=rw_6ll5nVus.

Examples

Launch the user interface:

if (interactive())
superbShiny()

https://www.youtube.com/watch?v=rw_6ll5nVus/
https://dcousin3.shinyapps.io/superbshiny/
https://doi.org/10.1177/25152459211035109
https://www.youtube.com/watch?v=rw_6ll5nVus
https://www.youtube.com/watch?v=rw_6ll5nVus

76 superbToWide

superbToWide superbToWide: Reshape long data frame to wide, suitable for superb-
Plot

Description

The function suberbToWide() is an extension to Navarro’s WideToLong function with ample
checks to make sure all is legit, so that the data is suitably organized for suberb. See (Cousineau et
al. 2021) for more. Other techniques are available to transform long to wide, but many asked for it
within superb.

Usage

superbToWide(
data,
id = NULL,
BSFactors = NULL,
WSFactors = NULL,
variable = NULL

)

Arguments

data Dataframe in long format

id A column with unique identifiers per subject

BSFactors The name(s) of the between-subject factor(s) as string(s)

WSFactors The name(s) of the within-subject factor(s) as string(s)

variable The dependent variable as string

Value

A wide-format data frame ready for superbPlot() or superbData(). All other variables will be erased.

References

Cousineau D, Goulet M, Harding B (2021). “Summary plots with adjusted error bars: The superb
framework with an implementation in R.” Advances in Methods and Practices in Psychological
Science, 4, 1–18. doi:10.1177/25152459211035109.

https://doi.org/10.1177/25152459211035109

TMB1964r 77

Examples

library(ggplot2)
library(gridExtra)

Example using the built-in dataframe Orange.
data(Orange)
superbToWide(Orange, id = "Tree", WSFactors = c("age"), variable = "circumference")

Optional: change column names to shorten "circumference" to "DV"
names(Orange) <- c("Tree","age","DV")
turn the data into a wide format
Orange.wide <- superbToWide(Orange, id = "Tree", WSFactors = c("age"), variable = "DV")

Makes the plots two different way:
p1=superbPlot(Orange.wide, WSFactors = "age(7)",

variables = c("DV.118","DV.484","DV.664","DV.1004","DV.1231","DV.1372","DV.1582"),
adjustments = list(purpose = "difference", decorrelation = "none")

) +
xlab("Age level") + ylab("Trunk diameter (mm)") +
coord_cartesian(ylim = c(0,250)) + labs(title="Basic confidence intervals")

p2=superbPlot(Orange.wide, WSFactors = "age(7)",
variables = c("DV.118","DV.484","DV.664","DV.1004","DV.1231","DV.1372","DV.1582"),
adjustments = list(purpose = "difference", decorrelation = "CA")

) +
xlab("Age level") + ylab("Trunk diameter (mm)") +
coord_cartesian(ylim = c(0,250)) + labs(title="Decorrelated confidence intervals")

grid.arrange(p1,p2,ncol=2)

Note that with superb(), there is no need to reformat
into a wide format anymore:
superb(DV ~ age | Tree, Orange)

TMB1964r Data of Tulving, Mandler, & Baumal, 1964 (reproduction of 2021)

Description

The data comes from Bradley-Garcia and 37 others (2021). It is a near exact replication of the
original study from (Tulving et al. 1964).

The design is a (7) x 4 with: 7 levels of stimulus duration (within-subject) and 4 between-subject
conditions. Additional variables included in the reproduction is the primary language of the partic-
ipant in which he/she participated (mainly francophones and anglophones; and the gender (mainly
male and female).

Usage

data(TMB1964r)

78 TMB1964r

Format

An object of class data.frame.

References

Bradley-Garcia M, 37 others (2021). “The influence of exposure duration and context length on
word recall: A replication of Tulving et al. (1964).” The Quantitative Methods for Psychology,
17(2), r1-r9. doi:10.20982/tqmp.17.2.r001.

Tulving E, Mandler G, Baumal R (1964). “Interaction of two sources of information in tachis-
toscopic word recognition.” Canadian Journal of Psychology/Revue canadienne de psychologie,
18(1), 62.

Examples

library(ggplot2)

data(TMB1964r)

options(superb.feedback = 'none') # shut down 'warnings' and 'design' interpretation messages

general plot ignoring covariates sex and languages with only defaults
We illustrate correlation- and difference-adjusted 95% confidence intervals of the mean
superb(

crange(T1, T7) ~ Condition,
TMB1964r,
WSFactors = "T(7)", # the within-subject factor (spanning 7 columns)
adjustments = list(purpose="difference", decorrelation="CM"),
plotStyle = "line"

)

We add directives for the error bars (thick), for the points (larger) and for the lines (thick)
plt <- superb(

crange(T1, T7) ~ Condition,
TMB1964r,
WSFactors = "T(7)",
adjustments = list(purpose="difference", decorrelation="CM"),
plotStyle = "line",
errorbarParams = list(width = 0.5, linewidth=1.25, position = position_dodge(.5)),
pointParams = list(size=2.5, position = position_dodge(.5)),
lineParams = list(linewidth=1.25)

)
plt

Additional directives to set manually the colors, shapes, thick marks and labels.
plt +
scale_colour_manual(

labels = c("Context 0", "Context 2", "Context 4", "Context 8"),
values = c("blue", "black", "purple", "red")) +

scale_shape_manual(
labels = c("Context 0", "Context 2", "Context 4", "Context 8"),

https://doi.org/10.20982/tqmp.17.2.r001

TMB1964r 79

values = c("circle", "triangle", "square", "plus")) +
theme_bw(base_size = 16) +
labs(x = "Exposure duration (ms)", y = "Mean of correct responses",

colour = "Context length\n", shape = "Context length\n") +
scale_x_discrete(labels=c("1" = "16.67", "2" = "33.33",

"3"="50.00", "4" = "66.67", "5"="83.33", "6"="100.00", "7"="116.67"))

Exploring three factors simultaneously: T, Condition and Sex (last two between-group)
superb(

crange(T1, T7) ~ Condition + Sex,
TMB1964r,
WSFactors = "T(7)", # the within-subject factor (spanning 7 columns)
adjustments = list(purpose="difference", decorrelation="CM"),
plotStyle = "line",
errorbarParams = list(linewidth=0.15, position = position_dodge(.5)),
pointParams = list(size=2.5, position = position_dodge(.5)),
lineParams = list(linewidth=0.25)

) +
scale_colour_manual(

labels = c("Context 0", "Context 2", "Context 4", "Context 8"),
values = c("blue", "black", "purple", "red")) +

scale_shape_manual(
labels = c("Context 0", "Context 2", "Context 4", "Context 8"),
values = c("circle", "triangle", "square", "plus")) +

theme_bw(base_size = 16) +
labs(x = "Exposure duration (ms)", y = "Mean of correct responses",

colour = "Context length\n", shape = "Context length\n") +
scale_x_discrete(labels=c("1" = "16.67", "2" = "33.33",

"3"="50.00", "4" = "66.67", "5"="83.33", "6"="100.00", "7"="116.67"))

#only keep 2 sex and 2 languages; the remaining cases are too sparse.
mee3 <- TMB1964r[(TMB1964r$Language != "I prefer not to answer")&TMB1964r$Language !="Other",]

This last example is commented as CRAN servers are too slow
#
advanced plots are available, such as pointjitter
and pointjitterviolin : a plot that superimposes the distribution as a violin plot
#
superb(
crange(T1, T7) ~ Condition + Language,
mee3,
WSFactors = "T(7)",
adjustments = list(purpose="difference", decorrelation="CM"),
plotStyle = "pointjitterviolin",
jitterParams = list(alpha = 0.4), #near transparent jitter points
violinParams = list(alpha = 0.2)
#) +
#scale_fill_manual(name = "Amount of context",
labels = c("Context 0", "Context 2", "Context 4", "Context 8"),
values = c("blue", "black", "purple", "red")) +

80 twoStepTransform

#scale_colour_manual(name = "Amount of context",
labels = c("Context 0", "Context 2", "Context 4", "Context 8"),
values = c("blue", "black", "purple", "red")) +
#scale_shape_manual(name = "Amount of context",
labels = c("Context 0", "Context 2", "Context 4", "Context 8"),
values = c("circle", "triangle", "square", "cross")) +
#theme_bw(base_size = 16) +
#labs(x = "Exposure duration (ms)", y = "Mean of correct responses")+
#scale_x_discrete(labels=c("1" = "16.67", "2" = "33.33",
"3"="50.00", "4" = "66.67", "5"="83.33", "6"="100.00", "7"="116.67"))
#

twoStepTransform two-step transform for subject centering and bias correction

Description

twoStepTransform is a transformation that can be applied to a matrix of data. The resulting matrix
is both subject-centered and bias corrected, a technique called the CM technique (Baguley 2012;
Cousineau 2005; Morey 2008)

Usage

twoStepTransform(dta, variables)

Arguments

dta a data.frame containing the data in wide format;

variables a vector of column names on which the transformation will be applied. the
remaining columns will be left unchanged

Value

a data.frame of the same form as dta with the variables transformed.

This function is useful when passed to the argument preprocessfct of superb() where it performs
a modification of the data matrix.

References

Baguley T (2012). “Calculating and graphing within-subject confidence intervals for ANOVA.” Be-
havior Research Methods, 44, 158 – 175. doi:10.3758/s1342801101237.

Cousineau D (2005). “Confidence intervals in within-subject designs: A simpler solution to Loftus
and Masson’s method.” Tutorials in Quantitative Methods for Psychology, 1, 42 – 45. doi:10.20982/
tqmp.01.1.p042.

https://doi.org/10.3758/s13428-011-0123-7
https://doi.org/10.20982/tqmp.01.1.p042
https://doi.org/10.20982/tqmp.01.1.p042

WelchDegreeOfFreedom 81

Morey RD (2008). “Confidence Intervals from Normalized Data: A correction to Cousineau
(2005).” Tutorials in Quantitative Methods for Psychology, 4, 61 – 64. doi:10.20982/tqmp.04.2.p061.

WelchDegreeOfFreedom Welch’s rectified degree of freedom

Description

When variance across groups are heterogeneous, the Student t distribution with n - 1 df is not the
exact distribution. However, (Welch 1947), using methods of moments, was able to find the best-
fitting t distribution. This distribution has degree of freedom reduced based on the sample sizes and
the variances of the group tests. The present function returns the rectified degree of freedom

Usage

WelchDegreeOfFreedom(dta, cols, groupingcols)

Arguments

dta A data frame containing within-subject measures, one participant per line;

cols A vector indicating the columns containing the measures.

groupingcols A vector indicating the columns containing the groups.

Value

df the degrees of freedom rectified according to Welch (1947).

References

Welch BL (1947). “The generalization of student’s’ problem when several different population
variances are involved.” Biometrika, 34(1/2), 28–35. doi:10.1093/biomet/34.12.28.

Examples

creates a small data frames with 4 subject's scores for 5 measures:
dta <- data.frame(cbind(

DV.1 = c(3., 6., 2., 2., 5.),
DV.2 = c(4., 5., 4., 4., 3.),
DV.3 = c(2., 7., 7., 8., 6.),
DV.4 = c(6., 8., 4., 6., 5.),
grp = c(1., 1., 2., 2., 2.)

))
performs the test (here rectified df = 1.898876)
WelchDegreeOfFreedom(dta, "DV.1","grp")

https://doi.org/10.20982/tqmp.04.2.p061
https://doi.org/10.1093/biomet/34.1-2.28

82 WinerCompoundSymmetryTest

WinerCompoundSymmetryTest

Winer’s test of compound symmetry

Description

Run a test of compound symmetry. generates a data frame of random data suitable for analyses. It
assesses the significance of the null hypothesis that the covariance matrix is compound symmetric.
This test is given without demonstration in (Winer et al. 1991), p. 517.

Usage

WinerCompoundSymmetryTest(dta, cols)

Arguments

dta A data frame containing within-subject measures, one participant per line;

cols A vector indicating the columns containing the measures.

Value

p the p-value of the null hypothesis that the data are compound symmetric.

References

Winer BJ, Brown DR, Michels KM (1991). Statistical principles in experimental design. McGraw-
Hill, New York.

Examples

creates a small data frames with 4 subject's scores for 5 measures:
dta <- data.frame(cbind(

col1 <- c(3., 6., 2., 2., 5.),
col2 <- c(4., 5., 4., 4., 3.),
col3 <- c(2., 7., 7., 8., 6.),
col4 <- c(6., 8., 4., 6., 5.)

))
performs the test (here p = 0.6733)
WinerCompoundSymmetryTest(dta)

Index

∗ datasets
dataFigure1, 6
dataFigure2, 7
dataFigure3, 8
dataFigure4, 10
TMB1964r, 77

biasCorrectionTransform, 3
bootstrapPI.gmean

(bootstrapPrecisionMeasures), 4
bootstrapPI.hmean

(bootstrapPrecisionMeasures), 4
bootstrapPI.mean

(bootstrapPrecisionMeasures), 4
bootstrapPI.median

(bootstrapPrecisionMeasures), 4
bootstrapPI.sd

(bootstrapPrecisionMeasures), 4
bootstrapPI.var

(bootstrapPrecisionMeasures), 4
bootstrapPrecisionMeasures, 4
bootstrapSE.gmean

(bootstrapPrecisionMeasures), 4
bootstrapSE.hmean

(bootstrapPrecisionMeasures), 4
bootstrapSE.mean

(bootstrapPrecisionMeasures), 4
bootstrapSE.median

(bootstrapPrecisionMeasures), 4
bootstrapSE.sd

(bootstrapPrecisionMeasures), 4
bootstrapSE.var

(bootstrapPrecisionMeasures), 4

CI.fisherkurtosis (precisionMeasures),
24

CI.fisherskew (precisionMeasures), 24
CI.gmean (precisionMeasures), 24
CI.hmean (precisionMeasures), 24
CI.IQR (precisionMeasures), 24

CI.MAD (precisionMeasures), 24
CI.mean (precisionMeasures), 24
CI.meanNArm (measuresWithMissingData),

23
CI.median (precisionMeasures), 24
CI.pearsonskew (precisionMeasures), 24
CI.sd (precisionMeasures), 24
CI.var (precisionMeasures), 24
CIwithDF.mean

(precisionMeasureWithCustomDF),
26

CousineauLaurencelleLambda, 5
custom (slope), 34

dataFigure1, 6
dataFigure2, 7
dataFigure3, 8
dataFigure4, 10

extent (slope), 34

fisherkurtosis (summaryStatistics), 35
fisherskew (summaryStatistics), 35

geom_flat_violin, 11
geom_superberrorbar, 13
gmean (summaryStatistics), 35
GRD, 16

has.cbind.terms (is.formula), 20
has.crange.terms (is.formula), 20
has.nested.terms (is.formula), 20
hmean (summaryStatistics), 35
HyunhFeldtEpsilon, 19

in.formula (is.formula), 20
is.formula, 20
is.one.sided (is.formula), 20

MAD (summaryStatistics), 35
makeTransparent, 21

83

84 INDEX

MauchlySphericityTest, 22
meanNArm (measuresWithMissingData), 23
meanNArm, (measuresWithMissingData), 23
measuresWithMissingData, 23

pearsonskew (summaryStatistics), 35
poolSDTransform, 24
precisionMeasures, 24
precisionMeasureWithCustomDF, 26

Rexpression (slope), 34
runDebug, 30

SE.fisherkurtosis (precisionMeasures),
24

SE.fisherskew (precisionMeasures), 24
SE.gmean (precisionMeasures), 24
SE.hmean (precisionMeasures), 24
SE.IQR (precisionMeasures), 24
SE.MAD (precisionMeasures), 24
SE.mean (precisionMeasures), 24
SE.meanNArm (measuresWithMissingData),

23
SE.median (precisionMeasures), 24
SE.pearsonskew (precisionMeasures), 24
SE.sd (precisionMeasures), 24
SE.var (precisionMeasures), 24
showHorizontalSignificance

(showSignificance), 30
showSignificance, 30
showVerticalSignificance

(showSignificance), 30
ShroutFleissICC1, 33
ShroutFleissICC11 (ShroutFleissICC1), 33
ShroutFleissICC1k (ShroutFleissICC1), 33
slope, 34
sub.formulas (is.formula), 20
subjectCenteringTransform, 35
summaryStatistics, 35
superb, 36
superbData, 41
superbPlot, 43
superbPlot.bar, 47
superbPlot.boxplot, 48
superbPlot.circularline, 51
superbPlot.circularlineBand, 52
superbPlot.circularpoint, 54
superbPlot.circularpointjitter, 55
superbPlot.circularpointlinejitter, 57

superbPlot.corset, 58
superbPlot.halfwidthline, 61
superbPlot.line, 62
superbPlot.lineBand, 64
superbPlot.point, 66
superbPlot.pointindividualline, 67
superbPlot.pointjitter, 69
superbPlot.pointjitterviolin, 70
superbPlot.pointlinejitter, 72
superbPlot.raincloud, 73
superbShiny, 75
superbToWide, 76

TMB1964r, 77
twoStepTransform, 80

WelchDegreeOfFreedom, 81
WinerCompoundSymmetryTest, 82

	biasCorrectionTransform
	bootstrapPrecisionMeasures
	CousineauLaurencelleLambda
	dataFigure1
	dataFigure2
	dataFigure3
	dataFigure4
	geom_flat_violin
	geom_superberrorbar
	GRD
	HyunhFeldtEpsilon
	is.formula
	makeTransparent
	MauchlySphericityTest
	measuresWithMissingData
	poolSDTransform
	precisionMeasures
	precisionMeasureWithCustomDF
	runDebug
	showSignificance
	ShroutFleissICC1
	slope
	subjectCenteringTransform
	summaryStatistics
	superb
	superbData
	superbPlot
	superbPlot.bar
	superbPlot.boxplot
	superbPlot.circularline
	superbPlot.circularlineBand
	superbPlot.circularpoint
	superbPlot.circularpointjitter
	superbPlot.circularpointlinejitter
	superbPlot.corset
	superbPlot.halfwidthline
	superbPlot.line
	superbPlot.lineBand
	superbPlot.point
	superbPlot.pointindividualline
	superbPlot.pointjitter
	superbPlot.pointjitterviolin
	superbPlot.pointlinejitter
	superbPlot.raincloud
	superbShiny
	superbToWide
	TMB1964r
	twoStepTransform
	WelchDegreeOfFreedom
	WinerCompoundSymmetryTest
	Index

