MatrixType | the type of the matrix of which we are computing the SVD decomposition |
M
x N
with M
>= N
.
Public Member Functions | |
void | compute (const MatrixType &matrix) |
template<typename PositiveType, typename UnitaryType> | |
void | computePositiveUnitary (PositiveType *positive, UnitaryType *unitary) const |
template<typename RotationType, typename ScalingType> | |
void | computeRotationScaling (RotationType *unitary, ScalingType *positive) const |
template<typename ScalingType, typename RotationType> | |
void | computeScalingRotation (ScalingType *positive, RotationType *unitary) const |
template<typename UnitaryType, typename PositiveType> | |
void | computeUnitaryPositive (UnitaryType *unitary, PositiveType *positive) const |
const MatrixUType & | matrixU () const |
const MatrixVType & | matrixV () const |
const SingularValuesType & | singularValues () const |
template<typename OtherDerived, typename ResultType> | |
bool | solve (const MatrixBase< OtherDerived > &b, ResultType *result) const |
SVD & | sort () |
SVD (const MatrixType &matrix) | |
Protected Attributes | |
MatrixUType | m_matU |
MatrixVType | m_matV |
SingularValuesType | m_sigma |
void compute | ( | const MatrixType & | matrix | ) | [inline] |
Computes / recomputes the SVD decomposition A = U S V^* of matrix
void computePositiveUnitary | ( | UnitaryType * | positive, | |
PositiveType * | unitary | |||
) | const [inline] |
Computes the polar decomposition of the matrix, as a product positive x unitary.
If either pointer is zero, the corresponding computation is skipped.
Only for square matrices.
void computeRotationScaling | ( | RotationType * | rotation, | |
ScalingType * | scaling | |||
) | const [inline] |
decomposes the matrix as a product rotation x scaling, the scaling being not necessarily positive.
If either pointer is zero, the corresponding computation is skipped.
This method requires the Geometry module.
void computeScalingRotation | ( | ScalingType * | scaling, | |
RotationType * | rotation | |||
) | const [inline] |
decomposes the matrix as a product scaling x rotation, the scaling being not necessarily positive.
If either pointer is zero, the corresponding computation is skipped.
This method requires the Geometry module.
void computeUnitaryPositive | ( | UnitaryType * | unitary, | |
PositiveType * | positive | |||
) | const [inline] |
Computes the polar decomposition of the matrix, as a product unitary x positive.
If either pointer is zero, the corresponding computation is skipped.
Only for square matrices.
bool solve | ( | const MatrixBase< OtherDerived > & | b, | |
ResultType * | result | |||
) | const [inline] |