avr-libc
1.6.2

Generated by Doxygen 1.5.5

Mon May 19 23:37:39 2008

CONTENTS i

Contents

1 AVRLibc 1
1.1 Introduction. 1
1.2 General information about thislibrary 2
1.3 SupportedDevices. 2
1.4 avrlibcLicense. 7

2 Toolchain Overview 9
2.1 Introduction. 9
22 FSFandGNU e 9
23 GCC. . . e 9
24 GNUBInutils 10
25 avrlibc 12
2.6 Building Software 12
27 AVRDUDE 12
2.8 GDB/Insight/DDD. e 13
29 AVaRICE e 13
2.10 SIMUIAVR. e 13
2.11 Utilities e 13
2.12 Toolchain Distributions (Distros) 13
213 OpeENSOUICE. v i i e e e 14

3 Memory Areas and Using malloc() 14
3.1 Introduction. 14
3.2 Internalvs. externalRAM. L. 15
3.3 Tunablesformalloc() 16
3.4 Implementationdetails oL 17

4 Memory Sections 19
4.1 The.textSection. 19
4.2 The.dataSection 19
43 The.bssSection. 20

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

CONTENTS ii
4.4 The.eepromSection 20
45 The.noinitSection. 20
4.6 The.initN Sections. 21
4.7 The finiN Sections. 22
4.8 Using Sectionsin AssemblerCode 23
49 UsingSectionsinCCode. 23

5 Data in Program Space 24
5.1 Introduction. 24
52 ANoteOnconst. 24
5.3 Storing and Retrieving Data in the Program Space. 25
5.4 Storing and Retrieving Strings in the Program Space 26
55 Caveats. 28

6 avr-libc and assembler programs 29
6.1 Introduction. 29
6.2 Invokingthecompiler, 29
6.3 Exampleprogram 30
6.4 Pseudo-opsandoperators 33

7 Inline Assembler Cookbook 35
7.1 GCCasmStatement. 36
7.2 AssemblerCode. 37
7.3 Inputand OutputOperands. 38
7.4 Clobbers 43
7.5 AssemblerMacros. 45
7.6 CStubFunctions. 45
7.7 CNamesUsedinAssemblerCode 46
7.8 Links 47

8 How to Build a Library a7
8.1 Introduction. a7
8.2 HowthelLinkerWorks. 48

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

CONTENTS iii

10

11

8.3 HowtoDesignalibrary. 48
8.4 Creatingalibrary 49
8.5 Usingalibrary. 50
Benchmarks 50
9.1 Afewoflibcfunctions.. 51
9.2 Mathfunctions.. 53
Porting From IAR to AVR GCC 54
10.1 Introduction. 54
10.2 Registers e 54
10.3 Interrupt Service Routines (ISRs) 55
10.4 IntrinsicRoutines. 55
10.5 Flash Variables. 56
10.6 Non-Returningmain(). 57
10.7 LockingRegisters 57
Frequently Asked Questions 58
111 FAQINdeX. . . v v v v 58
11.2 My program doesn'’t recognize a variable updated within an interrupt

FOUtiNe. o 59
11.3 | get "undefined reference to..." for functions like "sin()". 60
11.4 How to permanently bind a variable to aregister? 60
11.5 How to modify MCUCR or WDTCR early? 61
11.6 Whatisallthis_BV()stuffabout? 61
11.7 Canluse C++onthe AVR?., 62
11.8 Shouldn't | initialize all my variables? 63
11.9 Why do some 16-bit timer registers sometimes get trashed?. . . 64
11.10How do | use a #define'd constant in an asm statement? 65
11.11Why does the PC randomly jump around when single-stepping through

my programinavr-gdb?. Lo 65
11.12How do | trace an assembler fileinavr-gdb?. 66
11.13How do | pass an 10 port as a parameter to a function?. 67

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

CONTENTS iv

11.14What registers are used by the C compiler? 69
11.15How do | put an array of strings completelyin ROM? 71
11.16Howtouseexternal RAM? 73
11.17Which-Oflagtouse?. 73
11.18How do | relocate code to a fixed address?. 74
11.19My UART is generating nonsense! My ATmegal28 keeps crashing!

Port Fis completely broken!. 75
11.20Why do all my "foo...bar" strings eat up the SRAM?. 75
11.21Why does the compiler compile an 8-bit operation that uses bitwise

operators into a 16-bit operation in assembly? 76
11.22How to detect RAM memory and variable overlap problems? . . 77
11.23Is it really impossible to program the ATtinyXXinC?2 77
11.24What is this "clock skew detected" messsage?. 78
11.25Why are (many) interrupt flags cleared by writing a logical 12 . . 78
11.26Why have "programmed" fuses the bitvalue0? 79
11.27Which AVR-specific assembler operators are available? 79

11.28Why are interrupts re-enabled in the middle of writing the stack pointé&?

11.29Why are there five different linker scripts? 80
11.30How to add a raw binary image to linker output?. 80
11.31How do | perform a software reset of the AVR?. 81
11.321 am using floating point math. Why is the compiled code so big? Why
doesmycodenotwork?. 82

12 Building and Installing the GNU Tool Chain 82
12.1 Building and Installing under Linux, FreeBSD, and Others 83
12.2 RequiredTools. e 83
12.3 Optional Tools o 84
12.4 GNU Binutils forthe AVRtarget 84
125 GCCforthe AVRtarget 86
12.6 AVRLIbCc e 86
127 AVRDUDE 87
12.8 GDBforthe AVRtarget. 87

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

CONTENTS Y

13

14

15

16

17

18

19

129 SIMUIAVR. 88
12.10AVaRICE e 88
12.11Building and Installing under Windows 88
12.12Tools Required for Building the Toolchain for Windows 89
12.13Building the Toolchain for Windows 92
Using the GNU tools 98
13.1 Options forthe C compileravr-gcc. 98
13.1.1 Machine-specific options forthe AVR. 98
13.1.2 Selected general compileroptions 103
13.2 Options for the assembleravr-as. 105
13.2.1 Machine-specific assembler options 105
13.2.2 Examples for assembler options passed through the C corifligr
13.3 Controllingthelinkeravr-Id. 107
13.3.1 Selectedlinkeroptions. 107
13.3.2 Passing linker options from the C compiler. 108
Using the avrdude program 109
Release Numbering and Methodology 111
15.1 Release Version Numbering Scheme 111
15.1.1 StableVersions oo 111
15.1.2 DevelopmentVersions 111
15.2 Releasing AVRLibc., 112
15.2.1 Creatingacvshbranch 112
15.2.2 Makingarelease 113
Acknowledgments 115
Todo List 116
Deprecated List 116
Module Index 117

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

CONTENTS Vi

19.1 Modules. 117
20 Data Structure Index 118
20.1 DataStructures 118
21 File Index 119
21.1 FileList. e 119
22 Module Documentation 122
22.1 <alloca.h>: Allocate spaceinthestack 122
22.1.1 Detailed Description 122

22.1.2 Function Documentation. 123

22.2 <assert.b-: Diagnostics Lo 123
22.2.1 Detailed Description 123

22.2.2 Define Documentation 123

22.3 <ctype.h>: Character Operations. 124
22.3.1 Detailed Description 124

22.3.2 Function Documentation. 125

22.4 <errno.h>: System Errors. oL 127
22.4.1 Detailed Description L 127

22.4.2 Define Documentation 127

22.5 <inttypes.h>: Integer Type conversions 127
22.5.1 Detailed Description 127

22.5.2 Define Documentation 130

22.5.3 Typedef Documentation 139

22.6 <math.h>: Mathematics. 139
22.6.1 Detailed Description 139

22.6.2 Define Documentation 141

22.6.3 Function Documentation. 141

22.7 <setjmp.h>: Non-localgoto. 146
22.7.1 Detailed Description, 146

22.7.2 Function Documentation. 147

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

CONTENTS Vii

22.8 <stdint.h>: Standard Integer Types 148
22.8.1 Detailed Description L 148
22.8.2 Define Documentation 152
22.8.3 Typedef Documentation 157

22.9 <stdio.h>: Standard 10 facilities 160
22.9.1 Detailed Description, 160
22.9.2 Define Documentation 165
22.9.3 Function Documentation. 168

22.10<stdlib.i>: General utilities L 179
22.10.1 Detailed Description 179
22.10.2 Define Documentation 181
22.10.3 Typedef Documentation 181
22.10.4 Function Documentation. 181
22.10.5 Variable Documentation 190

22.11<string.h>: Strings. 190
22.11.1 Detailed Description 190
22.11.2 Define Documentation 191
22.11.3 Function Documentation. 192

22.12<avr/boot.h>: Bootloader Support Utilities. 201
22.12.1 Detailed Description 201
22.12.2 Define Documentation 203

22.13<avr/eeprom.k: EEPROM handling. 208
22.13.1 Detailed Description 208
22.13.2 Define Documentation 209
22.13.3 Function Documentation. 210

22.14<avrffuse.h-: Fuse Support. 211

22.15<avrlinterrupt.b>: Interrupts. oL 214
22.15.1 Detailed Description 214
22.15.2 Define Documentation 234

22.16<avrl/io.h>: AVR device-specific 10 definitions 237

22.17<avr/lock.h>: Lockbit Support oo oo 238

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

CONTENTS viii

22.18<avr/pgmspace:h: Program Space Utilities. 241
22.18.1 Detailed Description L 241
22.18.2 Define Documentation 243
22.18.3 Typedef Documentation 245
22.18.4 Function Documentation. 247

22.19%<avr/power.h>: Power Reduction Management. 253

22.20Additional notes frorecavr/sfr_defs.b- 256

22.21<avr/sfr_defs.b-: Special functionregisters. 258
22.21.1 Detailed Description oL 258
22.21.2 Define Documentation 259

22.22%<avr/sleep.b-: Power Management and Sleep Modes. 260
22.22.1 Detailed Description 260
22.22.2 Function Documentation. 261

22.23<avr/version.b-: avr-libc versionmacros. 261
22.23.1 Detailed Description 261
22.23.2 Define Documentation 262

22.24<avrlwdt.h>: Watchdog timer handling. 263
22.24.1 Detailed Description 263
22.24.2 Define Documentation 264

22.25<util/atomic.h> Atomically and Non-Atomically Executed Code Blo@&6
22.25.1 Detailed Description 266
22.25.2 Define Documentation 268

22.26<util/crc16.h>: CRC Computations. 270
22.26.1 Detailed Description 270
22.26.2 Function Documentation. 271

22.27<util/delay.h>: Convenience functions for busy-wait delay loaps . 273

22.27.1 Detailed Description L 273
22.27.2 Function Documentation. 274
22.28<util/delay_basic.l»: Basic busy-wait delay loops 274
22.28.1 Detailed Description L. 274
22.28.2 Function Documentation. 275

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

CONTENTS iX

22.29%util/parity.h>: Parity bit generation 275
22.29.1 Detailed Description 275
22.29.2 Define Documentation 276

22.30<util/setbaud.b-: Helper macros for baud rate calculations 276
22.30.1 Detailed Description 276
22.30.2 Define Documentation 278

22.31<util/twi.h>: TWI bit mask definitions 278
22.31.1 Detailed Description 278
22.31.2 Define Documentation 280

22.32<compat/deprecated:h Deprecated items. 283
22.32.1 Detailed Description L 283
22.32.2 Define Documentation 284
22.32.3 Function Documentation. 286

22.33<compat/ina90.: Compatibility with IAREWB 3.x 286

22.34DEMOProjects v . e 286
22.34.1 Detailed Description 286

22.35Combining C and assembly sourcefiles 288
22.35.1Hardwaresetup.o 288
22.35.2 Acode walkthrough. L. 289
22.35.3Thesourcecode, 291

22.36Asimpleproject 291
22.36.1TheProject 291
22.36.2The SourceCode. 293
22.36.3CompilingandLinking 295
22.36.4 Examining the ObjectFile 296
22.36.5LinkerMap Files. oo 301
22.36.6 Generating Intel Hex Files. 303
22.36.7 Letting Make Build the Project. 304
22.36.8 Reference tothe sourcecade. 304

22.37A more sophisticated project. 304
22.37.1Hardwaresetup. 304

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

CONTENTS X

22.37.2 Functional overview. 308
22.37.3 A code walkthrough. L. 308
22.37.4Thesourcecode 311
22.38Using the standard IO facilities. 312
22.38. 1Hardwaresetup. 312
22.38.2 Functional overview. oL 313
22.38.3 Acode walkthrough. oL 314
22.384Thesourcecode it 319
22.39Example using the two-wire interface (TWI) 319
22.39.1Introductioninto TWI. 319
22.39.2The TWlexampleproject, 320
22.39.3TheSourceCode. 320

23 Data Structure Documentation 324
23.1 div_tStructReference.o 324
23.1.1 Detailed Description 324
23.1.2 Field Documentation 324

23.2 Idiv_tStructReference 0. 325
23.2.1 Detailed Description 325
23.2.2 Field Documentation, 325

24 File Documentation 325
24.1 assert.hFileReference. 325
24.1.1 Detailed Description 325

24.2 atoi.SFileReference L. 326
24.2.1 Detailed Description, 326

24.3 atol.SFileReference oL 326
24.3.1 Detailed Description 326

24.4 atomic.h FileReference. oo 326
24.4.1 Detailed Description 326

245 boothFileReference. 326
2451 Detailed Description 326

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

CONTENTS Xi

24.5.2 Define Documentation 328
24.6 crcle.hFileReference 333
24.6.1 Detailed Description L 333
24.7 ctype.h FileReference 333
24.7.1 Detailed Description 333
24.8 delay.h FileReference. 334
24.8.1 Detailed Description 334
24.9 delay basic.h File Reference. 334
24.9.1 Detailed Description L 334
24.10ermo.h File Reference L. 335
24.10.1 Detailed Description L 335
24.11fdevopen.c File Reference L. 335
24.11.1 Detailed Description, 335
24.12ffs.SFileReference oo 335
24.12.1 Detailed Description 335
24.13ffsl.S File Reference. 335
24.13.1 Detailed Description 335
24.14ffsl.S File Reference 335
24.14.1 Detailed Description 335
24.15fuse.h FileReference L. 335
24.15.1 Detailed Description L 335
24.16interrupt.h File Reference. 336
24.16.1 Detailed Description L 336
24.17inttypes.h FileReference. 336
24.17.1 Detailed Description oL 336
24.18io.h FileReference. 339
24.18.1 Detailed Description L 339
24.19lock.h File Reference L 339
24.19.1 Detailed Description 339
24.20math.h File Reference. L. 339
24.20.1 Detailed Description 339

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

CONTENTS Xii

24.21memccpy.S File Reference. 342
24.21.1 Detailed Description L 342
24.22memchr.S File Reference., 342
24.22.1 Detailed Description L 342
24.23memchr_P.SFileReference 342
24.23.1 Detailed Description, 342
24.24memcmp.S FileReference. oL 342
24.24.1 Detailed Description 342
24.25memcmp_P.S File Reference L. 342
24.25.1 Detailed Description 342
24.26memcpy.S File Reference. 342
24.26.1 Detailed Description 342
24.27memcpy_P.S File Reference. 342
24.27.1 Detailed Description 342
24.28memmem.S File Reference. 342
24.28.1 Detailed Description 342
24.29memmove.S File Reference 342
24.29.1 Detailed Description L L 342
24.30memrchr.S File Reference 342
24.30.1 Detailed Description, 342
24.31memrchr_P.S File Reference. 342
24.31.1 Detailed Description 342
24.32memset.SFile Reference. oL 342
24.32.1 Detailed Description 342
24.33parity.h File Reference 342
24.33.1 Detailed Description L 342
24.34pgmspace.h File Reference 343
24.34.1 Detailed Description 343
24.34.2 Define Documentation 345
24.35power.h File Reference 349
24.35.1 Detailed Description 349

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

CONTENTS Xiii

24.35.2 Define Documentation 350
24.36setbaud.h File Reference., 350
24.36.1 Detailed Descriptiono 350
24.37setimp.h File Reference. 350
24.37.1 Detailed Description 350
24.38sleep.h FileReference 351
24.38.1 Detailed Description 351
24.39stdint.h File Reference 351
24.39.1 Detailed Description 351
24.40stdio.h File Reference. 354
24.40.1 Detailed Description L 354
24 41stdlib.h FileReference. L 356
24.41.1 Detailed Description, 356
24.42strcasecmp.S File Reference. 360
24.42.1 Detailed Description 360
24.43strcasecmp_P.S FileReference 360
24.43.1 Detailed Description 360
24 .44strcasestr.S File Reference. L. 360
24.44.1 Detailed Description 360
24 45strcat.SFileReference o L 360
24.45.1 Detailed Description 360
24 46strcat P.SFileReference. 360
24.46.1 Detailed Description 360
24.47strchr.SFileReference 360
24.47.1 Detailed Description oL 360
24.48strchr_P.S File Reference. 360
24.48.1 Detailed Description L 360
24.49strchrnul.S File Reference L. 360
24.49.1 Detailed Description, 360
24.50strchrnul_P.S File Reference. 360
24.50.1 Detailed Description 360

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

CONTENTS Xiv

24.51strcmp.SFileReference 360
24.51.1 Detailed Description L 360
24.52strcmp_P.SFileReference. o L. 360
24.52.1 Detailed Description L 360
24.53strcpy.SFile Reference. oL 360
24.53.1 Detailed Description, 360
24 54strcpy_P.SFile Reference o o oo 360
24.54.1 Detailed Description 360
24.55strcspn.SFileReference oo oo 360
24.55.1 Detailed Description L 360
24.56strcspn_P.S File Reference. oL 360
24.56.1 Detailed Description 360
24.57string.h File Reference 360
24.57.1 Detailed Description 360
24.58strlcat.S File Reference. 363
24.58.1 Detailed Description L 363
24.59strlcat P.SFileReference 363
24.59.1 Detailed Description 363
24.60strlcpy.S File Reference. 363
24.60.1 Detailed Description 363
24.61strlcpy_P.SFileReference 363
24.61.1 Detailed Description, 363
24.62strlen.SFileReference L 363
24.62.1 Detailed Description 363
24.63strlen P.SFileReference. 363
24.63.1 Detailed Description 363
24.64strlwr.S File Reference L 363
24.64.1 Detailed Description 363
24.65strncasecmp.S File Reference. 363
24.65.1 Detailed Description L 363
24.66strncasecmp_P.SFile Reference 363

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

CONTENTS XV

24.66.1 Detailed Description 363
24.67strncat.S File Reference oL 363
24.67.1 Detailed Description 363
24.68strncat P.SFileReference. 363
24.68.1 Detailed Description 363
24.69strncmp.SFileReference. L. 363
24.69.1 Detailed Description L. 363
24.70strncmp_P.SFileReference 363
24.70.1 Detailed Description L 363
24.71strncpy. S FileReferenceo o oo 363
24.71.1 Detailed Description L 363
24.72strncpy_P.S File Reference. 363
24.72.1 Detailed Description, 363
24.73strnlen.S File Reference oo oL 363
24.73.1 Detailed Description 363
24.74strnlen_P.S File Reference. oL 363
24.74.1 Detailed Description 363
24.75strpbrk.S File Referenceo o 363
24.75.1 Detailed Description 363
24.76strpbrk_P.S File Reference. 363
24.76.1 Detailed Description 363
24.77strrechr.S File Reference.o oo 363
24.77.1 Detailed Description 363
24.78strrchr_ P.SFileReference 363
24.78.1 Detailed Description L 363
24.79strrev.SFile Reference o oL 363
24.79.1 Detailed Description L 363
24.80strsep.S File Reference. oL 363
24.80.1 Detailed Description, 363
24.81strsep_P.SFileReference 363
24.81.1 Detailed Description 363

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

1 AVR Libc 1

24.82strspn.S File Reference. 363
24.82.1 Detailed Description 363
24.83strspn_P.SFileReference 363
24.83.1 Detailed Description 363
24.84strstr.S File Reference. o oL 363
24.84.1 Detailed Description 363
24.85strstr P.SFileReference. 363
24.85.1 Detailed Description, 363
24.86strtok r.SFileReference. 0., 363
24.86.1 Detailed Description 363
24.87strupr.SFileReference L Lo 363
24.87.1 Detailed Description 363
24.88twi.h File Reference. 363
24.88.1 Detailed Description 363
24.89wdt.h File Reference. 365
24.89.1 Detailed Description L 365
24.89.2 Define Documentation 365
1 AVR Libc

1.1 Introduction

The latest version of this document s always available from
http://savannah.nongnu.org/projects/avr-libc/

The AVR Libc package provides a subset of the standard C libranpfioel AVR
8-bit RISC microcontrollers . In addition, the library provides the basic
startup code needed by most applications.

There is a wealth of information in this document which goes beyond simply describ-
ing the interfaces and routines provided by the library. We hope that this document
provides enough information to get a new AVR developer up to speed quickly using
the freely available development tools: binutils, gcc avr-libc and many others.

If you find yourself stuck on a problem which this document doesn't quite address, you
may wish to post a message to the avr-gcc mailing list. Most of the developers of the
AVR binutils and gcc ports in addition to the devleopers of avr-libc subscribe to the

list, so you will usually be able to get your problem resolved. You can subscribe to the

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

http://savannah.nongnu.org/projects/avr-libc/
http://www.atmel.com/products/AVR/
http://www.atmel.com/products/AVR/

1.2 General information about this library 2

list at http://lists.nongnu.org/mailman/listinfo/avr-gcc-list
. Before posting to the list, you might want to try reading Brequently Asked Ques-
tionschapter of this document.

Note:

If you think you've found a bug, or have a suggestion for an improvement, ei-
ther in this documentation or in the library itself, please use the bug tracker at
https://savannah.nongnu.org/bugs/?group=avr-libc to ensure

the issue won't be forgotten.

1.2 General information about this library

In general, it has been the goal to stick as best as possible to established standards
while implementing this library. Commonly, this refers to the C library as described by
the ANSI X3.159-1989 and ISO/IEC 9899:1990 ("ANSI-C") standard, as well as parts

of their successor ISO/IEC 9899:1999 ("C99"). Some additions have been inspired by
other standards like IEEE Std 1003.1-1988 ("POSIX.1"), while other extensions are
purely AVR-specific (like the entire program-space string interface).

Unless otherwise noted, functions of this library aot guaranteed to be reentrant. In
particular, any functions that store local state are known to be non-reentrant, as well
as functions that manipulate 10 registers like the EEPROM access routines. If these
functions are used within both standard and interrupt contexts undefined behaviour will
result.

1.3 Supported Devices

The following is a list of AVR devices currently supported by the library. Note that
actual support for some newer devices depends on the ability of the compiler/assembler
to support these devices at library compile-time.

megaAVR Devices:

e atmegal0O3

e atmegal28

¢ atmegal280
* atmegal28l
e atmegal284p

¢ atmegal6

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

http://lists.nongnu.org/mailman/listinfo/avr-gcc-list
https://savannah.nongnu.org/bugs/?group=avr-libc

1.3 Supported Devices

e atmegal6l
e atmegal6?2
e atmegal63
e atmegal64p
e atmegal65
e atmegal65p
e atmegal68
e atmegal68p
e atmega2560
e atmega2561
e atmega32

e atmega323
* atmega324p
e atmega325
* atmega325p
* atmega3250
* atmega3250p
* atmega328p
¢ atmega48

* atmega48p
e atmegab4

¢ atmega640
e atmegab644
* atmegab44p
e atmega645
e atmega6450
¢ atmega8

¢ atmega88

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

1.3 Supported Devices

e atmega88p
e atmega8515
e atmega8535

tinyAVR Devices:

e attinyl11[1]
e attiny12[1]
* attinyl3

e attiny15[1]
* attiny22

* attiny24
 attiny25
 attiny26

* attiny261
 attiny28[1]
* attiny2313
* attiny43u
* attiny44

* attiny45

* attiny461
* attiny48

* attiny84

* attiny85

* attiny861

* attiny88

Automotive AVR Devices:

* atmega32cl

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

1.3 Supported Devices

* atmega32ml
* attiny167

CAN AVR Devices:

¢ at90can32
* at90can64
* at90canl128

LCD AVR Devices:

e atmegal69

e atmegal69p
e atmega329

e atmega329p
¢ atmega3290
¢ atmega3290p
¢ atmega649

¢ atmega6490

Lighting AVR Devices:

e at90pwml

e at90pwm?2

e at90pwm2b
e at90pwm?216
e at90pwma3

¢ at90pwm3b
e at90pwma316

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

1.3 Supported Devices

Smart Battery AVR Devices:

* atmega8hva

L]

atmegal6hva

atmega32hvb

atmega406

USB AVR Devices:

» at90ush82

» at90ush162
» at90ush646
» at90ush647
» at90ush1286
e at90ush1287

e atmega32u4

XMEGA Devices:

e atxmegal28al

e atxmega64al

Miscellaneous Devices:

at94K|[2]

at76c7113]

at43usb320

at43usb355

at86rf401

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

1.4 avr-libc License 7

Classic AVR Devices:

« at90s12001]
. at90s2313
. at90s2323
. at90s2333
. at90s2343
. at90s4414
. at90s4433
* at90s4434
« at90s8515
* at90c8534
* at90s8535

Note:

[1] Assembly only. There is no direct support for these devices to be programmed
in C since they do not have a RAM based stack. Still, it could be possible to
program them in C, see th&\Q for an option.

Note:

[2] The at94K devices are a combination of FPGA and AVR microcontroller.
[TRoth-2002/11/12: Not sure of the level of support for these. More information
would be welcomed.]

Note:
[3] The at76c711 is a USB to fast serial interface bridge chip using an AVR core.

1.4 avr-libc License

avr-libc can be freely used and redistributed, provided the following license conditions
are met.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

1.4 avr-libc License 8

Portions of avr-libc are Copyright (c) 1999-2007
Keith Gudger,
Bjoern Haase,
Steinar Haugen,
Peter Jansen,
Reinhard Jessich,
Magnus Johansson,
Artur Lipowski,
Marek Michalkiewicz,
Colin O’Flynn,

Bob Paddock,
Reiner Patommel,
Michael Rickman,
Theodore A. Roth,
Juergen Schilling,
Philip Soeberg,
Anatoly Sokolov,
Nils Kristian Strom,
Michael Stumpf,
Stefan Swanepoel,
Eric B. Weddington,
Joerg Wunsch,
Dmitry Xmelkov,
The Regents of the University of California.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.

* Neither the name of the copyright holders nor the names of
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

2 Toolchain Overview 9

2 Toolchain Overview

2.1 Introduction

Welcome to the open source software development toolset for the Atmel AVR!

There is not a single tool that provides everything needed to develop software for the
AVR. It takes many tools working together. Collectively, the group of tools are called a
toolset, or commonly a toolchain, as the tools are chained together to produce the final
executable application for the AVR microcontroller.

The following sections provide an overview of all of these tools. You may be used
to cross-compilers that provide everything with a GUI front-end, and not know what
goes on "underneath the hood". You may be coming from a desktop or server computer
background and not used to embedded systems. Or you may be just learning about the
most common software development toolchain available on Unix and Linux systems.
Hopefully the following overview will be helpful in putting everything in perspective.

2.2 FSFand GNU

According to its website, "the Free Software Foundation (FSF), established in 1985, is
dedicated to promoting computer users’ rights to use, study, copy, modify, and redis-
tribute computer programs. The FSF promotes the development and use of free soft-
ware, particularly the GNU operating system, used widely in its GNU/Linux variant."
The FSF remains the primary sponsor of the GNU project.

The GNU Project was launched in 1984 to develop a complete Unix-like operating
system which is free software: the GNU system. GNU is a recursive acronym for
»GNU’s Not Unix«; it is pronounced guh-noo, approximately like canoe.

One of the main projects of the GNU system is the GNU Compiler Collection, or GCC,
and its sister project, GNU Binutils. These two open source projects provide a foun-
dation for a software development toolchain. Note that these projects were designed to
originally run on Unix-like systems.

2.3 GCC

GCC stands for GNU Compiler Collection. GCC is highly flexible compiler system. It
has different compiler front-ends for different languages. It has many back-ends that
generate assembly code for many different processors and host operating systems. All
share a common "middle-end", containing the generic parts of the compiler, including
a lot of optimizations.

In GCC, ahostsystem is the system (processor/OS) that the compiler runs on. A
targetsystem is the system that the compiler compiles code for. Afbdild system
is the system that the compiler is built (from source code) on. If a compiler has the

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

2.4 GNU Binutils 10

same system fonostand fortarget, it is known as anative compiler. If a compiler

has different systems fdrostandtarget, it is known as a cross-compiler. (And if all
three,build, host andtarget systems are different, it is known as a Canadian cross
compiler, but we won't discuss that here.) When GCC is built to execute lorsa
system such as FreeBSD, Linux, or Windows, and it is built to generate code for the
AVR microcontrollertarget, then it is a cross compiler, and this version of GCC is
commonly known as "AVR GCC". In documentation, or discussion, AVR GCC is
used when referring to GCC targeting specifically the AVR, or something that is AVR
specific about GCC. The term "GCC" is usually used to refer to something generic
about GCC, or about GCC as a whole.

GCC is different from most other compilers. GCC focuses on translating a high-level
language to the target assembly only. AVR GCC has three available compilers for the
AVR: C language, C++, and Ada. The compiler itself does not assemble or link the
final code.

GCC is also known as a "driver" program, in that it knows about, and drives other
programs seamlessly to create the final output. The assembler, and the linker are part
of another open source project called GNU Binutils. GCC knows how to drive the
GNU assembler (gas) to assemble the output of the compiler. GCC knows how to drive
the GNU linker (Id) to link all of the object modules into a final executable.

The two projects, GCC and Binutils, are very much interrelated and many of the same
volunteers work on both open source projects.

When GCC is built for the AVR target, the actual program names are prefixed with
"avr-". So the actual executable name for AVR GCC is: avr-gcc. The name "avr-gcc”
is used in documentation and discussion when referring to the program itself and not
just the whole AVR GCC system.

See the GCC Web Site and GCC User Manual for more information about GCC.

2.4 GNU Binutils

The name GNU Binutils stands for "Binary Utilities". It contains the GNU assembler
(gas), and the GNU linker (Id), but also contains many other utilities that work with
binary files that are created as part of the software development toolchain.

Again, when these tools are built for the AVR target, the actual program names are
prefixed with "avr-". For example, the assembler program name, for a native assembler
is "as" (even though in documentation the GNU assembler is commonly referred to as
"gas"). But when built for an AVR target, it becomes "avr-as". Below is a list of the
programs that are included in Binutils:

avr-as

The Assembler.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

2.4 GNU Binutils 11

avr-ld
The Linker.

avr-ar

Create, modify, and extract from libraries (archives).

avr-ranlib

Generate index to library (archive) contents.
avr-objcopy

Copy and translate object files to different formats.
avr-objdump

Display information from object files including disassembly.
avr-size

List section sizes and total size.
avr-nm

List symbols from object files.
avr-strings

List printable strings from files.

avr-strip

Discard symbols from files.

avr-readelf

Display the contents of ELF format files.

avr-addr2line

Convert addresses to file and line.

avr-c++filt

Filter to demangle encoded C++ symbols.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

2.5 avr-libc 12

2.5 avr-libc

GCC and Binutils provides a lot of the tools to develop software, but there is one critical
component that they do not provide: a Standard C Library.

There are different open source projects that provide a Standard C Library depending
upon your system time, whether for a native compiler (GNU Libc), for some other
embedded system (newlib), or for some versions of Linux (uCLibc). The open source
AVR toolchain has its own Standard C Library project: avr-libc.

AVR-Libc provides many of the same functions found in a regular Standard C Library
and many additional library functions that is specific to an AVR. Some of the Standard
C Library functions that are commonly used on a PC environment have limitations or
additional issues that a user needs to be aware of when used on an embedded system.

AVR-Libc also contains the most documentation about the whole AVR toolchain.

2.6 Building Software

Even though GCC, Binutils, and avr-libc are the core projects that are used to build
software for the AVR, there is another piece of software that ties it all together: Make.
GNU Make is a program that makes things, and mainly software. Make interprets and
executes a Makefile that is written for a project. A Makefile contains dependency rules,
showing which output files are dependent upon which input files, and instructions on
how to build output files from input files.

Some distributions of the toolchains, and other AVR tools such as MFile, contain a
Makefile template written for the AVR toolchain and AVR applications that you can
copy and modify for your application.

See the GNU Make User Manual for more information.

2.7 AVRDUDE

After creating your software, you'll want to program your device. You can do this by
using the program AVRDUDE which can interface with various hardware devices to
program your processor.

AVRDUDE is a very flexible package. All the information about AVR processors
and various hardware programmers is stored in a text database. This database can be
modified by any user to add new hardware or to add an AVR processor if it is not
already listed.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

2.8 GDB/Insight/DDD 13

2.8 GDB/Insight/ DDD

The GNU Debugger (GDB) is a command-line debugger that can be used with the rest
of the AVR toolchain. Insight is GDB plus a GUI written in Tcl/Tk. Both GDB and
Insight are configured for the AVR and the main executables are prefixed with the target
name: avr-gdb, and avr-insight. There is also a "text mode" GUI for GDB: avr-gdbtui.
DDD (Data Display Debugger) is another popular GUI front end to GDB, available on
Unix and Linux systems.

2.9 AVaRICE

AVaRICE is a back-end program to AVR GDB and interfaces to the Atmel JTAG In-
Circuit Emulator (ICE), to provide emulation capabilities.

2.10 SimulAVR

SimulAVR is an AVR simulator used as a back-end with AVR GDB. Unfortunately,
this project is currently unmaintained and could use some help.

2.11 Utilities

There are also other optional utilities available that may be useful to add to your toolset.

SRecord is a collection of powerful tools for manipulating EPROM load files. It
reads and writes numerous EPROM file formats, and can perform many different ma-
nipulations.

MFile is a simple Makefile generator is meant as an aid to quickly customize a Make-
file to use for your AVR application.

2.12 Toolchain Distributions (Distros)

All of the various open source projects that comprise the entire toolchain are normally
distributed as source code. It is left up to the user to build the tool application from its
source code. This can be a very daunting task to any potential user of these tools.

Luckily there are people who help out in this area. Volunteers take the time to build the
application from source code on particular host platforms and sometimes packaging
the tools for convenient installation by the end user. These packages contain the binary
executables of the tools, pre-made and ready to use. These packages are known as
"distributions" of the AVR toolchain, or by a more shortened name, "distros".

AVR toolchain distros are available on FreeBSD, Windows, Mac OS X, and certain
flavors of Linux.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

2.13 Open Source 14

2.13 Open Source

All of these tools, from the original source code in the multitude of projects, to the
various distros, are put together by many, many volunteers. All of these projects could
always use more help from other people who are willing to volunteer some of their time.
There are many different ways to help, for people with varying skill levels, abilities,
and available time.

You can help to answer questions in mailing lists such as the avr-gcc-list, or on forums
at the AVR Freaks website. This helps many people new to the open source AVR tools.

If you think you found a bug in any of the tools, it is always a big help to submit a good
bug report to the proper project. A good bug report always helps other volunteers to
analyze the problem and to get it fixed for future versions of the software.

You can also help to fix bugs in various software projects, or to add desirable new
features.

Volunteers are always welcome! :-)

3 Memory Areas and Using malloc()

3.1 Introduction

Many of the devices that are possible targets of avr-libc have a minimal amount of
RAM. The smallest parts supported by the C environment come with 128 bytes of
RAM. This needs to be shared between initialized and uninitialized variad#esi¢ns

.data and .bss), the dynamic memory allocator, and the stack that is used for calling
subroutines and storing local (automatic) variables.

Also, unlike larger architectures, there is no hardware-supported memory management
which could help in separating the mentioned RAM regions from being overwritten by
each other.

The standard RAM layout is to place .data variables first, from the beginning of the
internal RAM, followed by .bss. The stack is started from the top of internal RAM,
growing downwards. The so-called "heap" available for the dynamic memory allocator
will be placed beyond the end of .bss. Thus, there’s no risk that dynamic memory will
ever collide with the RAM variables (unless there were bugs in the implementation of
the allocator). There is still a risk that the heap and stack could collide if there are large
requirements for either dynamic memory or stack space. The former can even happen
if the allocations aren't all that large but dynamic memory allocations get fragmented
over time such that new requests don't quite fit into the "holes" of previously freed
regions. Large stack space requirements can arise in a C function containing large
and/or numerous local variables or when recursively calling function.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

3.2 Internal vs. external RAM 15

Note:

The pictures shown in this document represent typical situations where the RAM
locations refer to an ATmegal28. The memory addresses used are not displayed
in alinear scale.

0x0100
OX10FF
0x1100

OXFFFF

on-board RAM

external RAM

.data
variables

l— SP L RAMEND

*(__brkval) (<= *SP - *(__malloc_margin))
*(_malloc_heap_start) == __heap_start

__bss_end

__data_end == __bss_start

data start

Figure 1: RAM map of a device with internal RAM

On a simple device like a microcontroller it is a challenge to implement a dynamic
memory allocator that is simple enough so the code size requirements will remain low,
yet powerful enough to avoid unnecessary memory fragmentation and to get it all done
with reasonably few CPU cycles. Microcontrollers are often low on space and also run
at much lower speeds than the typical PC these days.

The memory allocator implemented in avr-libc tries to cope with all of these con-
straints, and offers some tuning options that can be used if there are more resources
available than in the default configuration.

3.2 Internal vs. external RAM

Obviously, the constraints are much harder to satisfy in the default configuration where
only internal RAM is available. Extreme care must be taken to avoid a stack-heap
collision, both by making sure functions aren’t nesting too deeply, and don'’t require

too much stack space for local variables, as well as by being cautious with allocating
too much dynamic memory.

If external RAM is available, it is strongly recommended to move the heap into the ex-
ternal RAM, regardless of whether or not the variables from the .data and .bss sections
are also going to be located there. The stack should always be kept in internal RAM.
Some devices even require this, and in general, internal RAM can be accessed faster
since no extra wait states are required. When using dynamic memory allocation and
stack and heap are separated in distinct memory areas, this is the safest way to avoid a
stack-heap collision.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

3.3 Tunables for malloc() 16

3.3 Tunables for malloc()

There are a number of variables that can be tuned to adapt the behawnadlof()

to the expected requirements and constraints of the application. Any changes to these
tunables should be made before the very first cathtdloc() Note that some library
functions might also use dynamic memory (notably those fromktbilio.h>: Stan-

dard IO facilitieg, so make sure the changes will be done early enough in the startup
sequence.

The variables _malloc_heap_start and___malloc_heap_end can be used

to restrict themalloc() function to a certain memory region. These variables are stati-
cally initialized to pointto__heap_start and__heap_end , respectively, where
__heap_start isfilled in by the linker to point just beyond .bss, ancheap_end

is set to 0 which makemalloc()assume the heap is below the stack.

If the heap is going to be moved to external RAM;malloc_heap_end mustbe
adjusted accordingly. This can either be done at run-time, by writing directly to this
variable, or it can be done automatically at link-time, by adjusting the value of the
symbol__heap_end .

The following example shows a linker command to relocate the entire .data and .bss
segments, and the heap to location 0x1100 in external RAM. The heap will extend up
to address Oxffff.

avr-gcc ... -WI,-Tdata=0x801100,--defsym=__heap_end=0x8O0ffff ...

Note:

Seeexplanatiorfor offset 0xX800000. See the chapter abasihg gccfor the-WI
options.

0x0100

on-board RAM external RAM

OX10FF
0x1100
OXFFFF

.data
variables

SP J E *(_malloc_heap_end) == __heap_end
RAMEND *(__brkval)
*(__malloc_heap_start) == __heap_start
__bss_end
__data_end == __bss_start

data start

Figure 2: Internal RAM: stack only, external RAM: variables and heap

If dynamic memory should be placed in external RAM, while keeping the variables in

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

3.4 Implementation details 17

internal RAM, something like the following could be used. Note that for demonstration
purposes, the assignment of the various regions has not been made adjacent in this
example, so there are "holes" below and above the heap in external RAM that remain
completely unaccessible by regular variables or dynamic memory allocations (shown
in light bisque color in the picture below).

avr-gcc ... -WIl,--defsym=__heap_start=0x802000,--defsym=__heap_end=0x803fff ...

external RAM

on—-board RAM

0x0100
OX10FF
0x1100
0x2000
OX3FFF
OXFFFF

.data
variables

SP —T L *(__malloc_heap_end) == __heap_end
RAMEND *(__brkval)
__bss_end *(__malloc_heap_start) == __heap_start

__data_end == __bss_start

data start

Figure 3: Internal RAM: variables and stack, external RAM: heap

If __malloc_heap_end is 0, the allocator attempts to detect the bottom of stack

in order to prevent a stack-heap collision when extending the actual size of the heap
to gain more space for dynamic memory. It will not try to go beyond the current
stack limit, decreased by malloc_margin bytes. Thus, all possible stack frames

of interrupt routines that could interrupt the current function, plus all further nested
function calls must not require more stack space, or they will risk colliding with the
data segment.

The default value of _malloc_margin is set to 32.

3.4 Implementation details

Dynamic memory allocation requests will be returned with a two-byte header
prepended that records the size of the allocation. This is later uséedf)y The
returned address points just beyond that header. Thus, if the application accidentally
writes before the returned memory region, the internal consistency of the memory al-
locator is compromised.

The implementation maintains a simple freelist that accounts for memory blocks that
have been returned in previous calldree(). Note that all of this memory is considered

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

3.4 Implementation details 18

to be successfully added to the heap already, so no further checks against stack-heap
collisions are done when recycling memory from the freelist.

The freelist itself is not maintained as a separate data structure, but rather by modifying
the contents of the freed memory to contain pointers chaining the pieces together. That
way, no additional memory is reqired to maintain this list except for a variable that
keeps track of the lowest memory segment available for reallocation. Since both, a
chain pointer and the size of the chunk need to be recorded in each chunk, the minimum
chunk size on the freelist is four bytes.

When allocating memory, first the freelist is walked to see if it could satisfy the request.
If there’s a chunk available on the freelist that will fit the request exactly, it will be
taken, disconnected from the freelist, and returned to the caller. If no exact match could
be found, the closest match that would just satisfy the request will be used. The chunk
will normally be split up into one to be returned to the caller, and another (smaller)
one that will remain on the freelist. In case this chunk was only up to two bytes larger
than the request, the request will simply be altered internally to also account for these
additional bytes since no separate freelist entry could be split off in that case.

If nothing could be found on the freelist, heap extension is attempted. This is where
__malloc_margin will be considered if the heap is operating below the stack, or
where__malloc_heap_end will be verified otherwise.

If the remaining memory is insufficient to satisfy the requikd] L will eventually be
returned to the caller.

When callingfree(), a new freelist entry will be prepared. An attempt is then made to
aggregate the new entry with possible adjacent entries, yielding a single larger entry
available for further allocations. That way, the potential for heap fragmentation is
hopefully reduced.

A call to realloc()first determines whether the operation is about to grow or shrink the
current allocation. When shrinking, the case is easy: the existing chunk is split, and the
tail of the region that is no longer to be used is passed to the stafida(ifunction for
insertion into the freelist. Checks are first made whether the tail chunk is large enough
to hold a chunk of its own at all, otherwisealloc()will simply do nothing, and return

the original region.

When growing the region, it is first checked whether the existing allocation can be ex-

tended in-place. If so, this is done, and the original pointer is returned without copying

any data contents. As a side-effect, this check will also record the size of the largest
chunk on the freelist.

If the region cannot be extended in-place, but the old chunk is at the top of heap, and
the above freelist walk did not reveal a large enough chunk on the freelist to satisfy
the new request, an attempt is made to quickly extend this topmost chunk (and thus
the heap), so no need arises to copy over the existing data. If there’s no more space
available in the heap (same check is done anaiioc()), the entire request will fail.

Otherwise malloc() will be called with the new request size, the existing data will be

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

4 Memory Sections 19

copied over, anfree()will be called on the old region.

4 Memory Sections

Remarks:

Need to list all the sections which are available to the avr.

Weak Bindings

FIXME: need to discuss the .weak directive.

The following describes the various sections available.

4.1 The .text Section

The .text section contains the actual machine instructions which make up your program.
This section is further subdivided by the .initN and .finiN sections dicussed below.

Note:

The avr-size program (part of binutils), coming from a Unix background,
doesn’t account for the .data initialization space added to the .text section, so in
order to know how much flash the final program will consume, one needs to add
the values for both, .text and .data (but not .bss), while the amount of pre-allocated
SRAM is the sum of .data and .bss.

4.2 The .data Section

This section contains static data which was defined in your code. Things like the fol-
lowing would end up in .data:

char err_str[] = "Your program has died a horrible death!";

struct point pt = {1, 1 };

It is possible to tell the linker the SRAM address of the beginning of the .data section.
This is accomplished by addingVl,-Tdata, addr to theavr-gcc command

used to the link your program. Not thatldr must be offset by adding 0x800000

the to real SRAM address so that the linker knows that the address is in the SRAM
memory space. Thus, if you want the .data section to start at 0x1100, pass 0x801100
at the address to the linker. [offsetplained

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

4.3 The .bss Section 20

Note:

When usingnalloc() in the application (which could even happen inside library
calls),additional adjustmentare required.

4.3 The .bss Section

Uninitialized global or static variables end up in the .bss section.

4.4 The .eeprom Section

This is where eeprom variables are stored.

4.5 The .noinit Section

This sections is a part of the .bss section. What makes the .noinit section special is that
variables which are defined as such:

int foo __ attribute__ ((section (".noinit")));

will not be initialized to zero during startup as would normal .bss data.

Only uninitialized variables can be placed in the .noinit section. Thus, the following
code will causeaavr-gcc to issue an error:

int bar __ attribute__ ((section (".noinit"))) = Oxaa;

It is possible to tell the linker explicitly where to place the .noinit section by adding
-WI,-section-start=.noinit=0x802000 to theavr-gcc command line

at the linking stage. For example, suppose you wish to place the .noinit section at
SRAM address 0x2000:

$ avr-gcc ... -WIl,--section-start=.noinit=0x802000 ...

Note:

Because of the Harvard architecture of the AVR devices, you must manually add
0x800000 to the address you pass to the linker as the start of the section. Oth-
erwise, the linker thinks you want to put the .noinit section into the .text section
instead of .data/.bss and will complain.

Alternatively, you can write your own linker script to automate this. [FIXME: need an
example or ref to dox for writing linker scripts.]

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

4.6 The .initN Sections 21

4.6 The .initN Sections

These sections are used to define the startup code from reset up through the start of
main(). These all are subparts of thext section

The purpose of these sections is to allow for more specific placement of code within
your program.

Note:

Sometimes, it is convenient to think of the .initN and .finiN sections as functions,
but in reality they are just symbolic names which tell the linker where to stick a
chunk of code which isota function. Notice that the examples fmmandC can

not be called as functions and should not be jumped into.

The.initN sections are executed in order from 0 to 9.
.init0:

Weakly bound to __init(). If user defines __init(), it will be jumped into immedi-
ately after a reset.

Jinitd:
Unused. User definable.
.init2:
In C programs, weakly bound to initialize the stack, and to clear __zero _reg
(r1).
.init3:
Unused. User definable.

.init4:

For devices with> 64 KB of ROM, .init4 defines the code which takes care of copying
the contents of .data from the flash to SRAM. For all other devices, this code as well
as the code to zero out the .bss section is loaded from libgcc.a.
.init5:

Unused. User definable.
.init6:

Unused for C programs, but used for constructors in C++ programs.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

4.7 The .finiN Sections 22

.init7:

Unused. User definable.
.init8:

Unused. User definable.
.init9:

Jumps into main().

4.7 The .finiN Sections

These sections are used to define the exit code executed after return from main() or a
call toexit(). These all are subparts of titext section

The .finiN sections are executed in descending order from 9 to 0.
finit9:

Unused. User definable. This is effectively where _exit() starts.
fini8:

Unused. User definable.
fini7:

Unused. User definable.
fini6:

Unused for C programs, but used for destructors in C++ programs.
fini5:

Unused. User definable.
fini4:

Unused. User definable.
fini3:

Unused. User definable.
fini2:

Unused. User definable.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

4.8 Using Sections in Assembler Code 23

finil:
Unused. User definable.

finiO:
Goes into an infinite loop after program termination and completion of any _exit()
code (execution of code in the .fini%-finil sections).

4.8 Using Sections in Assembler Code

Example:

#include <avr/io.h>

.section .init1,"ax",@progbits

Idi r0, Oxff
out _SFR_IO_ADDR(PORTB), r0
out _SFR_IO_ADDR(DDRB), r0
Note:
The,"ax",@progbits tells the assembler that the section is allocatable ("a"),

executable ("x") and contains data ("@progbits"). For more detailed information
on the .section directive, see the gas user manual.

4.9 Using Sections in C Code
Example:

#include <avr/io.h>

void my_init_portb (void) __attribute_ ((naked)) \
__attribute__ ((section (".init3")));

void
my_init_portb (void)

PORTB = O0xff;
DDRB = O0xff;

}

Note:

Section .init3 is used in this example, as this ensures the ineraato_reg_-
_ has already been set up. The code generated by the compiler might blindly rely
on__zero_reg__ beingreally 0.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

5 Data in Program Space 24

5 Datain Program Space

5.1 Introduction

So you have some constant data and you're running out of room to store it? Many
AVRs have limited amount of RAM in which to store data, but may have more Flash
space available. The AVR is a Harvard architecture processor, where Flash is used for
the program, RAM is used for data, and they each have separate address spaces. It is
a challenge to get constant data to be stored in the Program Space, and to retrieve that
data to use it in the AVR application.

The problem is exacerbated by the fact that the C Language was not designed for
Harvard architectures, it was designed for Von Neumann architectures where code and
data exist in the same address space. This means that any compiler for a Harvard
architecture processor, like the AVR, has to use other means to operate with separate
address spaces.

Some compilers use non-standard C language keywords, or they extend the standard
syntax in ways that are non-standard. The AVR toolset takes a different approach.

GCC has a special keyword, attribute that is used to attach different at-
tributes to things such as function declarations, variables, and types. This keyword is
followed by an attribute specification in double parentheses. In AVR GCC, there is a
special attribute callegrogmem. This attribute is use on data declarations, and tells
the compiler to place the data in the Program Memory (Flash).

AVR-Libc provides a simple macr®ROGMERhat is defined as the attribute syn-
tax of GCC with theprogmem attribute. This macro was created as a convenience
to the end user, as we will see below. TRROGMEMNhacro is defined in the
<avr/pgmspace.h > system header file.

It is difficult to modify GCC to create new extensions to the C language syntax, so
instead, avr-libc has created macros to retrieve the data from the Program Space. These
macros are also found in theavr/pgmspace.h > system header file.

5.2 A Note On const

Many users bring up the idea of using C’'s keywaahst as a means of declaring
data to be in Program Space. Doing this would be an abuse of the intended meaning of
theconst keyword.

const is used to tell the compiler that the data is to be "read-only". It is used to help
make it easier for the compiler to make certain transformations, or to help the compiler
check for incorrect usage of those variables.

For example, the const keyword is commonly used in many functions as a modifier on
the parameter type. This tells the compiler that the function will only use the parameter
as read-only and will not modify the contents of the parameter variable.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

5.3 Storing and Retrieving Data in the Program Space 25

const was intended for uses such as this, not as a means to identify where the data
should be stored. If it were used as a means to define data storage, then it loses its
correct meaning (changes its semantics) in other situations such as in the function pa-
rameter example.

5.3 Storing and Retrieving Data in the Program Space
Let’s say you have some global data:

unsigned char mydata[11][10] =

{
{0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09},
{0x0A,0x0B,0x0C,0x0D,0x0E,0x0F,0x10,0x11,0x12,0x13},
{0x14,0x15,0x16,0x17,0x18,0x19,0x1A,0x1B,0x1C,0x1D},
{Ox1E,0x1F,0x20,0x21,0x22,0x23,0x24,0x25,0x26,0x27},
{0x28,0x29,0x2A,0x2B,0x2C,0x2D,0x2E,0x2F,0x30,0x31},
{0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39,0x3A,0x3B},
{0x3C,0x3D,0x3E,0x3F,0x40,0x41,0x42,0x43,0x44,0x45},
{0x46,0x47,0x48,0x49,0x4A,0x4B,0x4C,0x4D,0x4E,0x4F},
{0x50,0x51,0x52,0x53,0x54,0x55,0x56,0x57,0x58,0x59},
{0x5A,0x5B,0x5C,0x5D,0x5E,0x5F,0x60,0x61,0x62,0x63},
{0x64,0x65,0x66,0x67,0x68,0x69,0x6A,0x6B,0x6C,0x6D}

and later in your code you access this data in a function and store a single byte into a
variable like so:

byte = mydatal[i][j;

Now you want to store your data in Program Memory. UseRR®OGMEMacro found
in <avr/pgmspace.h > and put it after the declaration of the variable, but before
the initializer, like so:

#include <avr/pgmspace.h>

unsigned char mydata[11][10] PROGMEM =

{
{0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09},
{0x0A,0x0B,0x0C,0x0D,0x0E,0x0F,0x10,0x11,0x12,0x13},
{0x14,0x15,0x16,0x17,0x18,0x19,0x1A,0x1B,0x1C,0x1D},
{Ox1E,0x1F,0x20,0x21,0x22,0x23,0x24,0x25,0x26,0x27},
{0x28,0x29,0x2A,0x2B,0x2C,0x2D,0x2E,0x2F,0x30,0x31},
{0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39,0x3A,0x3B},
{0x3C,0x3D,0x3E,0x3F,0x40,0x41,0x42,0x43,0x44,0x45},
{0x46,0x47,0x48,0x49,0x4A,0x4B,0x4C,0x4D,0x4E,0x4F},
{0x50,0x51,0x52,0x53,0x54,0x55,0x56,0x57,0x58,0x59},
{0x5A,0x5B,0x5C,0x5D,0x5E,0x5F,0x60,0x61,0x62,0x63},
{0x64,0x65,0x66,0x67,0x68,0x69,0x6A,0x6B,0x6C,0x6D}

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

5.4 Storing and Retrieving Strings in the Program Space 26

That's it! Now your data is in the Program Space. You can compile, link, and check
the map file to verify thamydata is placed in the correct section.

Now that your data resides in the Program Space, your code to access (read) the data
will no longer work. The code that gets generated will retrieve the data that is located
at the address of thewydata array, plus offsets indexed by theandj variables.
However, the final address that is calculated where to the retrieve the data points to
the Data Space! Not the Program Space where the data is actually located. It is likely
that you will be retrieving some garbage. The problem is that AVR GCC does not
intrinsically know that the data resides in the Program Space.

The solution is fairly simple. The "rule of thumb" for accessing data stored in the
Program Space is to access the data as you normally would (as if the variable is stored
in Data Space), like so:

byte = mydatali][j];
then take the address of the data:

then use the appropriapggm_read_ « macro, and the address of your data becomes
the parameter to that macro:

byte = pgm_read_byte(&(mydata[i][j]));

The pgm_read_ « macros take an address that points to the Program Space, and re-
trieves the data that is stored at that address. This is why you take the address of the
offset into the array. This address becomes the parameter to the macro so it can gen-
erate the correct code to retrieve the data from the Program Space. There are different
pgm_read_ x macros to read different sizes of data at the address given.

5.4 Storing and Retrieving Strings in the Program Space

Now that you can successfully store and retrieve simple data from Program Space you
want to store and retrive strings from Program Space. And specifically you want to
store and array of strings to Program Space. So you start off with your array, like so:

char *string_table[] =
{
"String 1",
"String 2",
"String 3",
"String 4",
"String 5"

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

5.4 Storing and Retrieving Strings in the Program Space 27

and then you add your PROGMEM macro to the end of the declaration:

char *string_table[] PROGMEM =

{
"String 1",
"String 2",
"String 3",
"String 4",
"String 5"

Right? WRONG!

Unfortunately, with GCC attributes, they affect only the declaration that they are at-
tached to. So in this case, we successfully pusthiag_table variable, the array
itself, in the Program Space. This DOES NOT put the actual strings themselves into
Program Space. At this point, the strings are still in the Data Space, which is probably
not what you want.

In order to put the strings in Program Space, you have to have explicit declarations for
each string, and put each string in Program Space:

char string_1[]] PROGMEM = "String 1";
char string_2[] PROGMEM = "String 2";
char string_3[] PROGMEM = "String 3";
char string_4[] PROGMEM = "String 4";
char string_5[] PROGMEM = "String 5";

Then use the new symbols in your table, like so:

PGM_P string_table] PROGMEM =

{
string_1,
string_2,
string_3,
string_4,
string_5

Now this has the effect of puttingtring_table in Program Space, where
string_table is an array of pointers to characters (strings), where each pointer
is a pointer to the Program Space, where each string is also stored.

The PGM_PRype above is also a macro that defined as a pointer to a character in the
Program Space.

Retrieving the strings are a different matter. You probably don’t want to pull the string
out of Program Space, byte by byte, usingplgen_read_byte() = macro. There are
other functions declared in theavr/pgmspace: header file that work with strings
that are stored in the Program Space.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

5.5 Caveats 28

For example if you want to copy the string from Program Space to a buffer in RAM
(like an automatic variable inside a function, that is allocated on the stack), you can do
this:

void foo(void)

{
char buffer[10];

for (unsigned char i = 0; i < 5; i++)

{
strcpy_P(buffer, (PGM_P)pgm_read_word(&(string_table[i])));

/| Display buffer on LCD.
}

return;

Here, thestring_table array is stored in Program Space, so we access it normally,
as if were stored in Data Space, then take the address of the location we want to access,
and use the address as a parametg@gta_read_word . We use theopgm_read_-

word macro to read the string pointer out of thieing_table array. Remember

that a pointer is 16-bits, or word size. Thgm_read_word macro will return a 16-

bit unsigned integer. We then have to typecast it as a true pointer to program memory,
PGM_P This pointer is an address in Program Space pointing to the string that we
want to copy. This pointer is then used as a parameter to the fursttapy P . The
functionstrcpy P is just like the regulastrcpy function, except that it copies a
string from Program Space (the second parameter) to a buffer in the Data Space (the
first parameter).

There are many string functions available that work with strings located in Program
Space. All of these special string functions have a suffix®ifin the function name,
and are declared in theavr/pgmspace:h header file.

5.5 Caveats

The macros and functions used to retrieve data from the Program Space have to gen-
erate some extra code in order to actually load the data from the Program Space. This
incurs some extra overhead in terms of code space (extra opcodes) and execution time.
Usually, both the space and time overhead is minimal compared to the space savings
of putting data in Program Space. But you should be aware of this so you can mini-
mize the number of calls within a single function that gets the same piece of data from
Program Space. It is always instructive to look at the resulting disassembly from the
compiler.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

6 avr-libc and assembler programs 29

6 avr-libc and assembler programs

6.1 Introduction

There might be several reasons to write code for AVR microcontrollers using plain
assembler source code. Among them are:

» Code for devices that do not have RAM and are thus not supported by the C
compiler.

» Code for very time-critical applications.

¢ Special tweaks that cannot be done in C.

Usually, all but the first could probably be done easily usingrhiee assemblefiacility
of the compiler.

Although avr-libc is primarily targeted to support programming AVR microcontrollers
using the C (and C++) language, there’s limited support for direct assembler usage as
well. The benefits of it are:

» Use of the C preprocessor and thus the ability to use the same symbolic constants
that are available to C programs, as well as a flexible macro concept that can use
any valid C identifier as a macro (whereas the assembler's macro concept is
basically targeted to use a macro in place of an assembler instruction).

« Use of the runtime framework like automatically assigning interrupt vectors. For
devices that have RAMnitializing the RAM variablecan also be utilized.

6.2 Invoking the compiler

For the purpose described in this document, the assembler and linker are usually not
invoked manually, but rather using the C compiler fronteadr{gcc) that in turn
will call the assembler and linker as required.

This approach has the following advantages:

« There is basically only one program to be called direetly-gcc , regardless
of the actual source language used.

* The invokation of the C preprocessor will be automatic, and will include the
appropriate options to locate required include files in the filesystem.

* The invokation of the linker will be automatic, and will include the appropri-
ate options to locate additional libraries as well as the application start-up code
(crt XXXo0) and linker script.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

6.3 Example program 30

Note that the invokation of the C preprocessor will be automatic when the filename
provided for the assembler file ends in .S (the capital letter "s"). This would even apply
to operating systems that use case-insensitive filesystems since the actual decision is
made based on the case of the filename suffix given on the command-line, not based on
the actual filename from the file system.

Alternatively, the language can explicitly be specified using the
assembler-with-cpp option.

6.3 Example program

The following annotated example features a simple 100 kHz square wave generator
using an AT90S1200 clocked with a 10.7 MHz crystal. Pin PD6 will be used for the
square wave output.

#include <avrf/io.h> ; Note [1]
work = 16 ; Note [2]
tmp = 17
inttmp = 19
intsav. = 0
SQUARE = PD6 ; Note [3]
; Note [4]:
tmconst= 10700000 / 200000 ; 100 kHz => 200000 edges/s
fuzz= 8 ; # clocks in ISR until TCNTO is set

.section .text

.global main ; Note [5]
main:
rcall ioinit
1:
rjmp 1b ; Note [6]
.global TIMERO_OVF_vect ; Note [7]
TIMERO_OVF_vect:
Idi inttmp, 256 - tmconst + fuzz
out _SFR_IO_ADDR(TCNTOQ), inttmp ; Note [8]
in intsav, _SFR_IO_ADDR(SREG) ; Note [9]
shic _SFR_IO_ADDR(PORTD), SQUARE
rjmp 1f
sbi _SFR_IO_ADDR(PORTD), SQUARE
rjmp 2f
1: cbi _SFR_IO_ADDR(PORTD), SQUARE
2:
out _SFR_IO_ADDR(SREG), intsav

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

6.3 Example program 31

reti

ioinit:
shi _SFR_IO_ADDR(DDRD), SQUARE
Idi work, _BV(TOIEQ)
out _SFR_IO_ADDR(TIMSK), work
Idi work, _BV(CS00) ; tmr0: CK/1
out _SFR_IO_ADDR(TCCRO0), work
Idi work, 256 - tmconst
out _SFR_IO_ADDR(TCNTO0), work
sei
ret
.global __vector_default ; Note [10]

__vector_default:
reti

.end

Note [1]

As in C programs, this includes the central processor-specific file containing the 10 port
definitions for the device. Note that not all include files can be included into assembler
sources.

Note [2]

Assignment of registers to symbolic names used locally. Another option would be to
use a C preprocessor macro instead:

#define work 16

Note [3]

Our bit number for the square wave output. Note that the right-hand side consists of a
CPP macro which will be substituted by its value (6 in this case) before actually being
passed to the assembler.

Note [4]

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

6.3 Example program 32

The assembler uses integer operations in the host-defined integer size (32 bits or longer)
when evaluating expressions. This is in contrast to the C compiler that uses the C type
int by default in order to calculate constant integer expressions.

In order to get a 100 kHz output, we need to toggle the PD6 line 200000 times per
second. Since we use timer 0 without any prescaling options in order to get the de-
sired frequency and accuracy, we already run into serious timing considerations: while
accepting and processing the timer overflow interrupt, the timer already continues to
count. When pre-loading thECCNTOregister, we therefore have to account for the
number of clock cycles required for interrupt acknowledge and for the instructions to
reloadTCCNTO(4 clock cycles for interrupt acknowledge, 2 cycles for the jump from
the interrupt vector, 2 cycles for the 2 instructions that rel6@CNTQ. This is what

the constantuzz is for.

Note [5]

External functions need to be declared to be .glolaain is the application entry
point that will be jumped to from the ininitalization routineénts1200.0

Note [6]

The main loop is just a single jump back to itself. Square wave generation itself is
completely handled by the timer O overflow interrupt servicesléep instruction
(using idle mode) could be used as well, but probably would not conserve much energy
anyway since the interrupt service is executed quite frequently.

Note [7]

Interrupt functions can get thesual namethat are also available to C programs. The
linker will then put them into the appropriate interrupt vector slots. Note that they must
be declared .global in order to be acceptable for this purpose. This will only work if
<avrfio.h > has been included. Note that the assembler or linker have no chance
to check the correct spelling of an interrupt function, so it should be double-checked.
(When analyzing the resulting object file usiagr-objdump or avr-nm , a name

like _ vector_ N should appear, withl being a small integer number.)

Note [8]

As explained in the section abospecial function registershe actual 1O port address
should be obtained using the mac®FR_IO_ADDR (The AT90S1200 does not have

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

6.4 Pseudo-ops and operators 33

RAM thus the memory-mapped approach to access the 10 registers is not available. It
would be slower than using /out instructions anyway.)

Since the operation to reloalCCNTOis time-critical, it is even performed before
savingSREG Obviously, this requires that the instructions involved would not change
any of the flag bits irSREG

Note [9]

Interrupt routines must not clobber the global CPU state. Thus, it is usually necessary
to save at least the state of the flag bitSREG (Note that this serves as an example
here only since actually, all the following instructions would not mo@REGeither,

but that's not commonly the case.)

Also, it must be made sure that registers used inside the interrupt routine do not conflict
with those used outside. In the case of a RAM-less device like the AT90S1200, this can
only be done by agreeing on a set of registers to be used exclusively inside the interrupt
routine; there would not be any other chance to "save" a register anywhere.

If the interrupt routine is to be linked together with C modules, care must be taken
to follow theregister usage guidelinémposed by the C compiler. Also, any register
modified inside the interrupt sevice needs to be saved, usually on the stack.

Note [10]

As explained irinterrupts a global "catch-all" interrupt handler that gets all unassigned
interrupt vectors can be installed using the nameector_default . This must

be .global, and obviously, should end ineti instruction. (By default, a jump to
location O would be implied instead.)

6.4 Pseudo-ops and operators

The available pseudo-ops in the assembler are described in the GNU assembler (gas)
manual. The manual can be found online as part of the current binutils release under
http://sources.redhat.com/binutils/.

As gas comes from a Unix origin, its pseudo-op and overall assembler syntax is slightly
different than the one being used by other assemblers. Numeric constants follow the C
notation (prefix0x for hexadecimal constants), expressions use a C-like syntax.

Some common pseudo-ops include:

« .byte allocates single byte constants

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

http://sources.redhat.com/binutils/.

6.4 Pseudo-ops and operators 34

« .ascii allocates a non-terminated string of characters

« .asciz allocates g0-terminated string of characters (C string)
 .data switches to the .data section (initialized RAM variables)
« .text switches to the .text section (code and ROM constants)

¢ .set declares a symbol as a constant expression (identical to .equ)

.global (or .globl) declares a public symbol that is visible to the linker (e. g.
function entry point, global variable)

.extern declares a symbol to be externally defined; this is effectively a comment
only, as gas treats all undefined symbols it encounters as globally undefined any-
way

Note that .org is available in gas as well, but is a fairly pointless pseudo-op in an as-
sembler environment that uses relocatable object files, as it is the linker that determines
the final position of some object in ROM or RAM.

Along with the architecture-independent standard operators, there are some AVR-
specific operators available which are unfortunately not yet described in the official
documentation. The most notable operators are:

* 108 Takes the least significant 8 bits of a 16-bit integer
* hi8 Takes the most significant 8 bits of a 16-bit integer

e pmTakes a program-memory (ROM) address, and converts it into a RAM ad-
dress. This implies a division by 2 as the AVR handles ROM addresses as 16-bit
words (e.g. in anJMP or ICALL instruction), and can also handle relocatable
symbols on the right-hand side.

Example:

Idi r24, lo8(pm(somefunc))
Idi r25, hi8(pm(somefunc))
call something

This passes the address of functisomefunc as the first parameter to function
something

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

7 Inline Assembler Cookbook 35

7 Inline Assembler Cookbook

AVR-GCC
Inline Assembler Cookbook
About this Document

The GNU C compiler for Atmel AVR RISC processors offers, to embed assembly
language code into C programs. This cool feature may be used for manually optimizing
time critical parts of the software or to use specific processor instruction, which are not
available in the C language.

Because of a lack of documentation, especially for the AVR version of the compiler, it
may take some time to figure out the implementation details by studying the compiler
and assembler source code. There are also a few sample programs available in the net.
Hopefully this document will help to increase their number.

It's assumed, that you are familiar with writing AVR assembler programs, because this
is not an AVR assembler programming tutorial. It's not a C language tutorial either.

Note that this document does not cover file written completely in assembler language,
refer toavr-libc and assembler prograrfos this.

Copyright (C) 2001-2002 by egnite Software GmbH

Permission is granted to copy and distribute verbatim copies of this manual provided

that the copyright notice and this permission notice are preserved on all copies. Permis-
sion is granted to copy and distribute modified versions of this manual provided that

the entire resulting derived work is distributed under the terms of a permission notice

identical to this one.

This document describes version 3.3 of the compiler. There may be some parts, which
hadn’'t been completely understood by the author himself and not all samples had been
tested so far. Because the author is German and not familiar with the English language,
there are definitely some typos and syntax errors in the text. As a programmer the
author knows, that a wrong documentation sometimes might be worse than none. Any-
way, he decided to offer his little knowledge to the public, in the hope to get enough
response to improve this document. Feel free to contact the author via e-mail. For the
latest release chedktp://www.ethernut.de/.

Herne, 17th of May 2002 Harald Kipp harald.kipp-at-egnite.de

Note:

As of 26th of July 2002, this document has been merged into the
documentation for avr-libc. The latest version is now available at
http://savannah.nongnu.org/projects/avr-libc/.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

http://www.ethernut.de/.
http://savannah.nongnu.org/projects/avr-libc/.

7.1 GCC asm Statement 36

7.1 GCC asm Statement

Let’s start with a simple example of reading a value from port D:
asm("in %0, %1" : "=r* (value) : "I'" (_SFR_IO_ADDR(PORTD)));
Eachasm statement is devided by colons into (up to) four parts:

1. The assembler instructions, defined as a single string constant:
"in %0, %1"

2. Alist of output operands, separated by commas. Our example uses just one:
"=r" (value)

3. A comma separated list of input operands. Again our example uses one operand
only:

"I" (_SFR_IO_ADDR(PORTD))

4. Clobbered registers, left empty in our example.

You can write assembler instructions in much the same way as you would write assem-
bler programs. However, registers and constants are used in a different way if they refer
to expressions of your C program. The connection between registers and C operands is
specified in the second and third part of & instruction, the list of input and output
operands, respectively. The general form is

asm(code : output operand list : input operand list [: clobber list]);

In the code section, operands are referenced by a percent sign followed by a single digit.
0 refers to the firsi. to the second operand and so forth. From the above example:

0 refers to"=r" (value) and
1 refers to"I" (_SFR_IO_ADDR(PORTD))

This may still look a little odd now, but the syntax of an operand list will be explained
soon. Let us first examine the part of a compiler listing which may have been generated
from our example:

Ids r24,value
I* #APP */

in r24, 12
I* #NOAPP */

sts value,r24

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

7.2 Assembler Code 37

The comments have been added by the compiler to inform the assembler that the in-
cluded code was not generated by the compilation of C statements, but by inline as-
sembler statements. The compiler selected regigterfor storage of the value read
from PORTDThe compiler could have selected any other register, though. It may not
explicitely load or store the value and it may even decide not to include your assembler
code at all. All these decisions are part of the compiler's optimization strategy. For
example, if you never use the variable value in the remaining part of the C program,
the compiler will most likely remove your code unless you switched off optimization.
To avoid this, you can add the volatile attribute to #sen statement:

asm volatile("in %0, %1" : "=r* (value) : "I' (_SFR_IO_ADDR(PORTD)));

Alternatively, operands can be given names. The name is prepended in brackets to the
constraints in the operand list, and references to the named operand use the bracketed
name instead of a number after the % sign. Thus, the above example could also be

written as

asm("in %fretval], %l[port]" :
[retval] "=r" (value) :
[port] "I' (_SFR_IO_ADDR(PORTD)));

The last part of thasm instruction, the clobber list, is mainly used to tell the compiler
about modifications done by the assembler code. This part may be omitted, all other
parts are required, but may be left empty. If your assembler routine won'’t use any
input or output operand, two colons must still follow the assembler code string. A
good example is a simple statement to disable interrupts:

asm volatile("cli"::);

7.2 Assembler Code

You can use the same assembler instruction mnemonics as you'd use with any other
AVR assembler. And you can write as many assembler statements into one code string
as you like and your flash memory is able to hold.

Note:

The available assembler directives vary from one assembler to another.

To make it more readable, you should put each statement on a seperate line:

asm volatile("nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
2);

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

7.3 Input and Output Operands 38

The linefeed and tab characters will make the assembler listing generated by the com-
piler more readable. It may look a bit odd for the first time, but that’s the way the
compiler creates it's own assembler code.

You may also make use of some special registers.

Symbol Register

__SREG___ Status register at address Ox3F

_SP H Stack pointer high byte at address Ox3E
_SP L Stack pointer low byte at address 0x3D
__tmp_reg__ Register r0, used for temporary storage
__zero_reg___ Register r1, always zero

Registerr0 may be freely used by your assembler code and need not be restored at
the end of your code. It's a good idea to usémp_req_ and__zero reg__

instead ofrO orrl, justin case a new compiler version changes the register usage
definitions.

7.3 Input and Output Operands

Each input and output operand is described by a constraint string followed by a C
expression in paranthese®VR-GCC3.3 knows the following constraint characters:

Note:

The most up-to-date and detailed information on contraints for the avr can be found
in the gcc manual.

The x register isr27:r26 , they register isr29:r28 , and thez register is
r31:r30

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

7.3 Input and Output Operands 39

Constraint Used for Range
a Simple upper registers | r16 to r23
b Base pointer registers | vy, z
pairs
d Upper register rl6 tor31
e Pointer register pairs XY, Z
q Stack pointer register SPH:SPL
r Any register r0 to r31
t Temporary register r0
w Special upper register r24,r26, r28, r30
pairs
X Pointer register pair X X (r27:r26)
y Pointer register pair Y y (r29:r28)
z Pointer register pair Z z (r31:r30)
G Floating point constant | 0.0
I 6-bit positive integer Oto 63
constant
J 6-bit negative integer -63t00
constant
K Integer constant 2
L Integer constant 0
I Lower registers rOto rl5
M 8-bit integer constant 0to 255
N Integer constant -1
@] Integer constant 8, 16, 24
P Integer constant 1
Q (GCC>=4.2x) A
memory address based
onY or Z pointer with
displacement.
R (GCC>=4.3.X) Integer | -6t05
constant.

The selection of the proper contraint depends on the range of the constants or registers,
which must be acceptable to the AVR instruction they are used with. The C compiler
doesn’t check any line of your assembler code. But it is able to check the constraint
against your C expression. However, if you specify the wrong constraints, then the
compiler may silently pass wrong code to the assembler. And, of course, the assembler
will fail with some cryptic output or internal errors. For example, if you specify the
constraint'r" and you are using this register with &ri" instruction in your as-
sembler code, then the compiler may select any register. This will fail, if the compiler
chooses?2 torl5 . (It will never choose0 orrl , because these are uses for special
purposes.) That's why the correct constraint in that cad"is On the other hand, if

you use the constraifiM" , the compiler will make sure that you don’t pass anything
else but an 8-bit value. Later on we will see how to pass multibyte expression results

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

7.3 Input and Output Operands

to the assembler code.

40

The following table shows all AVR assembler mnemonics which require operands, and
the related contraints. Because of the improper constraint definitions in version 3.3,
they aren't strict enough. There is, for example, no constraint, which restricts integer

constants to the range 0 to 7 for bit set and bit clear operations.

Mnemonic Constraints Mnemonic Constraints
adc r,r add r,r
adiw w,l and rr
andi d,M asr r

bclr I bld rl
brbc I,label brbs I,label
bset I bst rl

cbi 1 cbr d,l
com r cp rr
cpc r,r cpi d,M
cpse rr dec r
elpm t,z eor r,r

in rl inc r

Id re Idd r,b

Idi d,M Ids rlabel
Ipm t,z Isl r

Isr r mov rr
movw r,r mul r,r
neg r or rr

ori d,M out Ir
pop r push r

rol r ror r

sbc r,r sbci d,M
shi Il shic Il
shiw w, | sbr d,M
shrc rl sbrs rl

ser d st e,r
std b,r sts label,r
sub r,r subi d,M
swap r

Constraint characters may be prepended by a single constraint modifier. Contraints
without a modifier specify read-only operands. Modifiers are:

Modifier Specifies

= Write-only operand, usually used for g
output operands.

+ Read-write operand

& Register should be used for output on

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

7.3 Input and Output Operands 41

Output operands must be write-only and the C expression result must be an Ivalue,
which means that the operands must be valid on the left side of assignments. Note,
that the compiler will not check if the operands are of reasonable type for the kind of
operation used in the assembler instructions.

Input operands are, you guessed it, read-only. But what if you need the same operand
for input and output? As stated above, read-write operands are not supported in inline
assembler code. But there is another solution. For input operators it is possible to use
a single digit in the constraint string. Using digit n tells the compiler to use the same
register as for the n-th operand, starting with zero. Here is an example:

asm volatile("swap %0" : "=r* (value) : "0" (value));

This statement will swap the nibbles of an 8-bit variable named value. Constaint

tells the compiler, to use the same input register as for the first operand. Note however,
that this doesn’t automatically imply the reverse case. The compiler may choose the
same registers for input and output, even if not told to do so. This is not a problem in
most cases, but may be fatal if the output operator is modified by the assembler code
before the input operator is used. In the situation where your code depends on different
registers used for input and output operands, you must adt ¢bastraint modifier to

your output operand. The following example demonstrates this problem:

asm volatile("in %0,%1" "\n\t"
"out %1, %2" "\n\t"
1 "=&r" (input)

:"I" (_SFR_IO_ADDR(port)), "r" (output)
)

In this example an input value is read from a port and then an output value is written to
the same port. If the compiler would have choosen the same register for input and out-
put, then the output value would have been destroyed on the first assembler instruction.
Fortunately, this example uses {Re&onstraint modifier to instruct the compiler not to
select any register for the output value, which is used for any of the input operands.
Back to swapping. Here is the code to swap high and low byte of a 16-bit value:

asm volatile("mov __tmp_reg_ , %A0" "\n\t"

"mov %A0, %B0" "\n\t"
"mov %BO0, __ tmp_reg_ " "\n\t"
2 "=t (value)
: "0" (value)
);
First you will notice the usage of register tmp_reg__ , which we listed among

other special registers in tiessembler Codsection. You can use this register without
saving its contents. Completely new are those letdemadB in %A0and%B0 In fact
they refer to two different 8-bit registers, both containing a part of value.

Another example to swap bytes of a 32-bit value:

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

7.3 Input and Output Operands 42

asm volatile(*mov __tmp_reg__, %A0" "\n\t"
"mov %A0, %DO0" "\n\t"
"mov %D0, _ tmp_reg__ " "\n\t"
"mov __tmp_reg__, %B0" "\n\t"

"mov %B0, %CO0" "\n\t"

"mov %CO0, _ tmp_reg__ " "\n\t"
"=r" (value)

: "0" (value)

);

Instead of listing the same operand as both, input and output operand, it can also be
declared as a read-write operand. This must be applied to an output operand, and the
respective input operand list remains empty:

asm volatile("mov __tmp_reg__, %A0" "\n\t"
"mov %A0, %DO0" "\n\t"
"mov %DO0, _ tmp_reg_ " "\n\t"
"mov __tmp_reg__, %B0" "\n\t"

"mov %B0, %CO0" "\n\t"
"mov %CO0, _ tmp_reg__ " "\n\t"
"+r" (value));

If operands do not fit into a single register, the compiler will automatically assign
enough registers to hold the entire operand. In the assembler code yiAOsErefer

to the lowest byte of the first operarhAlto the lowest byte of the second operand
and so on. The next byte of the first operand wilkbBQ the next bytéCOand so on.

This also implies, that it is often neccessary to cast the type of an input operand to the
desired size.

A final problem may arise while using pointer register pairs. If you define an input
operand

e (pt)

and the compiler selects regis#(r30:r31), then
%AO0refers tor30 and
%BO0refers tor31 .

But both versions will fail during the assembly stage of the compiler, if you explicitely
needz, like in

Id r24,z
If you write

Id r24, %a0

with a lower casa following the percent sign, then the compiler will create the proper
assembler line.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

7.4 Clobbers 43

7.4 Clobbers

As stated previously, the last part of them statement, the list of clobbers, may be
omitted, including the colon seperator. However, if you are using registers, which
had not been passed as operands, you need to inform the compiler about this. The
following example will do an atomic increment. It increments an 8-bit value pointed

to by a pointer variable in one go, without being interrupted by an interrupt routine
or another thread in a multithreaded environment. Note, that we must use a pointer,
because the incremented value needs to be stored before interrupts are enabled.

asm volatile(
“cli" "\n\t"

"Id r24, %a0" "\n\t"
"inc r24" "\n\t"
"st %a0, r24" "\n\t"
"sei" “\n\t"
: "e" (ptr)

1 "r24"

The compiler might produce the following code:

cli

Id r24, Z
inc r24
st Z, r24
sei

One easy solution to avoid clobbering regis@t is, to make use of the special tem-
porary register _tmp _reg__ defined by the compiler.

asm volatile(
neli" "\

"Id __tmp_reg__, %a0" "\n\t"
"inc __tmp_reg_ " "\nit"
"st %a0, _ tmp_reg_ " "\n\t"

"sei" "\n\t"

"e" (ptr)

The compiler is prepared to reload this register next time it uses it. Another problem
with the above code is, that it should not be called in code sections, where interrupts
are disabled and should be kept disabled, because it will enable interrupts at the end.
We may store the current status, but then we need another register. Again we can solve
this without clobbering a fixed, but let the compiler select it. This could be done with
the help of a local C variable.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

7.4 Clobbers 44

uint8_t s;

asm volatile(
"in %0, _ SREG__" "\n\t"
“cli" "\nit"
“Id __tmp_reg_ , %al" "\n\t"
"inc __tmp_reg_ " "\n\t"
"st %al, _ tmp_reg_ " “\n\t"
"out _ SREG__, %0" “\n\t"
D "=&r (s)

2 "e" (ptr)
}

Now every thing seems correct, but it isn't really. The assembler code modifies the
variable, thatptr points to. The compiler will not recognize this and may keep its
value in any of the other registers. Not only does the compiler work with the wrong
value, but the assembler code does too. The C program may have modified the value
too, but the compiler didn’t update the memory location for optimization reasons. The
worst thing you can do in this case is:

{

uint8_t s;

asm volatile(
"in %0, _ SREG__" "\n\t"
“cli "\n\t"
“Id __tmp_reg__, %al" “\n\t"
"inc __tmp_reg_" "\n\t"
"st %al, _ tmp_reg_ " "\n\t"
"out _ SREG__, %0" “\n\t"
D "=&r ()
: "e" (ptr)
: "memory"

}

The special clobber "memory" informs the compiler that the assembler code may mod-
ify any memory location. It forces the compiler to update all variables for which the
contents are currently held in a register before executing the assembler code. And of
course, everything has to be reloaded again after this code.

In most situations, a much better solution would be to declare the pointer destination
itself volatile:

volatile uint8_t *ptr;

This way, the compiler expects the value pointed tophy to be changed and will
load it whenever used and store it whenever modified.

Situations in which you need clobbers are very rare. In most cases there will be better
ways. Clobbered registers will force the compiler to store their values before and reload
them after your assembler code. Avoiding clobbers gives the compiler more freedom
while optimizing your code.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

7.5 Assembler Macros 45

7.5 Assembler Macros

In order to reuse your assembler language parts, it is useful to define them as macros
and put them into include files. AVR Libc comes with a bunch of them, which could be
found in the directoravr/include . Using such include files may produce compiler
warnings, if they are used in modules, which are compiled in strict ANSI mode. To
avoid that, you can write_asm___ instead ofasmand__ volatile instead of
volatile . These are equivalent aliases.

Another problem with reused macros arises if you are using labels. In such
cases you may make use of the special patternvhich is replaced by a unique
number on eachasm statement. The following code had been taken from
avr/include/iomacros.h

#define loop_until_bit_is_clear(port,bit) \

__asm__ _ volatile__ (\

"L_%=: " "shic %0, %1" "\n\t" \
"fimp L_%=" \
: [* no outputs */ \

. "I" (_SFR_IO_ADDR(port)),
"I (bit)

When used for the first timé, = may be translated tb_1404 , the next usage might
createl._1405 or whatever. In any case, the labels became unique too.

Another option is to use Unix-assembler style numeric labels. They are explained in
How do | trace an assembiler file in avr-gdd@he above example would then look like:

#define loop_until_bit_is_clear(port,bit)

__asm__ __ volatile__ (
"1: " "shic %0, %1" "\n\t"
"rimp 1b"

: [* no outputs */
:"I" (_SFR_IO_ADDR(port)),
"I" (bit)

7.6 C Stub Functions

Macro definitions will include the same assembler code whenever they are referenced.
This may not be acceptable for larger routines. In this case you may define a C stub
function, containing nothing other than your assembler code.

void delay(uint8_t ms)
uintl6_t cnt;

asm volatile (
mp

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

7.7 C Names Used in Assembler Code 46

"L_dI1%=" "\n\t"

"mov %A0, %A2" "\n\t"
"mov %BO0, %B2" "\n"
"L_dI2%=" "\n\t"

"shiw %A0, 1" "\n\t"

"brne L_dI2%=" "\n\t"

"dec %1" "\n\t"

"brne L_dI1%=" "\n\t"
:"=&w" (cnt)

2" (ms), "r* (delay_count)

);

The purpose of this function is to delay the program execution by a specified number
of milliseconds using a counting loop. The global 16 bit variable delay count must
contain the CPU clock frequency in Hertz divided by 4000 and must have been set
before calling this routine for the first time. As described in thebbersection, the
routine uses a local variable to hold a temporary value.

Another use for a local variable is a return value. The following function returns a 16
bit value read from two successive port addresses.

uintl6_t inw(uint8_t port)

{
uintl6_t result;
asm volatile (
"in %A0,%1" "\n\t"
"in %B0,(%1) + 1"
2 "=t (result)
: "I (_SFR_IO_ADDR(port))
)i
return result;
}
Note:

inw() is supplied by avr-libc.

7.7 C Names Used in Assembler Code

By defaultAVR-GCCQuses the same symbolic names of functions or variables in C and
assembler code. You can specify a different name for the assembler code by using a
special form of theasm statement:

unsigned long value asm("clock”) = 3686400;

This statement instructs the compiler to use the symbol name clock rather than value.
This makes sense only for external or static variables, because local variables do not
have symbolic names in the assembler code. However, local variables may be held in
registers.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

7.8 Links 47

With AVR-GCCyou can specify the use of a specific register:

void Count(void)

{

register unsigned char counter asm("r3");

.. some code...
asm volatile("clr r3");
.. more code...

The assembler instructiofglr r3" , will clear the variable counteAVR-GCQwill

not completely reserve the specified register. If the optimizer recognizes that the vari-
able will not be referenced any longer, the register may be re-used. But the compiler
is not able to check wether this register usage conflicts with any predefined register. If
you reserve too many registers in this way, the compiler may even run out of registers
during code generation.

In order to change the name of a function, you need a prototype declaration, because
the compiler will not accept thesm keyword in the function definition:

extern long Calc(void) asm ("CALCULATE");

Calling the functionCalc() will create assembler instructions to call the function
CALCULATE

7.8 Links

For a more thorough discussion of inline assembly usage, see the gcc user
manual. The latest version of the gcc manual is always available here:
http://gcc.gnu.org/onlinedocs/

8 How to Build a Library

8.1 Introduction

So you keep reusing the same functions that you created over and over? Tired of cut and
paste going from one project to the next? Would you like to reduce your maintenance
overhead? Then you're ready to create your own library! Code reuse is a very laudable
goal. With some upfront investment, you can save time and energy on future projects
by having ready-to-go libraries. This chapter describes some background information,
design considerations, and practical knowledge that you will need to create and use
your own libraries.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

http://gcc.gnu.org/onlinedocs/

8.2 How the Linker Works 48

8.2 How the Linker Works

The compiler compiles a single high-level language file (C language, for example) into
a single object module file. The linker (Id) can only work with object modules to link
them together. Object modules are the smallest unit that the linker works with.

Typically, on the linker command line, you will specify a set of object modules (that
has been previously compiled) and then a list of libraries, including the Standard C
Library. The linker takes the set of object modules that you specify on the command
line and links them together. Afterwards there will probably be a set of "undefined
references"”. A reference is essentially a function call. An undefined reference is a
function call, with no defined function to match the call.

The linker will then go through the libraries, in order, to match the undefined references
with function definitions that are found in the libraries. If it finds the function that
matches the call, the linker will then link in the object module in which the function is
located. This partis important: the linker links in THE ENTIRE OBJECT MODULE in
which the function is located. Remember, the linker knows nothing about the functions
internal to an object module, other than symbol names (such as function names). The
smallest unit the linker works with is object modules.

When there are no more undefined references, the linker has linked everything and is
done and outputs the final application.

8.3 How to Design a Library

How the linker behaves is very important in designing a library. Ideally, you want to
design a library where only the functions that are called are the only functions to be
linked into the final application. This helps keep the code size to a minimum. In order
to do this, with the way the linker works, is to only write one function per code module.
This will compile to one function per object module. This is usually a very different
way of doing things than writing an application!

There are always exceptions to the rule. There are generally two cases where you
would want to have more than one function per object module.

The first is when you have very complementary functions that it doesn't make much
sense to split them up. For examphealloc() andfree() If someone is going to use
malloc(), they will very likely be usindgree()(or at least should be usirigee()). In this

case, it makes more sense to aggregate those two functions in the same object module.

The second case is when you want to have an Interrupt Service Routine (ISR) in your
library that you want to link in. The problem in this case is that the linker looks for
unresolved references and tries to resolve them with code in libraries. A reference is
the same as a function call. But with ISRs, there is no function call to initiate the ISR.
The ISR is placed in the Interrupt Vector Table (IVT), hence no call, no reference,
and no linking in of the ISR. In order to do this, you have to trick the linker in a way.
Aggregate the ISR, with another function in the same object module, but have the other

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

8.4 Creating a Library 49

function be something that is required for the user to call in order to use the ISR, like
perhaps an initialization function for the subsystem, or perhaps a function that enables
the ISR in the first place.

8.4 Creating a Library

The librarian program is calledr (for "archiver") and is found in the GNU Binutils
project. This program will have been built for the AVR target and will therefore be
namedavr-ar

The job of the librarian program is simple: aggregate a list of object modules into a
single library (archive) and create an index for the linker to use. The name that you
create for the library filename must follow a specific pattermdimea. Thenamepart

is the unique part of the filename that you create. It makes it easier ifaimepart
relates to what the library is about. Thiamepart must be prefixed by "lib", and it
must have a file extension of .a, for "archive". The reason for the special form of the
filename is for how the library gets used by the toolchain, as we will see later on.

Note:

The filename is case-sensitive. Use a lowercase "lib" prefix, and a lowercase ".a"
as the file extension.

The command line is fairly simple:

avr-ar rcs <library name> <list of object modules>

Ther command switch tells the program to insert the object modules into the archive
with replacement. The command line switch tells the program to create the archive.
And thes command line switch tells the program to write an object-file index into the
archive, or update an existing one. This last switch is very important as it helps the
linker to find what it needs to do its job.

Note:

The command line switches are case sensitive! There are uppercase switches that
have completely different actions.

MFile and the WIinAVR distribution contain a Makefile Template that includes the
necessary command lines to build a library. You will have to manually modify the
template to switch it over to build a library instead of an application.

See the GNU Binutils manual for more information on #reprogram.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

8.5 Using a Library 50

8.5 Using a Library

To use a library, use thé switch on your linker command line. The string immedi-
ately following the-l is the unique part of the library filename that the linker will link
in. For example, if you use:

-Im

this will expand to the library filename:

libm.a

which happens to be the math library included in avr-libc.

If you use this on your linker command line:
-lprintf_flt
then the linker will look for a library called:

libprintf_flt.a

This is why naming your library is so important when you create it!

The linker will search libraries in the order that they appear on the command line.
Whichever function is found first that matches the undefined reference, it will be linked
in.

There are also command line switches that tell GCC which directory to look ih (
for the libraries that are specified to be linke in with.

See the GNU Binutils manual for more information on the GNU linker (Id) program.

9 Benchmarks

The results below can only give a rough estimate of the resources necessary for using
certain library functions. There is a number of factors which can both increase or
reduce the effort required:

« Expenses for preparation of operands and their stack are not considered.

« In the table, the size includes all additional functions (for example, function to
multiply two integers) but they are only linked from the library.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

9.1 A few of libc functions. 51

« Expenses of time of performance of some functions essentially depend on param-
eters of a call, for examplesort()is recursive, andprintf() receives parameters
in a stack.

« Different versions of the compiler can give a significant difference in code size
and execution time. For example, thstre()function, compiled with avr-gcc
3.4.6, requires 930 bytes. After transition to avr-gcc 4.2.3, the size become 1088
bytes.

9.1 A few of libc functions.

Avr-gcc version is 4.2.3

The size of function is given in view of all picked up functions. By default Avr-libc

is compiled with-mcall-prologues option. In brackets the size without taking
into account modules of a prologue and an epilogue is resulted. Both of the size can
coincide, if function does not cause a prologue/epilogue.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

9.1 A few of libc functions.

52

Function Units Avr2 Avr25 Avrd
atoi ("12345") Flash bytes 82 (82) 78 (78) 74 (74)

Stack bytes 2 2

MCU clocks 155 149
atol ("12345") Flash bytes 122 (122) 118 (118) 118 (118)

Stack bytes 2 2

MCU clocks 221 219
dtostre (1.2345, | Flash bytes 1184 (1072) 1088 (978) 1088 (978)
s, 6,0) Stack bytes 17 17

MCU clocks 1313 1152
dtostrf (1.2345, Flash bytes 1676 (1564) 1548 (1438) 1548 (1438)
15, 6, s) Stack bytes 36 36

MCU clocks 1608 1443
itoa (12345, s, Flash bytes 150 (150) 134 (134) 134 (134)
10) Stack bytes 4 4

MCU clocks 1172 1152
Itoa (12345L, s, Flash bytes 220 (220) 200 (200) 200 (200)
10) Stack bytes 9 9

MCU clocks 3174 3136
malloc (1) Flash bytes 554 (554) 506 (506) 506 (506)

Stack bytes 4 4

MCU clocks 196 178
realloc ((void Flash bytes 1152 (1040) 1042 (932) 1042 (932)
%)0, 1) Stack bytes 20 20

MCU clocks 303 280
gsort (s, Flash bytes 1242 (1130) 990 (880) 1008 (898)
sizeof(s), 1, cmp)| Stack bytes 38 38

MCU clocks 20914 16678
sprintf_min (s, Flash bytes 1216 (1104) 1090 (980) 1086 (976)
"%d", 12345) Stack bytes 59 59

MCU clocks 1846 1711
sprintf (s, "%d", Flash bytes 1674 (1562) 1542 (1432) 1498 (1388)
12345) Stack bytes 58 58

MCU clocks 1610 1528
sprintf_flt (s, Flash bytes 3334 (3222) 3084 (2974) 3040 (2930)
"%e", 1.2345) Stack bytes 66 66

MCU clocks 2513 2297
sscanf_min Flash bytes 1540 (1428) 1354 (1244) 1354 (1244)
("12345", "%d", Stack bytes 55 55
&i) MCU clocks 1339 1240
sscanf ("12345", | Flash bytes 1950 (1838) 1704 (1594) 1704 (1594)
"%d", &i) Stack bytes 53 53

MCU clocks 1334 1235
sscanf Flash bytes 1950 (1838) 1704 (1594) 1704 (1594)
("point,color", Stack bytes 87 87
"%[a-z]", s) MCU clocks 2878 2718
sscanf_flt Flash bytes 3298 (3186) 2934 (2824) 2918 (2808)
("1.2345", "%e", | Stack bytes 63 63
&Xx) MCU clocks 2187 1833
strtod ("1.2345", | Flash bytes 1570 (1458) 1472 (1362) 1456 (1346)
&p) Stack bytes 22 22

MCU clocks 1237 971
strtol ("12345", Flash bytes 942 (830) 874 (764) 808 (698)
&p, 0) Stack bytes 29 21

MCU clocks 1074 722

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

9.2 Math functions. 53

9.2 Math functions.

The table contains the number of MCU clocks to calculate a function with a given
argument(s). The main reason of a big difference between Avr2 and Avr4 is a hardware
multiplication.

Function Avr2 Avr4
__addsf3(1.234,5.678) | 113 108
__mulsf3 (1.234,5.678) | 375 138
__divsf3(1.234,5.678) | 466 465
acos (0.54321) 4648 2689
asin (0.54321) 4754 2790
atan (0.54321) 4710 2271
atan2 (1.234, 5.678) 5270 2857
ceil (1.2345) 177 177
cos (1.2345) 3381 1665
cosh (1.2345) 4922 2979
exp (1.2345) 4708 2765
fdim (5.678, 1.234) 111 111
floor (1.2345) 180 180
fmax (1.234, 5.678) 39 37
fmin (1.234, 5.678) 35 35
fmod (5.678, 1.234) 132 132
frexp (1.2345, 0) 37 36
hypot (1.234, 5.678) 1556 1078
Idexp (1.2345, 6) 42 42
log (1.2345) 4142 2134
log10 (1.2345) 4498 2260
modf (1.2345, 0) 433 429
pow (1.234, 5.678) 9293 5047
round (1.2345) 150 150
sin (1.2345) 3347 1647
sinh (1.2345) 4946 3003
sqrt (1.2345) 709 704
tan (1.2345) 4375 2420
tanh (1.2345) 5126 3173
trunc (1.2345) 178 178

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

10 Porting From IAR to AVR GCC 54

10 Porting From IAR to AVR GCC

10.1 Introduction

C language was designed to be a portable language. There two main types of port-
ing activities: porting an application to a different platform (OS and/or processor),
and porting to a different compiler. Porting to a different compiler can be exacerbated
when the application is an embedded system. For example, the C language Standard,
strangely, does not specify a standard for declaring and defining Interrupt Service Rou-
tines (ISRs). Different compilers have different ways of defining registers, some of
which use non-standard language constructs.

This chapter describes some methods and pointers on porting an AVR application built
with the IAR compiler to the GNU toolchain (AVR GCC). Note that this may not be
an exhaustive list.

10.2 Registers

IO header files contain identifiers for all the register names and bit names for a par-
ticular processor. IAR has individual header files for each processor and they must be
included when registers are being used in the code. For example:

#include <iom169.h>

Note:

IAR does not always use the same register names or bit names that are used in the
AVR datasheet.

AVR GCC also has individual IO header files for each processor. However, the ac-
tual processor type is specified as a command line flag to the compiler. (Using the
-mmcu=processor flag.) This is usually done in the Makefile. This allows you to
specify only a single header file for any processor type:

#include <avr/io.h>

Note:

The forward slash in thezavr/io.l> file name that is used to separate subdirecto-
ries can be used on Windows distributions of the toolchain and is the recommended
method of including this file.

The compiler knows the processor type and through the single header file above, it can
pullin and include the correct individual 10 header file. This has the advantage that you
only have to specify one generic header file, and you can easily port your application

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

10.3 Interrupt Service Routines (ISRs) 55

to another processor type without having to change every file to include the new 10
header file.

The AVR toolchain tries to adhere to the exact names of the registers and names of
the bits found in the AVR datasheet. There may be some descrepencies between the
register names found in the IAR 10 header files and the AVR GCC 10 header files.

10.3 Interrupt Service Routines (ISRS)

As mentioned above, the C language Standard, strangely, does not specify a standard
way of declaring and defining an ISR. Hence, every compiler seems to have their own
special way of doing so.

IAR declares an ISR like so:

#pragma vector=TIMERO_OVF_vect
__interrupt void MotorPWMBottom()

{
}

/I code

In AVR GCC, you declare an ISR like so:

ISR(PCINT1_vect)

/lcode

AVR GCC uses théSR macro to define an ISR. This macro requries the header file:

#include <avr/interrupt.h>

The names of the various interrupt vectors are found in the individual processor 10
header files that you must include withavr/io.h >.
Note:

The names of the interrupt vectors in AVR GCC has been changed to match the
names of the vectors in IAR. This significantly helps in porting applications from
IAR to AVR GCC.

10.4 Intrinsic Routines

IAR has a number of intrinsic routine such as

__enable_interrupts() __ disable_interrupts() __ watchdog_-
reset()

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

10.5 Flash Variables 56

These intrinsic functions compile to specific AVR opcodes (SEI, CLI, WDR).

There are equivalent macros that are used in AVR GCC, however they are not located
in a single include file.

AVR GCC has sei() for __ enable_interrupts() , and cli()
for __ disable_interrupts() . Both of these macros are located in
<avr/interrupts.h >,

AVR GCC has the macrovdt_reset() in place of __watchdog_reset()
However, there is a whole Watchdog Timer API available in AVR GCC that can be
found in<avr/wdt.h >.

10.5 Flash Variables
The C language was not designed for Harvard architecture processors with separate

memory spaces. This means that there are various non-standard ways to define a vari-
able whose data resides in the Program Memory (Flash).

IAR uses a non-standard keyword to declare a variable in Program Memory:

_ flash int mydata] =

AVR GCC uses Variable Attributes to achieve the same effect:

int mydata[] __attribute__ ((progmem))
Note:

See the GCC User Manual for more information about Variable Attributes.

avr-libc provides a convenience macro for the Variable Attribute:

#include <avr/pgmspace.h>

int mydata[] PROGMEM = ...

Note:

The PROGMEM macro expands to the Variable Attributepobgmem. This
macro requires that you includeavr/pgmspace.h >. This is the canonical
method for defining a variable in Program Space.

To read back flash data, use thpgm_read_ «() macros defined in
<avr/pgmspace.h >. All Program Memory handling macros are defined
there.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

10.6 Non-Returning main() 57

There is also a way to create a method to define variables in Program Memory that is
common between the two compilers (IAR and AVR GCC). Create a header file that has
these definitions:

#if defined(__ICCAVR__) // IAR C Compiler

#define FLASH_DECLARE(x) _ flash x

#endif

#if defined(__GNUC__) // GNU Compiler

#define FLASH_DECLARE(x) x __attribute__((__progmem__))
#endif

This code snippet checks for the IAR compiler or for the GCC compiler and defines a
macroFLASH_DECLARE(x) that will declare a variable in Program Memory using

the appropriate method based on the compiler that is being used. Then you would used
it like so:

FLASH_DECLARE(int mydata[] = ...);

10.6 Non-Returning main()

To declare main() to be a non-returning function in IAR, it is done like this:

__C_task void main(void)

{
}

/I code

To do the equivalent in AVR GCC, do this:

void main(void) __attribute__((noreturn));

void main(void)

{
}

1.
Note:
See the GCC User Manual for more information on Function Attributes.
In AVR GCC, a prototype for main() is required so you can declare the function at-

tribute to specify that the main() function is of type "noreturn”. Then, define main() as
normal. Note that the return type for main() is newid .

10.7 Locking Registers

The IAR compiler allows a user to lock general registers from r15 and down by using
compiler options and this keyword syntax:

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

11 Frequently Asked Questions 58

__regvar __no_init volatile unsigned int filteredTimeSinceCommutation @14;

This line locks r14 for use only when explicitly referenced in your code thorugh the var
name "filteredTimeSinceCommutation”. This means that the compiler cannot dispose
of it at its own will.

To do this in AVR GCC, do this:

register unsigned char counter asm("r3");

Typically, it should be possible to use r2 through r15 that way.

Note:

Do not reserve r0 or rl as these are used internally by the compiler for a temporary
register and for a zero value.

Locking registers is not recommended in AVR GCC as it removes this register

from the control of the compiler, which may make code generation worse. Use at
your own risk.

11 Frequently Asked Questions

11.1 FAQ Index

. My program doesn't recognize a variable updated within an interrupt routine
. 1 get "undefined reference to..." for functions like "sin()"
. How to permanently bind a variable to a register?

. How to modify MCUCR or WDTCR early?

1

2

3

4

5. What is all this _BV() stuff about?
6. Can | use C++ on the AVR?

7. Shouldn’t I initialize all my variables?

8. Why do some 16-bit timer registers sometimes get trashed?
9. How do | use a #define’d constant in an asm statement?

10. Why does the PC randomly jump around when single-stepping through my pro-
gram in avr-gdb?

11. How do | trace an assembler file in avr-gdb?

12. How do | pass an IO port as a parameter to a function?

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

11.2

My program doesn’t recognize a variable updated within an interrupt

routine 59

13.
14.
15.
16.
17.
18.

19.
20.

21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.

What registers are used by the C compiler?

How do | put an array of strings completely in ROM?
How to use external RAM?

Which -O flag to use?

How do | relocate code to a fixed address?

My UART is generating nonsense! My ATmegal28 keeps crashing! Port F is
completely broken!

Why do all my "foo...bar" strings eat up the SRAM?

Why does the compiler compile an 8-bit operation that uses bitwise operators
into a 16-bit operation in assembly?

How to detect RAM memory and variable overlap problems?

Is it really impossible to program the ATtinyXX in C?

What is this "clock skew detected" messsage?

Why are (many) interrupt flags cleared by writing a logical 1?

Why have "programmed" fuses the bit value 0?

Which AVR-specific assembler operators are available?

Why are interrupts re-enabled in the middle of writing the stack pointer?
Why are there five different linker scripts?

How to add a raw binary image to linker output?

How do | perform a software reset of the AVR?

| am using floating point math. Why is the compiled code so big? Why does my
code not work?

11.2 My program doesn’t recognize a variable updated within an

interrupt routine

When using the optimizer, in a loop like the following one:

uint8_t flag;

ISR(SOME_vect) {
flag = 1,

}

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

11.3 | get"undefined reference to..." for functions like "sin()" 60

while (flag == 0) {

}

the compiler will typically acceslag only once, and optimize further accesses com-
pletely away, since its code path analysis shows that nothing inside the loop could
change the value dlag anyway. To tell the compiler that this variable could be
changed outside the scope of its code path analysis (e. g. from within an interrupt
routine), the variable needs to be declared like:

volatile uint8_t flag;

Back toFAQ Index

11.3 | get"undefined reference to..." for functions like "sin()"

In order to access the mathematical functions that are declarednisth.h >, the
linker needs to be told to also link the mathematical librabyn.a

Typically, system libraries likéibm.a are given to the final C compiler command
line that performs the linking step by adding a flig at the end. (That is, the initial
lib and the filename suffix from the library are written immediately aftdrflag. So
for a libfoo.a library, -lfoo needs to be provided.) This will make the linker
search the library in a path known to the system.

An alternative would be to specify the full path to tiiem.a file at the same place

on the command line, i. eafter all the object files £.0). However, since this re-
quires knowledge of where the build system will exactly find those library files, this is
deprecated for system libraries.

Back toFAQ Index

11.4 How to permanently bind a variable to a register?
This can be done with

register unsigned char counter asm("r3");

Typically, it should be save to use r2 through r7 that way.

Registers r8 through r15 can be used for argument passing by the compiler in case
many or long arguments are being passed to callees. If this is not the case throughout
the entire application, these registers could be used for register variables as well.

Extreme care should be taken that the entire application is compiled with a consistent
set of register-allocated variables, including possibly used library functions.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

11.5 How to modify MCUCR or WDTCR early? 61

SeeC Names Used in Assembler Cofte more details.

Back toFAQ Index

11.5 How to modify MCUCR or WDTCR early?

The method of early initializationJCUCRWDTCRr anything else) is different (and
more flexible) in the current version. Basically, write a small assembler file which
looks like this:

;; begin xram.S
#include <avr/io.h>
.section .initl,"ax",@progbits

Idi r16,_BV(SRE) | _BV(SRW)
out _SFR_IO_ADDR(MCUCR),r16

;v end xram.S

Assemble it, link the resultingram.o with other files in your program, and this piece
of code will be inserted in initialization code, which is run right after reset. See the
linker script for comments about the nemit N sections (which one to use, etc.).

The advantage of this method is that you can insert any initialization code you want
(just remember that this is very early startup — no stack and mero_reg__ yet),
and no program memory space is wasted if this feature is not used.

There should be no need to modify linker scripts anymore, except for some very spe-
cial cases. It is best to leave stack at its default value (end of internal SRAM

— faster, and required on some devices like ATmegal6l because of errata), and add
-WI,-Tdata,0x801100 to start the data section above the stack.

For more information on using sections, 9demory Sections There is also an ex-
ample forUsing Sections in C CodeNote that in C code, any such function would
preferrably be placed into section .init3 as the code in .init2 ensures the internal regis-
ter__zero reg is already cleared.

Back toFAQ Index

11.6 Whatis all this _BV() stuff about?

When performing low-level output work, which is a very central point in microcon-
troller programming, it is quite common that a particular bit needs to be set or cleared
in some 10 register. While the device documentation provides mnemonic names for
the various bits in the 10 registers, and #éR device-specific 10 definitiongeflect

these names in definitions for numerical constants, a way is needed to convert a bit

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

11.7 Can | use C++ on the AVR? 62

number (usually within a byte register) into a byte value that can be assigned directly
to the register. However, sometimes the direct bit numbers are needed as well (e. g. in
anSBI() instruction), so the definitions cannot usefully be made as byte values in the
first place.

So in order to access a particular bit number as a byte value, us@¥g macro.

Of course, the implementation of this macro is just the usual bit shift (which is done
by the compiler anyway, thus doesn’t impose any run-time penalty), so the following
applies:

_BV(3) => 1 << 3 => 0x08

However, using the macro often makes the program better readable.
"BV" stands for "bit value”, in case someone might ask you. :-)

Example: clock timer 2 with full 10 clock CS2x = 0b001), toggle OC2 output on
compare matchGOMR = 0b01), and clear timer on compare mat€i C2= 1). Make
OC2 (PD7) an output.

TCCR2 = _BV(COM20)|_BV(CTC2)|_BV(CS20);
DDRD = _BV(PD7);

Back toFAQ Index

11.7 Can | use C++ on the AVR?

Basically yes, C++ is supported (assuming your compiler has been configured and
compiled to support it, of course). Source files ending in .cc, .cpp or .C will automati-
cally cause the compiler frontend to invoke the C++ compiler. Alternatively, the C++
compiler could be explicitly called by the naraer-c++

However, there’s currently no support fiilpstdc++ , the standard support library
needed for a complete C++ implementation. This imposes a number of restrictions on
the C++ programs that can be compiled. Among them are:

* Obviously, none of the C++ related standard functions, classes, and template
classes are available.

» The operatorsiew anddelete are not implemented, attempting to use them
will cause the linker to complain about undefined external references. (This
could perhaps be fixed.)

« Some of the supplied include files are not C++ safe, i. e. they need to be wrapped
into

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

11.8 Shouldn't | initialize all my variables? 63

extern "C" { .. .}

(This could certainly be fixed, too.)

» Exceptions are not supported. Since exceptions are enabled by default in the
C++ frontend, they explicitly need to be turned off usHfigo-exceptions
in the compiler options. Failing this, the linker will complain about an undefined
external reference to_gxx_personality _sjO

Constructors and destructase supported though, including global ones.

When programming C++ in space- and runtime-sensitive environments like microcon-
trollers, extra care should be taken to avoid unwanted side effects of the C++ calling
conventions like implied copy constructors that could be called upon function invo-
cation etc. These things could easily add up into a considerable amount of time and
program memory wasted. Thus, casual inspection of the generated assembler code
(using the-S compiler option) seems to be warranted.

Back toFAQ Index

11.8 Shouldn’t I initialize all my variables?

Global and static variables are guaranteed to be initialized to 0 by the C standard.
avr-gcc does this by placing the appropriate code into section .init4 TeeeinitN
Section$. With respect to the standard, this sentence is somewhat simplified (because
the standard allows for machines where the actual bit pattern used differs from all bits
being 0), but for the AVR target, in general, all integer-type variables are set to 0, all
pointers to a NULL pointer, and all floating-point variables to 0.0.

As long as these variables are not initialized (i. e. they don’t have an equal sign and
an initialization expression to the right within the definition of the variable), they go
into the .bsssection of the file. This section simply records the size of the variable,
but otherwise doesn’'t consume space, neither within the object file nor within flash
memory. (Of course, being a variable, it will consume space in the target’s SRAM.)

In contrast, global and static variables that have an initializer go intadtitasection

of the file. This will cause them to consume space in the object file (in order to record
the initializing value)andin the flash ROM of the target device. The latter is needed
since the flash ROM is the only way that the compiler can tell the target device the
value this variable is going to be initialized to.

Now if some programmer "wants to make doubly sure” their variables really get a 0
at program startup, and adds an initializer just containing O on the right-hand side,
they waste space. While this waste of space applies to virtually any platform C is
implemented on, it's usually not noticeable on larger machines like PCs, while the
waste of flash ROM storage can be very painful on a small microcontroller like the
AVR.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

11.9 Why do some 16-bit timer registers sometimes get trashed? 64

So in general, variables should only be explicitly initialized if the initial value is non-
Zero.

Note:

Recent versions of GCC are now smart enough to detect this situation, and revert
variables that are explicitly initialized to 0 to the .bss section. Still, other compilers
might not do that optimization, and as the C standard guarantees the initialization,
it is safe to rely onit.

Back toFAQ Index

11.9 Why do some 16-bit timer registers sometimes get trashed?

Some of the timer-related 16-bit IO registers use a temporary register (called TEMP in
the Atmel datasheet) to guarantee an atomic access to the register despite the fact that
two separate 8-bit IO transfers are required to actually move the data. Typically, this
includes access to the current timer/counter value regis@N{n), the input capture
register (CRn), and write access to the output compare regis®GRM). Refer to

the actual datasheet for each device’s set of registers that involves the TEMP register.

When accessing one of the registers that use TEMP from the main application, and
possibly any other one from within an interrupt routine, care must be taken that no
access from within an interrupt context could clobber the TEMP register data of an
in-progress transaction that has just started elsewhere.

To protect interrupt routines against other interrupt routines, it's usually best to use the
ISR() macro when declaring the interrupt function, and to ensure that interrupts are still
disabled when accessing those 16-bit timer registers.

Within the main program, access to those registers could be encapsulated in calls to the
cli() andsei()macros. If the status of the global interrupt flag before accessing one of
those registers is uncertain, something like the following example code can be used.

uintl6_t
read_timer1(void)

uint8_t sreg;
uintl6_t val;

sreg = SREG;
cli);

val = TCNTZ;
SREG = sreg;

return val;

Back toFAQ Index

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

11.10 How do | use a #define'd constant in an asm statement? 65

11.10 How do | use a #define’'d constant in an asm statement?
So you tried this:

asm volatile("shi 0x18,0x07;");

Which works. When you do the same thing but replace the address of the port by its
macro name, like this:

asm volatile("sbi PORTB,0x07;");

you get a compilation errotfError: constant value required”

PORTBis a precompiler definition included in the processor specific file included in
avrfio.h . As you may know, the precompiler will not touch strings d"0RTB
instead 0f0x18 , gets passed to the assembler. One way to avoid this problem is:

asm volatile("sbi %0, 0x07" : "I' (_SFR_IO_ADDR(PORTB)):);

Note:

For C programs, rather use the standard C bit operators instead, so the above would
be expressed &0RTB|= (1 << 7). The optimizer will take care to trans-
form this into a single SBI instruction, assuming the operands allow for this.

Back toFAQ Index

11.11 Why does the PC randomly jump around when single-
stepping through my program in avr-gdb?

When compiling a program with both optimizatior®() and debug information-g)

which is fortunately possible iavr-gcc , the code watched in the debugger is opti-
mized code. While it is not guaranteed, very often this code runs with the exact same
optimizations as it would run without thg switch.

This can have unwanted side effects. Since the compiler is free to reorder code ex-
ecution as long as the semantics do not change, code is often rearranged in order to
make it possible to use a single branch instruction for conditional operations. Branch
instructions can only cover a short range for the target PC (-63 through +64 words from
the current PC). If a branch instruction cannot be used directly, the compiler needs to
work around it by combining a skip instruction together with a relative jurfmpg)
instruction, which will need one additional word of ROM.

Another side effect of optimzation is that variable usage is restricted to the area of code
where it is actually used. So if a variable was placed in a register at the beginning of
some function, this same register can be re-used later on if the compiler notices that the

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

11.12 How do | trace an assembler file in avr-gdb? 66

first variable is no longer used inside that function, even though the variable is still in
lexical scope. When trying to examine the variableim-gdb , the displayed result
will then look garbled.

So in order to avoid these side effects, optimization can be turned off while debugging.
However, some of these optimizations might also have the side effect of uncovering
bugs that would otherwise not be obvious, so it must be noted that turning off opti-
mization can easily change the bug pattern. In most cases, you are better off leaving
optimizations enabled while debugging.

Back toFAQ Index

11.12 Howdo | trace an assembler file in avr-gdb?

When using theg compiler optionavr-gcc only generates line number and other
debug information for C (and C++) files that pass the compiler. Functions that don’t
have line number information will be completely skipped by a sirstggp command

in gdb. This includes functions linked from a standard library, but by default also
functions defined in an assembler source file, sincegheompiler switch does not
apply to the assembler.

Soin order to debug an assembler input file (possibly one that has to be passed through
the C preprocessor), it's the assembler that needs to be told to include line-number
information into the output file. (Other debug information like data types and variable
allocation cannot be generated, since unlike a compiler, the assembler basically doesn't
know about this.) This is done using the (GNU) assembler optjstabs

Example:

$ avr-as -mmcu=atmegal28 --gstabs -o foo.o foo.s

When the assembler is not called directly but through the C compiler frontend
(either implicitly by passing a source file ending in .S, or explicitly ushxg
assembler-with-cpp), the compiler frontend needs to be told to pass the
-gstabs option down to the assembler. This is done usMa,-gstabs . Please

take care tanly pass this option when compiling an assembler input file. Otherwise,
the assembler code that results from the C compilation stage will also get line number
information, which confuses the debugger.

Note:

You can also useWa,-gstabs since the compiler will add the exttd for
you.

Example:

$ EXTRA_OPTS="-Wall -mmcu=atmegal28 -x assembler-with-cpp"
$ avr-gcc -Wa,--gstabs ${EXTRA_OPTS} -c -0 foo.o foo.S

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

11.13 How do | pass an IO port as a parameter to a function? 67

Also note that the debugger might get confused when entering a piece of code that has
a non-local label before, since it then takes this label as the name of a new function that
appears to have been entered. Thus, the best practice to avoid this confusion is to only
use non-local labels when declaring a new function, and restrict anything else to local
labels. Local labels consist just of a number only. References to these labels consist
of the number, followed by the lettdr for a backward reference, érfor a forward
reference. These local labels may be re-used within the source file, references will pick
the closest label with the same number and given direction.

Example:

myfunc: push rl6

push ri7

push ri8

push YL

push YH

eor rl6, rlé ; start loop

Idi YL, lo8(sometable)

Idi YH, hi8(sometable)

rfmp 2f ; jump to loop test at end
1: Id rl7, Y+ ; loop continues here

breq 1f ; return from myfunc prematurely

inc rl6
2: cmp rl6, rl8

brlo 1b ; jump back to top of loop
1 pop YH

pop YL

pop ri8

pop r17

pop rl6

ret

Back toFAQ Index

11.13 Howdo I pass an IO port as a parameter to a function?
Consider this example code:

#include <inttypes.h>
#include <avr/io.h>

void
set_bits_func_wrong (volatile uint8_t port, uint8_t mask)
{
port |= mask;
}
void

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

11.13 How do | pass an IO port as a parameter to a function? 68

set_bits_func_correct (volatile uint8_t *port, uint8_t mask)

{
}

#define set_bits_macro(port,mask) ((port) |= (mask))

*port |= mask;

int main (void)

{
set_bits_func_wrong (PORTB, Oxaa);
set_bits_func_correct (&PORTB, 0x55);
set_bits_macro (PORTB, 0xf0);
return (0);

}

The first function will generate object code which is not even close to what is intended.
The major problem arises when the function is called. When the compiler sees this call,
it will actually pass the value of theORTBregister (using afN instruction), instead

of passing the address BORTBe.g. memory mapped io addr @38 , io portOx18

for the megal28). This is seen clearly when looking at the disassembly of the call:

set_bits_func_wrong (PORTB, Oxaa);

10a: 6a ea Idi r22, OxAA ; 170
10c: 88 b3 in r24, 0x18 ;24
10e: Oe 94 65 00 call Oxca

So, the function, once called, only sees the value of the port register and knows nothing
about which port it came from. At this point, whatever object code is generated for
the function by the compiler is irrelevant. The interested reader can examine the full
disassembly to see that the function’s body is completely fubar.

The second function shows how to pass (by reference) the memory mapped address of
the io port to the function so that you can read and write to it in the function. Here’s
the object code generated for the function call:

set_bits_func_correct (&PORTB, 0x55);

112: 65 e5 Idi r22, 0x55 ; 85
114: 88 e3 Idi r24, 0x38 ; 56
116: 90 e0 Idi r25, 0x00 ;0
118: Oe 94 7c 00 call 0xf8

You can clearly see th&ix0038 is correctly passed for the address of the io port.
Looking at the disassembled object code for the body of the function, we can see that
the function is indeed performing the operation we intended:

void
set_bits_func_correct (volatile uint8_t *port, uint8_t mask)
{

f8: fc 01 movw r30, r24

*port |= mask;

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

11.14 What registers are used by the C compiler? 69

fa: 80 81 Id r24, Z
fc: 86 2b or 124, r22
fe: 80 83 st Z, 124
}
100: 08 95 ret

Notice that we are accessing the io port vialtieandST instructions.

Theport parameter must be volatile to avoid a compiler warning.

Note:

Because of the nature of thd and OUTassembly instructions, they can not be
used inside the function when passing the port in this way. Readers interested in
the details should consult thestruction Setlata sheet.

Finally we come to the macro version of the operation. In this contrived example, the
macro is the most efficient method with respect to both execution speed and code size:

set_bits_macro (PORTB, 0xf0);

1ic: 88 b3 in r24, 0x18 ;24
1le: 80 6f ori r24, OxFO ;240
120: 88 bb out 0x18, r24 ;24

Of course, in a real application, you might be doing a lot more in your function which
uses a passed by reference io port address and thus the use of a function over a macro
could save you some code space, but still at a cost of execution speed.

Care should be taken when such an indirect port access is going to one of the 16-bit
10 registers where the order of write access is critical (like some timer registers). All
versions of avr-gcc up to 3.3 will generate instructions that use the wrong access order
in this situation (since with normal memory operands where the order doesn’'t matter,
this sometimes yields shorter code).

Seehttp://mail.nongnu.org/archive/html/avr-libc-dev/2003-01/msg00044.html
for a possible workaround.

avr-gcc versions after 3.3 have been fixed in a way where this optimization will be
disabled if the respective pointer variable is declared toddatile , so the correct
behaviour for 16-bit 10 ports can be forced that way.

Back toFAQ Index

11.14 What registers are used by the C compiler?

» Data types:

char is 8 bits,int is 16 bitslong is 32 bits,long long is 64 bitsfloat and
double are 32 bits (this is the only supported floating point format), pointers

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

http://mail.nongnu.org/archive/html/avr-libc-dev/2003-01/msg00044.html

11.14 What registers are used by the C compiler? 70

are 16 bits (function pointers are word addresses, to allow addressing up to 128K
program memory space). There israint8 option (seeOptions for the C
compiler avr-gctto makeint 8 bits, but that is not supported by avr-libc and
violates C standardint mustbe at least 16 bits). It may be removed in a future
release.

e Call-used registers (r18-r27, r30-r31):

May be allocated by gcc for local data. Youayuse them freely in assembler
subroutines. Calling C subroutines can clobber any of them - the caller is re-
sponsible for saving and restoring.

Call-saved registers (r2-r17, r28-r29):

May be allocated by gcc for local data. Calling C subroutines leaves them un-
changed. Assembler subroutines are responsible for saving and restoring these
registers, if changed. r29:r28 (Y pointer) is used as a frame pointer (points to
local data on stack) if necessary. The requirement for the callee to save/preserve
the contents of these registers even applies in situations where the compiler as-
signs them for argument passing.

Fixed registers (r0, r1):
Never allocated by gcc for local data, but often used for fixed purposes:

rO - temporary register, can be clobbered by any C code (except interrupt handlers
which save it),maybe used to remember something for a while within one piece of
assembler code

rl - assumed to be always zero in any C cadaybe used to remember something for

a while within one piece of assembler code, buistthen be cleared after uselq

rl). This includes any use of tHgmul[s[u]] instructions, which return their
result in r1:r0. Interrupt handlers save and clear r1 on entry, and restore rl on exit (in
case it was non-zero).

¢ Function call conventions:

Arguments - allocated left to right, r25 to r8. All arguments are aligned to start in
even-numbered registers (odd-sized arguments, incluttiag , have one free
register above them). This allows making better use ohtbgwinstruction on

the enhanced core.

If too many, those that don't fit are passed on the stack.

Return values: 8-bit in r24 (not r25!), 16-bit in r25:r24, up to 32 bits in r22-r25, up to
64 bits in r18-r25. 8-bit return values are zero/sign-extended to 16 bits by the called
function unsigned char is more efficient thasigned char - justclr r25).
Arguments to functions with variable argument lists (printf etc.) are all passed on stack,
andchar is extended tant .

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

11.15 How do | put an array of strings completely in ROM? 71

Warning:

There was no such alignment before 2000-07-01, including the old patches for
gcc-2.95.2. Check your old assembler subroutines, and adjust them accordingly.

Back toFAQ Index

11.15 Howdo | put an array of strings completely in ROM?

There are times when you may need an array of strings which will never be modified.
In this case, you don’t want to waste ram storing the constant strings. The most obvious
(and incorrect) thing to do is this:

#include <avr/pgmspace.h>
PGM_P array[2] PROGMEM = {

"Foo",
"Bar"

h
int main (void)
char buf[32];

strecpy_P (buf, array[1]);
return 0O;

The result is not what you want though. What you end up with is the array stored in
ROM, while the individual strings end up in RAM (in the .data section).

To work around this, you need to do something like this:

#include <avr/pgmspace.h>

const char foo[] PROGMEM = "Foo";
const char bar] PROGMEM = "Bar";
PGM_P array[2] PROGMEM = {
foo,
bar

h
int main (void)

char buf{32];
PGM_P p;
int i;

memcpy_P(&p, &arrayli], sizeof(PGM_P));
strepy_P(buf, p);
return O;

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

11.15 How do | put an array of strings completely in ROM? 72

Looking at the disassembly of the resulting object file we see that array is in flash as
such:

00000026 <array>:
26: 2e 00 .word 0x002e ; 7?7?77
28: 2a 00 .word 0x002a ; 7?7?77

0000002a <bar>:
2a: 42 61 72 00 Bar.

0000002e <foo>:
2e: 46 6f 6f 00 Foo.
foo is at addr 0x002e.
bar is at addr 0x002a.
array is at addr 0x0026.

Then in main we see this:

memcpy_P(&p, &arrayli], sizeof(PGM_P));

70: 66 Of add r22, r22

72: 77 1f adc r23, r23

74: 6a 5d subi r22, OxDA ; 218
76: 7f 4f sbci r23, OxFF ; 255
78: 42 e0 Idi r20, 0x02 ;2
7a: 50 e0 Idi r21, 0x00 ;0
7c: ce 01 movw r24, r28

Te: 81 96 adiw r24, 0x21 ;33
80: 08 do rcall +16 ; 0x92

This code reads the pointer to the desired string from the ROM taiody into a
register pair.

The value ofi (in r22:r23) is doubled to accomodate for the word offset required to
access array[], then the address of array (0x26) is added, by subtracting the negated
address (0xffda). The address of varigblis computed by adding its offset within the
stack frame (33) to the Y pointer register, anémcpy_Pis called.

strepy_P(buf, p);

82 69 al ldd 122, Y+33 ; 0x21
84: 7a al ldd 23, Y+34 ; 0x22
86: ce 01 movw r24, r28

88: 01 96 adiw r24, 0x01 1
8a: Oc do rcall +24 ; Oxa4

This will finally copy the ROM string into the local buffdruf .

Variablep (located at Y+33) is read, and passed together with the address of buf (Y+1)
to strcpy_P. This will copy the string from ROM touf .

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

11.16 How to use external RAM? 73

Note that when using a compile-time constant index, omitting the first step (reading
the pointer from ROM vianemcpy_B usually remains unnoticed, since the compiler
would then optimize the code for accessargay at compile-time.

Back toFAQ Index

11.16 How to use external RAM?

Well, there is no universal answer to this question; it depends on what the external
RAM is going to be used for.

Basically, the bitSRE(SRAM enable) in theICUCRegister needs to be set in order

to enable the external memory interface. Depending on the device to be used, and
the application details, further registers affecting the external memory operation like
XMCRAand XMCRBand/or further bits ilMCUCRnight be configured. Refer to the
datasheet for details.

If the external RAM is going to be used to store the variables from the C program
(i. e., the .data and/or .bss segment) in that memory area, it is essential to set up the
external memory interface early during ttievice initializationso the initialization of

these variable will take place. Referttmw to modify MCUCR or WDTCR earlyfor

a description how to do this using few lines of assembler code, or to the chapter about
memory sections for aeaxample written in C

The explanation ofmalloc() contains adiscussiorabout the use of internal RAM vs.
external RAM in particular with respect to the various possible locations ofi¢iag

(area reserved fanalloc()). It also explains the linker command-line options that are
required to move the memory regions away from their respective standard locations in
internal RAM.

Finally, if the application simply wants to use the additional RAM for private data
storage kept outside the domain of the C compiler (e. g. throuttea * variable
initialized directly to a particular address), it would be sufficient to defer the initializa-
tion of the external RAM interface to the beginningro&in(), so no tweaking of the

.init3 section is necessary. The same applies if only the heap is going to be located
there, since the application start-up code does not affect the heap.

Itis not recommended to locate the stack in external RAM. In general, accessing exter-
nal RAM is slower than internal RAM, and errata of some AVR devices even prevent
this configuration from working properly at all.

Back toFAQ Index

11.17 Which -O flag to use?

There’s a common misconception that larger numbers behin@tloption might auto-
matically cause "better" optimization. First, there’s no universal definition for "better",

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

11.18 How do | relocate code to a fixed address? 74

with optimization often being a speed vs. code size tradeoff. Segetaded discus-
sionfor which option affects which part of the code generation.

A test case was run on an ATmegal28 to judge the effect of compiling the library itself
using different optimization levels. The following table lists the results. The test case
consisted of around 2 KB of strings to sort. Test #1 ugsdrt() using the standard
library strcmp() test #2 used a function that sorted the strings by their size (thus had
two calls tostrlen()per invocation).

When comparing the resulting code size, it should be noted that a floating point version
of fvprintf() was linked into the binary (in order to print out the time elapsed) which

is entirely not affected by the different optimization levels, and added about 2.5 KB to
the code.

Optimization Size of .text Time for test#1 | Time for test #2
flags

-03 6898 903 s 19.7 ms

-02 6666 972us 20.1 ms

-Os 6618 955 s 20.1 ms

-Os 6474 972 us 20.1 ms
-mcall-prologues

(The difference between 95% and 972us was just a single timer-tick, so take this
with a grain of salt.)

So generally, it seem®s -mcall-prologues is the most universal "best" opti-
mization level. Only applications that need to get the last few percent of speed benefit
from using-03.

Back toFAQ Index

11.18 How do | relocate code to a fixed address?

First, the code should be put into a neamed section This is done with a section
attribute:

__attribute__ ((section (".bootloader")))

In this example, .bootloader is the name of the new section. This attribute needs to be
placed after the prototype of any function to force the function into the new section.

void boot(void) __attribute_ ((section (".bootloader")));

To relocate the section to a fixed address the linker-8agtion-start is used.
This option can be passed to the linker using-tfwk compiler option

-WI,--section-start=.bootloader=0x1E000

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

11.19 My UART is generating nonsense! My ATmegal28 keeps crashing! Port
F is completely broken! 75

The name after section-start is the name of the section to be relocated. The number
after the section name is the beginning address of the named section.

Back toFAQ Index

11.19 My UART is generating nonsense! My ATmegal28 keeps
crashing! Port F is completely broken!

Well, certain odd problems arise out of the situation that the AVR devices as shipped
by Atmel often come with a default fuse bit configuration that doesn’t match the user’s
expectations. Here is a list of things to care for:

« All devices that have an internal RC oscillator ship with the fuse enabled that
causes the device to run off this oscillator, instead of an external crystal. This
often remains unnoticed until the first attempt is made to use something critical
in timing, like UART communication.

* The ATmegal28 ships with the fuse enabled that turns this device into AT-
megal03 compatibility mode. This means that some ports are not fully usable,
and in particular that the internal SRAM is located at lower addresses. Since by
default, the stack is located at the top of internal SRAM, a program compiled for
an ATmegal28 running on such a device will immediately crash upon the first
function call (or rather, upon the first function return).

« Devices with a JTAG interface have ti@ AGENfuse programmed by default.
This will make the respective port pins that are used for the JTAG interface un-
available for regular IO.

Back toFAQ Index

11.20 Why do all my "foo...bar" strings eat up the SRAM?

By default, all strings are handled as all other initialized variables: they occupy RAM
(even though the compiler might warn you when it detects write attempts to these RAM
locations), and occupy the same amount of flash ROM so they can be initialized to the
actual string by startup code. The compiler can optimize multiple identical strings into
a single one, but obviously only for one compilation unit (i. e., a single C source file).

That way, any string literal will be a valid argument to any C function that expects a
const char xargument.

Of course, this is going to waste a lot of SRAM. Pmogram Space String Utilities
method is described how such constant data can be moved out to flash ROM. How-
ever, a constant string located in flash ROM is no longer a valid argument to pass to a
function that expects eonst char x-type string, since the AVR processor needs
the special instructiohPMto access these strings. Thus, separate functions are needed

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

11.21 Why does the compiler compile an 8-bit operation that uses bitwise
operators into a 16-bit operation in assembly? 76

that take this into account. Many of the standard C library functions have equivalents
available where one of the string arguments can be located in flash ROM. Private func-
tions in the applications need to handle this, too. For example, the following can be
used to implement simple debugging messages that will be sent through a UART:

#include <inttypes.h>
#include <avr/io.h>
#include <avr/pgmspace.h>

int
uart_putchar(char c)
if (c == "\n")
uart_putchar(’\r’);
loop_until_bit_is_set(USR, UDRE);
UDR = c;
return O; /* so it could be used for fdevopen(), too */

}

void
debug_P(const char *addr)

char c;
while ((c = pgm_read_byte(addr++)))
uart_putchar(c);
}
int
main(void)
ioinit(); /* initialize UART, ... */
debug_P(PSTR("foo was here\n"));

return 0O;

}

Note:

By convention, the suffix P to the function name is used as an indication that
this function is going to accept a "program-space string”. Note also the use of the
PSTR()macro.

Back toFAQ Index

11.21 Why does the compiler compile an 8-bit operation that uses
bitwise operators into a 16-bit operation in assembly?

Bitwise operations in Standard C will automatically promote their operands to an int,
which is (by default) 16 bits in avr-gcc.

To work around this use typecasts on the operands, including literals, to declare that
the values are to be 8 bit operands.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

11.22 How to detect RAM memory and variable overlap problems? 77

This may be especially important when clearing a bit:
var &= ~mask; /* wrong way! */

The bitwise "not" operator~) will also promote the value imask to an int. To keep
it an 8-bit value, typecast before the "not" operator:

var &= (unsigned char)~mask;

Back toFAQ Index

11.22 How to detect RAM memory and variable overlap prob-
lems?

You can simply ruravr-nm on your output (ELF) file. Run it with then option, and
it will sort the symbols numerically (by default, they are sorted alphabetically).

Look for the symbol_end, that's the first address in RAM that is not allocated by

a variable. (avr-gcc internally adds 0x800000 to all data/bss variable addresses, so
please ignore this offset.) Then, the run-time initialization code initializes the stack
pointer (by default) to point to the last avaialable address in (internal) SRAM. Thus,
the region betweenend and the end of SRAM is what is available for stack. (If your
application usesnalloc() which e. g. also can happen insigentf(), the heap for
dynamic memory is also located there. $&mory Areas and Using malloc))

The amount of stack required for your application cannot be determined that easily.
For example, if you recursively call a function and forget to break that recursion, the
amount of stack required is infinite. :-) You can look at the generated assembler code
(avr-gcc ... -S), there’s a comment in each generated assembler file that tells
you the frame size for each generated function. That's the amount of stack required for
this function, you have to add up that for all functions where you know that the calls
could be nested.

Back toFAQ Index

11.23 Isitreally impossible to program the ATtinyXX in C?

While some small AVRs are not directly supported by the C compiler since they do not
have a RAM-based stack (and some do not even have RAM at all), it is possible anyway
to use the general-purpose registers as a RAM replacement since they are mapped into
the data memory region.

Bruce D. Lightner wrote an excellent description of how to do this, and offers this
together with a toolkit on his web page:

http://lightner.net/avr/ATtinyAvrGcece.html

Back toFAQ Index

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

http://lightner.net/avr/ATtinyAvrGcc.html

11.24 What is this "clock skew detected" messsage? 78

11.24 What is this "clock skew detected" messsage?

It's a known problem of the MS-DOS FAT file system. Since the FAT file system has
only a granularity of 2 seconds for maintaining a file’s timestamp, and it seems that
some MS-DOS derivative (Win9x) perhaps rounds up the current time to the next sec-
ond when calculating the timestamp of an updated file in case the current time cannot
be represented in FAT’s terms, this causes a situation wheke sees a "file coming

from the future".

Since all make decisions are based on file timestamps, and their dependencies, make
warns about this situation.

Solution: don’t use inferior file systems / operating systems. Neither Unix file systems
nor HPFS (aka NTFS) do experience that problem.

Workaround: after saving the file, wait a second before startiiage. Or simply
ignore the warning. If you are paranoid, execut@ake clean all to make sure
everything gets rebuilt.

In networked environments where the files are accessed from a file server, this message
can also happen if the file server’s clock differs too much from the network client’s
clock. In this case, the solution is to use a proper time keeping protocol on both sys-
tems, like NTP. As a workaround, synchronize the client’s clock frequently with the
server’s clock.

Back toFAQ Index

11.25 Why are (many) interrupt flags cleared by writing a logical
1?

Usually, each interrupt has its own interrupt flag bit in some control register, indicating
the specified interrupt condition has been met by representing a logical 1 in the respec-
tive bit position. When working with interrupt handlers, this interrupt flag bit usually
gets cleared automatically in the course of processing the interrupt, sometimes by just
calling the handler at all, sometimes (e. g. for the U[S]ART) by reading a particular
hardware register that will normally happen anyway when processing the interrupt.

From the hardware’s point of view, an interrupt is asserted as long as the respective bit
is set, while global interrupts are enabled. Thus, it is essential to have the bit cleared
before interrupts get re-enabled again (which usually happens when returning from an
interrupt handler).

Only few subsystems require an explicit action to clear the interrupt request when using
interrupt handlers. (The notable exception is the TWI interface, where clearing the
interrupt indicates to proceed with the TWI bus hardware handshake, so it's never done
automatically.)

However, if no normal interrupt handlers are to be used, or in order to make extra
sure any pending interrupt gets cleared before re-activating global interrupts (e. g.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

11.26 Why have "programmed" fuses the bit value 0? 79

an external edge-triggered one), it can be necessary to explicitly clear the respective
hardware interrupt bit by software. This is usually done by writing a logical 1 into this
bit position. This seems to be illogical at first, the bit position already carries a logical
1 when reading it, so why does writing a logical 1 talgar the interrupt bit?

The solution is simple: writing a logical 1 to it requires only a singQldTinstruction,

and it is clear that only this single interrupt request bit will be cleared. There is no need
to perform a read-modify-write cycle (like, @Bl instruction), since all bits in these
control registers are interrupt bits, and writing a logical O to the remaining bits (as it
is done by the simpl®UTinstruction) will not alter them, so there is no risk of any
race condition that might accidentally clear another interrupt request bit. So instead of
writing

TIFR |= _BV(TOVO0); /* wrong! */
simply use
TIFR = _BV(TOVO0);

Back toFAQ Index

11.26 Why have "programmed" fuses the bit value 0?

Basically, fuses are just a bit in a special EEPROM area. For technical reasons, erased
E[E]JPROM cells have all bits set to the value 1, so unprogrammed fuses also have a
logical 1. Conversely, programmed fuse cells read out as bit value 0.

Back toFAQ Index

11.27 Which AVR-specific assembler operators are available?

SeePseudo-ops and operators

Back toFAQ Index

11.28 Why are interrupts re-enabled in the middle of writing the
stack pointer?

When setting up space for local variables on the stack, the compiler generates code like
this:

/* prologue: frame size=20 */
push r28
push r29

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

11.29 Why are there five different linker scripts? 80

in r28, SP_L
in 129, SP_H__
shiw r28,20

in __tmp_reg_ , SREG__
cli
out _SP H_ 29
out _ SREG__,_ tmp_reg__
out _SP L_ ,r28

/* prologue end (size=10) */

It reads the current stack pointer value, decrements it by the required amount of bytes,
then disables interrupts, writes back the high part of the stack pointer, writes back
the savedSREG(which will eventually re-enable interrupts if they have been enabled
before), and finally writes the low part of the stack pointer.

At the first glance, there’s a race between resto8RIEG and writingSPL. However,

after enabling interrupts (either explicitly by setting thélag, or by restoring it as part

of the entireSREG, the AVR hardware executes (at least) the next instruction still with
interrupts disabled, so the write 8PL is guaranteed to be executed with interrupts
disabled still. Thus, the emitted sequence ensures interrupts will be disabled only for
the minimum time required to guarantee the integrity of this operation.

Back toFAQ Index

11.29 Why are there five different linker scripts?

From a comment in the source code:

Which one of the five linker script files is actually used depends on command line
options given to Id.

A .x script file is the default script A .xr script is for linking without relocation (-r flag)
A .xu script is like .xr but<do« create constructors (-Ur flag) A .xn script is for linking
with -n flag (mix text and data on same page). A .xbn script is for linking with -N flag
(mix text and data on same page).

Back toFAQ Index

11.30 How to add a raw binary image to linker output?

The GNU linkeravr-ld cannot handle binary data directly. However, there’s a com-
panion tool callechvr-objcopy . This is already known from the output side: it's
used to extract the contents of the linked ELF file into an Intel Hex load file.

avr-objcopy can create a relocatable object file from arbitrary binary input, like

avr-objcopy -l binary -O elf32-avr foo.bin foo.o

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

11.31 How do | perform a software reset of the AVR? 81

This will create a file namefibo.o , with the contents doo.bin . The contents will
default to section .data, and two symbols will be created nanbéuary foo -
bin_start_ and_binary_foo_bin_end_ . These symbols can be referred to
inside a C source to access these data.

If the goal is to have those data go to flash ROM (similar to having used the PROGMEM
attribute in C source code), the sections have to be renamed while copying, and it's also
useful to set the section flags:

avr-objcopy --rename-section .data=.progmem.data,contents,alloc,load,readonly,data -1 binary -O elf32-avr foo.bin foo.o

Note that all this could be conveniently wired into a Makefile, so when®abin
changes, it will trigger the recreation tfo.0 , and a subsequent relink of the final
ELF file.

Back toFAQ Index

11.31 How do I perform a software reset of the AVR?

The canonical way to perform a software reset of the AVR is to use the watchdog timer.
Enable the watchdog timer to the shortest timeout setting, then go into an infinite, do-
nothing loop. The watchdog will then reset the processor.

The reason why this is preferrable over jumping to the reset vector, is that when the
watchdog resets the AVR, the registers will be reset to their known, default settings.
Whereas jumping to the reset vector will leave the registers in their previous state,
which is generally not a good idea.

CAUTION! Older AVRs will have the watchdog timer disabled on a reset. For these
older AVRs, doing a soft reset by enabling the watchdog is easy, as the watchdog will
then be disabled after the reset. On newer AVRSs, once the watchdog is enabled, then it
stays enabled, even after a reskfor these newer AVRs a function needs to be added

to the .init3 section (i.e. during the startup code, before main()) to disable the watchdog
early enough so it does not continually reset the AVR.

Here is some example code that creates a macro that can be called to perform a soft
reset:

#include <avr/wdt.h>

#define soft_reset() \
do \

wdt_enable(WDTO_15MS); \
for(;;) \
{ \

}
} while(0)

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

11.32 | am using floating point math. Why is the compiled code so big? Why
does my code not work? 82

For newer AVRs (such as the ATmegal281) also add this function to your code to then
disable the watchdog after a reset (e.g., after a soft reset):

#include <avr/wdt.h>

/I Function Pototype
void wdt_init(void) __attribute__((naked)) __attribute__((section(".init3")));

/I Function Implementation
void wdt_init(void)

MCUSR = 0;
wdt_disable();

return;

Back toFAQ Index

11.32 | am using floating point math. Why is the compiled code so
big? Why does my code not work?

You are not linking in the math library from AVR-LibC. GCC has a library that is used
for floating point operations, but it is not optimized for the AVR, and so it generates big
code, orit could be incorrect. This can happen even when you are not using any floating
point math functions from the Standard C library, but you are just doing floating point
math operations.

When you link in the math library from AVR-LIbC, those routines get replaced by
hand-optimized AVR assembly and it produces much smaller code.

Seel get "undefined reference to..." for functions like "sinfdt more details on how
to link in the math library.

Back toFAQ Index

12 Building and Installing the GNU Tool Chain

This chapter shows how to build and install, from source code, a complete develop-
ment environment for the AVR processors using the GNU toolset. There are two main
sections, one for Linux, FreeBSD, and other Unix-like operating systems, and another
section for Windows.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

12.1 Building and Installing under Linux, FreeBSD, and Others 83

12.1 Building and Installing under Linux, FreeBSD, and Others

The default behaviour for most of these tools is to install every thing under the
/usr/local directory. In order to keep the AVR tools separate from the base
system, it is usually better to install everything intasr/local/avr . If the
usr/local/avr directory does not exist, you should create it before trying to
install anything. You will needoot access to install there. If you don’'t have root
access to the system, you can alternatively install in your home directory, for exam-
ple, in$HOME/local/avr . Where you install is a completely arbitrary decision, but
should be consistent for all the tools.

You specify the installation directory by using thgrefix=dir option with the
configure script. It is important to install all the AVR tools in the same directory
or some of the tools will not work correctly. To ensure consistency and simplify the
discussion, we will us8PREFIX to refer to whatever directory you wish to install in.
You can set this as an environment variable if you wish as such (using a Bourne-like
shell):

$ PREFIX=$HOME/local/avr
$ export PREFIX

Note:

Be sure that you have yolrATHenvironment variable set to search the direc-
tory you install everything ifbeforeyou start installing anything. For example, if
you use-prefix=$PREFIX , you must havéPREFIX/bin in your exported
PATH As such:

$ PATH=$PATH:$PREFIX/bin
$ export PATH

Warning:

If you haveCCset to anything other thaavr-gcc in your environment, this will
cause the configure script to fail. It is best to not h@set at all.

Note:

It is usually the best to use the latest released version of each of the tools.

12.2 Required Tools

¢ GNU Binutils
http://sources.redhat.com/binutils/
Installation

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

http://sources.redhat.com/binutils/

12.3 Optional Tools 84

« GCC
http://gcc.gnu.org/
Installation

¢ AVR Libc
http://savannah.gnu.org/projects/avr-libc/
Installation

12.3 Optional Tools

You can develop programs for AVR devices without the following tools. They may or
may not be of use for you.

+ AVRDUDE
http://savannah.nongnu.org/projects/avrdude/
Installation
Usage Notes

« GDB
http://sources.redhat.com/gdb/
Installation

e SimulAVR
http://savannah.gnu.org/projects/simulavr/
Installation

¢ AVaRICE
http://avarice.sourceforge.net/
Installation

12.4 GNU Binuitils for the AVR target

The binutils package provides all the low-level utilities needed in building and ma-
nipulating object files. Once installed, your environment will have an AVR assembler
(avr-as), linker (avr-Ild), and librarian &vr-ar andavr-ranlib). In addi-

tion, you get tools which extract data from object filasrtobjcopy), dissassem-

ble object file informationgvr-objdump), and strip information from object files
(avr-strip). Before we can build the C compiler, these tools need to be in place.

Download and unpack the source files:

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

http://gcc.gnu.org/
http://savannah.gnu.org/projects/avr-libc/
http://savannah.nongnu.org/projects/avrdude/
http://sources.redhat.com/gdb/
http://savannah.gnu.org/projects/simulavr/
http://avarice.sourceforge.net/

12.4 GNU Binutils for the AVR target 85

$ bunzip2 -c binutils-<version>.tar.bz2 | tar xf -
$ cd binutils-<version>

Note:

Replace<version > with the version of the package you downloaded.
If you obtained a gzip compressed file (.gz), gs@zip instead ofounzip2 .

It is usually a good idea to configure and buidghutils in a subdirectory so as not
to pollute the source with the compiled files. This is recommended bpitheils
developers.

$ mkdir obj-avr
$ cd obj-avr

The next step is to configure and build the tools. This is done by supplying arguments
to theconfigure script that enable the AVR-specific options.

$../configure --prefix=$PREFIX --target=avr --disable-nls

If you don't specify the-prefix option, the tools will get installed in the
/ustr/local hierarchy (i.e. the binaries will get installed fasr/local/bin ,
the info pages get installed iasr/local/info , etc.) Since these tools are chang-
ing frequently, It is preferrable to put them in a location that is easily removed.

When configure is run, it generates a lot of messages while it determines what
is available on your operating system. When it finishes, it will have created several
Makefile s that are custom tailored to your platform. At this point, you can build the
project.

$ make

Note:

BSD users should note that the projeditakefile uses GNUmake syntax.
This means FreeBSD users may need to build the tools by gsnadxe.

If the tools compiled cleanly, you're ready to install them. If you specified a destination
that isn't owned by your account, you'll needot access to install them. To install:

$ make install

You should now have the programs from binutils installed BR&REFIX/bin . Don't
forget toset your PATHenvironment variable before going to build avr-gcc.

Note:

The official version of binutils might lack support for recent AVR
devices. A patch that adds more AVR types can be found at
http://www.freebsd.org/cgi/cvsweb.cgi/ports/devel/avr-binutils/files/patch-newdevices

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

http://www.freebsd.org/cgi/cvsweb.cgi/ports/devel/avr-binutils/files/patch-newdevices

12.5 GCC for the AVR target 86

12.5 GCC for the AVR target

Warning:

You must install avr-binutilsand make sure yoyvath is sefproperly before in-
stalling avr-gcc.

The steps to buildvr-gcc are essentially same as fainutils:

bunzip2 -c gcc-<version>.tar.bz2 | tar xf -

cd gcce-<version>

mkdir obj-avr

cd obj-avr

.Jconfigure --prefix=$PREFIX --target=avr --enable-languages=c,c++ \
--disable-nls --disable-libssp --with-dwarf2

make

$ make install

& B BHH P B

To save your self some download time, you can alternatively download only the
gcec-core- <version >.tar.bz2 and gcc-c++- <version >.tar.bz2

parts of the gcc. Also, if you don't need C++ support, you only need the core part
and should only enable the C language support.

Note:

Early versions of these tools did not support C++.
The stdc++ libs are not included with C++ for AVR due to the size limitations of

the devices.
The official version of GCC might lack support for recent AVR
devices. A patch that adds more AVR types can be found at

http://www.freebsd.org/cgi/cvsweb.cgi/ports/devel/avr-gcc/files/patch-newdevices

12.6 AVR Libc
Warning:

You must install avr-binutils avr-gccand make sure yoypath is setproperly
before installing avr-libc.

Note:

If you have obtained the latest avr-libc from cvs, you will have to run the
bootstrap script before using either of the build methods described below.

To build and install avr-libc:

$ gunzip -c avr-libc-<version>.tar.gz | tar xf -

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

http://www.freebsd.org/cgi/cvsweb.cgi/ports/devel/avr-gcc/files/patch-newdevices

12.7 AVRDUDE 87

$ cd avr-libc-<version>

$./configure --prefix=$PREFIX --build="./config.guess' --host=avr
$ make

$ make install

12.7 AVRDUDE

Note:

It has been ported to windows (via MinGW or cygwin), Linux and Solaris. Other
Unix systems should be trivial to port to.

avrdude is part of the FreeBSD ports system. To install it, simply do the following:

cd /usr/ports/devel/avrdude
make install

Note:

Installation into the default location usually requires root permissions. However,
running the program only requires access permissions to the apprqypigte
device.

Building and installing on other systems should usedtefigure system, as such:

gunzip -c¢ avrdude-<version>.tar.gz | tar xf -
cd avrdude-<version>

mkdir obj-avr

cd obj-avr

.Iconfigure --prefix=$PREFIX

make

make install

R T

12.8 GDB for the AVR target

GDB also uses theonfigure system, so to build and install:

bunzip2 -c gdb-<version>.tar.bz2 | tar xf -
cd gdb-<version>

mkdir obj-avr

cd obj-avr

..Jconfigure --prefix=$PREFIX --target=avr
make

make install

B BHPHHHPH

Note:

If you are planning on usingvr-gdb , you will probably want to install either
simulavror avaricesince avr-gdb needs one of these to run as a a remote target
backend.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

12.9 SimulAVR 88

12.9 SimulAVR

SimulAVR also uses theonfigure system, so to build and install:

gunzip -c¢ simulavr-<version>.tar.gz | tar xf -
cd simulavr-<version>

mkdir obj-avr

cd obj-avr

.Iconfigure --prefix=$PREFIX

make

make install

R T

Note:

You might want to have already installegir-binutils avr-gccandavr-libc if you
want to have the test programs built in the simulavr source.

12.10 AvaRICE

Note:

These install notes are not applicable to avarice-1.5 or older. You probably don'’t
want to use anything that old anyways since there have been many improvements
and bug fixes since the 1.5 release.

AVaRICE also uses theonfigure system, so to build and install:

gunzip -c avarice-<version>.tar.gz | tar xf -
cd avarice-<version>

mkdir obj-avr

cd obj-avr

.Iconfigure --prefix=$PREFIX

make

make install

R

Note:

AVaRICE uses the BFD library for accessing various binary file formats. You
may need to tell the configure script where to find the lib and headers for the link
to work. This is usually done by invoking the configure script like this (Replace
<hdr_path > with the path to théfd.h file on your system. Replacelib_-

path > with the path tdibbfd.a on your system.):

$ CPPFLAGS=-I<hdr_path> LDFLAGS=-L<lib_path> ../configure --prefix=$PREFIX

12.11 Building and Installing under Windows

Building and installing the toolchain under Windows requires more effort because all
of the tools required for building, and the programs themselves, are mainly designed

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

12.12 Tools Required for Building the Toolchain for Windows 89

for running under a POSIX environment such as Unix and Linux. Windows does not
natively provide such an environment.

There are two projects available that provide such an environment, Cygwin and
MinGW/MSYS. There are advantages and disadvantages to both. Cygwin provides
a very complete POSIX environment that allows one to build many Linux based tools
from source with very little or no source modifications. However, POSIX functionality

is provided in the form of a DLL that is linked to the application. This DLL has to
be redistributed with your application and there are issues if the Cygwin DLL already
exists on the installation system and different versions of the DLL. On the other hand,
MinGW/MSYS can compile code as native Win32 applications. However, this means
that programs designed for Unix and Linux (i.e. that use POSIX functionality) will not
compile as MinGW/MSYS does not provide that POSIX layer for you. Therefore most
programs that compile on both types of host systems, usually must provide some sort
of abstraction layer to allow an application to be built cross-platform.

MinGW/MSYS does provide somewhat of a POSIX environment that allows you to
build Unix and Linux applications as they woud normally do, witltanfigure

step and anake step. Cygwin also provides such an environment. This means that
building the AVR toolchain is very similar to how it is built in Linux, described above.
The main differences are in what the PATH environment variable gets set to, pathname
differences, and the tools that are required to build the projects under Windows. We'll
take a look at the tools next.

12.12 Tools Required for Building the Toolchain for Windows

These are the tools that are currently used to build WinAVR 20070525 (or later). This
list may change, either the version of the tools, or the tools themselves, as improve-
ments are made.

e MinGW/MSYS
<http://downloads.sourceforge.net/mingw/MinGW-5.1.3.exe?use_-
mirror=superb-east >

— Put MinGW-5.1.3.exe in its own directory (for example:
C:\MinGWSetup)

— Run MinGW-5.1.3.exe

— Select "Download and install"

— Select "Current" package.

— Select type of install: Full.

¢ Install MSYS-1.0.10.exe package.
<http://prdownloads.sf.net/mingw/MSY S-1.0.10.exe?download >

— Default selections

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

http://downloads.sourceforge.net/mingw/MinGW-5.1.3.exe?use_mirror=superb-east
http://downloads.sourceforge.net/mingw/MinGW-5.1.3.exe?use_mirror=superb-east
http://prdownloads.sf.net/mingw/MSYS-1.0.10.exe?download

12.12 Tools Required for Building the Toolchain for Windows 90

— Batch file will ask:

* "Do you wish to continue with the post install?" Press "y" and press
enter.

* "Do you have MinGW installed?" Press "y" and press enter.

* "Where is your MinGW installation?" Type in "c:/mingw" (without
quotes) and press enter

* "Do you wish for me to add mount bindings for c:/mingw to /mingw?"

Press "y" and press enter.

+ It will display some messages on the screen, then it will display: "Press
any key to continue . . .". Press any key.

* Edit c:\msys\1.0\msys.bat
Change line (should be line 41):

if EXIST rxvt.exe goto startrxvt

to:

rem if EXIST rxvt.exe goto startrxvt

to remark out this line. Doing this will cause MSYS to always use the bash shell
and not the rxvt shell.
Note:

The order of the next three is important. Install MSYS Developer toolkit before
the autotools.

¢ MSYS Developer Toolkit version 1.0.1

— This is needed to build avr-libc in MinGW.

— <http://downloads.sourceforge.net/mingw/msysDTK-1.0.1.exe?use_-
mirror=internap >

— Single file installer executable. Install.

« autoconf 2.59 from the "MSYS Developer Toolkit" release

— autoconf 2.59/2.60 is needed to build avr-libc in MinGW.

— <http://downloads.sourceforge.net/mingw/msys-autoconf-2.59.tar.bz2?use_-
mirror=internap >

— Extract to cymsys 1.0

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

http://downloads.sourceforge.net/mingw/msysDTK-1.0.1.exe?use_mirror=internap
http://downloads.sourceforge.net/mingw/msysDTK-1.0.1.exe?use_mirror=internap
http://downloads.sourceforge.net/mingw/msys-autoconf-2.59.tar.bz2?use_mirror=internap
http://downloads.sourceforge.net/mingw/msys-autoconf-2.59.tar.bz2?use_mirror=internap

12.12 Tools Required for Building the Toolchain for Windows 91

* automake 1.8.2

— automake 1.8/1.9 is needed to build avr-libc in MinGW.

— <http://downloads.sourceforge.net/mingw/msys-automake-1.8.2.tar.bz2?use_-
mirror=internap >

— Extract to cymsys\1.0

« Install Cygwin

— Install everything, all users, UNIX line endings. This will take:lang«
time. A fat internet pipe is highly recommended. It is also recommended
that you download all to a directory first, and then install from that directory
to your machine.

Note:
MPFR requires GMP, so build it first.

* Build GMP for MinGW

— Version 4.2.1
— <http://gmplib.org/ >
— Build script:

Jconfigure 2>&1 | tee gmp-configure.log
make 2>&1 | tee gmp-make.log
make check 2>&1 | tee gmp-make-check.log
make install 2>&1 | tee gmp-make-install.log

— GMP headers will be installed under /usr/local/include and library installed
under /usr/local/lib.

* Build MPFR for MinGW

— Version 2.2.1
— <http://www.mpfr.org/ >
— Build script:

Jconfigure --with-gmp=/usr/local 2>&1 | tee mpfr-configure.log
make 2>&1 | tee mpfr-make.log

make check 2>&1 | tee mpfr-make-check.log

make install 2>&1 | tee mpfr-make-install.log

— MPFR headers will be installed under /usr/local/include and library in-
stalled under /usr/local/lib.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

http://downloads.sourceforge.net/mingw/msys-automake-1.8.2.tar.bz2?use_mirror=internap
http://downloads.sourceforge.net/mingw/msys-automake-1.8.2.tar.bz2?use_mirror=internap
http://gmplib.org/
http://www.mpfr.org/

12.13 Building the Toolchain for Windows 92

Install Doxygen

— Version 1.4.7
— <http://lwww.stack.nl/ ~dimitri/doxygen/ >
— Download and install.

Install NetPBM

— Version 10.27.0
— From the GNUWin32 projeckhttp://gnuwin32.sourceforge.net/packages.html
— Download and install.

Install fig2dev

— Version 3.2 Patchlevel 5-alpha7
— From WinFig 1.71:<http://www.schmidt-web-berlin.de/winfig/ >
— Unzip the download file and install in a location of your choice.

Install MiKTex

— Version 2.5
— <http://miktex.org/ >
— Download and install.

Install Ghostscript

— Version 8.54
— <http://lwww.cs.wisc.edu/ ~ghost/ >
— Download and install.

Set the TEMP and TMP environment variablestgtemp or to the short file-
name version. This helps to avoid NTVDM errors during building.

12.13 Building the Toolchain for Windows

All directories in the PATH enviornment variable should be specified using their short
filename (8.3) version. This will also help to avoid NTVDM errors during building.
These short filenames can be specific to each machine.

Build the tools below in MSYS.

* Binutils

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

http://www.stack.nl/~dimitri/doxygen/
http://gnuwin32.sourceforge.net/packages.html
http://www.schmidt-web-berlin.de/winfig/
http://miktex.org/
http://www.cs.wisc.edu/~ghost/

12.13 Building the Toolchain for Windows

93

— Open source code pacakge and patch as necessary.

— Configure and build in a directory outside of the source code tree.

— Set PATH, in order:

*

*

*

*

*

*

*

<MikTex executables
/usr/local/bin

/usr/bin

/bin

/mingw/bin
c:/cygwin/bin

<install directory>/bin

— Configure

CFLAGS=-D__USE_MINGW_ACCESS \
..I$archivedir/configure \
--prefix=$installdir \
--target=avr \
--disable-nls \
--enable-doc \
--datadir=$installdir/doc/binutils \
--with-gmp=/ustr/local \
--with-mpfr=/usr/local \
2>&1 | tee binutils-configure.log

— Make

make all html install install-html 2>&1 | tee binutils-make.log

— Manually change documentation location.

« GCC

— Open source code pacakge and patch as necessary.

— Configure and build in a directory outside of the source code tree.

— Set PATH, in order:

*

*

*

*

*

*

<MikTex executables
/usr/local/bin

/usr/bin

/bin

/mingw/bin
c:/cygwin/bin

<install directory>/bin

— Configure

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

12.13 Building the Toolchain for Windows

94

CFLAGS=-D__USE_MINGW_ACCESS \
..Igcc-$version/configure \
--prefix=$installdir \
--target=$target \
--enable-languages=c,c++ \
--with-dwarf2 \
--enable-win32-registry=WinAVR-$release \
--disable-nls \
--with-gmp=/usr/local \
--with-mpfr=/usr/local \
--enable-doc \
--disable-libssp \
2>&1 | tee $package-configure.log

— Make

make all html install 2>&1 | tee $package-make.log

— Manually copy the HTML documentation from the source code tree to the

installation tree.

* avr-libc

— Open source code package.

— Configure and build at the top of the source code tree.

— Set PATH, in order:
* [usr/local/bin
* /mingw/bin
+ /bin
*» <MikTex executables
x <install directory>/bin
x <Doxygen executables
+ <NetPBM executables
x <fig2dev executables
» <Ghostscript executables
x C:/cygwin/bin

— Configure

Jconfigure \
--host=avr \
--prefix=$installdir \
--enable-doc \
--disable-versioned-doc \
--enable-html-doc \
--enable-pdf-doc \
--enable-man-doc \
--mandir=$installdir/man \
--datadir=$installdir \
2>&1 | tee $package-configure.log

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

12.13 Building the Toolchain for Windows 95

— Make

make all install 2>&1 | tee $package-make.log

— Manually change location of man page documentation.

— Move the examples to the top level of the install tree.

— Convert line endings in examples to Windows line endings.
— Convert line endings in header files to Windows line endings.

+ AVRDUDE

— Open source code package.
— Configure and build at the top of the source code tree.
— Set PATH, in order:
x <MikTex executables
* [usr/local/bin
* Jusr/bin
* [bin
* /mingw/bin
x C:/cygwin/bin
* <install directory>/bin
— Set location of LibUSB headers and libraries

export CPPFLAGS="-1../../libusb-win32-device-bin-$libusb_version/include"
export CFLAGS="-I../../libusb-win32-device-bin-$libusb_version/include"
export LDFLAGS="-L../../libusb-win32-device-bin-$libusb_version/lib/gcc"

— Configure

Jconfigure \
--prefix=$installdir \
--datadir=$installdir \
--sysconfdir=S$installdir/bin \
--enable-doc \
--disable-versioned-doc \
2>&1 | tee $package-configure.log

— Make

make -k all install 2>&1 | tee $package-make.log

— Convert line endings in avrdude config file to Windows line endings.
— Delete backup copy of avrdude config file in install directory if exists.

* Insight/GDB

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

12.13 Building the Toolchain for Windows

— Open source code pacakge and patch as necessary.
— Configure and build in a directory outside of the source code tree.
— Set PATH, in order:

x <MikTex executables

* [usr/local/bin

* fusr/bin

+ /bin

* /mingw/bin

x C:/cygwin/bin

* <install directory>/bin
— Configure

CFLAGS=-D__USE_MINGW_ACCESS \
LDFLAGS="-static’ \
../$archivedir/configure \

--prefix=$installdir \

--target=avr \

--with-gmp=/ustr/local \

--with-mpfr=/usr/local \

--enable-doc \

2>&1 | tee insight-configure.log

— Make

make all install 2>&1 | tee $package-make.log

¢ SRecord

— Open source code package.
— Configure and build at the top of the source code tree.
— Set PATH, in order:

* <MikTex executables

x [usr/local/bin

* [usr/bin

% /bin

* /mingw/bin

* c:/lcygwin/bin

x <install directory>/bin
— Configure

Jconfigure \
--prefix=$installdir \
--infodir=$installdir/info \
--mandir=$installdir/man \
2>&1 | tee $package-configure.log

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

12.13 Building the Toolchain for Windows 97

— Make

make all install 2>&1 | tee $package-make.log

Build the tools below in Cygwin.

* AVaRICE

— Open source code package.
— Configure and build in a directory outside of the source code tree.
— Set PATH, in order:
* <MikTex executables
* [usr/local/bin
* [usr/bin
* /bin
» <install directory>/bin
— Set location of LibUSB headers and libraries

export CPPFLAGS=-I$startdir/libusb-win32-device-bin-$libusb_version/include
export CFLAGS=-I$startdir/libusb-win32-device-bin-$libusb_version/include
export LDFLAGS="-static -L$startdir/libusb-win32-device-bin-$libusb_version/lib/gcc "

— Configure

.I$archivedir/configure \
--prefix=$installdir \
--datadir=$installdir/doc \
--mandir=$installdir/man \
--infodir=$installdir/info \

2>&1 | tee avarice-configure.log

— Make

make all install 2>&1 | tee avarice-make.log

* SimulAVR

— Open source code package.
— Configure and build in a directory outside of the source code tree.
— Set PATH, in order:

* <MikTex executables
= [usr/local/bin
= [usr/bin

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

13 Using the GNU tools 98

x /bin
+ <install directory>/bin
— Configure

export LDFLAGS="-static"
..I$archivedir/configure \
--prefix=Sinstalldir \
--datadir=$installdir \
--disable-tests \
--disable-versioned-doc \
2>&1 | tee simulavr-configure.log

— Make

make -k all install 2>&1 | tee simulavr-make.log
make pdf install-pdf 2>&1 | tee simulavr-pdf-make.log

13 Using the GNU tools

This is a short summary of the AVR-specific aspects of using the GNU tools. Normally,
the generic documentation of these tools is fairly large and maintainexiimfo
files. Command-line options are explained in detail in the manual page.

13.1 Options for the C compiler avr-gcc

13.1.1 Machine-specific options for the AVR

The following machine-specific options are recognized by the C compiler frontend. In
addition to the preprocessor macros indicated in the tables below, the preprocessor will
define the macros __AVR and __AVR___ (to the value 1) when compiling for an AVR

target. The macro AVR will be defined as well when using the standard levels gnu89
(default) and gnu99 but not with ¢89 and c99.

* -mmcu=architecture

Compile code foarchitecture Currently known architectures are

Architecture | Macros

avrl __AVR_ARCH__ =1 AVR_ASM ONLY____ AVR 2 BYTE_PC__ [2]

avr2 __ AVR_ARCH__ =2 AVR 2 BYTE_PC__ [2]

avr25 [1] __ AVR_ARCH__ =25 AVR_HAVE_MOVW__ [1] _AVR_HAVE LPMX__[1]_AVR 2 BYTE.
avr3 __ AVR_ARCH__ =3 AVR_MEGA __[5] AVR HAVE JMP_CALL_ [4] _AVR 2 BYTE_PC
avr3l __ AVR_ARCH_ =31 AVR_MEGA __ AVR_HAVE RAMPZ_[4] _AVR_HAVE ELPM__ [4]

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

13.1 Options for the C compiler avr-gcc 99

Architecture | Macros

avr35 [3] _ AVR_ARCH__ =35 AVR_MEGA__ [5] AVR_HAVE_JMP_CALL__ [4]_AVR_HAVE_MO\
avr4 __AVR_ARCH__=4 AVR ENHANCED__ [5] AVR HAVE_MOVW__ [1] _AVR_HAVE_LPN\
avrs __AVR_ARCH_ =5 _AVR_MEGA__ [5] _AVR_ENHANCED__ [5] _AVR_HAVE_JMP_CALL
avr51 __AVR_ARCH__ =51 AVR MEGA __ AVR ENHANCED_ __ AVR HAVE MOVW__ [1] A
avré [2] __ AVR_ARCH__=6__AVR_MEGA__ [5] _AVR_ENHANCED__ [5] _AVR_HAVE_JMP_CALL

[1] New in GCC 4.2

[2] Unofficial patch for GCC 4.1
[3] New in GCC 4.2.3

[4] New in GCC 4.3

[5] Obsolete.

By default, code is generated for the avr2 architecture.

Note that when only usingnmcu=architecturebut no-mmcu=MCU type including
the file <avrf/io.h > cannot work since it cannot decide which device’s definitions

to select.

¢ -mmcu=MCU type

The following MCU types are currently understood by avr-gcc. The table matches
them against the corresponding avr-gcc architecture name, and shows the preprocessor
symbol declared by thanmcu option.

Architecture | MCU name Macro

avrl at90s1200 __AVR_AT90S1200__
avrl attiny11 __AVR_ATtiny1l
avrl attiny12 __AVR_ATtinyl2
avrl attiny15 __AVR_ATtinyl5
avrl attiny28 __AVR_ATtiny28
avr2 at90s2313 __AVR_AT90S2313
avr2 at90s2323 ___AVR_AT90S2323
avr2 at90s2333 __AVR_AT90S2333___
avr2 at90s2343 __AVR_AT90S2343
avr2 attiny22 __AVR_ATtiny22
avr2 attiny26 __AVR_ATtiny26___
avr2 at90s4414 __AVR_AT90S4414
avr2 at90s4433 __AVR_AT90S4433
avr2 at90s4434 __AVR_AT90S4434
avr2 at90s8515 __AVR_AT90S8515
avr2 at90c8534 __AVR_AT90C8534
avr2 at90s8535 __AVR_AT90S8535

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

13.1 Options for the C compiler avr-gcc

100

Architecture | MCU name Macro

avr2/avr25 [1] | at86rf401 _ AVR_AT86RF401__
avr2/avr25 [1]| attinyl3 __AVR_ATtiny13
avr2/avr25 [1]| attiny2313 __AVR_ATtiny2313
avr2/avr25 [1]| attiny24 __AVR_ATtiny24
avr2/avr25 [1] | attiny25 __AVR_ATtiny25
avr2/avr25 [1]| attiny261 __AVR_ATtiny261
avr2/avr25 [1]| attiny43u __AVR_ATtiny43U__
avr2/avr25 [1]| attiny44 __AVR_ATtiny44
avr2/avr25 [1] | attiny45 __AVR_ATtiny45
avr2/avr25 [1] | attiny461 ___AVR_ATtiny461
avr2/avr25 [1] | attiny48 __AVR_ATtiny48_
avr2/avr25 [1] | attiny84 __AVR_ATtiny84
avr2/avr25 [1] | attiny85 __AVR_ATtiny85
avr2/avr25 [1] | attiny861 __AVR_ATtiny861
avr2/avr25 [1] | attiny88 __AVR_ATtiny88
avr3 atmega603 __AVR_ATmega603___
avr3 at43usb320 | _ AVR_AT43USB320
avr3 at43ush355 __AVR_AT43USB355
avr3/avr3l [3]| atmegal03 __AVR_ATmegalO3
avr3/avr35 [2]| at90usb82 __AVR_AT90USB82__
avr3/avr35 [2]| at90usb162 | _ AVR_AT90USB162__
avr3/avr35 [2]| attiny167 __AVR_ATtiny167__
avr3 at76¢711 __AVR_AT76C711__
avr4 atmega48 __AVR_ATmega48
avr4 atmega48p __AVR_ATmegad48P___
avr4 atmega8 __AVR_ATmega8
avr4 atmega8515 | _ AVR_ATmega8515
avr4 atmega8535 | _ AVR_ATmega8535
avr4 atmega88 __AVR_ATmega88
avr4 atmega88p __AVR_ATmega88P___
avr4 atmega8hva | _ AVR_ATmega8HVA
avr4 at90pwm1 __AVR_AT90PWM1__
avr4 at90pwm?2 ___AVR_AT90PWM2___
avr4 at90pwm?2b __AVR_AT90PWM2B
avr4 at90pwm3 __ AVR_AT90PWM3__
avr4 at90pwm3b __AVR_AT90PWM3B___
avrs at90pwm?216 | _ AVR_AT90PWM216__
avrb at90pwm316 | _ AVR_AT90PWM316___
avrs at90can32 _ AVR_AT90CAN32__
avrb at90can64 __AVR_AT90CANG64___
avrb at90ush646 | AVR _AT90USB646
avrb at90usb647 | _ AVR_ATO0USB647
avrs atmegal6 _ AVR_ATmegal6

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

13.1 Options for the C compiler avr-gcc

101

Architecture | MCU name Macro

avrs atmegal6l _ AVR_ATmegal6l_
avrs atmegal62 __AVR_ATmegal62_
avrs atmegal63 __AVR_ATmegal63
avrS atmegal64p | _ AVR_ATmegal64P___
avrb atmegal65 __AVR_ATmegal65
avrs atmegal65p | _ AVR_ATmegal65P
avrs atmegal68 __AVR_ATmegal68
avrs atmegal68p | _ AVR_ATmegal68P___
avrs atmegal69 _ AVR_ATmegal69
avrs atmegal69p | _ AVR_ATmegal69P___
avrs atmegal6hva | _ AVR_ATmegal6HVA__
avrs atmega32 __AVR_ATmega32__
avrb atmega323 __AVR_ATmega323
avrb atmega324p | _ AVR_ATmega324P___
avrb atmega325 __AVR_ATmega325
avrb atmega325p | _ AVR_ATmega325P
avrb atmega3250 | _ AVR_ATmega3250
avrb atmega3250p | _ AVR_ATmega3250P___
avrs atmega328p | _ AVR_ATmega328P___
avrb atmega329 __AVR_ATmega329
avrs atmega329p | _ AVR_ATmega329P___
avrb atmega3290 | _ AVR_ATmega3290
avrs atmega3290p | _ AVR_ATmega3290P___
avrs atmega32cl | _ AVR_ATMEGA32C1__
avrb atmega32hvb | _ AVR_ATmega32HVB___
avrs atmega32ml | _ AVR_ATMEGA32M1__
avrs atmega32u4 | _ AVR_ATMEGA32U4___
avrs atmega406 __AVR_ATmega406___
avrs atmega64 __AVR_ATmega64
avrs atmega640 __AVR_ATmega640___
avrs atmega644 __AVR_ATmega644
avrs atmega644p | _ AVR_ATmega644P
avrb atmega645 __AVR_ATmegab45_
avrb atmega6450 | _ AVR_ATmega6450
avrb atmega649 __AVR_ATmega649
avrb atmega6490 | _ AVR_ATmega6490
avrs atodk __AVR_AT94K
avr5/avr51 [3]| atmegal28 __AVR_ATmegal?28
avr5/avr51 [3]| atmegal280 | AVR _ATmegal280
avrb/avr51 [3]| atmegal281 | _ AVR_ATmegal281
avrb/avrbl [3]| atmegal284p | _ AVR_ATmegal284P__
avr5/avr51 [3]| at90can128 | _ AVR_AT90CAN128
avr5/avr51 [3]| at90usb1286 | AVR_AT90USB1286

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

13.1 Options for the C compiler avr-gcc

102

Architecture | MCU name Macro

avrb/avrb1 [3]| at90ushb1287 | _ AVR_AT90USB1287__
avré atmega2560 | _ AVR_ATmega2560
avré atmega2561 | _ AVR_ATmega2561
avrxmegab atxmega64al | _ AVR_ATxmega64Al
avrxmega’ atxmegal28al _ AVR_ATxmegal28Al_ |

[1] 'avr25’ architecture is new in GCC 4.2
[2] 'avr35’ architecture is new in GCC 4.2.3

e -morderl

e -morder2

Change the order of register assignment. The default is

r24,r25,r18,r19, r20, r21,r22,r23, r30, r31, r26, r27,r28, r29, r17, r16, r15, r14, r13,
r12,r11,r10,r9,r8, 17,16, 15,14, r3,r2, 10, rl

Order 1 uses

r18, r19, r20, r21, r22,r23, r24, r25, r30, r31, r26, r27, 128, r29, r17, r16, r15, r14, r13,
r12,r11,r10,r9, 8, r7,16,r5,r4,r3,r2, 10, rl

Order 2 uses
125, r24,r23,r22,r21, r20, r19, r18, r30, r31, 26, r27, r28, r29, r17, r16, r15, r14, r13,
r12,r11,r10,r9,r8,r7,r6,r5,r4,r3,r2,rl, r0

* -mint8

Assumeint
avr-libc

to be an 8-bit integer. Note that this is not really supported by
, S0 it should normally not be used. The default is to use 16-bit integers.

e -mno-interrupts

Generates code that changes the stack pointer without disabling interrupts. Normally,
the state of the status registeREGis saved in a temporary register, interrupts are
disabled while changing the stack pointer, S8RIEGs restored.

Specifying this option will define the preprocessor macrdlO_INTERRUPTS_to
the value 1.

« -mcall-prologues

Use subroutines for function prologue/epilogue. For complex functions that use many
registers (that needs to be saved/restored on function entry/exit), this saves some space
at the cost of a slightly increased execution time.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

13.1 Options for the C compiler avr-gcc 103

e -mtiny-stack
Change only the low 8 bits of the stack pointer.
¢ -mno-tablejump

Do not generate tablejump instructions. By default, jump tables can be used to op-
timize switch statements. When turned off, sequences of compare statements are
used instead. Jump tables are usually faster to execute on average, but in particular for
switch statements where most of the jumps would go to the default label, they might
waste a bit of flash memory.

* -mshort-calls

Userjmp/rcall (limited range) on>8K devices. Oravr2 andavr4 architec-
tures (less than 8 KB or flash memory), this is always the caseav@ andavr5
architectures, calls and jumps to targets outside the current function will by default use
jmp/call instructions that can cover the entire address range, but that require more
flash ROM and execution time.

e -mrtl

Dump the internal compilation result called "RTL" into comments in the generated
assembler code. Used for debugging avr-gcc.

* -msize

Dump the address, size, and relative cost of each statement into comments in the gen-
erated assembler code. Used for debugging avr-gcc.

e -mdeb
Generate lots of debugging informationgimerr
13.1.2 Selected general compiler options
The following general gcc options might be of some interest to AVR users.

e -On

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

13.1 Options for the C compiler avr-gcc 104

Optimization leveh. Increasingn is meant to optimize more, an optimization level of
0 means no optimization at all, which is the default if @ option is present. The
special optionOs is meant to turn on alO2 optimizations that are not expected to
increase code size.

Note that atO3, gcc attempts to inline all "simple" functions. For the AVR target,
this will normally constitute a large pessimization due to the code increasement. The
only other optimization turned on wit®3 is -frename-registers , which could
rather be enabled manually instead.

A simple-O option is equivalent teO1.

Note also that turning off all optimizations will prevent some warnings from being
issued since the generation of those warnings depends on code analysis steps that are
only performed when optimizing (unreachable code, unused variables).

See also thappropriate FAQ entrfor issues regarding debugging optimized code.

* -Wa, assembler-options

e -WI, linker-options

Pass the listed options to the assembler, or linker, respectively.
°g

Generate debugging information that can be used by avr-gdb.
« -ffreestanding

Assume a "freestanding" environment as per the C standard. This turns off automatic
builtin functions (though they can still be reached by prependiniguiltin_ to

the actual function name). It also makes the compiler not complain wwen()

is declared with asoid return type which makes some sense in a microcontroller
environment where the application cannot meaningfully provide a return value to its
environment (in most casemain() won’t even return anyway). However, this also
turns off all optimizations normally done by the compiler which assume that functions
known by a certain name behave as described by the standard. E. g., applying the
function strlen() to a literal string will normally cause the compiler to immediately
replace that call by the actual length of the string, while witteestanding , it

will always callstrlen()at run-time.

 -funsigned-char

Make any unqualfiedhar type an unsigned char. Without this option, they default to
a signed char.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

13.2 Options for the assembler avr-as 105

 -funsigned-bitfields
Make any unqualified bitfield type unsigned. By default, they are signed.
 -fshort-enums

Allocate to anenum type only as many bytes as it needs for the declared range of
possible values. Specifically, the enum type will be equivalent to the smallest integer
type which has enough room.

« -fpack-struct

Pack all structure members together without holes.

13.2 Options for the assembler avr-as
13.2.1 Machine-specific assembler options

* -mmcu=architecture

¢ -mmcu=MCU name

avr-as understands the samamcu= options asavr-gcc By default, avr2 is assumed,
but this can be altered by using the appropriate .arch pseudo-instruction inside the
assembler source file.

» -mall-opcodes

Turns off opcode checking for the actual MCU type, and allows any possible AVR
opcode to be assembled.

¢ -mno-skip-bug

Dont emit a warning when trying to skip a 2-word instruction with a
CPSE/SBIC/SBIS/SBRC/SBRS instruction. Early AVR devices suffered from a
hardware bug where these instructions could not be properly skipped.

* -mno-wrap

For RIMP/RCALL nstructions, don’t allow the target address to wrap around for de-
vices that have more than 8 KB of memory.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

13.2 Options for the assembler avr-as 106

e -gstabs
Generate .stabs debugging symbols for assembler source lines. This enables avr-gdb
to trace through assembler source files. This optimist notbe used when assembling
sources that have been generated by the C compiler; these files already contain the
appropriate line number information from the C source files.

e -aJcdhlmns= file]

Turn on the assembler listing. The sub-options are:

c omit false conditionals

d omit debugging directives

h include high-level source
* | include assembly

¢ minclude macro expansions
e n omit forms processing

¢ s include symbols

=file set the name of the listing file

The various sub-options can be combined into a sirayleption list;=file must be the
last one in that case.

13.2.2 Examples for assembler options passed through the C compiler

Remember that assembler options can be passed from the C compiler frontend using
-Wa (seeabovg, so in order to include the C source code into the assembler listing in
file foo.lst , when compilingoo.c , the following compiler command-line can be
used:

$ avr-gcc -¢c -O foo.c -0 foo.0 -Wa,-ahls=foo.Ist

In order to pass an assembler file through the C preprocessor first, and have the assem-
bler generate line number debugging information for it, the following command can be
used:

$ avr-gcc -c -x assembler-with-cpp -0 foo.0 foo.S -Wa,--gstabs

Note that on Unix systems that have case-distinguishing file systems, specifying a file
name with the suffix .S (upper-case letter S) will make the compiler automatically
assumex assembler-with-cpp , while using .s would pass the file directly to

the assembler (no preprocessing done).

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

13.3 Controlling the linker avr-Id 107

13.3 Controlling the linker avr-Id
13.3.1 Selected linker options

While there are no machine-specific options for avr-ld, a number of the standard op-
tions might be of interest to AVR users.

e -| name

Locate the archive library namelibb namea, and use it to resolve currently
unresolved symbols from it. The library is searched along a path that con-
sists of builtin pathname entries that have been specified at compile time (e. g.
lusr/local/avr/lib on Unix systems), possibly extended by pathname entries
as specified byL options (that must precede tHe options on the command-Iline).

e -L path
Additional location to look for archive libraries requested-byoptions.
e -defsym symbol=expr
Define a global symbaymbolusingexpras the value.
. -M
Print a linker map testdout
e -Map mapfile
Print a linker map tanapfile
o -cref

Output a cross reference table to the map file (in cddap is also present), or to
stdout

¢ -section-start sectionname=org
Start sectiorsectionnamat absolute addressg.

e -Thss org

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

13.3 Controlling the linker avr-Id 108

e -Tdata org

e -Ttext org
Start thebss , data , ortext section abrg, respectively.
e -T scriptfile

Use scriptfile as the linker script, replacing the default linker script. De-
fault linker scripts are stored in a system-specific location (e. g. under
/usr/local/avr/lib/ldscripts on Unix systems), and consist of the AVR
architecture name (avr2 through avr5) with the suffix .x appended. They describe how
the variousmemory sectionwill be linked together.

13.3.2 Passing linker options from the C compiler

By default, all unknown non-option arguments on the avr-gcc command-line (i. e.,
all filename arguments that don’t have a suffix that is handled by avr-gcc) are passed
straight to the linker. Thus, all files ending in .o (object files) and .a (object libraries)
are provided to the linker.

System libraries are usually not passed by their explicit filename but rather using the
-l option which uses an abbreviated form of the archive filename (see above). avr-
libc ships two system librariedibc.a , andlibm.a . While the standard library
libc.a will always be searched for unresolved references when the linker is started
using the C compiler frontend (i. e., there’s always at least one imgdtiedoption),

the mathematics librafjpm.a needs to be explicitly requested usihg . See also
theentry in the FAQexplaining this.

Conventionally, Makefiles use thmake macroLDLIBS to keep track ofl (and
possibly-L) options that should only be appended to the C compiler command-line
when linking the final binary. In contrast, the madDFLAGSIs used to store other
command-line options to the C compiler that should be passed as options during the
linking stage. The difference is that options are placed early on the command-line,
while libraries are put at the end since they are to be used to resolve global symbols
that are still unresolved at this point.

Specific linker flags can be passed from the C compiler command-line usingvthe
compiler option, seabove This option requires that there be no spaces in the appended
linker option, while some of the linker options above (l#éap or -defsym) would

require a space. In these situations, the space can be replaced by an equal sign as
well. For example, the following command-line can be used to comfipile into an
executable, and also produce a link map that contains a cross-reference list in the file
foo.map:

$ avr-gcc -O -o foo.out -WI,-Map=foo.map -WI,--cref foo.c

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

14 Using the avrdude program 109

Alternatively, a comma as a placeholder will be replaced by a space before passing the
option to the linker. So for a device with external SRAM, the following command-line
would cause the linker to place the data segment at address 0x2000 in the SRAM:

$ avr-gcc -mmcu=atmegal28 -o foo.out -WI,-Tdata,0x802000

See the explanation of tha#ata sectiorfor why 0x800000 needs to be added to the
actual value. Note that the stack will still remain in internal RAM, through the symbol
__stack thatis provided by the run-time startup code. This is probably a good idea
anyway (since internal RAM access is faster), and even required for some early devices
that had hardware bugs preventing them from using a stack in external RAM. Note
also that the heap fanalloc() will still be placed after all the variables in the data
section, so in this situation, no stack/heap collision can occur.

In order to relocate the stack from its default location at the top of interns RAM, the
value of the symbol stack can be changed on the linker command-line. As the
linker is typically called from the compiler frontend, this can be achieved using a com-
piler option like

-WI,--defsym=__stack=0x8003ff

The above will make the code use stack space from RAM address 0x3ff downwards.
The amount of stack space available then depends on the bottom address of internal
RAM for a particular device. It is the responsibility of the application to ensure the
stack does not grow out of bounds, as well as to arrange for the stack to not collide
with variable allocations made by the compiler (sections .data and .bss).

14 Using the avrdude program

Note:

This section was contributed by Brian Dealnd @bsdhome.com 1].
The avrdude program was previously called avrprog. The name was changed to
avoid confusion with the avrprog program that Atmel ships with AvrStudio.

avrdude is a program that is used to update or read the flash and EEPROM memories
of Atmel AVR microcontrollers on FreeBSD Unix. It supports the Atmel serial pro-
gramming protocol using the PC'’s parallel port and can upload either a raw binary file
or an Intel Hex format file. It can also be used in an interactive mode to individually
update EEPROM cells, fuse bits, and/or lock bits (if their access is supported by the
Atmel serial programming protocol.) The main flash instruction memory of the AVR
can also be programmed in interactive mode, however this is not very useful because
one can only turn bits off. The only way to turn flash bits on is to erase the entire
memory (usingavrdude s -e option).

avrdude is part of the FreeBSD ports system. To install it, simply do the following:

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

mailto:bsd@bsdhome.com

14 Using the avrdude program 110

cd /usr/ports/devel/avrdude
make install

Once installedavrdude can program processors using the contents of the .hex file
specified on the command line. In this example, therfilgn.hex is burned into the
flash memory:

avrdude -p 2313 -e -m flash -i main.hex
avrdude: AVR device initialized and ready to accept instructions
avrdude: Device signature = 0x1e9101

avrdude: erasing chip

avrdude: done.

avrdude: reading input file "main.hex"

avrdude: input file main.hex auto detected as Intel Hex

avrdude: writing flash:

1749 0x00

avrdude: 1750 bytes of flash written

avrdude: verifying flash memory against main.hex:
avrdude: reading on-chip flash data:

1749 0x00

avrdude: verifying ...

avrdude: 1750 bytes of flash verified

avrdude done. Thank you.

The-p 2313 option letsavrdude know that we are operating on an AT90S2313
chip. This option specifies the device id and is matched up with the device of the same
id in avrdude ’s configuration file (/usr/local/etc/avrdude .conf). To list

valid parts, specify thev option. The-e option instructsavrdude to perform a
chip-erase before programming; this is almost always necessary before programming
the flash. Them flash option indicates that we want to upload data into the flash
memory, while-i main.hex specifies the name of the input file.

The EEPROM is uploaded in the same way, the only difference is that you would use
-m eeprom instead ofm flash

To use interactive mode, use tHe option:

avrdude -p 2313 -t

avrdude: AVR device initialized and ready to accept instructions
avrdude: Device signature = 0x1e9101

avrdude>

The '?" command displays a list of valid
commands:

avrdude> ?
>>> ?

Valid commands:

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

15 Release Numbering and Methodology 111

dump : dump memory : dump <memtype> <addr> <N-Bytes>
read : alias for dump

write : write memory : write <memtype> <addr> <bl> <b2> ... <bN>
erase : perform a chip erase

sig . display device signature bytes

part : display the current part information

send . send a raw command : send <bl> <b2> <b3> <b4>
help . help

? : help

quit : quit

Use the ’'part’ command to display valid memory types for use with the
‘"dump’ and ‘'write’ commands.

avrdude>

15 Release Numbering and Methodology

15.1 Release Version Numbering Scheme
15.1.1 Stable Versions

A stable release will always have a minor number that is an even number. This implies
that you should be able to upgrade to a new version of the library with the same major
and minor numbers without fear that any of the APIs have changed. The only changes
that should be made to a stable branch are bug fixes and under some circumstances,
additional functionality (e.g. adding support for a new device).

If major version number has changed, this implies that the required versions of gcc and
binutils have changed. Consult the README file in the toplevel directory of the AVR
Libc source for which versions are required.

15.1.2 Development Versions
The major version number of a development series is always the same as the last stable
release.

The minor version number of a development series is always an odd number and is 1
more than the last stable release.

The patch version number of a development series is always 0 until a new branch is cut
at which point the patch number is changed to 90 to denote the branch is approaching
a release and the date appended to the version to denote that it is still in development.

All versions in development in cvs will also always have the date appended as a fourth
version number. The format of the date will be YYYYMMDD.

So, the development version number will look like this:

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

15.2 Releasing AVR Libc 112

1.1.0.20030825

While a pre-release version number on a branch (destined to become either 1.2 or 2.0)
will look like this:

1.1.90.20030828

15.2 Releasing AVR Libc

The information in this section is only relevant to AVR Libc developers and can be
ignored by end users.

Note:

In what follows, | assume you know how to use cvs and how to checkout multiple
source trees in a single directory without having them clobber each other. If you
don’t know how to do this, you probably shouldn’t be making releases or cutting
branches.

15.2.1 Creating a cvs branch

The following steps should be taken to cut a branch in cvs:

1. Check out a fresh source tree from cvs HEAD.

2. Update the NEWS file with pending release number and commit to cvs HEAD:

Change "Changes since avr-likdast_release:" to "Changes in avr-libc-
<this_relelase:".

3. Set the branch-point tag (settirgnajor> and<minor> accordingly):
‘cvs tag avr-libc<major>_<minor>-branchpoint’

4. Create the branch:
‘cvs tag -b avr-libc<major>_<minor>-branch’

5. Update the package version in configure.ac and commit configure.ac to cvs
HEAD:

Change minor number to next odd value.

6. Update the NEWS file and commit to cvs HEAD:
Add "Changes since avr-libethis_releasg:"

7. Check out a new tree for the branch:
‘cvs co -r avr-libc<major>_<minor>-branch’

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

15.2 Releasing AVR Libc 113

10.

11.
12.

Note:

. Update the package version in configure.ac and commit configure.ac to cvs

branch:

Change the patch number to 90 to denote that this now a branch leading up to a
release. Be sure to leave thelate> part of the version.

. Bring the build system up to date by running bootstrap and configure.

Perform a 'make distcheck’ and make sure it succeeds. This will create the
shapshot source tarball. This should be considered the first release candidate.

Upload the snapshot tarball to savannah.

Announce the branch and the branch tag to the avr-libc-dev list so other devel-
opers can checkout the branch.

CVS tags do not allow the use of periods ().

15.2.2 Making a release

A stable release will only be done on a branch, not from the cvs HEAD.

The following steps should be taken when making a release:

. Make sure the source tree you are working from is on the correct branch:

‘cvs update -r avr-libc<major>_<minor>-branch’

. Update the package version in configure.ac and commit it to cvs.

. Update the gnu tool chain version requirements in the README and commit to

Cvs.

. Update the ChangeLog file to note the release and commit to cvs on the branch:

Add "Released avr-libesthis_release."

. Update the NEWS file with pending release number and commit to cvs:

Change "Changes since avr-likdast release:" to "Changes in avr-libc-
<this_relelasge:".

. Bring the build system up to date by running bootstrap and configure.

. Perform a 'make distcheck’ and make sure it succeeds. This will create the

source tarball.

. Tag the release:

‘cvs tag avr-libc<major>_<minor>_<patch>-release’

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

15.2 Releasing AVR Libc 114

9. Upload the tarball to savannah.

10. Update the NEWS file, and commit to cvs:
Add "Changes since avr-libesmajor>_<minor>_<patch>:"

11. Generate the latest documentation and upload to savannah.
12. Announce the release.

The following hypothetical diagram should help clarify version and branch relation-
ships.

HEAD 1.0 Branch 1.2 Branch
cvs tag avr-libc-1_0-branchpoint —$

set version to 1.1.0.<date>
cvs tag —b avr-libc-1_0-branch

set version to 0.90.90.<date>
set versionto 1.0
cvs tag avr-libc-1_O-release
set version to 1.0.0.<date>
set versionto 1.0.1
vs tag avr-libc-1_0_1-release
'
cvs tag avr-libc-1_2-branchpoint
set version to 1.3.0.<date> cvs tag —b avr-libc—-1_2-branch
set version to 1.1.90.<date>
set versionto 1.2
cvs tag avr-libc-1_2-release

cvs tag avr-libc-2.0-branchpoint +
set version to 2.1.0.<date>

'

Figure 4: Release tree

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

16 Acknowledgments 115

16 Acknowledgments

This document tries to tie together the labors of a large group of people. Without
these individuals’ efforts, we wouldn't have a terrificge set of tools to develop AVR
projects. We all owe thanks to:

* The GCC Team, which produced a very capable set of development tools for an
amazing number of platforms and processors.

e Denis Chertykov [denisc@overta.ru] for making the AVR-specific
changes to the GNU tools.

¢ Denis Chertykov and Marek Michalkiewicziarekm@Ilinux.org.pl] for
developing the standard libraries and startup cod@¥R-GCC.

¢ Uros Platise for developing the AVR programmer taop.

« Joerg Wunsch Joerg@FreeBSD.ORG] for adding all the AVR development
tools to the FreeBSDIjttp://www.freebsd.org] ports tree and for pro-
viding the basics for thdemo project

¢ Brian Dean [bsd@bsdhome.com] for developingavrdude (an alternative to
uisp) and for contributingdocumentatiorwhich describes how to use ifvr-
dude was previously calledvrprog.

« Eric Weddington [eweddington@cso.atmel.com] for maintaining the
WinAVR package and thus making the continued improvements to the open
source AVR toolchain available to many users.

« Rich Neswold for writing the original avr-tools document (which he graciously
allowed to be merged into this document) and his improvements tdehe
project

* Theodore A. Roth for having been a long-time maintainer of many of the tools
(AVR-Libc , the AVR port of GDB, AvaRICE, uisp, avrdude).

« All the people who currently maintain the tools, and/or have submitted sugges-
tions, patches and bug reports. (See the AUTHORS files of the various tools.)

« And lastly, all the users who use the software. If nobody used the software, we
would probably not be very motivated to continue to develop it. Keep those bug
reports coming. ;-)

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

mailto:denisc@overta.ru
mailto:marekm@linux.org.pl
mailto:joerg@FreeBSD.ORG
http://www.freebsd.org
mailto:bsd@bsdhome.com
mailto:eweddington@cso.atmel.com

17 Todo List 116

17 Todo List

Group avr_boot From email with Marek: On smaller devices (all except AT-
mega64/128), _ SPM_REG is in the 1/O space, accessible with the shorter "in"
and "out" instructions - since the boot loader has a limited size, this could be an
important optimization.

18 Deprecated List

Global SIGNAL Do not useSIGNAL() in new code. Usé¢SR() instead.

Global ISR_ALIAS For new code, the use of ISR(..., ISR_ALIASOF(...)) is recom-
mended.

Global timer_enable_int
Global enable_external_int
Global INTERRUPT
Global inp

Global outp

Global inb

Global outb

Global sbi

Global cbi

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

19 Module Index 117

19 Module Index

19.1 Modules

Here is a list of all modules:

<alloca.h>: Allocate space in the stack 122
<assert.h>: Diagnostics 123
<ctype.h>: Character Operations 124
<errno.h>: System Errors 127
<inttypes.h>: Integer Type conversions 127
<math.h>: Mathematics 139
<setjmp.h>: Non-local goto 146
<stdint.h>: Standard Integer Types 148
<stdio.h>: Standard 10 facilities 160
<stdlib.h>: General utilities 179
<string.h>: Strings 190
<avr/boot.h>: Bootloader Support Utilities 201
<avr/eeprom.h>: EEPROM handling 208
<avr/fuse.h>: Fuse Support 211
<avrfinterrupt.h >: Interrupts 214
<avrfio.h>: AVR device-specific 10 definitions 237
<avr/lock.h>: Lockbit Support 238
<avr/pgmspace.h>: Program Space Utilities 241
<avr/power.h>: Power Reduction Management 253
<avr/sfr_defs.h>: Special function registers 258

Additional notes from <avr/sfr_defs.h> 256

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

20 Data Structure Index 118
<avr/sleep.h>: Power Management and Sleep Modes 260
<avr/version.h>: avr-libc version macros 261
<avr/wdt.h>: Watchdog timer handling 263
<util/atomic.h > Atomically and Non-Atomically Executed Code Blocks 266
<util/crc16.h>: CRC Computations 270
<util/delay.h>: Convenience functions for busy-wait delay loops 273
<util/delay_basic.ht>: Basic busy-wait delay loops 274
<util/parity.h >: Parity bit generation 275
<util/setbaud.h>: Helper macros for baud rate calculations 276
<util/twi.h >: TWI bit mask definitions 278
<compat/deprecated.h-: Deprecated items 283
<compat/ina90.h>: Compatibility with IAR EWB 3.x 286
Demo projects 286

Combining C and assembly source files 288
A simple project 291
A more sophisticated project 304
Using the standard 10 facilities 312
Example using the two-wire interface (TWI) 319

20 Data Structure Index

20.1 Data Structures

Here are the data structures with brief descriptions:

div_t 324
Idiv_t 325

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

21 File Index 119

21 File Index

21.1 File List

Here is a list of all documented files with brief descriptions:
assert.h 325
atoi.S 326
atol.S 326
atomic.h 326
boot.h 326
crcl6.h 333
ctype.h 333
delay.h 334
delay_basic.h 334
errno.h 335
fdevopen.c 335
ffs.S 335
ffsl.S 335
ffsll.S 335
fuse.h 335
interrupt.h 336
inttypes.h 336
io.h 339
lock.h 339
math.h 339
memccpy.S 342
memchr.S 342

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

21.1 File List 120

memchr_P.S 342
memcmp.S 342
memcmp_P.S 342
memcpy.S 342
memcpy_P.S 342
memmem.S 342
memmove.S 342
memrchr.S 342
memrchr_P.S 342
memset.S 342
parity.h 342
pgmspace.h 343
power.h 349
setbaud.h 350
setimp.h 350
sleep.h 351
stdint.h 351
stdio.h 354
stdlib.h 356
strcasecmp.S 360
strcasecmp_P.S 360
strcasestr.S 360
strcat.S 360
strcat_P.S 360
strchr.S 360

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

21.1 File List 121

strchr_P.S 360
strchrnul.S 360
strchrnul_P.S 360
strcmp.S 360
strcmp_P.S 360
strcpy.S 360
strcpy_P.S 360
strespn.S 360
strcspn_P.S 360
string.h 360
strlcat.S 363
stricat P.S 363
stricpy.S 363
stricpy_P.S 363
strlen.S 363
strlen_P.S 363
striwr.S 363
strncasecmp.S 363
strncasecmp_P.S 363
strncat.S 363
strncat_P.S 363
strncmp.S 363
strncmp_P.S 363
strncpy.S 363
strncpy_P.S 363

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22 Module Documentation 122

strnlen.S 363
strnlen_P.S 363
strpbrk.S 363
strpbrk_P.S 363
strrchr.S 363
strrchr_P.S 363
strrev.S 363
strsep.S 363
strsep_P.S 363
strspn.S 363
strspn_P.S 363
strstr.S 363
strstr_P.S 363
strtok_r.S 363
strupr.S 363
util/twi.h 363
wdt.h 365

22 Module Documentation

22.1 <alloca.h>: Allocate space in the stack
22.1.1 Detailed Description
Functions

¢ void x alloca(size_t __size)

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.2 <assert.h>: Diagnostics 123

22.1.2 Function Documentation

22.1.2.1 voic alloca (size_t _siz@
Allocate__sizebytes of space in the stack frame of the caller.

This temporary space is automatically freed when the function that callech()re-

turns to its caller. Avr-libc defines thaloca()as a macro, which is translated into the
inlined __ builtin_alloca() function. The fact that the code is inlined, means
that it is impossible to take the address of this function, or to change its behaviour by
linking with a different library.

Returns:

alloca()returns a pointer to the beginning of the allocated space. If the allocation
causes stack overflow, program behaviour is undefined.

Warning:

Avoid usealloca()inside the list of arguments of a function call.

22.2 <assert.h>: Diagnostics
22.2.1 Detailed Description

#include <assert.h>

This header file defines a debugging aid.

As there is no standard error output stream available for many applications using this
library, the generation of a printable error message is not enabled by default. These
messages will only be generated if the application defines the macro

__ ASSERT_USE_STDERR

before including thecassert.h > header file. By default, onlgbort()will be called
to halt the application.

Defines

* #defineasselfexpression)

22.2.2 Define Documentation

22.2.2.1 #define assert(expression)

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.3 <ctype.h>: Character Operations 124

Parameters:

expressionExpression to test for.

The assert()macro tests the given expression and if it is false, the calling process is
terminated. A diagnostic message is written to stderr and the furatiori()is called,
effectively terminating the program.

If expression is true, thassert(Jmacro does nothing.

Theassert(ynacro may be removed at compile time by defining NDEBUG as a macro
(e.g., by using the compiler option -DNDEBUG).

22.3 <ctype.h>: Character Operations
22.3.1 Detailed Description
These functions perform various operations on characters.

#include <ctype.h>

Character classification routines

These functions perform character classification. They return true or false status de-
pending whether the character passed to the function falls into the function’s classifi-
cation (i.e.isdigit() returns true if its argument is any value '0’ though '9’, inclusive).

If the input is not an unsigned char value, all of this function return false.

e intisalnum(int __c)
e intisalpha(int __ c)
* intisascii(int__c)
e intisblank(int _ c)
e intiscntrl(int__ c)
« intisdigit(int__ c)
e intisgraph(int__ c)
e intislower(int _ c)
e intisprint(int__ c)
e intispunct(int_ c)
« intisspacgint _ c)
« intisupper(int_c)
« intisxdigit (int _c)

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.3 <ctype.h>: Character Operations 125

Character convertion routines

This realization permits all possible values of integer argument.t@dweeii()function
clears all highest bits. Thimlower() andtoupper()functions return an input argument
as is, if it is not an unsigned char value.

« inttoascii(int __c)
« int tolower(int __c)
« int toupper(int __c)

22.3.2 Function Documentation

22.3.2.1 intisalnum (int__©

Checks for an alphanumeric character. It is equivalent(isalpha(c) [l
isdigit(c))

22.3.2.2 intisalpha (int__0

Checks for an alphabetic character. It is equivalent (igupper(c) [l
islower(c))

22.3.2.3 intisascii (int__ 0

Checks whethet is a 7-bit unsigned char value that fits into the ASCII character set.

22.3.2.4 intisblank (int__ ¢

Checks for a blank character, that is, a space or a tab.

22.3.2.5 intiscntrl (int__©

Checks for a control character.

22.3.2.6 intisdigit (int__ 0
Checks for a digit (0 through 9).

22.3.2.7 intisgraph (int_ o

Checks for any printable character except space.

22.3.2.8 intislower (int__ 0

Checks for a lower-case character.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.3 <ctype.h>: Character Operations 126

22.3.2.9 intisprint(int__ o

Checks for any printable character including space.

22.3.2.10 intispunct (int__ ¢

Checks for any printable character which is not a space or an alphanumeric character.

22.3.2.11 intisspace (int_¢

Checks for white-space characters. For the avr-libc library, these are: space, form-
feed (\f"), newline ("\n’), carriage return {r’), horizontal tab (\t'), and vertical tab

(\V).

22.3.2.12 intisupper (int__ 09

Checks for an uppercase letter.

22.3.2.13 intisxdigit (int__©
Checks for a hexadecimal digits, i.e. oneof0123456789abcdefABCDEF.

22.3.2.14 inttoascii (int__¢

Convertsc to a 7-bit unsigned char value that fits into the ASCII character set, by
clearing the high-order bits.

Warning:

Many people will be unhappy if you use this function. This function will convert
accented letters into random characters.

22.3.2.15 inttolower (int_ 0

Converts the letter to lower case, if possible.

22.3.2.16 inttoupper (int__0

Converts the letter to upper case, if possible.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.4 <errno.h>: System Errors 127

22.4 <errno.h>: System Errors

22.4.1 Detailed Description

#include <errno.h>

Some functions in the library set the global variabteno when an error occurs. The
file, <errno.h >, provides symbolic names for various error codes.
Warning:

Theerrno global variable is not safe to use in a threaded or multi-task system. A
race condition can occur if a task is interrupted between the call whickisets

and when the task examinesno . If another task changesrno during this
time, the result will be incorrect for the interrupted task.

Defines
» #defineEDOM 33

* #defineEERANGE 34

22.4.2 Define Documentation

22.4.2.1 #define EDOM 33

Domain error.

22.4.2.2 #define ERANGE 34

Range error.

22.5 <inttypes.h>: Integer Type conversions

22.5.1 Detailed Description

#include <inttypes.h>

This header file includes the exact-width integer definitions frostdint.h >, and
extends them with additional facilities provided by the implementation.

Currently, the extensions include two additional integer types that could hold a "far"
pointer (i.e. a code pointer that can address more than 64 KB), as well as standard
names for all printf and scanf formatting options that are supported by skaio.h>:
Standard 10 facilities As the library does not support the full range of conversion

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.5 <inttypes.h>: Integer Type conversions 128

specifiers from ISO 9899:1999, only those conversions that are actually implemented
will be listed here.

The idea behind these conversion macros is that, for each of the types defined by
<stdint.h>, a macro will be supplied that portably allows formatting an object of that
type inprintf() or scanf()operations. Example:

#include <inttypes.h>

uint8_t smallval;
int32_t longval;

printf("The hexadecimal value of smallval is " PRIx8
", the decimal value of longval is " PRId32 "\n",
smallval, longval);

Far pointers for memory access>64K

* typedefint32_tint_farptr_t
« typedefuint32_tuint_farptr_t

macros for printf and scanf format specifiers

For C++, these are only included if __ STDC_LIMIT_MACROS is defined before in-
cluding <inttypes.h>.

« #definePRId8"d"

* #definePRIDLEASTS8"d"
» #definePRIJFASTS8"d"

* #definePRIi8"i"

* #definePRIILEASTS8"i"

» #definePRIIFAST8""

» #definePRId16"d"

« #definePRIDLEAST16'd"
* #definePRIDFAST16'd"
* #definePRIi16""

* #definePRIILEAST16""
* #definePRIIFAST16"i"

» #definePRId32"[d"

* #definePRIDLEAST32"|d"
o #definePRIDFAST32'ld"
» #definePRIi32"li"

» #definePRIILEAST32"li"
* #definePRIIFAST32"i"

¢ #definePRIAPTRPRIA16

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.5 <inttypes.h>: Integer Type conversions 129

* #definePRIIPTRPRIi16

« #definePRI08"0"

* #definePRIOLEAST8"0"
» #definePRIOFAST8"0"

¢ #definePRIu8"u"

* #definePRIULEAST8"u"
» #definePRIUFASTS8"u"

* #definePRIx8"x"

* #definePRIXLEAST8"X"
» #definePRIXFAST8"X"

o #definePRIX8"X"

* #definePRIXLEAST8"X"
» #definePRIXFAST8"X"

» #definePRl016"0"

* #definePRIOLEAST16"0"
* #definePRIOFAST16'0"

» #definePRIul6"u"

* #definePRIULEAST16"u"
¢ #definePRIUFAST16'u"

* #definePRIX16"X"

» #definePRIXLEAST16"x"
o #definePRIXFAST16"x"

* #definePRIX16"X"

o #definePRIXLEAST16"X"
* #definePRIXFAST16"X"
¢ #definePRI032"l0"

* #definePRIOLEAST32"l0"
* #definePRIOFAST32'l0"
¢ #definePRIu32"lu"

o #definePRIULEAST32"Iu"
* #definePRIUFAST32'|lu"
o #definePRIx32"[x"

¢ #definePRIXLEAST32"Ix"
* #definePRIXFAST32"Ix"
o #definePRIX32"IX"

o #definePRIXLEAST32"IX"
» #definePRIXFAST32"IX"
* #definePRIOPTRPRI016
» #definePRIUPTRPRIU16
¢ #definePRIXPTRPRIx16
* #definePRIXPTRPRIX16
» #defineSCNd16'd"

¢ #defineSCNdLEAST16'd"

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.5 <inttypes.h>: Integer Type conversions

130

* #defineSCNdFAST16'd"

* #defineSCNi16"i"

* #defineSCNILEAST16"i"
* #defineSCNIiFAST16""

e #defineSCNd32'ld"

* #defineSCNALEAST32'ld"
» #defineSCNAFAST32'ld"
» #defineSCNi32"li"

* #defineSCNILEAST32"i"
* #defineSCNIFAST32"li"

* #defineSCNdPTRSCNd16
* #defineSCNIPTRSCNIi16
» #defineSCN016"0"

* #defineSCNoLEAST16'0"
e #defineSCNoFAST16'0"

e #defineSCNul16"u"

» #defineSCNULEAST16'u"
¢ #defineSCNuFAST16'u"

» #defineSCNx16"x"

» #defineSCNXLEAST16"Xx"
* #defineSCNXxFAST16'X"

» #defineSCNo32"lo"

* #defineSCNoOLEAST32'l0"
* #defineSCNoFAST32'l0"
e #defineSCNu32'lu"

o #defineSCNuULEAST32'lu"
¢ #defineSCNuFAST32'lu"
o #defineSCNx32"Ix"

* #defineSCNXLEAST32"[x"
* #defineSCNXFAST32'Ix"
¢ #defineSCNoPTRSCNo016
* #defineSCNuUPTRSCNul6
¢ #defineSCNXPTRSCNx16

22.5.2 Define Documentation

22.5.2.1 #define PRId16 "d"

decimal printf format for int16_t

22.5.2.2 #define PRIM32 "Id"

decimal printf format for int32_t

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.5 <inttypes.h>: Integer Type conversions

131

22.5.2.3 #define PRIA8 "d"

decimal printf format for int8_t

22.5.2.4 #define PRIDFAST16 "d"

decimal printf format for int_fast16 t

22.5.2.5 #define PRIAFAST32 "ld"

decimal printf format for int_fast32_t

22.5.2.6 #define PRIDFASTS "d"

decimal printf format for int_fast8_t

22.5.2.7 #define PRIDLEAST16 "d"

decimal printf format for int_least16_t

22.5.2.8 #define PRIALEAST32 "|d"

decimal printf format for int_least32_t

22.5.2.9 #define PRIALEASTS8 "d"

decimal printf format for int_least8_t

22.5.2.10 #define PRIDPTR PRId16

decimal printf format for intptr_t

22.5.2.11 #define PRIi16"i"

integer printf format for int16_t

22.5.2.12 #define PRIi32 "Ii"

integer printf format for int32_t

22.5.2.13 #define PRIi8 "i"

integer printf format for int8_t

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.5 <inttypes.h>: Integer Type conversions

132

22.5.2.14 #define PRIIFAST16 "

integer printf format for int_fast16_t

22.5.2.15 #define PRIIFAST32 "li"

integer printf format for int_fast32_t

22.5.2.16 #define PRIIFAST8 "i"

integer printf format for int_fast8_t

22.5.2.17 #define PRIILEAST16 "i"

integer printf format for int_least16_t

22.5.2.18 #define PRIILEAST32 "li"

integer printf format for int_least32_t

22.5.2.19 #define PRIILEASTS8 "i"

integer printf format for int_least8_t

22.5.2.20 #define PRIIPTR PRIi16

integer printf format for intptr_t

22.5.2.21 #define PRI016 "0"

octal printf format for uint16_t

22.5.2.22 t#define PRI032 "lo"

octal printf format for uint32_t

22.5.2.23 #define PRIo8 "0"

octal printf format for uint8_t

22.5.2.24 t#define PRIOFAST16 "o"

octal printf format for uint_fast16 t

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.5 <inttypes.h>: Integer Type conversions

133

22.5.2.25 #define PRIOFAST32 "lo"

octal printf format for uint_fast32_t

22.5.2.26 #define PRIOFASTS "o"

octal printf format for uint_fast8 t

22.5.2.27 #define PRIOLEAST16 "o"

octal printf format for uint_least16 t

22.5.2.28 #define PRIOLEAST32 "lo"

octal printf format for uint_least32_t

22.5.2.29 #define PRIOLEASTS "0"

octal printf format for uint_least8_t

22.5.2.30 #define PRIOPTR PRIo16

octal printf format for uintptr_t

22.5.2.31 #define PRIU16 "u"

decimal printf format for uint16_t

22.5.2.32 #define PRIu32 "lu"

decimal printf format for uint32_t

22.5.2.33 #define PRIu8 "u"

decimal printf format for uint8_t

22.5.2.34 #define PRIUFAST16 "u"

decimal printf format for uint_fast16_t

22.5.2.35 #define PRIUFAST32 "lu"

decimal printf format for uint_fast32_t

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.5 <inttypes.h>: Integer Type conversions 134

22.5.2.36 #define PRIUFASTS "u"

decimal printf format for uint_fast8 t

22.5.2.37 #define PRIULEAST16 "u"

decimal printf format for uint_least16_t

22.5.2.38 #define PRIULEAST32 "lu"

decimal printf format for uint_least32_t

22.5.2.39 #define PRIULEASTS "u"

decimal printf format for uint_least8_t

22.5.2.40 #define PRIUPTR PRIul6

decimal printf format for uintptr_t

22.5.2.41 #define PRIX16 "X"

uppercase hexadecimal printf format for uint16_t

22.5.2.42 #define PRIX16 "X"

hexadecimal printf format for uint16_t

22.5.2.43 #define PRIX32 "IX"

uppercase hexadecimal printf format for uint32_t

22.5.2.44 t#define PRIX32 "Ix"

hexadecimal printf format for uint32_t

22.5.2.45 #define PRIX8 "X"

uppercase hexadecimal printf format for uint8_t

22.5.2.46 t#define PRIX8 "x"

hexadecimal printf format for uint8_t

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.5 <inttypes.h>: Integer Type conversions 135

22.5.2.47 #define PRIXFAST16 "X"

uppercase hexadecimal printf format for uint_fast16_t

22.5.2.48 #define PRIXFAST16 "x"

hexadecimal printf format for uint_fast16_t

22.5.2.49 #define PRIXFAST32 "IX"

uppercase hexadecimal printf format for uint_fast32_t

22.5.2.50 #define PRIXFAST32 "Ix"

hexadecimal printf format for uint_fast32_t

22.5.2.51 #define PRIXFASTS "X"

uppercase hexadecimal printf format for uint_fast8_t

22.5.2.52 #define PRIXFAST8 "X"

hexadecimal printf format for uint_fast8_t

22.5.2.53 #define PRIXLEAST16 "X"

uppercase hexadecimal printf format for uint_least16 t

22.5.2.54 #define PRIXLEAST16 "x"

hexadecimal printf format for uint_least16_t

22.5.2.55 #define PRIXLEAST32 "IX"

uppercase hexadecimal printf format for uint_least32_t

22.5.2.56 #define PRIXLEAST32 "|x"

hexadecimal printf format for uint_least32_t

22.5.2.57 #define PRIXLEAST8 "X"

uppercase hexadecimal printf format for uint_least8_t

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.5 <inttypes.h>: Integer Type conversions 136

22.5.2.58 #define PRIXLEAST8 "x"

hexadecimal printf format for uint_least8 t

22.5.2.59 #define PRIXPTR PRIX16

uppercase hexadecimal printf format for uintptr_t

22.5.2.60 #define PRIXPTR PRIX16

hexadecimal printf format for uintptr_t

22.5.2.61 #define SCNd16 "d"

decimal scanf format for int16_t

22.5.2.62 #define SCNd32 "Ild"

decimal scanf format for int32_t

22.5.2.63 #define SCNdFAST16 "d"

decimal scanf format for int_fast16 t

22.5.2.64 #define SCNdFAST32 "ld"

decimal scanf format for int_fast32_t

22.5.2.65 #define SCNALEAST16 "d"

decimal scanf format for int_least16 t

22.5.2.66 #define SCNALEAST32 "ld"

decimal scanf format for int_least32_t

22.5.2.67 #define SCNdPTR SCNd16

decimal scanf format for intptr_t

22.5.2.68 #define SCNi16 "i"

generic-integer scanf format for int16_t

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.5 <inttypes.h>: Integer Type conversions

137

22.5.2.69 #define SCNi32 "Ii"

generic-integer scanf format for int32_t

22.5.2.70 #define SCNIFAST16 "i"

generic-integer scanf format for int_fast16 t

225.2.71 #define SCNIFAST32 "li"

generic-integer scanf format for int_fast32_t

22.5.2.72 #define SCNILEAST16 "i"

generic-integer scanf format for int_least16_t

22.5.2.73 #define SCNILEAST32 "li"

generic-integer scanf format for int_least32_t

22.5.2.74 #define SCNIPTR SCNil6

generic-integer scanf format for intptr_t

22.5.2.75 #define SCNo16 "o"

octal scanf format for uint16_t

22.5.2.76 #define SCN032 "lo"

octal scanf format for uint32_t

22.5.2.77 #define SCNoFAST16 "0"

octal scanf format for uint_fast16 t

22.5.2.78 #define SCNoFAST32 "lo"

octal scanf format for uint_fast32_t

22.5.2.79 #define SCNoOLEAST16 "0"

octal scanf format for uint_least16_t

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.5 <inttypes.h>: Integer Type conversions

138

22.5.2.80 #define SCNOLEAST32 "lo"

octal scanf format for uint_least32_t

22.5.2.81 #define SCNoPTR SCNo016

octal scanf format for uintptr_t

22.5.2.82 #define SCNul6 "u"

decimal scanf format for uint16_t

22.5.2.83 #define SCNu32 "lu"

decimal scanf format for uint32_t

22.5.2.84 #define SCNUFAST16 "u"

decimal scanf format for uint_fast16_t

22.5.2.85 #define SCNUFAST32 "lu"

decimal scanf format for uint_fast32_t

22.5.2.86 #define SCNULEAST16 "u"

decimal scanf format for uint_least16 t

22.5.2.87 #define SCNULEAST32 "lu"

decimal scanf format for uint_least32_t

22.5.2.88 #define SCNUPTR SCNul6

decimal scanf format for uintptr_t

22.5.2.89 #define SCNx16 "x"

hexadecimal scanf format for uint16 t

22.5.2.90 #define SCNx32 "Ix"

hexadecimal scanf format for uint32_t

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.6 <math.h>: Mathematics 139

22.5.2.91 #define SCNXFAST16 "x"

hexadecimal scanf format for uint_fast16 t

22.5.2.92 #define SCNxFAST32 "Ix"

hexadecimal scanf format for uint_fast32_t

22.5.2.93 #define SCNXLEAST16 "x"

hexadecimal scanf format for uint_least16 _t

22.5.2.94 #define SCNXLEAST32 "Ix"

hexadecimal scanf format for uint_least32_t

22.5.2.95 #define SCNXPTR SCNx16
hexadecimal scanf format for uintptr_t
22.5.3 Typedef Documentation
22.5.3.1 typedefint32_tint_farptr_t

signed integer type that can hold a pointe64 KB

22.5.3.2 typedefuint32_t uint_farptr_t
unsigned integer type that can hold a pointet4 KB

22.6 <math.h>: Mathematics

22.6.1 Detailed Description

#include <math.h>

This header file declares basic mathematics constants and functions.

Notes:

* In order to access the functions delcared herein, it is usually also required to

additionally link against the librarjbm.a . See also the relatdehQ entry,
« Math functions do not raise exceptions and do not changertm® vari-

able. Therefore the majority of them are declared with const attribute, for

better optimization by GCC.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.6

<math.h>: Mathematics

140

Defines

#defineM_P13.141592653589793238462643
#defineM_SQRT?21.4142135623730950488016887

#defineNAN __ builtin_nan(")
#defineINFINITY __ builtin_inf()

Functions

doublecos(double _ x)
doublefabs(double __ x)

doublefmod (double __ x, double __y)
doublemodf(double _ x, double__iptr)
doublesin (double _ x)
doublesqgrt(double _ x)
doubletan(double __ x)

doublefloor (double __x)

doubleceil (double _ x)

doublefrexp (double __x, int__pexp)
doubleldexp(double __x, int__exp)
doubleexp(double _ x)
doublecosh(double __ x)
doublesinh(double __ x)
doubletanh(double __ x)
doubleacos(double __ x)
doubleasin(double _ x)
doubleatan(double _ Xx)
doubleatan2(double __y, double __ x)
doublelog (double __ x)
doublelog10(double _ x)

doublepow (double __x, double __y)
intisnan(double _ x)

intisinf (double __ x)
doublesquargdouble _ x)
doublecopysign(double _ x, double __y)
doublefdim (double __ x, double __y)

doublefma (double __x, double __y, double __7)

doublefmax (double __ x, double __y)
doublefmin (double __ x, double __y)
int signbit(double _ x)
doubletrunc(double __ x)

int isfinite (double __ x)
doublehypot(double __ x, double __y)

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.6 <math.h>: Mathematics 141

¢ doubleround(double _ x)
« longlround(double _ x)
¢ longlrint (double _ x)

22.6.2 Define Documentation

22.6.2.1 #define INFINITY __ builtin_inf()
INFINITY constant.

22.6.2.2 #define M_PI 3.141592653589793238462643

The constanpi .

22.6.2.3 #define M_SQRT2 1.4142135623730950488016887

The square root of 2.

22.6.2.4 #define NAN __ builtin_nan("™)
NAN constant.

22.6.3 Function Documentation

22.6.3.1 double acos (double x)

Theacos()function computes the principal value of the arc cosine of The returned
value is in the range [0, pi] radians. A domain error occurs for arguments not in the
range [-1, +1].

22.6.3.2 double asin (double_x)

The asin()function computes the principal value of the arc sine ok The returned
value is in the range [-pi/2, pi/2] radians. A domain error occurs for arguments not in
the range [-1, +1].

22.6.3.3 double atan (double_X)

Theatan()function computes the principal value of the arc tangent of The returned
value is in the range [-pi/2, pi/2] radians.

22.6.3.4 double atan2 (double y, double X

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.6 <math.h>: Mathematics 142

Theatan2()function computes the principal value of the arc tangent gf/ __ x using
the signs of both arguments to determine the quadrant of the return value. The returned
value is in the range [-pi, +pi] radians.

22.6.3.5 double ceil (double x)

The ceil() function returns the smallest integral value greater than or equal Xo
expressed as a floating-point number.

22.6.3.6 double copysign (double_x, double__y)

Thecopysign()function returns__ xbut with the sign of _y. They work even if _xor
__Yyare NaN or zero.

22.6.3.7 double cos (double Xx)

Thecos()function returns the cosine of x measured in radians.

22.6.3.8 double cosh (double X)

The cosh()function returns the hyperbolic cosine ofx

22.6.3.9 double exp (double X)

Theexp()function returns the exponential value ofx

22.6.3.10 double fabs (double X)

Thefabs()function computes the absolute value of a floating-point numbgr

22.6.3.11 double fdim (double_x, double__y)

Thefdim() function returngmax(__x - __ vy, 0)If _ xor __yor both are NaN, NaN is
returned.

22.6.3.12 double floor (double x)

The floor() function returns the largest integral value less than or equal 10 ex-
pressed as a floating-point number.

22.6.3.13 double fma (double_x, double__y, double__ 2

Thefma() function performs floating-point multiply-add. This is the operatfonx
__Yy)+ _zbutthe intermediate result is not rounded to the destination type. This can
sometimes improve the precision of a calculation.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.6 <math.h>: Mathematics 143

22.6.3.14 double fmax (double x, double__y)

The fmax() function returns the greater of the two values<xand__y. If an argument
is NaN, the other argument is returned. If both arguments are NaN, NaN is returned.

22.6.3.15 double fmin (double x, double__y)

Thefmin() function returns the lesser of the two valuexand__y. If an argument is
NaN, the other argument is returned. If both arguments are NaN, NaN is returned.

22.6.3.16 double fmod (double x, double__y)

The functionfmod() returns the floating-point remainder ofx/ _y

22.6.3.17 double frexp (double_x, int x __pexp

The frexp() function breaks a floating-point number into a normalized fraction and an
integral power of 2. It stores the integer in e object pointed to by _pexp

If _ xis a normal float point number, thieexp() function returns the value, such that
v has a magnitude in the interval [1/2, 1) or zero, andtequalsv times 2 raised to
the power__pexp If __ xis zero, both parts of the result are zero. I&is not a finite
number, thdérexp() returns__xas is and stores 0 by pexp

Note:

This implementation permits a zero pointer as a directive to skip a storing the
exponent.

22.6.3.18 double hypot (double_x, double_ V)

The hypot() function returnssqrt(__ % X+ __ w) This is the length of the hy-
potenuse of a right triangle with sides of lengthxand__y; or the distance of the point
(__x __y) from the origin. Using this function instead of the direct formula is wise,
since the error is much smaller. No underflow with smatkand__y. No overflow if
result is in range.

22.6.3.19 intisfinite (double Xx)

Theisfinite() function returns a nonzero value if xis finite: not plus or minus infinity,
and not NaN.

22.6.3.20 intisinf (double_x)

The functionisinf() returns 1 if the argument xis positive infinity, -1 if__xis negative
infinity, and O otherwise.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.6 <math.h>: Mathematics 144

22.6.3.21 intisnan (double X)

The functionisnan()returns 1 if the argument xrepresents a "not-a-number" (NaN)
object, otherwise 0.

22.6.3.22 double Idexp (double_x, int __exp
Theldexp() function multiplies a floating-point number by an integral power of 2.

Theldexp() function returns the value of xtimes 2 raised to the power exp

22.6.3.23 double log (double_x)

Thelog() function returns the natural logarithm of argumenk

22.6.3.24 double log10 (double x)

Thelog10()function returns the logarithm of argumentxto base 10.

22.6.3.25 long Irint (double__X)

Thelrint() function rounds__ xto the nearest integer, rounding the halfway cases to the
even integer direction. (That is both 1.5 and 2.5 values are rounded to 2). This function
is similar to rint() function, but it differs in type of return value and in that an overflow

is possible.

Returns:

The rounded long integer value. If xis not a finite number or an overflow was,
this realization returns theONG_MINvalue (0x80000000).

22.6.3.26 long Iround (double x)

Thelround()function rounds__xto the nearest integer, but rounds halfway cases away
from zero (instead of to the nearest even integer). This function is similautad()
function, but it differs in type of return value and in that an overflow is possible.

Returns:

The rounded long integer value. If xis not a finite number or an overflow was,
this realization returns theONG_MINvalue (0x80000000).

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.6 <math.h>: Mathematics 145

22.6.3.27 double modf (double x, doublex __iptr)

Themodf() function breaks the argument xinto integral and fractional parts, each of
which has the same sign as the argument. It stores the integral part as a double in the
object pointed to by iptr.

Themodf() function returns the signed fractional part ofx

Note:

This implementation skips writing by zero pointer.

22.6.3.28 double pow (double x, double__y)

The functionpow() returns the value of xto the exponent .

22.6.3.29 double round (double x)

Theround()function rounds__xto the nearest integer, but rounds halfway cases away
from zero (instead of to the nearest even integer). Overflow is impossible.

Returns:

The rounded value. If xis an integral or infinite, xitself is returned. If _xis
NaN thenNaNis returned.

22.6.3.30 int signbit (double X

The signbit() function returns a nonzero value if the value ofx has its sign bit set.
This is not the same as ‘x< 0.0, because IEEE 754 floating point allows zero to be
signed. The comparison -0 0.0’ is false, but ‘signbit (-0.0)’ will return a nonzero
value.

Note:

This implementation returns 1 if sign bit is set.

22.6.3.31 double sin (double_x)

Thesin() function returns the sine of x measured in radians.

22.6.3.32 double sinh (double x)

Thesinh()function returns the hyperbolic sine of x

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.7 <setjmp.h>: Non-local goto 146

22.6.3.33 double sqrt (double x)

Thesqrt()function returns the non-negative square root aft

22.6.3.34 double square (double X)

The functionsquare(yeturns__ xx _ X

Note:

This function does not belong to the C standard definition.

22.6.3.35 double tan (double_X)

Thetan()function returns the tangent of x measured in radians.

22.6.3.36 double tanh (double_x)

Thetanh()function returns the hyperbolic tangent ofx

22.6.3.37 double trunc (double X)

Thetrunc()function rounds__xto the nearest integer not larger in absolute value.

22.7 <setjmp.h>: Non-local goto
22.7.1 Detailed Description

While the C language has the dreadgdo statement, it can only be used to jump to
a label in the same (local) function. In order to jump directly to another (non-local)
function, the C library provides theetjmp()andlongjmp() functions. setjmp()and
longjmp() are useful for dealing with errors and interrupts encountered in a low-level
subroutine of a program.

Note:

setimp()andlongjmp() make programs hard to understand and maintain. If possi-
ble, an alternative should be used.

longjmp() can destroy changes made to global register variabledHseeo per-
manently bind a variable to a registpr?

For a very detailed discussion sétjimp(Jlongjmp(), see Chapter 7 dfdvanced Pro-
gramming in the UNIX Environmertty W. Richard Stevens.

Example:

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.7 <setjmp.h>: Non-local goto 147

#include <setjmp.h>
jmp_buf env;
int main (void)

if (setimp (env))

.. handle error ...

}
while (1)
{
.. main processing loop which calls foo() some where ...
}

void foo (void)
.. blah, blah, blah ...
if (err)

longjmp (env, 1);

Functions
« int setimp(jmp_buf __jmpb)
e void longjmp (jmp_buf __jmpb, int__ret) _ ATTR_NORETURN___

22.7.2 Function Documentation

22.7.2.1 void longjmp (jmp_buf__jmph int _ ref

Non-local jump to a saved stack context.

#include <setjmp.h>

longjmp() restores the environment saved by the last caegfmp()with the corre-
sponding__jmpbargument. Aftetongjmp()is completed, program execution contin-
ues as if the corresponding call sétjmp()had just returned the value ret

Note:

longjmp() cannot cause O to be returned.ldhgjmp() is invoked with a second
argument of 0, 1 will be returned instead.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.8 <stdint.h>: Standard Integer Types 148

Parameters:

__jmpb Information saved by a previous call setjmp()
__ret Value to return to the caller afetjmp()

Returns:

This function never returns.

22.7.2.2 intsetjimp (jmp_buf__jmpbh

Save stack context for non-local goto.

#include <setjmp.h>

setjmp()saves the stack context/environment inmpbfor later use byongjmp(). The
stack context will be invalidated if the function which calleetimp()returns.

Parameters:

__jmpb Variable of typejmp_buf which holds the stack information such that
the environment can be restored.

Returns:

setjimp() returns O if returning directly, and non-zero when returning from
longjmp()using the saved context.

22.8 <stdint.h>: Standard Integer Types
22.8.1 Detailed Description

#include <stdint.h>

Use [u]intN_t if you need exactly N bits.

Since these typedefs are mandated by the C99 standard, they are preferred over rolling
your own typedefs.

Exact-width integer types
Integer types having exactly the specified width

« typedef signed chant8 _t
« typedef unsigned charint8_t

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.8 <stdint.h>: Standard Integer Types

149

« typedef signed inint16_t

« typedef unsigned intint16_t

typedef signed long inht32_t

« typedef unsigned long intint32_t
typedef signed long long inht64 t

« typedef unsigned long long inint64 _t

Integer types capable of holding object pointers
These allow you to declare variables of the same size as a pointer.

* typedefintl6_tintptr_t
* typedefuintl6_tuintptr_t

Minimum-width integer types
Integer types having at least the specified width

 typedefint8_tint least8 t

¢ typedefuint8_tuint_least8 t

¢ typedefintl6_tint_leastl6 t
 typedefuintl6_tuint_least16 t
* typedefint32_tint_least32_t

« typedefuint32_tuint_least32_t
 typedefint64_tint_least64 t

« typedefuint64_tuint_least64 t

Fastest minimum-width integer types
Integer types being usually fastest having at least the specified width

¢ typedefint8_tint fast8 t

¢ typedefuint8_tuint fast8 t
 typedefintl6_tint fastl6 t
 typedefuintl6_tuint_fastl6 t
 typedefint32_tint_fast32_t

* typedefuint32_tuint_fast32_t
 typedefint64_tint_fast64 t

« typedefuint64_tuint_fast64 t

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.8 <stdint.h>: Standard Integer Types 150

Greatest-width integer types

Types designating integer data capable of representing any value of any integer type in
the corresponding signed or unsigned category

« typedefinté4_tintmax_t
« typedefuint64_tuintmax_t

Limits of specified-width integer types

C++ implementations should define these macros only when _ STDC_LIMIT_-
MACROS is defined beforestdint.f> is included

e #defineINT8_MAX 0x7f

« #definelINT8_MIN (-INT8_MAX - 1)

« #defineUINT8_MAX (__ CONCAT(INT8_MAX, U) 2U + 1U)

o #defineINT16_MAX Ox7fff

« #definelINT16_MIN (-INT16_MAX - 1)

« #defineUINT16_MAX (__ CONCAT(INT16_MAX, U)* 2U + 1U)

o #defineINT32_MAX Ox7fffffffL

« #definelNT32_MIN (-INT32_MAX - 1L)

« #defineUINT32_MAX (__CONCAT(INT32_MAX, U)* 2UL + 1UL)
o #definelNT64_MAX Ox7fffffffffffffffLL

e #defineNT64_MIN (-INT64_MAX - 1LL)

o #defineUINT64_MAX (__CONCAT(INT64_MAX, U)x 2ULL + 1ULL)

Limits of minimum-width integer types

« #definelNT_LEAST8_MAX INT8_MAX

« #definelNT_LEAST8_MIN INT8_MIN

« #defineUINT_LEAST8_MAX UINT8_MAX

« #defineNT_LEAST16_MAX INT16_MAX

« #defineNT_LEAST16_MININT16_MIN

« #defineUINT_LEAST16_MAX UINT16_MAX
« #defineNT_LEAST32_MAX INT32_MAX

« #defineNT_LEAST32_MININT32_MIN

« #defineUINT_LEAST32_MAX UINT32_MAX
« #defineNT_LEAST64_MAX INT64_MAX

« #defineNT_LEAST64_MININT64_MIN

« #defineUINT_LEAST64_MAX UINT64_MAX

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.8 <stdint.h>: Standard Integer Types 151

Limits of fastest minimum-width integer types

o #defineINT_FAST8_MAXINT8_MAX
 #defineINT_FAST8_MININT8_MIN

o #defineUINT_FAST8_MAX UINT8_MAX

o #defineINT_FAST16_MAXINT16_MAX

o #defineINT_FAST16_MININT16_MIN
 #defineUINT_FAST16_MAXUINT16_MAX
o #defineINT_FAST32_MAXINT32_MAX

o #defineINT_FAST32_MININT32_MIN

o #defineUINT_FAST32_MAXUINT32_MAX
* #defineINT_FAST64_MAXINT64_MAX

* #defineINT_FAST64_MININT64_MIN

* #defineUINT_FAST64_MAXUINT64_MAX

Limits of integer types capable of holding object pointers

o #defineINTPTR_MAX INT16_MAX
o #defineINTPTR_MIN INT16_MIN
o #defineUINTPTR_MAX UINT16_MAX

Limits of greatest-width integer types

o #defineINTMAX_MAX INT64_MAX
o #defineINTMAX_MIN INT64_MIN
o #defineUINTMAX_MAX UINT64_MAX

Limits of other integer types

C++ implementations should define these macros only when _ STDC_LIMIT_-
MACROS is defined beforestdint.f> is included

#definePTRDIFF_MAXINT16_MAX
#definePTRDIFF_MININT16_MIN
#defineSIG_ATOMIC_MAX INT8_MAX
#defineSIG_ATOMIC_MIN INT8_MIN
#defineSIZE_MAX (__CONCAT(INT16_MAX, U))

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.8 <stdint.h>: Standard Integer Types 152

Macros for integer constants
C++ implementations should define these macros only when __ STDC_CONSTANT _-
MACROS is defined beforestdint.h> is included.

These definitions are valid for integer constants without suffix and for macros defined
as integer constant without suffix

o #defineINT8_C(value) ({nt8_1) value)

o #defineUINT8_C(value) ((int8_f CONCAT (value, U))
» #defineINT16_(Q(value) value

e #defineUINT16_Q(value) _ CONCAT(value, U)

o #defineINT32_(Q(value) _ CONCAT(value, L)

e #defineUINT32_Q(value) _ CONCAT(value, UL)

e #defineINT64_((value) _ CONCAT (value, LL)

e #defineUINT64_Q(value) _ CONCAT(value, ULL)

o #defineINTMAX_C (value) _ CONCAT(value, LL)

o #defineUINTMAX_C (value) _ CONCAT(value, ULL)

22.8.2 Define Documentation

22.8.2.1 #define INT16_C(value) value

define a constant of type int16 t

22.8.2.2 #define INT16_MAX Ox7fff

largest positive value an int16_t can hold.

22.8.2.3 #define INT16_MIN (-INT16_MAX - 1)

smallest negative value an int16_t can hold.

22.8.2.4 #define INT32_C(value) _ CONCAT(value, L)

define a constant of type int32_t

22.8.2.5 #define INT32_MAX OXTfffffffL

largest positive value an int32_t can hold.

22.8.2.6 #define INT32_MIN (-INT32_MAX - 1L)

smallest negative value an int32_t can hold.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.8 <stdint.h>: Standard Integer Types 153

22.8.2.7 #define INT64_C(value) _ CONCAT(value, LL)

define a constant of type int64_t

22.8.2.8 #define INT64_MAX Ox7{fffffffffffffLL

largest positive value an int64_t can hold.

22.8.2.9 #define INT64_MIN (-INT64_MAX - 1LL)

smallest negative value an int64_t can hold.

22.8.2.10 #define INT8_C(value) ((int8_t) value)

define a constant of type int8_t

22.8.2.11 #define INT8_MAX Ox7f

largest positive value an int8_t can hold.

22.8.2.12 #define INT8_MIN (-INT8_MAX - 1)

smallest negative value an int8_t can hold.

22.8.2.13 #define INT_FAST16_MAX INT16_MAX

largest positive value an int_fast16_t can hold.

22.8.2.14 #define INT_FAST16_MIN INT16_MIN

smallest negative value an int_fast16_t can hold.

22.8.2.15 #define INT_FAST32_MAX INT32_MAX

largest positive value an int_fast32_t can hold.

22.8.2.16 #define INT_FAST32_MIN INT32_MIN

smallest negative value an int_fast32_t can hold.

22.8.2.17 #define INT_FAST64_MAX INT64_MAX

largest positive value an int_fast64 _t can hold.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.8 <stdint.h>: Standard Integer Types 154

22.8.2.18 #define INT_FAST64_MIN INT64_MIN

smallest negative value an int_fast64_t can hold.

22.8.2.19 #define INT_FAST8_MAX INT8_MAX

largest positive value an int_fast8 t can hold.

22.8.2.20 #define INT_FAST8_MIN INT8_MIN

smallest negative value an int_fast8_t can hold.

22.8.2.21 #define INT_LEAST16_MAX INT16_MAX

largest positive value an int_least16_t can hold.

22.8.2.22 #define INT_LEAST16_MIN INT16_MIN

smallest negative value an int_least16_t can hold.

22.8.2.23 #define INT_LEAST32_MAX INT32_MAX

largest positive value an int_least32_t can hold.

22.8.2.24 #define INT_LEAST32_MIN INT32_MIN

smallest negative value an int_least32_t can hold.

22.8.2.25 #define INT_LEAST64_MAX INT64_MAX

largest positive value an int_least64_t can hold.

22.8.2.26 #define INT_LEAST64_MIN INT64_MIN

smallest negative value an int_least64 t can hold.

22.8.2.27 #define INT_LEAST8_MAX INT8_MAX

largest positive value an int_least8_t can hold.

22.8.2.28 #define INT_LEAST8_MIN INT8_MIN

smallest negative value an int_least8 t can hold.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.8 <stdint.h>: Standard Integer Types 155

22.8.2.29 #define INTMAX_C(value) _ CONCAT(value, LL)

define a constant of type intmax_t

22.8.2.30 #define INTMAX_MAX INT64_MAX

largest positive value an intmax_t can hold.

22.8.2.31 #define INTMAX_MIN INT64_MIN

smallest negative value an intmax_t can hold.

22.8.2.32 #define INTPTR_MAX INT16_MAX

largest positive value an intptr_t can hold.

22.8.2.33 #define INTPTR_MIN INT16_MIN

smallest negative value an intptr_t can hold.

22.8.2.34 #define PTRDIFF_MAX INT16_MAX

largest positive value a ptrdiff_t can hold.

22.8.2.35 #define PTRDIFF_MIN INT16_MIN

smallest negative value a ptrdiff_t can hold.

22.8.2.36 #define SIG_ATOMIC_MAX INT8_MAX

largest positive value a sig_atomic_t can hold.

22.8.2.37 #define SIG_ATOMIC_MIN INT8_MIN

smallest negative value a sig_atomic_t can hold.

22.8.2.38 #define SIZE_MAX (__CONCAT(INT16_MAX, U))

largest value a size_t can hold.

22.8.2.39 #define UINT16_C(value) _ CONCAT (value, U)

define a constant of type uintl16 _t

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.8 <stdint.h>: Standard Integer Types 156

22.8.2.40 #define UINT16_MAX (__CONCAT(INT16_MAX, U)x 2U + 1U)

largest value an uint16_t can hold.

22.8.2.41 #define UINT32_C(value) _ CONCAT(value, UL)

define a constant of type uint32_t

22.8.2.42 #define UINT32_MAX (__ CONCAT(INT32_MAX, U)x 2UL + 1UL)

largest value an uint32_t can hold.

22.8.2.43 #define UINT64_C(value) _ CONCAT(value, ULL)

define a constant of type uinté4_t

22.8.2.44 #define UINT64_MAX (__CONCAT(INT64_MAX, U) + 2ULL +
1ULL)

largest value an uint64_t can hold.

22.8.2.45 #define UINT8_C(value) ((uint8_t) _ CONCAT(value, U))

define a constant of type uint8_t

22.8.2.46 #define UINT8_MAX (__CONCAT(INT8_MAX, U) % 2U + 1U)

largest value an uint8_t can hold.

22.8.2.47 #define UINT_FAST16_MAX UINT16_MAX

largest value an uint_fast16_t can hold.

22.8.2.48 #define UINT_FAST32_MAX UINT32_MAX

largest value an uint_fast32_t can hold.

22.8.2.49 #define UINT_FAST64_MAX UINT64_MAX

largest value an uint_fast64_t can hold.

22.8.2.50 #define UINT_FAST8_MAX UINT8_MAX

largest value an uint_fast8 t can hold.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.8 <stdint.h>: Standard Integer Types 157

22.8.2.51 #define UINT_LEAST16_MAX UINT16_MAX

largest value an uint_least16_t can hold.

22.8.2.52 #define UINT_LEAST32_MAX UINT32_MAX

largest value an uint_least32_t can hold.

22.8.2.53 #define UINT_LEAST64_MAX UINT64_MAX

largest value an uint_least64_t can hold.

22.8.2.54 #define UINT_LEAST8_MAX UINT8_MAX

largest value an uint_least8_t can hold.

22.8.2.55 #define UINTMAX_C(value) _ CONCAT(value, ULL)

define a constant of type uintmax_t

22.8.2.56 #define UINTMAX_MAX UINT64_MAX

largest value an uintmax_t can hold.

22.8.2.57 #define UINTPTR_MAX UINT16_MAX

largest value an uintptr_t can hold.

22.8.3 Typedef Documentation

22.8.3.1 typedef signed int int16_t
16-bit signed type.

22.8.3.2 typedef signed long int int32_t
32-bit signed type.

22.8.3.3 typedef signed long long int int64_t
64-bit signed type.

Note:

This type is not available when the compiler option -mint8 is in effect.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.8 <stdint.h>: Standard Integer Types

158

22.8.3.4 typedef signed char int8_t
8-bit signed type.

22.8.3.5 typedefintl6_tint fast16 t

fastest signed int with at least 16 bits.

22.8.3.6 typedefint32_tint _fast32_t

fastest signed int with at least 32 bits.

22.8.3.7 typedefint64_tint fasté4 t

fastest signed int with at least 64 bits.

Note:

This type is not available when the compiler option -mint8 is in effect.

22.8.3.8 typedefint8_tint fast8 t

fastest signed int with at least 8 bits.

22.8.3.9 typedefintl6_tint leastl6 t

signed int with at least 16 bits.

22.8.3.10 typedefint32_tint least32_t

signed int with at least 32 bits.

22.8.3.11 typedefint64 tint least64 t
signed int with at least 64 bits.

Note:

This type is not available when the compiler option -mint8 is in effect.

22.8.3.12 typedefint8_ tint least8 t

signed int with at least 8 bits.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.8 <stdint.h>: Standard Integer Types 159

22.8.3.13 typedefint64 tintmax t

largest signed int available.

22.8.3.14 typedefintl6_tintptr_t
Signed pointer compatible type.

22.8.3.15 typedef unsigned int uint16_t
16-bit unsigned type.

22.8.3.16 typedef unsigned long int uint32_t
32-bit unsigned type.

22.8.3.17 typedef unsigned long long int uint64_t
64-bit unsigned type.

Note:

This type is not available when the compiler option -mint8 is in effect.

22.8.3.18 typedef unsigned char uint8_t
8-bit unsigned type.

22.8.3.19 typedef uint16_t uint_fast16 t

fastest unsigned int with at least 16 bits.

22.8.3.20 typedef uint32_t uint_fast32_t

fastest unsigned int with at least 32 bits.

22.8.3.21 typedef uint64 _t uint_fast64 t

fastest unsigned int with at least 64 bits.

Note:

This type is not available when the compiler option -mint8 is in effect.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.9 <stdio.h>: Standard 10 facilities 160

22.8.3.22 typedefuint8 tuint_fast8 t

fastest unsigned int with at least 8 bits.

22.8.3.23 typedefuintl6_tuint_least16 t

unsigned int with at least 16 bits.

22.8.3.24 typedefuint32_t uint_least32 t

unsigned int with at least 32 bits.

22.8.3.25 typedef uint64_t uint_least64 t

unsigned int with at least 64 bits.

Note:

This type is not available when the compiler option -mint8 is in effect.

22.8.3.26 typedef uint8 tuint_least8 t

unsigned int with at least 8 bits.

22.8.3.27 typedef uint64_t uintmax_t

largest unsigned int available.

22.8.3.28 typedef uintl6_t uintptr_t

Unsigned pointer compatible type.

22.9 <stdio.h>: Standard 10 facilities

22.9.1 Detailed Description

#include <stdio.h>

Introduction to the Standard 10 facilities This file declares the standard 10 facili-

ties that are implemented avr-libc . Due to the nature of the underlying hardware,
only a limited subset of standard 10 is implemented. There is no actual file implementa-
tion available, so only device IO can be performed. Since there’s no operating system,
the application needs to provide enough details about their devices in order to make
them usable by the standard IO facilities.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.9 <stdio.h>: Standard 10 facilities 161

Due to space constraints, some functionality has not been implemented at all (like some
of theprintf conversions that have been left out). Nevertheless, potential users of
this implementation should be warned: gventf ~ andscanf families of functions,
although usually associated with presumably simple things like the famous "Hello,
world!" program, are actually fairly complex which causes their inclusion to eat up

a fair amount of code space. Also, they are not fast due to the nature of interpreting
the format string at run-time. Whenever possible, resorting to the (sometimes non-
standard) predetermined conversion facilities that are offered by avr-libc will usually
cost much less in terms of speed and code size.

Tunable options for code size vs. feature setIn order to allow programmers a code
size vs. functionality tradeoff, the functiariprintf() which is the heart of the printf
family can be selected in different flavours using linker options. See the documentation
of vfprintf() for a detailed description. The same appliesferanf()and thescanf

family of functions.

Outline of the chosen APl The standard strearstdin , stdout , andstderr are
provided, but contrary to the C standard, since avr-libc has no knowledge about appli-
cable devices, these streams are not already pre-initialized at application startup. Also,
since there is no notion of "file" whatsoever to avr-libc, there is no fundtpan()

that could be used to associate a stream to some device.n{Bed) Instead, the
functionfdevopen() is provided to associate a stream to a device, where the device
needs to provide a function to send a character, to receive a character, or both. There
is no differentiation between "text" and "binary" streams inside avr-libc. Chargater

is sent literally down to the devicefsut() function. If the device requires a carriage
return (\r) character to be sent before the linefeedpit) routine must implement

this (seenote 2.

As an alternative method fdevopen() the macrddev_setup_stream(hight be used
to setup a user-supplied FILE structure.

It should be noted that the automatic conversion of a newline character into a carriage
return - newline sequence breaks binary transfers. If binary transfers are desired, no
automatic conversion should be performed, but instead any string that aims to issue a
CR-LF sequence must us&r \n" explicitly.

For convenience, the first call tievopen() that opens a stream for reading

will cause the resulting stream to be aliasedstdin . Likewise, the first call to
fdevopen() that opens a stream for writing will cause the resulting stream to be
aliased to bothstdout , andstderr . Thus, if the open was done with both, read
and write intent, all three standard streams will be identical. Note that these aliases are
indistinguishable from each other, thus calliictpse() on such a stream will also
effectively close all of its aliasesi¢te 3.

It is possible to tie additional user data to a stream, ukley_set_udata()The back-
end put and get functions can then extract this user data fagngget udata(and act

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.9 <stdio.h>: Standard 10 facilities 162

appropriately. For example, a single put function could be used to talk to two different
UARTS that way, or the put and get functions could keep internal state between calls
there.

Format strings in flash ROM All the printf andscanf family functions come

in two flavours: the standard name, where the format string is expected to be in SRAM,
as well as a version with the suffix "_P" where the format string is expected to reside
in the flash ROM. The maciBSTR(explained in<avr/pgmspace:x: Program Space
Utilities) becomes very handy for declaring these format strings.

Running stdio without malloc() By default,fdevopen(yequiresmalloc(). As this is
often not desired in the limited environment of a microcontroller, an alternative option
is provided to run completely withoualloc().

The macrddev_setup_stream($ provided to prepare a user-supplied FILE buffer for
operation with stdio.

Example

#include <stdio.h>
static int uart_putchar(char ¢, FILE *stream);

static FILE mystdout = FDEV_SETUP_STREAM(uart_putchar, NULL,
_FDEV_SETUP_WRITE);

static int
uart_putchar(char c, FILE *stream)

{

if (c =="n")

uart_putchar(’\r’, stream);
loop_until_bit_is_set(UCSRA, UDRE);
UDR = c;
return 0O;

}

int

main(void)
init_uart();

stdout = &mystdout;
printf("Hello, world\n");

return 0O;

}

This example uses the initializer forfRDEV_SETUP_STREAM(rather than the
function-likefdev_setup_stream(3o all data initialization happens during C start-up.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.9 <stdio.h>: Standard 10 facilities 163

If streams initialized that way are no longer needed, they can be destroyed by first
calling the macrddev_close()and then destroying the object itself. No calf¢tose()
should be issued for these streams. While calidhgse()itself is harmless, it will cause

an undefined referenceti®@e()and thus cause the linker to link the malloc module into
the application.

Notes

Note 1:

It might have been possible to implement a device abstraction that is compatible
with fopen() but since this would have required to parse a string, and to take all

the information needed either out of this string, or out of an additional table that

would need to be provided by the application, this approach was not taken.

Note 2:

This basically follows the Unix approach: if a device such as a terminal needs
special handling, it is in the domain of the terminal device driver to provide this
functionality. Thus, a simple function suitable must() for fdevopen() that

talks to a UART interface might look like this:

int
uart_putchar(char c, FILE *stream)

{

if (c =="n")

uart_putchar('\r’);
loop_until_bit_is_set(UCSRA, UDRE);
UDR = c;
return O;

Note 3:

This implementation has been chosen because the cost of maintaining an alias
is considerably smaller than the cost of maintaining full copies of each stream.
Yet, providing an implementation that offers the complete set of standard
streams was deemed to be useful. Not only that wriprigtf() instead of
fprintf(mystream, ...) saves typing work, but since avr-gcc needs to re-
sort to pass all arguments of variadic functions on the stack (as opposed to passing
them in registers for functions that take a fixed number of parameters), the ability
to pass one parameter less by implystdin ~ will also save some execution time.

Defines

« #defineFILE struct __file

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.9 <stdio.h>: Standard 10 facilities 164

 #definestdin(__iob[0])

 #definestdout(__iob[1])

« #definestderr(__iob[2])

* #defineEOF(-1)

 #definefdev_set udafatream, u) do { (stream)> udata = u; } while(0)
« #definefdev_get udai@tream) ((stream)- udata)
« #definefdev_setup_streafstream, put, get, rwflag)
e #define FDEV_SETUP_READ SRD

e #define FDEV_SETUP_WRITE _SWR

« #define FDEV_SETUP_RW__SRDO__SWR)

« #define FDEV_ERR(-1)

« #define_FDEV_EOK(-2)
 #defineFDEV_SETUP_STREANput, get, rwflag)
* #definefdev_closé)

« #defineputq__c, __ stream) fputc(__c, __ stream)
« #defineputchaf__c) fputc(__c, stdout)

» #definegetd _stream) fgetc(__stream)

« #definegetchaf) fgetc(stdin)

Functions

¢ int fclose(FILE x__stream)

e int vfprintf (FILE x__stream, const char _fmt, va_list __ap)

« int vfprintf_P (FILE x__stream, const char_fmt, va_list __ap)
e int fputc(int __c, FILEx__stream)

« int printf (const chag__fmt,...)

« int printf_P(const chax__fmt,...)

« int vprintf (const chax__fmt, va_list _ap)

* int sprintf(char+__s, const chaf__fmt,...)

* int sprintf_P(charx__s, const chat__fmt,...)

« int snprintf(char=__s, size_t__n, const char_fmt,...)

e int snprintf_P(charx__s, size_t__n, const char_fmt,...)

« int vsprintf(char*__s, const chaf__fmt, va_list ap)

« int vsprintf_P(char*__s, const chaf__fmt, va_list ap)

« intvsnprintf(char__s, size_t __n, const char_fmt, va_list ap)
e intvsnprintf_P(charx__s, size_t __n, const char_fmt, va_list ap)
« int fprintf (FILE x__stream, const char__fmt,...)

e int fprintf_P (FILE x__stream, const char__fmt,...)

« int fputs(const chak__str, FILEx__stream)

e int fputs_P(const chak__str, FILE«__stream)

« int puts(const chak__str)

« int puts_P(const chak__str)

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.9 <stdio.h>: Standard 10 facilities 165

« size_tfwrite (const voidx__ ptr, size t _ size, size t __nmemb, FIKE -
stream)

« int fgetc(FILE x__stream)

e intungetc(int __c, FILEx__stream)

e charx fgets(charx__str, int __size, FILE__stream)

 charx gets(charsx__str)

« size_tfread(void x__ ptr, size_t __ size, size_ t __nmemb, FILE stream)

« void clearerr(FILE x__stream)

« int feof (FILE x__stream)

« int ferror (FILE x__stream)

« int vfscanf(FILE x__stream, const char _fmt, va_list _ap)

« intvfscanf_P(FILE x__stream, const char _fmt, va_list __ap)

« int fscanf(FILE «__stream, const char__fmt,...)

« int fscanf_P(FILE x__stream, const char _fmt,...)

« int scanf(const chas__fmt,...)

¢ int scanf_Hconst chak__fmt,...)

« int vscanf(const char__fmt, va_list __ap)

« int sscanflconst chak__buf, const chax__fmt,...)

« int sscanf_Hconst chak__buf, const chax__fmt,...)

« int fflush (FILE xstream)

¢ FILE « fdevopen(int(xput)(char, FILEx), int(xget)(FILE x))

22.9.2 Define Documentation

22.9.2.1 #define FDEV_EOF (-2)
Return code for an end-of-file condition during device read.

To be used in the get function &fevopen()

22.9.2.2 #define FDEV_ERR (-1)
Return code for an error condition during device read.

To be used in the get function &fevopen()

22.9.2.3 #define_FDEV_SETUP_READ _ SRD

fdev_setup_streamgith read intent

22.9.2.4 #define_FDEV_SETUP_RW (__SRD SWR)

fdev_setup_streamyith read/write intent

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.9 <stdio.h>: Standard 10 facilities 166

22.9.2.5 #define FDEV_SETUP_WRITE __ SWR

fdev_setup_streamgith write intent

22.9.2.6 #define EOF (-1)

EOFdeclares the value that is returned by various standard IO functions in case of an
error. Since the AVR platform (currently) doesn’t contain an abstraction for actual files,
its origin as "end of file" is somewhat meaningless here.

22.9.2.7 #define fdev_close()

This macro frees up any library resources that might be associatecgtngtdm . It
should be called istream is no longer needed, right before the application is going
to destroy thestream object itself.

(Currently, this macro evaluates to nothing, but this might change in future versions of
the library.)

22.9.2.8 #define fdev_get_udata(stream) ((stream)} udata)

This macro retrieves a pointer to user defined data from a FILE stream object.

22.9.2.9 #define fdev_set udata(stream, u) do { (stream) udata = u; } while(0)

This macro inserts a pointer to user defined data into a FILE stream object.

The user data can be useful for tracking state in the put and get functions supplied to
thefdevopen(function.

22.9.2.10 #define FDEV_SETUP_STREAM(put, get, rwflag)
Initializer for a user-supplied stdio stream.

This macro acts similar tfWlev_setup_stream(but it is to be used as the initializer of
a variable of type FILE.

The remaining arguments are to be used as explaingtkin setup_stream()

22.9.2.11 #define fdev_setup_stream(stream, put, get, rwflag)
Setup a user-supplied buffer as an stdio stream.

This macro takes a user-supplied buftieam , and sets it up as a stream that is valid
for stdio operations, similar to one that has been obtained dynamicallyfd@rapen()
The buffer to setup must be of type FILE.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.9 <stdio.h>: Standard 10 facilities 167

The argumentput andget are identical to those that need to be passédewopen()
Therwflag argument can take one of the values _FDEV_SETUP_READ, FDEV_-
SETUP_WRITE, or _FDEV_SETUP_RW, for read, write, or read/write intent, respec-
tively.

Note:

No assignments to the standard streams will be performéddyy setup_stream()
If standard streams are to be used, these need to be assigned by the user. See also
underRunning stdio without malloc()

22.9.2.12 #define FILE struct _file

FILE is the opaque structure that is passed around between the various standard 10
functions.

22.9.2.13 #define getc(__stream) fgetc(__stream)

The macragetc used to be a "fast” macro implementation with a functionality iden-
tical to fgetc() For space constraints, awr-libc | it is just an alias fofgetc

22.9.2.14 #define getchar(void) fgetc(stdin)

The macrayetchar reads a character frogtdin . Return values and error handling
is identical tofgetc().

22.9.2.15 #define putc(__c, __stream) fputc(__c, __stream)

The macrgoutc used to be a "fast" macro implementation with a functionality iden-
tical to fputc(). For space constraints, awr-libc |, it is just an alias foffputc

22.9.2.16 #define putchar(__c) fputc(__c, stdout)

The macrgoutchar sends characterto stdout

22.9.2.17 #define stderr (__iob[2])
Stream destined for error output. Unless specifically assigned, identistaldot

If stderr should point to another stream, the result of anoftievopen() = must
be explicitly assigned to it without closing the previatderr (since this would also
closestdout).

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.9 <stdio.h>: Standard 10 facilities 168

22.9.2.18 #define stdin (__iob[0])

Stream that will be used as an input stream by the simplified functions that don’t take
astream argument.

The first stream opened with read intent usfdgvopen() will be assigned to
stdin

22.9.2.19 #define stdout (__iob[1])

Stream that will be used as an output stream by the simplified functions that don’t take
astream argument.

The first stream opened with write intent usfidgvopen() will be assigned to both,
stdin , andstderr

22.9.3 Function Documentation

22.9.3.1 void clearerr (FILE «+ __stream

Clear the error and end-of-file flags stfeam .

22.9.3.2 intfclose (FILEx __ stream
This function closestream , and disallows and further 10 to and from it.

When usingdevopen(}to setup the stream, a call tdose()is needed in order to free
the internal resources allocated.

If the stream has been set up usifdev_setup_stream(pr FDEV_SETUP_-
STREAM(), usefdev_close(jnstead.

It currently always returns 0O (for success).

22.9.3.3 FILE« fdevopen (int(x)(char, FILE x) put, int(x)(FILE x) gef
This function is a replacement féopen()

It opens a stream for a device where the actual device implementation needs to be
provided by the application. If successful, a pointer to the structure for the opened
stream is returned. Reasons for a possible failure currently include that neither the
put northeget argument have been provided, thus attempting to open a stream with
no IO intent at all, or that insufficient dynamic memory is available to establish a new
stream.

If the put function pointer is provided, the stream is opened with write intent. The
function passed gsut shall take two arguments, the first a character to write to the
device, and the second a pointer to FILE, and shall return 0 if the output was successful,
and a nonzero value if the character could not be sent to the device.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.9 <stdio.h>: Standard 10 facilities 169

If the get function pointer is provided, the stream is opened with read intent. The
function passed aget shall take a pointer to FILE as its single argument, and return
one character from the device, passed asmantype. If an error occurs when trying

to read from the device, it shall returfFDEV_ERRIf an end-of-file condition was
reached while reading from the devicé&;DEV_EOFshall be returned.

If both functions are provided, the stream is opened with read and write intent.

The first stream opened with read intent is assignetidim , and the first one opened
with write intent is assigned to botktdout andstderr

fdevopen(usescalloc() (und thusmalloc() in order to allocate the storage for the new
stream.
Note:

If the macro __ STDIO_FDEVOPEN_COMPAT _12 is declared before including
<stdio.h>, a function prototype fofdevopen()will be chosen that is backwards
compatible with avr-libc version 1.2 and before. This is solely intented for pro-
viding a simple migration path without the need to immediately change all source
code. Do not use for new code.

22.9.3.4 intfeof (FILE« __stream)

Test the end-of-file flag aftream . This flag can only be cleared by a calldearerr()

22.9.3.5 intferror (FILE x __stream)

Test the error flag aftream . This flag can only be cleared by a calldearerr()

22.9.3.6 intfflush (FILE * stream)
Flushstream .

This is a null operation provided for source-code compatibility only, as the standard 1O
implementation currently does not perform any buffering.

22.9.3.7 intfgetc (FILEx __stream

The functionfgetc reads a character frostream . It returns the character, ®&OF
in case end-of-file was encountered or an error occurred. The rotgioi€sor ferror()
must be used to distinguish between both situations.

22.9.3.8 chax fgets (charx __str, int __size FILE x __stream

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.9 <stdio.h>: Standard 10 facilities 170

Read at mossize - 1 bytes fromstream , until a newline character was encoun-
tered, and store the characters in the buffer pointed tetby. Unless an error was
encountered while reading, the string will then be terminated wittua character.

If an error was encountered, the function returns NULL and sets the error flag of
stream , which can be tested usirfgrror(). Otherwise, a pointer to the string will
be returned.

22.9.3.9 intfprintf (FILE % __stream constcharx __fmt, ..)

The functionfprintf performs formatted output tstream . Seevfprintf()
for details.

22.9.3.10 intfprintf_P (FILE x __ stream constcharx __ fmt, ..)

Variant offprintf() that uses &t string that resides in program memory.

22.9.3.11 intfputc (int__¢ FILE % __ strean)

The functionfputc sends the character(though given as typimt) to stream . It
returns the character, &OFin case an error occurred.

22.9.3.12 intfputs (constchak __str, FILE % __ stream
Write the string pointed to bgtr to streanstream .

Returns 0 on success and EOF on error.

22.9.3.13 intfputs_P (const chak __str, FILE * __strean)

Variant offputs()wherestr resides in program memory.

22.9.3.14 size tfread (voick _ ptr, size t size size_t nmemb FILE x -
strean)

Readnmembobjects,size bytes each, fronstream , to the buffer pointed to by
ptr .

Returns the number of objects successfully read, inmembunless an input error
occured or end-of-file was encounteréebf() andferror() must be used to distinguish
between these two conditions.

22.9.3.15 intfscanf (FILEx __stream constcharx __fmt ..)
The functionfscanf performs formatted input, reading the input data fretneam .

Seevfscanf()for details.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.9 <stdio.h>: Standard 10 facilities 171

22.9.3.16 intfscanf P (FILEx _ stream constcharx __ fmt ..)

Variant offscanf()using afmt string in program memory.

22.9.3.17 size_t fwrite (const voie __ ptr, size_t__size size_t _nmemb FILE
x __stream

Write nmembobjects,size bytes each, tatream . The first byte of the first object
is referenced bptr .

Returns the number of objects successfully written, nreembunless an output error
occured.

22.9.3.18 chax gets (charx __stp

Similar tofgets()except that it will operate on streagidin , and the trailing newline
(if any) will not be stored in the string. Itis the caller’s responsibility to provide enough
storage to hold the characters read.

22.9.3.19 int printf (const charx __fmt, ..)

The function printf performs formatted output to streamtderr . See
viprintf() for detalils.

22.9.3.20 int printf_P (const charx __fmt, ..)

Variant of printf() that uses &mt string that resides in program memory.

22.9.3.21 int puts (const chax __ sti

Write the string pointed to bgtr , and a trailing newline character, stdout

22.9.3.22 intputs_P (constchax __ stp

Variant of puts()wherestr resides in program memory.

22.9.3.23 intscanf (constchax __fmt, ..)
The functionscanf performs formatted input from streastdin

Seevfscanf()for details.

22.9.3.24 intscanf_P (constchat __fmt, ..)

Variant of scanf()wherefmt resides in program memory.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.9 <stdio.h>: Standard 10 facilities 172

22.9.3.25 intsnprintf (charx __§ size t n, constcharx __ fmt, ..)

Like sprintf() , but instead of assumingj to be of infinite size, no more tham
characters (including the trailing NUL character) will be convertesl.to

Returns the number of characters that would have been writtenitdhere were
enough space.

22.9.3.26 int snprintf_P (charx __s size_t_ n, constcharx __fmt ..)

Variant ofsnprintf() that uses &mt string that resides in program memory.

22.9.3.27 intsprintf (char« __§ constcharx __ fmt, ..)

Variant of printf() that sends the formatted characters to stsing

22.9.3.28 int sprintf_P (charx __§ constcharx __fmt, ..)

Variant ofsprintf() that uses éimt string that resides in program memory.

22.9.3.29 intsscanf (const chat __ buf, constcharx__ fmt, ..)

The functionsscanf performs formatted input, reading the input data from the buffer
pointed to bybuf .

Seevfscanf()for details.

22.9.3.30 intsscanf_P (constchar__ buf constcharx __ fmt ..)

Variant of sscanf(using afmt string in program memory.

22.9.3.31 intungetc (int_¢ FILE *__ strean)

Theungetc()function pushes the charactefconverted to an unsigned char) back onto
the input stream pointed to kstream . The pushed-back character will be returned
by a subsequent read on the stream.

Currently, only a single character can be pushed back onto the stream.

Theungetc()function returns the character pushed back after the conversi&@Qeif
the operation fails. If the value of the argumentharacter equalBOF, the operation
will fail and the stream will remain unchanged.

22.9.3.32 int vfprintf (FILE * __stream const charx __fmt, va_list__ap

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.9 <stdio.h>: Standard 10 facilities 173

viprintf is the central facility of theorintf family of functions. It outputs values
to stream under control of a format string passedfint . The actual values to print
are passed as a variable argumentdfst

viprintf returns the number of characters writtenstoeam , or EOFin case of
an error. Currently, this will only happenstream has not been opened with write
intent.

The format string is composed of zero or more directives: ordinary characters (not
99, which are copied unchanged to the output stream; and conversion specifications,
each of which results in fetching zero or more subsequent arguments. Each conversion
specification is introduced by tlécharacter. The arguments must properly correspond
(after type promotion) with the conversion specifier. After ¥hehe following appear

in sequence:

e Zero or more of the following flags:

— # The value should be converted to an "alternate form". For c, d, i, s, and
u conversions, this option has no effect. For o conversions, the precision of
the number is increased to force the first character of the output string to
a zero (except if a zero value is printed with an explicit precision of zero).
For x and X conversions, a non-zero result has the string ‘0x’ (or ‘0X’ for
X conversions) prepended to it.

— 0 (zero) Zero padding. For all conversions, the converted value is padded
on the left with zeros rather than blanks. If a precision is given with a
numeric conversion (d, i, o, u, i, X, and X), the 0 flag is ignored.

— - A negative field width flag; the converted value is to be left adjusted on
the field boundary. The converted value is padded on the right with blanks,
rather than on the left with blanks or zeros. A - overrides a O if both are
given.

— '’ (space) A blank should be left before a positive number produced by a
signed conversion (d, or i).

— + A sign must always be placed before a number produced by a signed
conversion. A + overrides a space if both are used.

« An optional decimal digit string specifying a minimum field width. If the con-
verted value has fewer characters than the field width, it will be padded with
spaces on the left (or right, if the left-adjustment flag has been given) to fill out
the field width.

» An optional precision, in the form of a period . followed by an optional digit
string. If the digit string is omitted, the precision is taken as zero. This gives the
minimum number of digits to appear for d, i, 0, u, x, and X conversions, or the
maximum number of characters to be printed from a string foonversions.

< An optionall or h length modifier, that specifies that the argument for the d, i,
0, U, X, or X conversion is dong int" rather tharint . Theh is ignored,
as"short int" is equivalent tant .

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.9 <stdio.h>: Standard 10 facilities 174

« A character that specifies the type of conversion to be applied.
The conversion specifiers and their meanings are:

e diouxX The int (or appropriate variant) argument is converted to signed decimal
(d and i), unsigned octal (0), unsigned decimal (u), or unsigned hexadecimal
(x and X) notation. The letters "abcdef" are used for x conversions; the letters
"ABCDEF" are used for X conversions. The precision, if any, gives the minimum
number of digits that must appear; if the converted value requires fewer digits, it
is padded on the left with zeros.

e p Thevoid xargumentistaken as an unsigned integer, and converted similarly
as a%#xcommand would do.

» ¢ Theint argumentis converted to dansigned char" , and the resulting
character is written.

e s The"char x" argument is expected to be a pointer to an array of character
type (pointer to a string). Characters from the array are written up to (but not
including) a terminating NUL character; if a precision is specified, no more than
the number specified are written. If a precision is given, no null character need
be present; if the precision is not specified, or is greater than the size of the array,
the array must contain a terminating NUL character.

* %A %is written. No argument is converted. The complete conversion specifica-
tion is "%%".

e eE The double argument is rounded and converted in the format
"[-]d.ddde +dd" where there is one digit before the decimal-point character
and the number of digits after it is equal to the precision; if the precision is miss-
ing, it is taken as 6; if the precision is zero, no decimal-point character appears.
An E conversion uses the letté’ (rather tharie’) to introduce the exponent.
The exponent always contains two digits; if the value is zero, the exponent is 00.

» fF The double argument is rounded and converted to decimal notation in the
format "[-]ddd.ddd" , where the number of digits after the decimal-point
character is equal to the precision specification. If the precision is missing, it is
taken as 6; if the precision is explicitly zero, no decimal-point character appears.
If a decimal point appears, at least one digit appears before it.

» gG The double argument is converted in stfler e (or F or E for G conver-
sions). The precision specifies the number of significant digits. If the precision
is missing, 6 digits are given; if the precision is zero, it is treated as 1. Stigle
used if the exponent from its conversion is less than -4 or greater than or equal to
the precision. Trailing zeros are removed from the fractional part of the result; a
decimal point appears only if it is followed by at least one digit.

« S Similar to thes format, except the pointer is expected to point to a program-
memory (ROM) string instead of a RAM string.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.9 <stdio.h>: Standard 10 facilities 175

In no case does a non-existent or small field width cause truncation of a numeric field;
if the result of a conversion is wider than the field width, the field is expanded to contain
the conversion result.

Since the full implementation of all the mentioned features becomes fairly large, three
different flavours ofvfprintf() can be selected using linker options. The defait
printf() implements all the mentioned functionality except floating point conversions.
A minimized version ofvfprintf() is available that only implements the very basic in-
teger and string conversion facilities, but only thadditional option can be specified
using conversion flags (these flags are parsed correctly from the format specification,
but then simply ignored). This version can be requested using the follaveimgpiler
options

-WI,-u,vfprintf -lprintf_min

If the full functionality including the floating point conversions is required, the follow-
ing options should be used:

-WI,-u,vfprintf -lprintf_flt -Im

Limitations:

» The specified width and precision can be at most 255.

Notes:

« For floating-point conversions, if you link default or minimized version of
viprintf(), the symbol ? will be output and double argument will be skiped.
So you output below will not be crashed. For default version the width field
and the "pad to left" (symbol minus) option will work in this case.

» Thehh length modifier is ignoredchar argument is promouted tot).
More exactly, this realization does not check the numbér sfmbols.

« But thell length modifier will to abort the output, as this realization does
not operatdong long arguments.

» The variable width or precision field (an asterislsymbol) is not realized
and will to abort the output.

22.9.3.33 int vfprintf_P (FILE x __stream const char« __fmt, va_list__ap

Variant ofvfprintf() that uses &éimt string that resides in program memory.

22.9.3.34 int vfscanf (FILEx stream const charx fmt, va_listap)

Formatted input. This function is the heart of $wanffamily of functions.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.9 <stdio.h>: Standard 10 facilities 176

Characters are read frostreamand processed in a way describedfimt. Conversion
results will be assigned to the parameters passedpvia

The format stringmt is scanned for conversion specifications. Anything that doesn’t
comprise a conversion specification is taken as text that is matched literally against
the input. White space in the format string will match any white space in the data
(including none), all other characters match only itself. Processing is aborted as soon as
the data and format string no longer match, or there is an error or end-of-file condition
onstream

Most conversions skip leading white space before starting the actual conversion.

Conversions are introduced with the charaéterPossible options can follow tHé :

¢ ax indicating that the conversion should be performed but the conversion result
is to be discarded; no parameters will be processed &pm

« the characteh indicating that the argument is a pointerdioort int (rather
thanint),

« the 2 charactensh indicating that the argument is a pointerctoar (rather than
int).

« the charactel indicating that the argument is a pointerlemg int (rather
thanint , for integer type conversions), or a pointerdouble (for floating
point conversions),

In addition, a maximal field width may be specified as a nonzero positive decimal
integer, which will restrict the conversion to at most this many characters from the
input stream. This field width is limited to at most 255 characters which is also the
default value (except for the conversion that defaults to 1).

The following conversion flags are supported:

%Matches a literabocharacter. This is not a conversion.

d Matches an optionally signed decimal integer; the next pointer must be a
pointer toint .

¢ i Matches an optionally signed integer; the next pointer must be a pointer to
int . The integer is read in base 16 if it begins witk or 0X, in base 8 if it
begins withO, and in base 10 otherwise. Only characters that correspond to the
base are used.

» 0 Matches an octal integer; the next pointer must be a pointensigned
int .

¢ u Matches an optionally signed decimal integer; the next pointer must be a
pointer tounsigned int

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.9 <stdio.h>: Standard 10 facilities 177

¢ X Matches an optionally signed hexadecimal integer; the next pointer must be a
pointer tounsigned int

f Matches an optionally signed floating-point number; the next pointer must be
a pointer tdfloat

e g, F, E, G Equivalenttd .

« s Matches a sequence of non-white-space characters; the next pointer must be a
pointer tochar , and the array must be large enough to accept all the sequence
and the terminatin§lULcharacter. The input string stops at white space or at the
maximum field width, whichever occurs first.

¢ ¢ Matches a sequence of width count characters (default 1); the next pointer must
be a pointer tachar , and there must be enough room for all the characters (no
terminatingNUL is added). The usual skip of leading white space is suppressed.
To skip white space first, use an explicit space in the format.

« [Matches a nonempty sequence of characters from the specified set of accepted
characters; the next pointer must be a pointehiar , and there must be enough
room for all the characters in the string, plus a terminatitglcharacter. The
usual skip of leading white space is suppressed. The string is to be made up
of characters in (or not in) a particular set; the set is defined by the characters
between the open bracket [character and a close bracket] character. The set
excludes those characters if the first character after the open bracket is a circum-
flex . To include a close bracket in the set, make it the first character after the
open bracket or the circumflex; any other position will end the set. The hyphen
character is also special; when placed between two other characters, it adds all
intervening characters to the set. To include a hyphen, make it the last character
before the final close bracket. For instancé]0-9-] means the set @very-
thing except close bracket, zero through nine, and hypfiée string ends with
the appearance of a character not in the (or, with a circumflex, in) set or when
the field width runs out. Note that usage of this conversion enlarges the stack
expense.

« p Matches a pointer value (as printed jpyn printf()); the next pointer must be
a pointer tovoid .

* n Nothing is expected; instead, the number of characters consumed thus far from
the input is stored through the next pointer, which must be a pointet to This
is not a conversion, although it can be suppressed with ftegy.

These functions return the number of input items assigned, which can be fewer than
provided for, or even zero, in the event of a matching failure. Zero indicates that, while
there was input available, no conversions were assigned; typically this is due to an
invalid input character, such as an alphabetic character doc@nversion. The value
EOFis returned if an input failure occurs before any conversion such as an end-of-file

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.9 <stdio.h>: Standard 10 facilities 178

occurs. If an error or end-of-file occurs after conversion has begun, the number of
conversions which were successfully completed is returned.

By default, all the conversions described above are available except the floating-point
conversions and the width is limited to 255 characters. The float-point conversion will
be available in the extended version provided by the libliagcanf flt.a . Also

in this case the width is not limited (exactly, it is limited to 65535 characters). To link

a program against the extended version, use the following compiler flags in the link
stage:

-WI,-u,vfscanf -Iscanf_flt -Im

A third version is available for environments that are tight on space. In addition to
the restrictions of the standard one, this version implementg[ngpecification. This
version is provided in the libradjpbscanf_min.a , and can be requested using the
following options in the link stage:

-WI,-u,vfscanf -Iscanf_min -lm

22.9.3.35 intvfscanf P (FILEx __ stream const charx __fmt, va_list__ap

Variant ofvfscanf()using afmt string in program memory.

22.9.3.36 intvprintf (constcharx __ fmt, va_list__ap

The functionvprintf performs formatted output to stresstdout |, taking a vari-
able argument list as wfprintf().

Seevfprintf() for details.

22.9.3.37 intvscanf (constchax _ fmt, va_list__ap

The functionvscanf performs formatted input from streastdin , taking a variable
argument list as infscanf()

Seevfscanf()for details.

22.9.3.38 intvsnprintf (charx __§ size t n, const charx _ fmt, va_listap)

Like vsprintf() , but instead of assumingyto be of infinite size, no more tham
characters (including the trailing NUL character) will be convertesl.to

Returns the number of characters that would have been writtenitahere were
enough space.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.10 <stdlib.h>: General utilities 179

22.9.3.39 intvsnprintf_P (charx __§ size_ t n, constcharx __ fmt, va_listap)

Variant ofvsnprintf() that uses émt string that resides in program memory.

22.9.3.40 intvsprintf (charx __§ constcharx __fmt, va_listap)

Like sprintf() but takes a variable argument list for the arguments.

22.9.3.41 intvsprintf_P (charx __§ constcharx __fmt, va_listap)

Variant ofvsprintf() that uses &t string that resides in program memory.

22.10 <stdlib.h>: General utilities

22.10.1 Detailed Description

#include <stdlib.h>

This file declares some basic C macros and functions as defined by the 1ISO standard,
plus some AVR-specific extensions.

Data Structures

e structdiv_t
« structldiv_t

Non-standard (i.e. non-ISO C) functions.

e charx ltoa(long int __val, chak__s, int __radix)

 charx utoa(unsigned int __val, char__s, int__radix)

e charx ultoa(unsigned long int __val, char_s, int __radix)
¢ long random(void)

 void srandom(unsigned long __seed)

¢ longrandom_r(unsigned long:__ ctx)

» charxitoa(int __val, char__s, int__radix)

* #defineRANDOM_MAX Ox7FFFFFFF

Conversion functions for double arguments.

Note that these functions are not located in the default libdébg,a , but in the
mathematical librarnfjbm.a . So when linking the application, thkn option needs
to be specified.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.10 <stdlib.h>: General utilities 180

char x dtostre(double __ val, chak__s, unsigned char __ prec, unsigned char
_ flags)

e charx dtostrf (double __ val, signed char __width, unsigned char __ prec, char
*__S)

#defineDTOSTR_ALWAYS_SIGNOx01

#defineDTOSTR_PLUS_SIGNx02

#defineDTOSTR_UPPERCASBx04

Defines

* #defineRAND_MAX Ox7FFF

Typedefs

« typedefinté compar_fn_j(const void«, const voidx)

Functions

¢ void abort(void) __ ATTR_NORETURN___

e intabs(int_i)

¢ longlabs(long _ i)

 void x bsearchconst void«__key, const void___base, size_ t __nmemb, size t
__size, int¢__compar)(const void, const voidk))

e div_tdiv (int__num, int__denom)__asm__("__divmodhi4")

e Idiv_tIdiv (long __num, long __denom) __asm__("__divmodsi4")

« void gsort (void *__base, size t __nmemb, size t sizecompar_fn_t -
compar)

« longstrtol (const chak__nptr, chakx__endptr, int __base)

 unsigned longstrtoul (const chax__nptr, chasx__endptr, int__base)

e longatol(constchax__s) ATTR_PURE___

e intatoi(constchax__s) ATTR_PURE__

e void exit (int __status) _ ATTR_NORETURN___

e void x malloc(size_t __size) _ ATTR_MALLOC__

« void free (void x__ ptr)

e void x calloc(size_t __nele, size_t __size) _ ATTR_MALLOC__

« void x realloc(void x__ ptr, size_t__size) _ ATTR_MALLOC__

¢ doublestrtod(const char__nptr, chakx__endptr)

¢ doubleatof (const chax__nptr)

« int rand(void)

 void srand(unsigned int __seed)

 intrand_r(unsigned long:__ ctx)

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.10 <stdlib.h>: General utilities 181

Variables

e size_t malloc_margin
e charx __malloc_heap_start
e charx __malloc_heap_end

22.10.2 Define Documentation

22.10.2.1 #define DTOSTR_ALWAYS_SIGN 0x01

Bit value that can be passedfiags to dtostre()

22.10.2.2 #define DTOSTR_PLUS_SIGN 0x02

Bit value that can be passedflags to dtostre()

22.10.2.3 #define DTOSTR_UPPERCASE 0x04

Bit value that can be passedflags to dtostre()

22.10.2.4 #define RAND_MAX Ox7FFF
Highest number that can be generateddnyd()

22.10.2.5 #define RANDOM_MAX Ox7FFFFFFF
Highest number that can be generateddoydom()

22.10.3 Typedef Documentation

22.10.3.1 typedefint¢ __compar_fn_t)(const voidk, const void)

Comparision function type fagsort() just for convenience.

22.10.4 Function Documentation

22.10.4.1 void abort (void)

The abort()function causes abnormal program termination to occur. This realization
disables interrupts and jumps to _exit() function with argument equal to 1. In the
limited AVR environment, execution is effectively halted by entering an infinite loop.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.10 <stdlib.h>: General utilities 182

22.10.4.2 intabs (int_ i)

Theabs()function computes the absolute value of the intéger

Note:

Theabs()andlabs()functions are builtins of gcc.

22.10.4.3 double atof (const chax nptr)

Theatof() function converts the initial portion of the string pointed toriptr to double
representation.

Itis equivalent to calling

strtod(nptr, (char **)0);

22.10.4.4 int atoi (const chak)

Convert a string to an integer.

The atoi() function converts the initial portion of the string pointed tosyo integer
representation. In contrast to

(int)strtol(s, (char **)NULL, 10);

this function does not detect overflowr(no is not changed and the result value is
not predictable), uses smaller memory (flash and stack) and works more quickly.

22.10.4.5 long atol (const chax 9)

Convert a string to a long integer.

The atol() function converts the initial portion of the string pointed to $yto long
integer representation. In contrast to

strtol(s, (char **)NULL, 10);

this function does not detect overflowr(no is not changed and the result value is
not predictable), uses smaller memory (flash and stack) and works more quickly.

22.10.4.6 void bsearch (const voidx __key const void « __base size t -
nmemb size_t__size int(x)(const voidx, const voidx) __compayj

The bsearch()function searches an array nfnembobjects, the initial member of
which is pointed to bybase, for a member that matches the object pointed to by
key . The size of each member of the array is specifiedibg .

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.10 <stdlib.h>: General utilities 183

The contents of the array should be in ascending sorted order according to the compar-
ison function referenced bgyompar . Thecompar routine is expected to have two
arguments which point to the key object and to an array member, in that order, and
should return an integer less than, equal to, or greater than zero if the key object is
found, respectively, to be less than, to match, or be greater than the array member.

The bsearch(function returns a pointer to a matching member of the array, or a null
pointer if no match is found. If two members compare as equal, which member is
matched is unspecified.

22.10.4.7 void calloc (size_t _nele size_t siz¢

Allocate nele elements okize each. Identical to callingnalloc() usingnele
x Size as argument, except the allocated memory will be cleared to zero.

22.10.4.8 div_tdiv (int__num, int __denom

Thediv() function computes the valusum/denom and returns the quotient and re-
mainder in a structure nameliy_t that contains two int members namguabt and
rem.

22.10.4.9 chax dtostre (double__val char x __§ unsigned char__pre¢ un-
signed char__flag9

The dtostre()function converts the double value passeddh into an ASCII repre-
sentation that will be stored undgr The caller is responsible for providing sufficient
storage irs.

Conversion is done in the formgt]d.ddde +dd" where there is one digit before

the decimal-point character and the number of digits after it is equal to the precision
prec ; if the precision is zero, no decimal-point character appeaftagdé has the
DTOSTRE_UPPERCASE bit set, the lett&f (rather thane’) will be used to
introduce the exponent. The exponent always contains two digits; if the value is zero,
the exponent i500" .

If flags hasthe DTOSTRE_ALWAYS_SIGN bit set, a space character will be placed
into the leading position for positive numbers.

If flags has the DTOSTRE_PLUS_SIGN bit set, a plus sign will be used instead of
a space character in this case.

Thedtostre()function returns the pointer to the converted stréng

22.10.4.10 chax dtostrf (double __val signed char__width, unsigned char__-
prec charx__9

The dtostrf() function converts the double value passediah into an ASCII repre-
sentationthat will be stored undsr The caller is responsible for providing sufficient

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.10 <stdlib.h>: General utilities 184

storage irs.

Conversion is done in the formdf]d.ddd" . The minimum field width of the
output string (including thé " and the possible sign for negative values) is given in
width , andprec determines the number of digits after the decimal sigidth is
signed value, negative for left adjustment.

Thedtostrf() function returns the pointer to the converted strsng

22.10.4.11 void exit (int__statu3

The exit() function terminates the application. Since there is no environment to re-
turn to,status is ignored, and code execution will eventually reach an infinite loop,
thereby effectively halting all code processing. Before entering the infinite loop, inter-
rupts are globally disabled.

In a C++ context, global destructors will be called before halting execution.

22.10.4.12 void free (void __ptr)

Thefree()function causes the allocated memory referenceptbyto be made avail-
able for future allocations. Ibtr is NULL, no action occurs.

22.10.4.13 chafitoa(int __val charx s int _ radix)
Convert an integer to a string.

The functionitoa() converts the integer value frowal into an ASCII representation
that will be stored undes. The caller is responsible for providing sufficient storage in
S.

Note:

The minimal size of the buffes depends on the choice of radix. For example, if
the radix is 2 (binary), you need to supply a buffer with a minimal length ef 8
sizeof (int) + 1 characters, i.e. one character for each bit plus one for the string
terminator. Using a larger radix will require a smaller minimal buffer size.

Warning:
If the buffer is too small, you risk a buffer overflow.
Conversion is done using thadix as base, which may be a number between 2

(binary conversion) and up to 36. Hadix is greater than 10, the next digit after
'9" will be the lettera’

If radix is 10 and val is negative, a minus sign will be prepended.

Theitoa() function returns the pointer passedsas

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.10 <stdlib.h>: General utilities 185

22.10.4.14 long labs (long i)

Thelabs()function computes the absolute value of the long intéger

Note:

Theabs()andlabs()functions are builtins of gcc.

22.10.4.15 |Idiv_tIdiv (long__num, long__denon)

Theldiv() function computes the valusum/denom and returns the quotient and re-
mainder in a structure namédiv_t that contains two long integer members named
quot andrem.

22.10.4.16 chafltoa (longint __val charx__ s int __ radix)

Convert a long integer to a string.

The functionltoa() converts the long integer value fromal into an ASCII represen-
tation that will be stored undes. The caller is responsible for providing sufficient
storage irs.

Note:

The minimal size of the buffes depends on the choice of radix. For example,

if the radix is 2 (binary), you need to supply a buffer with a minimal length of 8

x sizeof (long int) + 1 characters, i.e. one character for each bit plus one for the

string terminator. Using a larger radix will require a smaller minimal buffer size.
Warning:

If the buffer is too small, you risk a buffer overflow.

Conversion is done using thadix as base, which may be a number between 2
(binary conversion) and up to 36. f&dix is greater than 10, the next digit after
'9" will be the lettera’

If radix is 10 and val is negative, a minus sign will be prepended.

Theltoa() function returns the pointer passedsas

22.10.4.17 void malloc (size_t _siz@

The malloc() function allocatesize bytes of memory. Ifmalloc() fails, a NULL
pointer is returned.

Note thatmalloc()doesnotinitialize the returned memory to zero bytes.

See the chapter abontalloc() usagdor implementation details.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.10 <stdlib.h>: General utilities 186

22.10.4.18 void gsort (voidk __base size t nmemb size_t size __compar_-
fn_t _compa)

Thegsort()function is a modified partition-exchange sort, or quicksort.

The gsort() function sorts an array afmembobjects, the initial member of which is
pointed to bybase . The size of each object is specifieddige . The contents of the

array base are sorted in ascending order according to a comparison function pointed to
by compar , which requires two arguments pointing to the objects being compared.

The comparison function must return an integer less than, equal to, or greater than zero
if the first argument is considered to be respectively less than, equal to, or greater than
the second.

22.10.4.19 intrand (void)

Therand()function computes a sequence of pseudo-random integers in the range of 0
to RAND_MAXas defined by the header fitestdlib.t>).

Thesrand()function sets its argumested as the seed for a new sequence of pseudo-
random numbers to be returned and() These sequences are repeatable by calling
srand()with the same seed value.

If no seed value is provided, the functions are automatically seeded with a value of 1.

In compliance with the C standard, these functions operaiatonarguments. Since
the underlying algorithm already uses 32-bit calculations, this causes a loss of preci-
sion. Seeandom() for an alternate set of functions that retains full 32-bit precision.

22.10.4.20 intrand_r (unsigned long __ ctX

Variant of rand() that stores the context in the user-supplied variable locatetkat
instead of a static library variable so the function becomes re-entrant.

22.10.4.21 long random (void)

Therandom()function computes a sequence of pseudo-random integers in the range of
0 toRANDOM_MA(4s defined by the header fitestdlib.t>).

The srandom()function sets its argumerseed as the seed for a new sequence of
pseudo-random numbers to be returneddyd() These sequences are repeatable by
calling srandom(with the same seed value.

If no seed value is provided, the functions are automatically seeded with a value of 1.

22.10.4.22 long random_r (unsigned long __ ctX

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.10 <stdlib.h>: General utilities 187

Variant ofrandom()that stores the context in the user-supplied variable locatett at
instead of a static library variable so the function becomes re-entrant.

22.10.4.23 void realloc (void x __ ptr, size_t size¢

Therealloc()function tries to change the size of the region allocatgatratto the new
size value. It returns a pointer to the new region. The returned pointer might be the
same as the old pointer, or a pointer to a completely different region.

The contents of the returned region up to either the old or the new size value (whatever
is less) will be identical to the contents of the old region, even in case a new region had
to be allocated.

It is acceptable to pag#r as NULL, in which caseealloc()will behave identical to
malloc().

If the new memory cannot be allocatedalloc()returns NULL, and the region atr
will not be changed.

22.10.4.24 void srand (unsigned int_seed

Pseudo-random number generator seedingrae()

22.10.4.25 void srandom (unsigned long seed

Pseudo-random number generator seedingrassgtom()

22.10.4.26 double strtod (const chax nptr, char xx endptr)

The strtod() function converts the initial portion of the string pointed to fgtr to
double representation.

The expected form of the string is an optional plus’() or minus sign (-)
followed by a sequence of digits optionally containing a decimal-point character, op-
tionally followed by an exponent. An exponent consists ofi&n or’e’ , followed

by an optional plus or minus sign, followed by a sequence of digits.

Leading white-space characters in the string are skipped.
Thestrtod()function returns the converted value, if any.

If endptris not NULL, a pointer to the character after the last character used in the
conversion is stored in the location referencedhgptr.

If no conversion is performed, zero is returned and the valugptfis stored in the
location referenced bgndptr.

If the correct value would cause overflow, plus or mitN&INITY s returned (ac-
cording to the sign of the value), aBRANGHs stored irerrno . If the correct value
would cause underflow, zero is returned #&RIANGHS stored inerrno .

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.10 <stdlib.h>: General utilities 188

22.10.4.27 long strtol (const chak __nptr, char xx __endptry int __baség

The strtol() function converts the string inptr to a long value. The conversion is
done according to the given base, which must be between 2 and 36 inclusive, or be the
special value 0.

The string may begin with an arbitrary amount of white space (as determinmg-by
pace() followed by a single optionat’ or’-" sign. Ifbase is zero or 16, the string
may then include &x" prefix, and the number will be read in base 16; otherwise, a
zero base is taken as 10 (decimal) unless the next charadder jsn which case it is
taken as 8 (octal).

The remainder of the string is converted to a long value in the obvious manner, stopping
at the first character which is not a valid digit in the given base. (In bases above 10, the
letter’A’ in either upper or lower case represents’'B0, represents 11, and so forth,
with’Z’ representing 35.)

If endptr is not NULL, strtol() stores the address of the first invalid character in
«endptr . If there were no digits at all, howevestrtol() stores the original value of
nptr inendptr . (Thus, ifxnptr isnot’ \O' butxxendptr is’ \0' onreturn, the
entire string was valid.)

Thestrtol() function returns the result of the conversion, unless the value would under-
flow or overflow. If no conversion could be performed, 0 is returned. If an overflow or
underflow occurserrno is set toERANGE and the function return value is clamped

to LONG_MINor LONG_MAXespectively.

22.10.4.28 unsigned long strtoul (const chax __ nptr, char «x __endpty int
__basg

Thestrtoul()function converts the string inptr to an unsigned long value. The con-
version is done according to the given base, which must be between 2 and 36 inclusive,
or be the special value 0.

The string may begin with an arbitrary amount of white space (as determined-by
pace() followed by a single optionat’ or’-" sign. Ifbase is zero or 16, the string
may then include &x" prefix, and the number will be read in base 16; otherwise, a
zero base is taken as 10 (decimal) unless the next charat®ér jsn which case it is
taken as 8 (octal).

The remainder of the string is converted to an unsigned long value in the obvious
manner, stopping at the first character which is not a valid digit in the given base.
(In bases above 10, the lettédf in either upper or lower case represents 'B),
represents 11, and so forth, wi#i representing 35.)

If endptr is not NULL, strtoul() stores the address of the first invalid character in
«endptr . If there were no digits at all, howevestrtoul() stores the original value of
nptr inendptr . (Thus, ifxnptr isnot’ \O' butxxendptr is’ \O' onreturn, the
entire string was valid.)

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.10 <stdlib.h>: General utilities 189

The strtoul() function return either the result of the conversion or, if there was a lead-
ing minus sign, the negation of the result of the conversion, unless the original (non-
negated) value would overflow; in the latter castetoul()returns ULONG_MAX, and
errno is set toERANGE If no conversion could be performed, O is returned.

22.10.4.29 cha¥ ultoa (unsigned longint__val charx g5 int _ radix)
Convert an unsigned long integer to a string.

The functionultoa() converts the unsigned long integer value freah into an ASCII
representation that will be stored underThe caller is responsible for providing suf-
ficient storage irs.

Note:

The minimal size of the buffes depends on the choice of radix. For example, if
the radix is 2 (binary), you need to supply a buffer with a minimal length ef 8
sizeof (unsigned long int) + 1 characters, i.e. one character for each bit plus one
for the string terminator. Using a larger radix will require a smaller minimal buffer
size.

Warning:

If the buffer is too small, you risk a buffer overflow.

Conversion is done using thadix as base, which may be a number between 2
(binary conversion) and up to 36. adix is greater than 10, the next digit after
'9" will be the lettera’

Theultoa() function returns the pointer passedsas

22.10.4.30 chaf utoa (unsignedint__ val charx s int __ radix)
Convert an unsigned integer to a string.

The functionutoa()converts the unsigned integer value freal into an ASCII repre-
sentation that will be stored undgr The caller is responsible for providing sufficient
storage irs.

Note:

The minimal size of the buffes depends on the choice of radix. For example, if
the radix is 2 (binary), you need to supply a buffer with a minimal length ef 8
sizeof (unsigned int) + 1 characters, i.e. one character for each bit plus one for the
string terminator. Using a larger radix will require a smaller minimal buffer size.

Warning:

If the buffer is too small, you risk a buffer overflow.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.11 <string.h>: Strings 190

Conversion is done using thradix as base, which may be a number between 2
(binary conversion) and up to 36. fadix is greater than 10, the next digit after
‘9" will be the lettera’

Theutoa()function returns the pointer passedsas

22.10.5 Variable Documentation

22.10.5.1 chax _ malloc_heap_end

malloc() tunable

22.10.5.2 chax _ malloc_heap_start

malloc() tunable

22.10.5.3 size_t___malloc_margin

malloc() tunable

22.11 <string.h>: Strings

22.11.1 Detailed Description

#include <string.h>

The string functions perform string operations on NULL terminated strings.

Note:

If the strings you are working on resident in program space (flash), you will need to
use the string functions described<mavr/pgmspace:h: Program Space Utilities

Defines

e #define FFYX)

Functions

« int ffs (int __val)

int ffsl (long __val)

int ffsll (long long __val)

* void * memccpy(void *, const voidx, int, size_t)

¢ void x memchr(const voidx, int, size t) _ ATTR_PURE___

L]

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.11 <string.h>: Strings 191

« int memcmp(const voidx, const voidk, size_t) _ ATTR_PURE__
 void x memcpy(void *, const voidx, size_t)

« void x memmen(const voidx, size_t, const void, size t) ATTR_PURE__
¢ void x memmovegvoid *, const voidx, size_t)

« void x memrchr(const voidx, int, size t) ATTR_PURE__

« void x memse{void *, int, size_t)

« int strcasecmifconst chak, const chax) _ ATTR_PURE___

« charsx strcasest(const chak, const chax) _ ATTR_PURE___

« charsx strcat(charx, const chak)

e charsx strchr(const chak, int) _ ATTR_PURE_

 charx strchrnul(const chak, int) _ ATTR_PURE___

« int strcmp(const chak, const chax) _ ATTR_PURE___

« charsx strcpy(charx, const chak)

 size_tstrcspn(const chak__s, const chat__reject) ATTR_PURE__
* size_tstrlcat(charx, const chak, size_t)

« size_tstrlcpy(charx, const chak, size_t)

« size_tstrlen(const chak) __ ATTR_PURE___

e charx strlwr (charx)

« int strncasecmfconst chak, const chak, size_t) _ ATTR_PURE___

¢ charx strncat(char*, const chak, size_t)

« int strncmp(const chak, const chak, size t) ATTR_PURE__

¢ charx strncpy(charx, const chak, size_t)

¢ size_tstrnlen(const chak, size_t) _ ATTR_PURE___

e charx strpbrk(const chak__s, const chat__accept) _ ATTR_PURE___
e charx strrchr(const chak, int) _ ATTR_PURE___

e charx strrev(charx)

e charx strsep(charxx, const chak)

* size_tstrspn(const chak__s, constchaf__accept) ATTR_PURE__
e charx strstr(const chak, const chax) ATTR_PURE___

¢ charx strtok_r(charx, const chak, charsx)

e charx strupr(charx)

22.11.2 Define Documentation

22.11.2.1 #define _FFS(x)
This macro finds the first (least significant) bit set in the input value.

This macro is very similar to the functidfs() except that it evaluates its argument at
compile-time, so it should only be applied to compile-time constant expressions where
it will reduce to a constant itself. Application of this macro to expressions that are not
constant at compile-time is not recommended, and might result in a huge amount of
code generated.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.11 <string.h>: Strings 192

Returns:

The FFS()macro returns the position of the first (least significant) bit set in the
word val, or 0 if no bits are set. The least significant bit is position 1.

22.11.3 Function Documentation

22.11.3.1 intffs (intval)

This function finds the first (least significant) bit set in the input value.

Returns:

The ffs() function returns the position of the first (least significant) bit set in the
word val, or 0 if no bits are set. The least significant bit is position 1.

Note:

For expressions that are constant at compile time, consider usind-Efemacro
instead.

22.11.3.2 intffsl (long__val)

Same adfs(), for an argument of type long.

22.11.3.3 intffsll (long long__ val

Same adfs(), for an argument of type long long.

22.11.3.4 void« memccpy (voidx dest const voidx src, int val, size_tlen)
Copy memory area.

Thememccpy(function copies no more than len bytes from memory area src to mem-
ory area dest, stopping when the character val is found.

Returns:

Thememccpy(function returns a pointer to the next character in dest after val, or
NULL if val was not found in the first len characters of src.

22.11.3.5 void« memchr (const voidx src, int val, size_tlen)
Scan memory for a character.

The memchr()function scans the first len bytes of the memaory area pointed to by src
for the character val. The first byte to match val (interpreted as an unsigned character)
stops the operation.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.11 <string.h>: Strings 193

Returns:

The memchr()function returns a pointer to the matching byte or NULL if the
character does not occur in the given memory area.

22.11.3.6 int memcmp (const voie s1, const voidx s2, size_tlen)
Compare memory areas.

The memcmp()function compares the first len bytes of the memory areas s1 and s2.
The comparision is performed using unsigned char operations.

Returns:

Thememcmp(function returns an integer less than, equal to, or greater than zero
if the first len bytes of sl is found, respectively, to be less than, to match, or be
greater than the first len bytes of s2.

Note:

Be sure to store the result in a 16 bit variable since you may get incorrect results if
you use an unsigned char or char due to truncation.

Warning:

This function is not -mint8 compatible, although if you only care about testing for
equality, this function should be safe to use.

22.11.3.7 voidk memcpy (voidx dest const voidx src, size_tlen)
Copy a memory area.

The memcpy()function copies len bytes from memory area src to memory area dest.
The memory areas may not overlap. Wsemmove()f the memory areas do overlap.

Returns:

Thememcpy()function returns a pointer to dest.

22.11.3.8 void« memmem (const void« s1, size_tlenl, const voidx s2, size t
len2)

The memmem()function finds the start of the first occurrence of the substsiagf
lengthlen2 in the memory areal of lengthlenl .

Returns:

The memmem()function returns a pointer to the beginning of the substring, or
NULL if the substring is not found. Ien2 is zero, the function returrsl .

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.11 <string.h>: Strings 194

22.11.3.9 voidk memmove (voidx dest const voidx src, size_tlen)

Copy memory area.

Thememmove(function copies len bytes from memory area src to memory area dest.
The memory areas may overlap.

Returns:

Thememmove(function returns a pointer to dest.

22.11.3.10 voidk memrchr (const void x src, int val, size_tlen)

The memrchr()function is like thememchr()function, except that it searches back-
wards from the end of thien bytes pointed to bgrc instead of forwards from the
front. (Glibc, GNU extension.)

Returns:

The memrchr()function returns a pointer to the matching byteNIJLL if the
character does not occur in the given memory area.

22.11.3.11 voidk memset (void dest int val, size_tlen)

Fill memory with a constant byte.

The memset(Jfunction fills the first len bytes of the memory area pointed to by dest
with the constant byte val.

Returns:

Thememset(function returns a pointer to the memory area dest.

22.11.3.12 int strcasecmp (const charsl, const charx s2)

Compare two strings ignoring case.

The strcasecmp(junction compares the two stringd ands2, ignoring the case of
the characters.

Returns:

The strcasecmp(junction returns an integer less than, equal to, or greater than
zero if s1 is found, respectively, to be less than, to match, or be greater than
s2. A consequence of the ordering useddtscasecmp(is that if s1 is an initial
substring o2, thensl is considered to be "less thas?2 .

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.11 <string.h>: Strings 195

22.11.3.13 chas strcasestr (const charx s1, const charx s2)

Thestrcasestr(junction finds the first occurrence of the substridgin the strings1.

This is like strstr() except that it ignores case of alphabetic symbols in searching for
the substring. (Glibc, GNU extension.)

Returns:

The strcasestr(function returns a pointer to the beginning of the substring, or
NULL if the substring is not found. 162 points to a string of zero length, the
function returnsl.

22.11.3.14 chak strcat (char x dest const charx src)
Concatenate two strings.

Thestrcat()function appends the src string to the dest string overwriting\tbechar-
acter at the end of dest, and then adds a terminati®igcharacter. The strings may not
overlap, and the dest string must have enough space for the result.

Returns:

Thestrcat()function returns a pointer to the resulting string dest.

22.11.3.15 chas strchr (const char * src, int val)
Locate character in string.

The strchr()function returns a pointer to the first occurrence of the charaeterin
the stringsrc .

Here "character" means "byte" - these functions do not work with wide or multi-byte
characters.

Returns:

The strchr() function returns a pointer to the matched characteNOLL if the
character is not found.

22.11.3.16 chak strchrnul (const char * s, int)

Thestrchrnul()function is likestrchr()except that it is not found ins, then it returns
a pointer to the null byte at the end ®f rather tharNULL (Glibc, GNU extension.)

Returns:

Thesstrchrnul()function returns a pointer to the matched character, or a pointer to
the null byte at the end of (i.e.,s+strlen (s)) if the character is not found.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.11 <string.h>: Strings 196

22.11.3.17 int strcmp (const chax s1, const charx s2)
Compare two strings.

Thestrcemp()function compares the two stringé ands2.

Returns:

The strcmp()function returns an integer less than, equal to, or greater than zero
if s1 is found, respectively, to be less than, to match, or be greaterstharA
consequence of the ordering usedstrygmp()is that ifs1 is an initial substring of

s2, thensl is considered to be "less thas? .

22.11.3.18 chas strcpy (char * dest const charx src)
Copy a string.

The strcpy() function copies the string pointed to by src (including the terminating
"\ 0’ character) to the array pointed to by dest. The strings may not overlap, and the
destination string dest must be large enough to receive the copy.

Returns:

Thestrcpy()function returns a pointer to the destination string dest.

Note:

If the destination string of atrcpy()is not large enough (that is, if the programmer
was stupid/lazy, and failed to check the size before copying) then anything might
happen. Overflowing fixed length strings is a favourite cracker technique.

22.11.3.19 size_t strcspn (const chars, const charx rejec

The strcspn()function calculates the length of the initial segmensofhich consists
entirely of characters not ireject

Returns:

Thesstrcspn()function returns the number of characters in the initial segmesit of
which are not in the stringeject . The terminating zero is not considered as a
part of string.

22.11.3.20 size_tstricat (chax dst const charx src, size_tsi2)
Concatenate two strings.

Appends src to string dst of size siz (unlgencat() siz is the full size of dst, not space
left). At most siz-1 characters will be copied. Always NULL terminates (unlesssiz
strlen(dst)).

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.11 <string.h>: Strings 197

Returns:

Thestrlcat()function returns strlen(src) + MIN(siz, strlen(initial dst)). If retuak
siz, truncation occurred.

22.11.3.21 size_t stricpy (chax dst const charx src, size tsi?)

Copy a string.

Copy src to string dst of size siz. At most siz-1 characters will be copied. Always
NULL terminates (unless siz == 0).

Returns:

Thestrlcpy() function returns strlen(src). If retval= siz, truncation occurred.

22.11.3.22 size_t strlen (const char src)
Calculate the length of a string.

Thestrlen()function calculates the length of the string src, not including the terminat-
ing '\0’ character.

Returns:

Thestrlen()function returns the number of characters in src.

22.11.3.23 chak strlwr (char x 9)
Convert a string to lower case.

Thestrlwr() function will convert a string to lower case. Only the upper case alphabetic
characters [A .. Z] are converted. Non-alphabetic characters will not be changed.

Returns:

Thestrlwr() function returns a pointer to the converted string.

22.11.3.24 int strncasecmp (const charsl, const charx s2, size_tlen)
Compare two strings ignoring case.

Thestrncasecmp(unction is similar tostrcasecmp()except it only compares the first
len characters o$1.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.11 <string.h>: Strings 198

Returns:

The strncasecmp(function returns an integer less than, equal to, or greater than
zero ifs1 (or the firstlen bytes thereof) is found, respectively, to be less than, to
match, or be greater tha2 . A consequence of the ordering usedstiycasecmp()

is that if s1 is an initial substring 062, thensl is considered to be "less than"
S2.

22.11.3.25 chak strncat (char = dest const charx src, size_tlen)
Concatenate two strings.

Thestrncat()function is similar tostrcat() except that only the first n characters of src
are appended to dest.

Returns:

Thestrncat()function returns a pointer to the resulting string dest.

22.11.3.26 int strncmp (const chak s1, const charx s2, size_tlen)

Compare two strings.

Thestrncmp()function is similar tostrcmp() except it only compares the first (at most)
n characters of s1 and s2.

Returns:

The strncmp()function returns an integer less than, equal to, or greater than zero
if s1 (or the first n bytes thereof) is found, respectively, to be less than, to match,
or be greater than s2.

22.11.3.27 chak strncpy (char x dest const charx src, size_tlen)
Copy a string.

The strncpy()function is similar tostrcpy() except that not more than n bytes of src
are copied. Thus, if there is no null byte among the first n bytes of src, the result will
not be null-terminated.

In the case where the length of src is less than that of n, the remainder of dest will be
padded with nulls.
Returns:

Thestrncpy()function returns a pointer to the destination string dest.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.11 <string.h>: Strings 199

22.11.3.28 size_t strnlen (const charsrc, size tlen)
Determine the length of a fixed-size string.

The strnlen function returns the number of characters in the string pointed to by src, not
including the terminating\0’ character, but at most len. In doing this, strnlen looks
only at the first len characters at src and never beyond src+len.

Returns:

The strnlen function returns strlen(src), if that is less than len, or len if there is no
"\0’ character among the first len characters pointed to by src.

22.11.3.29 chas strpbrk (const char * s, const charx accep}

Thestrpbrk()function locates the first occurrence in the stréngf any of the characters
in the stringaccept .

Returns:

The strpbrk() function returns a pointer to the charactersithat matches one of

the characters iaccept , or NULLIf no such character is found. The terminating
zero is not considered as a part of string: if one or both args are empty, the result
will NULL

22.11.3.30 chak strrchr (const char « src, int val)
Locate character in string.

Thestrrchr()function returns a pointer to the last occurrence of the character val in the
string src.

Here "character" means "byte" - these functions do not work with wide or multi-byte
characters.

Returns:

The strrchr() function returns a pointer to the matched character or NULL if the
character is not found.

22.11.3.31 chak strrev (char * s)
Reverse a string.

Thestrrev()function reverses the order of the string.

Returns:

Thestrrev()function returns a pointer to the beginning of the reversed string.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.11 <string.h>: Strings 200

22.11.3.32 chak strsep (char*x sp, const charx delim)
Parse a string into tokens.

The strsep()function locates, in the string referenced 4gp, the first occurrence of

any character in the strindelim (or the terminating\0’ character) and replaces it

with a "\0’. The location of the next character after the delimiter characteN{4irL,

if the end of the string was reached) is stored«gp. An “empty” field, i.e. one
caused by two adjacent delimiter characters, can be detected by comparing the location
referenced by the pointer returnedsisp to '\0'.

Returns:

The strsep()function returns a pointer to the original value sfp. If xsp is
initially NULL, strsep(yeturnsNULL

22.11.3.33 size_tstrspn (const chars, const charx accepj

The strspn()function calculates the length of the initial segmensaivhich consists
entirely of characters iaccept .

Returns:

The strspn()function returns the number of characters in the initial segment of
s which consist only of characters froatcept . The terminating zero is not
considered as a part of string.

22.11.3.34 chak strstr (const char « s1, const charx s2)
Locate a substring.

Thestrstr()function finds the first occurrence of the substri2gin the stringsl. The
terminating \0’ characters are not compared.

Returns:

The strstr()function returns a pointer to the beginning of the substring\OLL
if the substring is not found. 2 points to a string of zero length, the function
returnssl.

22.11.3.35 chak strtok_r (char * string, const charx delim, char *x last)
Parses the string s into tokens.

strtok_r parses the string s into tokens. The first call to strtok_r should have string as
its first argument. Subsequent calls should have the first argument set to NULL. If a

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.12 <avr/boot.h>: Bootloader Support Utilities 201

token ends with a delimiter, this delimiting character is overwritten withGa and a
pointer to the next character is saved for the next call to strtok_r. The delimiter string
delim may be different for each call. last is a user allocatedscpainter. It must be

the same while parsing the same string. strtok_r is a reentrant version of strtok().
Returns:

Thestrtok_r()function returns a pointer to the next token or NULL when no more
tokens are found.

22.11.3.36 chak strupr (char x* s)

Convert a string to upper case.

Thestrupr()function will convert a string to upper case. Only the lower case alphabetic
characters [a .. z] are converted. Non-alphabetic characters will not be changed.
Returns:

The strupr()function returns a pointer to the converted string. The pointer is the
same as that passed in since the operation is perform in place.

22.12 <avr/boot.h>: Bootloader Support Utilities

22.12.1 Detailed Description

#include <avr/io.h>
#include <avr/boot.h>

The macros in this module provide a C language interface to the bootloader support
functionality of certain AVR processors. These macros are designed to work with all
sizes of flash memory.

Global interrupts are not automatically disabled for these macros. It is left up to the
programmer to do this. See the code example below. Also see the processor datasheet
for caveats on having global interrupts enabled during writing of the Flash.

Note:
Not all AVR processors provide bootloader support. See your processor datasheet
to see if it provides bootloader support.

Todo

From email with Marek: On smaller devices (all except ATmega64/128), SPM_-
REG is in the 1/O space, accessible with the shorter "in" and "out" instructions -
since the boot loader has a limited size, this could be an important optimization.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.12 <avr/boot.h>: Bootloader Support Utilities 202

API Usage Example

The following code shows typical usage of the boot API.

#include <inttypes.h>
#include <avr/interrupt.h>
#include <avr/pgmspace.h>

void boot_program_page (uint32_t page, uint8_t *buf)

{

Defines

uintl6é_t i;
uint8_t sreg;

/I Disable interrupts.

sreg = SREG;
cli();

eeprom_busy wait ();

boot_page_erase (page);
boot_spm_busy_wait (); /Il Wait until the memory is erased.

for (i=0; i<SPM_PAGESIZE; i+=2)

{
/I Set up little-endian word.
uintl6_t w = *buf++;
w += (*buf++) << 8;
boot_page fill (page + i, w);
}
boot_page_write (page); /I Store buffer in flash page.
boot_spm_busy_wait(); /Il Wait until the memory is written.

/I Reenable RWW-section again. We need this if we want to jump back
/I to the application after bootloading.

boot_rww_enable ();
/I Re-enable interrupts (if they were ever enabled).

SREG = sreg;

#defineBOOTLOADER_SECTION _ attribute__ ((section (".bootloader")))
#defineboot_spm_interrupt_enalf)_ SPM_REG= (uint8_{_BV(SPMIE))
#define boot_spm_interrupt_disalffe (__ SPM_REG &= (int8)~ -
BV(SPMIE))

#defineboot_is_spm_interrupt(__SPM_REG & (int8_1) BV(SPMIE))
#defineboot_rww_busg) (_ SPM_REG & (int8_§ BV(__ COMMON_ASB))

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.12 <avr/boot.h>: Bootloader Support Utilities 203

 #defineboot_spm_bugy (___SPM_REG & (int8_) BV(SPMEN))
 #defineboot_spm_busy wdjtdo{}while(boot_spm_busy())
 #defineGET_LOW_FUSE_BITS0x0000)
 #defineGET_LOCK_BITS(0x0001)

« #defineGET_EXTENDED_FUSE_BIT$0x0002)

« #defineGET_HIGH_FUSE_BITS0x0003)

« #defineboot_lock fuse_bits_g@tddress)

« #defineboot_signature_byte datdr)

« #defineboot_page_fifladdress, data) _boot_page_fill_normal(address, data)
« #defineboot_page eragaddress) boot page_erase normal(address)
« #defineboot_page writ@ddress) ___boot_page_write_normal(address)
 #defineboot_rww_enabl@ _ boot_rww_enable()
 #defineboot_lock_bits_sélibck_bits) _ boot_lock_bits_set(lock_bits)

« #defineboot_page_fill_safaddress, data)

« #defineboot_page_erase_sédddress)

 #defineboot_page write_safaddress)

 #defineboot_rww_enable_safe

« #defineboot_lock_bits_set_sgfeck_bits)

22.12.2 Define Documentation

22.12.2.1 #define boot_is_spm_interrupt() (__SPM_REG & (uint8_t) -
BV(SPMIE))

Check if the SPM interrupt is enabled.

22.12.2.2 #define boot_lock_bits_set(lock_bits) _ boot_lock_bits_set(lock_bits)

Set the bootloader lock bits.

Parameters:

lock_bits A mask of which Boot Loader Lock Bits to set.

Note:

In this context, a 'set bit’ will be written to a zero value. Note also that only BLBxx
bits can be programmed by this command.

For example, to disallow the SPM instruction from writing to the Boot Loader memory
section of flash, you would use this macro as such:

boot_lock_bits_set (_BV (BLB11));

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.12 <avr/boot.h>: Bootloader Support Utilities 204

Note:

Like any lock bits, the Boot Loader Lock Bits, once set, cannot be cleared again
except by a chip erase which will in turn also erase the boot loader itself.

22.12.2.3 #define boot_lock_bits_set safe(lock_bits)

Value:

do {\
boot_spm_busy_wait(); \
eeprom_busy_wait(); \
boot_lock_bits_set (lock_bits); \

} while (0)

Same adboot_lock_bits_set@xcept waits for eeprom and spm operations to complete
before setting the lock bits.

22.12.2.4 #define boot_lock_fuse_bits_get(address)

Value:

(__extension__({ \
uint8_t __ result; \
_asm__ _ volatile__ \

(\

"Idi r30, %3\n\t" \

“Idi r31, O\n\t" \

"sts %1, %2\n\t" \

"Ipm %0, Z\n\t"

;"= (__result) \

: "i" ((SFR_MEM_ADDR(__SPM_REG)), \
"r" ((uint8_t)__BOOT_LOCK_BITS_SET), \
"M" (address) \

: "r0", "r30", "r31" \

’_result; \
)}
Read the lock or fuse bits atldress .
Parameteraddress can be any of GET_LOW_FUSE_BITS, GET_LOCK_BITS,
GET_EXTENDED_FUSE_BITS, or GET_HIGH_FUSE_BITS.
Note:

The lock and fuse bits returned are the physical values, i.e. a bit returned as 0
means the corresponding fuse or lock bit is programmed.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.12 <avr/boot.h>: Bootloader Support Utilities 205

22.12.2.5 #define boot_page_erase(address) __boot_page_erase_-
normal(address)

Erase the flash page that contains address.

Note:

address is a byte address in flash, not a word address.

22.12.2.6 #define boot_page erase_safe(address)

Value:

do {\
boot_spm_busy_wait(); \
eeprom_busy_wait(); \
boot_page_erase (address); \
} while (0)

Same aboot_page_erasegxcept it waits for eeprom and spm operations to complete
before erasing the page.

22.12.2.7 #define boot_page_fill(address, data) _ boot_page fill_-
normal(address, data)

Fill the bootloader temporary page buffer for flash address with data word.

Note:

The address is a byte address. The data is a word. The AVR writes data to the
buffer a word at a time, but addresses the buffer per byte! So, increment your
address by 2 between calls, and send 2 data bytes in a word format! The LSB of
the data is written to the lower address; the MSB of the data is written to the higher
address.

22.12.2.8 #define boot_page_fill_safe(address, data)

Value:

do {\
boot_spm_busy_wait(); \
eeprom_busy_wait(); \
boot_page_fill(address, data); \

} while (0)

Same adoot_page_fill)except it waits for eeprom and spm operations to complete
before filling the page.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.12 <avr/boot.h>: Bootloader Support Utilities 206

22.12.2.9 #define boot_page_write(address) __boot_page_write_-
normal(address)

Write the bootloader temporary page buffer to flash page that contains address.

Note:

address is a byte address in flash, not a word address.

22.12.2.10 #define boot_page write_safe(address)
Value:
do {\
boot_spm_busy_wait(); \
eeprom_busy_wait(); \

boot_page_write (address); \
} while (0)

Same aboot_page_write(@xcept it waits for eeprom and spm operations to complete
before writing the page.

22.12.2.11 #define boot_rww_busy() (_ SPM_REG & (uint8_t)_ BV(_ -
COMMON_ASB))

Check if the RWW section is busy.

22.12.2.12 #define boot_rww_enable() __boot_rww_enable()

Enable the Read-While-Write memory section.

22.12.2.13 #define boot_rww_enable_safe()

Value:

do {\
boot_spm_busy_wait(); \
eeprom_busy_wait(); \
boot_rww_enable();

} while (0)

Same adoot_rww_enable(@xcept waits for eeprom and spm operations to complete
before enabling the RWW mameory.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.12 <avr/boot.h>: Bootloader Support Utilities 207

22.12.2.14 #define boot_signature_byte get(addr)

Value:

(__extension__({ \

uintl6_t _ addrl6 = (uintl6_t)(addr); \

uint8_t __ result; \

__asm__ _ volatile__ \

(\
"sts %1, %2\n\t" \
"Ipm %0, Z" "\n\t" \
»"=r" (__result) \

: "i"' (_(SFR_MEM_ADDR(__SPM_REG)), \
"r* ((uint8_t) _ BOOT_SIGROW_READ), \
"z" (__addrle) \

) \
__result; \

D))

Read the Signature Row byte address . For some MCU types, this function can
also retrieve the factory-stored oscillator calibration bytes.

Parameteaddress can be 0-Ox1f as documented by the datasheet.

Note:
The values are MCU type dependent.

22.12.2.15 #define boot_spm_busy() (__SPM_REG & (uint8_t) BV(SPMEN))

Check if the SPM instruction is busy.

22.12.2.16 #define boot_spm_busy_ wait() do{}while(boot_spm_busy())
Wait while the SPM instruction is busy.

22.12.2.17 #define boot_spm_interrupt_disable() (__SPM_REG &= (uint8 -
t)~_BV(SPMIE))

Disable the SPM interrupt.

22.12.2.18 #define boot_spm_interrupt_enable() (_ SPM_REG (uint8_t)_-
BV(SPMIE))

Enable the SPM interrupt.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.13 <avr/eeprom.h>: EEPROM handling 208

22.12.2.19 #define BOOTLOADER_SECTION __ attribute__ ((section (".boot-
loader")))

Used to declare a function or variable to be placed into a new section called .boot-
loader. This section and its contents can then be relocated to any address (such as the
bootloader NRWW area) at link-time.

22.12.2.20 #define GET_EXTENDED_FUSE_BITS (0x0002)

address to read the extended fuse bits, using boot_lock_fuse_bits_get

22.12.2.21 #define GET_HIGH_FUSE_BITS (0x0003)

address to read the high fuse bits, using boot_lock fuse bits_get

22.12.2.22 #define GET_LOCK_BITS (0x0001)

address to read the lock bits, using boot_lock fuse_bits_get

22.12.2.23 #define GET_LOW_FUSE_BITS (0x0000)

address to read the low fuse bits, using boot_lock_fuse_bits_get

22.13 <avr/eeprom.h>: EEPROM handling

22.13.1 Detailed Description

#include <avr/eeprom.h>

This header file declares the interface to some simple library routines suitable for han-
dling the data EEPROM contained in the AVR microcontrollers. The implementation
uses a simple polled mode interface. Applications that require interrupt-controlled
EEPROM access to ensure that no time will be wasted in spinloops will have to deploy
their own implementation.

Note:

All of the read/write functions first make sure the EEPROM is ready to be ac-
cessed. Since this may cause long delays if a write operation is still pending,
time-critical applications should first poll the EEPROM e. g. usagprom -
is_ready()before attempting any actual I/0. But this functions are not wait until
SELFPRGEN in SPMCSR becomes zero. Do this manually, if your softwate con-
tains the Flash burning.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.13 <avr/eeprom.h>: EEPROM handling 209

As these functions modify 1O registers, they are known to be non-reentrant. If any
of these functions are used from both, standard and interrupt context, the applica-
tions must ensure proper protection (e.g. by disabling interrupts before accessing
them).

All write functions force erase_and_write programming mode.

IAR C compatibility defines

e #define EEPUTaddr, val) eeprom_write byte uiat8 _t «)(addr), (int8 -
t)(val))
« #define_ EEGET(var, addr) (var) = eeprom_read_byte ((comsit8_tx)(addr))

Defines

» #defineEEEMEM __ attribute__ ((section(".eeprom™)))
 #defineeeprom_is_ready
 #defineeeprom_busy wditdo {} while (leeprom_is_ready())

Functions

e static _ ATTR_PURE__ _ inline_uint8 t eeprom_read_bytéconstuint8_t
*__P)

e static _ ATTR_PURE__ _ inline__uintl6_t eeprom_read_word(const
uintle_tx_ p)

e static __ ATTR_PURE__ _ inline__uint32_t eeprom_read_dword(const
uint32_tx_ p)

e static __inline__ voideeprom_read_blockvoid «__dst, const void«__src,
size_t__n)

« static __inline__ voicceprom_write_bytéuint8_t«__ p,uint8_t__ value)

 static __inline__ voicceprom_write_worduintl6_tx__ p,uintl6_t value)

« static __inline__ voicceprom_write_dwor¢uint32_t«__ p,uint32_t value)

e static __inline__ voideeprom_write_blockvoid *__dst, const void«__src,
size t__n)

22.13.2 Define Documentation

22.13.2.1 #define EEGET(var, addr) (var) = eeprom_read_byte ((const uint8_t
x)(addr))

Read a byte from EEPROM. Compatibility define for IAR C.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.13 <avr/eeprom.h>: EEPROM handling 210

22.13.2.2 #define _EEPUT(addr, val) eeprom_write_byte ((uint8_s)(addr),
(uint8_t)(val))

Write a byte to EEPROM. Compatibility define for IAR C.

22.13.2.3 #define EEMEM __ attribute__ ((section(".eeprom")))

Attribute expression causing a variable to be allocated within the .eeprom section.

22.13.2.4 #define eeprom_busy wait() do {} while (leeprom_is_ready())

Loops until the eeprom is no longer busy.

Returns:

Nothing.

22.13.2.5 #define eeprom_is_ready()

Returns:

1 if EEPROM is ready for a new read/write operation, O if not.

22.13.3 Function Documentation

22.13.3.1 static __inline__ void eeprom_read_block (void __dst const void
__srg size_t _n) [static]

Read a block of nbytes from EEPROM address srcto SRAM __dst

22.13.3.2 static __ ATTR_PURE__ _ inline__ uint8_t eeprom_read_byte (const
uint8_t«__p [static]

Read one byte from EEPROM address.

22.13.3.3 static _ ATTR PURE__ _ inline__ uint32_t eeprom_read_dword
(constuint32_t«x __ p [static]

Read one 32-bit double word (little endian) from EEPROM addregs

22.13.3.4 static _ ATTR_PURE__ _ inline__ uintl6_t eeprom_read_word
(constuintlé_tx __p [static]

Read one 16-bit word (little endian) from EEPROM addresg

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.14 <avr/fuse.h>: Fuse Support 211

22.13.3.5 static __inline__ void eeprom_write_block (void __ dst const voidx
__SIG size_t _n) [static]

Write a block of __nbytes to EEPROM address dstfrom __src

22.13.3.6 static __inline__ void eeprom_write_byte (uint8 t __ p, uint8_t _ -
value) [static]

Write a byte valueto EEPROM address p.

22.13.3.7 static __inline__ void eeprom_write_dword (uint32_ _ p, uint32_t
__valug [static]

Write a 32-bit double word _valueto EEPROM address p

22.13.3.8 static __inline__ void eeprom_write_word (uintl6_ ¢ _p uintl6_t
__valug [static]

Write a word__ valueto EEPROM address p.

22.14 <avr/fuse.h>: Fuse Support

Introduction

The Fuse API allows a user to specify the fuse settings for the specific AVR device they
are compiling for. These fuse settings will be placed in a special section in the ELF
output file, after linking.

Programming tools can take advantage of the fuse information embedded in the ELF
file, by extracting this information and determining if the fuses need to be programmed
before programming the Flash and EEPROM memories. This also allows a single ELF
file to contain all the information needed to program an AVR.

To use the Fuse API, include thkeavr/io.l> header file, which in turn automatically
includes the individual I/O header file and th@vr/fuse.h> file. These other two files
provides everything necessary to set the AVR fuses.

Fuse API

Each 1/O header file must define the FUSE_MEMORY _SIZE macro which is defined
to the number of fuse bytes that exist in the AVR device.

A new type, _ fuse_t, is defined as a structure. The number of fields in this structure
are determined by the number of fuse bytes in the FUSE_MEMORY_SIZE macro.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.14 <avr/fuse.h>: Fuse Support 212

If FUSE_MEMORY_SIZE == 1, there is only a single field: byte, of type unsigned
char.

If FUSE_MEMORY_SIZE == 2, there are two fields: low, and high, of type unsigned
char.

If FUSE_MEMORY_SIZE == 3, there are three fields: low, high, and extended, of
type unsigned char.

If FUSE_MEMORY_SIZE > 3, there is a single field: byte, which is an array of
unsigned char with the size of the array being FUSE_MEMORY_SIZE.

A macro, FUSEMEM, is defined as a GCC attribute for a custom-named section of
" fuse".

Finally, a macro, FUSES, is defined that declares a variable, _ fuse, of type _ fuse_t
with the attribute defined by FUSEMEM. This variable allows the end user to easily
set the fuse data.

Each AVR device I/O header file has a set of defined macros which specify the actual
fuse bits available on that device. The AVR fuses have inverted values, logical 1 for
an unprogrammed (disabled) bit and logical 0 for a programmed (enabled) bit. The
defined macros for each individual fuse bit represent this in their definition by a bit-
wise inversion of a mask. For example, the FUSE_EESAVE fuse in the ATmegal28 is
defined as:

#define FUSE_EESAVE ~ BV(3)

Note:

The _BV macro creates a bit mask from a bit number. It is then inverted to repre-
sent logical values for a fuse memory byte.

To combine the fuse bits macros together to represent a whole fuse byte, use the bitwise
AND operator, like so:

(FUSE_BOOTSZ0 & FUSE_BOOTSZ1 & FUSE_EESAVE & FUSE_SPIEN & FUSE_JTAGEN)

Each device I/O header file also defines macros that provide default values for each fuse
byte that is available. LFUSE_DEFAULT is defined for a Low Fuse byte. HFUSE_-
DEFAULT is defined for a High Fuse byte. EFUSE_DEFAULT is defined for an Ex-
tended Fuse byte.

If FUSE_MEMORY_SIZE > 3, then the I/O header file defines macros that pro-
vide default values for each fuse byte like so: FUSEO_DEFAULT FUSE1 DEFAULT
FUSE2_DEFAULT FUSE3_DEFAULT FUSE4_DEFAULT

API Usage Example

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.14 <avr/fuse.h>: Fuse Support 213

Putting all of this together is easy:

#include <avr/io.h>

FUSES =

{
low = LFUSE_DEFAULT,

.high = (FUSE_BOOTSZ0 & FUSE_BOOTSZ1 & FUSE_EESAVE & FUSE_SPIEN & FUSE_JTAGEN),
.extended = EFUSE_DEFAULT,

b

int main(void)

{
}

return O;

However there are a number of caveats that you need to be aware of to use this API
properly.

Be sure to include<avr/io.l> to get all of the definitions for the API. The FUSES
macro defines a global variable to store the fuse data. This variable is assigned to its

own linker section. Assign the desired fuse values immediately in the variable initial-
ization.

The .fuse section in the ELF file will get its values from the initial variable assignment
ONLY. This means that you can NOT assign values to this variable in functions and the
new values will not be put into the ELF .fuse section.

The global variable is declared in the FUSES macro has two leading underscores,
which means that it is reserved for the "implementation”, meaning the library, so it
will not conflict with a user-named variable.

You must initialize ALL fields in the _ fuse_t structure. This is because the fuse bits
in all bytes default to a logical 1, meaning unprogrammed. Normal uninitialized data
defaults to all locgial zeros. So it is vital that all fuse bytes are initialized, even with
default data. If they are not, then the fuse bits may not programmed to the desired
settings.

Be sure to have the -mmcdeviceflag in your compile command line and your linker
command line to have the correct device selected and to have the correct I1/O header
file included when you includeavr/io.ft>.

You can print out the contents of the .fuse section in the ELF file by using this command
line:

avr-objdump -s -j .fuse <ELF file>

The section contents shows the address on the left, then the data going from lower
address to a higher address, left to right.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.15 <avr/interrupt.h >: Interrupts 214

22.15 <auvr/interrupt.h >: Interrupts

22.15.1 Detailed Description
Note:

This discussion of interrupts was originally taken from Rich Neswold’s document.
SeeAcknowledgments

Introduction to avr-libc’s interrupt handling It's nearly impossible to find compil-

ers that agree on how to handle interrupt code. Since the C language tries to stay away
from machine dependent details, each compiler writer is forced to design their method
of support.

In the AVR-GCC environment, the vector table is predefined to point to interrupt rou-
tines with predetermined names. By using the appropriate name, your routine will be
called when the corresponding interrupt occurs. The device library provides a set of
default interrupt routines, which will get used if you don’t define your own.

Patching into the vector table is only one part of the problem. The compiler uses, by
convention, a set of registers when it's normally executing compiler-generated code.
It's important that these registers, as well as the status register, get saved and restored.
The extra code needed to do this is enabled by tagging the interrupt function with
attribute__ ((signal))

These details seem to make interrupt routines a little messy, but all these details are
handled by the Interrupt API. An interrupt routine is defined W&R(). This macro
register and mark the routine as an interrupt handler for the specified peripheral. The
following is an example definition of a handler for the ADC interrupt.

#include <avr/interrupt.h>

ISR(ADC_vect)

/I user code here

Refer to the chapter explainimgsembler programmirfgr an explanation about inter-
rupt routines written solely in assembler language.

Catch-all interrupt vector If an unexpected interrupt occurs (interrupt is enabled
and no handler is installed, which usually indicates a bug), then the default action is
to reset the device by jumping to the reset vector. You can override this by supplying
a function name@®ADISR_vect which should be defined wittSR() as such. (The
name BADISR_vect is actually an alias for __vector_default. The latter must be used
inside assembly code in cas@vr/interrupt.h> is not included.)

#include <avr/interrupt.h>

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.15 <avr/interrupt.h >: Interrupts 215

ISR(BADISR_vect)
{

}

/I user code here

Nested interrupts The AVR hardware clears the global interrupt flag in SREG be-
fore entering an interrupt vector. Thus, normally interrupts will remain disabled inside
the handler until the handler exits, where the RETI instruction (that is emitted by the
compiler as part of the normal function epilogue for an interrupt handler) will even-
tually re-enable further interrupts. For that reason, interrupt handlers normally do not
nest. For most interrupt handlers, this is the desired behaviour, for some it is even
required in order to prevent infinitely recursive interrupts (like UART interrupts, or
level-triggered external interrupts). In rare circumstances though it might be desired to
re-enable the global interrupt flag as early as possible in the interrupt handler, in order
to not defer any other interrupt more than absolutely needed. This could be done using
ansei() instruction right at the beginning of the interrupt handler, but this still leaves
few instructions inside the compiler-generated function prologue to run with global in-
terrupts disabled. The compiler can be instructed to insert an SEI instruction right at
the beginning of an interrupt handler by declaring the handler the following way:

ISR(XXX_vect, ISR_NOBLOCK)
{

-

whereXXX_vect is the name of a valid interrupt vector for the MCU type in question,
as explained below.

Two vectors sharing the same code In some circumstances, the actions to be taken
upon two different interrupts might be completely identical so a single implementa-
tion for the ISR would suffice. For example, pin-change interrupts arriving from two
different ports could logically signal an event that is independent from the actual port
(and thus interrupt vector) where it happened. Sharing interrupt vector code can be
accomplished using tH&R_ALIASOF() attribute to the ISR macro:

ISR(PCINTO_vect)
{

/I Code to handle the event.

}

ISR(PCINTL_vect, ISR_ALIASOF(PCINTO_vect));

Note:
There is no body to the aliased ISR.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.15 <avr/interrupt.h >: Interrupts 216

Note that thdSR_ALIASOF()feature requires GCC 4.2 or above (or a patched version
of GCC 4.1.x). See the documentation of tB® ALIAS() macro for an implementa-
tion which is less elegant but could be applied to all compiler versions.

Empty interrupt service routines In rare circumstances, in interrupt vector does not
need any code to be implemented at all. The vector must be declared anyway, so when
the interrupt triggers it won’t execute the BADISR_vect code (which by default restarts
the application).

This could for example be the case for interrupts that are solely enabled for the purpose
of getting the controller out of sleep_mode().

A handler for such an interrupt vector can be declared using BEMPTY_-
INTERRUPT()macro:

EMPTY_INTERRUPT(ADC_vect);

Note:

There is no body to this macro.

Manually defined ISRs In some circumstances, the compiler-generated prologue
and epilogue of the ISR might not be optimal for the job, and a manually defined ISR
could be considered particularly to speedup the interrupt handling.

One solution to this could be to implement the entire ISR as manual assembly code in
a separate (assembly) file. SBembining C and assembly source fifes an example
of how to implement it that way.

Another solution is to still implement the ISR in C language but take over the com-
piler’s job of generating the prologue and epilogue. This can be done using the ISR_-
NAKED attribute to thelSR() macro. Note that the compiler does not geneeatg-

thing as prologue or epilogue, so the firrati() must be provided by the actual im-
plementation. SREG must be manually saved if the ISR code modifies it, and the
compiler-implied assumption of zero_reg__ always being 0 could be wrong (e.

g. when interrupting right after of a MUL instruction).

ISR(TIMERL_OVF_vect, ISR_NAKED)

PORTB |= _BV(0); /I results in SBI which does not affect SREG
reti();
}

Choosing the vector: Interrupt vector names The interrupt is chosen by supplying
one of the symbols in following table.

There are currently two different styles present for naming the vectors. One form uses
names starting witBIG_, followed by a relatively verbose but arbitrarily chosen name

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.15 <avr/interrupt.h >: Interrupts 217

describing the interrupt vector. This has been the only available style in avr-libc up to
version 1.2.x.

Starting with avr-libc version 1.4.0, a second style of interrupt vector names has been
added, where a short phrase for the vector description is followedvbgt . The

short phrase matches the vector name as described in the datasheet of the respective
device (and in Atmel's XML files), with spaces replaced by an underscore and other
non-alphanumeric characters dropped. Using the suffiect is intented to improve
portability to other C compilers available for the AVR that use a similar naming con-
vention.

The historical naming style might become deprecated in a future release, so it is not
recommended for new projects.

Note:

TheISR() macro cannot really spell-check the argument passed to them. Thus, by
misspelling one of the names below in a call&R(), a function will be created
that, while possibly being usable as an interrupt function, is not actually wired into
the interrupt vector table. The compiler will generate a warning if it detects a sus-
piciously looking name of &R() function (i.e. one that after macro replacement
does not start with "__vector_").

Vector name Old vector | Description Applicable for device
name
ADC_vect SIG_ADC ADC Conversion| AT90S2333, AT90S4433, AT90S4434,
Complete AT90S8535, AT90PWM2186,
AT90PWM2B, AT90PWM316,

AT90PWM3B, AT90PWM3, AT90PWM2,
AT90PWM1, AT90CAN128, AT90CAN32,
AT90CANG4, ATmegalO3, ATmegal2§g
ATmegal284P, ATmegal6, ATmegal6
ATmegal65, ATmegal65P, ATmegal68
ATmegal69, ATmegal69P, ATmega3
ATmega323, ATmega325, ATmega325
ATmega3250P, ATmega328P, ATmega32
ATmega3290, ATmega3290P, ATmega4§
ATmega64, ATmega645, ATmega645
ATmegab649, ATmega6490, ATmega:
ATmega8535, ATmega88P, ATmegalb
ATmega48, ATmega88, ATmega640, AT-
megal280, ATmegal281, ATmega25§
ATmega2561, ATmega324P, ATmegal64
ATmega644P, ATmega644, ATtinyl3, AT
tinyl5, ATtiny26, ATtiny43U, ATtiny48,
ATtiny24, ATtiny44, ATtiny84, ATtiny45,
ATtiny25, ATtiny85, ATtiny261, ATtiny461,
ATtiny861, ATO0USB1287, AT90USB1286
AT90USB647, AT90USB646

oM Tgwe

oo

O T IOF

ANALOG_- SIG_- Analog Com- | AT90PWM3, ATOOPWM2, AT90PWM1
COMP_0_vect| COMPARATOROparator 0
ANALOG_- SIG_- Analog Com- | AT90PWM3, AT90OPWM2, ATOOPWM1

COMP_1_vect| COMPARATOR1parator 1

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.15 <auvr/interrupt.h >: Interrupts

218

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

U

o2

Vector name Old vector | Description Applicable for device
name
ANALOG_- SIG_- Analog Com- | AT90PWM3, AT90PWM2, ATOOPWM1
COMP_2_vect| COMPARATOR2 parator 2
ANALOG_- SIG_- Analog Com- | AT90CAN128, AT90CAN32, AT90CANG64,
COMP_vect COMPARATOR parator ATmegalO3, ATmegal28, ATmegal284P,
ATmegal65, ATmegal65P, ATmegal68P,
ATmegal69, ATmegal69P, ATmega32p
ATmega3250, ATmega3250P, ATmega328
ATmega329, ATmega3290, ATmega3290
ATmega48P, ATmega64, ATmega64b
ATmega6450, ATmega649, ATmega6490
ATmega88P, ATmegal68, ATmegadd
ATmega88, ATmega640, ATmegal28
ATmegal281, ATmega2560, ATmega256
ATmega324P, ATmegal64P, ATmega644
ATmegab644, AT90USB162, AT90USB8Z,
AT90USB1287, AT90USB1286
ATI0USB647, AT90USB646
ANA_- SIG_- Analog Com- | AT90S1200, AT90S2313, AT90S2333,
COMP_vect COMPARATOR parator AT90S4414, AT90S4433, AT90S4434,
AT90S8515, AT90S8535, ATmegalg,
ATmegal6l, ATmegal62, ATmegal63,
ATmega32, ATmega323, ATmega8, AT-
mega8515, ATmega8535, ATtiny11,
ATtiny12, ATtiny13, ATtiny15, ATtiny2313,
ATtiny26, ATtiny28, ATtiny43U, ATtiny48,
ATtiny24, ATtiny44, ATtiny84, ATtiny45,
ATtiny25, ATtiny85, ATtiny261, ATtiny461,
ATtiny861
CANIT_vect SIG_CAN_- CAN Transfer | AT90CAN128, AT90CAN32, AT90CAN64
INTERRUPT1 | Complete or
Error
EEPROM_- SIG_- ATtiny2313
READY _vect EEPROM_-
READY,
SIG_EE._-
READY
EE_RDY_vect | SIG_- EEPROM Ready | AT90S2333, AT90S4433, AT90S4434,
EEPROM_- AT90S8535, ATmegal6, ATmegal6],
READY ATmegal62, ATmegal63, ATmega32,
ATmega323, ATmega8, ATmega8515,
ATmega8535, ATtinyl2, ATtinyl3, AT-
tinyl5, ATtiny26, ATtiny43U, ATtiny48,
ATtiny24, ATtiny44, ATtiny84, ATtiny45,
ATtiny25, ATtiny85, ATtiny261, ATtiny461,
ATtiny861

22.15 <auvr/interrupt.h >: Interrupts

219

Vector name

Old
name

vector

Description

Applicable for device

EE_READY -
vect

SIG_-
EEPROM_-
READY

EEPROM Ready

AT90PWM3, AT90PWM2, AT90PWM1,
AT90CAN128, AT90CAN32, AT90CANG4,
ATmegal03, ATmegal28, ATmegal284
ATmegal65, ATmegal65P, ATmegal68
ATmegal69, ATmegal69P, ATmega32
ATmega3250, ATmega3250P, ATmega32§
ATmega329, ATmega3290, ATmega3290
ATmega32HVB, ATmega406, ATmega48
ATmega64, ATmega645, ATmega645
ATmega649, ATmega6490, ATmega88
ATmegal68, ATmegad48, ATmega88, Al
mega640, ATmegal280, ATmegal281, A
mega2560, ATmega2561, ATmega324P, A

megal64P, ATmega644P, ATmega644, AT-

megal6HVA, AT90USB162, AT90USB82
AT90USB1287, AT90USB1286
AT90USB647, AT90USB646

i v SR v IR

0O

i

EXT_INTO_-
vect

SIG_-
INTERRUPTO

External Interrupt
Request 0

ATtiny24, ATtiny44, ATtiny84

INTO_vect

SIG_-
INTERRUPTO

External Interrupt
0

AT90S1200,
AT90S2333,
AT90S4433,
AT90S8535, AT90PWM2186,
AT90PWM2B, AT90PWM316,
AT90PWM3B, AT90PWM3, AT90PWM2,
AT90PWM1, AT90CAN128, AT90CAN32,
AT90CANG4, ATmegalO3, ATmegal28g
ATmegal284P, ATmegal6, ATmegal6
ATmegal62, ATmegal63, ATmegal6
ATmegal65P, ATmegal68P, ATmegalf
ATmegal69P, ATmega32, ATmega32
ATmega325, ATmega3250, ATmega325Q0
ATmega328P, ATmega329, ATmega329
ATmega3290P, ATmega32HVB, AT;
megad406, ATmega48P, ATmegab64, A
mega645, ATmega6450, ATmegab64
ATmega6490, ATmega8, ATmega851
ATmega8535, ATmega88P, ATmegal6
ATmega48, ATmega88, ATmega640, Al
megal280, ATmegal281, ATmega25§
ATmega2561, ATmega324P, ATmegal64
ATmega644P, ATmega644, ATmegal6HVA
ATtiny11, ATtinyl2, ATtinyl3, ATtinyl15,
ATtiny22, ATtiny2313, ATtiny26, ATtiny28,
ATtiny43U, ATtiny48, ATtiny45, ATtiny25,

AT90S2313,
AT90S2343,
AT90S4434,

ATtiny85, ATtiny261, ATtiny461, AT-
tiny861, AT90USB162, AT90USBS2
AT90USB1287, AT90USB1286

AT90USB647, AT90USB646

AT90S2323,
AT90S4414,
AT90S851%,

PR oD O H T O oW OO E

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.15 <auvr/interrupt.h >: Interrupts

220

Vector name

Old vector
name

Description

Applicable for device

INTL_vect

SIG_-
INTERRUPT1

External Interrupt
Request 1

AT90S2313,
AT90S4433,

AT90S2333, AT90S4414,
AT90S4434, AT90S8515,
AT90S8535, AT90PWM216,
AT90PWM2B, AT90PWM316,
AT90PWM3B, AT90PWM3, AT90PWM2,
AT90PWM1, AT90CAN128, ATO90CAN32,
AT90CANG4, ATmegalO3, ATmegal28g
ATmegal284P, ATmegal6, ATmegal6
ATmegal62, ATmegal63, ATmegal68
ATmega32, ATmega323, ATmega328
ATmega32HVB, ATmega406, AT
mega48P, ATmega64, ATmega8, AT
mega8515, ATmega8535, ATmega88
ATmegal68, ATmegad8, ATmega88, Al
mega640, ATmegal280, ATmegal28
ATmega2560, ATmega2561, ATmega324
ATmegal64P, ATmega644P, ATmega64
ATmegal6HVA, ATtiny2313, ATtiny28,
ATtiny48, ATtiny261, ATtiny461, AT-
tiny861, AT90USB162, AT90USB82
AT90USB1287, AT90USB1286
AT90USB647, AT90USB646

UUFE-

~SThHF O

INT2_vect

SIG_-
INTERRUPT2

External Interrupt
Request 2

AT90PWM3, AT90PWM2, AT90PWM1,
AT90CAN128, AT90CAN32, AT90CANG4,
ATmegalO3, ATmegal28, ATmegal284P,
ATmegal6, ATmegal6l, ATmegal6?2
ATmega32, ATmega323, ATmega32HVH
ATmegad06, ATmega64, ATmega8515, Aj
mega8535, ATmega640, ATmegal28|
ATmegal28l, ATmega2560, ATt
mega2561, ATmega324P, ATmegal64
ATmega644P, ATmega644, ATt
megal6HVA, AT90USB162, AT90USB82,
AT90USB1287, AT90USB1286
ATI0USB647, AT90USB646

[=EnE

o

INT3_vect

SIG_-
INTERRUPT3

External Interrupt
Request 3

AT90PWM3, AT90PWM2, AT90PWML1,
AT90CAN128, AT90CAN32, AT90CANG4,
ATmegal03, ATmegal28, ATmega32HVH
ATmegad06, ATmega64, ATmega64(
ATmegal280, ATmegal281, ATmega256
ATmega2561, AT90USB162, AT90USB82,
AT90USB1287, AT90USB1286
AT90USB647, AT90USB646

©

INT4_vect

SIG_-
INTERRUPT4

External Interrupt
Request 4

AT90CAN128, AT90CAN32, AT90CAN64,
ATmegalO3, ATmegal2s8, AT-
mega64, ATmega640, ATmegal28p
ATmegal28i, ATmega2560, AT+
mega2561, AT90USB162, AT90USB82,
AT90USB1287, AT90USB1286
ATO0USB647, AT90USB646

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.15 <auvr/interrupt.h >: Interrupts

221

Vector name Old vector | Description Applicable for device
name
INT5_vect SIG_- External Interrupt| AT90CAN128, AT90CAN32, AT90CAN64,
INTERRUPTS | Request5 ATmegal03, ATmegal2s, AT-
megab4, ATmega640, ATmegal28p,
ATmegal28l, ATmega2560, ATt
mega2561, AT90USB162, AT90USBS82,
AT90USB1287, AT90USB1286
ATO0USB647, AT90USB646
INT6_vect SIG_- External Interrupt| AT90CAN128, AT90CAN32, AT90CANG64,
INTERRUPT6 | Request 6 ATmegalO3, ATmegal2s8, AT
megab4, ATmega640, ATmegal28p,
ATmegal28i, ATmega2560, AT+
mega2561, AT90USB162, AT90USB82,
AT90USB1287, AT90USB1286
AT90USB647, AT90USB646
INT7_vect SIG_- External Interrupt| AT90CAN128, AT90CAN32, AT90CANG64,
INTERRUPT7 | Request7 ATmegal0s3, ATmegal2s8, AT
megat4, ATmega640, ATmegal280,
ATmegal281, ATmega2560, ATr
mega2561, AT90USB162, AT90USB82,
AT90USB1287, AT90USB1286
AT90USB647, AT90USB646
I0_PINS vect | SIG_PIN, External Interrupt| ATtinyll, ATtiny12, ATtiny15, ATtiny26
SIG_PIN_- Request 0
CHANGE
LCD_vect SIG_LCD LCD Start of | ATmegal69, ATmegal69P, ATmega32D,
Frame ATmega3290, ATmega3290P, ATmega649,
ATmega6490
LOWLEVEL_- | SIG_PIN Low-level Input | ATtiny28
10_PINS_vect on Port B
OVRIT_vect SIG_CAN_- CAN Timer | AT90CAN128, AT90CAN32, AT90CAN64
OVERFLOW1 | Overrun
PCINTO_vect | SIG_PIN_- Pin Change Inter-| ATmegal62, ATmegal65, ATmegal65
CHANGEO rupt Request 0 ATmegal68P, ATmegal69, ATmegal69

ATmega325, ATmega3250, ATmega325(Q
ATmega328P, ATmega329, ATmega329
ATmega3290P, ATmega32HVB, AT]
megad06, ATmegad48P, ATmegab4
ATmega6450, ATmega649, ATmega649
ATmega88P, ATmegal68, ATmega4
ATmega88, ATmega640, ATmegal28
ATmegal28l, ATmega2560, ATt
mega2561, ATmega324P, ATmegal64
ATmegab644P, ATmega644, ATtinyl3,
ATtiny43U, ATtiny48, ATtiny24, AT-
tiny44, ATtiny84, ATtiny45, ATtiny25,
ATtiny85, AT90USB162, AT90USBS82,
AT90USB1287, AT90USB1286
AT90USB647, AT90USB646

RO O UuU

o

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.15 <auvr/interrupt.h >: Interrupts

222

Vector name Old vector | Description Applicable for device
name
PCINT1_vect | SIG_PIN_- Pin Change Inter-| ATmegal62, ATmegal65, ATmegal65p,
CHANGE1 rupt Request 1 ATmegal68P, ATmegal69, ATmegal69P,
ATmega325, ATmega3250, ATmega3250P,
ATmega328P, ATmega329, ATmega3290,
ATmega3290P, ATmega32HVB, AT;
mega406, ATmegad48P, ATmegab64p,
ATmega6450, ATmega649, ATmega649p,
ATmega88P, ATmegal68, ATmega48,
ATmega88, ATmega640, ATmegal280,
ATmegal281, ATmega2560, ATmega2561,
ATmega324P, ATmegal64P, ATmega644P,
ATmegab644, ATtiny43U, ATtiny48, AT-
tiny24, ATtiny44, ATtiny84, AT90USB162,
AT90USB82
PCINT2_vect | SIG_PIN_- Pin Change Inter-| ATmega3250, ATmega3250P, ATmega328P,
CHANGE2 rupt Request 2 ATmega3290, ATmega3290P, ATmega4§P,
ATmega6450, ATmega6490, ATmega88P,
ATmegal68, ATmegad8, ATmega88, Al-
mega640, ATmegal280, ATmegal281, AT-
mega2560, ATmega2561, ATmega324P, AT-
megal64P, ATmega644P, ATmega644, AT-
tiny48
PCINT3_vect | SIG_PIN_- Pin Change Inter-| ATmega3250, ATmega3250P, ATmega3290
CHANGE3 rupt Request 3 ATmega3290P, ATmega6450, ATmega6490
ATmega324P, ATmegal64P, ATmega644P,
ATmega644, ATtiny48
PCINT_vect SIG_PIN_- ATtiny2313, ATtiny261, ATtiny461, AT-
CHANGE, tiny861
SIG_PCINT
PSCO_- SIG_PSCO_- PSCO Capture| AT9OPWM3, ATOOPWM2, ATOOPWM1
CAPT_vect CAPTURE Event
PSCO_EC._- SIG_PSCO_- PSCO End Cycle | AT9OPWM3, AT90OPWM2, AT90OPWM1
vect END_CYCLE
PSC1_- SIG_PSC1_- PSC1 Capture| AT9OPWM3, ATOOPWM2, ATOOPWM1
CAPT_vect CAPTURE Event
PSC1_EC_- SIG_PSC1_- PSC1 End Cycle | AT9OPWM3, AT90PWM2, AT90OPWM1
vect END_CYCLE
PSC2_- SIG_PSC2_- PSC2 Capture| AT9OPWM3, ATOOPWM2, ATOOPWM1
CAPT_vect CAPTURE Event
PSC2_EC_- SIG_PSC2_- PSC2 End Cycle | AT9OPWM3, AT90OPWM2, AT90OPWM1
vect END_CYCLE

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.15 <auvr/interrupt.h >: Interrupts

223

Vector name

Old
name

vector

Description

Applicable for device

SPI_STC_vect

SIG_SPI

Serial Transfer
Complete

AT90S2333,
AT90S4434,

AT90S4414, AT90S4433,
AT90S8515, AT90S8535,
AT90PWM2186, AT90PWM2B,
AT90PWM316, AT90PWM3B,
AT90PWM3, AT90PWM2, AT90PWML1,
AT90CAN128, AT90CAN32, AT90CANG4,
ATmegal03, ATmegal28, ATmegal284
ATmegal6, ATmegal6l, ATmegal6i
ATmegal63, ATmegal65, ATmegal65)
ATmegal68P, ATmegal69, ATmegal69
ATmega32, ATmega323, ATmega32
ATmega3250, ATmega3250P, ATmega32§
ATmega329, ATmega3290, ATmega329(Q
ATmega32HVB, ATmega48P, ATmega6t4
ATmega645, ATmega6450, ATmegab64
ATmega6490, ATmega8, ATmega851
ATmega8535, ATmega88P, ATmegal6
ATmegad8, ATmega88, ATmega640, Al
megal280, ATmegal281, ATmega256
ATmega2561, ATmega324P, ATmegal64
ATmega644P, ATmega644, ATmegal6HVA
ATtiny48, AT90USB162, AT90USBS82,
AT90USB1287, AT90USB1286
ATI0USB647, AT90USB646

0U-FT

SRR

-Up.'oo

SPM_RDY _-
vect

SIG_SPM_-
READY

Store Program
Memory Ready

ATmegal6, ATmegal62, ATmega32, AT
mega323, ATmega8, ATmega8515, AT-
mega8535

SPM_-
READY_vect

SIG_SPM_-
READY

Store Program
Memory Read

AT90PWM3, AT90PWM2, AT90PWM1,
AT90CAN128, AT90CAN32, AT90CANG4,
ATmegal28, ATmegal284P, ATmegal6
ATmegal65P, ATmegal68P, ATmegal§
ATmegal69P, ATmega325, ATmega325
ATmega3250P, ATmega328P, ATmega32
ATmega3290, ATmega3290P, ATmega4Q
ATmega48P, ATmega64, ATmega64
ATmega6450, ATmega649, ATmega649
ATmega88P, ATmegal68, ATmega4
ATmega88, ATmega640, ATmegal28
ATmegal281, ATmega2560, ATmega256
ATmega324P, ATmegal64P, ATmega644
ATmegab644, AT90USB162, AT90USB8Z,
AT90USB1287, AT90USB1286
ATI90USB647, AT90USB646

PO 8o

o2

TIMO_-
COMPA_vect

SIG_-
OUTPUT -
COMPAREOA

Timer/Counter
Compare Match
A

ATtiny13, ATtiny43U, ATtiny24, ATtiny44,
ATtiny84, ATtiny45, ATtiny25, ATtiny85

TIMO_-
COMPB_vect

SIG_-
OUTPUT -
COMPAREOB

Timer/Counter
Compare Match
B

ATtiny13, ATtiny43U, ATtiny24, ATtiny44,
ATtiny84, ATtiny45, ATtiny25, ATtiny85

TIMO_OVF_-
vect

SIG_-
OVERFLOWO

Timer/Counter0
Overflow

ATtiny13, ATtiny43U, ATtiny24, ATtiny44,
ATtiny84, ATtiny45, ATtiny25, ATtiny85

TIM1_-
CAPT_vect

SIG_INPUT -
CAPTUREL1

Timer/Counterl
Capture Event

ATtiny24, ATtiny44, ATtiny84

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.15 <auvr/interrupt.h >: Interrupts

224

Vector name Old vector | Description Applicable for device
name
TIM1_- SIG_- Timer/Counterl | ATtiny24, ATtiny44, ATtiny84, ATtiny45,
COMPA_vect | OUTPUT_- Compare Match| ATtiny25, ATtiny85
COMPARE1A | A
TIM1_- SIG_- Timer/Counterl | ATtiny24, ATtiny44, ATtiny84, ATtiny45,
COMPB_vect | OUTPUT_- Compare Match| ATtiny25, ATtiny85
COMPAREI1B | B
TIM1_OVF_- SIG_- Timer/Counterl | ATtiny24, ATtiny44, ATtiny84, ATtiny45,
vect OVERFLOW1 | Overflow ATtiny25, ATtiny85
TIMERO_- SIG_INPUT_- | ADC Conversion| ATtiny261, ATtiny461, ATtiny861
CAPT_vect CAPTUREO Complete
TIMERO_- SIG_- TimerCounterO ATmegal68, ATmegad8, ATmega88, AT-
COMPA_vect | OUTPUT._- Compare Match| mega640, ATmegal280, ATmegal28i,
COMPAREOA | A ATmega2560, ATmega2561, ATH
mega324P, ATmegal64P, ATmega644P,
ATmega644, ATmegal6HVA, ATtiny2313
ATtiny48, ATtiny261, ATtiny461, AT-
tiny861, AT90USB162, AT90USB82
AT90USB1287, AT90USB1286
ATI0USB647, AT90USB646
TIMERO_- SIG_- Timer Counter 0| AT90PWM3, AT90PWM2, AT90PWML1,
COMPB_vect | OUTPUT_- Compare Match| ATmegal284P, ATmegal68P, ATmega328P,
COMPAREOB, | B ATmega32HVB, ATmega48P, AT
SIG_- mega88P, ATmegal68, ATmega48, AJ-
OUTPUT_- megass, ATmega640, ATmegal28p,
COMPAREQ_- ATmegal281, ATmega2560, ATmega2561,
B ATmega324P, ATmegal64P, ATmega644P,
ATmega644, ATmegal6HVA, ATtiny2313
ATtiny48, ATtiny261, ATtiny461, AT-
tiny861, AT90USB162, AT90USB82
AT90USB1287, AT90USB1286
ATI0USB647, AT90USB646
TIMERO_- SIG_- Timer/Counter0 | AT90PWMS3, AT9OPWM2, AT9OPWM1
COMP_A_- OUTPUT_- Compare Match
vect COMPAREOA, | A
SIG_-
OUTPUT_-
COMPAREO_-
A
TIMERO_- SIG_- Timer/Counter0 | AT90CAN128, AT90CAN32, AT90CANG64,
COMP_vect OUTPUT_- Compare Match | ATmegal03, ATmegal28, ATmegal6, Al-
COMPAREO megal6l, ATmegal62, ATmegal65, AJ-
megal65P, ATmegal69, ATmegal69P, AT-
mega32, ATmega323, ATmega325, AT-
mega3250, ATmega3250P, ATmega329, AT-
mega3290, ATmega3290P, ATmega64, AT-
mega645, ATmega6450, ATmega649, Afl-
mega6490, ATmega8515, ATmega8535
TIMERO_- SIG_- Timer/Counter0 | AT90S2313, AT90S2323, AT90S2343, AT-
OVFO_vect OVERFLOWO | Overflow tiny22, ATtiny26

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.15 <auvr/interrupt.h >: Interrupts

225

Vector name

Old vector
name

Description

Applicable for device

TIMERO_-
OVF_vect

SIG_-
OVERFLOWO

Timer/Counter0
Overflow

AT90S1200,
AT90S4433,

AT90S2333, AT90S4414,
AT90S4434, AT90S8515,
AT90S8535, AT90PWM2186,
AT90PWM2B, AT90PWM316,
AT90PWM3B, AT90PWM3, AT90PWM2,
AT90PWM1, AT90CAN128, ATO90CAN32,
AT90CANG4, ATmegalO3, ATmegal28g
ATmegal284P, ATmegal6, ATmegal6
ATmegal62, ATmegal63, ATmegal6
ATmegal65P, ATmegal68P, ATmegal§
ATmegal69P, ATmega32, ATmega32
ATmega325, ATmega3250, ATmega325Q0
ATmega328P, ATmega329, ATmega329
ATmega3290P, ATmega32HVB, AT,
megad8P, ATmega64, ATmega645, A
mega6450, ATmega649, ATmega649
ATmega8, ATmega8515, ATmega853
ATmega88P, ATmegal68, ATmegaé
ATmega88, ATmega640, ATmegal28
ATmegal281, ATmega2560, ATmega256
ATmega324P, ATmegal64P, ATmega644
ATmega644, ATmegal6HVA, ATtinyll
ATtiny12, ATtiny15, ATtiny2313, ATtiny28,
ATtiny48, ATtiny261, ATtiny461, AT-
tiny861, AT90USB162, AT90USB82
AT90USB1287, AT90USB1286
ATI0USB647, AT90USB646

S OowWoIEFS

TP oo

TIMERL_-
CAPT1_vect

SIG_INPUT_-
CAPTURE1

Timer/Counterl
Capture Event

AT90S2313

TIMER1_-
CAPT_vect

SIG_INPUT -
CAPTURE1

Timer/Counter
Capture Event

AT90S2333,
AT90S4434,

AT90S4414, AT90S4433,
AT90S8515, AT90S8535,
AT90PWM2186, AT90PWM2B,
AT90PWM316, AT90PWM3B,
AT90PWM3, AT90PWM2, AT90PWML1,
AT90CAN128, AT90CAN32, AT90CANG4,
ATmegal03, ATmegal28, ATmegal284P,
ATmegal6, ATmegal6l, ATmegal62,
ATmegal63, ATmegal65, ATmegal65p,
ATmegal68P, ATmegal69, ATmegal69P,

ATmega32, ATmega323, ATmega32b,
ATmega3250, ATmega3250P, AT-
mega328P, ATmega329, ATmega3290,

ATmega3290P, ATmega48P, ATmegatd4,
ATmega645, ATmega6450, ATmega649,
ATmega6490, ATmega8, ATmega8515,
ATmega8535, ATmega88P, ATmegal6p,
ATmega48, ATmega88, ATmega640, AT-
megal280, ATmegal281, ATmega2560,
ATmega2561, ATmega324P, ATmegal64P,
ATmegab644P, ATmega644, ATtiny2313,
ATtiny48, AT90USB162, AT90USBS82,
AT90USB1287, AT90USB1286
AT90USB647, AT90USB646

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.15 <avr/interrupt.h >: Interrupts 226
Vector name Old vector | Description Applicable for device
name
TIMER1_- SIG_- Timer/Counterl | ATtiny26
CMPA_vect OUTPUT _- Compare Match
COMPARE1A | 1A
TIMER1_- SIG_- Timer/Counterl | ATtiny26
CMPB_vect OUTPUT _- Compare Match
COMPARE1B | 1B
TIMER1_- SIG_- Timer/Counterl | AT90S2313
COMP1_vect | OUTPUT_- Compare Match
COMPARE1A
TIMER1_- SIG_- Timer/Counterl | AT90S4414, AT90S4434, AT90S8515,
COMPA_vect | OUTPUT_- Compare Match| AT90S8535, AT90PWM216,
COMPARE1A | A AT90PWM2B, AT90PWM316,

AT90PWM3B, AT90PWM3, AT90PWM2,
AT90PWM1, AT90CAN128, AT90CAN32,
AT90CANG4, ATmegalO3, ATmegal2?§
ATmegal284P, ATmegal6, ATmegal6
ATmegal62, ATmegal63, ATmegal6
ATmegal65P, ATmegal68P, ATmegalq
ATmegal69P, ATmega32, ATmega32
ATmega325, ATmega3250, ATmega325(Q
ATmega328P, ATmega329, ATmega329
ATmega3290P, ATmega32HVB, AT
mega48P, ATmega64, ATmega645, A
mega6450, ATmega649, ATmega649
ATmega8, ATmega8515, ATmega853
ATmega88P, ATmegal68, ATmega4
ATmega88, ATmega640, ATmegal28
ATmegal281, ATmega2560, ATmega256
ATmega324P, ATmegal64P, ATmega644
ATmega644, ATmegal6HVA, ATtiny2313

S oW OoUE-

TP oo TTo

ATtiny48, ATtiny261, ATtiny461, AT-
tiny861, AT90USB162, AT90USB82
AT90USB1287, AT90USB1286

ATO0USB647, AT90USB646

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.15 <avr/interrupt.h >: Interrupts 227
Vector name Old vector | Description Applicable for device
name
TIMER1_- SIG_- Timer/Counterl | AT90S4414, AT90S4434, AT90S8515,
COMPB_vect | OUTPUT_- Compare MatchB| AT90S8535, AT90PWM2186,
COMPARE1B AT90PWM2B, AT90PWM316,
AT90PWM3B, AT90PWM3, AT90PWM2,
AT90PWM1, AT90CAN128, AT90CAN32,
AT90CANG64, ATmegalO3, ATmegal2§g,
ATmegal284P, ATmegal6, ATmegal6[l,
ATmegal62, ATmegal63, ATmegal6b,
ATmegal65P, ATmegal68P, ATmegal69,
ATmegal69P, ATmega32, ATmega323,
ATmega325, ATmega3250, ATmega3250P,
ATmega328P, ATmega329, ATmega3290,
ATmega3290P, ATmega32HVB, AT;
mega48P, ATmega64, ATmega645, AJ-
mega6450, ATmega649, ATmega6490,
ATmega8, ATmega8515, ATmega853b,
ATmega88P, ATmegal68, ATmega48,
ATmega88, ATmega640, ATmegal280,
ATmegal281, ATmega2560, ATmega2561,
ATmega324P, ATmegal64P, ATmega644P,
ATmega644, ATmegal6HVA, ATtiny2313
ATtiny48, ATtiny261, ATtiny461, AT-
tiny861, AT90USB162, AT90USB82
AT90USB1287, AT90USB1286
ATI90USB647, AT90USB646
TIMER1_- SIG_- Timer/Counterl | AT90CAN128, AT90CAN32, AT90CANG64,
COMPC_vect | OUTPUT_- Compare Match| ATmegal28, ATmega64, ATmega640,
COMPARE1C | C ATmegal280, ATmegal281, ATmega2560,
ATmega2561, AT90USB162, AT90USB82Z,
AT90USB1287, AT90USB1286
ATI90USB647, AT90USB646
TIMER1_- SIG_- Timer/Counterl | ATtiny261, ATtiny461, ATtiny861
COMPD_vect | OUTPUT_- Compare Match
COMPAREOD | D
TIMER1_- SIG_- Timer/Counterl | AT90S2333, AT90S4433, ATtiny15
COMP_vect OUTPUT _- Compare Match
COMPARE1A
TIMER1_- SIG_- Timer/Counterl | AT90S2313, ATtiny26
OVF1_vect OVERFLOWL1 | Overflow

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.15 <auvr/interrupt.h >: Interrupts

228

Vector name

Old
name

vector

Description

Applicable for device

TIMER1_-
OVF_vect

SIG_-
OVERFLOW1

Timer/Counterl
Overflow

AT90S2333,
AT90S4434,

AT90S4414, AT90S4433,
AT90S8515, AT90S8535,
AT90PWM2186, AT90PWM2B,
AT90PWM316, AT90PWM3B,
AT90PWM3, AT90PWM2, AT90PWML1,
AT90CAN128, AT90CAN32, AT90CANG4,
ATmegal03, ATmegal28, ATmegal284
ATmegal6, ATmegal6l, ATmegal6i
ATmegal63, ATmegal65, ATmegal65)
ATmegal68P, ATmegal69, ATmegal69
ATmega32, ATmega323, ATmega32
ATmega3250, ATmega3250P, ATmega32§
ATmega329, ATmega3290, ATmega329(Q
ATmega32HVB, ATmega48P, ATH
mega64, ATmega645, ATmega645
ATmega649, ATmega6490, ATmega:
ATmega8515, ATmega8535, ATmega88
ATmegal68, ATmegad8, ATmega88, Al
mega640, ATmegal280, ATmegal28
ATmega2560, ATmega2561, ATmega324
ATmegal64P, ATmega644P, ATmegab64
ATmegal6HVA, ATtinyl5, ATtiny2313,
ATtiny48, ATtiny261, ATtiny461, AT-
tiny861, AT90USB162, AT90USB82
AT90USB1287, AT90USB1286
AT90USB647, AT90USB646

0

I

FO

N TOF U0

TIMER2_-
COMPA_vect

SIG_-
OUTPUT_-
COMPARE2A

Timer/Counter2
Compare Match
A

ATmegal68, ATmegad8, ATmega88, Al-
mega640, ATmegal280,

ATmega2560, ATmega2561, ATt

U

Bk

ATmegal2gi,

0

0

mega324P, ATmegal64P, ATmega644P, AT-

mega644, AT90USB1287, AT90USB1286,
AT90USB647, AT90USB646

TIMER2_-
COMPB_vect

SIG_-
OUTPUT -
COMPARE2B

Timer/Counter2
Compare Match
A

ATmegal68, ATmegad48, ATmega88, Al-
mega640, ATmegal280,

ATmega2560, ATmega2561, ATt

ATmegal2gi,

mega324P, ATmegal64P, ATmega644pP, AT-

mega644, AT90USB1287, AT90USB1286,
ATO0USB647, AT90USB646

TIMER2_-
COMP_vect

SIG_-
OUTPUT -
COMPARE2

Timer/Counter2
Compare Match

AT90S4434, AT90S8535, AT90CAN128,
AT90CAN32, AT90CANG64, ATmegalO3
ATmegal28, ATmegal6, ATmegal6l, AT-
megal62, ATmegal63, ATmegal6b, AJ-

megal65P, ATmegal69, ATmegal69P, AT-

mega32, ATmega323, ATmega325, AT-

mega3250, ATmega3250P, ATmega329, AT-
mega3290, ATmega3290P, ATmega64, AT-

mega645, ATmega6450, ATmega649, Af-
mega6490, ATmega8, ATmega8535

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.15 <auvr/interrupt.h >: Interrupts

229

Vector name Old vector | Description Applicable for device
name
TIMER2_- SIG_- Timer/Counter2 | AT90S4434, AT90S8535, AT90CAN128,
OVF_vect OVERFLOW?2 | Overflow AT90CAN32, AT90CAN64, ATmegalO3
ATmegal28, ATmegal284P, ATmegalp,
ATmegal6l, ATmegal62, ATmegal63s,
ATmegal65, ATmegal65P, ATmegal68P,
ATmegal69, ATmegal69P, ATmega32, AT-
mega323, ATmega325, ATmega3250,
ATmega3250P, ATmega328P, AT-
mega329, ATmega3290, ATmega329(P,
ATmegad8P, ATmega64, ATmega64b,
ATmega6450, ATmega649, ATmega649p,
ATmega8, ATmega8535, ATmega88P,
ATmegal68, ATmegad48, ATmega88, Al-
mega640, ATmegal280, ATmegal28i,
ATmega2560, ATmega2561, ATt
mega324P, ATmegal64P, ATmega644pP, AT-
mega644, AT90USB1287, AT90USB1286,
ATI0USB647, AT90USB646
TIMER3_- SIG_INPUT_- | Timer/Counter3 | AT90CAN128, AT90CAN32, AT90CANG4,
CAPT _vect CAPTURE3 Capture Event ATmegal28, ATmegal284P, ATmegal6R,
ATmega64, ATmega640, ATmegal280,
ATmegal281, ATmega2560, AT+
mega2561, AT90USB1287, AT90USB1286,
AT90USB647, AT90USB646
TIMER3_- SIG_- Timer/Counter3 | AT90CAN128, AT90CAN32, AT90CANG64,
COMPA_vect | OUTPUT_- Compare Match| ATmegal28, ATmegal284P, ATmegal6p,
COMPARE3A | A ATmegab64, ATmega640, ATmegal280,
ATmegal28i, ATmega2560, ATt
mega2561, AT90USB1287, AT90USB1286,
ATO0USB647, AT90USB646
TIMER3_- SIG_- Timer/Counter3 | AT90CAN128, AT90CAN32, AT90CAN64,
COMPB_vect | OUTPUT_- Compare Match| ATmegal28, ATmegal284P, ATmegal6?,
COMPARES3B | B ATmegab64, ATmega640, ATmegal280,
ATmegal281, ATmega2560, ATr
mega2561, ATO0USB1287, ATO0USB1286,
AT90USB647, AT90USB646
TIMER3_- SIG_- Timer/Counter3 | AT90CAN128, AT90CAN32, AT90CANG4,
COMPC_vect | OUTPUT_- Compare Match| ATmegal28, ATmega64, ATmega640, AT-
COMPARE3C | C megal280, ATmegal281, ATmega2560, AT-
mega2561, AT90USB1287, AT90USB1286,
AT90USB647, AT90USB646
TIMER3_- SIG_- Timer/Counter3 | AT90CAN128, AT90CAN32, AT90CANG4,
OVF_vect OVERFLOWS3 | Overflow ATmegal28, ATmegal284P, ATmegal62,
ATmega64, ATmega640, ATmegal280,
ATmegal281, ATmega2560, ATr
mega2561, ATO0USB1287, AT90USB1286,
ATI0USB647, AT90USB646
TIMER4._- SIG_INPUT_- | Timer/Counter4 | ATmega640, ATmegal280, ATmegal28y,
CAPT _vect CAPTURE4 Capture Event ATmega2560, ATmega2561
TIMER4_- SIG_- Timer/Counter4 | ATmega640, ATmegal280, ATmegal28f,
COMPA_vect | OUTPUT._- Compare Match| ATmega2560, ATmega2561
COMPARE4A | A
TIMER4_- SIG_- Timer/Counter4 | ATmega640, ATmegal280, ATmegal28f,
COMPB_vect | OUTPUT_- Compare Match| ATmega2560, ATmega2561
COMPARE4B | B

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.15 <avr/interrupt.h >: Interrupts 230
Vector name Old vector | Description Applicable for device
name
TIMER4_- SIG_- Timer/Counter4 | ATmega640, ATmegal280, ATmegal28f,
COMPC_vect | OUTPUT_- Compare Match| ATmega2560, ATmega2561
COMPAREA4C | C
TIMER4_- SIG_- Timer/Counter4 | ATmega640, ATmegal280, ATmegal28f,
OVF_vect OVERFLOW4 | Overflow ATmega2560, ATmega2561
TIMERS_- SIG_INPUT_- | Timer/Counter5 | ATmega640, ATmegal280, ATmegal28y,
CAPT_vect CAPTURES Capture Event ATmega2560, ATmega2561
TIMERS_- SIG_- Timer/Counter5 | ATmega640, ATmegal280, ATmegal28f,
COMPA_vect | OUTPUT._- Compare Match| ATmega2560, ATmega2561
COMPARESA | A
TIMERS_- SIG_- Timer/Counter5 | ATmega640, ATmegal280, ATmegal28f,
COMPB_vect | OUTPUT._- Compare Match| ATmega2560, ATmega2561
COMPARESB | B
TIMERS_- SIG_- Timer/Counter5 | ATmega640, ATmegal280, ATmegal28f,
COMPC_vect | OUTPUT_- Compare Match| ATmega2560, ATmega2561
COMPARESC | C
TIMERS_- SIG_- Timer/Counter5 | ATmega640, ATmegal280, ATmegal28f,
OVF_vect OVERFLOWS | Overflow ATmega2560, ATmega2561
TWI_vect SIG_2WIRE_- | 2-wire Serial In- | AT90CAN128, AT90CAN32, AT90CANG4,
SERIAL terface ATmegal28, ATmegal284P, ATmegalp,
ATmegal63, ATmegal68P, ATmega32, Al-
mega323, ATmega328P, ATmega32HVB,
ATmegad06, ATmegad48P, ATmegab4,
ATmega8, ATmega8535, ATmega88P,
ATmegal68, ATmegad8, ATmega88, Al-
mega640, ATmegal280, ATmegal28l
ATmega2560, ATmega2561, ATmega324P,
ATmegal64P, ATmega644P, ATmega644
ATtiny48, AT90USB1287, AT90USB1286
AT90USB647, AT90USB646
TXDONE_- SIG_- Transmission AT86RF401
vect TXDONE Done, Bit Timer
Flag 2 Interrupt
TXEMPTY_- SIG_TXBE Transmit Buffer | AT86RF401
vect Empty, Bit Itmer
Flag O Interrupt
UARTO_RX_- | SIG_- UARTO, Rx | ATmegal6l
vect UARTO_- Complete
RECV
UARTO_TX_- | SIG_- UARTO, Tx | ATmegal6l
vect UARTO_- Complete
TRANS
UARTO_- SIG_- UARTO Data | ATmegal6l
UDRE_vect UARTO_- Register Empty
DATA
UART1_RX_- | SIG_- UART1, Rx | ATmegal6l
vect UARTL_- Complete
RECV
UART1_TX_ - | SIG_- UART1, Tx | ATmegal6l
vect UARTL_- Complete
TRANS
UART1_- SIG_- UART1 Data | ATmegal6l
UDRE_vect UARTL_- Register Empty
DATA

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.15 <avr/interrupt.h >: Interrupts 231
Vector name Old vector | Description Applicable for device
name
UART_RX_- SIG_UART_- UART, Rx Com- | AT90S2313, AT90S2333, AT90S4414,
vect RECV plete AT90S4433, AT90S4434, AT90S8515,
AT90S8535, ATmegalO3, ATmegal63,
ATmega8515
UART_TX_- SIG_UART_- UART, Tx Com- | AT90S2313, AT90S2333, AT90S4414,
vect TRANS plete AT90S4433, AT90S4434, AT90S8515,
AT90S8535, ATmegal03, ATmegal63,
ATmega8515
UART_- SIG_UART_- UART Data Reg-| AT90S2313, AT90S2333, AT90S4414,
UDRE_vect DATA ister Empty AT90S4433, AT90S4434, AT90S8515,
AT90S8535, ATmegalO3, ATmegal63,
ATmega8515
USARTO_- SIG_- USARTO, Rx | ATmegal62
RXC_vect USARTO_- Complete
RECV
USARTO_- SIG_- USARTO, Rx | AT90CAN128, AT90CAN32, AT90CANG4,
RX_vect UARTO_- Complete ATmegal28, ATmegal284P, ATmegal6pb,
RECV ATmegal65P, ATmegal69, ATmegal69P,
ATmega325, ATmega329, ATmega64, AT-
mega645, ATmega649, ATmega640, AJ-
megal280, ATmegal281, ATmega2560, AT-
mega2561, ATmega324P, ATmegal64P, AT-
mega644P, ATmega644
USARTO_- SIG_- USARTO, Tx | ATmegal62
TXC_vect USARTO_- Complete
TRANS
USARTO_- SIG_- USARTO, Tx | AT90CAN128, ATO90OCAN32, AT90CANG4,
TX_vect UARTO_- Complete ATmegal28, ATmegal284P, ATmegal6pb,
TRANS ATmegal65P, ATmegal69, ATmegal69P,
ATmega325, ATmega3250, ATmega3250P,
ATmega329, ATmega3290, ATmega3290P,
ATmegab64, ATmega645, ATmega6450, AT-
mega649, ATmega6490, ATmega640, Af-
megal280, ATmegal281, ATmega2560, AT-
mega2561, ATmega324P, ATmegal64P, AT-
mega644P, ATmega644
USARTO_- SIG_- USARTO Data| AT90CAN128, AT90CAN32, AT90CANG4,
UDRE_vect UARTO_- Register Empty ATmegal28, ATmegal284P, ATmegal6?,
DATA ATmegal65, ATmegal65P, ATmegal6p,
ATmegal69P, ATmega325, ATmega32p,
ATmega64, ATmega645, ATmega649,
ATmega640, ATmegal280, ATmegal28[L,
ATmega2560, ATmega2561, ATmega324P,
ATmegal64P, ATmega644P, ATmega644
USART1_- SIG_- USART1, Rx | ATmegal62
RXC_vect USART1_- Complete
RECV
USART1_- SIG_- USART1, Rx | AT90CAN128, AT90CAN32, AT90CANG64,
RX_vect UARTL._- Complete ATmegal28, ATmegal284P, ATmega6y,
RECV ATmega640, ATmegal280, ATmegal28y,
ATmega2560, ATmega2561, ATr
mega324P, ATmegal64P, ATmega644P,
ATmegab644, AT90USB162, AT90USB8Z,
AT90USB1287, AT90USB1286
ATI0USB647, AT90USB646

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.15 <auvr/interrupt.h >: Interrupts

232

Vector name Old vector | Description Applicable for device
name
USART1_- SIG_- USART1, Tx | ATmegal62
TXC_vect USARTL1 - Complete
TRANS
USART1_- SIG_- USART1, Tx | AT90CAN128, AT90CAN32, AT90CAN64,
TX_vect UARTL1_- Complete ATmegal28, ATmegal284P, ATmega6y,
TRANS ATmega640, ATmegal280, ATmegal28[,
ATmega2560, ATmega2561, ATt
mega324P, ATmegal64P, ATmega644P,
ATmega644, AT90USB162, AT90USB82Z,
AT90USB1287, AT90USB1286
ATI0USB647, AT90USB646
USART1_- SIG_- USART1, Data| AT90CAN128, AT90OCAN32, ATO0CANG4,
UDRE_vect UARTL1_- Register Empty ATmegal28, ATmegal284P, ATmegal62,
DATA ATmega64, ATmega640, ATmegal280,
ATmegal281, ATmega2560, ATmega2561,
ATmega324P, ATmegal64P, ATmega644P,
ATmega644, AT90USB162, AT90USB82Z,
AT90USB1287, AT90USB1286
AT90USB647, AT90USB646
USART2_- SIG_- USART2, Rx | ATmega640, ATmegal280, ATmegal28i,
RX_vect USART2_- Complete ATmega2560, ATmega2561
RECV
USART2_- SIG_- USART2, Tx | ATmega640, ATmegal280, ATmegal28i,
TX_vect USART2_- Complete ATmega2560, ATmega2561
TRANS
USART2_- SIG_- USART2 Data| ATmega640, ATmegal280, ATmegal28y,
UDRE_vect USART2_- register Empty ATmega2560, ATmega2561
DATA
USART3_- SIG_- USARTS, Rx | ATmega640, ATmegal280, ATmegal28y,
RX_vect USART3_- Complete ATmega2560, ATmega2561
RECV
USART3_- SIG_- USARTS3, Tx | ATmega640, ATmegal280, ATmegal28y,
TX_vect USART3_- Complete ATmega2560, ATmega2561
TRANS
USART3_- SIG_- USART3 Data| ATmega640, ATmegal280, ATmegal28[,
UDRE_vect USART3_- register Empty ATmega2560, ATmega2561
DATA
USART_- SIG_- USART, Rx | ATmegal6, ATmega32, ATmega323, Al-
RXC_vect USART_- Complete mega8
RECV, SIG_-
UART_RECV
USART_RX_- | SIG_- USART, Rx | AT90PWM3, AT90PWM2, AT90PWM1,
vect USART_- Complete ATmegal68P, ATmega3250, ATmega325QP,
RECV, SIG_- ATmega328P, ATmega3290, ATmega329QP,
UART_RECV ATmega48P, ATmega6450, ATmega6490,
ATmega8535, ATmega88P, ATmegal6g,
ATmega48, ATmega88, ATtiny2313
USART_- SIG_- USART, Tx | ATmegal6, ATmega32, ATmega323, Al-
TXC_vect USART _- Complete mega8
TRANS,
SIG_UART_-
TRANS

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.15 <auvr/interrupt.h >: Interrupts

233

ATmegab644, ATmegal6HVA, ATtinyl3
ATtiny43U, ATtiny48, ATtiny45, ATtiny25,

ATtiny85, ATtiny261, ATtiny461, AT-
tiny861, AT90USB162, AT90USB82
AT90USB1287, AT90USB1286

AT90USB647, AT90USB646

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

Vector name Old vector | Description Applicable for device
name
USART_TX_- | SIG_- USART, Tx | AT90PWM3, AT90PWM2, AT90PWM1,
vect USART_- Complete ATmegal68P, ATmega328P, ATmega4gP,
TRANS, ATmega8535, ATmega88P, ATmegal6p,
SIG_UART_- ATmega48, ATmega88, ATtiny2313
TRANS
USART_- SIG_- USART Data | AT9OPWM3, AT90PWM2, AT90PWM1,
UDRE_vect USART_- Register Empty ATmegal6, ATmegal68P, ATmega32, AJ-
DATA, SIG_- mega323, ATmega3250, ATmega3250P, AT-
UART_DATA mega328P, ATmega3290, ATmega329(P,
ATmegad8P, ATmega6450, ATmega6490,
ATmega8, ATmega8535, ATmega88P, AT-
megal68, ATmegad8, ATmega88, AT-
tiny2313
USI_- SIG_USI_- USI Overflow ATmegal65, ATmegal65P, ATmegal6p,
OVERFLOW_-| OVERFLOW ATmegal69P, ATmega325, ATmega3250,
vect ATmega3250P, ATmega329, ATmega3290,
ATmega3290P, ATmega645, ATmega6450,
ATmegab649, ATmega6490, ATtiny2313
USI_OVF_- SIG_USI_- USI Overflow ATtiny26, ATtiny43U, ATtiny24, ATtiny44,
vect OVERFLOW ATtiny84, ATtiny45, ATtiny25, ATtiny85,
ATtiny261, ATtiny461, ATtiny861
USI_START_- | SIG_USI_- USI Start Condi-| ATmegal65, ATmegal65P, ATmegal6D,
vect START tion ATmegal69P, ATmega325, ATmega3250,
ATmega3250P, ATmega329, ATmega3290,
ATmega3290P, ATmega645, ATmega6450,
ATmega649, ATmega6490, ATtiny2313,
ATtiny43U, ATtiny45, ATtiny25, ATtiny85,
ATtiny261, ATtiny461, ATtiny861
USI_STRT_- SIG_USI_- USI Start ATtiny26
vect START
USI_STR_- SIG_USI_- USI START ATtiny24, ATtiny44, ATtiny84
vect START
WATCHDOG_-| SIG_- Watchdog Time-| ATtiny24, ATtiny44, ATtiny84
vect WATCHDOG_-| out
TIMEOUT
WDT_- SIG_- Watchdog Timer| ATtiny2313
OVERFLOW_-| WATCHDOG_-| Overflow
vect TIMEOUT,
SIG_WDT._-
OVERFLOW
WDT_vect SIG_WDT, Watchdog Time-| AT90PWM3, AT90PWMZ2, AT90PWML,
SIG_- out Interrupt ATmegal284P, ATmegal68P, ATmega328P,
WATCHDOG_- ATmega32HVB, ATmegad406, ATmega43p,
TIMEOUT ATmega88P, ATmegal68, ATmega4s,
ATmega88, ATmega640, ATmegal280,
ATmegal281, ATmega2560, ATmega2561,
ATmega324P, ATmegal64P, ATmega644P,

22.15 <avr/interrupt.h >: Interrupts 234

Global manipulation of the interrupt flag

The global interrupt flag is maintained in the | bit of the status register (SREG).

* #definesel)
« #definecli()

Macros for writing interrupt handler functions

#definel SR(vector, attributes)
#defineSIGNAL (vector)
#defineEMPTY_INTERRUPTvector)
#definelSR_ALIAS(vector, target_vector)
#definereti()

#defineBADISR_vect

ISR attributes

#definelSR_BLOCK
#definelSR_NOBLOCK
#definelSR_NAKED
#definelSR_ALIASOHNtarget_vector)

22.15.2 Define Documentation

22.15.2.1 #define BADISR_vect

#include <avr/interrupt.h>

This is a vector which is aliased to __vector_default, the vector executed when an ISR
fires with no accompanying ISR handler. This may be used along witlstR@ macro
to create a catch-all for undefined but used ISRs for debugging purposes.

22.15.2.2 #define cli()

#include <avr/interrupt.h>

Disables all interrupts by clearing the global interrupt mask. This function actually
compiles into a single line of assembly, so there is no function call overhead.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.15 <avr/interrupt.h >: Interrupts 235

22.15.2.3 #define EMPTY_INTERRUPT (vector)

#include <avr/interrupt.h>

Defines an empty interrupt handler function. This will not generate any prolog or
epilog code and will only return from the ISR. Do not define a function body as this
will define it for you. Example:

EMPTY_INTERRUPT(ADC_vect);

22.15.2.4 #define ISR(vector, attributes)

#include <avr/interrupt.h>

Introduces an interrupt handler function (interrupt service routine) that runs with global
interrupts initially disabled by default with no attributes specified.

The attributes are optional and alter the behaviour and resultant generated code of the
interrupt routine. Multiple attributes may be used for a single function, with a space
seperating each attribute.

valid attributes are ISR_BLOCK, ISR_NOBLOCK, ISR_NAKED antbR_-
ALIASOF(vect)

vector must be one of the interrupt vector names that are valid for the particular
MCU type.

22.15.2.5 #define ISR_ALIAS(vector, target vector)

#include <avr/interrupt.h>

Aliases a given vector to another one in the same manner as the ISR_ALIASOF at-
tribute for thelSR() macro. Unlike the ISR_ALIASOF attribute macro however, this is
compatible for all versions of GCC rather than just GCC version 4.2 onwards.

Note:

This macro creates a trampoline function for the aliased macro. This will result in
a two cycle penalty for the aliased vector compared to the ISR the vector is aliased
to, due to the IMP/RIJMP opcode used.

Deprecated

For new code, the use of ISR(..., ISR_ALIASOF(...)) is recommended.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.15 <avr/interrupt.h >: Interrupts 236

Example:

ISR(INTO_vect)

PORTB = 42;
}

ISR_ALIAS(INT1_vect, INTO_vect);

22.15.2.6 #define ISR_ALIASOF(target_vector)

#include <avr/interrupt.h>

The ISR is linked to another ISR, specified by the vect parameter. This is compatible
with GCC 4.2 and greater only.

Use this attribute in the attributes parameter of the ISR macro.
22.15.2.7 #define ISR_BLOCK

include <avr/interrupt.h>

Identical to an ISR with no attributes specified. Global interrupts are initially disabled
by the AVR hardware when entering the ISR, without the compiler modifying this state.

Use this attribute in the attributes parameter of the ISR macro.
22.15.2.8 #define ISR_NAKED

include <avr/interrupt.h>

ISR is created with no prologue or epilogue code. The user code is responsible for
preservation of the machine state including the SREG register, as well as placing a
reti() at the end of the interrupt routine.

Use this attribute in the attributes parameter of the ISR macro.
22.15.2.9 #define ISR_NOBLOCK

include <avr/interrupt.h>

ISR runs with global interrupts initially enabled. The interrupt enable flag is activated
by the compiler as early as possible within the ISR to ensure minimal processing delay
for nested interrupts.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.16 <avr/io.h>: AVR device-specific 10 definitions 237

This may be used to create nested ISRs, however care should be taken to avoid stack
overflows, or to avoid infinitely entering the ISR for those cases where the AVR hard-
ware does not clear the respective interrupt flag before entering the ISR.

Use this attribute in the attributes parameter of the ISR macro.

22.15.2.10 #define reti()

#include <avr/interrupt.h>

Returns from an interrupt routine, enabling global interrupts. This should be the last
command executed before leaving an ISR defined with the ISR_NAKED attribute.

This macro actually compiles into a single line of assembly, so there is no function call
overhead.

22.15.2.11 #define sei()

#include <avr/interrupt.h>

Enables interrupts by setting the global interrupt mask. This function actually compiles
into a single line of assembly, so there is no function call overhead.

22.15.2.12 #define SIGNAL(vector)

#include <avr/interrupt.h>

Introduces an interrupt handler function that runs with global interrupts initially dis-
abled.

This is the same as the ISR macro without optional attributes.
Deprecated

Do not useSIGNAL() in new code. UséSR() instead.

22.16 <avr/io.h>: AVR device-specific 10 definitions

#include <avr/io.h>

This header file includes the apropriate 10 definitions for the device that has been
specified by themmcu= compiler command-line switch. This is done by divert-
ing to the appropriate filecavr/io XXXXh > which should never be included di-
rectly. Some register names common to all AVR devices are defined directly within

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.17 <avr/lock.h>: Lockbit Support 238

<avr/common.h >, which is included in<avr/io.h >, but most of the details
come from the respective include file.

Note that this file always includes the following files:
#include <avr/sfr_defs.h>
#include <avr/portpins.h>

#include <avr/common.h>
#include <avr/version.h>

See<avr/sfr_defs.br: Special function registefsr more details about that header file.

Included are definitions of the 10 register set and their respective bit values as specified
in the Atmel documentation. Note that inconsistencies in naming conventions, so even
identical functions sometimes get different names on different devices.

Also included are the specific names useable for interrupt function definitions as docu-
mentedhere

Finally, the following macros are defined:

« RAMEND
A constant describing the last on-chip RAM location.

* XRAMEND

A constant describing the last possible location in RAM. This is equal to RA-
MEND for devices that do not allow for external RAM.

* E2END
A constant describing the address of the last EEPROM cell.

e FLASHEND
A constant describing the last byte address in flash ROM.

* SPM_PAGESIZE

For devices with bootloader support, the flash pagesize (in bytes) to be used for
the SPMinstruction.

22.17 <auvr/lock.h>: Lockbit Support

Introduction

The Lockbit API allows a user to specify the lockbit settings for the specific AVR
device they are compiling for. These lockbit settings will be placed in a special section
in the ELF output file, after linking.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.17 <avr/lock.h>: Lockbit Support 239

Programming tools can take advantage of the lockbit information embedded in the
ELF file, by extracting this information and determining if the lockbits need to be
programmed after programming the Flash and EEPROM memories. This also allows a
single ELF file to contain all the information needed to program an AVR.

To use the Lockbit API, include theavr/io.ht> header file, which in turn automatically
includes the individual I/O header file and th@vr/lock.h> file. These other two files
provides everything necessary to set the AVR lockbits.

Lockbit API

Each 1/0O header file may define up to 3 macros that controls what kinds of lockbits are
available to the user.

If __LOCK_BITS_EXIST is defined, then two lock bits are available to the user and 3
mode settings are defined for these two bits.

If _BOOT_LOCK BITS_0_EXIST is defined, then the two BLBO lock bits are avail-
able to the user and 4 mode settings are defined for these two bits.

If __BOOT_LOCK_BITS 1 EXIST is defined, then the two BLB1 lock bits are avail-
able to the user and 4 mode settings are defined for these two bits.

If _ BOOT_LOCK_APPLICATION_TABLE_BITS_EXIST is defined then two lock
bits are available to set the locking mode for the Application Table Section (which is
used in the XMEGA family).

If __ BOOT_LOCK_APPLICATION_BITS_EXIST is defined then two lock bits are
available to set the locking mode for the Application Section (which is used in the
XMEGA family).

If __BOOT_LOCK BOOT_BITS_ EXIST is defined then two lock bits are available
to set the locking mode for the Boot Loader Section (which is used in the XMEGA
family).

The AVR lockbit modes have inverted values, logical 1 for an unprogrammed (dis-
abled) bit and logical 0 for a programmed (enabled) bit. The defined macros for each
individual lock bit represent this in their definition by a bit-wise inversion of a mask.
For example, the LB_MODE_3 macro is defined as:

#define LB_MODE_3 (OXFC)

To combine the lockbit mode macros together to represent a whole byte, use the bitwise
AND operator, like so:

(LB_MODE_3 & BLBO_MODE_2)

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.17 <avr/lock.h>: Lockbit Support 240

<avr/lock.h> also defines a macro that provides a default lockbit value: LOCKBITS -
DEFAULT which is defined to be OxFF.

See the AVR device specific datasheet for more details about these lock bits and the
available mode settings.

A macro, LOCKMEM, is defined as a GCC attribute for a custom-named section of
".lock".

Finally, a macro, LOCKBITS, is defined that declares a variable, __lock, of type un-
signed char with the attribute defined by LOCKMEM. This variable allows the end
user to easily set the lockbit data.

API Usage Example

Putting all of this together is easy:

#include <avr/io.h>
LOCKBITS = (LB_MODE_1 & BLBO_MODE_3 & BLB1_MODE_4);
int main(void)

return O;

However there are a number of caveats that you need to be aware of to use this API
properly.

Be sure to includecavr/io.l> to get all of the definitions for the API. The LOCKBITS
macro defines a global variable to store the lockbit data. This variable is assigned to
its own linker section. Assign the desired lockbit values immediately in the variable
initialization.

The .lock section in the ELF file will get its values from the initial variable assignment

ONLY. This means that you can NOT assign values to this variable in functions and the
new values will not be put into the ELF .lock section.

The global variable is declared in the LOCKBITS macro has two leading underscores,
which means that it is reserved for the "implementation”, meaning the library, so it will
not conflict with a user-named variable.

You must initialize the lockbit variable to some meaningful value, even if it is the de-
fault value. This is because the lockbits default to a logical 1, meaning unprogrammed.
Normal uninitialized data defaults to all locgial zeros. So it is vital that all lockbits
are initialized, even with default data. If they are not, then the lockbits may not pro-
grammed to the desired settings and can possibly put your device into an unrecoverable
state.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.18 <avr/pgmspace.h>: Program Space Utilities 241

Be sure to have the -mmcdeviceflag in your compile command line and your linker
command line to have the correct device selected and to have the correct I/O header
file included when you includeavr/io.fv>.

You can print out the contents of the .lock section in the ELF file by using this command
line:

avr-objdump -s -j .lock <ELF file>

22.18 <avr/pgmspace.h-: Program Space Utilities

22.18.1 Detailed Description

#include <avr/io.h>
#include <avr/pgmspace.h>

The functions in this module provide interfaces for a program to access data stored in
program space (flash memory) of the device. In order to use these functions, the target
device must support either th&Mor ELPMinstructions.

Note:

These functions are an attempt to provide some compatibility with header files
that come with IAR C, to make porting applications between different compilers
easier. This is not 100% compatibility though (GCC does not have full support for
multiple address spaces yet).

If you are working with strings which are completely based in ram, use the stan-
dard string functions described iostring.h>: Strings

If possible, put your constant tables in the lower 64 KB andpgra_read_byte -
near()or pgm_read_word_near{)stead ofpgm_read_byte far@Qr pgm_read_-
word_far()since it is more efficient that way, and you can still use the upper 64K
for executable code. All functions that are suffixed with R require their ar-
guments to be in the lower 64 KB of the flash ROM, as they do not use ELPM
instructions. This is normally not a big concern as the linker setup arranges any
program space constants declared using the macros from this header file so they
are placed right after the interrupt vectors, and in front of any executable code.
However, it can become a problem if there are too many of these constants, or for
bootloaders on devices with more than 64 KB of ROM.these functions will not
work in that situation.

Defines

 #definePROGMEM__ ATTR_PROGMEM__
» #definePSTRS) ((const PROGMEM chay)(s))
« #definepgm_read_byte ne@ddress_short) LPM(int16_d(address_short))

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.18 <avr/pgmspace.h>: Program Space Utilities 242

 #define pgm_read word_ne@ddress_short) __LPM_word{(t16_-
t)(address_short))
e #define pgm_read _dword_ne@ddress_short) _ LPM_dword{(t16_-

t)(address_short))
 #definepgm_read_byte féaddress_long) _ ELPM({{nt32_)(address_long))

 #define pgm_read_word_féaddress_long) __ELPM_word(at32_-
t)(address_long))
e #define pgm_read_dword_féaddress_long) __ELPM_dword({ft32_-

t)(address_long))
« #definepgm_read_byt@ddress_short) pgm_read_byte near(address_short)
 #definepgm_read_wor@ddress_short) pgm_read_word_near(address_short)
« #definepgm_read_dwor@ddress_short) pgm_read dword_near(address_short)
 #definePGM_Pconstprog_cha
* #definePGM_VOID_Pconstprog_voidx

Typedefs

« typedef void PROGMEMrog_void

« typedef char PROGMENSrog_char

« typedef unsigned char PROGMEMog_uchar
* typedefint8_t PROGMEMprog_int8_t

* typedefuint8_tPROGMEMprog_uint8_t

* typedefintl6_tPROGMEMprog_int16_t

¢ typedefuintl6 tPROGMEMprog_uintl6 t
« typedefint32_tPROGMEMprog_int32_t

« typedefuint32_tPROGMEMprog_uint32_t
* typedefint64 tPROGMEMprog_int64 t

* typedefuint64_tPROGMEMprog_uint64 _t

Functions

* PGM_VOID_Pmemchr_RPGM_VOID_P, int __val, size_t__len)

e int memcmp_Rconst void«, PGM_VOID_P, size t) ATTR_PURE__
« void x memcpy_Rvoid x, PGM_VOID_P, size_t)

e PGM_VOID_Pmemrchr_ RPGM_VOID_P, int __ val, size_t__len)

« int strcasecmp_Kconst chax, PGM_P) __ ATTR_PURE___

« charx strcat_R(charx, PGM_P)

« PGM_Pstrchr_ (PGM_P, int __ val)

« PGM_Pstrchrnul_PGM_P, int __ val)

e int strcmp_HRconst chak, PGM_P) __ ATTR_PURE___

e charx strcpy_P(charx, PGM_P)

* size_tstrcspn_Rconstchax__s, PGM_P _ reject) _ ATTR_PURE__

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.18 <avr/pgmspace.h>: Program Space Utilities 243

« size_tstrlcat P(charx, PGM_P, size t)

« size_tstrlcpy_P(charx, PGM_P, size t)

« size_tstrlen_ (PGM_P)

« int strncasecmp_Reonst chax, PGM_P, size t) ATTR _PURE__

e charx strncat_Rcharx, PGM_P, size t)

« int strncmp_KHconst chax, PGM_P, size t) ATTR_PURE__

e charx strncpy_R(charx, PGM_P, size_t)

« size_tstrnlen_ APGM_P, size t)

e charx strpbrk_P(const chakx__s, PGM_P __accept) ATTR_PURE__

e PGM_Pstrrchr_P(PGM_P, int __ val)

e charx strsep_Hcharxx__sp, PGM_P __delim)

¢ size_tstrspn_Rconst chak__s, PGM_P __accept) _ ATTR_PURE__

e charsx strstr_P(const chax, PGM_P) _ ATTR_PURE___

e void * memmem_Rconst voidx, size_t, PGM_VOID_P, size_t) _ ATTR_-
PURE__

» charx strcasestr_[const chax, PGM_P) _ ATTR_PURE__

22.18.2 Define Documentation

22.18.2.1 #define PGM_P const prog_char

Used to declare a variable that is a pointer to a string in program space.

22.18.2.2 #define pgm_read_byte(address_short) pgm_read_byte -
near(address_short)

Read a byte from the program space with a 16-bit (near) address.

Note:

The address is a byte address. The address is in the program space.

22.18.2.3 #define pgm_read_byte far(address_long) _ ELPM((uint32_-
t)(address_long))

Read a byte from the program space with a 32-bit (far) address.

Note:

The address is a byte address. The address is in the program space.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.18 <avr/pgmspace.h>: Program Space Utilities 244

22.18.2.4 #define pgm_read byte near(address_short) LPM((uintl6_-
t)(address_short))

Read a byte from the program space with a 16-bit (near) address.

Note:

The address is a byte address. The address is in the program space.

22.18.2.5 #define pgm_read_dword(address_short) pgm_read_dword_-
near(address_short)

Read a double word from the program space with a 16-bit (near) address.

Note:

The address is a byte address. The address is in the program space.

22.18.2.6 #define pgm_read_dword_far(address_long) __ELPM -
dword((uint32_t)(address_long))

Read a double word from the program space with a 32-bit (far) address.

Note:

The address is a byte address. The address is in the program space.

22.18.2.7 #define pgm_read_dword_near(address_short) __LPM_-
dword((uintl6_t)(address_short))

Read a double word from the program space with a 16-bit (near) address.

Note:

The address is a byte address. The address is in the program space.

22.18.2.8 #define pgm_read_word(address_short) pgm_read_word_-
near(address_short)

Read a word from the program space with a 16-bit (near) address.

Note:

The address is a byte address. The address is in the program space.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.18 <avr/pgmspace.h>: Program Space Utilities 245

22.18.2.9 #define pgm_read word_far(address_long) _ ELPM_word((uint32_-
t)(address_long))

Read a word from the program space with a 32-bit (far) address.

Note:

The address is a byte address. The address is in the program space.

22.18.2.10 #define pgm_read word_near(address_short) __LPM_-
word((uint16_t)(address_short))

Read a word from the program space with a 16-bit (near) address.

Note:

The address is a byte address. The address is in the program space.

22.18.2.11 #define PGM_VOID_P const prog_void

Used to declare a generic pointer to an object in program space.

22.18.2.12 #define PROGMEM __ ATTR_PROGMEM__

Attribute to use in order to declare an object being located in flash ROM.

22.18.2.13 #define PSTR(S) ((const PROGMEM cha)(s))

Used to declare a static pointer to a string in program space.

22.18.3 Typedef Documentation

22.18.3.1 prog_char
Type of a "char" object located in flash ROM.

22.18.3.2 prog_intl6 t
Type of an "int16_t" object located in flash ROM.

22.18.3.3 prog_int32_t
Type of an "int32_t" object located in flash ROM.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.18 <avr/pgmspace.h>: Program Space Utilities 246

22.18.3.4 prog_int64 t
Type of an "int64_t" object located in flash ROM.

Note:

This type is not available when the compiler option -mint8 is in effect.

22.18.3.5 prog_int8 t
Type of an "int8_t" object located in flash ROM.

22.18.3.6 prog_uchar

Type of an "unsigned char” object located in flash ROM.

22.18.3.7 prog_uintl6_t
Type of an "uint16_t" object located in flash ROM.

22.18.3.8 prog_uint32_t
Type of an "uint32_t" object located in flash ROM.

22.18.3.9 prog_uint64_t
Type of an "uint64_t" object located in flash ROM.

Note:

This type is not available when the compiler option -mint8 is in effect.

22.18.3.10 prog_uint8_t
Type of an "uint8_t" object located in flash ROM.

22.18.3.11 prog_void

Type of a "void" object located in flash ROM. Does not make much sense by itself, but
can be used to declare a "voitiobject in flash ROM.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.18 <avr/pgmspace.h>: Program Space Utilities 247

22.18.4 Function Documentation

22.18.4.1 PGM_VOID_P memchr_P (PGM_VOID_PFs, int val, size_tlen)
Scan flash memory for a character.

The memchr_P(function scans the firden bytes of the flash memory area pointed
to by s for the characteval . The first byte to matckial (interpreted as an unsigned
character) stops the operation.

Returns:

The memchr_P(¥unction returns a pointer to the matching byteNWLL if the
character does not occur in the given memory area.

22.18.4.2 int memcmp_P (const void s1, PGM_VOID_P s2, size_tlen)
Compare memory areas.

The memcmp_P(Junction compares the firén bytes of the memory aread and
flashs2. The comparision is performed using unsigned char operations.

Returns:

The memcmp_P(function returns an integer less than, equal to, or greater than
zero if the firsten bytes ofsl is found, respectively, to be less than, to match, or
be greater than the firktn bytes ofs2.

22.18.4.3 void« memcpy_P (void+ dest PGM_VOID_P src, size_tn)
Thememcpy_P(function is similar tomemcpy() except the src string resides in pro-
gram space.

Returns:

Thememcpy_P(function returns a pointer to dest.

22.18.4.4 void« memmem_P (const voidk s1, size_tlenl, PGM_VOID_P s2
size_tlen2)

The memmem_P(function is similar tomemmem()except thats2 is pointer to a
string in program space.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.18 <avr/pgmspace.h>: Program Space Utilities 248

22.18.4.5 PGM_VOID_P memrchr_P (PGM_VOID_Psrc, int val, size_tlen)

The memrchr_P()function is like thememchr_P()function, except that it searches
backwards from the end of then bytes pointed to bgrc instead of forwards from
the front. (Glibc, GNU extension.)

Returns:

The memrchr_P(¥unction returns a pointer to the matching byteNdWLL if the
character does not occur in the given memory area.

22.18.4.6 int strcasecmp_P (const charsl, PGM_Ps2

Compare two strings ignoring case.

Thestrcasecmp_Punction compares the two stringé ands2, ignoring the case of
the characters.

Parameters:

sl A pointer to a string in the devices SRAM.
s2 A pointer to a string in the devices Flash.

Returns:

Thestrcasecmp_P€unction returns an integer less than, equal to, or greater than
zero ifs1 is found, respectively, to be less than, to match, or be greatersthan

A consequence of the ordering useddiscasecmp_P(s that if s1 is an initial
substring ofs2, thensl is considered to be "less thas?2 .

22.18.4.7 char strcasestr_P (const chakx s1, PGM_Ps2

This funtion is similar tostrcasestr(gxcept thas2 is pointer to a string in program
space.

22.18.4.8 char strcat_P (charx dest PGM_P src)

The strcat_P(function is similar tostrcat()except that therc string must be located
in program space (flash).

Returns:

Thestrcat()function returns a pointer to the resulting stritest

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.18 <avr/pgmspace.h>: Program Space Utilities 249

22.18.4.9 PGM_P strchr_ P (PGM_P, int val)
Locate character in program space string.

Thestrchr_P(Yfunction locates the first occurrenceval (converted to a char) in the
string pointed to bys in program space. The terminating null character is considered
to be part of the string.

The strchr_P()function is similar tostrchr() except thats is pointer to a string in
program space.
Returns:

The strchr_P()function returns a pointer to the matched characteMdLL if the
character is not found.

22.18.4.10 PGM_P strchrnul_P (PGM_F, int c)

The strchrnul_P()function is like strchr_P()except that ifc is not found ins, then
it returns a pointer to the null byte at the endsgfrather tharNULL (Glibc, GNU
extension.)

Returns:

Thestrchrnul_P(function returns a pointer to the matched character, or a pointer
to the null byte at the end &f (i.e.,s+strlen (s)) if the character is not found.

22.18.4.11 int strcmp_P (const chax s1, PGM_P s2)

The strcmp_P()function is similar tostrcmp()except thas2 is pointer to a string in
program space.

Returns:

Thestrcmp_P(function returns an integer less than, equal to, or greater than zero
if s1 is found, respectively, to be less than, to match, or be greatersthar®A
consequence of the ordering usedstrygemp_P()s that ifs1 is an initial substring

of s2, thensl is considered to be "less thas2 .

22.18.4.12 chas strcpy_P (char x dest PGM_P src)

The strcpy_P()function is similar tostrcpy() except that src is a pointer to a string in
program space.

Returns:

Thestrcpy_P(function returns a pointer to the destination string dest.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.18 <avr/pgmspace.h>: Program Space Utilities 250

22.18.4.13 size_t strcspn_P (const chars, PGM_P rejec)

Thestrcspn_P(junction calculates the length of the initial segmens efhich consists
entirely of characters not ireject . This function is similar testrcspn()except that
reject is a pointer to a string in program space.

Returns:

Thestrcspn_P(Junction returns the number of characters in the initial segment of
s which are not in the stringgject . The terminating zero is not considered as a
part of string.

22.18.4.14 size_tstricat_P (char dst PGM_P, size_tsi2
Concatenate two strings.

Thestrlcat_P(function is similar tostricat() except that therc string must be located
in program space (flash).

Appends src to string dst of size siz (unligencat() siz is the full size of dst, not space
left). At most siz-1 characters will be copied. Always NULL terminates (unlesssiz
strlen(dst)).

Returns:

Thestrlcat_P()function returns strlen(src) + MIN(siz, strlen(initial dst)). If retval
>= siz, truncation occurred.

22.18.4.15 size_t stricpy_P (chaf dst PGM_P, size tsi?)

Copy a string from progmem to RAM.

Copy src to string dst of size siz. At most siz-1 characters will be copied. Always
NULL terminates (unless siz == 0).

Returns:

Thestrlcpy_P()function returns strlen(src). If retval= siz, truncation occurred.

22.18.4.16 size_tstrlen_P (PGM_Brc)

The strlen_P()function is similar tostrlen() except that src is a pointer to a string in
program space.

Returns:

Thestrlen()function returns the number of characters in src.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.18 <avr/pgmspace.h>: Program Space Utilities 251

22.18.4.17 int strncasecmp_P (const charsl, PGM_Ps2, size tn)

Compare two strings ignoring case.

Thestrncasecmp_Pflinction is similar tastrcasecmp_P(gxcept it only compares the
firstn characters o1.

Parameters:

sl A pointer to a string in the devices SRAM.
s2 A pointer to a string in the devices Flash.
n The maximum number of bytes to compare.

Returns:

The strncasecmp_Punction returns an integer less than, equal to, or greater
than zero ifsl (or the firstn bytes thereof) is found, respectively, to be less
than, to match, or be greater tha. A consequence of the ordering used by
strncasecmp_P{3 thatifsl is an initial substring 062, thens1 is considered to

be "less thans2.

22.18.4.18 chak strncat_P (charx dest PGM_P src, size_tlen)

Concatenate two strings.

Thestrncat_P(junction is similar tostrncat() except that therc string must be located
in program space (flash).

Returns:

Thestrncat_P(function returns a pointer to the resulting string dest.

22.18.4.19 int strncmp_P (const chax s1, PGM_P s2 size_tn)

Thestrncmp_P(function is similar tostrcmp_P()except it only compares the first (at
most) n characters of s1 and s2.

Returns:

Thestrncmp_P(Junction returns an integer less than, equal to, or greater than zero
if s1 (or the first n bytes thereof) is found, respectively, to be less than, to match,
or be greater than s2.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.18 <avr/pgmspace.h>: Program Space Utilities 252

22.18.4.20 chak strncpy_P (charx dest PGM_P src, size_tn)

The strncpy_P(¥unction is similar tostrcpy_P()except that not more than n bytes of
src are copied. Thus, if there is no null byte among the first n bytes of src, the result
will not be null-terminated.

In the case where the length of src is less than that of n, the remainder of dest will be
padded with nulls.

Returns:

Thestrncpy_P(function returns a pointer to the destination string dest.

22.18.4.21 size_tstrnlen_P (PGM_PBrc, size tlen)

Determine the length of a fixed-size string.

Thestrnlen_P(¥unction is similar tostrnlen() except thasrc is a pointer to a string
in program space.

Returns:

The strnlen_P function returns strlen_P(src), if that is less than or len if
there is no\0’ character among the firlgn characters pointed to ksrc .

22.18.4.22 chak strpbrk_P (const char x s, PGM_P accep}

Thestrpbrk_P()function locates the first occurrence in the stringf any of the char-
acters in the flash stringccept . This function is similar tostrpbrk() except that
accept is a pointer to a string in program space.

Returns:

Thestrpbrk_P(function returns a pointer to the charactesithat matches one of

the characters iaccept , or NULLIif no such character is found. The terminating
zero is not considered as a part of string: if one or both args are empty, the result
will NULL

22.18.4.23 PGM_P strrchr_P (PGM_Ps, int val)
Locate character in string.

The strrchr_P()function returns a pointer to the last occurrence of the charaater
in the flash string.

Returns:

Thestrrchr_P(function returns a pointer to the matched charactét@t L if the
character is not found.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.19 <avr/power.h>: Power Reduction Management 253

22.18.4.24 chak strsep_P (char«+ sp, PGM_P delim)
Parse a string into tokens.

Thestrsep_P(Junction locates, in the string referenced:sp , the first occurrence of

any character in the strindelim (or the terminating\0’ character) and replaces it

with a "\0'. The location of the next character after the delimiter characte{4irL,

if the end of the string was reached) is stored«gp. An “empty” field, i.e. one
caused by two adjacent delimiter characters, can be detected by comparing the location
referenced by the pointer returnedsisp to "\0'. This function is similar tostrsep()
except thatlelim is a pointer to a string in program space.

Returns:

The strsep_P(function returns a pointer to the original valuesap . If xsp is
initially NULL, strsep_P(yeturnsNULL

22.18.4.25 size_tstrspn_P (const chars, PGM_P accep}

The strspn_P(¥unction calculates the length of the initial segmentsofvhich con-
sists entirely of characters accept . This function is similar testrspn()except that
accept is a pointer to a string in program space.

Returns:

Thestrspn_P(function returns the number of characters in the initial segment of
s which consist only of characters froatcept . The terminating zero is not
considered as a part of string.

22.18.4.26 chak strstr_P (const charx s1, PGM_Ps2)

Locate a substring.

The strstr_P()function finds the first occurrence of the substrg®yin the stringsl.
The terminating {0’ characters are not compared. Tiestr_P()function is similar to
strstr()except thas2 is pointer to a string in program space.

Returns:

Thestrstr_P(¥unction returns a pointer to the beginning of the substring, or NULL
if the substring is not found. 2 points to a string of zero length, the function
returnssl.

22.19 <avr/power.h>: Power Reduction Management

#include <avr/power.h>

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.19 <avr/power.h>: Power Reduction Management 254

Many AVRs contain a Power Reduction Register (PRR) or Registers (PRRx) that allow
you to reduce power consumption by disabling or enabling various on-board peripher-
als as needed.

There are many macros in this header file that provide an easy interface to enable or
disable on-board peripherals to reduce power. See the table below.

Note:

Not all AVR devices have a Power Reduction Register (for example the AT-
megal28). On those devices without a Power Reduction Register, these macros
are not available.

Not all AVR devices contain the same peripherals (for example, the LCD inter-
face), or they will be named differently (for example, USART and USARTO).
Please consult your device’s datasheet, or the header file, to find out which macros
are applicable to your device.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.19 <avr/power.h>: Power Reduction Management

255

Power Macro

Description

Applicable for device

power_adc_enable()

Enable the Analog to Digital
Converter module.

ATmega640, ATmegal280,
ATmegal281, ATmega2560,
ATmega2561, ATO0USB646,
AT90USB647, AT90USB1286,
AT90USB1287, AT90PWM1,
AT90PWM2, AT90PWM2B,
AT90PWM3, AT90PWM3B,
AT90PWM2186,
AT90PWM316, ATmegal6s,
ATmegal65P, ATmega325,
ATmega3250, ATmega645,
ATmega6450, ATmegal69,
ATmegal69P, ATmega329,
ATmega3290, ATmegab649,
ATmega6490, ATmegal64P,
ATmega324P, ATmegab644,
ATmega48, ATmega88,
ATmegal68, ATtiny24,
ATtiny44, ATtiny84, ATtiny25,
ATtiny45, ATtiny85,
ATtiny261, ATtiny461,
ATtiny861

power_adc_disable()

Disable the Analog to Digital
Converter module.

ATmega640, ATmegal280,
ATmegal281, ATmega2560,
ATmega2561, ATO0USB646,
AT90USB647, AT90USB1286,
AT90USB1287, AT90OPWM1,
AT90PWM2, AT90PWM2B,
AT90PWM3, AT90PWM3B,
AT90PWM216,
AT90PWM316, ATmegal65,
ATmegal65P, ATmega325,
ATmega3250, ATmega645,
ATmega6450, ATmegal69,
ATmegal69P, ATmega329,
ATmega3290, ATmega649,
ATmega6490, ATmegal64P,
ATmega324P, ATmega644,
ATmega48, ATmega88,
ATmegal68, ATtiny24,
ATtiny44, ATtiny84, ATtiny25,
ATtiny45, ATtiny85,
ATtiny261, ATtiny461,
ATtiny861

power_lcd_enable()

Enable the LCD module.

ATmegal69, ATmegal69P,
ATmega329, ATmega3290,
ATmega649, ATmega6490

power_lcd_disable().

Disable the LCD module.

ATmegal69, ATmegal69P,
ATmega329, ATmega3290,
ATmega649, ATmega6490

power_psc0_enable()

Enable the Power Stage
Controller 0 module.

AT90PWM1, ATOOPWM2,
AT90PWM2B, AT90PWM3,
AT90PWM3B

GaanaedascOodisrled)23:37:39

»008sabiertie: Bpwexygtage
Controller 0 module.

AT90PWM1, AT9OPWM2,
AT90PWM2B, ATOOPWM3,
AT90PWM3B

power_pscl_enable()

Enable the Power Stage
Controller 1 module.

AT90PWM1, ATOOPWMZ,
AT90PWM2B, AT90PWM3,
AT90PWM3B

power_pscl_disable()

Disable the Power Stage
Controller 1 module.

AT90PWM1, AT9OPWM2,
AT90PWM2B, AT90PWMS3,

22.20 Additional notes from<avr/sfr_defs.h> 256

Some of the newer AVRs contain a System Clock Prescale Register (CLKPR) that
allows you to decrease the system clock frequency and the power consumption when
the need for processing power is low. Below are two macros and an enumerated type
that can be used to interface to the Clock Prescale Register.

Note:

Not all AVR devices have a Clock Prescale Register. On those devices without a
Clock Prescale Register, these macros are not available.

typedef enum

{
clock_div_1
clock_div_2
clock_div_4
clock_div_8
clock_div_16
clock_div_32 5,
clock_div_64 = 6,
clock_div_128 = 7,
clock_div_256 = 8

} clock_div_t;

wnNE o

4,

Clock prescaler setting enumerations.

clock_prescale_set(x)

Set the clock prescaler register select bits, selecting a system clock division setting.
They type of x is clock_div_t.

clock_prescale_get()

Gets and returns the clock prescaler register setting. The return type is clock_div_t.

22.20 Additional notes from<avr/sfr_defs.h>

The <avr/sfr_defs.h > file is included by all of the<avr/ioXXXX.h > files,

which use macros defined here to make the special function register definitions look
like C variables or simple constants, depending on t8ER_ASM_COMPAdefine.
Some examples fromavr/iocanxx.h > to show how to define such macros:

#define PORTA _SFR_I08(0x02)
#define EEAR _SFR_I016(0x21)
#define UDRO _SFR_MEMS(0XC6)
#define TCNT3 ~_SFR_MEM16(0x94)
#define CANIDT _SFR_MEM32(0xF0)

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.20 Additional notes from<avr/sfr_defs.h> 257

If SFR_ASM_COMPA3 not defined, C programs can use namesH&RTAdirectly

in C expressions (also on the left side of assignment operators) and GCC will do the
right thing (use short I/O instructions if possible). TheSFR_OFFSETdefinition is

not used in any way in this case.

Define_SFR_ASM_COMPASE 1 to make these names work as simple constants (ad-
dresses of the I/O registers). This is necessary when included in preprocessed assem-
bler (x.S) source files, so it is done automatically fASSEMBLER__is defined. By
default, all addresses are defined as if they were memory addresses (laséstsn
instructions). To use these addressemfaut instructions, you must subtract 0x20

from them.

For more backwards compatibility, insert the following at the start of your old assem-
bler source file:

#define _ SFR_OFFSET 0

This automatically subtracts 0x20 from 1/O space addresses, but it's a hack, so it is
recommended to change your source: wrap such addresses in macros defined here, as
shown below. After this is done, the SFR_OFFSETdefinition is no longer necessary

and can be removed.

Real example - this code could be used in a boot loader that is portable between devices
with SPMCRat different addresses.

<avr/iom163.h>: #define SPMCR _SFR_IO8(0x37)
<avr/iom128.h>: #define SPMCR _SFR_MEMB8(0x68)

#if _SFR_IO_REG_P(SPMCR)

out _SFR_IO_ADDR(SPMCR), r24
#else
sts _SFR_MEM_ADDR(SPMCR), r24
#endif
You can use tha/out/cbi/sbi/sbic/sbis instructions, without the SFR_ -

I0_REG_Ptest, if you know that the register is in the I/O space (as \BREG for
example). If it isn’t, the assembler will complain (I/O address out of range 0...0x3f),
so this should be fairly safe.

If you do not define_ SFR_OFFSET(so it will be 0x20 by default), all special register
addresses are defined as memory addresseSREis 0x5f), and (if code size and
speed are not important, and you don't like the ugly #if above) you can always use
Ids/sts to access them. But, this will not work if SFR_OFFSET!= 0x20, so use a
different macro (defined only if SFR_OFFSET== 0x20) for safety:

sts _SFR_ADDR(SPMCR), r24

In C programs, all 3 combinations o6FR_ASM_COMPAANd__ SFR_OFFSETare
supported - the SFR_ADDR(SPMCR)macro can be used to get the address of the
SPMCRegister (0x57 or 0x68 depending on device).

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.21 <avr/sfr_defs.h>: Special function registers 258

22.21 <auvr/sfr_defs.h>: Special function registers
22.21.1 Detailed Description

When working with microcontrollers, many tasks usually consist of controlling internal
peripherals, or external peripherals that are connected to the device. The entire 10
address space is made availableresmory-mapped IQ.e. it can be accessed using

all the MCU instructions that are applicable to normal data memory. For most AVR
devices, the IO register space is mapped into the data memory address space with an
offset of 0x20 since the bottom of this space is reserved for direct access to the MCU
registers. (Actual SRAM is available only behind the 10 register area, starting at some
specific address depending on the device.)

For example the user can access memory-mapped IO registers as if they were globally
defined variables like this:

PORTA = 0x33;
unsigned char foo = PINA;

The compiler will choose the correct instruction sequence to generate based on the
address of the register being accessed.

The advantage of using the memory-mapped registers in C programs is that it makes
the programs more portable to other C compilers for the AVR platform.

Note that special care must be taken when accessing some of the 16-bit timer 10 reg-
isters where access from both the main program and within an interrupt context can
happen. Se@/hy do some 16-bit timer registers sometimes get trashed?

Porting programs that use the deprecated sbi/cbi macros

Access to the AVR single bit set and clear instructions are provided via the standard C
bit manipulation commands. The sbi and cbi macros are no longer directly supported.
shi (sfr,bit) can be replaced by $& _BV(bit) .

i.e.: shi(PORTB, PB1)is now PORTB|=_BV(PB1),

This actually is more flexible than having sbi directly, as the optimizer will use a hard-
ware shi if appropriate, or a read/or/write operation if not appropriate. You do not need
to keep track of which registers sbi/cbi will operate on.

Likewise, cbi (sfr,bit) is now sfr &=(_BV(bit));

Modules

¢ Additional notes fromcavr/sfr_defs.b-

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.21 <avr/sfr_defs.h>: Special function registers 259

Bit manipulation

- #define_BV(bit) (1 << (bit))

IO register bit manipulation

#definebit_is_se{sfr, bit) (SFR_BYTE(sfr) & _BV(bit))
#definebit_is_clea(sfr, bit) (!(_SFR_BYTE(sfr) & _BV(bit)))
#defineloop_until_bit_is_sdsfr, bit) do { } while (bit_is_clear(sfr, bit))
#defineloop_until_bit_is_cledsfr, bit) do { } while (bit_is_set(sfr, bit))

22.21.2 Define Documentation
22.21.2.1 #define _BV(bit) (k< (bit))
#include <avr/io.h>

Converts a bit number into a byte value.

Note:

The bit shift is performed by the compiler which then inserts the result into the
code. Thus, there is no run-time overhead when usB\g().

22.21.2.2 #define bit_is_clear(sfr, bit) (/(_SFR_BYTE(sfr) & _BV(bit)))

#include <avr/io.h>

Test whether bibit in 10 registersfr is clear. This will return non-zero if the bit is
clear, and a O if the bit is set.

22.21.2.3 #define bit_is_set(sfr, bit) (_ SFR_BYTE(sfr) & _BV(bit))

#include <avr/io.h>

Test whether bibit in 10 registersfr is set. This will return a 0 if the bit is clear,
and non-zero if the bit is set.

22.21.2.4 #define loop_until_bit_is_clear(sfr, bit) do {}while (bit_is_set(sfr, bit))

#include <avr/io.h>

Wait until bitbit in IO registersfr is clear.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.22 <auvr/sleep.h>: Power Management and Sleep Modes 260

22.21.2.5 #define loop_until_bit_is_set(sfr, bit) do{} while (bit_is_clear(sfr, bit))

#include <avr/io.h>

Wait until bit bit in 1O registersfr is set.

22.22 <avr/sleep.h>: Power Management and Sleep Modes

22.22.1 Detailed Description

#include <avr/sleep.h>

Use of theSLEEPInstruction can allow an application to reduce its power comsump-
tion considerably. AVR devices can be put into different sleep modes. Refer to the
datasheet for the details relating to the device you are using.

There are several macros provided in this header file to actually put the device into
sleep mode. The simplest way is to optionally set the desired sleep modesasing
sleep_mode() (it usually defaults to idle mode where the CPU is put on sleep but
all peripheral clocks are still running), and then cgléep_mode() . This macro
automatically sets the sleep enable bit, goes to sleep, and clears the sleep enable bit.

Example:

#include <avr/sleep.h>

set_sleep_mode(<mode>);
sleep_mode();

Note that unless your purpose is to completely lock the CPU (until a hardware reset),
interrupts need to be enabled before going to sleep.

As the sleep_mode() = macro might cause race conditions in some situations,
the individual steps of manipulating the sleep enable (SE) bit, and actually issuing
the SLEEP instruction, are provided in the macrekep_enable() , Sleep_-
disable() , andsleep _cpu() . This also allows for test-and-sleep scenarios that
take care of not missing the interrupt that will awake the device from sleep.

Example:

#include <avr/interrupt.h>
#include <avr/sleep.h>

set_sleep_mode(<mode>);

cli();

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.23 <avr/version.h>: avr-libc version macros 261

if (some_condition)
{
sleep_enable();
sei();
sleep_cpu();
sleep_disable();

}

sei();

This sequence ensures an atomic tesoofie_condition with interrupts being dis-
abled. If the condition is met, sleep mode will be prepared, an&tieEPinstruction

will be scheduled immediately after &EI instruction. As the intruction right after

the SEI is guaranteed to be executed before an interrupt could trigger, it is sure the
device will really be put to sleep.

Functions

« void sleep_enablévoid)
« void sleep_disablévoid)
 void sleep_cpyvoid)

22.22.2 Function Documentation

22.22.2.1 void sleep_cpu (void)

Put the device into sleep mode. The SE bit must be set beforehand, and it is recom-
mended to clear it afterwards.

22.22.2.2 void sleep_disable (void)
Clear the SE (sleep enable) bit.

22.22.2.3 void sleep_enable (void)

Put the device in sleep mode. How the device is brought out of sleep mode depends on
the specific mode selected with the set_sleep_mode() function. See the data sheet for
your device for more details.

Set the SE (sleep enable) bit.

22.23 <avr/version.h>: avr-libc version macros

22.23.1 Detailed Description

#include <avr/version.h>

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.23 <avr/version.h>: avr-libc version macros 262

This header file defines macros that contain version numbers and strings describing the
current version of avr-libc.

The version number itself basically consists of three pieces that are separated by a
dot: the major number, the minor number, and the revision number. For development
versions (which use an odd minor number), the string representation additionally gets
the date code (YYYYMMDD) appended.

This file will also be included byavr/io.h >. That way, portable tests can be
implemented using<avr/io.h > that can be used in code that wants to remain
backwards-compatible to library versions prior to the date when the library version
API had been added, as referenced but undefined C preprocessor macros automatically
evaluate to 0.

Defines

#define_ AVR_LIBC_VERSION_STRING_"1.6.2"
#define_ AVR_LIBC_VERSION__10602UL
#define_ AVR_LIBC_DATE_STRING_ "20080402"
#define_ AVR_LIBC_DATE_20080402UL
#define_ AVR_LIBC_MAJOR__1

#define_ AVR_LIBC_MINOR__6

#define_ AVR_LIBC_REVISION__2

22.23.2 Define Documentation

22.23.2.1 #define __AVR_LIBC_DATE_ 20080402UL

Numerical representation of the release date.

22.23.2.2 #define _AVR_LIBC_DATE_STRING__ "20080402"

String literal representation of the release date.

22.23.2.3 #define__AVR_LIBC_MAJOR__ 1

Library major version number.

22.23.2.4 #define__AVR_LIBC_MINOR__ 6

Library minor version number.

22.23.2.5 #define__ AVR_LIBC_REVISION__ 2

Library revision number.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.24 <avr/wdt.h>: Watchdog timer handling 263

22.23.2.6 #define __AVR_LIBC_VERSION__ 10602UL
Numerical representation of the current library version.

In the numerical representation, the major number is multiplied by 10000, the minor
number by 100, and all three parts are then added. It is intented to provide a monoton-
ically increasing numerical value that can easily be used in numerical checks.

22.23.2.7 #define__ AVR_LIBC_VERSION_STRING__ "1.6.2"

String literal representation of the current library version.

22.24 <avr/wdt.h>: Watchdog timer handling

22.24.1 Detailed Description

#include <avr/wdt.h>

This header file declares the interface to some inline macros handling the watchdog
timer present in many AVR devices. In order to prevent the watchdog timer configura-
tion from being accidentally altered by a crashing application, a special timed sequence
is required in order to change it. The macros within this header file handle the required
sequence automatically before changing any value. Interrupts will be disabled during
the manipulation.

Note:

Depending on the fuse configuration of the particular device, further restrictions
might apply, in particular it might be disallowed to turn off the watchdog timer.

Note that for newer devices (ATmega88 and newer, effectively any AVR that has the op-
tion to also generate interrupts), the watchdog timer remains active even after a system
reset (except a power-on condition), using the fastest prescaler value (approximately
15 ms). Itis therefore required to turn off the watchdog early during program startup,
the datasheet recommends a sequence like the following:

#include <stdint.h>
#include <avr/wdt.h>

uint8_t mcusr_mirror _attribute_ ((section (".noinit")));

void get_mcusr(void) \
__attribute__((naked)) \
__attribute__ ((section(".init3")));
void get_mcusr(void)

mcusr_mirror = MCUSR,;
MCUSR = 0;

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.24 <avr/wdt.h>: Watchdog timer handling 264

wdt_disable();
}

Saving the value of MCUSR imcusr_mirror is only needed if the application
later wants to examine the reset source, but in particular, clearing the watchdog reset
flag before disabling the watchdog is required, according to the datasheet.

Defines

e #definewdt_resef) asm___ volatile_ ("wdr")
 #definewdt_disabl€)
 #defineWDTO_15MS0
 #defineWDTO_30MS1
 #defineWDTO_60MS2
¢ #defineWDTO_120MS3
e #defineWDTO_250MS4
e #defineWDTO_500MS5
e #defineWDTO_1S6

e #defineWDTO_2S7
 #defineWDTO_4S8
 #defineWDTO_8S9

22.24.2 Define Documentation

22.24.2.1 #define wdt_disable()

Value:

__asm__ _ volatle__ (\
"iIn _tmp_reg__, _ SREG__ " "\n\it" \
"cli" "\n\t" \
"out %0, %1" "\n\t" \
"out %0, _ zero_reg_ " "\n\t" \
"out _ SREG__, tmp_reg_ " "\n\t" \
: [* no outputs */ \
:"I" (_SFR_IO_ADDR(_WD_CONTROL_REG)), \
"r'" ((uint8_t)(_BV(_WD_CHANGE_BIT) | _BV(WDE))) \
B (O
)

Disable the watchdog timer, if possible. This attempts to turn off the Enable bit in the
watchdog control register. See the datasheet for details.

22.24.2.2 #define wdt_reset() __asm__ __ volatile__ ("wdr")

Reset the watchdog timer. When the watchdog timer is enabled, a call to this instruction
is required before the timer expires, otherwise a watchdog-initiated device reset will
occur.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.24 <avr/wdt.h>: Watchdog timer handling 265

22.24.2.3 #define WDTO_120MS 3
SeeWDTO_15MS

22.24.2.4 #define WDTO_15MS 0

Symbolic constants for the watchdog timeout. Since the watchdog timer is based on
a free-running RC oscillator, the times are approximate only and apply to a supply
voltage of 5 V. At lower supply voltages, the times will increase. For older devices,
the times will be as large as three times when operating at Vcc = 3 V, while the newer
devices (e. g. ATmegal28, ATmega8) only experience a negligible change.

Possible timeout values are: 15 ms, 30 ms, 60 ms, 120 ms, 250 ms, 500 ms, 1 s, 2 s.
(Some devices also allow for 4 s and 8 s.) Symbolic constants are formed by the prefix
WDTO, followed by the time.

Example that would select a watchdog timer expiry of approximately 500 ms:

wdt_enable(WDTO_500MS);

22.24.2.5 #define WDTO_1S 6
SeeWDTO_15MS

22.24.2.6 #define WDTO_250MS 4
SeeWDTO_15MS

22.24.2.7 #define WDTO_2S 7
SeeWDTO_15MS

22.24.2.8 #define WDTO_30MS 1
SeeWDTO_15MS

22.24.2.9 #define WDTO_4S 8

See WDTO_15MSNote: This is only available on the ATtiny2313, ATtiny24,
ATtiny44, ATtiny84, ATtiny25, ATtiny45, ATtiny85, ATtiny261, ATtiny461,
ATtiny861, ATmega48, ATmega88, ATmegal68, ATmegad8P, ATmega88P, AT-
megal68P, ATmega328P, ATmegal64P, ATmega324P, ATmega644P, ATmega644, AT-
mega640, ATmegal280, ATmegal281, ATmega2560, ATmega2561, ATmega8HVA,
ATmegal6HVA, ATmega32HVB, ATmegad406, ATmegal284P, AT90PWM1,
AT90PWM2, AT90PWM2B, AT90PWM3, AT90PWM3B, AT90PWM216,

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.25 <util/atomic.h> Atomically and Non-Atomically Executed Code BlockX66

AT90PWM316 AT90USB82, AT90USB162, AT90USB646, AT90USB647,
AT90USB1286, AT90USB1287, ATtiny48, ATtiny88.

22.24.2.10 #define WDTO_500MS 5
SeeWDTO_15MS

22.24.2.11 #define WDTO_60MS 2
WDTO_15MS

22.24.2.12 #define WDTO_8S 9

See WDTO_15MSNote: This is only available on the ATtiny2313, ATtiny24,
ATtiny44, ATtiny84, ATtiny25, ATtiny45, ATtiny85, ATtiny261, ATtiny461,
ATtiny861, ATmega48, ATmega88, ATmegal68, ATmegad48P, ATmega88P, AT-
megal68P, ATmega328P, ATmegal64P, ATmega324P, ATmega644P, ATmega644, AT-
mega640, ATmegal280, ATmegal281, ATmega2560, ATmega2561, ATmega8HVA,
ATmegal6HVA, ATmega32HVB, ATmegad406, ATmegal284P, AT90PWM1,
AT90PWM2, AT90PWM2B, AT90PWMS3, AT90PWM3B, AT90PWM216,
AT90PWM316 AT90USB82, AT90USB162, AT90USB646, AT90USB647,
AT90USB1286, AT90USB1287, ATtiny48, ATtiny88.

22.25 <util/atomic.h> Atomically and Non-Atomically Executed
Code Blocks

22.25.1 Detailed Description

#include <util/atomic.h>

Note:

The macros in this header file require the ISO/IEC 9899:1999 ("ISO C99") feature
of for loop variables that are declared inside the for loop itself. For that reason, this
header file can only be used if the standard level of the compiler (option —std=) is
set to eithec99 orgnu99 .

The macros in this header file deal with code blocks that are guaranteed to be excuted
Atomically or Non-Atmomically. The term "Atomic" in this context refers to the un-
ability of the respective code to be interrupted.

These macros operate via automatic manipulation of the Global Interrupt Status (1) bit
of the SREG register. Exit paths from both block types are all managed automatically
without the need for special considerations, i. e. the interrupt status will be restored to
the same value it has been when entering the respective block.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.25 <util/atomic.h> Atomically and Non-Atomically Executed Code Block67

A typical example that requires atomic access is a 16 (or more) bit variable that is

shared between the main execution path and an ISR. While declaring such a variable
as volatile ensures that the compiler will not optimize accesses to it away, it does not
guarantee atomic access to it. Assuming the following example:

#include <inttypes.h>
#include <avr/interrupt.h>
#include <avr/io.h>

volatile uint16_t ctr;

ISR(TIMERL_OVF_vect)
{

ctr--;

}

int
main(void)

ctr = 0x200;

start_timer();

while (ctr != 0)
Il wait

There is a chance where the main context will exit its wait loop when the vagable

just reached the value OxFF. This happens because the compiler cannot natively access
a 16-bit variable atomically in an 8-bit CPU. So the variable is for example at 0x100,
the compiler then tests the low byte for 0, which succeeds. It then proceeds to test the
high byte, but that moment the ISR triggers, and the main context is interrupted. The
ISR will decrement the variable from 0x100 to OxFF, and the main context proceeds.

It now tests the high byte of the variable which is (now) also 0, so it concludes the
variable has reached 0, and terminates the loop.

Using the macros from this header file, the above code can be rewritten like:

#include <inttypes.h>
#include <avr/interrupt.h>
#include <avr/io.h>
#include <util/atomic.h>

volatile uintl6_t ctr;

ISR(TIMERL_OVF_vect)
{

ctr--;

}

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.25 <util/atomic.h> Atomically and Non-Atomically Executed Code Block68

int
main(void)

{

ctr = 0x200;
start_timer();
sei();

uintlé_t ctr_copy;
do

{
ATOMIC_BLOCK(ATOMIC_FORCEON)

{

ctr_copy = ctr;

}

while (ctr_copy != 0);

This will install the appropriate interrupt protection before accessing varible

so it is guaranteed to be consistently tested. If the global interrupt state were uncer-
tain before entering the ATOMIC_BLOCK, it should be executed with the parameter
ATOMIC_RESTORESTATE rather than ATOMIC_FORCEON.

Defines

L]

#defineATOMIC_BLOCK(type)
#defineNONATOMIC_BLOCK(type)
#defineATOMIC_RESTORESTATE
#defineATOMIC_FORCEON
#defineNONATOMIC_RESTORESTATE
#defineNONATOMIC_FORCEOFF

L]

L]

L]

22.25.2 Define Documentation

22.25.2.1 #define ATOMIC_BLOCK(type)

Creates a block of code that is guaranteed to be executed atomically. Upon entering the
block the Global Interrupt Status flag in SREG is disabled, and re-enabled upon exiting
the block from any exit path.

Two possible macro parameters are permitted, ATOMIC_RESTORESTATE and
ATOMIC_FORCEON.

22.25.2.2 #define ATOMIC_FORCEON

This is a possible parameter for ATOMIC_BLOCK. When used, it will cause the
ATOMIC_BLOCK to force the state of the SREG register on exit, enabling the Global

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.25 <util/atomic.h> Atomically and Non-Atomically Executed Code Blockk69

Interrupt Status flag bit. This saves on flash space as the previous value of the SREG
register does not need to be saved at the start of the block.

Care should be taken that ATOMIC_FORCEON is only used when it is known that
interrupts are enabled before the block’s execution or when the side effects of enabling
global interrupts at the block’s completion are known and understood.

22.25.2.3 #define ATOMIC_RESTORESTATE

This is a possible parameter for ATOMIC_BLOCK. When used, it will cause the
ATOMIC_BLOCK to restore the previous state of the SREG register, saved before
the Global Interrupt Status flag bit was disabled. The net effect of this is to make
the ATOMIC_BLOCK's contents guaranteed atomic, without changing the state of the
Global Interrupt Status flag when execution of the block completes.

22.25.2.4 #define NONATOMIC_BLOCK(type)

Creates a block of code that is executed non-atomically. Upon entering the block the
Global Interrupt Status flag in SREG is enabled, and disabled upon exiting the block
from any exit path. This is useful when nested inside ATOMIC_BLOCK sections, al-
lowing for non-atomic execution of small blocks of code while maintaining the atomic
access of the other sections of the parent ATOMIC_BLOCK.

Two possible macro parameters are permitted, NONATOMIC_RESTORESTATE and
NONATOMIC_FORCEOFF.

22.25.2.5 #define NONATOMIC_FORCEOFF

This is a possible parameter for NONATOMIC_BLOCK. When used, it will cause the
NONATOMIC_BLOCK to force the state of the SREG register on exit, disabling the
Global Interrupt Status flag bit. This saves on flash space as the previous value of the
SREG register does not need to be saved at the start of the block.

Care should be taken that NONATOMIC_FORCEOFF is only used when it is known
that interrupts are disabled before the block’s execution or when the side effects of
disabling global interrupts at the block’s completion are known and understood.

22.25.2.6 #define NONATOMIC_RESTORESTATE

This is a possible parameter for NONATOMIC_BLOCK. When used, it will cause
the NONATOMIC_BLOCK to restore the previous state of the SREG register, saved
before the Global Interrupt Status flag bit was enabled. The net effect of this is to make
the NONATOMIC_BLOCK'’s contents guaranteed non-atomic, without changing the
state of the Global Interrupt Status flag when execution of the block completes.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.26 <util/crc16.h>: CRC Computations 270

22.26 <util/crc16.h>: CRC Computations

22.26.1 Detailed Description

#include <util/crc16.h>

This header file provides a optimized inline functions for calculating cyclic redundancy
checks (CRC) using common polynomials.

References:

See the Dallas Semiconductor app note 27 for 8051 assembler example and general
CRC optimization suggestions. The table on the last page of the app note is the key to
understanding these implementations.

Jack Crenshaw’s "Implementing CRCs" article in the January 1992 isaembedded
Systems Programming his may be difficult to find, but it explains CRC’s in very clear
and concise terms. Well worth the effort to obtain a copy.

A typical application would look like:

/I Dallas iButton test vector.
uint8_t serno[] = { 0x02, Oxlc, Oxb8, Ox01, 0, O, 0, Oxa2 };

int
checkcrc(void)

{

uint8_t crc = 0, i;

for (i = 0; i < sizeof serno / sizeof serno[Q]; i++)
crc = _crc_ibutton_update(crc, sernoli]);

return crc; // must be 0

Functions

e static__inline__uintl6_t crcl6 updatéuintl6 t crc,uint8_t_data)

e static__inline__uint16_t crc_xmodem_updafeintl6_t crc,uint8 t_ data)
 static __inline__uint16_t crc_ccitt_updatéuintl6_t_crc,uint8_t__ data)

« static __inline__uint8_t_crc_ibutton_updat&int8_t__crc,uint8_t__data)

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.26 <util/crc16.h>: CRC Computations 271

22.26.2 Function Documentation
22.26.2.1 static __inline__ uintl6_t crc16_update (uint16_t crg uint8 t -
data) [static]
Optimized CRC-16 calculation.
Polynomial: ¥'16 + x*15 + x*2 + 1 (0xa001)
Initial value: Oxffff
This CRC is normally used in disk-drive controllers.
The following is the equivalent functionality written in C.
uintl6_t
crcl6_update(uintl6_t crc, uint8_t a)
{
int i
crc = a;
for (i = 0; i < 8; ++i)
{
if (crc & 1)
crc = (crc >> 1) ~ OxA001;
else

crc = (crc >> 1);

}

return crc;

22.26.2.2 static __inline__ uintl6_t crc_ccitt update (uintl6_t crg uint8_t
__datg [static]

Optimized CRC-CCITT calculation.

Polynomial: X*16 + x*12 + x5 + 1 (0x8408)

Initial value: Oxffff

This is the CRC used by PPP and IrDA.

See RFC1171 (PPP protocol) and IrDA IrLAP 1.1

Note:

Although the CCITT polynomial is the same as that used by the Xmodem protocol,
they are quite different. The difference is in how the bits are shifted through the
alorgithm. Xmodem shifts the MSB of the CRC and the input first, while CCITT
shifts the LSB of the CRC and the input first.

The following is the equivalent functionality written in C.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.26 <util/crc16.h>: CRC Computations 272

uintl6_t
crc_ccitt_update (uintl6é_t crc, uint8_t data)

{
data "= lo8 (crc);
data ~= data << 4;

return ((((uintl6_t)data << 8) | hi8 (crc)) * (uint8_t)(data >> 4)
A ((uintl6_t)data << 3));

22.26.2.3 static __inline__ uint8_t _crc_ibutton_update (uint8_t_crg uint8_t
__datg [static]

Optimized Dallas (now Maxim) iButton 8-bit CRC calculation.
Polynomial: X'8 + x5 + x*4 + 1 (0x8C)
Initial value: 0x0
Seehttp://www.maxim-ic.com/appnotes.cfm/appnote_number/27
The following is the equivalent functionality written in C.

uint8_t

_crc_ibutton_update(uint8_t crc, uint8_t data)

{
uint8_t i;

crc = crc /N data;
for (i = 0; i < 8; i++)

{
if (crc & 0x01)
crc = (crc >> 1) ~ 0x8C;
else
crc >>= 1,
}
return crc;

22.26.2.4 static __inline__ uintl6_t _crc_xmodem_update (uintl6 t crg
uint8_t _ datg [static]

Optimized CRC-XMODEM calculation.

Polynomial: X*16 + x*12 + x*5 + 1 (0x1021)

Initial value: Ox0

This is the CRC used by the Xmodem-CRC protocol.

The following is the equivalent functionality written in C.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

http://www.maxim-ic.com/appnotes.cfm/appnote_number/27

22.27 <util/delay.h>: Convenience functions for busy-wait delay loops 273

uintl6_t
crc_xmodem_update (uintl6é_t crc, uint8_t data)

{
int i
crc = crc M ((uintlé_t)data << 8);
for (i=0; i<8; i++)

{
if (crc & 0x8000)

crc = (crc << 1) ~ 0x1021;
else
cre <<= 1,

}

return crc;

22.27 <util/delay.h>: Convenience functions for busy-wait delay
loops

22.27.1 Detailed Description

#define F_CPU 1000000UL // 1 MHz
/l#define F_CPU 14.7456E6
#include <util/delay.h>

Note:

As an alternative method, it is possible to pass the F_CPU macro down to the com-
piler from the Makefile. Obviously, in that case, #define statement should
be used.

The functions in this header file are wrappers around the basic busy-wait functions from
<util/delay_basic.lr. They are meant as convenience functions where actual time
values can be specified rather than a number of cycles to wait for. The idea behind is
that compile-time constant expressions will be eliminated by compiler optimization so
floating-point expressions can be used to calculate the number of delay cycles needed
based on the CPU frequency passed by the macro F_CPU.

Note:

In order for these functions to work as intended, compiler optimizatioustbe
enabled, and the delay tinmaustbe an expression that is a known constant at
compile-time. If these requirements are not met, the resulting delay will be much
longer (and basically unpredictable), and applications that otherwise do not use
floating-point calculations will experience severe code bloat by the floating-point
library routines linked into the application.

The functions available allow the specification of microsecond, and millisecond delays

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.28 <util/delay_basic.h>: Basic busy-wait delay loops 274

directly, using the application-supplied macro F_CPU as the CPU clock frequency (in
Hertz).

Functions

« void _delay_ugdouble __us)
« void _delay_mgdouble __ms)

22.27.2 Function Documentation

22.27.2.1 void _delay _ms (double_mg
Perform a delay of _ms milliseconds, using delay _loop_2()

The macro F_CPU is supposed to be defined to a constant defining the CPU clock
frequency (in Hertz).

The maximal possible delay is 262.14 ms /F_CPU in MHz.

When the user request delay which exceed the maximum possible deley ms()
provides a decreased resolution functionality. In this matkday ms(will work with
aresolution of 1/10 ms, providing delays up to 6.5535 seconds (independent from CPU
frequency). The user will not be informed about decreased resolution.

22.27.2.2 void _delay us (double ug
Perform a delay of us microseconds, usingdelay_loop_1()

The macro F_CPU is supposed to be defined to a constant defining the CPU clock
frequency (in Hertz).

The maximal possible delay is 768 us / F_CPU in MHz.

If the user requests a delay greater than the maximal possible daky us(will
automatically call delay _ms(jnstead. The user will not be informed about this case.

22.28 <util/delay_basic.h>: Basic busy-wait delay loops
22.28.1 Detailed Description

#include <util/delay_basic.h>

The functions in this header file implement simple delay loops that perform a busy-
waiting. They are typically used to facilitate short delays in the program execution.
They are implemented as count-down loops with a well-known CPU cycle count per

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.29 <util/parity.h >: Parity bit generation 275

loop iteration. As such, no other processing can occur simultaneously. It should be
kept in mind that the functions described here do not disable interrupts.

In general, for long delays, the use of hardware timers is much preferrable, as they
free the CPU, and allow for concurrent processing of other events while the timer is
running. However, in particular for very short delays, the overhead of setting up a
hardware timer is too much compared to the overall delay time.

Two inline functions are provided for the actual delay algorithms.

Functions

e void _delay loop_Xuint8_t_count)
e void delay loop_ Zuintl6_t count)

22.28.2 Function Documentation

22.28.2.1 void _delay loop_1 (uint8_t coun)

Delay loop using an 8-bit counter count , so up to 256 iterations are possible. (The
value 256 would have to be passed as 0.) The loop executes three CPU cycles per
iteration, not including the overhead the compiler needs to setup the counter register.

Thus, at a CPU speed of 1 MHz, delays of up to 768 microseconds can be achieved.

22.28.2.2 void _delay loop_2 (uintl6_t coun)

Delay loop using a 16-bit counter count , so up to 65536 iterations are possible.
(The value 65536 would have to be passed as 0.) The loop executes four CPU cycles
per iteration, not including the overhead the compiler requires to setup the counter
register pair.

Thus, at a CPU speed of 1 MHz, delays of up to about 262.1 milliseconds can be
achieved.

22.29 <util/parity.h >: Parity bit generation

22.29.1 Detailed Description

#include <util/parity.h>

This header file contains optimized assembler code to calculate the parity bit for a byte.

Defines

« #defineparity_even_biwal)

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.30 <util/setbaud.h>: Helper macros for baud rate calculations 276

22.29.2 Define Documentation

22.29.2.1 #define parity_even_bit(val)

Value:
(__extension__({ \
unsigned char _ t; \
_asm__ (\
"mov __tmp_reg_ ,%0" "\n\t" \
"swap %0" "\n\t" \
"eor %0, _tmp_reg__ " "\n\t" \
"mov _ tmp_reg_ ,%0" "\n\t" \
"Isr %0" "\n\t" \
"Isr %0" "\n\t" \
"eor %0,__tmp_reg__ " \
DtErt () \
: "0" ((unsigned char)(val)) \
2 "ro" \
)i \
((Ct+1)>> 1) &1) \
N)
Returns:

1if val has an odd number of bits set.

22.30 <util/setbaud.h>: Helper macros for baud rate calculations

22.30.1 Detailed Description

#define F_CPU 11059200
#define BAUD 38400
#include <util/setbaud.h>

This header file requires that on entry values are already defined for F_CPU and BAUD.
In addition, the macro BAUD_TOL will define the baud rate tolerance (in percent) that
is acceptable during the calculations. The value of BAUD_TOL will default to 2 %.

This header file defines macros suitable to setup the UART baud rate prescaler registers
of an AVR. All calculations are done using the C preprocessor. Including this header
file causes no other side effects so it is possible to include this file more than once
(supposedly, with different values for the BAUD parameter), possibly even within the
same function.

Assuming that the requested BAUD is valid for the given F_CPU then the macro
UBRR_VALUE is set to the required prescaler value. Two additional macros are pro-
vided for the low and high bytes of the prescaler, respectively: UBRRL_VALUE is set
to the lower byte of the UBRR_VALUE and UBRRH_VALUE is set to the upper byte.
An additional macro USE_2X will be defined. Its value is set to 1 if the desired BAUD

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.30 <util/setbaud.h>: Helper macros for baud rate calculations 277

rate within the given tolerance could only be achieved by setting the U2X bit in the
UART configuration. It will be defined to 0 if U2X is not needed.

Example usage:

#include <avr/io.h>
#define F_CPU 4000000

static void
uart_9600(void)

{

#define BAUD 9600
#include <util/setbaud.h>
UBRRH = UBRRH_VALUE;
UBRRL = UBRRL_VALUE;
#if USE_2X

UCSRA |= (1 << U2X);
#else

UCSRA &= ~(1 << U2X);
#endif

}

static void
uart_38400(void)

#undef BAUD // avoid compiler warning
#define BAUD 38400

#include <util/setbaud.h>

UBRRH = UBRRH_VALUE;

UBRRL = UBRRL_VALUE;

#if USE_2X

UCSRA |= (1 << U2X);
#else

UCSRA &= ~(1 << U2X);
#endif

}

In this example, two functions are defined to setup the UART to run at 9600 Bd, and
38400 Bd, respectively. Using a CPU clock of 4 MHz, 9600 Bd can be achieved with
an acceptable tolerance without setting U2X (prescaler 25), while 38400 Bd require
U2X to be set (prescaler 12).

Defines

 #defineBAUD_TOL 2
#definetUBRR_VALUE
#definetUBRRL_VALUE
#definetUBRRH_VALUE
#defineUSE_2X0

L]

L]

L]

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.31 <util/twi.h >: TWI bit mask definitions 278

22.30.2 Define Documentation

22.30.2.1 #define BAUD_TOL 2
Input and output macro for util/setbaud.b-

Define the acceptable baud rate tolerance in percent. If not set on entry, it will be set to
its default value of 2.

22.30.2.2 #define UBRR_VALUE
Output macro from<util/setbaud.b

Contains the calculated baud rate prescaler value for the UBRR register.

22.30.2.3 #define UBRRH_VALUE
Output macro from<util/setbaud.b

Contains the upper byte of the calculated prescaler value (UBRR_VALUE).

22.30.2.4 #define UBRRL_VALUE
Output macro from<util/setbaud.b

Contains the lower byte of the calculated prescaler value (UBRR_VALUE).

22.30.2.5 #define USE_2X 0
Output bacro fromcutil/setbaud. b

Contains the value 1 if the desired baud rate tolerance could only be achieved by setting
the U2X bit in the UART configuration. Contains 0 otherwise.

22.31 <util/twi.h >: TWI bit mask definitions

22.31.1 Detailed Description

#include <util/twi.h>

This header file contains bit mask definitions for use with the AVR TWI interface.

TWSR values

Mnemonics:

TW_MT_xxx - master transmitter

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.31 <util/twi.h >: TWI bit mask definitions

279

TW_MR_xxx - master receiver
TW_ST_xxx - slave transmitter

TW_SR_xxx - slave receiver

e #defineTW_STARTO0x08
 #defineTW_REP_STARTOx10

e #defineTW_MT_SLA ACK 0x18
 #defineTW_MT_SLA_NACK 0x20
o #defineTW_MT_DATA_ACK 0x28

« #defineTW_MT_DATA_NACK 0x30

. #defineTW_MT_ARB_LOSTOx38
. #defineTW_MR_ARB_LOSTOx38
. #defineTW_MR_SLA_ACK 0x40

« #defineTW_MR_SLA_NACK 0x48
« #defineTW_MR_DATA_ACK 0x50

. #defineTW_MR_DATA_NACK 0x58

« #defineTW_ST_SLA_ACKOXA8

. #defineTW_ST_ARB_LOST_SLA_ACKOXBO

* #defineTW_ST_DATA_ACKO0xB8

* #defineTW_ST_DATA_NACK 0xCO
* #defineTW_ST_LAST_DATAOxCS8
 #defineTW_SR_SLA_ACKO0x60

« #defineTW_SR_ARB_LOST_SLA_ACKOx68

o #defineTW_SR_GCALL_ACKO0x70

« #defineTW_SR_ARB_LOST_GCALL_ACKOX78

 #defineTW_SR_DATA_ACK0x80
 #defineTW_SR_DATA_NACKO0x88

« #defineTW_SR_GCALL_DATA_ACKO0x90
« #defineTW_SR_GCALL_DATA NACKO0x98

o #defineTW_SR_STORXAO

e #defineTW_NO_INFOOxF8

e #defineTW_BUS_ERROROx00
o #defineTW_STATUS_MASK

o #defineTW_STATUS(TWSR & TW_STATUS_MASK)

R/~W bit in SLA+R/W address field.

* #defineTW_READ 1
* #defineTW_WRITEO

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.31 <util/twi.h >: TWI bit mask definitions 280

22.31.2 Define Documentation

22.31.2.1 #define TW_BUS_ERROR 0x00

illegal start or stop condition

22.31.2.2 #define TW_MR_ARB_LOST 0x38
arbitration lost in SLA+R or NACK

22.31.2.3 #define TW_MR_DATA_ACK 0x50

data received, ACK returned

22.31.2.4 #define TW_MR_DATA_NACK 0x58

data received, NACK returned

22.31.2.5 #define TW_MR_SLA ACK 0x40
SLA+R transmitted, ACK received

22.31.2.6 #define TW_MR_SLA NACK 0x48
SLA+R transmitted, NACK received

22.31.2.7 #define TW_MT_ARB_LOST 0x38

arbitration lost in SLA+W or data

22.31.2.8 #define TW_MT_DATA_ACK 0x28

data transmitted, ACK received

22.31.2.9 #define TW_MT_DATA_NACK 0x30

data transmitted, NACK received

22.31.2.10 #define TW_MT_SLA_ACK 0x18
SLA+W transmitted, ACK received

22.31.2.11 #define TW_MT_SLA_NACK 0x20
SLA+W transmitted, NACK received

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.31 <util/twi.h >: TWI bit mask definitions 281

22.31.2.12 #define TW_NO_INFO OxF8

no state information available

22.31.2.13 #define TW_READ 1
SLA+R address

22.31.2.14 #define TW_REP_START 0x10

repeated start condition transmitted

22.31.2.15 #define TW_SR_ARB_LOST_GCALL_ACK 0x78

arbitration lost in SLA+RW, general call received, ACK returned

22.31.2.16 #define TW_SR_ARB _LOST_SLA ACK 0x68
arbitration lost in SLA+RW, SLA+W received, ACK returned

22.31.2.17 #define TW_SR_DATA_ACK 0x80

data received, ACK returned

22.31.2.18 #define TW_SR_DATA_NACK 0x88

data received, NACK returned

22.31.2.19 #define TW_SR_GCALL_ACK 0x70

general call received, ACK returned

22.31.2.20 #define TW_SR_GCALL_DATA_ACK 0x90

general call data received, ACK returned

22.31.2.21 #define TW_SR_GCALL_DATA_NACK 0x98

general call data received, NACK returned

22.31.2.22 #define TW_SR_SLA ACK 0x60
SLA+W received, ACK returned

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.31 <util/twi.h >: TWI bit mask definitions 282

22.31.2.23 #define TW_SR_STOP 0xA0

stop or repeated start condition received while selected

22.31.2.24 #define TW_ST_ARB_LOST_SLA ACK 0xB0
arbitration lost in SLA+RW, SLA+R received, ACK returned

22.31.2.25 #define TW_ST_DATA_ACK 0xB8

data transmitted, ACK received

22.31.2.26 #define TW_ST_DATA_NACK 0xCO

data transmitted, NACK received

22.31.2.27 #define TW_ST_LAST_DATA 0xC8

last data byte transmitted, ACK received

22.31.2.28 #define TW_ST_SLA ACK 0xA8
SLA+R received, ACK returned

22.31.2.29 #define TW_START 0x08

start condition transmitted

22.31.2.30 #define TW_STATUS (TWSR & TW_STATUS_MASK)
TWSR, masked by TW_STATUS_MASK

22.31.2.31 #define TW_STATUS_MASK
Value:

(_BV(TWST)|_BV(TWSB)|_BV(TWS5)|_BV(TWS4)|\
_BV(TWS3))

The lower 3 bits of TWSR are reserved on the ATmegal63. The 2 LSB carry the
prescaler bits on the newer ATmegas.

22.31.2.32 #define TW_WRITE O
SLA+W address

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.32 <compat/deprecated.h-: Deprecated items 283

22.32 <compat/deprecated.h-: Deprecated items
22.32.1 Detailed Description

This header file contains several items that used to be available in previous versions of
this library, but have eventually been deprecated over time.

#include <compat/deprected.h>

These items are supplied within that header file for backward compatibility reasons
only, so old source code that has been written for previous library versions could easily
be maintained until its end-of-life. Use of any of these items in new code is strongly

discouraged.

Allowing specific system-wide interrupts

In addition to globally enabling interrupts, each device’s particular interrupt needs to

be enabled separately if interrupts for this device are desired. While some devices
maintain their interrupt enable bit inside the device’s register set, external and timer
interrupts have system-wide configuration registers.

Example:

/I Enable timer 1 overflow interrupts.
timer_enable_int(_BV(TOIEL));

/I Do some work...

/I Disable all timer interrupts.
timer_enable_int(0);

Note:

Be careful when you use these functions. If you already have a different interrupt
enabled, you could inadvertantly disable it by enabling another intterupt.

 static __inline__ voidimer_enable_infunsigned char ints)
#defineenable_external_ifmask) (__EICR = mask)
#defineNTERRUPT(signame)

#define_ INTR_ATTRS used

Obsolete IO macros

Back in a time when AVR-GCC and avr-libc could not handle 10 port access in the di-
rect assignment form as they are handled now, all 10 port access had to be done through

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.32 <compat/deprecated.h-: Deprecated items 284

specific macros that eventually resulted in inline assembly instructions performing the
desired action.

These macros became obsolete, as reading and writing 1O ports can be done by simply
using the 10 port name in an expression, and all bit manipulation (including those on
10 ports) can be done using generic C bit manipulation operators.

The macros in this group simulate the historical behaviour. While they are supposed to
be applied to 10 ports, the emulation actually uses standard C methods, so they could
be applied to arbitrary memory locations as well.

« #defineinp(port) (port)

#defineoutp(val, port) (port) = (val)
#defineinb(port) (port)

#defineouth(port, val) (port) = (val)
#definesbi(port, bit) (port)|= (1 << (bit))
#definecbi(port, bit) (port) &=~(1 << (hit))

22.32.2 Define Documentation

22.32.2.1 #define cbi(port, bit) (port) &=~(1 << (bit))

Deprecated

Clearbit in 1O portport .

22.32.2.2 #define enable_external_int(mask) (__EICR = mask)

Deprecated

This macro gives access to tMSKregister (orEIMSK register if using an AVR
Mega device oGICR register for others). Although this macro is essentially the same
as assigning to the register, it does adapt slightly to the type of device being used. This
macro is unavailable if none of the registers listed above are defined.

22.32.2.3 #define inb(port) (port)

Deprecated

Read a value from an 10 paport .

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.32 <compat/deprecated.h-: Deprecated items 285

22.32.2.4 #define inp(port) (port)

Deprecated

Read a value from an 10 pgobrt .
22.32.2.5 #define INTERRUPT(sighame)
Value:

void signame (void) __ attribute__ ((interrupt,_ INTR_ATTRS)); \
void signame (void)

Deprecated

Introduces an interrupt handler function that runs with global interrupts initially en-
abled. This allows interrupt handlers to be interrupted.

As this macro has been used by too many unsuspecting people in the past, it has been
deprecated, and will be removed in a future version of the library. Users who want to
legitimately re-enable interrupts in their interrupt handlers as quickly as possible are
encouraged to explicitly declare their handlers as descabege

22.32.2.6 #define outb(port, val) (port) = (val)

Deprecated

Write val to 1O portport .

22.32.2.7 #define outp(val, port) (port) = (val)

Deprecated

Write val to IO portport .

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.33 <compat/ina90.h>: Compatibility with IAR EWB 3.x 286

22.32.2.8 #define sbi(port, bit) (port)= (1 << (bit))

Deprecated

Setbit in 10 portport .

22.32.3 Function Documentation

22.32.3.1 static __inline__ void timer_enable_int (unsigned charints)
[static]

Deprecated

This function modifies théimsk register. The value you pass viis is device
specific.

22.33 <compat/ina90.h>: Compatibility with IAR EWB 3.x

#include <compat/ina90.h>

This is an attempt to provide some compatibility with header files that come with IAR
C, to make porting applications between different compilers easier. No 100% compat-
ibility though.

Note:

For actual documentation, please see the IAR manual.

22.34 Demo projects
22.34.1 Detailed Description

Various small demo projects are provided to illustrate several aspects of using the open-
source utilities for the AVR controller series. It should be kept in mind that these de-
mos serve mainly educational purposes, and are normally not directly suitable for use
in any production environment. Usually, they have been kept as simple as sufficient to
demonstrate one particular feature.

The simple projectis somewhat like the "Hello world!" application for a microcon-
troller, about the most simple project that can be done. It is explained in good detail,

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.34 Demo projects 287

to allow the reader to understand the basic concepts behind using the tools on an AVR
microcontroller.

The more sophisticated demo projdatilds on top of that simple project, and adds
some controls to it. It touches a number of avr-libc’s basic concepts on its way.

A comprehensive example on using the standard |0 facilitie=hds to explain that
complex topic, using a practical microcontroller peripheral setup with one RS-232 con-
nection, and an HD44780-compatible industry-standard LCD display.

The Example using the two-wire interface (TW#)oject explains the use of the two-
wire hardware interface (also known as "12C") that is present on many AVR controllers.

Finally, the Combining C and assembly source figsmo shows how C and assem-

bly language source files can collaborate within one project. While the overall project

is managed by a C program part for easy maintenance, time-critical parts are written
directly in manually optimized assembly language for shortest execution times possi-
ble. Naturally, this kind of project is very closely tied to the hardware design, thus it is
custom-tailored to a particular controller type and peripheral setup. As an alternative to
the assembly-language solution, this project also offers a C-only implementation (de-
ploying the exact same peripheral setup) based on a more sophisticated (and thus more
expensive) but pin-compatible controller.

While the simple demo is meant to run on about any AVR setup possible where a
LED could be connected to the OCR1[A] output, thegeandstdiodemos are mainly
targeted to the Atmel STK500 starter kit, and thé/| example requires a controller
where some 24Cxx two-wire EEPPROM can be connected to. For the STK500 demos,
the default CPU (either an AT90S8515 or an ATmega8515) should be removed from
its socket, and the ATmegal6 that ships with the kit should be inserted into socket
SCKT3100A3. The ATmegalé6 offers an on-board ADC that is used itatgedemo,

and all AVRs with an ADC feature a different pinout than the industry-standard com-
patible devices.

In order to fully utilize thelargedemo, a female 10-pin header with cable, connecting
to a 10 kOhm potentiometer will be useful.

For thestdiodemo, an industry-standard HD44780-compatible LCD display of at least
16x1 characters will be needed. Among other things,Lthi®4Linux project page
describes many things around these displays, including common pinouts.

Modules

¢ Combining C and assembly source files

« A simple project

« A more sophisticated project

¢ Using the standard IO facilities

* Example using the two-wire interface (TWI)

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

http://ssl.bulix.org/projects/lcd4linux/

22.35 Combining C and assembly source files 288

22.35 Combining C and assembly source files

For time- or space-critical applications, it can often be desirable to combine C code
(for easy maintenance) and assembly code (for maximal speed or minimal code size)
together. This demo provides an example of how to do that.

The objective of the demo is to decode radio-controlled model PWM signals, and con-
trol an output PWM based on the current input signal’'s value. The incoming PWM
pulses follow a standard encoding scheme where a pulse width of 920 microseconds
denotes one end of the scale (represented as 0 % pulse width on output), and 2120
microseconds mark the other end (100 % output PWM). Normally, multiple channels
would be encoded that way in subsequent pulses, followed by a larger gap, so the en-
tire frame will repeat each 14 through 20 ms, but this is ignored for the purpose of the
demao, so only a single input PWM channel is assumed.

The basic challenge is to use the cheapest controller available for the task, an ATtiny13
that has only a single timer channel. As this timer channel is required to run the out-

going PWM signal generation, the incoming PWM decoding had to be adjusted to the

constraints set by the outgoing PWM.

As PWM generation toggles the counting direction of timer 0 between up and down
after each 256 timer cycles, the current time cannot be deduced by reading TCNTO
only, but the current counting direction of the timer needs to be considered as well.
This requires servicing interrupts whenever the timer i@ (255) andBOTTOM(0)

to learn about each change of the counting direction. For PWM generation, it is usually
desired to run it at the highest possible speed so filtering the PWM frequency from the
modulated output signal is made easy. Thus, the PWM timer runs at full CPU speed.
This causes the overflow and compare match interrupts to be triggered each 256 CPU
clocks, so they must run with the minimal number of processor cycles possible in order
to not impose a too high CPU load by these interrupt service routines. This is the main
reason to implement the entire interrupt handling in fine-tuned assembly code rather
than in C.

In order to verify parts of the algorithm, and the underlying hardware, the demo has
been set up in a way so the pin-compatible but more expensive ATtiny45 (or its siblings
ATtiny25 and ATtiny85) could be used as well. In that case, no separate assembly code
is required, as two timer channels are avaible.

22.35.1 Hardware setup
The incoming PWM pulse train is fed into PB4. It will generate a pin change interrupt
there on eache edge of the incoming signal.

The outgoing PWM is generated through OCOB of timer channel 0 (PB1). For demon-
stration purposes, a LED should be connected to that pin (like, one of the LEDs of an
STK500).

The controllers run on their internal calibrated RC oscillators, 1.2 MHz on the AT-

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.35 Combining C and assembly source files 289

tiny13, and 1.0 MHz on the ATtiny45.

22.35.2 A code walkthrough

22.35.2.1 asmdemo.c After the usual include files, two variables are defined. The
first one,pwm_incoming is used to communicate the most recent pulse width de-
tected by the incoming PWM decoder up to the main loop.

The second variable actually only constitutes of a single ibithits.pwm_-
received . This bit will be set whenever the incoming PWM decoder has updated
pwm_incoming .

Both variables are markedblatile to ensure their readers will always pick up an up-
dated value, as both variables will be set by interrupt service routines.

The functionioinit() initializes the microcontroller peripheral devices. In partic-
ular, it starts timer 0 to generate the outgoing PWM signal on OCOB. Setting OCROA
to 255 (which is theTOP value of timer 0) is used to generate a timer O overflow A
interrupt on the ATtiny13. This interrupt is used to inform the incoming PWM decoder
that the counting direction of channel 0 is just changing from up to down. Likewise, an
overflow interrupt will be generated whenever the countdown reaBRadrOM(value

0), where the counter will again alter its counting direction to upwards. This informa-
tion is needed in order to know whether the current counter valteCoTOis to be
evaluated from bottom or top.

Further,ioinit() activates the pin-change interrdpCINTO on any edge of PB4.
Finally, PB1 (OCOB) will be activated as an output pin, and global interrupts are being
enabled.

In the ATtiny45 setup, the C code contains an ISRR@INTO. At each pin-change
interrupt, it will first be analyzed whether the interrupt was caused by a rising or a
falling edge. In case of the rising edge, timer 1 will be started with a prescaler of 16
after clearing the current timer value. Then, at the falling edge, the current timer value
will be recorded (and timer 1 stopped), the pin-change interrupt will be suspended, and
the upper layer will be notified that the incoming PWM measurement data is available.

Functionmain() first initializes the hardware by calliriginit() , and then waits
until some incoming PWM value is available. If it is, the output PWM will be adjusted
by computing the relative value of the incoming PWM. Finally, the pin-change interrupt
is re-enabled, and the CPU is put to sleep.

22.35.2.2 project.h In order for the interrupt service routines to be as fast as pos-
sible, some of the CPU registers are set aside completely for use by these routines, so
the compiler would not use them for C code. This is arranged fprafect.h

The file is divided into one section that will be used by the assembly source code, and
another one to be used by C code. The assembly part is distinguished by the prepro-
cessing macro ASSEMBLER__(which will be automatically set by the compiler

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.35 Combining C and assembly source files 290

front-end when preprocessing an assembly-language file), and it contains just macros
that give symbolic names to a number of CPU registers. The preprocessor will then
replace the symbolic names by their right-hand side definitions before calling the as-
sembler.

In C code, the compiler needs to see variable declarations for these objects. This is
done by using declarations that bind a variable permanently to a CPU register (see
How to permanently bind a variable to a regisjerEven in case the C code never

has a need to access these variables, declaring the register binding that way causes the
compiler to not use these registers in C code at all.

Theflags variable needs to be in the range of r16 through r31 as it is the target of a
load immediatéor SER instruction that is not applicable to the entire register file.

22.35.2.3 isrs.S This file is a preprocessed assembly source file. The C preproces-
sor will be run by the compiler front-end first, resolving #lhclude , #define
etc. directives. The resulting program text will then be passed on to the assembler.

As the C preprocessor strips all C-style comments, preprocessed assembly source files
can have both, C-styld ¢ ... «/, Il ...) aswell as assembly-style (..)
comments.

At the top, the IO register definition filavr/io.h and the project declaration file
project.h areincluded. The remainder of the file is conditionally assembled only if
the target MCU type is an ATtiny13, so it will be completely ignored for the ATtiny45
option.

Next are the two interrupt service routines for timer O compare A match (timer O hits
TOP, as OCROA is set to 255) and timer O overflow (timer O BTTOM. As dis-
cussed above, these are kept as short as possible. They onIgRE&as the flags

will be modified by thdNC instruction), increment theounter_hi variable which
forms the high part of the current time counter (the low part is formed by querying
TCNTOdirectly), and clear or set the variakflags , respectively, in order to note

the current counting direction. THRETI instruction terminates these interrupt service
routines. Total cycle count is 8 CPU cycles, so together with the 4 CPU cycles needed
for interrupt setup, and the 2 cycles for the RIMP from the interrupt vector to the han-
dler, these routines will require 14 out of each 256 CPU cycles, or about 5 % of the
overall CPU time.

The pin-change interru@CINTO will be handled in the final part of this file. The
basic algorithm is to quickly evaluate the current system time by fetching the current
timer value ofTCNTQ and combining it with the overflow part icounter_hi . If

the counter is currently counting down rather than up, the value fetchedTi@XTO0

must be negated. Finally, if this pin-change interrupt was triggered by a rising edge,
the time computed will be recorded as the start time only. Then, at the falling edge,
this start time will be subracted from the current time to compute the actual pulse width
seen (left inppwm_incoming), and the upper layers are informed of the new value by
setting bit O in thentbits flags. At the same time, this pin-change interrupt will be

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.36 A simple project 291

disabled so no new measurement can be performed until the upper layer had a chance
to process the current value.

22.35.3 The source code

The source code is installed under
$prefix/share/doc/avr-libc/examples/asmdemo/ ,

where$prefix is a configuration option. For Unix systems, it is usually set to either
Jusr or/usr/local

22.36 A simple project

At this point, you should have the GNU tools configured, built, and installed on your
system. In this chapter, we present a simple example of using the GNU tools in an AVR
project. After reading this chapter, you should have a better feel as to how the tools are
used and how Makefile can be configured.

22.36.1 The Project

This project will use the pulse-width modulaté\W/yto ramp an LED on and off every
two seconds. An AT90S2313 processor will be used as the controller. The circuit for
this demonstration is shown in tlsehematic diagramif you have a development Kkit,
you should be able to use it, rather than build the circuit, for this project.

Note:

Meanwhile, the AT90S2313 became obsolete. Either use its successor, the (pin-
compatible) ATtiny2313 for the project, or perhaps the ATmega8 or one of its
successors (ATmega48/88/168) which have become quite popular since the origi-
nal demo project had been established. For all these more modern devices, it is no
longer necessary to use an external crystal for clocking as they ship with the inter-
nal 1 MHz oscillator enabled, so C1, C2, and Q1 can be omitted. Normally, for
this experiment, the external circuitry on /RESET (R1, C3) can be omitted as well,
leaving only the AVR, the LED, the bypass capacitor C4, and perhaps R2. For the
ATmega8/48/88/168, use PB1 (pin 15 at the DIP-28 package) to connect the LED
to. Additionally, this demo has been ported to many different other AVRs. The lo-
cation of the respective OC pin varies between different AVRs, and it is mandated
by the AVR hardware.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.36 A simple project 292

Il
R | (SCK) PB7
RESET (M so) PB6
(MOSI) PBS

XTAL2 PB4
(0cl) PB3

XTALL B>
Voo (Al NL) PBL
10| g (Al N0) PBO

20K 3 ==
872 . LED5MM
R il

J

See note [8] &

(1 CP) PDB

e (T1) PD5

(T0) PD4

(1 NT1) PD3

(1 NTO) PD2

(TXD) PDL

(RXD) PDO
AT90S2313P

% . lulfi §
gl ‘0 uf
BLq
m 4Qihz

MEPRERE BREREREE

Figure 5: Schematic of circuit for demo project

The source code is given otemo.c For the sake of this example, create a file called
demo.c containing this source code. Some of the more important parts of the code
are:

Note [1]:

As the AVR microcontroller series has been developed during the past years,
new features have been added over time. Even though the basic concepts of
the timer/counterl are still the same as they used to be back in early 2001 when
this simple demo was written initially, the names of registers and bits have been
changed slightly to reflect the new features. Also, the port and pin mapping of
the output compare match 1A (or 1 for older devices) pin which is used to control
the LED varies between different AVRs. The ficompat.h tries to abstract
between all this differences using some preproce#gdef statements, so the
actual program itself can operate on a common set of symbolic names. The macros
defined by that file are:

¢ OCRthe name of the OCR register used to control the PWM (usually either
OCR1 or OCR1A)

« DDROGhe name of the DDR (data direction register) for the OC output

¢ OC1the pin number of the OC1[A] output within its port

* TIMER1_TOPthe TOP value of the timer used for the PWM (1023 for 10-bit
PWMs, 255 for devices that can only handle an 8-bit PWM)

« TIMER1_PWM_INIT the initialization bits to be set into control register 1A in
order to setup 10-bit (or 8-bit) phase and frequency correct PWM mode

 TIMER1_CLOCKSOURCte clock bits to set in the respective control regis-
ter to start the PWM timer; usually the timer runs at full CPU clock for 10-bit
PWMs, while it runs on a prescaled clock for 8-bit PWMs

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.36 A simple project 293

Note [2]:

ISR() is a macro that marks the function as an interrupt routine. In this case, the
function will get called when timer 1 overflows. Setting up interrupts is explained
in greater detail incavr/interrupt.h>: Interrupts

Note [3]:

The PWNis being used in 10-bit mode, so we need a 16-bit variable to remember
the current value.

Note [4]:

This section determines the new value of R&M

Note [5]:

Here's where the newly computed value is loaded intoRNéMegister. Since

we are in an interrupt routine, it is safe to use a 16-bit assignment to the register.
Outside of an interrupt, the assignment should only be performed with interrupts

disabled if there’s a chance that an interrupt routine could also access this register
(or another register that us€EMB, see the appropriateAQ entry.

Note [6]:

This routine gets called after a reset. It initializes A& Mind enables interrupts.

Note [7]:

The main loop of the program does nothing — all the work is done by the interrupt
routine! Thesleep_mode() puts the processor on sleep until the next interrupt,
to conserve power. Of course, that probably won't be noticable as we are still
driving a LED, it is merely mentioned here to demonstrate the basic principle.

Note [8]:

Early AVR devices saturate their outputs at rather low currents when sourcing cur-
rent, so the LED can be connected directly, the resulting current through the LED
will be about 15 mA. For modern parts (at least for the ATmega 128), however

Atmel has drastically increased the 10 source capability, so when operating at 5
V Vce, R2 is needed. Its value should be about 150 Ohms. When operating the
circuit at 3V, it can still be omitted though.

22.36.2 The Source Code

/*

*

* "THE BEER-WARE LICENSE" (Revision 42):

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.36 A simple project 294

<joerg@FreeBSD.ORG> wrote this file. As long as you retain this notice you
can do whatever you want with this stuff. If we meet some day, and you think
this stuff is worth it, you can buy me a beer in return. Joerg Wunsch

Simple AVR demonstration. Controls a LED that can be directly
connected from OC1/OC1A to GND. The brightness of the LED is
controlled with the PWM. After each period of the PWM, the PWM
value is either incremented or decremented, that's all.

L I S R

$ld: demo.c,v 1.9 2006/01/05 21:30:10 joerg_wunsch Exp $

<

#include <inttypes.h>
#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/sleep.h>

#include "iocompat.h" /* Note [1] */

enum { UP, DOWN }

ISR (TIMER1_OVF_vect) /* Note [2] */
{ static uintl6_t pwm; /* Note [3] */
static uint8_t direction;
switch (direction) /* Note [4] */
{ case UP:

if (++pwm == TIMER1_TOP)
direction = DOWN;

break;
case DOWN:
if (--pwm == 0)
direction = UP;
break;
}
OCR = pwm; /* Note [5] */
}
void
ioinit (void) /* Note [6] */

/* Timer 1 is 10-bit PWM (8-bit PWM on some ATtinys). */
TCCR1A = TIMER1_PWM_INIT;
/*

* Start timer 1.

*

* NB: TCCR1A and TCCR1B could actually be the same register, so
* take care to not clobber it.

*

/
TCCR1B |= TIMER1_CLOCKSOURCE;
/*

* Run any device-dependent timer 1 setup hook if present.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.36 A simple project 295

*/
#if defined(TIMER1_SETUP_HOOK)
TIMER1_SETUP_HOOK();
#endif

/* Set PWM value to 0. */
OCR = 0;

/* Enable OC1 as output. */
DDROC = _BV (OC1);

/* Enable timer 1 overflow interrupt. */
TIMSK = _BV (TOIE1);
sei ();

}

int
main (void)

ioinit ();
/* loop forever, the interrupts are doing the rest */

for () /* Note [7] */
sleep_mode();

return (0);

22.36.3 Compiling and Linking

This first thing that needs to be done is compile the source. When compiling, the
compiler needs to know the processor type so-thencu option is specified. The

-Os option will tell the compiler to optimize the code for efficient space usage (at the
possible expense of code execution speed).-ghes used to embed debug info. The
debug info is useful for disassemblies and doesn’t end up in the .hex files, so | usually
specify it. Finally, the-c tells the compiler to compile and stop — don’t link. This
demo is small enough that we could compile and link in one step. However, real-world
projects will have several modules and will typically need to break up the building of
the project into several compiles and one link.

$ avr-gcc -g -Os -mmcu=atmega8 -c demo.c

The compilation will create alemo.o file. Next we link it into a binary called
demo.elf

$ avr-gcc -g -mmcu=atmega8 -o demo.elf demo.o

It is important to specify the MCU type when linking. The compiler uses-theacu
option to choose start-up files and run-time libraries that get linked together. If this

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.36 A simple project 296

option isn't specified, the compiler defaults to the 8515 processor environment, which
is most certainly what you didn’t want.

22.36.4 Examining the Object File

Now we have a binary file. Can we do anything useful with it (besides put it into the
processor?) The GNU Binutils suite is made up of many useful tools for manipulating
object files that get generated. One toohis-objdump , which takes information
from the object file and displays it in many useful ways. Typing the command by itself
will cause it to list out its options.

For instance, to get a feel of the application’s size, theoption can be used. The
output of this option shows how much space is used in each of the sections (the .stab
and .stabstr sections hold the debugging information and won’'t make it into the ROM
file).

An even more useful option iS . This option disassembles the binary file and inter-
sperses the source code in the output! This method is much better, in my opinion, than
using the-S with the compiler because this listing includes routines from the libraries
and the vector table contents. Also, all the "fix-ups" have been satisfied. In other words,
the listing generated by this option reflects the actual code that the processor will run.

$ avr-objdump -h -S demo.elf > demo.Ist

Here’s the output as saved in themo.Ist file:

demo.elf: file format elf32-avr
Sections:
ldx Name Size VMA LMA File off Algn
0 .text 00000116 00000000 00000000 00000074 2**1
CONTENTS, ALLOC, LOAD, READONLY, CODE
1 .bss 00000003 00800060 00000116 0000018a 2**0
ALLOC
2 .stab 00000b58 00000000 00000000 0000018c 2*+2
CONTENTS, READONLY, DEBUGGING
3 .stabstr 000007b1 00000000 00000000 00000ce4 2**0

CONTENTS, READONLY, DEBUGGING
Disassembly of section .text:

00000000 <__vectors>:

0: 12 c0 fjmp .+36 ; 0x26 <__ctors_end>

2: 87 c0 rfmp .+270 ; 0x112 <_ bad_interrupt>
4: 86 cO0 rmp .+268 ; 0x112 <__bad_interrupt>
6: 85 c0 rjmp .+266 ; 0x112 <__bad_interrupt>
8: 84 c0 rmp .+264 ; 0x112 <__bad_interrupt>
a: 83 c0 rjmp .+262 ; 0x112 <__ bad_interrupt>
c: 82 c0 rfmp .+260 ; 0x112 <__ bad_interrupt>
e: 81 cO rjmp .+258 ; 0x112 <__ bad_interrupt>
10: 25 c0 rmp .+74 ; Ox5c <__vector_8>

12: 7f cO rmp .+254 ; Ox112 <_ bad_interrupt>

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.36 A simple project

297

14: 7e c0 rjmp .+252 ; 0x112 <__bad_interrupt>

16: 7d c0 rmp .+250 ; Ox112 <__ bad_interrupt>

18: 7c c0 rjmp .+248 ; 0x112 <__ bad_interrupt>

la: 7b c0 rmp .+246 ; Ox112 <__bad_interrupt>

1lc: 7a c0 rmp .+244 ; 0x112 <__bad_interrupt>

le: 79 c0 rmp .+242 ; Ox112 <__bad_interrupt>

20: 78 c0 rjmp .+240 ; 0x112 <__ bad_interrupt>

22: 77 c0 rjmp .+238 ; 0x112 <_ bad_interrupt>

24: 76 c0 rmp .+236 ; Ox112 <__bad_interrupt>
00000026 <__ctors_end>:

26: 11 24 eor rl, rl

28: 1f be out Ox3f, r1 ; 63

2a: cf e5 Idi r28, Ox5F ; 95

2c: d4 e0 Idi r29, 0x04 ; 4

2e: de bf out Ox3e, r29 ; 62

30: cd bf out 0x3d, r28 ; 61
00000032 <__do_copy_data>:

32: 10 e0 Idi r17, Ox00 ; O

34: a0 eb6 Idi r26, 0x60 ; 96

36: b0 e0 Idi r27, 0x00 ; O

38: e6 el Idi r30, Ox16 ; 22

3a: f1 e0 Idi r31, 0x01 ; 1

3c: 02 c0 fjmp .+4 ; Ox42 <.do_copy_data_start>
0000003e <.do_copy_data_loop>:

3e: 05 90 Ipm 10, Z+

40: 0d 92 st X+, r0
00000042 <.do_copy_data_start>:

42: a0 36 cpi r26, 0x60 ; 96

44: bl 07 cpc r27, rli7

46: d9 f7 brne .-10 ; Ox3e <SP H_ >
00000048 <__do_clear_bss>:

48: 10 €0 Idi r17, 0x00 ; O

4a: a0 e6 Idi r26, 0x60 ; 96

4c: b0 e0 Idi r27, 0x00 ; O

4e: 01 c0 rjmp .+2 ; Ox52 <.do_clear_bss_start>
00000050 <.do_clear_bss_loop>:

50: 1d 92 st X+, rl1
00000052 <.do_clear_bss_start>:

52: a3 36 cpi r26, 0x63 ; 99

54: bl 07 cpc r27, r17

56: el f7 brne .-8 ; Ox50 <.do_clear_bss_loop>

58: 4d dO rcall .+154 ; Oxf4 <main>

5a: 59 c0 rmp .+178 ; Ox10e <exit>

0000005c <__vector_8>:

#include "iocompat.h" /* Note [1] */

enum { UP, DOWN };

ISR (TIMER1_OVF vect) /* Note [2] */

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.36 A simple project

208

5c:
5e:
60:
62:
64:

68:
6a:
static uintl6_t pwm; /* Note [3] */
static uint8_t direction;

1f 92
of 92
0f b6
of 92
11 24
2f 93
3f 93
8f 93

push rl

push r0

in r0, Ox3f ; 63
push r0

eor r1, rl
push r18

push r19

push r24

switch (direction) /* Note [4] */
6c: 80 91 60 00

lds r24, 0x0060

70: 88 23 and r24, r24
72: 79 f4 brne .+30 ; Ox92 <__ vector_8+0x36>
{
case UP:

if (++pwm == TIMER1_TOP)
74: 20 91 61 00 Ids r18, 0x0061
78: 30 91 62 00 Ids r19, 0x0062
7c: 2f 5f subi rl8, OxFF ; 255
7e: 3f 4f sbei r19, OxFF ; 255
80: 30 93 62 00 sts 0x0062, r19
84: 20 93 61 00 sts 0x0061, r18
88: 83 €0 Idi r24, 0x03 ; 3
8a: 2f 3f cpi rl8, OxFF ; 255
8c: 38 07 cpc rl9, r24
8e: d9 f4 brne .+54 ; Oxc6 <__vector_8+0x6a>
90: 17 c0 rmp .+46 ; OxcO <__vector_8+0x64>

ISR (TIMER1_OVF vect) /* Note [2] */

{

92:

static uintl6é_t pwm; /* Note [3] */
static uint8_t direction;

S

94:
96:
9a:
9e:

witch (direction) /* Note [4] */

1
; Oxa0 <__vector_8+0x44>

; Oxc6 <__vector_8+0x6a>

81 30 cpi r24, 0x01 ;
29 fo breq .+10
20 91 61 00 Ids r18, 0x0061
30 91 62 00 Ids rl9, 0x0062
13 ¢c0 rmp .+38
if (++pwm == TIMER1_TOP)
direction = DOWN;
break;
case DOWN:
if (--pwm == 0)
20 91 61 00 Ids rl18, 0x0061
30 91 62 00 Ids rl9, 0x0062
21 50 subi r18, 0x01 ; 1
: 30 40 sbci r19, 0x00 ; O
: 30 93 62 00 sts 0x0062, r19
20 93 61 00 sts 0x0061, ri8
21 15 cp r18, r1
31 05 cpc rl9, rl
31 f4 brne .+12

direction = UP;

; Oxc6 <__vector_8+0x6a>

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.36 A simple project 299

ba: 10 92 60 00 sts 0x0060, rl
be: 03 c0 fjmp .+6 ; Oxc6 <__ vector_8+0x6a>

switch (direction) /* Note [4] */
case UP:

if (++pwm == TIMER1_TOP)
direction = DOWN;

cO: 81 e0 Idi r24, 0x01 ; 1
c2: 80 93 60 00 sts 0x0060, r24
if (--pwm == 0)
direction = UP;
break;
}
OCR = pwm; /* Note [5] */
c6: 3b bd out Ox2b, r19 ; 43
c8: 2a hd out Ox2a, rl8 ; 42
ca: 8f 91 pop r24
cc: 3f 91 pop r19
ce: 2f 91 pop ri18
do: of 90 pop r0
d2: of be out Ox3f, r0 ; 63
d4: of 90 pop r0
dé: 1f 90 pop rl
ds8: 18 95 reti

000000da <ioinit>:

void
ioinit (void) /* Note [6] */

/* Timer 1 is 10-bit PWM (8-bit PWM on some ATtinys). */
TCCR1A = TIMER1_PWM_INIT;
da: 83 e8 Idi r24, 0x83 ; 131
dc: 8f bd out Ox2f, r24 ; 47
* Start timer 1.
*
* NB: TCCR1A and TCCR1B could actually be the same register, so
* take care to not clobber it.
*/
TCCR1B |= TIMER1_CLOCKSOURCE;

de: 8e b5 in r24, Ox2e ; 46
e0: 81 60 ori 124, 0x01 ; 1
e2: 8e bhd out Ox2e, r24 ; 46

#if defined(TIMERL_SETUP_HOOK)
TIMER1_SETUP_HOOK();

#endif
/* Set PWM value to 0. */
OCR = 0;
e4: 1b bc out 0x2b, rl ; 43
e6: la bc out Ox2a, rl ; 42

/* Enable OC1 as output. */
DDROC = _BV (OC1);
e8: 82 e0 Idi r24, 0x02 ; 2

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.36 A simple project

300

ea:

87 bb

out 0x17, r24 ; 23

/* Enable timer 1 overflow interrupt. */
TIMSK = _BV (TOIEL);
Idi r24, 0x04 ; 4
out 0x39, r24 ; 57

ec:
ee:

84 €0
89 bf

sei ()
f0: 78 94
f2: 08 95

000000f4 <main>:

}

int

main (void)

{

f4: cf e5
f6: d4 e0
f8: de bf
fa: cd bf

ioinit ();
fc: ee df

sei
ret

Idi r28, Ox5F ; 95
4
out Ox3e, r29 ; 62
out 0x3d, r28 ; 61

Idi r29, 0x04 ;

rcall .-36

; Oxda <ioinit>

/* loop forever, the interrupts are doing the rest */

for (;;) /* Note [7] */
sleep_mode();
fe: 85 b7

100:
102:
104:
106:
108:
10a:
10c:

0000010e <exit>:

80 68
85 bf
88 95
85 b7
8f 77
85 bf
f8 cf

.section .text

.global _U(exit)

in r24, 0x35 ; 53
ori r24, 0x80 ; 128
out 0x35, r24 ; 53

sleep

in r24, 0x35 ; 53
andi r24, Ox7F ; 127
out 0x35, r24 ; 53

ffmp .-16

type _U(exit), "function”

_U(exit):

cli
10e:

XIMP _U(_exit)

110:

8 94

01 c0

cli

rjmp .+2

00000112 <__bad_interrupt>:

112:

00000114 <_exit>:

114:

76 cf

ff cf

rfmp .-276

rmp .-2

; Oxfe <main+0xa>

; 0x114 <_exit>

; OXO <__heap_end>

; 0x114 <_exit>

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.36 A simple project 301

22.36.5 Linker Map Files

avr-objdump is very useful, but sometimes it's necessary to see information about
the link that can only be generated by the linker. A map file contains this information.
A map file is useful for monitoring the sizes of your code and data. It also shows where
modules are loaded and which modules were loaded from libraries. It is yet another
view of your application. To get a map file, | usually addll,-Map,demo.map to

my link command. Relink the application using the following command to generate
demo.map (a portion of which is shown below).

$ avr-gcc -g -mmcu=atmega8 -WI,-Map,demo.map -o demo.elf demo.o

Some points of interest in trdemo.map file are:

.rela.plt
*(.rela.plt)
text 0x0000000000000000 0x116

*(.vectors)

.vectors 0x0000000000000000 0x26 /usr/src/RPM/BUILD/avr-libc-1.6.2/avr/lib/avr4/atmega8/crtm8.o
0x0000000000000000 __vectors
0x0000000000000000 __vector_default

*(.vectors)

(.progmem.gcc)

(.progmem?)
0x0000000000000026 . = ALIGN (0x2)
0x0000000000000026 __trampolines_start = .

*(.trampolines)
trampolines ~ 0x0000000000000026 0x0 linker stubs
(.trampolines)

0x0000000000000026 __trampolines_end = .
*(.jumptables)
(.jumptables)
*(.lowtext)
(.lowtext)
0x0000000000000026 __Ctors_start = .

The .text segment (where program instructions are stored) starts at location 0x0.

*(.fini2)
*(.fini2)
*(.finil)
*(.finil)
*(.fini0)
finio 0x0000000000000114 0x2 /ustr/lib64/avr/lib/gcc/avr/4.2.2/avr4/libgcc.a(_exit.0)
*(.fini0)
0x0000000000000116 _etext = .
.data 0x0000000000800060 0x0 load address 0x0000000000000116
0x0000000000800060 PROVIDE (__data_start, .)
*(.data)
.data 0x0000000000800060 0x0 demo.o

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.36

A simple project

302

.data

.data

.data

.data

.data

(.data)

*(.rodata)
(.rodata)
(.gnu.linkonce.d)

0x0000000000800060
0x0000000000800060
0x0000000000800060
0x0000000000800060
0x0000000000800060

0x0000000000800060
0x0000000000800060
0x0000000000800060
.bss 0x0000000000800060
0x0000000000800060
*(.bss)
.bss 0x0000000000800060
.bss 0x0000000000800063
.bss 0x0000000000800063
.bss 0x0000000000800063
.bss 0x0000000000800063
.bss 0x0000000000800063
(.bss)
*(COMMON)
0x0000000000800063
0x0000000000000116
0x0000000000000116
.noinit 0x0000000000800063
0x0000000000800063
(.noinit)
0x0000000000800063
0x0000000000800063
0x0000000000800063
.eeprom 0x0000000000810000
*(.eeprom®)
0x0000000000810000

The last address in the .text segment is locafinhl4 (denoted by etext
instructions use up 276 bytes of FLASH.

0x0
0x0
0x0
0x0
0x0

0x3

0x3
0x0
0x0
0x0
0x0
0x0

0x0

0x0

{usr/src/RPM/BUILD/avr-libc-1.6.2/avr/lib/avr4/exit.o
Jusr/src/RPM/BUILD/avr-libc-1.6.2/avr/lib/avr4/atmega8/crtm8.0
lusr/lib64/avr/lib/gcc/avr/4.2.2/avr4/libgcc.a(_exit.o)
lust/lib64/avr/lib/gccl/avr/4.2.2/avr4llibgec.a(_copy_data.o)
lusr/lib64/avr/lib/gcc/avr/4.2.2/avr4/libgcc.a(_clear_bss.o)

. = ALIGN (0x2)
_edata = .
PROVIDE (__data_end, .)

load address 0x0000000000000116
PROVIDE (__bss_start, .)

demo.o

lusr/src/RPM/BUILD/avr-libc-1.6.2/avr/lib/avr4/exit.o
lusr/src/RPM/BUILD/avr-libc-1.6.2/avr/lib/avr4/atmega8/crtm8.0
lust/lib64/avr/lib/gccl/avr/4.2.2/avr4/libgec.a(_exit.o)
lusr/lib64/avrllib/gcc/avr/4.2.2/avr4/libgcc.a(_copy_data.o)
lust/lib64/avr/lib/gccl/avr/4.2.2/avr4llibgec.a(_clear_bss.o)

PROVIDE (__bss_end, .)

__data_load_start = LOADADDR (.data)

_ data_load_end = (__data_load_start + SIZEOF (.data))
PROVIDE (__noinit_start, .)

PROVIDE (__noinit_end, .)

—end = .
PROVIDE (__heap_start, .)

__eeprom_end = .

), so the

The .data segment (where initialized static variables are stored) starts at |@bdibn
which is the first address after the register bank on an ATmega8 processor.

The next available address in the .data segment is also lo€dfith, so the application
has no initialized data.

The .bss segment (where uninitialized data is stored) starts at lo€atén

The next available address in the .bss segment is location 0x63, so the application uses
3 bytes of uninitialized data.

The .eeprom segment (where EEPROM variables are stored) starts at location 0x0.

The next available address in the .eeprom segment is also location 0x0, so there aren’t

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.36 A simple project 303

any EEPROM variables.

22.36.6 Generating Intel Hex Files

We have a binary of the application, but how do we get it into the processor? Most (if
not all) programmers will not accept a GNU executable as an input file, so we need to
do a little more processing. The next step is to extract portions of the binary and save
the information into .hex files. The GNU utility that does this is calied-objcopy

The ROM contents can be pulled from our project’s binary and put into the file
demao.hex using the following command:

$ avr-objcopy -j .text -j .data -O ihex demo.elf demo.hex

The resultingdemo.hex file contains:

:1000000012C087C086C085C084C083C082C081C042
:1000100025C07FCO7EC07DC07CCO07BCO7AC079C057
:1000200078C077C076C011241FBECFESD4EODEBF14
:10003000CDBF10EOAOE6BOEOEGE1F1E002C005903F
:100040000D92A036B107D9F710EOAOEGBOEOO01ICOEC
:100050001D92A336B107E1F74DD059C01F920F9200
:100060000FB60F9211242F933F938F9380916000CE
:10007000882379F420916100309162002F5F3F4F17
:10008000309362002093610083E02F3F3807D9F45A
:1000900017C0813029F0209161003091620013C0B7
:1000A0002091610030916200215030403093620015
:1000B000209361002115310531F41092600003C0D6
:1000C00081E0809360003BBD2ABD8F913F912F91CD
:1000D0000F900FBEOF901F90189583E88FBD8EBSBF
:1000E00081608EBD1BBC1ABC82E087BB84EO89BFE7
:1000F00078940895CFE5D4EODEBFCDBFEEDF85B7BD
:10010000806885BF889585B78F7785BFF8CFF894CD
:0601100001C076CFFFCF15

:00000001FF

The-j option indicates that we want the information from the .text and .data segment
extracted. If we specify the EEPROM segment, we can generate a .hex file that can be
used to program the EEPROM:

$ avr-objcopy -j .eeprom --change-section-Ima .eeprom=0 -O ihex demo.elf demo_eeprom.hex

There is nademo_eeprom.hex file written, as that file would be empty.

Starting with version 2.17 of the GNU binutils, ther-objcopy = command that used

to generate the empty EEPROM files now aborts because of the empty input section

.eeprom, so these empty files are not generated. It also signals an error to the Makefile
which will be caught there, and makes it print a message about the empty file not being

generated.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.37 A more sophisticated project 304

22.36.7 Letting Make Build the Project

Rather than type these commands over and over, they can all be placed in a make file.
To build the demo project usingake, save the following in a file calleakefile

Note:
ThisMakefile can only be used as input for the GNU versiomudke.

22.36.8 Reference to the source code

The source code is installed under
$prefix/share/doc/avr-libc/examples/demo/ ,

where$prefix is a configuration option. For Unix systems, it is usually set to either
/usr or/usr/local

22.37 A more sophisticated project

This project extends the basic idea of fimple projecto control a LED with a PWM
output, but adds methods to adjust the LED brightness. It employs a lot of the basic
concepts of avr-libc to achieve that goal.

Understanding this project assumes the simple project has been understood in full, as
well as being acquainted with the basic hardware concepts of an AVR microcontroller.

22.37.1 Hardware setup

The demo is set up in a way so it can be run on the ATmegal6 that ships with the
STK500 development kit. The only external part needed is a potentiometer attached to
the ADC. It is connected to a 10-pin ribbon cable for port A, both ends of the poten-
tiometer to pins 9 (GND) and 10 (VCC), and the wiper to pin 1 (port A0). A bypass
capacitor from pin 1 to pin 9 (like 47 nF) is recommendable.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.37 A more sophisticated project 305

Figure 6: Setup of the STK500

The coloured patch cables are used to provide various interconnections. As there are
only four of them in the STK500, there are two options to connect them for this demo.
The second option for the yellow-green cable is shown in parenthesis in the table.
Alternatively, the "squid" cable from the JTAG ICE kit can be used if available.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.37 A more sophisticated project 306
Port Header Color Function Connect to
DO 1 brown RxD RXD of the

RS-232
header

D1 2 grey TxD TXD of the
RS-232
header

D2 3 black button SWO (pin 1

"down" switches
header)

D3 4 red button "up" SW1 (pin 2
switches
header)

D4 5 green button SW2 (pin 3

"ADC" switches
header)

D5 6 blue LED LEDO (pin 1
LEDs header)

D6 7 (green) clock out LED1 (pin 2
LEDs header)

D7 8 white 1-second LED2 (pin 3

flash LEDs header)

GND 9 unused

VCC 10 unused

T kil

"“'I ;-

Figure 7: Wiring of the STK500

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.37 A more sophisticated project 307

The following picture shows the alternate wiring where LED1 is connected but SW2 is
not:

Figure 8: Wiring option #2 of the STK500

As an alternative, this demo can also be run on the popular ATmega8 controller, or its
successor ATmega88 as well as the ATmega48 and ATmegal68 variants of the latter.
These controllers do not have a port named "A", so their ADC inputs are located on
port C instead, thus the potentiometer needs to be attached to port C. Likewise, the
OCI1A output is not on port D pin 5 but on port B pin 1 (PB1). Thus, the above
cabling scheme needs to be changed so that PB1 connects to the LEDO pin. (PD6
remains unconnected.) When using the STK500, use one of the jumper cables for this
connection. All other port D pins should be connected the same way as described for
the ATmegal6 above.

When not using an STK500 starter kit, attach the LEDs through some resistor to Vcc
(low-active LEDs), and attach pushbuttons from the respective input pins to GND. The
internal pull-up resistors are enabled for the pushbutton pins, so no external resistors
are needed.

Finally, the demo has been ported to the ATtiny2313 as well. As this AVR does not
offer an ADC, everything related to handling the ADC is disabled in the code for that
MCU type. Also, port D of this controller type only features 6 pins, so the 1-second
flash LED had to be moved from PD6 to PD4. (PD4 is used as the ADC control button
on the other MCU types, but that is not needed here.) OC1A is located at PB3 on this
device.

The MCU_TARGETnacro in the Makefile needs to be adjusted appropriately for the
alternative controller types.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.37 A more sophisticated project 308

The flash ROM and RAM consumption of this demo are way below the resources
of even an ATmega48, and still well within the capabilities of an ATtiny2313. The
major advantage of experimenting with the ATmegal6 (in addition that it ships together
with an STK500 anyway) is that it can be debugged online via JTAG. Likewise, the
ATmega48/88/168 and ATtiny2313 devices can be debugged through debugWire, using
the Atmel JTAG ICE mkill or the low-cost AVR Dragon.

Note that in the explanation below, all port/pin names are applicable to the ATmegal6
setup.

22.37.2 Functional overview

PD6 will be toggled with each internal clock tick (approx. 10 ms). PD7 will flash once
per second.

PDO and PD1 are configured as UART 10, and can be used to connect the demo kit to
a PC (9600 Bd, 8N1 frame format). The demo application talks to the serial port, and
it can be controlled from the serial port.

PD2 through PD4 are configured as inputs, and control the application unless control
has been taken over by the serial port. Shorting PD2 to GND will decrease the current
PWM value, shorting PD3 to GND will increase it.

While PD4 is shorted to GND, one ADC conversion for channel 0 (ADC input is on
PAO) will be triggered each internal clock tick, and the resulting value will be used as
the PWM value. So the brightness of the LED follows the analog input value on PCO.
VAREF on the STK500 should be set to the same value as VCC.

When running in serial control mode, the function of the watchdog timer can be demon-
strated by typing an ‘r'. This will make the demo application run in a tight loop without
retriggering the watchdog so after some seconds, the watchdog will reset the MCU.
This situation can be figured out on startup by reading the MCUCSR register.

The current value of the PWM is backed up in an EEPROM cell after about 3 seconds
of idle time after the last change. If that EEPROM cell contains a reasonable (i. e.
non-erased) value at startup, it is taken as the initial value for the PWM. This virtually
preserves the last value across power cycles. By not updating the EEPROM immme-
diately but only after a timeout, EEPROM wear is reduced considerably compared to
immediately writing the value at each change.

22.37.3 A code walkthrough

This section explains the ideas behind individual parts of the code.sdiwee code
has been divided into numbered parts, and the following subsections explain each of
these parts.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.37 A more sophisticated project 309

22.37.3.1 Part 1: Macro definitions A number of preprocessor macros are defined
to improve readability and/or portability of the application.

The first macros describe the 10 pins our LEDs and pushbuttons are connected to. This
provides some kind of mini-HAL (hardware abstraction layer) so should some of the
connections be changed, they don’t need to be changed inside the code but only on
top. Note that the location of the PWM output itself is mandated by the hardware, so it
cannot be easily changed. As the ATmega48/88/168 controllers belong to a more recent
generation of AVRs, a number of register and bit names have been changed there, so
they are mapped back to their ATmega8/16 equivalents to keep the actual program code
portable.

The nameF_CPUis the conventional name to describe the CPU clock frequency of
the controller. This demo project just uses the internal calibrated 1 MHz RC oscillator
that is enabled by default. Note that when using <hail/delay.h > functions,
F_CPUneeds to be defined before including that file.

The remaining macros have their own comments in the source code. The macro
TMR1_SCALEhows how to use the preprocessor and the compiler’s constant expres-
sion computation to calculate the value of timer 1's post-scaler in a way so it only

depends ofr _CPUand the desired software clock frequency. While the formula looks

a bit complicated, using a macro offers the advantage that the application will auto-
matically scale to new target softclock or master CPU frequencies without having to
manually re-calculate hardcoded constants.

22.37.3.2 Part 2: Variable definitions The intflags structure demonstrates a
way to allocate bit variables in memory. Each of the interrupt service routines just sets
one bit within that structure, and the application’s main loop then monitors the bits in
order to act appropriately.

Like all variables that are used to communicate values between an interrupt service
routine and the main application, it is declaradatile.

The variableee_pwmis not a variable in the classical C sense that could be used as an
Ivalue or within an expression to obtain its value. Instead, the

__attribute__ ((section(".eeprom")))

marks it as belonging to tHEEPROM sectionThis section is merely used as a place-
holder so the compiler can arrange for each individual variable’s location in EEPROM.
The compiler will also keep track of initial values assigned, and usually the Makefile
is arranged to extract these initial values into a separate loaddigeflemo_-
eeprom .x in this case) that can be used to initialize the EEPROM.

The actual EEPROM IO must be performed manually.

Similarly, the variablencucsr is kept in the.noinit section in order to prevent it from
being cleared upon application startup.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.37 A more sophisticated project 310

22.37.3.3 Part 3: Interrupt service routines The ISR to handle timer 1's overflow
interrupt arranges for the software clock. While timer 1 runs the PWM, it calls its
overflow handler rather frequently, so th®MR1_SCALEvalue is used as a postscaler
to reduce the internal software clock frequency further. If the software clock triggers,
it sets themr_int bitfield, and defers all further tasks to the main loop.

The ADC ISR just fetches the value from the ADC conversion, disables the ADC

interrupt again, and announces the presence of the new valueadehit bitfield.

The interrupt is kept disabled while not needed, because the ADC will also be triggered
by executing the SLEEP instruction in idle mode (which is the default sleep mode).

Another option would be to turn off the ADC completely here, but that increases the

ADC'’s startup time (not that it would matter much for this application).

22.37.3.4 Part 4: Auxiliary functions The functionhandle_mcucsr() uses

two __attribute__ declarators to achieve specific goals. First, it will instruct the
compiler to place the generated code into .ih&3 section of the output. Thus, it will
become part of the application initialization sequence. This is done in order to fetch
(and clear) the reason of the last hardware reset M@UCSRs early as possible.
There is a short period of time where the next reset could already trigger before the
current reason has been evaluated. This also explains why the variabtsr that
mirrors the register’s value needs to be placed into the .noinit section, because other-
wise the default initialization (which happens after .init3) would blank the value again.

As the initialization code is not called using CALL/RET instructions but rather con-
catenated together, the compiler needs to be instructed to omit the entire function pro-
logue and epilogue. This is performed by thekedattribute. So while syntactically,
handle_mcucsr() is a function to the compiler, the compiler will just emit the in-
structions for it without setting up any stack frame, and not even a RET instruction at
the end.

Functionioinit() centralizes all hardware setup. The very last part of that function
demonstrates the use of the EEPROM varigalepwmto obtain an EEPROM address
that can in turn be applied as an argumergeprom_read_word()

The following functions handle UART character and string output. (UART input

is handled by an ISR.) There are two string output functigetstr() and
printstr_p() . The latter function fetches the string frggnogram memoryBoth
functions translate a newline character into a carriage return/newline sequence, so a
simple\n can be used in the source code.

The functionset_pwm() propagates the new PWM value to the PWM, performing
range checking. When the value has been changed, the new percentage will be an-
nounced on the serial link. The current value is mirrored in the varableso others

can use it in calculations. In order to allow for a simple calculation of a percentage
value without requiring floating-point mathematics, the maximal value of the PWM is
restricted to 1000 rather than 1023, so a simple division by 10 can be used. Due to the
nature of the human eye, the difference in LED brightness between 1000 and 1023 is
not noticable anyway.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.37 A more sophisticated project 311

22.37.3.5 Part5: main() At the start ofmain() , a variablemode is declared to
keep the current mode of operation. An enumeration is used to improve the readability.
By default, the compiler would allocate a variable of typefor an enumeration. The
packedattribute declarator instructs the compiler to use the smallest possible integer
type (which would be an 8-bit type here).

After some initialization actions, the application’s main loop follows. In an embedded
application, this is normally an infinite loop as there is nothing an application could
"exit" into anyway.

At the beginning of the loop, the watchdog timer will be retriggered. If that timer is
not triggered for about 2 seconds, it will issue a hardware reset. Care needs to be taken
that no code path blocks longer than this, or it needs to frequently perform watchdog
resets of its own. An example of such a code path would be the string 10 functions: for
an overly large string to print (about 2000 characters at 9600 Bd), they might block for
too long.

The loop itself then acts on the interrupt indication bitfields as appropriate, and will
eventually put the CPU on sleep at its end to conserve power.

The first interrupt bit that is handled is the (software) timer, at a frequency of approx-
imately 100 Hz. TheCLOCKOUDin will be toggled here, so e. g. an oscilloscope
can be used on that pin to measure the accuracy of our software clock. Then, the LED
flasher for LED2 ("We are alive"-LED) is built. It will flash that LED for about 50

ms, and pause it for another 950 ms. Various actions depending on the operation mode
follow. Finally, the 3-second backup timer is implemented that will write the PWM
value back to EEPROM once it is not changing anymore.

The ADC interrupt will just adjust the PWM value only.

Finally, the UART Rx interrupt will dispatch on the last character received from the
UART.

All the string literals that are used as informational messages wittam() are
placed inprogram memorgo no SRAM needs to be allocated for them. This is done
by using the PSTR macro, and passing the stringitatstr_p()

22.37.4 The source code

The source code is installed under
$prefix/share/doc/avr-libc/examples/largedemo/largedemo.c ,

where$prefix is a configuration option. For Unix systems, it is usually set to either
lusr or/usr/local

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.38 Using the standard 10O facilities 312

22.38 Using the standard 10O facilities

This project illustrates how to use the standard 10 facilities (stdio) provided by this
library. It assumes a basic knowledge of how the stdio subsystem is used in standard C
applications, and concentrates on the differences in this library’s implementation that
mainly result from the differences of the microcontroller environment, compared to a
hosted environment of a standard computer.

This demo is meant to supplement thecumentationnot to replace it.

22.38.1 Hardware setup

The demo is set up in a way so it can be run on the ATmegal6 that ships with the
STK500 development kit. The UART port needs to be connected to the RS-232 "spare”
port by a jumper cable that connects PDO to RxD and PD1 to TxD. The RS-232 channel
is set up as standard inpstdin) and standard outpustdout), respectively.

In order to have a different device available for a standard error chastder{), an
industry-standard LCD display with an HD44780-compatible LCD controller has been
chosen. This display needs to be connected to port A of the STK500 in the following
way:

Port Header Function
A0 1 LCD D4
Al 2 LCD D5
A2 3 LCD D6
A3 4 LCD D7
A4 5 LCD R/~W
A5 6 LCDE
A6 7 LCD RS
A7 8 unused
GND 9 GND
VCC 10 Vcce

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.38 Using the standard 10O facilities 313

Figure 9: Wiring of the STK500

The LCD controller is used in 4-bit mode, including polling the "busy" flag so the
R/~W line from the LCD controller needs to be connected. Note that the LCD con-
troller has yet another supply pin that is used to adjust the LCD’s contrast (V5). Typ-
ically, that pin connects to a potentiometer between Vcc and GND. Often, it might
work to just connect that pin to GND, while leaving it unconnected usually yields an
unreadable display.

Port A has been chosen as 7 pins on a single port are needed to connect the LCD, yet all
other ports are already partially in use: port B has the pins for in-system programming
(ISP), port C has the ports for JTAG (can be used for debugging), and port D is used
for the UART connection.

22.38.2 Functional overview

The project consists of the following files:

 stdiodemo.c This is the main example file.

defines.h Contains some global defines, like the LCD wiring

hd44780.c Implementation of an HD44780 LCD display driver

hd44780.h Interface declarations for the HD44780 driver
e lcd.c Implementation of LCD character 10 on top of the HD44780 driver

* lcd.h Interface declarations for the LCD driver

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.38 Using the standard 10O facilities 314

e uart.c Implementation of a character 10 driver for the internal UART

« uvart.h Interface declarations for the UART driver

22.38.3 A code walkthrough

22.38.3.1 stdiodemo.c As usual, include files go first. While conventionally, sys-
tem header files (those in angular brackets.. >) go before application-specific
header files (in double quotes)efines.h comes as the first header file here. The
main reason is that this file defines the valu& o€PUwhich needs to be known before
including <utils/delay.h >,

The functionioinit() summarizes all hardware initialization tasks. As this function

is declared to be module-internal onbktdtic), the compiler will notice its simplic-

ity, and with a reasonable optimization level in effect, it will inline that function. That
needs to be kept in mind when debugging, because the inlining might cause the debug-
ger to "jump around wildly" at a first glance when single-stepping.

The definitions ofuart_str andlcd_str set up two stdio streams. The initial-
ization is done using thEDEV_SETUP_STREAM()nitializer template macro, so a
static object can be constructed that can be used for IO purposes. This initializer macro
takes three arguments, two function macros to connect the corresponding output and
input functions, respectively, the third one describes the intent of the stream (read,
write, or both). Those functions that are not required by the specified intent (like the
input function forlcd_str which is specified to only perform output operations) can

be given aNULL

The streanuart_str corresponds to input and output operations performed over the
RS-232 connection to a terminal (e.g. from/to a PC running a terminal program), while
thelcd_str stream provides a method to display character data on the LCD text
display.

The functiondelay 1s() suspends program execution for approximately one sec-
ond. This is done using thedelay ms() function from <util/delay.h >

which in turn needs th&_ CPUmacro in order to adjust the cycle counts. As the
_delay_ms() function has a limited range of allowable argument values (depending
onF_CPU), a value of 10 ms has been chosen as the base delay which would be safe
for CPU frequencies of up to about 26 MHz. This function is then called 100 times to
accomodate for the actual one-second delay.

In a practical application, long delays like this one were better be handled by a hardware
timer, so the main CPU would be free for other tasks while waiting, or could be put on
sleep.

At the beginning ofmain() , after initializing the peripheral devices, the default stdio
streamsstdin , stdout , andstderr are set up by using the existing stafit-E
stream objects. While this is not mandatory, the availabilitgtdfn andstdout
allows to use the shorthand functions (epgintf() instead offprintf()), and
stderr can mnemonically be referred to when sending out diagnostic messages.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.38 Using the standard 10O facilities 315

Just for demonstration purposesdin andstdout are connected to a stream that
will perform UART 1O, while stderr is arranged to output its data to the LCD text
display.

Finally, a main loop follows that accepts simple "commands" entered via the RS-232
connection, and performs a few simple actions based on the commands.

First, a prompt is sent out usingintf P() (which takes grogram space string

The string is read into an internal buffer as one line of input, ufgets() . While it
would be also possible to ugets() (which implicitly reads fromstdin), gets()

has no control that the user’s input does not overflow the input buffer provided so it
should never be used at all.

If fgets() fails to read anything, the main loop is left. Of course, normally the main
loop of a microcontroller application is supposed to never finish, but again, for demon-
strational purposes, this explains the error handling of stii@ts() will return

NULL in case of an input error or end-of-file condition on input. Both these condi-
tions are in the domain of the function that is used to establish the streain;
putchar() in this case. In short, this function returns EOF in case of a serial line
"break” condition (extended start condition) has been recognized on the serial line.
Common PC terminal programs allow to assert this condition as some kind of out-of-
band signalling on an RS-232 connection.

When leaving the main loop, a goodbye message is sent to standard error output (i.e. to
the LCD), followed by three dots in one-second spacing, followed by a sequence that
will clear the LCD. Finally,main() will be terminated, and the library will add an
infinite loop, so only a CPU reset will be able to restart the application.

There are three "commands" recognized, each determined by the first letter of the line
entered (converted to lower case):

* The 'q’ (quit) command has the same effect of leaving the main loop.
e The'I' (LCD) command takes its second argument, and sends it to the LCD.

e The 'u’ (UART) command takes its second argument, and sends it back to the
UART connection.

Command recognition is done usiggcanf() where the first format in the format
string just skips over the command itself (as the assignment suppression modifier
given).

22.38.3.2 defines.h This file just contains a few peripheral definitions.

TheF_CPUmacro defines the CPU clock frequency, to be used in delay loops, as well
as in the UART baud rate calculation.

The macrdJART_BAUDlefines the RS-232 baud rate. Depending on the actual CPU
frequency, only a limited range of baud rates can be supported.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.38 Using the standard 10O facilities 316

The remaining macros customize the 10 port and pins used for the HD44780 LCD
driver.

22.38.3.3 hd44780.h This file describes the public interface of the low-level LCD
driver that interfaces to the HD44780 LCD controller. Public functions are available to
initialize the controller into 4-bit mode, to wait for the controller’s busy bit to be clear,
and to read or write one byte from or to the controller.

As there are two different forms of controller 10, one to send a command or receive
the controller status (RS signal clear), and one to send or receive data to/from the
controller's SRAM (RS asserted), macros are provided that build on the mentioned
function primitives.

Finally, macros are provided for all the controller commands to allow them to be used
symbolically. The HD44780 datasheet explains these basic functions of the controller
in more detail.

22.38.3.4 hd44780.c This is the implementation of the low-level HD44780 LCD
controller driver.

On top, a few preprocessor glueing tricks are used to establish symbolic access to
the hardware port pins the LCD controller is attached to, based on the application’s
definitions made imefines.h

The hd44780_pulse_e() function asserts a short pulse to the controller’s E (en-
able) pin. Since reading back the data asserted by the LCD controller needs to be
performed while E is active, this function reads and returns the input data if the param-
eterreadback is true. When called with a compile-time constant parameter that is
false, the compiler will completely eliminate the unused readback operation, as well as
the return value as part of its optimizations.

As the controller is used in 4-bit interface mode, all byte 10 to/from the controller
needs to be handled as two nibble 10s. The functiai¥4780_outnibble() and
hd44780_innibble() implement this. They do not belong to the public interface,
so they are declared static.

Building upon these, the public functiohgl44780_outbyte() andhd44780_-
inbyte() transfer one byte to/from the controller.

The functionhd44780_wait_ready() waits for the controller to become ready,
by continuously polling the controller’s status (which is read by performing a byte read
with the RS signal cleard), and examining the BUSY flag within the status byte. This
function needs to be called before performing any controller 10.

Finally, hd44780 _init() initializes the LCD controller into 4-bit mode, based on

the initialization sequence mandated by the datasheet. As the BUSY flag cannot be
examined yet at this point, this is the only part of this code where timed delays are

used. While the controller can perform a power-on reset when certain constraints on

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.38 Using the standard 10O facilities 317

the power supply rise time are met, always calling the software initialization routine
at startup ensures the controller will be in a known state. This function also puts the
interface into 4-bit mode (which would not be done automatically after a power-on
reset).

22.38.3.5 lcd.h This function declares the public interface of the higher-level (char-
acter 10) LCD driver.

22.38.3.6 Icd.c The implementation of the higher-level LCD driver. This driver
builds on top of the HD44780 low-level LCD controller driver, and offers a character
10 interface suitable for direct use by the standard 10 facilities. Where the low-level
HD44780 driver deals with setting up controller SRAM addresses, writing data to the
controller's SRAM, and controlling display functions like clearing the display, or mov-
ing the cursor, this high-level driver allows to just write a character to the LCD, in the
assumption this will somehow show up on the display.

Control characters can be handled at this level, and used to perform specific actions
on the LCD. Currently, there is only one control character that is being dealt with: a
newline character\f) is taken as an indication to clear the display and set the cursor
into its initial position upon reception of the next character, so a "new line" of text
can be displayed. Therefore, a received newline character is remembered until more
characters have been sent by the application, and will only then cause the display to be
cleared before continuing. This provides a convenient abstraction where full lines of
text can be sent to the driver, and will remain visible at the LCD until the next line is
to be displayed.

Further control characters could be implemented, e. g. using a set of escape sequences.
That way, it would be possible to implement self-scrolling display lines etc.

The public functiorcd_init() first calls the initialization entry point of the lower-
level HD44780 driver, and then sets up the LCD in a way we'd like to (display cleared,
non-blinking cursor enabled, SRAM addresses are increasing so characters will be
written left to right).

The public functionlcd_putchar() takes arguments that make it suitable for be-
ing passed asput() function pointer to the stdio stream initialization functions and
macros fdevopen() , FDEV_SETUP_STREAM(etc.). Thus, it takes two argu-
ments, the character to display itself, and a reference to the underlying stream object,
and it is expected to return O upon success.

This function remembers the last unprocessed newline character seen in the function-
local static variablel_seen . If a newline character is encountered, it will simply set
this variable to a true value, and return to the caller. As soon as the first non-newline
character is to be displayed withh seen still true, the LCD controller is told to clear

the display, put the cursor home, and restart at SRAM address 0. All other characters
are sent to the display.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.38 Using the standard 10O facilities 318

The single static function-internal variabté seen works for this purpose. If mul-

tiple LCDs should be controlled using the same set of driver functions, that would not
work anymore, as a way is heeded to distinguish between the various displays. This is
where the second parameter can be used, the reference to the stream itself: instead of
keeping the state inside a private variable of the function, it can be kept inside a private
object that is attached to the stream itself. A reference to that private object can be at-
tached to the stream (e.g. inside the functazh init() that then also needs to be
passed a reference to the stream) usdey set udata() , and can be accessed
insidelcd_putchar() usingfdev_get_udata()

22.38.3.7 uart.h Public interface definition for the RS-232 UART driver, much like
in Icd.hexcept there is now also a character input function available.

As the RS-232 input is line-buffered in this example, the mé&Xo BUFSIZE deter-
mines the size of that buffer.

22.38.3.8 uart.c This implements an stdio-compatible RS-232 driver using an
AVR’s standard UART (or USART in asynchronous operation mode). Both, char-
acter output as well as character input operations are implemented. Character output
takes care of converting the internal newlreinto its external representation carriage
return/line feed {r \n).

Character input is organized as a line-buffered operation that allows to minimally edit
the current line until it is "sent” to the application when either a carriage return (
or newline {n) character is received from the terminal. The line editing functions
implemented are:

* \b (back space) or177 (delete) deletes the previous character

» ~u (control-U, ASCII NAK) deletes the entire input buffer

» Aw (control-W, ASCII ETB) deletes the previous input word, delimited by white
space

» "r (control-R, ASCII DC2) sends & , then reprints the buffer (refresh)

\t (tabulator) will be replaced by a single space

The functionuart_init() takes care of all hardware initialization that is required to
put the UART into a mode with 8 data bits, no parity, one stop bit (commonly referred
to as 8N1) at the baud rate configurediafines.h At low CPU clock frequencies, the
U2Xbit in the UART is set, reducing the oversampling from 16x to 8x, which allows
for a 9600 Bd rate to be achieved with tolerable error using the default 1 MHz RC
oscillator.

The public functionuart_putchar() again has suitable arguments for direct use
by the stdio stream interface. It performs ttreinto \r \n translation by recursively

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.39 Example using the two-wire interface (TWI) 319

calling itself when it sees &n character. Just for demonstration purposes,\te
(audible bell, ASCII BEL) character is implemented by sending a strirggderr
so it will be displayed on the LCD.

The public functioruart_getchar() implements the line editor. If there are char-
acters available in the line buffer (variabiep is notNULL), the next character will
be returned from the buffer without any UART interaction.

If there are no characters inside the line buffer, the input loop will be entered. Charac-
ters will be read from the UART, and processed accordingly. If the UART signalled a
framing error EE bit set), typically caused by the terminal sendiniin@ breakcon-

dition (start condition held much longer than one character period), the function will
return an end-of-file condition using=DEV_EOFIf there was a data overrun condi-
tion on input DORbit set), an error condition will be returned aBDEV_ERR

Line editing characters are handled inside the loop, potentially modifying the buffer
status. If characters are attempted to be entered beyond the size of the line buffer, their
reception is refused, and\a character is sent to the terminal. Ifa or \n character is

seen, the variablep (receive pointer) is set to the beginning of the buffer, the loop is
left, and the first character of the buffer will be returned to the application. (If no other
characters have been entered, this will just be the newline character, and the buffer is
marked as being exhausted immediately again.)

22.38.4 The source code

The source code is installed under
$prefix/share/doc/avr-libc/examples/stdiodemo/ ,

where$prefix is a configuration option. For Unix systems, it is usually set to either
/usr or/ust/local

22.39 Example using the two-wire interface (TWI)

Some newer devices of the ATmega series contain builtin support for interfacing the
microcontroller to a two-wire bus, called TWI. This is essentially the same called 12C
by Philips, but that term is avoided in Atmel’s documentation due to patenting issues.

For the original Philips documentation, see

http://mwww.semiconductors.philips.com/buses/i2c/index.html
22.39.1 Introduction into TWI
The two-wire interface consists of two signal lines nans&A (serial data) anéCL

(serial clock) (plus a ground line, of course). All devices participating in the bus are
connected together, using open-drain driver circuitry, so the wires must be terminated

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

http://www.semiconductors.philips.com/buses/i2c/index.html

22.39 Example using the two-wire interface (TWI) 320

using appropriate pullup resistors. The pullups must be small enough to recharge
the line capacity in short enough time compared to the desired maximal clock fre-
quency, yet large enough so all drivers will not be overloaded. There are formulas in
the datasheet that help selecting the pullups.

Devices can either act as a master to the bus (i. e., they initiate a transfer), or as a
slave (they only act when being called by a master). The bus is multi-master capable,

and a particular device implementation can act as either master or slave at different

times. Devices are addressed using a 7-bit address (coordinated by Philips) transfered
as the first byte after the so-called start condition. The LSB of that byte~8\Ri. e.

it determines whether the request to the slave is to read or write data during the next

cycles. (There is also an option to have devices using 10-bit addresses but that is not
covered by this example.)

22.39.2 The TWI example project

The ATmega TWI hardware supports both, master and slave operation. This example
will only demonstrate how to use an AVR microcontroller as TWI master. The imple-
mentation is kept simple in order to concentrate on the steps that are required to talk to
a TWI slave, so all processing is done in polled-mode, waiting for the TWI interface to
indicate that the next processing step is due (by setting the TWINT interrupt bit). If it
is desired to have the entire TWI communication happen in "background"”, all this can
be implemented in an interrupt-controlled way, where only the start condition needs to
be triggered from outside the interrupt routine.

There is a variety of slave devices available that can be connected to a TWI bus. For the
purpose of this example, an EEPROM device out of the industry-sta@d@bd series

has been chosen (whegecan be one 001, 02, 04, 08, or 16) which are available from
various vendors. The choice was almost arbitrary, mainly triggered by the fact that an
EEPROM device is being talked to in both directions, reading and writing the slave
device, so the example will demonstrate the details of both.

Usually, there is probably not much need to add more EEPROM to an ATmega system
that way: the smallest possible AVR device that offers hardware TWI support is the
ATmega8 which comes with 512 bytes of EEPROM, which is equivalent to an 24C04
device. The ATmegal28 already comes with twice as much EEPROM as the 24C16
would offer. One exception might be to use an externally connected EEPROM device
that is removable; e. g. SDRAM PC memory comes with an integrated TWI EEPROM
that carries the RAM configuration information.

22.39.3 The Source Code

The source code is installed under
$prefix/share/doc/avr-libc/examples/twitest/twitest.c ,

where$prefix is a configuration option. For Unix systems, it is usually set to either

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.39 Example using the two-wire interface (TWI) 321

lusr or/usr/local

Note [1]

The header filecutil/twi.h > contains some macro definitions for symbolic con-
stants used in the TWI status register. These definitions match the names used in the
Atmel datasheet except that all names have been prefixediWwith

Note [2]

The clock is used in timer calculations done by the compiler, for the UART baud rate
and the TWI clock rate.

Note [3]

The address assigned for the 24Cxx EEPROM consists of 1010 in the upper four bits.
The following three bits are normally available as slave sub-addresses, allowing to
operate more than one device of the same type on a single bus, where the actual sub-
address used for each device is configured by hardware strapping. However, since the
next data packet following the device selection only allows for 8 bits that are used as
an EEPROM address, devices that require more than 8 address bits (24C04 and above)
"steal" subaddress bits and use them for the EEPROM cell address bits 9 to 11 as re-
quired. This example simply assumes all subaddress bits are 0 for the smaller devices,
so the EO, E1, and E2 inputs of the 24Cxx must be grounded.

Note [4]

For slow clocks, enable the 2 x U[S]ART clock multiplier, to improve the baud rate
error. This will allow a 9600 Bd communication using the standard 1 MHz calibrated
RC oscillator. See also the Baud rate tables in the datasheets.

Note [5]

The datasheet explains why a minimum TWBR value of 10 should be maintained when
running in master mode. Thus, for system clocks below 3.6 MHz, we cannot run the
bus at the intented clock rate of 100 kHz but have to slow down accordingly.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.39 Example using the two-wire interface (TWI) 322

Note [6]

This function is used by the standard output facilities that are utilized in this example
for debugging and demonstration purposes.

Note [7]

In order to shorten the data to be sent over the TWI bus, the 24Cxx EEPROMSs support
multiple data bytes transfered within a single request, maintaining an internal address
counter that is updated after each data byte transfered successfully. When reading
data, one request can read the entire device memory if desired (the counter would wrap
around and start back from 0 when reaching the end of the device).

Note [8]

When reading the EEPROM, a first device selection must be made with write intent
(R/~W bit set to 0 indicating a write operation) in order to transfer the EEPROM ad-
dress to start reading from. This is calletster transmitter modeEach completion

of a particular step in TWI communication is indicated by an asserted TWINT bit in
TWCR. (An interrupt would be generated if allowed.) After performing any actions
that are needed for the next communication step, the interrupt condition must be man-
ually cleared bysettingthe TWINT bit. Unlike with many other interrupt sources, this
would even be required when using a true interrupt routine, since as soon as TWINT is
re-asserted, the next bus transaction will start.

Note [9]

Since the TWI bus is multi-master capable, there is potential for a bus contention when
one master starts to access the bus. Normally, the TWI bus interface unit will detect this
situation, and will not initiate a start condition while the bus is busy. However, in case
two masters were starting at exactly the same time, the way bus arbitration works, there
is always a chance that one master could lose arbitration of the bus during any transmit
operation. A master that has lost arbitration is required by the protocol to immediately
cease talking on the bus; in particular it must not initiate a stop condition in order to not
corrupt the ongoing transfer from the active master. In this example, upon detecting a
lost arbitration condition, the entire transfer is going to be restarted. This will cause a
new start condition to be initiated, which will normally be delayed until the currently
active master has released the bus.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

22.39 Example using the two-wire interface (TWI) 323

Note [10]

Next, the device slave is going to be reselected (using a so-called repeated start con-
dition which is meant to guarantee that the bus arbitration will remain at the current
master) using the same slave address (SLA), but this time with read inter\(Bit

set to 1) in order to request the device slave to start transfering data from the slave to
the master in the next packet.

Note [11]

If the EEPROM device is still busy writing one or more cells after a previous write
request, it will simply leave its bus interface drivers at high impedance, and does not
respond to a selection in any way at all. The master selecting the device will see the
high level at SDA after transfering the SLA+R/W packet as a NACK to its selection
request. Thus, the select process is simply started over (effectively causipgaded

start conditior), until the device will eventually respond. This polling procedure is
recommended in the 24Cxx datasheet in order to minimize the busy wait time when
writing. Note that in case a device is broken and never responds to a selection (e. g.
since it is no longer present at all), this will cause an infinite loop. Thus the maximal
number of iterations made until the device is declared to be not responding at all, and
an error is returned, will be limited to MAX_ITER.

Note [12]

This is calledmaster receiver modehe bus master still supplies the SCL clock, but the
device slave drives the SDA line with the appropriate data. After 8 data bits, the master
responds with an ACK bit (SDA driven low) in order to request another data transfer
from the slave, or it can leave the SDA line high (NACK), indicating to the slave that
it is going to stop the transfer now. Assertion of ACK is handled by setting the TWEA
bit in TWCR when starting the current transfer.

Note [13]

The control word sent out in order to initiate the transfer of the next data packet is
initially set up to assert the TWEA bit. During the last loop iteration, TWEA is de-
asserted so the client will get informed that no further transfer is desired.

Note [14]

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

23 Data Structure Documentation 324

Except in the case of lost arbitration, all bus transactions must properly be terminated
by the master initiating a stop condition.

Note [15]

Writing to the EEPROM device is simpler than reading, since only a master transmitter
mode transfer is needed. Note that the first packet after the SLA+W selection is always
considered to be the EEPROM address for the next operation. (This packet is exactly
the same as the one above sent before starting to read the device.) In case a master
transmitter mode transfer is going to send more than one data packet, all following
packets will be considered data bytes to write at the indicated address. The internal
address pointer will be incremented after each write operation.

Note [16]

24Cxx devices can become write-protected by strapping thHIC pin to logic high.
(Leaving it unconnected is explicitly allowed, and constitutes logic low level, i. e. no
write protection.) In case of a write protected device, all data transfer attempts will be
NACKed by the device. Note that some devices might not implement this.

23 Data Structure Documentation

23.1 div_t Struct Reference
23.1.1 Detailed Description

Result type for functiomliv().

Data Fields
* int quot
e intrem

23.1.2 Field Documentation

23.1.2.1 intdiv_t::quot
The Quotient.

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

23.2 Idiv_t Struct Reference 325

23.1.2.2 intdiv_t:irem
The Remainder.

The documentation for this struct was generated from the following file:

* stdlib.h

23.2 Idiv_t Struct Reference
23.2.1 Detailed Description

Result type for functiomdiv().

Data Fields

 longquot
e longrem

23.2.2 Field Documentation
23.2.2.1 longIdiv_t::quot

The Quotient.

23.2.2.2 long Idiv_t::rem
The Remainder.

The documentation for this struct was generated from the following file:

« stdlib.h

24 File Documentation

24.1 assert.h File Reference
24.1.1 Detailed Description

Defines

« #defineasserfexpression)

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

24.2 atoi.S File Reference 326

24.2 atoi.S File Reference
24.2.1 Detailed Description

24.3 atol.S File Reference
24.3.1 Detailed Description

24.4 atomic.h File Reference
24.4.1 Detailed Description

Defines

#define UTIL_ATOMIC_H_ 1
#defineATOMIC_BLOCK(type)
#defineNONATOMIC_BLOCK(type)
#defineATOMIC_RESTORESTATE
#defineATOMIC_FORCEON
#defineNONATOMIC_RESTORESTATE
#defineNONATOMIC_FORCEOFF

24.5 boot.h File Reference
24.5.1 Detailed Description

Defines

 #define AVR_BOOT_H_1

¢ #defineBOOTLOADER_SECTION _attribute__ ((section (".bootloader")))

 #define_ COMMON_ASB RWWSB

 #define_ COMMON_ASRE RWWSRE

* #defineBLB12 5

* #defineBLB11 4

* #defineBLB02 3

« #defineBLBO1 2

« #defineboot_spm_interrupt_enalf)d_ SPM_REG= (uint8_{_BV(SPMIE))

e #define boot_spm_interrupt_disalfle (__SPM_REG &= (int8 d~ -
BV(SPMIE))

« #defineboot_is_spm_interrufit(_ SPM_REG & (int8_{ BV(SPMIE))

 #defineboot_rww_busf) (_ SPM_REG & (int8_§ BV(__COMMON_ASB))

« #defineboot_spm_bug)y (_ SPM_REG & (int8_{_BV(SPMEN))

 #defineboot_spm_busy wd)tdo{}while(boot_spm_busy())

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

24.5 boot.h File Reference 327

« #define_ BOOT_PAGE_ERASE(_BV(SPMEN)| _BV(PGERS))

* #define__BOOT_PAGE_WRITE (_BV(SPMEN)| _BV(PGWRT))

 #define_ BOOT_PAGE_FILL _BV(SPMEN)

+ #define__ BOOT_RWW_ENABLE (_BV(SPMEN) | _BV(__ COMMON_-
ASRE))

« #define_ BOOT_LOCK_BITS_SET (_BV(SPMEN)| _BV(BLBSET))

« #define__boot_page_fill_normajaddress, data)

« #define__boot_page_fill_alternatéaddress, data)

 #define__boot_page_fill_extende@ddress, data)

 #define__boot_page_erase_normédddress)

 #define__boot_page_erase_alternafaddress)

» #define__boot_page_erase_extend@tidress)

» #define__boot_page_write_normaladdress)

» #define__boot_page_write_alternatéaddress)

» #define__boot_page_write_extende@ddress)

« #define__boot_rww_enabl€)

« #define__boot_rww_enable_alternat€

« #define__boot_lock_bits_seglock_bits)

« #define__boot_lock bits_set_alternat@ock_bits)

 #defineGET_LOW_FUSE_BITS0x0000)

« #defineGET_LOCK_BITS(0x0001)

 #defineGET_EXTENDED_FUSE_BIT$0x0002)

 #defineGET_HIGH_FUSE_BITS0x0003)

 #defineboot_lock fuse_bits_g@tddress)

« #define__BOOT_SIGROW_READ (_BV(SPMEN)| _BV(SIGRD))

 #defineboot_signature_byte datdr)

 #defineboot_page_fifladdress, data) __boot page_fill_normal(address, data)

« #defineboot_page erataddress) boot page erase normal(address)

« #defineboot_page writ@ddress) boot page_write_normal(address)

« #defineboot_rww_enabl@ _ boot_rww_enable()

« #defineboot_lock_bits_sélock_bits) _ boot_lock bits_set(lock_bits)

 #defineboot_page fill_safaddress, data)

« #defineboot_page erase_sédddress)

 #defineboot_page write_safaddress)

 #defineboot_rww_enable_safe

 #defineboot_lock bits_set safeck_bits)

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

24.5 boot.h File Reference 328

24.5.2 Define Documentation

24.5.2.1 #define __boot_lock_bits_set(lock_bits)

Value:
(__extension__({ \
uint8_t value = (uint8_t)(~(lock_bits)); \
__asm__ __ volatile__ \
(\
“Idi r30, 1\n\t" \
"Idi r31, O\n\t" \
"mov r0, %2\n\t" \
"sts %0, %I1\n\t" \
"spm\n\t" \
: \
: "i"' (_(SFR_MEM_ADDR(__SPM_REG)), \
"r" ((uint8_t)__BOOT_LOCK_BITS_SET), \
"r" (value) \
: "r0", "r30", "r31" \
); \
b))

24.5.2.2 #define __ boot_lock_bits_set_alternate(lock_bits)

Value:
(__extension__({ \
uint8_t value = (uint8_t)(~(lock_hits)); \
_asm__ _ volatile__ \
(\
“Idi r30, 1\n\t" \
“Idi r31, O\n\t" \
"mov r0, %2\n\t" \
"sts %0, %21\n\t" \
"spm\n\t" \
".word Oxfff\n\t" \
"nop\n\t" \
: \
. "i" (_(SFR_MEM_ADDR(__SPM_REG)), \
"r" ((uint8_t)__BOOT_LOCK_BITS_SET), \
"r'" (value) \
: "r0", "r30", "r31" \
) \
b))

24.5.2.3 #define __boot_page erase_alternate(address)
Value:

(__extension__({ \

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

24.5 boot.h File Reference 329

__asm__ __ volatile__ \

(\
"movw r30, %2\n\t" \
"sts %0, %21\n\t" \
"spm\n\t" \
".word Oxfff\n\t" \
"nop\n\t" \

: "i" (_.SFR_MEM_ADDR(__SPM_REG)), \
"r" ((uint8_t)_ BOOT_PAGE_ERASE), \

"r'" ((uint16_t)address) \
- 30", "r31" \

»

24.5.2.4 #define __boot_page_erase_extended(address)

Value:
(__extension__({ \
__asm__ _ volatile__
(\
"movw r30, %A3\n\t" \
"sts %1, %C3\n\t" \
"sts %0, %2\n\t" \
"spm\n\t" \
: \
. "i" ((SFR_MEM_ADDR(__SPM_REG)), \
"i"* (_SFR_MEM_ADDR(RAMPZ)), \
"r* ((uint8_t)__BOOT_PAGE_ERASE), \
“r" ((uint32_t)address) \
"r30", "r31" \
) \
b))

24525 #define ___boot_page_erase_normal(address)

Value:
(__extension__({ \
_asm__ _ volatile__
(\
"movw r30, %2\n\t" \
"sts %0, %I1\n\t" \
"spm\n\t" \
: \
. "i" ((SFR_MEM_ADDR(__SPM_REG)), \
"r" ((uint8_t)__BOOT_PAGE_ERASE), \
"r" ((uintl6_t)address) \
: "r30", "r31" \
) \
b))

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

24.5 boot.h File Reference 330

24.5.2.6 #define _ boot_page_fill_alternate(address, data)

Value:

(__extension__({ \
_asm__ _ volatile__ \
(\
"movw r0, %3\n\t" \
"movw r30, %2\n\t" \
"sts %0, %21\n\t" \
"spm\n\t" \
“.word Oxffff\n\t" \
"nop\n\t" \
"clr - rl\n\t" \

: " (_SFR_MEM_ADDR(__SPM_REG)), \
"r* ((uint8_t)__BOOT_PAGE_FILL), \
"r'" ((uint16_t)address), \
"r" ((uint16_t)data) \
"r0", "r30", "r31" \

)]

24.5.2.7 #define __boot_page_fill_extended(address, data)

Value:

(__extension__({ \
_asm__ _ volatile__ \
(\
"movw 0, %4\n\t"
"movw r30, %A3\n\t"
"sts %1, %C3\n\t"
"sts %0, %2\n\t"
"spm\n\t” \
"clr - rl\n\t" \

: "i" (_(SFR_MEM_ADDR(__SPM_REG)), \
"i* (_SFR_MEM_ADDR(RAMPZ)), \
"r" ((uint8_t)__BOOT_PAGE_FILL), \

"r'" ((uint32_t)address), \
“r* ((uintl6_t)data) \
: "r0", "r30", "r31"

»

24.5.2.8 #define __ boot_page_fill_normal(address, data)

Value:

(__extension__({ \

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

24.5 boot.h File Reference 331

__asm__ __ volatile__ \

(\
"movw r0, %3\n\t" \
"movw r30, %2\n\t" \
"sts %0, %1\n\t" \
"spm\n\t” \
"clr - rl\n\t" \

: "i" (_(SFR_MEM_ADDR(__SPM_REG)), \
"r* ((uint8_t)_ BOOT_PAGE_FILL), \
"r" ((uintl6_t)address), \
"r'" ((uint16_t)data) \
"r0", "r30", "r31"

)]

24.5.2.9 #define _boot_page write_alternate(address)

Value:
(__extension__({ \
_asm__ _ volatile__ \
(\
"movw r30, %2\n\t" \
"sts %0, %21\n\t" \
"spm\n\t" \
".word Oxffff\n\t" \
"nop\n\t" \
: \
. "i" ((SFR_MEM_ADDR(__SPM_REG)), \
"r" ((uint8_t)__BOOT_PAGE_WRITE), \
"r'" ((uint16_t)address) \
: "r30", "r31" \
) \
b))

24.5.2.10 #define __boot_page_ write_extended(address)

Value:

(__extension__({ \

_asm__ _ volatile__ \

(\
"movw r30, %A3\n\t"

"sts %1, %C3\n\t" \

"sts %0, %2\n\t" \

"spm\n\t" \

. "i" ((SFR_MEM_ADDR(__SPM_REQG)), \
"i" (_SFR_MEM_ADDR(RAMPZ)), \
"r" ((uint8_t)__BOOT_PAGE_WRITE), \

"r'" ((uint32_t)address) \

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

24.5 boot.h File Reference 332

"r30", "r31" \

»

24.5.2.11 #define __boot_page_ write_normal(address)

Value:
(__extension__({ \
_asm__ _ volatile__ \
(\
"movw r30, %2\n\t" \
"sts %0, %21\n\t" \
"spm\n\t" \
: \
: " (_SFR_MEM_ADDR(__SPM_REG)), \
"r* ((uint8_t)__BOOT_PAGE_WRITE), \
"r'" ((uint16_t)address) \
: "r30", "r31" \
) \
h)]

24.5.2.12 #define __boot_rww_enable()

Value:
(__extension__({ \
_asm__ _ volatile__ \
(\
"sts %0, %1\n\t" \
"spm\n\t" \
: \
: "i" (_(SFR_MEM_ADDR(__SPM_REG)), \
"r* ((uint8_t)__BOOT_RWW_ENABLE) \
)i \
)]

24.5.2.13 #define __boot_rww_enable_alternate()

Value:
(__extension__({ \
__asm__ _ volatile__
(\
"sts %0, %21\n\t" \
"spm\n\t” \
".word Oxfffin\t" \

"nop\n\t" \

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

24.6 crcl6.h File Reference 333

. "i* (_SFR_MEM_ADDR(__SPM_REG)), \
"I ((uint8_t)__BOOT_RWW_ENABLE) \
); \
h)]

24.6 crcl6.h File Reference
24.6.1 Detailed Description
Functions

e static__inline__uintl6_t crc16 updatéuintl6 t crc,uint8_t_data)

e static__inline_uintl6_t crc_xmodem_updafeintl6 t crc,uint8 t data)
e static__inline__uintl6 t crc_ccitt_updatéuintl6 t crc,uint8_t data)

e static__inline__uint8 t crc_ibutton_updat@int8 t crc,uint8_t_data)

24.7 ctype.h File Reference
24.7.1 Detailed Description

Defines

e #define_ CTYPE_H_1

Functions

Character classification routines

These functions perform character classification. They return true or false status
depending whether the character passed to the function falls into the function’s
classification (i.eisdigit() returns true if its argument is any value '0’ though '9’,
inclusive). If the input is not an unsigned char value, all of this function return
false.

intisalnum(int __ c)
intisalpha(int _c)
intisascii(int __c)
intisblank(int __ c)
intiscntrl(int__c)
int isdigit (int __c)
intisgraph(int _ c)
intislower(int_ c)
intisprint(int __c)
intispunct(int__ c)
intisspacgint__ c)
int isupper(int _c)

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

24.8 delay.h File Reference 334

« intisxdigit (int __c)

Character convertion routines

This realization permits all possible values of integer argument.tdascii()func-
tion clears all highest bits. Thlower() and toupper()functions return an input
argument as is, if it is not an unsigned char value.

* inttoascii(int __c)

« int tolower(int __c)

* int toupper(int __c)
24.8 delay.h File Reference
24.8.1 Detailed Description

Defines

. #define UTIL_DELAY H_ 1
- #defineF_CPU 1000000UL

Functions
e void _delay_ugdouble __us)
e void _delay_mgdouble __ms)
24.9 delay_basic.h File Reference
24.9.1 Detailed Description
Defines

« #define_ UTIL_DELAY BASIC_H_ 1

Functions

e void _delay loop_Xuint8_t_count)
e void _delay loop_Zuintl6_t count)

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

24.10 errno.h File Reference 335

24.10 errno.h File Reference
24.10.1 Detailed Description

Defines

e #define_ ERRNO_H_1
* #defineEDOM 33
* #defineEERANGE 34

Variables

¢ int errno

24.11 fdevopen.c File Reference
24.11.1 Detailed Description

Functions

¢ FILE * fdevopen(int(xput)(char, FILEx), int(xget)(FILE x))

24.12 ffs.S File Reference
24.12.1 Detailed Description
24.13 ffsl.S File Reference
24.13.1 Detailed Description
24.14 ffsll.S File Reference
24.14.1 Detailed Description
24.15 fuse.h File Reference
24.15.1 Detailed Description

Defines

* #define AVR_FUSE_H_1
e #defineFUSEMEM __attribute__ ((section (".fuse")))
e #defineFUSES__ fuse_t __ fuse FUSEMEM

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

24.16 interrupt.h File Reference 336

24.16 interrupt.h File Reference

24.16.1 Detailed Description

@

Defines

Global manipulation of the interrupt flag
The global interrupt flag is maintained in the | bit of the status register (SREG).

« #definesel)
* #definecli()

Macros for writing interrupt handler functions

#definel SR(vector, attributes)
#defineSIGNAL(vector)
#defineEEMPTY_INTERRUPTvector)
#definelSR_ALIAS(vector, target_vector)
#definereti()

#defineBADISR_vect

ISR attributes

« #definelSR_BLOCK

* #definelSR_NOBLOCK
 #definelSR_NAKED
 #definelSR_ALIASOHRtarget_vector)

24.17 inttypes.h File Reference
24.17.1 Detailed Description
Defines

macros for printf and scanf format specifiers

For C++, these are only included if _ STDC_LIMIT_MACROS is defined before
including <inttypes.h-.

» #definePRId8"d"
#definePRIALEASTS8"d"
#definePRIJFASTS"d"
#definePRIi8"i"
#definePRIILEASTS8"I"

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

24.17

inttypes.h File Reference

337

#definePRIIFAST8"i"
#definePRId16"d"
#definePRIALEAST16"d"
#definePRIAFAST16'd"
#definePRIi16"i"
#definePRIILEAST16""
#definePRIIFAST16""
#definePRId32"|d"
#definePRIALEAST32"Id"
#definePRIAFAST32'ld"
#definePRIi32"i"
#definePRIILEAST32"i"
#definePRIIFAST32"li"
#definePRIDPTRPRIA16
#definePRIIPTRPRIi16
#definePRlo8"0"
#definePRIOLEASTS8"0"
#definePRIOFASTS8"0"
#definePRIu8"u"
#definePRIULEASTS8"u"
#definePRIUFASTS8"'u"
#definePRIXx8"x"
#definePRIXLEAST8"X"
#definePRIXFAST8"x"
#definePRIX8"X"
#definePRIXLEAST8"X"
#definePRIXFAST8"X"
#definePRlo16"0"
#definePRIOLEAST16"0"
#definePRIOFAST16'0"
#definePRIul6"u"
#definePRIULEAST16"u"
#definePRIUFAST16'u"
#definePRIXx16"x"
#definePRIXLEAST16"X"
#definePRIXFAST16"X"
#definePRIX16"X"
#definePRIXLEAST16"X"
#definePRIXFAST16"X"
#definePRI032"|0"
#definePRIOLEAST32"lo"
#definePRIOFAST32'lo"
#definePRIu32"|lu"
#definePRIULEAST32"Iu"
#definePRIUFAST32'lu”
#definePRIx32"Ix"
#definePRIXLEAST32"Ix"
#definePRIXFAST32"[x"
#definePRIX32"[X"
#definePRIXLEAST32"IX"

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

24.17

inttypes.h File Reference

338

#definePRIXFAST32"IX"
#definePRIOPTRPRI016
#definePRIUPTRPRIuU16
#definePRIXPTRPRIx16
#definePRIXPTRPRIX16
#defineSCNd16"d"
#defineSCNALEAST16'd"
#defineSCNdFAST16'd"
#defineSCNi16""
#defineSCNILEAST16"i"
#defineSCNIFAST16""
#defineSCNd32"[d"
#defineSCNALEAST32'ld"
#defineSSCNdAFAST32'ld"
#defineSCNi32"i"
#defineSCNILEAST32"[i"
#defineSCNIFAST32"li"
#defineSCNdPTRSCNd16
#defineSCNIPTRSCNIi16
#defineSCNo016"0"
#defineSCNoLEAST16'0"
#defineSCNoOFAST16'0"
#defineSCNul16"u”
#defineSCNULEAST16'u"
#defineSCNUFAST16'u"
#defineSCNx16"x"
#defineSCNXLEAST16"x"
#defineSCNXFAST16'x"
#defineSSCNo32"lo"
#defineSCNoLEAST32'lo"
#defineSSCNoFAST32'l0"
#defineSCNu32"[u"
#defineSCNuULEAST32'Iu"
#defineSSCNUFAST32'lu"
#defineSCNx32"|x"
#defineSCNxXLEAST32"Ix"
#defineSSCNXFAST32'Ix"
#defineSSCNoPTRSCNo016
#defineSCNUPTRSCNul6
#defineSSCNXPTRSCNx16

Typedefs

Far pointers for memory access>64K

* typedefuint32_tuint_farptr_t

typedefint32_tint_farptr_t

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

24.18 io.h File Reference

339

24.18 io.h File Reference

24.18.1 Detailed Description

24.19 lock.h File Reference
24.19.1 Detailed Description

Defines

* #define AVR_LOCK_H_ 1

» #defineLOCKMEM __ attribute__ ((section (".lock™)))
» #defineLOCKBITS unsigned char __lock LOCKMEM
* #defineLOCKBITS_DEFAULT (OxFF)

24.20 math.h File Reference
24.20.1 Detailed Description

Defines

* #defineM_PI 3.141592653589793238462643

* #defineM_SQRT21.4142135623730950488016887
« #defineNAN __ builtin_nan("")

o #definelNFINITY __builtin_inf()

Functions

¢ doublecos(double _ x)

¢ doublefabs(double _ x)

¢ doublefmod (double __ X, double __y)
e doublemodf(double __x, double__iptr)
 doublesin (double _ x)

¢ doublesgrt(double _ x)
 doubletan(double _ x)

 doublefloor (double _ x)

« doubleceil (double __ x)

¢ doublefrexp (double __ x, int__pexp)
e doubleldexp(double _ X, int__exp)

* doubleexp(double _ x)

¢ doublecosh(double _ Xx)

¢ doublesinh(double _ x)
 doubletanh(double _ x)

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

24.20 math.h File Reference 340

« doubleacos(double _ x)

¢ doubleasin(double _ x)

¢ doubleatan(double __ x)

¢ doubleatan2(double vy, double _ Xx)
 doublelog (double __ x)

» doublelog10(double _ x)

e doublepow (double __ x, double __y)
« intisnan(double _ Xx)

e intisinf (double __ x)

¢ doublesquargdouble _ x)

« doublecopysign(double __ x, double __y)
¢ doublefdim (double __ x, double __y)
¢ doublefma(double __ x, double vy, double __7)
¢ doublefmax (double __x, double __y)
¢ doublefmin (double __ x, double __y)
« int signbit(double __ x)

¢ doubletrunc(double __ x)

« intisfinite (double __ x)

« doublehypot(double __ x, double __y)
¢ doubleround(double __ x)

¢ longlround(double _ x)

¢ longlrint (double __ x)

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

24.20 math.h File Reference 341

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

24.21 memccpy.S File Reference

342

24.21 memccpy.S File Reference

24.21.1 Detailed Description

24.22 memchr.S File Reference
24.22.1 Detailed Description

24.23 memchr_P.S File Reference
24.23.1 Detailed Description

24.24 memcmp.S File Reference
24.24.1 Detailed Description

24.25 memcmp_P.S File Reference
24.25.1 Detailed Description

24.26 memcpy.S File Reference
24.26.1 Detailed Description

24.27 memcpy_P.S File Reference
24.27.1 Detailed Description

24.28 memmem.S File Reference
24.28.1 Detailed Description

24.29 memmove.S File Reference
24.29.1 Detailed Description

24.30 memrchr.S File Reference
24.30.1 Detailed Description

24.31 memrchr_P.S File Reference
24.31.1 Detailed Description

24.32 memset.S File Reference

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen
24.32.1 Detailed Description

24.33 parity.h File Reference
24.33.1 Detailed Description

Defines

24.34 pgmspace.h File Reference 343

24.34 pgmspace.h File Reference
24.34.1 Detailed Description

Defines

 #define_ PGMSPACE_H_1

e #define__need_size t

 #define_ ATTR_PROGMEM___ __ attribute__ ((__progmem__))
e #define_ ATTR_PURE____ attribute_ ((__pure_))

» #definePROGMEM__ ATTR_PROGMEM___

¢ #definePSTR’S) ((const PROGMEM chax)(s))

 #define_ LPM_classic_ (addr)

« #define_ LPM_enhanced_(addr)

« #define_ LPM_word_classic_ (addr)

« #define_ LPM_word_enhanced_ (addr)

e #define_ LPM_dword_classic_(addr)

e #define_ LPM_dword_enhanced_(addr)

e #define_ LPM(addr) _ LPM_classic__(addr)

» #define_ LPM_word(addr) __ LPM_word_classic__(addr)

e #define_ LPM_dword(addr) _ LPM_dword_classic__(addr)

« #definepgm_read_byte ne@ddress_short) L PM({nt16_d(address_short))

* #define pgm_read_word_negddress_short) __LPM_word({(t16_-
t)(address_short))
e #define pgm_read _dword_ne@ddress_short) _ LPM_dword{(t16_-

t)(address_short))
e #define_ ELPM_classic_ (addr)
e #define_ ELPM_enhanced_(addr)
e #define_ ELPM_word_classic_ (addr)
e #define_ ELPM_word_enhanced_ (addr)
e #define_ ELPM_dword_classic_ (addr)
» #define_ ELPM_dword_enhanced_(addr)
 #define__ELPM(addr) __ELPM_classic__(addr)
e #define_ ELPM_word(addr) __ ELPM_word_classic__(addr)
e #define_ ELPM_dword(addr) __ ELPM_dword_classic__(addr)
« #definepgm_read_byte féaddress long) ELPM{{nt32_Jj(address_long))

e #define pgm_read_word_féaddress_long) __ELPM_wordiat32_-
t)(address_long))
« #define pgm_read _dword_féaddress_long) __ELPM_dword{(t32_-

t)(address_long))
« #definepgm_read_byt@ddress_short) pgm_read_byte near(address_short)
» #definepgm_read_worghddress_short) pgm_read_word_near(address_short)
» #definepgm_read_dwor@ddress_short) pgm_read_dword_near(address_short)
 #definePGM_Pconstprog_chak
« #definePGM_VOID_Pconstprog_void«

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

24.34 pgmspace.h File Reference 344

Typedefs

« typedef void PROGMEMrog_void

« typedef char PROGMENrog_char

« typedef unsigned char PROGMEMog_uchar
* typedefint8_t PROGMEMprog_int8 t

« typedefuint8_tPROGMEMprog_uint8_t

* typedefintl6_tPROGMEMprog_int16_t

* typedefuintl6_tPROGMEMprog_uintl6 t
* typedefint32_tPROGMEMprog_int32_t

* typedefuint32_tPROGMEMprog_uint32_t
« typedefint64 tPROGMEMprog_int64 t

« typedefuint64_ tPROGMEMprog_uint64 t

Functions

* PGM_VOID_Pmemchr_RPGM_VOID_P, int__val, size_t__len)

¢ int memcmp_Rconst void«, PGM_VOID_P, size t) ATTR_PURE__

« void x memcpy_Rvoid x, PGM_VOID_P, size t)

¢ void * memmem_Rconst voidx, size_t, PGM_VOID_P, size t) _ ATTR -
PURE__

e PGM_VOID_Pmemrchr_ RPGM_VOID_P, int__ val, size_ t__len)

* charx strcat_R(charx, PGM_P)

e PGM_Pstrchr_P(PGM_P, int __val)

e PGM_Pstrchrnul_RPGM_P, int __val)

e intstrcmp_HRconst chak, PGM_P) ATTR_PURE___

e charx strcpy_P(charx, PGM_P)

« int strcasecmp_Kconst chax, PGM_P) _ ATTR_PURE___

e charx strcasestr_Rconst chax, PGM_P) _ ATTR_PURE___

« size_tstrcspn_Rconstchax s, PGM_P _ reject) ATTR_PURE__

¢ size_tstrlcat_P(charx, PGM_P, size_t)

« size_tstrlcpy_P(charx, PGM_P, size_t)

« size_tstrlen_ (PGM_P)

« size_tstrnlen_ APGM_P, size t)

e int strncmp_Rconst chak, PGM_P, size t) ATTR_PURE__

« int strncasecmp_Reonst chax, PGM_P, size t) ATTR_PURE__

e charx strncat_Rcharx, PGM_P, size_t)

« charsx strncpy_Rcharx, PGM_P, size_t)

e charx strpbrk_P(const chak__s, PGM_P __accept) _ ATTR_PURE___

e PGM_Pstrrchr_P(PGM_P, int __val)

e charx strsep_Hchar«x__sp, PGM_P __delim)

 size_tstrspn_Rconst chax__s, PGM_P __accept) ATTR PURE__

e charx strstr_P(const chax, PGM_P) _ ATTR_PURE___

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

24.34 pgmspace.h File Reference

345

24.34.2 Define Documentation

24.34.2.1 #define __ ELPM_classic__(addr)

Value:

(__extension__({ \
uint32_t __addr32 = (uint32_t)(addr); \
uint8_t __ result; \
_asm__ \

\

"out %2, %C1" "\n\t"
"mov r31, %B1" "\n\t"
"mov r30, %A1" "\n\t"
"elpm" "\n\t"
"mov %0, r0" "\n\t"
;"= (__result) \
2" (__addr32), \
"I" (_SFR_IO_ADDR(RAMPZ)) \
: "r0", "r30", "r31" \
); \

__result; \

—— - — _

»

24.34.2.2 #define __ ELPM_dword_enhanced__ (addr)

Value:

(__extension__({ \
uint32_t __addr32 = (uint32_t)(addr); \
uint32_t __ result;

_asm__ \
(\
"out %2, %C1" “\n\t" \
"movw r30, %1" "\n\t" \
"elpm %A0, Z+" "\n\t" \
"elpm %BO0, Z+" "\n\t" \
"elpm %CO0, Z+" "\n\t" \
"elpm %DO0O, Z* "\n\t" \
;"= (__result) \

2" (__addr32), \

"I' (_SFR_IO_ADDR(RAMPZ)) \
: "r30", "r31" \
); \
__result; \

»

24.34.2.3 #define __ ELPM_enhanced__ (addr)

Value:

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

24.34 pgmspace.h File Reference 346

(__extension__({ \
uint32_t _ addr32 = (uint32_t)(addr); \
uint8_t __ result; \
_asm__ \

\
"out %2, %C1" "\n\t" \
"movw r30, %1" "\n\t" \
"elpm %0, Z+" "\n\t" \
2 "= (__result) \
2" (__addr32), \
"I (_SFR_IO_ADDR(RAMPZ)) \
: "r30", "r31" \
)i \
__result; \

)]

24.34.2.4 #define _ ELPM_word_classic__(addr)

Value:

(__extension__({ \
uint32_t __addr32 = (uint32_t)(addr); \
uintl6_t _ result;

__asm \

(\

"out %2, %C1" "\n\t" \
"mov r31, %B1" "\n\t" \
"mov r30, %A1" "\n\t" \
"elpm" "\n\t" \
"mov %A0, r0" "\n\t" \
"in r0, %2" "\n\t" \
"adiw r30, 1" "\n\t" \
"adc r0, _ zero_reg__ " "\n\t" \
"out %2, r0" "\n\t" \
"elpm” “\n\t" \
"mov %BO0, r0" "\n\t" \
;"= (__result) \
2" (__addr32), \
"I" (_SFR_IO_ADDR(RAMPZ)) \

: "r0", "r30", "r31" \

); \

__result; \

)]

24.34.2.5 #define ___ ELPM_word_enhanced__(addr)

Value:

(__extension__({ \
uint32_t __addr32 = (uint32_t)(addr); \
uintl6_t _ result; \

asm \

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

24.34 pgmspace.h File Reference 347

(\
"out %2, %C1" "\n\t" \
"movw r30, %1" "\n\t" \
"elpm %A0, Z+" "\n\t" \
"elom %BO0, Z" "\n\t" \
2=t (__result) \

2 'r" (__addr32), \
"I' (_SFR_IO_ADDR(RAMPZ)) \
: "r30", "r31" \
); \
__result; \

D))

24.34.2.6 #define __ LPM_classic__(addr)

Value:

(__extension__({ \
uintl6_t _ addrl6 = (uintl6_t)(addr); \
uint8_t __ result; \
_asm__ \
(\

"lpm" "\n\t"

"mov %0, r0" "\n\t" \

»"=r" (__result) \

: "z" (__addrle) \

2 "r0" \
) \
__result; \

»

24.34.2.7 #define __ LPM_dword_classic__(addr)

Value:
(__extension__({ \
uintlé_t _ addrl6 = (uintl6_t)(addr); \
uint32_t __ result; \
_asm__ \
(\
"lpm" "\nit"
"mov %A0, r0" “\n\t" \
"adiw r30, 1" "\n\t" \
"lpm" "\n\t"
"mov %BO0, r0" "\n\t" \
"adiw r30, 1" "\n\t" \
"lpm" "\n\t" \
"mov %CO0, r0" "\n\t" \
"adiw r30, 1" "\n\t" \
"lpm" "\n\t" \
"mov %DO0, r0" “\n\t" \

2 "=r" (__result), "=z" (__addrl6) \

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

24.34 pgmspace.h File Reference 348

;"1" (__addrl6) \

:"r0" \
)i \
__result; \

»

24.34.2.8 #define __ LPM_dword_enhanced__ (addr)

Value:
(__extension__({ \
uintl6_t _ addrl6 = (uintl6_t)(addr); \
uint32_t __ result; \
_asm__ \
(\
“lpm %A0, Z+" "\n\t" \
"Ipm %BO0, Z+" “\n\t" \
“lpm %CO0, Z+" "\n\t" \
"lpm %DO, Z" "\n\t" \
2= (__result), "=z" (__addrl6) \
; "1" (__addrl6) \
)i \
__result; \
b))

24.34.2.9 #define __ LPM_enhanced__ (addr)

Value:

(__extension__({ \
uintl6_t _ addrl6 = (uintl6_t)(addr); \
uint8_t __ result; \
_asm__ \
(\

“lIpm %0, Z" "\n\t" \

2 "= (__result) \

» "z" (__addrle6) \
); \
__result; \

)]

24.34.2.10 #define __ LPM_word_classic__(addr)

Value:
(__extension__({ \
uintl6_t _ addrl6 = (uintl6_t)(addr); \
uintl6_t _ result; \
asm \

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

24.35 power.h File Reference 349

"lpm" "\n\t"

"mov %A0, r0" "\n\t" \

"adiw r30, 1" "\n\t" \

"Ipm" "\nit"

"mov %BO0, r0" “\n\t" \

2 "=rt (__result), "=z" (__addrl6) \

: "1" (__addril6) \

: "ro" \
) \
__result; \

D))

24.34.2.11 #define __ LPM_word_enhanced__ (addr)

Value:
(__extension__({ \
uintl6_t _ addrl6 = (uintl6_t)(addr); \
uintl6_t _ result; \
_asm__ \
(\
“lpm %A0, Z+" "\n\t" \
"lpm %BO, Z" "\n\t"
:"=r" (__result), "=z" (__addrl6) \
: "1" (__addril6) \
) \
__result; \
b))

24.35 power.h File Reference
24.35.1 Detailed Description

Defines

 #define AVR_POWER_H_1

* #defineclock _prescale_s€Kk)

e #define clock_prescale gd) (clock_div_t)(CLKPR & @int8_-
t)((1<<CLKPSO)(1<<CLKPS1)(1<<CLKPS2)(1<<CLKPS3)))

Enumerations

e enumclock_div_t{
clock_div_1=0,clock_div_2=1,clock_div_4=2,clock_div_8= 3,
clock_div_16=4,clock div_32=5,clock_div_64= 6, clock div_128=7,
clock_div_256=8}

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

24.36 setbaud.h File Reference 350

24.35.2 Define Documentation

24.35.2.1 #define clock_prescale_set(x)

Value:

{\
uint8_t tmp = _BV(CLKPCE); \
_asm__ _ volatile__ (\
"in __tmp_reg__,_ SREG__" "\n\t" \
"cli" "\n\t" \
"sts %1, %0" "\n\t" \
"sts %1, %2" "\n\t" \
"out _ SREG__, _ tmp_reg_ "\
: /* no outputs */ \
:"d" (tmp), \
"M" (_SFR_MEM_ADDR(CLKPRY)), \
"d" (x) \
2 "r0"); \

24.36 setbaud.h File Reference
24.36.1 Detailed Description

Defines

e #defineBAUD_TOL 2
#defineUBRR_VALUE
#defineUBRRL_VALUE
#defineUBRRH_VALUE
#defineUSE_2X0

24.37 setjmp.h File Reference
24.37.1 Detailed Description

Defines

e #define_ SETIMP_H_1

e #define_ ATTR_NORETURN__ __ attribute_ ((__noreturn__))
Functions

« int setimp(jmp_buf __ jmpb)
e void longjmp(jmp_buf __jmpb, int__ret) ATTR_NORETURN___

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

24.38 sleep.h File Reference 351

24.38 sleep.h File Reference
24.38.1 Detailed Description

Defines

. #define AVR_SLEEP H_1
« #define SLEEP_CONTROL_REG MCUCR
. #define SLEEP_ENABLE_MASK _BV(SE)

Functions

* void sleep_enablévoid)
* void sleep_disablévoid)
« void sleep_cpyvoid)

« void sleep_moddvoid)

24.39 stdint.h File Reference
24.39.1 Detailed Description

Defines

« #define__USING_MINT8 0
« #define_ CONCATenatdleft, right) left ## right
» #define_ CONCAT(left, right) _ CONCATenate(left, right)

Limits of specified-width integer types

C++ implementations should define these macros only when _ STDC_LIMIT_-
MACROS is defined beforestdint.h> is included

#defineINT8_MAX 0x7f

#defineINT8_MIN (-INT8_MAX - 1)

#defineUINT8_MAX (__CONCAT(INT8_MAX, U)x 2U + 1U)
#defineINT16_MAX Ox7fff

#defineINT16_MIN (-INT16_MAX - 1)

#defineUINT16_MAX (__CONCAT(INT16_MAX, U)* 2U + 1U)
#definelNT32_MAX Ox7fffffffL

#defineINT32_MIN (-INT32_MAX - 1L)

#defineUINT32_MAX (__CONCAT(INT32_MAX, U)* 2UL + 1UL)
#defineNT64_MAX Ox7fffffffffffffLL

#defineINT64_MIN (-INT64_MAX - 1LL)

#defineUINT64_MAX (__CONCAT(INT64_MAX, U)* 2ULL + 1ULL)

Limits of minimum-width integer types

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

24.39 stdint.h File Reference 352

#definelNT_LEAST8_MAX INT8_MAX
#definelNT_LEASTS_MIN INT8_MIN
#defineUINT_LEAST8_MAX UINT8_MAX
#definelNT_LEAST16_MAX INT16_MAX
#definelNT_LEAST16_MININT16_MIN
#defineUINT_LEAST16_MAX UINT16_MAX
#definelNT_LEAST32_MAX INT32_MAX
#definelNT_LEAST32_MININT32_MIN
#defineUINT_LEAST32_MAX UINT32_MAX
#definelNT_LEAST64_MAX INT64_MAX
#definelNT_LEAST64_MININT64_MIN
#defineUINT_LEAST64_MAX UINT64_MAX

Limits of fastest minimum-width integer types

#definelNT_FAST8_MAX INT8_MAX
#defineNT_FAST8_MININTS_MIN
#defineUINT_FAST8_MAX UINT8_MAX
#definelNT_FAST16_MAXINT16_MAX
#defineNT_FAST16_MININT16_MIN
#defineUINT_FAST16_MAXUINT16_MAX
#defineNT_FAST32_MAXINT32_MAX
#definelNT_FAST32_MININT32_MIN
#defineUINT_FAST32_MAX UINT32_MAX
#defineNT_FAST64_MAXINT64_MAX
#definelNT_FAST64_MININT64_MIN
#defineUINT_FAST64_MAX UINT64_MAX

Limits of integer types capable of holding object pointers

o #defineINTPTR_MAX INT16_MAX
o #defineINTPTR_MIN INT16_MIN
» #defineUINTPTR_MAX UINT16_MAX

Limits of greatest-width integer types

o #defineINTMAX_MAX INT64_MAX
o #defineINTMAX_MIN INT64_MIN
o #defineUINTMAX_MAX UINT64_MAX

Limits of other integer types

C++ implementations should define these macros only when _ STDC_LIMIT_-
MACROS is defined beforestdint.h> is included

» #definePTRDIFF_MAXINT16_MAX

. #deflnePTRDIFF MININT16_MIN

« #defineSIG_ATOMIC_MAX INT8_MAX
« #defineSIG_ATOMIC_MIN INT8_MIN

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

24.39 stdint.h File Reference 353

- #defineSIZE_MAX (__CONCAT(INT16_MAX, U))

Macros for integer constants

C++ implementations should define these macros only when _ STDC -
CONSTANT_MACROS is defined befasgdint.h> is included.

These definitions are valid for integer constants without suffix and for macros de-
fined as integer constant without suffix

#definelNT8_C(value) ({nt8_f) value)
#defineUINT8_C(value) (Qint8_) CONCAT(value, U))
#definelNT16_((value) value

#defineUINT16_Q(value) _ CONCAT(value, U)
#defineINT32_Q(value) _ CONCAT (value, L)
#defineUINT32_((value) _ CONCAT(value, UL)
#defineINT64_Q(value) _ CONCAT(value, LL)
#defineUINT64_((value) _ CONCAT(value, ULL)
#defineINTMAX_C (value) _ CONCAT(value, LL)
#defineUINTMAX_C (value) __ CONCAT (value, ULL)

Typedefs

Exact-width integer types
Integer types having exactly the specified width

typedef signed chant8 _t

typedef unsigned chauint8_t

typedef signed inint16_t

typedef unsigned imint16_t

typedef signed long intt32_t
typedef unsigned long intint32_t
typedef signed long long inht64_t
typedef unsigned long long inint64 _t

Integer types capable of holding object pointers
These allow you to declare variables of the same size as a pointer.

* typedefintl6_tintptr_t
* typedefuintl6_tuintptr_t

Minimum-width integer types
Integer types having at least the specified width

* typedefint8_tint_least8_t

* typedefuint8_tuint_least8_t

* typedefintl6_tint_least1l6 t

* typedefuint16_tuint_least16_t

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

24.40 stdio.h File Reference 354

typedefint32_tint_least32_t
typedefuint32_tuint_least32_t
typedefint64_tint_least64 t
typedefuint64_tuint_least64 t

Fastest minimum-width integer types
Integer types being usually fastest having at least the specified width

* typedefint8_tint_fast8 t

* typedefuint8_tuint_fast8 t

* typedefintl6_tint fastl6 t

* typedefuint16_tuint_fast16 t
* typedefint32_tint_fast32_t

* typedefuint32_tuint_fast32_t
* typedefint64_tint_fast64 t

* typedefuint64 _tuint_fast64 t

Greatest-width integer types

Types designating integer data capable of representing any value of any integer
type in the corresponding signed or unsigned category

* typedefint64_tintmax_t
* typedefuint64_tuintmax_t

24.40 stdio.h File Reference
24.40.1 Detailed Description

Defines

e #define_ STDIO H_1

e #define__need_NULL

« #define__need_size t

« #defineFILE struct __file

 #definestdin(__iob[0])

 #definestdout(__iob[1])

 #definestderr(__iob[2])

e #defineEOF (-1)

 #definefdev_set _udafatream, u) do { (stream}> udata = u; } while(0)
 #definefdev_get udaimtream) ((stream)- udata)
« #definefdev_setup_streafstream, put, get, rwflag)
« #define_FDEV_SETUP_READ SRD

« #define_FDEV_SETUP_WRITE _SWR

« #define_FDEV_SETUP_RW__SRO__SWR)

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

24.40 stdio.h File Reference 355

« #define_FDEV_ERR(-1)

 #define FDEV_EOF(-2)

e #defineFDEV_SETUP_STREANput, get, rwflag)
 #definefdev_clos€)

e #defineputq___c, _ stream) fputc(__c, _ stream)
« #defineputchaf _c) fputc(__c, stdout)

« #definegetd __stream) fgetc(__stream)

« #definegetchaf) fgetc(stdin)

e #defineSEEK_SETO0

 #defineSEEK_CUR 1

e #defineSEEK_END 2

Functions

« int fclose(FILE *__stream)

e int vfprintf (FILE *__stream, const char__fmt, va_list _ap)

e int vfprintf_P (FILE x__stream, const char__fmt, va_list _ap)

e intfputc(int __c, FILEx__stream)

« int printf (const chas__ fmt,...)

e int printf_P(const chax__fmt,...)

« int vprintf (const charx__fmt, va_list __ap)

e int sprintf(charx__s, constchaf__fmt,...)

« int sprintf_P(charx__s, constchat__fmt,...)

e int snprintf(chars__s, size_t__n, const char_fmt,...)

e int snprintf_P(charx__s, size_t__n, const char_fmt,...)

« intvsprintf(char«__s, const chat__fmt, va_list ap)

« int vsprintf_P(charx__s, const chaf__fmt, va_list ap)

 intvsnprintf(char__s, size_t__n, const char_fmt, va_list ap)

e intvsnprintf_P(charx__s, size_t __n, const char_fmt, va_list ap)

« int fprintf (FILE *__stream, const char__fmt,...)

« int fprintf_P (FILE x__stream, const char_fmt,...)

« int fputs(const chak__str, FILEx__stream)

« int fputs_P(const chak__str, FILEx__stream)

* int puts(const char__str)

« int puts_P(const chak__str)

 size_tfwrite (const voidx__ptr, size t _ size, size t _ _nmemb, FIKE -
stream)

« int fgetc(FILE %__stream)

e intungetc(int __c, FILEx__stream)

e charx fgets(charx__str, int __size, FILE__stream)

e charx gets(charx__str)

 size tfread(void x__ptr, size_t __ size, size t __nmemb, FILE stream)

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

24.41 stdlib.h File Reference 356

« void clearerr(FILE x__stream)

* int feof (FILE x__stream)

« int ferror (FILE x__stream)

« int vfscanf(FILE x__stream, const char _fmt, va_list _ap)
« int vfscanf_P(FILE x__stream, const char _fmt, va_list__ap)
« int fscanf(FILE «__stream, const char__fmt,...)

« int fscanf_P(FILE x__stream, const char _fmt,...)

« int scanf(const chax__fmt,...)

¢ int scanf_H(const chak__fmt,...)

« intvscanf(const chax__fmt, va_list __ap)

« int sscanflconst chax__ buf, const chax__ fmt,...)

 int sscanf_Rconst chax__ buf, const chax__ fmt,...)

« int fflush (FILE xstream)

24.41 stdlib.h File Reference
24.41.1 Detailed Description

Data Structures

 structdiv_t
e structldiv_t

Non-standard (i.e. non-1SO C) functions.

 #defineRANDOM_MAX Ox7FFFFFFF

e charxitoa(int _ val, char__s, int __radix)

e charx ltoa(long int _ val, chak__s, int __radix)

e charx utoa(unsigned int __val, char__s, int __radix)

e charx ultoa(unsigned long int __val, char s, int __radix)
¢ long random(void)

 void srandom(unsigned long __seed)

¢ longrandom_runsigned long__ ctx)

Conversion functions for double arguments.

Note that these functions are not located in the default libdibg,a , but in the
mathematical librarnjbm.a . So when linking the application, then option needs
to be specified.

e #defineDTOSTR_ALWAYS_SIGNOx01
e #defineDTOSTR_PLUS_SIGNIX02

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

24.41 stdlib.h File Reference 357

» #defineDTOSTR_UPPERCASBx04

 charx* dtostre(double __val, chak__s, unsigned char __prec, unsigned char
__flags)

e charx dtostrf (double __ val, signed char __width, unsigned char __ prec, char
*__S)

Defines

#define_STDLIB_H_ 1
 #define__need_NULL

« #define__need_size t

e #define__need_wchar_t
#define__ptr_t void
#defineRAND_MAX Ox7FFF

L]

Typedefs

* typedefinté _ compar_fn_j(const void«, const voidk)

Functions

« void abort(void) _ ATTR_NORETURN___

e intabs(int_i)

* longlabs(long __i)

 void x bsearch(const void«__key, const void__base, size_t __nmemb, size t
__size, int¢__compar)(const void, const voidk))

e div_tdiv (int__num, int__denom) __asm__("__divmodhi4")

e Idiv_tIdiv (long __num, long __denom) __asm__("__divmodsi4")

« void gsort(void *__base, size_t __nmemb, size_t __sizecompar_fn_t -
compar)

« longstrtol (const chak__nptr, char+__endptr, int __base)

¢ unsigned longstrtoul (const char__nptr, charx__endptr, int __base)

¢ longatol(constchax__s) ATTR_PURE__

 intatoi(constcharx__s) ATTR_PURE__

e voidexit (int__status) _ ATTR_NORETURN___

 void x malloc(size_t __size) _ ATTR_MALLOC__

« void free (void =__ ptr)

 void x calloc(size_t __nele, size_t__size) _ ATTR_MALLOC__

¢ void x realloc(void x__ ptr, size_t__size) _ ATTR_MALLOC__

¢ doublestrtod(const char__nptr, chakx__endptr)

 doubleatof (const chak__nptr)

« int rand(void)

 void srand(unsigned int __seed)

« intrand_r(unsigned long:__ ctx)

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

24.41 stdlib.h File Reference 358

Variables

e size_t malloc_margin
e charx __malloc_heap_start
e charx __malloc_heap_end

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

24.41 stdlib.h File Reference 359

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

24.42 strcasecmp.S File Reference

360

24.42
24.42.1
24.43
24.43.1
24.44
24.44.1
24.45
24.45.1
24.46
24.46.1
24.47
24.47.1
24.48
24.48.1
24.49
24.49.1
24.50
24.50.1
2451
2451.1
24.52
2452.1

24.53

strcasecmp.S File Reference

Detailed Description

strcasecmp_P.S File Reference

Detailed Description
strcasestr.S File Reference
Detailed Description

strcat.S File Reference
Detailed Description
strcat_P.S File Reference
Detailed Description

strchr.S File Reference
Detailed Description
strchr_P.S File Reference
Detailed Description
strchrnul.S File Reference
Detailed Description
strchrnul_P.S File Reference
Detailed Description

strcmp.S File Reference
Detailed Description
strcmp_P.S File Reference
Detailed Description

strcpy.S File Reference

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

2453.1
24.54
24541

299 R

Detailed Description

strcpy_P.S File Reference
Detailed Description

ctrrenn <[Eile Reafarance

24.57 string.h File Reference 361

#define__need NULL

#define__need_size t

#define_ ATTR_PURE____ attribute_ ((__pure_))
#define_FF3X)

Functions

int ffs (int __val)

int ffsl (long __val)

int ffsll (long long __val)

void * memccpy(void *, const voidk, int, size_t)

void x memchr(const voidx, int, size t) ATTR_PURE___

int memcmp(const voidx, const voidx, size t) ATTR_PURE___

void x memcpy(void x, const voidx, size_t)

void * memmen(const voidx, size_t, const void, size_t) ATTR_PURE__
void * memmovegvoid *, const voidx, size_t)

void * memrchr(const voidx, int, size_t) _ ATTR_PURE___

void x memse{void *, int, size_t)

charx strcat(charx, const chax)

charx strchr(const chak, int) _ ATTR_PURE__

charx strchrnul(const chak, int) _ ATTR_PURE___

int strcmp(const chak, const chax) ATTR_PURE___

charx strcpy(charx, const chax)

int strcasecmyiconst chax, const chax) _ ATTR_PURE___

charx strcasestfconst chak, const chax) _ ATTR_PURE___
size_tstrcspn(const char__s, const char__reject) ATTR_PURE___
size_tstrlcat(charx, const chak, size t)

size_tstrlcpy(charx, const chak, size_t)

size_tstrlen(const chak) __ ATTR_PURE___

charsx strlwr (charsx)

charx strncat(charx, const chak, size_t)

int strncmp(const chak, const chax, size t) ATTR_PURE__

charsx strncpy(charx, const chak, size_t)

int strncasecmyconst chak, const chak, size t) ATTR_PURE___
size_tstrnlen(const chak, size_ t) ATTR_PURE___

charx strpbrk(const chak__s, const chaf__accept) ATTR_PURE__
charx strrchr(const chak, int) _ ATTR_PURE__

charsx strrev(charx)

charx strsep(charxx, const chak)

size_tstrspn(const chak__s, const cha¥__accept) _ ATTR_PURE__
charx strstr(const chak, const chax) _ ATTR_PURE___

charx strtok_r(charx, const chax, charxx)

charx strupr(charx)

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

24.57 string.h File Reference 362

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

24.58 strlcat.S File Reference

363

24.58
24.58.1
24.59
24.59.1
24.60
24.60.1
24.61
2461.1
24.62
24.62.1
24.63
24.63.1
24.64
24.64.1
24.65
24.65.1
24.66
24.66.1
24.67
24.67.1
24.68
24.68.1

24.69

stricat.S File Reference
Detailed Description
strlcat_P.S File Reference
Detailed Description

strlcpy.S File Reference
Detailed Description
stricpy_P.S File Reference
Detailed Description

strlen.S File Reference
Detailed Description
strlen_P.S File Reference
Detailed Description

strlwr.S File Reference
Detailed Description
strncasecmp.S File Reference
Detailed Description
strncasecmp_P.S File Reference
Detailed Description

strncat.S File Reference
Detailed Description
strncat_P.S File Reference
Detailed Description

strncmp.S File Reference

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

24.69.1
24.70
24.70.1

9 71

Detailed Description

strncmp_P.S File Reference
Detailed Description

ctrnenyv < Eile Rafaranca

24.88 twi.h File Reference 364

TWSR values

Mnemonics:

TW_MT_xxx - master transmitter
TW_MR_xxx - master receiver
TW_ST_xxx - slave transmitter
TW_SR_xxx - slave receiver

#defineTW_START 0x08
#defineTW_REP_STARTOx10
#defineTW_MT_SLA_ACK 0x18
#defineTW_MT_SLA_NACK 0x20
#defineTW_MT_DATA_ACK 0x28
#defineTW_MT_DATA_NACK 0x30
#defineTW_MT_ARB_LOSTO0x38
#defineTW_MR_ARB_LOSTO0x38
#defineTW_MR_SLA_ACK 0x40
#defineTW_MR_SLA_NACK 0x48
#defineTW_MR_DATA_ACK 0x50
#defineTW_MR_DATA_NACK 0x58
#defineTW_ST_SLA_ACKOxA8
#defineTW_ST_ARB_LOST_SLA_ACKDxBO
#defineTW_ST_DATA_ACK 0xB8
#defineTW_ST_DATA_NACK 0xCO
#defineTW_ST_LAST_DATAOxC8
#defineTW_SR_SLA_ACKO0x60
#defineTW_SR_ARB_LOST_SLA_ACKOx68
#defineTW_SR_GCALL_ACKOx70
#defineTW_SR_ARB_LOST_GCALL_ACKOx78
#defineTW_SR_DATA_ACKO0x80
#defineTW_SR_DATA_NACKO0x88
#defineTW_SR_GCALL_DATA_ACKO0x90
#defineTW_SR_GCALL_DATA_NACKOx98
#defineTW_SR_STORXAO
#defineTW_NO_INFOOxF8
#defineTW_BUS_ERROROX00
#defineTW_STATUS_MASK
#defineTW_STATUS(TWSR & TW_STATUS_MASK)

R/~W bit in SLA+R/W address field.

 #defineTW_READ 1
* #defineTW_WRITEO

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

24.89 wdt.h File Reference 365

24.89 wdt.h File Reference
24.89.1 Detailed Description

Defines

o #definewdt_resef) asm__ __ volatile__ ("wdr")
 #define WD_PS3_MASKO0Ox00
 #define WD_CONTROL_REG WDTCR
 #define WD_CHANGE_BIT WDCE

» #definewdt_enablgvalue)

o #definewdt_disabl€)
 #defineWDTO_15MS0
 #defineWDTO_30MS1
 #defineWDTO_60MS2

o #defineWDTO_120MS3

o #defineWDTO_250M34
 #defineWDTO_500MS5

e #defineWDTO_1S6

o #defineWDTO_2S7

e #defineWDTO_4S8

e #defineWDTO_8S9

24.89.2 Define Documentation

24.89.2.1 #define wdt_enable(value)

Value:

asm__ _ volatile__ (\
"in __tmp_reg_ , SREG__" "\n\t" \
“cli* "\n\t" \
"wdr" "\n\t" \
"out %0,%1" "\n\t" \
"out __ SREG__, tmp_reg_ " "\n\t" \
"out %0,%2" \
: [* no outputs * \
: "I' (_SFR_IO_ADDR(_WD_CONTROL_REG)), \
"r (_BV(_WD_CHANGE_BIT) | _BV(WDE)), \
“r* ((uint8_t) ((value & 0x08 ? _WD_PS3_MASK : 0x00) | \
_BV(WDE) | (value & 0x07))) \
"\

(0

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

Index

<alloca.h>: Allocate space in the
stack,121

<assert.b-: Diagnostics122

<avr/boot.h-: Bootloader Support
Utilities, 200

<avr/eeprom.k: EEPROM handling,
207

<avr/fuse.h-: Fuse Suppor210

<avrfinterrupt.h>: Interrupts,213

<avrfio.h>: AVR device-specific 10
definitions,236

<avr/lock.l>: Lockbit Support237

<avr/pgmspace: Program Space
Utilities, 240

<avr/power.h-: Power Reduction
Management252

<avr/sfr_defs.b-: Special function
registers257

<avr/sleep.b-: Power Management
and Sleep Mode£59

<avr/version.k-: avr-libc version

macros 260
<avriwdt.h>: Watchdog timer han-
dling, 262
<compat/deprecatedh Deprecated
items,282

<compat/ina90.k: Compatibility
with IAR EWB 3.x, 285
<ctype.h>: Character Operation$23
<errno.h>: System Errors126
<inttypes.h>: Integer Type conver-
sions,126
<math.h>: Mathematics138
<setjmp.b>: Non-local goto,145
<stdint.h>: Standard Integer Types,
147
<stdio.h>: Standard 10 facilities]1 59
<stdlib.h>: General utilities 178
<string.h>: Strings,189
<util/atomic.h> Atomically and Non-
Atomically Executed Code
Blocks,265

<util/crc16.h>: CRC Computations,
269
<util/delay.h>: Convenience func-
tions for busy-wait delay
loops,272
<util/delay_basic.lx: Basic busy-
wait delay loops273
<util/parity.n>: Parity bit generation,
274
<util/setbaud.b-: Helper macros for
baud rate calculationg,75
<util/twi.h>: TWI bit mask defini-
tions, 277
$PATH, 82
$PREFIX,82
—prefix,82
_BvV
avr_sfr,258
_EEGET
avr_eeprom208
_EEPUT
avr_eeprom208
_FDEV_EOF
avr_stdio, 164
_FDEV_ERR
avr_stdio, 164
_FDEV_SETUP_READ
avr_stdio, 164
_FDEV_SETUP_RW
avr_stdio, 164
_FDEV_SETUP_WRITE
avr_stdio, 164
_FFS
avr_string,190
__AVR_LIBC_DATE_
avr_version261
__AVR _LIBC_DATE_STRING___
avr_version261
__AVR_LIBC_MAJOR__
avr_version261
__AVR_LIBC_MINOR__
avr_version261

INDEX

367

__AVR_LIBC_REVISION__
avr_version261
__AVR_LIBC_VERSION -
STRING__
avr_version262
__AVR_LIBC_VERSION__
avr_version261
_ ELPM_classic__
pgmspace.h344
__ELPM_dword_enhanced
pgmspace.344
__ELPM_enhanced___
pgmspace.h344
__ELPM_word_classic___
pgmspace.h345
__ELPM_word_enhanced__
pgmspace.h345
__LPM classic__
pgmspace.346
__LPM dword_classic___
pgmspace.346
__LPM_dword_enhanced__
pgmspace.347
__LPM_enhanced__
pgmspace.347
__LPM_word_classic___
pgmspace.347
__LPM_word_enhanced
pgmspace.h348
__boot_lock_bits_set
boot.h,327
__boot_lock_bits_set_alternate
boot.h,327
__boot_page_erase_alternate
boot.h,327
__boot_page_erase_extended
boot.h,328
__boot_page_erase_normal
boot.h,328
__boot_page_fill_alternate
boot.h,328
__boot_page_fill_extended
boot.h,329
__boot_page_fill_normal
boot.h,329
__boot_page_write_alternate

boot.h,330
__boot_page_write_extended
boot.h,330
__boot_page_write_normal
boot.h,331
__boot_rww_enable
boot.h,331
__boot_rww_enable_alternate
boot.h,331
__compar_fn_t
avr_stdlib,180
__malloc_heap_end
avr_stdlib,189
__malloc_heap_start
avr_stdlib,189
__malloc_margin
avr_stdlib,189
_crcl6é_update
util_crc, 270
_crc_ccitt_update
util_crc, 270
_crc_ibutton_update
util_cre, 271
_crc_xmodem_update
util_crc, 271
_delay _loop_1
util_delay_basic274
_delay _loop_2
util_delay_basic274
_delay_ms
util_delay,273
_delay_us
util_delay,273

A more sophisticated projec®03
A simple project290
abort
avr_stdlib,180
abs
avr_stdlib,180
acos
avr_math,140
Additional notes from <avr/sfr_-
defs.h>, 255
alloca
alloca,122

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

INDEX

368

asin
avr_math140

assert
avr_assert22

assert.h324

atan
avr_math140

atan2
avr_math140

atof
avr_stdlib,181

atoi
avr_stdlib,181

atoi.S,325

atol
avr_stdlib,181

atol.S,325

atomic.h,325

ATOMIC_BLOCK
util_atomic,267

ATOMIC_FORCEON
util_atomic,267

ATOMIC_RESTORESTATE
util_atomic,268

avr_assert
assert122

avr_boot
boot_is_spm_interrup02
boot_lock_bits_sef02
boot_lock_bits_set_saf203
boot_lock_fuse_bits_ge?203
boot_page_eras2p3
boot_page erase_saff)4
boot_page_fill204
boot_page_fill_safe04
boot_page_write204
boot_page_ write_saf@p5
boot_rww_busy205
boot_rww_enable205
boot_rww_enable_safgp5
boot_signature_byte g&t05
boot_spm_busy206
boot_spm_busy_ waif06

boot_spm_interrupt_disabl206
boot_spm_interrupt_enabl206
BOOTLOADER_SECTION206

GET_EXTENDED_FUSE._-
BITS, 207
GET_HIGH_FUSE_BITS207
GET_LOCK_BITS,207
GET_LOW_FUSE_BITS207

avr_eeprom

_EEGET,208
_EEPUT,208

EEMEM, 209
eeprom_busy waif09
eeprom_is_ready09
eeprom_read_bloc09
eeprom_read_byt@09
eeprom_read_dwor@09
eeprom_read_wor@09
eeprom_write_block209
eeprom_write_byte210
eeprom_write_dword}10
eeprom_write_word210

avr_errno

EDOM, 126
ERANGE, 126

avr_interrupts

BADISR_vect,233
cli, 233
EMPTY_INTERRUPT 233
ISR, 234
ISR_ALIAS, 234
ISR_ALIASOF,235
ISR_BLOCK,235
ISR_NAKED, 235
ISR_NOBLOCK,235
reti, 236

sei,236

SIGNAL, 236

avr_inttypes

int_farptr_t,138
PRId16,129
PRId32,129
PRId8,129
PRIJFAST16,130
PRIJFAST32130
PRIJFAST8,130
PRIJLEAST16,130
PRIALEAST32,130
PRIALEAST8,130

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

INDEX

PRIAPTR,130
PRIi16,130
PRIi32,130
PRIi8,130
PRIIFAST16,130
PRIIFAST32,131
PRIIFASTS,131
PRIILEAST16,131
PRIILEAST32,131
PRIILEASTS,131
PRIIPTR,131
PRI016,131
PRI1032,131
PRIl08,131
PRIOFAST16131
PRIOFAST32131
PRIOFAST8,132
PRIOLEAST16,132
PRIOLEAST32,132
PRIOLEASTS,132
PRIOPTR,132
PRIu16,132
PRIu32,132
PRIu8,132
PRIUFAST16132
PRIUFAST32132
PRIUFAST8,132
PRIULEAST16,133
PRIULEAST32,133
PRIULEASTS,133
PRIUPTR133
PRIX16,133
PRIx16,133
PRIX32,133
PRIx32,133
PRIX8,133
PRIx8,133
PRIXFAST16,133
PRIXFAST16,134
PRIXFAST32,134
PRIXFAST32,134
PRIXFASTS,134
PRIXFAST8,134
PRIXLEAST16,134
PRIXLEAST16,134
PRIXLEAST32,134

PRIXLEAST32,134
PRIXLEASTS,134
PRIXLEASTS,134
PRIXPTR,135
PRIXPTR,135
SCNd16,135
SCNd32,135
SCNdFAST16,135
SCNdFAST32135
SCNdLEAST16135
SCNdLEAST32135
SCNdPTR135
SCNi16,135
SCNi32,135
SCNiFAST16,136
SCNIiFAST32,136
SCNILEAST16,136
SCNILEAST32,136
SCNIiPTR,136
SCNo016,136
SCNo032,136
SCNOFAST16136
SCNOFAST32136
SCNoOLEAST16,136
SCNOLEAST32136
SCNoPTR137
SCNul6,137
SCNu32,137
SCNuFAST16,137
SCNuUFAST32,137
SCNuULEAST16137
SCNULEAST32137
SCNuPTR137
SCNx16,137
SCNx32,137
SCNxFAST16.137
SCNxFAST32,138
SCNXLEAST16,138
SCNxLEAST32,138
SCNxPTR,138
uint_farptr_t,138
avr_math
acos,140
asin,140
atan,140
atan2,140

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

INDEX

370

ceil, 141 pgm_read byte nea&42
copysign,141 pgm_read_dword243
cos,141 pgm_read_dword_faP43
cosh,141 pgm_read_dword_ned?43
exp,141 pgm_read_word243
fabs,141 pgm_read word_fag43
fdim, 141 pgm_read word_nea244
floor, 141 PGM_VOID_P,244

fma, 141 prog_char244

fmax, 141 prog_intl6_t244

fmin, 142 prog_int32_t244

fmod, 142 prog_int64 t244

frexp, 142 prog_int8 t245
hypot,142 prog_uchar245
INFINITY, 140 prog_uintl6_t245
isfinite, 142 prog_uint32_t245

isinf, 142 prog_uint64_t245
ishan,142 prog_uint8 t245
Idexp,143 prog_void,245

log, 143 PROGMEM,244
log10,143 PSTR,244

Irint, 143 strcasecmp_R47
Iround, 143 strcasestr_F247

M_PI, 140 strcat_P247
M_SQRT2,140 strchr_P 247

modf,143 strchrnul_P248

NAN, 140 stremp_P248

pow, 144 strcpy_P 248

round,144 strcspn_P248
signbit,144 stricat_P 249

sin, 144 stricpy_P 249

sinh,144 strlen_P 249

sqrt, 144 strncasecmp_R49
square145 strncat_P250

tan,145 strncmp_P250

tanh,145 strncpy_P250
trunc,145 strnlen_P251

avr_pgmspace

memchr_P246
memcmp_P246
memcpy_P246
memmem_P246

strpbrk_P251
strrchr_P251
strsep_P251
strspn_P252
strstr_P 252

memrchr_P246 avr_sfr

PGM_P,242 _BV, 258
pgm_read_byte242 bit_is_clear258
pgm_read_byte fap42 bit_is_set258

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

INDEX

371

loop_until_bit_is_clear258
loop_until_bit_is_set258

avr_sleep

sleep_cpu260
sleep_disable€260
sleep_enable60

avr_stdint

INT16_C,151
INT16_MAX, 151
INT16_MIN, 151
intl6_t,156
INT32_C,151
INT32_MAX, 151
INT32_MIN, 151
int32_t,156
INT64_C,151
INT64_MAX, 152
INT64_MIN, 152
int64_t,156

INT8_C,152
INT8_MAX, 152
INT8_MIN, 152

int8_t, 156
INT_FAST16_MAX,152
INT_FAST16_MIN,152
int_fastl6 t157
INT_FAST32_MAX, 152
INT_FAST32_MIN,152
int_fast32_t157
INT_FAST64_MAX, 152
INT_FAST64_MIN,152
int_fast64 t157
INT_FAST8_MAX, 153
INT_FAST8_MIN, 153
int_fast8 t,157
INT_LEAST16_MAX, 153
INT_LEAST16_MIN, 153
int_leastl6 t157
INT_LEAST32_MAX, 153
INT_LEAST32_MIN, 153
int_least32_t157
INT_LEAST64_MAX, 153
INT_LEAST64_MIN, 153
int_least64 t157
INT_LEAST8_MAX, 153
INT_LEAST8_MIN, 153

int_least8 t157
INTMAX_C, 153
INTMAX_MAX, 154
INTMAX_MIN, 154
intmax_t,157
INTPTR_MAX, 154
INTPTR_MIN, 154
intptr_t, 158
PTRDIFF_MAX, 154
PTRDIFF_MIN, 154
SIG_ATOMIC_MAX, 154
SIG_ATOMIC_MIN, 154
SIZE_MAX, 154
UINT16_C,154
UINT16_MAX, 154
uintl6_t,158
UINT32_C,155
UINT32_MAX, 155
uint32_t,158
UINT64_C,155
UINT64_MAX, 155
uint64_t,158
UINT8_C,155
UINT8_MAX, 155
uint8_t,158
UINT_FAST16_MAX, 155
uint_fast1l6_t158
UINT_FAST32_MAX, 155
uint_fast32_t,158
UINT_FAST64_MAX, 155
uint_fast64 t158
UINT_FAST8_MAX, 155
uint_fast8 t158
UINT_LEAST16_MAX, 155
uint_least16_t159
UINT_LEAST32_MAX, 156
uint_least32_t159
UINT_LEAST64_MAX, 156
uint_least64 t159
UINT_LEAST8 MAX, 156
uint_least8 t159
UINTMAX_C, 156
UINTMAX_MAX, 156
uintmax_t,159
UINTPTR_MAX, 156
uintptr_t,159

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

INDEX

372

avr_stdio

_FDEV_EOF,164
_FDEV_ERR/164
_FDEV_SETUP_READ164
_FDEV_SETUP_RW164
_FDEV_SETUP_WRITE164
clearerr,167

EOF,165

fclose,167
fdev_close 165
fdev_get_udatal 65
fdev_set _udatd,65
FDEV_SETUP_STREAM165
fdev_setup_stream 5
fdevopen, 167

feof, 168

ferror, 168

fflush, 168

fgetc,168

fgets,168

FILE, 166

fprintf, 169

fprintf_P, 169

fputc, 169

fputs, 169
fputs_P,169
fread,169

fscanf,169

fscanf _P]169

fwrite, 170

getc,166

getchar, 166

gets,170

printf, 170
printf_P,170

putc,166

putchar,166

puts,170

puts P170

scanf,170
scanf_P170
snprintf,170
snprintf_P,171

sprintf, 171
sprintf_P,171
sscanfl71

sscanf P171
stderr,166
stdin, 166
stdout,167
ungetc,171
viprintf, 171
viprintf_P,174
vfscanf,174
vfscanf P177
vprintf, 177
vscanf,177
vsnprintf, 177
vshprintf_P,177
vsprintf, 178
vsprintf_P,178

avr_stdlib

__compar_fn_t180
__malloc_heap_end89
__malloc_heap_start89
__malloc_margin189
abort,180

abs,180

atof,181

atoi, 181

atol,181

bsearch181

calloc,182

div, 182
DTOSTR_ALWAYS_SIGN,180
DTOSTR_PLUS_SIGN180
DTOSTR_UPPERCASEL80
dtostre, 182

dtostrf,182

exit, 183

free, 183

itoa, 183

labs,183

Idiv, 184

ltoa, 184

malloc, 184

gsort,184

rand,185

RAND_MAX, 180
rand_r,185

random,185
RANDOM_MAX, 180

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

INDEX 373

random_r]185 strupr,200
realloc,186 avr_version
srand,186 __AVR_LIBC_DATE_,261
srandom 186 __AVR _LIBC_DATE_-
strtod, 186 STRING__,261
strtol, 186 __AVR_LIBC_MAJOR__ 261
strtoul, 187 __AVR_LIBC_MINOR__,261
ultoa, 188 __AVR_LIBC_REVISION__,
utoa,188 261

avr_string __AVR_LIBC_VERSION_-
_FFS,190 STRING__,262
ffs, 191 __AVR_LIBC_VERSION__,
ffsl, 191 261
ffsll, 191 avr_watchdog
memccpy, 191 wdt_disable263
memchr,191 wdt_reset263
memcmp, 192 WDTO_120MS,263
memcpy,192 WDTO_15MS,264
memmem,192 WDTO_1S,264
memmove 192 WDTO_250MS,264
memrchr,193 WDTO_2S,264
memset]193 WDTO_30MS,264
strcasecmpl93 WDTO_4S,264
strcasestr193 WDTO_500MS 265
strcat,194 WDTO_60MS,265
strchr,194 WDTO_8S,265
strchrnul, 194 avrdude, usagd,08
strcmp,194 avrprog, usagel08
strcpy,195
strcspn,]_95 BAD|SR_VeCt
strlcat,195 avr_interrupts233
strlcpy, 196 BAUD_TOL
strlen,196 util_setbaud277
strlwr, 196 bit_is_clear
strncasecmpl96 avr_sfr,258
strncat, 197 bit_is_set
strncmp,197 an_Sfl',258
strncpy,197 boot.h,325
strnlen,197 _bOOt_|OCk_bitS_S€327
strpbrk,198 __boot_lock_bits_set_alternate,
strrchr,198 327
strrev,198 __boot_page_erase_alternate,
strsep,198 327
strspn,199 __boot_page_erase_extended,
strstr,199 328
strtok r,199 __boot_page_erase_norma23

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

INDEX 374

__boot_page_fill_alternat828
__boot_page_fill_extended@?29
__boot_page_fill_normaB29

avr_boot,206
BOOTLOADER_SECTION
avr_boot,206

__boot_page_write_alternate, bsearch

330 avr_stdlib,181
__boot_page_write_extended,

330 calloc
__boot_page_write_norma31 avr_stdlib,182
__boot_rww_enableg31 cbi
__boot_rww_enable_alternate, deprecated_item&83

331 ceil

boot_is_spm_interrupt avr_math141
avr_boot,202 clearerr
boot_lock bits_set avr_stdio, 167

avr_boot,202 cli
boot_lock_bits_set_safe
avr_boot,203

avr_interrupts233
clock prescale_set

boot_lock_fuse_bits_get power.h,349
avr_boot,203 Combining C and assembly source
boot_page_erase files, 287
avr_boot,203 copysign
boot_page_erase_safe avr_math,141
avr_boot,204 cos
boot_page_fill avr_math141
avr_boot, 204 cosh
boot_page_fill_safe avr_math141
avr_boot,204 crc16.h,332
boot_page_write ctype
avr_boot, 204 isalnum,124
boot_page_write_safe isalpha,124
avr_boot,205 isascii,124
boot_rW_busy isblank,124
avr_boot,205 iscntrl, 124
boot_rww_enable isdigit, 124
avr_boot,205 isgraph,124
boot_rww_enable_safe islower,124
avr_boot,205 isprint, 124
boot_signature_byte_get ispunct,125
avr_boot,205 isspacel25
boot_spm_busy isupper,125
avr_boot,206 isxdigit, 125
boot_spm_busy_wait toascii,125
avr_boot,206 tolower,125
boot_spm_interrupt_disable toupper,125
avr_boot,206 ctype.h,332

boot_spm_interrupt_enable

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

INDEX

delay.h,333
delay_basic.h333
Demo projects285
deprecated_items
chi, 283
enable_external_ing83
inb, 283
inp, 283
INTERRUPT,284
outb,284
outp,284
shi, 284
timer_enable_in285
disassembling295
div
avr_stdlib,182
div_t, 323
quot, 323
rem,323
DTOSTR_ALWAYS_SIGN
avr_stdlib,180
DTOSTR_PLUS_SIGN
avr_stdlib,180
DTOSTR_UPPERCASE
avr_stdlib,180
dtostre
avr_stdlib,182
dtostrf
avr_stdlib,182

EDOM
avr_errno126
EEMEM
avr_eeprom209
eeprom_busy_wait
avr_eeprom209
eeprom_is_ready
avr_eeprom209
eeprom_read_block
avr_eeprom209
eeprom_read_byte
avr_eeprom209
eeprom_read_dword
avr_eeprom209
eeprom_read_word
avr_eeprom209

eeprom_write_block
avr_eeprom209
eeprom_write_byte
avr_eeprom210
eeprom_write_dword
avr_eeprom210
eeprom_write_word
avr_eeprom210
EMPTY_INTERRUPT
avr_interrupts233
enable_external_int
deprecated_item&83
EOF
avr_stdio, 165
ERANGE
avr_errmo126
errmo.h,334

Example using the two-wire interface

(Twi), 318
exit
avr_stdlib,183
exp
avr_math141

fabs
avr_math141
FAQ,57
fclose
avr_stdio, 167
fdev_close
avr_stdio, 165
fdev_get udata
avr_stdio, 165
fdev_set _udata
avr_stdio, 165
FDEV_SETUP_STREAM
avr_stdio, 165
fdev_setup_stream
avr_stdio, 165
fdevopen
avr_stdio, 167
fdevopen.c334
fdim
avr_math141
feof
avr_stdio, 168

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

INDEX 376
ferror avr_stdio, 169
avr_stdio, 168 fscanf_P
fflush avr_stdio, 169
avr_stdio, 168 fuse.h,334
ffs fwrite

avr_string,191
ffs.S,334
ffsl
avr_string,191
ffsl.S, 334
ffsll
avr_string,191
ffsll.S, 334
fgetc
avr_stdio, 168
fgets
avr_stdio, 168
FILE
avr_stdio, 166
floor
avr_math141
fma
avr_math141
fmax
avr_math141
fmin
avr_math 142
fmod
avr_math142
fprintf
avr_stdio, 169
fprintf_P
avr_stdio, 169
fputc
avr_stdio, 169
fputs
avr_stdio, 169
fputs_P
avr_stdio, 169
fread
avr_stdio, 169
free
avr_stdlib,183
frexp
avr_math142
fscanf

avr_stdio, 170

GET_EXTENDED_FUSE_BITS

avr_boot,207

GET_HIGH_FUSE_BITS

avr_boot,207
GET_LOCK_BITS
avr_boot207

GET_LOW_FUSE_BITS

avr_boot,207
getc
avr_stdio, 166
getchar
avr_stdio,166
gets
avr_stdio, 170

hypot
avr_math,142

inb

deprecated_item283

INFINITY
avr_math,140

inp

deprecated_item&83

installation,81

installation, avarice§7
installation, avr-libc85
installation, avrdude36
installation, avrprog86
installation, binutils83

installation, gcc85
Installation, gdb86

installation, simulavr87

INT16_C
avr_stdint,151

INT16_MAX
avr_stdint,151

INT16_MIN
avr_stdint, 151

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

INDEX 377
intl6_t INT_FAST8_MAX
avr_stdint,156 avr_stdint, 153
INT32_C INT_FAST8_MIN
avr_stdint,151 avr_stdint,153
INT32_MAX int_fast8_t
avr_stdint,151 avr_stdint, 157
INT32_MIN INT_LEAST16_MAX

avr_stdint,151
int32_t
avr_stdint,156
INT64_C
avr_stdint,151
INT64_MAX
avr_stdint,152
INT64_MIN
avr_stdint, 152
int64_t
avr_stdint,156
INT8_C
avr_stdint,152
INT8_MAX
avr_stdint,152
INT8_MIN
avr_stdint,152
int8_t
avr_stdint,156
int_farptr_t
avr_inttypes,138
INT_FAST16_MAX
avr_stdint,152
INT_FAST16_MIN
avr_stdint,152
int_fastl6 t
avr_stdint,157
INT_FAST32_MAX
avr_stdint,152
INT_FAST32_MIN
avr_stdint,152
int_fast32_t
avr_stdint,157
INT_FAST64_MAX
avr_stdint,152
INT_FAST64_MIN
avr_stdint,152
int_fast64 t
avr_stdint,157

avr_stdint, 153
INT_LEAST16_MIN
avr_stdint,153
int_least16 t
avr_stdint,157
INT_LEAST32_MAX
avr_stdint,153
INT_LEAST32_MIN
avr_stdint,153
int_least32_t
avr_stdint, 157
INT_LEAST64_MAX
avr_stdint,153
INT_LEAST64_MIN
avr_stdint, 153
int_least64 t
avr_stdint, 157
INT_LEAST8_MAX
avr_stdint,153
INT_LEAST8_MIN
avr_stdint, 153
int_least8_t
avr_stdint,157
INTERRUPT
deprecated_item284
interrupt.h,335
INTMAX_C
avr_stdint, 153
INTMAX_MAX
avr_stdint,154
INTMAX_MIN
avr_stdint,154
intmax_t
avr_stdint, 157
INTPTR_MAX
avr_stdint,154
INTPTR_MIN
avr_stdint,154
intptr_t

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

INDEX

378

avr_stdint,158
inttypes.h335
io.h, 338
isalnum
ctype,124
isalpha
ctype,124
isascii
ctype,124
isblank
ctype,124
iscntrl
ctype,124
isdigit
ctype,124
isfinite
avr_math142
isgraph
ctype,124
isinf
avr_math 142
islower
ctype,124
ishan
avr_math 142
isprint
ctype,124
ispunct
ctype,125
ISR
avr_interrupts234
ISR_ALIAS
avr_interrupts234
ISR_ALIASOF
avr_interrupts235
ISR_BLOCK
avr_interrupts235
ISR_NAKED
avr_interrupts235
ISR_NOBLOCK
avr_interrupts235
isspace
ctype,125
isupper
ctype,125
isxdigit

ctype, 125
itoa
avr_stdlib,183

labs
avr_stdlib,183
Idexp
avr_math143
Idiv
avr_stdlib,184
Idiv_t, 324
quot,324
rem,324
lock.h,338
log
avr_math143
log10
avr_math143
longjmp
setjmp,146
loop_until_bhit_is_clear
avr_sfr,258
loop_until_bit_is_set
avr_sfr,258
Irint
avr_math,143
Iround
avr_math143
ltoa
avr_stdlib,184

M_PI
avr_math 140
M_SQRT2
avr_math,140
malloc
avr_stdlib,184
math.h,338
memccpy
avr_string,191
memccpy.S341
memchr
avr_string,191
memchr.S341
memchr_P
avr_pgmspace46

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

INDEX

379

memchr_P.S341
memcmp
avr_string,192
memcmp.S341
memcmp_P
avr_pgmspace46
memcmp_P.S341
memcpy
avr_string,192
memcpy.S341
memcpy_P
avr_pgmspace46
memcpy_P.S341
memmem
avr_string,192
memmem.S341
memmem_P
avr_pgmspace46
memmove
avr_string,192
memmove.S341
memrchr
avr_string,193
memrchr.S341
memrchr_P
avr_pgmspace46
memrchr_P.S341
memset
avr_string,193
memset.S341
modf
avr_math 143

NAN
avr_math 140
NONATOMIC_BLOCK
util_atomic,268
NONATOMIC_FORCEOFF
util_atomic,268
NONATOMIC_RESTORESTATE
util_atomic,268

outb
deprecated_item&84

outp
deprecated_item&84

parity.h,341
parity_even_bit
util_parity, 275
PGM_P
avr_pgmspace42
pgm_read_byte
avr_pgmspace42
pgm_read_byte far
avr_pgmspace42
pgm_read_byte_near
avr_pgmspace42
pgm_read_dword
avr_pgmspace43
pgm_read_dword_far
avr_pgmspace43
pgm_read_dword_near
avr_pgmspace43
pgm_read word
avr_pgmspace43
pgm_read_word_far
avr_pgmspace43
pgm_read word_near
avr_pgmspace44
PGM_VOID_P
avr_pgmspace44
pgmspace.H342
__ELPM_classic__344
__ELPM_dword_enhanced__,
344
__ELPM_enhanced_344
__ELPM_word_classic__345
__ELPM_word_enhanced_345
__LPM_classic__346
__LPM_dword_classic__346
__LPM_dword_enhanced_347
__LPM_enhanced_347
__LPM_word_classic__347
__LPM_word_enhanced_348
pow
avr_math144
power.h,348
clock_prescale_se349
PRId16
avr_inttypes;129
PRId32
avr_inttypes129

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

INDEX 380
PRId8 PRIOFAST16
avr_inttypes129 avr_inttypes131
PRIDFAST16 PRIOFAST32
avr_inttypes,130 avr_inttypes131
PRIJFAST32 PRIOFAST8
avr_inttypes,130 avr_inttypes,132
PRIDFASTS PRIOLEAST16

avr_inttypes,130
PRIJLEAST16
avr_inttypes,130
PRIJLEAST32
avr_inttypes,130
PRIILEASTS
avr_inttypes130
PRIAPTR
avr_inttypes 130
PRIi16
avr_inttypes,130
PRIi32
avr_inttypes,130
PRIi8
avr_inttypes,130
PRIIFAST16
avr_inttypes,130
PRIIFAST32
avr_inttypes 131
PRIIFASTS8
avr_inttypes131
PRIILEAST16
avr_inttypes131
PRIILEAST32
avr_inttypes131
PRIILEAST8
avr_inttypes131
PRIIPTR
avr_inttypes,131
printf
avr_stdio, 170
printf_P
avr_stdio, 170
PRIlo16
avr_inttypes 131
PRIl032
avr_inttypes131
PRIo8
avr_inttypes131

avr_inttypes,132
PRIOLEAST32
avr_inttypes132
PRIOLEASTS
avr_inttypes,132
PRIOPTR
avr_inttypes132
PRIul6
avr_inttypes,132
PRIu32
avr_inttypes,132
PRIu8
avr_inttypes132
PRIUFAST16
avr_inttypes,132
PRIUFAST32
avr_inttypes,132
PRIUFASTS8
avr_inttypes132
PRIULEAST16
avr_inttypes;133
PRIULEAST32
avr_inttypes133
PRIULEASTS
avr_inttypes133
PRIUPTR
avr_inttypes,133
PRIX16
avr_inttypes,133
PRIx16
avr_inttypes133
PRIX32
avr_inttypes;133
PRIx32
avr_inttypes]133
PRIX8
avr_inttypes,133
PRIx8
avr_inttypes133

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

INDEX 381
PRIXFAST16 prog_uints_t
avr_inttypes,133 avr_pgmspace245
PRIXFAST16 prog_void
avr_inttypes,134 avr_pgmspace45
PRIXFAST32 PROGMEM
avr_inttypes 134 avr_pgmspace44
PRIXFAST32 PSTR
avr_inttypes,134 avr_pgmspace44
PRIXFAST8 PTRDIFF_MAX
avr_inttypes,134 avr_stdint,154
PRIXFASTS8 PTRDIFF_MIN
avr_inttypes 134 avr_stdint,154
PRIXLEAST16 putc
avr_inttypes,134 avr_stdio, 166
PRIXLEAST16 putchar
avr_inttypes134 avr_stdio, 166
PRIXLEAST32 puts
avr_inttypes 134 avr_stdio,170
PRIXLEAST32 puts_P
avr_inttypes134 avr_stdio,170
PRIXLEASTS
avr_inttypes134 gsort
PRIXLEASTS8 avr_stdlib,184
avr_inttypes134 quot
PRIXPTR div_t, 323
avr_inttypes135 Idiv_t, 324
PRIXPTR
avr_inttypes135 rand _
prog_char aVr_StdI|b,185
avr_pgmspace244 RAN D_MAX_
prog_int16_t avr_stdlib,180
avr_pgmspace44 rand_r _
prog_int32_t avr_stdlib,185
avr_pgmspace44 random
prog_|nt64_‘[a.Vr_StdI|b,185
avr_pgmspace244 RAN DOM_N_'AX
prog_ints_t aVr_Std“b,lSO
avr_pgmspace45 random_r
prog_uchar " aVr_StdI|b,l85
realloc
proga\l/;ﬁtplgesmts paceas avr_stdlib,186
avr_pgmspace45 rem
prog_uint32_t div_t, 323
Idiv_t, 324

avr_pgmspace45
prog_uint64_t
avr_pgmspace45

reti
avr_interrupts236

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

INDEX

382

round
avr_math144

shi

deprecated_item&84

scanf
avr_stdio, 170
scanf P
avr_stdio, 170
SCNd16
avr_inttypes,135
SCNd32
avr_inttypes,135
SCNdJFAST16
avr_inttypes135
SCNdFAST32
avr_inttypes,135
SCNJLEAST16
avr_inttypes,135
SCNJLEAST32
avr_inttypes,135
SCNdPTR
avr_inttypes135
SCNi16
avr_inttypes 135
SCNi32
avr_inttypes,135
SCNiFAST16
avr_inttypes,136
SCNIFAST32
avr_inttypes,136
SCNILEAST16
avr_inttypes,136
SCNILEAST32
avr_inttypes,136
SCNIPTR
avr_inttypes,136
SCNo16
avr_inttypes136
SCNo32
avr_inttypes 136
SCNOFAST16
avr_inttypes,136
SCNOFAST32
avr_inttypes,136
SCNOLEAST16

avr_inttypes,136
SCNOLEAST32
avr_inttypes136
SCNoPTR
avr_inttypes,137
SCNulé
avr_inttypes,137
SCNu32
avr_inttypes137
SCNuUFAST16
avr_inttypes,137
SCNUFAST32
avr_inttypes,137
SCNULEAST16
avr_inttypes137
SCNULEAST32
avr_inttypes,137
SCNuPTR
avr_inttypes137
SCNx16
avr_inttypes137
SCNx32
avr_inttypes,137
SCNxFAST16
avr_inttypes137
SCNxFAST32
avr_inttypes,138
SCNXLEAST16
avr_inttypes;138
SCNXLEAST32
avr_inttypes;138
SCNxPTR
avr_inttypes,138
sei

avr_interrupts236

setbaud.h349
setjmp
longjmp,146
setjmp,147
setjmp.h349
SIG_ATOMIC_MAX
avr_stdint,154
SIG_ATOMIC_MIN
avr_stdint,154
SIGNAL

avr_interrupts236

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

INDEX

383

signbit
avr_math144
sin
avr_math144
sinh
avr_math144
SIZE_MAX
avr_stdint,154
sleep.h 350
sleep_cpu
avr_sleep260
sleep_disable
avr_sleep260
sleep_enable
avr_sleep260
snprintf
avr_stdio, 170
snprintf_P
avr_stdio, 171
sprintf
avr_stdio, 171
sprintf_P
avr_stdio, 171
sqrt
avr_math144
square
avr_math145
srand
avr_stdlib,186
srandom
avr_stdlib,186
sscanf
avr_stdio, 171
sscanf P
avr_stdio, 171
stderr
avr_stdio, 166
stdin
avr_stdio, 166
stdint.h,350
stdio.h,353
stdlib.h,355
stdout
avr_stdio, 167
strcasecmp
avr_string,193

strcasecmp.B59
strcasecmp_P
avr_pgmspace47
strcasecmp_P.859
strcasestr
avr_string,193
strcasestr.359
strcasestr_P
avr_pgmspace47
strcat
avr_string,194
strcat.S359
strcat_P
avr_pgmspace4?
strcat_P.S359
strchr
avr_string,194
strchr.S 359
strchr_P
avr_pgmspace47
strchr_P.S359
strchrnul
avr_string,194
strchrnul.S359
strchrnul_P
avr_pgmspace48
strchrnul_P.S359
strcmp
avr_string,194
strcmp.S359
strcmp_P
avr_pgmspace48
stremp_P.S359
strcpy
avr_string,195
strcpy.S.359
strcpy_P
avr_pgmspace48
strecpy_P.S359
strcspn
avr_string,195
strespn.S359
strcspn_P
avr_pgmspace48
strecspn_P.S359
string.h,359

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

INDEX 384
strlcat avr_string,197
avr_string,195 strnlen.S362
stricat.S,362 strnlen_P
stricat_P avr_pgmspaces51

avr_pgmspace49
stricat_P.S362
stricpy

avr_string,196
stricpy.S,362
stricpy_P

avr_pgmspace49
stricpy_P.S362
strlen

avr_string,196
strlen.S.362
strlen_P

avr_pgmspace49
strlen_P.S362
striwr

avr_string,196
striwr.S,362
strncasecmp

avr_string,196
strncasecmp. 62
strncasecmp_P

avr_pgmspace49
strncasecmp_P.362
strncat

avr_string,197
strncat.S362
strncat_P

avr_pgmspaces50
strncat_P.S362
strncmp

avr_string,197
strncmp.S362
strncmp_P

avr_pgmspaces50
strncmp_P.S362
strncpy

avr_string,197
strncpy.S362
strncpy_P

avr_pgmspace50
strncpy_P.S362
strnlen

strnlen_P.S362
strpbrk
avr_string,198
strpbrk.S362
strpbrk_P
avr_pgmspaces1
strpbrk_P.S362
strrchr
avr_string,198
strrchr.S362
strrchr_P
avr_pgmspaces1
strrchr_P.S362
strrev
avr_string,198
strrev.S 362
strsep
avr_string,198
strsep.S362
strsep_P
avr_pgmspace51
strsep_P.S5362
strspn
avr_string,199
strspn.S362
strspn_P
avr_pgmspaces2
strspn_P.S362
strstr
avr_string,199
strstr.S,362
strstr_P
avr_pgmspaces2
strstr_P.S362
strtod
avr_stdlib,186
strtok_r
avr_string,199
strtok_r.5,362
strtol
avr_stdlib,186
strtoul

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

INDEX

385

avr_stdlib,187
strupr

avr_string,200
strupr.S 362
supported device®,

tan
avr_math145
tanh
avr_math145
timer_enable_int

deprecated_item&85

toascii
ctype,125
tolower
ctype,125
tools, optional83
tools, required82
toupper
ctype,125
trunc
avr_math145
TW_BUS_ERROR
util_twi, 279
TW_MR_ARB_LOST
util_twi, 279
TW_MR_DATA_ACK
util_twi, 279
TW_MR_DATA_NACK
util_twi, 279
TW_MR_SLA_ACK
util_twi, 279
TW_MR_SLA_NACK
util_twi, 279
TW_MT_ARB_LOST
util_twi, 279
TW_MT_DATA_ACK
util_twi, 279
TW_MT_DATA NACK
util_twi, 279
TW_MT_SLA_ACK
util_twi, 279
TW_MT_SLA_NACK
util_twi, 279
TW_NO_INFO
util_twi, 279

TW_READ
util_twi, 280

TW_REP_START
util_twi, 280

TW_SR_ARB_LOST_GCALL_ACK

util_twi, 280

TW_SR_ARB_LOST_SLA_ACK

util_twi, 280
TW_SR_DATA_ACK
util_twi, 280
TW_SR_DATA_NACK
util_twi, 280
TW_SR_GCALL_ACK
util_twi, 280

TW_SR_GCALL_DATA_ACK

util_twi, 280

TW_SR_GCALL_DATA_NACK

util_twi, 280
TW_SR_SLA ACK

util_twi, 280
TW_SR_STOP

util_twi, 280

TW_ST_ARB_LOST_SLA_ACK

util_twi, 281
TW_ST_DATA_ACK
util_twi, 281
TW_ST_DATA_NACK
util_twi, 281
TW_ST LAST_DATA
util_twi, 281
TW_ST_SLA_ACK

util_twi, 281
TW_START

util_twi, 281
TW_STATUS

util_twi, 281
TW_STATUS_MASK

util_twi, 281
TW_WRITE

util_twi, 281
twi.h, 362

UBRR_VALUE
util_setbaud277

UBRRH_VALUE
util_setbaud277

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

INDEX

386

UBRRL_VALUE

util_setbaud277

UINT16_C
avr_stdint,154
UINT16_MAX
avr_stdint,154
uintl6 t
avr_stdint,158
UINT32_C
avr_stdint,155
UINT32_MAX
avr_stdint,155
uint32_t
avr_stdint,158
UINT64_C
avr_stdint,155
UINT64_MAX
avr_stdint,155
uinté4 _t
avr_stdint,158
UINT8_C
avr_stdint,155
UINT8_MAX
avr_stdint,155
uint8_t
avr_stdint, 158
uint_farptr_t

avr_inttypes,138
UINT_FAST16_MAX

avr_stdint,155
uint_fastl6 t
avr_stdint,158

UINT_FAST32_MAX

avr_stdint,155
uint_fast32 t
avr_stdint,158

UINT_FAST64_MAX

avr_stdint,155
uint_fast64 t
avr_stdint,158
UINT_FAST8_MAX
avr_stdint,155
uint_fast8_t
avr_stdint,158

UINT_LEAST16_MAX

avr_stdint,155

uint_least16 _t
avr_stdint,159
UINT_LEAST32_MAX
avr_stdint,156
uint_least32_t
avr_stdint,159
UINT_LEAST64_MAX
avr_stdint,156
uint_least64 t
avr_stdint,159
UINT_LEAST8_MAX
avr_stdint,156
uint_least8_t
avr_stdint,159
UINTMAX_C
avr_stdint,156
UINTMAX_MAX
avr_stdint,156
uintmax_t
avr_stdint,159
UINTPTR_MAX
avr_stdint,156
uintptr_t
avr_stdint,159
ultoa
avr_stdlib,188
ungetc
avr_stdio, 171
USE_2X
util_setbaud277
Using the standard 10 facilitie§11
util_atomic
ATOMIC_BLOCK, 267
ATOMIC_FORCEON,_267
ATOMIC_RESTORESTATE,
268
NONATOMIC_BLOCK, 268
NONATOMIC_FORCEOFF268
NONATOMIC_-
RESTORESTATE268
util_crc
_crcl6_update70
_crc_ccitt_updateg70
_crc_ibutton_update,71
_crc_xmodem_updatgy1
util_delay

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

INDEX

_delay_ms273
_delay us273

util_delay_basic

_delay loop_1274
_delay_loop_2274

util_parity

parity_even_bit275

util_setbaud

BAUD_TOL, 277
UBRR_VALUE, 277
UBRRH_VALUE, 277
UBRRL_VALUE, 277
USE_2X,277

util_twi

TW_BUS_ERROR279
TW_MR_ARB_LOST,279
TW_MR_DATA_ACK, 279
TW_MR_DATA_NACK, 279
TW_MR_SLA_ACK, 279
TW_MR_SLA_NACK, 279
TW_MT_ARB_LOST,279
TW_MT_DATA_ACK, 279
TW_MT_DATA_NACK, 279
TW_MT_SLA_ACK, 279
TW_MT_SLA_NACK, 279
TW_NO_INFO,279
TW_READ, 280
TW_REP_START?280

TW_SR_ARB_LOST GCALL -

ACK, 280
TW_SR_ARB_LOST_SLA -
ACK, 280
TW_SR_DATA_ACK,280
TW_SR_DATA_NACK,280
TW_SR_GCALL_ACK,280
TW_SR_GCALL_DATA_ACK,
280
TW_SR_GCALL_DATA -
NACK, 280
TW_SR_SLA_ACK,280
TW_SR_STOP280
TW_ST_ARB_LOST_SLA -
ACK, 281
TW_ST_DATA_ACK, 281
TW_ST_DATA_NACK, 281
TW_ST_LAST_DATA,281

TW_ST_SLA_ACK,281
TW_START, 281
TW_STATUS,281
TW_STATUS_MASK,281
TW_WRITE, 281

utoa
avr_stdlib,188

viprintf
avr_stdio, 171
viprintf_P
avr_stdio, 174
vfscanf
avr_stdio, 174
vfscanf_P
avr_stdio, 177
vprintf
avr_stdio, 177
vscanf
avr_stdio, 177
vsnprintf
avr_stdio, 177
vsnprintf_P
avr_stdio, 177
vsprintf
avr_stdio, 178
vsprintf_P
avr_stdio, 178

wdt.h,364
wdt_enable364
wdt_disable
avr_watchdog263
wdt_enable
wdt.h, 364
wdt_reset
avr_watchdog263
WDTO_120MS
avr_watchdog263
WDTO_15MS
avr_watchdog264
WDTO_1S
avr_watchdog264
WDTO_250MS
avr_watchdog64
WDTO_2S

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

INDEX 388

avr_watchdog264
WDTO_30MS
avr_watchdog264
WDTO_4S
avr_watchdog64
WDTO_500MS
avr_watchdog265
WDTO_60MS
avr_watchdog265
WDTO_8S
avr_watchdogg65

Generated on Mon May 19 23:37:39 2008 for avr-libc by Doxygen

	AVR Libc
	Introduction
	General information about this library
	Supported Devices
	avr-libc License

	Toolchain Overview
	Introduction
	FSF and GNU
	GCC
	GNU Binutils
	avr-libc
	Building Software
	AVRDUDE
	GDB / Insight / DDD
	AVaRICE
	SimulAVR
	Utilities
	Toolchain Distributions (Distros)
	Open Source

	Memory Areas and Using malloc()
	Introduction
	Internal vs. external RAM
	Tunables for malloc()
	Implementation details

	Memory Sections
	The .text Section
	The .data Section
	The .bss Section
	The .eeprom Section
	The .noinit Section
	The .initN Sections
	The .finiN Sections
	Using Sections in Assembler Code
	Using Sections in C Code

	Data in Program Space
	Introduction
	A Note On const
	Storing and Retrieving Data in the Program Space
	Storing and Retrieving Strings in the Program Space
	Caveats

	avr-libc and assembler programs
	Introduction
	Invoking the compiler
	Example program
	Pseudo-ops and operators

	Inline Assembler Cookbook
	GCC asm Statement
	Assembler Code
	Input and Output Operands
	Clobbers
	Assembler Macros
	C Stub Functions
	C Names Used in Assembler Code
	Links

	How to Build a Library
	Introduction
	How the Linker Works
	How to Design a Library
	Creating a Library
	Using a Library

	Benchmarks
	A few of libc functions.
	Math functions.

	Porting From IAR to AVR GCC
	Introduction
	Registers
	Interrupt Service Routines (ISRs)
	Intrinsic Routines
	Flash Variables
	Non-Returning main()
	Locking Registers

	Frequently Asked Questions
	FAQ Index
	My program doesn't recognize a variable updated within an interrupt routine
	I get `¨undefined reference to...`¨ for functions like `¨sin()`¨
	How to permanently bind a variable to a register?
	How to modify MCUCR or WDTCR early?
	What is all this _BV() stuff about?
	Can I use C++ on the AVR?
	Shouldn't I initialize all my variables?
	Why do some 16-bit timer registers sometimes get trashed?
	How do I use a #define'd constant in an asm statement?
	Why does the PC randomly jump around when single-stepping through my program in avr-gdb?
	How do I trace an assembler file in avr-gdb?
	How do I pass an IO port as a parameter to a function?
	What registers are used by the C compiler?
	How do I put an array of strings completely in ROM?
	How to use external RAM?
	Which -O flag to use?
	How do I relocate code to a fixed address?
	My UART is generating nonsense! My ATmega128 keeps crashing! Port F is completely broken!
	Why do all my `¨foo...bar`¨ strings eat up the SRAM?
	Why does the compiler compile an 8-bit operation that uses bitwise operators into a 16-bit operation in assembly?
	How to detect RAM memory and variable overlap problems?
	Is it really impossible to program the ATtinyXX in C?
	What is this `¨clock skew detected`¨ messsage?
	Why are (many) interrupt flags cleared by writing a logical 1?
	Why have `¨programmed`¨ fuses the bit value 0?
	Which AVR-specific assembler operators are available?
	Why are interrupts re-enabled in the middle of writing the stack pointer?
	Why are there five different linker scripts?
	How to add a raw binary image to linker output?
	How do I perform a software reset of the AVR?
	I am using floating point math. Why is the compiled code so big? Why does my code not work?

	Building and Installing the GNU Tool Chain
	Building and Installing under Linux, FreeBSD, and Others
	Required Tools
	Optional Tools
	GNU Binutils for the AVR target
	GCC for the AVR target
	AVR Libc
	AVRDUDE
	GDB for the AVR target
	SimulAVR
	AVaRICE
	Building and Installing under Windows
	Tools Required for Building the Toolchain for Windows
	Building the Toolchain for Windows

	Using the GNU tools
	Options for the C compiler avr-gcc
	Machine-specific options for the AVR
	Selected general compiler options

	Options for the assembler avr-as
	Machine-specific assembler options
	Examples for assembler options passed through the C compiler

	Controlling the linker avr-ld
	Selected linker options
	Passing linker options from the C compiler

	Using the avrdude program
	Release Numbering and Methodology
	Release Version Numbering Scheme
	Stable Versions
	Development Versions

	Releasing AVR Libc
	Creating a cvs branch
	Making a release

	Acknowledgments
	Todo List
	Deprecated List
	Module Index
	Modules

	Data Structure Index
	Data Structures

	File Index
	File List

	Module Documentation
	<alloca.h>: Allocate space in the stack
	Detailed Description
	Function Documentation

	<assert.h>: Diagnostics
	Detailed Description
	Define Documentation

	<ctype.h>: Character Operations
	Detailed Description
	Function Documentation

	<errno.h>: System Errors
	Detailed Description
	Define Documentation

	<inttypes.h>: Integer Type conversions
	Detailed Description
	Define Documentation
	Typedef Documentation

	<math.h>: Mathematics
	Detailed Description
	Define Documentation
	Function Documentation

	<setjmp.h>: Non-local goto
	Detailed Description
	Function Documentation

	<stdint.h>: Standard Integer Types
	Detailed Description
	Define Documentation
	Typedef Documentation

	<stdio.h>: Standard IO facilities
	Detailed Description
	Define Documentation
	Function Documentation

	<stdlib.h>: General utilities
	Detailed Description
	Define Documentation
	Typedef Documentation
	Function Documentation
	Variable Documentation

	<string.h>: Strings
	Detailed Description
	Define Documentation
	Function Documentation

	<avr/boot.h>: Bootloader Support Utilities
	Detailed Description
	Define Documentation

	<avr/eeprom.h>: EEPROM handling
	Detailed Description
	Define Documentation
	Function Documentation

	<avr/fuse.h>: Fuse Support
	<avr/interrupt.h>: Interrupts
	Detailed Description
	Define Documentation

	<avr/io.h>: AVR device-specific IO definitions
	<avr/lock.h>: Lockbit Support
	<avr/pgmspace.h>: Program Space Utilities
	Detailed Description
	Define Documentation
	Typedef Documentation
	Function Documentation

	<avr/power.h>: Power Reduction Management
	Additional notes from <avr/sfr_defs.h>
	<avr/sfr_defs.h>: Special function registers
	Detailed Description
	Define Documentation

	<avr/sleep.h>: Power Management and Sleep Modes
	Detailed Description
	Function Documentation

	<avr/version.h>: avr-libc version macros
	Detailed Description
	Define Documentation

	<avr/wdt.h>: Watchdog timer handling
	Detailed Description
	Define Documentation

	<util/atomic.h> Atomically and Non-Atomically Executed Code Blocks
	Detailed Description
	Define Documentation

	<util/crc16.h>: CRC Computations
	Detailed Description
	Function Documentation

	<util/delay.h>: Convenience functions for busy-wait delay loops
	Detailed Description
	Function Documentation

	<util/delay_basic.h>: Basic busy-wait delay loops
	Detailed Description
	Function Documentation

	<util/parity.h>: Parity bit generation
	Detailed Description
	Define Documentation

	<util/setbaud.h>: Helper macros for baud rate calculations
	Detailed Description
	Define Documentation

	<util/twi.h>: TWI bit mask definitions
	Detailed Description
	Define Documentation

	<compat/deprecated.h>: Deprecated items
	Detailed Description
	Define Documentation
	Function Documentation

	<compat/ina90.h>: Compatibility with IAR EWB 3.x
	Demo projects
	Detailed Description

	Combining C and assembly source files
	Hardware setup
	A code walkthrough
	The source code

	A simple project
	The Project
	The Source Code
	Compiling and Linking
	Examining the Object File
	Linker Map Files
	Generating Intel Hex Files
	Letting Make Build the Project
	Reference to the source code

	A more sophisticated project
	Hardware setup
	Functional overview
	A code walkthrough
	The source code

	Using the standard IO facilities
	Hardware setup
	Functional overview
	A code walkthrough
	The source code

	Example using the two-wire interface (TWI)
	Introduction into TWI
	The TWI example project
	The Source Code

	Data Structure Documentation
	div_t Struct Reference
	Detailed Description
	Field Documentation

	ldiv_t Struct Reference
	Detailed Description
	Field Documentation

	File Documentation
	assert.h File Reference
	Detailed Description

	atoi.S File Reference
	Detailed Description

	atol.S File Reference
	Detailed Description

	atomic.h File Reference
	Detailed Description

	boot.h File Reference
	Detailed Description
	Define Documentation

	crc16.h File Reference
	Detailed Description

	ctype.h File Reference
	Detailed Description

	delay.h File Reference
	Detailed Description

	delay_basic.h File Reference
	Detailed Description

	errno.h File Reference
	Detailed Description

	fdevopen.c File Reference
	Detailed Description

	ffs.S File Reference
	Detailed Description

	ffsl.S File Reference
	Detailed Description

	ffsll.S File Reference
	Detailed Description

	fuse.h File Reference
	Detailed Description

	interrupt.h File Reference
	Detailed Description

	inttypes.h File Reference
	Detailed Description

	io.h File Reference
	Detailed Description

	lock.h File Reference
	Detailed Description

	math.h File Reference
	Detailed Description

	memccpy.S File Reference
	Detailed Description

	memchr.S File Reference
	Detailed Description

	memchr_P.S File Reference
	Detailed Description

	memcmp.S File Reference
	Detailed Description

	memcmp_P.S File Reference
	Detailed Description

	memcpy.S File Reference
	Detailed Description

	memcpy_P.S File Reference
	Detailed Description

	memmem.S File Reference
	Detailed Description

	memmove.S File Reference
	Detailed Description

	memrchr.S File Reference
	Detailed Description

	memrchr_P.S File Reference
	Detailed Description

	memset.S File Reference
	Detailed Description

	parity.h File Reference
	Detailed Description

	pgmspace.h File Reference
	Detailed Description
	Define Documentation

	power.h File Reference
	Detailed Description
	Define Documentation

	setbaud.h File Reference
	Detailed Description

	setjmp.h File Reference
	Detailed Description

	sleep.h File Reference
	Detailed Description

	stdint.h File Reference
	Detailed Description

	stdio.h File Reference
	Detailed Description

	stdlib.h File Reference
	Detailed Description

	strcasecmp.S File Reference
	Detailed Description

	strcasecmp_P.S File Reference
	Detailed Description

	strcasestr.S File Reference
	Detailed Description

	strcat.S File Reference
	Detailed Description

	strcat_P.S File Reference
	Detailed Description

	strchr.S File Reference
	Detailed Description

	strchr_P.S File Reference
	Detailed Description

	strchrnul.S File Reference
	Detailed Description

	strchrnul_P.S File Reference
	Detailed Description

	strcmp.S File Reference
	Detailed Description

	strcmp_P.S File Reference
	Detailed Description

	strcpy.S File Reference
	Detailed Description

	strcpy_P.S File Reference
	Detailed Description

	strcspn.S File Reference
	Detailed Description

	strcspn_P.S File Reference
	Detailed Description

	string.h File Reference
	Detailed Description

	strlcat.S File Reference
	Detailed Description

	strlcat_P.S File Reference
	Detailed Description

	strlcpy.S File Reference
	Detailed Description

	strlcpy_P.S File Reference
	Detailed Description

	strlen.S File Reference
	Detailed Description

	strlen_P.S File Reference
	Detailed Description

	strlwr.S File Reference
	Detailed Description

	strncasecmp.S File Reference
	Detailed Description

	strncasecmp_P.S File Reference
	Detailed Description

	strncat.S File Reference
	Detailed Description

	strncat_P.S File Reference
	Detailed Description

	strncmp.S File Reference
	Detailed Description

	strncmp_P.S File Reference
	Detailed Description

	strncpy.S File Reference
	Detailed Description

	strncpy_P.S File Reference
	Detailed Description

	strnlen.S File Reference
	Detailed Description

	strnlen_P.S File Reference
	Detailed Description

	strpbrk.S File Reference
	Detailed Description

	strpbrk_P.S File Reference
	Detailed Description

	strrchr.S File Reference
	Detailed Description

	strrchr_P.S File Reference
	Detailed Description

	strrev.S File Reference
	Detailed Description

	strsep.S File Reference
	Detailed Description

	strsep_P.S File Reference
	Detailed Description

	strspn.S File Reference
	Detailed Description

	strspn_P.S File Reference
	Detailed Description

	strstr.S File Reference
	Detailed Description

	strstr_P.S File Reference
	Detailed Description

	strtok_r.S File Reference
	Detailed Description

	strupr.S File Reference
	Detailed Description

	twi.h File Reference
	Detailed Description

	wdt.h File Reference
	Detailed Description
	Define Documentation

