Single Precision Intrinsics
[Mathematical Functions]


Functions

__device__ float __cosf (float x)
 Calculate the fast approximate cosine of the input argument.
__device__ float __exp10f (float x)
 Calculate the fast approximate base 10 exponential of the input argument.
__device__ float __expf (float x)
 Calculate the fast approximate base $e$ exponential of the input argument.
__device__ float __fadd_rd (float x, float y)
 Add two floating point values in round-down mode.
__device__ float __fadd_rn (float x, float y)
 Add two floating point values in round-to-nearest-even mode.
__device__ float __fadd_ru (float x, float y)
 Add two floating point values in round-up mode.
__device__ float __fadd_rz (float x, float y)
 Add two floating point values in round-towards-zero mode.
__device__ float __fdiv_rd (float x, float y)
 Divide two floating point values in round-down mode.
__device__ float __fdiv_rn (float x, float y)
 Divide two floating point values in round-to-nearest-even mode.
__device__ float __fdiv_ru (float x, float y)
 Divide two floating point values in round-up mode.
__device__ float __fdiv_rz (float x, float y)
 Divide two floating point values in round-towards-zero mode.
__device__ float __fdividef (float x, float y)
 Calculate the fast approximate division of the input arguments.
__device__ float __fmaf_rd (float x, float y, float z)
 Compute $x \times y + z$ as a single operation, in round-down mode.
__device__ float __fmaf_rn (float x, float y, float z)
 Compute $x \times y + z$ as a single operation, in round-to-nearest-even mode.
__device__ float __fmaf_ru (float x, float y, float z)
 Compute $x \times y + z$ as a single operation, in round-up mode.
__device__ float __fmaf_rz (float x, float y, float z)
 Compute $x \times y + z$ as a single operation, in round-towards-zero mode.
__device__ float __fmul_rd (float x, float y)
 Multiply two floating point values in round-down mode.
__device__ float __fmul_rn (float x, float y)
 Multiply two floating point values in round-to-nearest-even mode.
__device__ float __fmul_ru (float x, float y)
 Multiply two floating point values in round-up mode.
__device__ float __fmul_rz (float x, float y)
 Multiply two floating point values in round-towards-zero mode.
__device__ float __frcp_rd (float x)
 Compute $\frac{1}{x}$ in round-down mode.
__device__ float __frcp_rn (float x)
 Compute $\frac{1}{x}$ in round-to-nearest-even mode.
__device__ float __frcp_ru (float x)
 Compute $\frac{1}{x}$ in round-up mode.
__device__ float __frcp_rz (float x)
 Compute $\frac{1}{x}$ in round-towards-zero mode.
__device__ float __fsqrt_rd (float x)
 Compute $\sqrt{x}$ in round-down mode.
__device__ float __fsqrt_rn (float x)
 Compute $\sqrt{x}$ in round-to-nearest-even mode.
__device__ float __fsqrt_ru (float x)
 Compute $\sqrt{x}$ in round-up mode.
__device__ float __fsqrt_rz (float x)
 Compute $\sqrt{x}$ in round-towards-zero mode.
__device__ float __log10f (float x)
 Calculate the fast approximate base 10 logarithm of the input argument.
__device__ float __log2f (float x)
 Calculate the fast approximate base 2 logarithm of the input argument.
__device__ float __logf (float x)
 Calculate the fast approximate base $e$ logarithm of the input argument.
__device__ float __powf (float x, float y)
 Calculate the fast approximate of $x^y$.
__device__ float __saturatef (float x)
 Clamp the input argument to [+0.0, 1.0].
__device__ void __sincosf (float x, float *sptr, float *cptr)
 Calculate the fast approximate of sine and cosine of the first input argument.
__device__ float __sinf (float x)
 Calculate the fast approximate sine of the input argument.
__device__ float __tanf (float x)
 Calculate the fast approximate tangent of the input argument.

Detailed Description

This section describes single precision intrinsic functions that are only supported in device code.

Generated by Doxygen for NVIDIA CUDA Library  NVIDIA