The module of subsystem “Data acquisition”
<JavaLikeCalc>

Module: JavaLikeCalc

Name: Calculator based on Java-like language.

Type: DAQ

Source: daq JavaLikeCalc.so

Version: 1.4.0

Author: Roman Savochenko

Translated: Maxim Lysenko

Provides based on java like language calculator and engine of libraries. The user can

Description: create and modify functions and libraries.

License: GPL

Contents table

The module of subsystem “Data acquisition” <JavalLikeCalC>...........cccooeeueeiieeieieieieieeeeenn,
1100 [8To3{To) o FEUT PP
N =AY B [(SN =1 0 Yo (U F= (o (= TR
1.1, Elements Of [aNQUAGE.ot
1.2. Operations Of ANQUAGE.coeeeeeeee ettt e e e e e
1.3. Embedded functions of language............cccoooeeiiiiiiieiiii i
1.4. Operators of the laNQUAGE.uoeeeeeeeeeee e e e
1.5. Examples of programs on the language.............oeueiiiiiiie e

2. Controller and itS CONfiIQUIAtION.........con et
3. The parameter of the controller and its configuration............ccoeveeeeeeee e
4. Libraries of functions Of MOAUIE.c.uieieee e 10
5. User functions of the MOAUIE.............eeeeeieeeeeeeee e e e 10

Introduction

The module of controller JavaLikeCalc provides a mechanism for creating of functions and libraries on
Java-like language. Description of functions on Java-like language is reduced to the binding parameters of
the function with algorithm. In addition, the module has the functions of the direct computation by
creation of the computing controllers.

Direct computations are provided by the creation of controller and linking it with the function of this
module. For linked function it is created the frame of values, with which the periodically calculating is
carried out.

The module implements the functions of the horizontal reservation, namely, working in conjunction
with the remote station of the same level. In addition to the synchronization of the archives of values and
archives of attributes of parameters the module implements synchronization of computational function, in
order to shockless catch of the algorithms.

Parameters of functions can be freely created, deleted or modified. The current version of the module
supports up to 255 parameters of the function in the sum with the internal variables. View of the editor of
functions is shown in Figure 1.

File Edit Wiew Help QTStarter
@ Eﬁ G G wd | = X &g ri)
|Name B . .
Function: Diaphragm
Sound card P 9
Logic level - P
1 Java-like based calculator Function rogramm Execute
Controller: _
= Library: 1o:
Report's documents EI Il | MName |T3rpe| Mode | Hide |Defaurl |
[} Technological devices :
Lag 1 F| Input flow (tonesih) Real Output o]
Moise (2 harmonic + rg I —
Ball crane 2 |Pi Input pressure (ata) Real Input 1
Separator -
Valve 3 [Fo Output flow (tonesmh) Real Input 0
Lag (clear) |
Metwork (loading)
Source (pressure) 4 |Po Output pressure (ata) Real Output 1
Air cooler | _)
Gas compressor 5 |dP Pressure differential (kPa) Real Output [u}
Source (flow) |
Pipe 1-=1 & |Sdf Diaphragm cutset (m2) Real Input 01 g
Pipe 1->2
Plpe 1_}3 l'r_l L= Tttt mina cteat fem Y Raal Iriva mna
Pipe 1-24 Programm:
Vglve proc. mechanisi Pot+=(Po-Pot)i(0 00540*_fro);
Pl uL L Qr=Q0*Pi+0.01;
Pipe aflﬂ Fi=de3*Sdf*sign(Pi-Pot)*pow(Q0*abs{pow (Pi 2)-pow(Pot 2))/293 0.5},
;"’*;t—c‘;"‘p'e Fit+=(Fi-Fit){0.005*0*_frg);
onirolers Po+=0.27*(Fit-Fo)(So*lo* Q0 _frq);
_ Service procedures Po=(Po=0)7?0:(Po=200)7200: Po;
Siemens DAQ - dP-=(dP-100.*(Pi-Pa))if_fre;
Diamond DA boards
Template library:
| Archives
(4 Specials -
IZI User interfaces E
Jronar

Fig.1. View of the editor of functions.

3

After any program changing or configuration of parameters recompiling of the programs with
forestalling of linked with function objects of values of TValCfg is performed. Language compiler is built
using well-known generator grammar «Bison», which is compatible with the not less well-known tool
Yacc.

The language uses the implicit definition of local variables, which is to define a new variable in the
case of assigning a value to it. This type of local variable is set according to the type of the assigning
value. For example, the expression <Qr=QO0*Pi+0.01;> will define Qr variable with the type of variable

QO.

In working with various types of data language uses the mechanism of casting the types in the places
where such casting is appropriate.

To comment the sections of code in the language it is provided «//» and «/ * ... * /» characters.
Everything that comes after "//" up to the end of the line and between «/ * ... * /», is ignored by the
compiler.

During the code generation language compiler produces an optimization of constants and casting the
types of the constants to the required type. Optimizing of the constants means the implementation of
computing of the constants in the process of building of the code under the two constants and paste the
result in the code. For example, the expression <y=pi*10;> reduces to a simple assignment <y=31.4159;>.
Casting the types of constants to the required type means formation of the constant in the code which
excludes the cast in the execution process. For example, the expression <y=x*10>, in the case of a real
type of the variable x, is transformed into <y=x*10.0>.

The language supports calls of the external and internal functions. Name of any function in general is
perceived as a character, test for ownership of which by a particular category is done in the following
order:

-« keywords;

« constants;

« built-in functions;

« external functions;
already registered characters of variables;

« new attributes of the system parameters;
new function parameters;

- new automatic variable.

Call of the external function, attribute of system parameters is written as an address to the object of
dynamic tree of the object model of the system OpenSCADA in the form of:
<DAQ.JavaLikeCalc.lib_techApp.klapNotLin>.

To provide the possibility of writing custom procedures for the administration of the various
components of OpenSCADA module provides the implementation of API pre-compilation of custom
procedures of individual components of OpenSCADA on the implementation of Java-like language. These
components are already: Templates of the parameters of subsystem “Data acquisition” and Visual control
area (VCA).

1. Java-like language

1.1. Elements of language
Keywords: if, else, while, for, break, continue, return, using, true, false.

Constants.
decimal: numerals 0-9 (12, 111, 678);
octal: numerals 0-7 (012, 011, 076);
hexadecimal: numerals 0-9, letters a-f or A-F (0x12, 0XAB);
real: 345.23, 2.1e5, 3.4E-5, 3e6;
boolean: true, false;
string: «helloy.

Types of variables:
integer: 231 231,
real: 3.4 * 10308,

boolean: false, true;
string: juiiHa 256 cUMBOJIOB U 0€3 mepexojia Ha IPYTYI0 CTPOKY.

Built-in constants: pi = 3.14159265, e = 2.71828182, EVAL BOOL(2), EVAL INT(-2147483647),
EVAL_REAL(-3.3E308), EVAL_STR("<EVAL>")

Attributes of the parameters of system OpenSCADA (starting from subsystem DAQ, as follows <Type
of DAQ module>.< Controller>.<Parameter>.<Attribute>).

The functions of the object model of the system OpenSCADA.

1.2. Operations of language

Operations supported by the language presented in the table below. The priority of operations is
reduced from top to bottom. Operations with the same priority is composed of one color group.

Symbol Onucanue
0 Call of the function.
{} Program blocks.

++ Increment (post and pre).

-- Decrement (post and pre).

- Unary minus.

! Logical negation.

~ Bitwise negation.

* Multiplication.

/ Division.

% The remainder of integer division.
+ Addition

- Subtraction

<< Bitwise shift left

>> Bitwise shift right

> Greater

>= Greater than or equal to

Symbol Onucanue

< Less

<= Less than or equal to

== Equals

I= Unequal

| Bitwise «OR»

& Bitwise «<AND»

A Bitwise «Exclusive OR»

&& Boolean «AND»

| Boolean «OR»

0. Conditional operation (i=(1<0)?
. 0:1;)

= Assignment.

+= Assignment with addition.

-= Assignment with subtraction.
*= Assignment with multiplication.
/= Assignment with division.

1.3. Embedded functions of language

To ensure a high speed in mathematical calculations module provides embedded mathematical
functions that are called at the level of commands of virtual machine. Predefined mathematical functions:
sin(x) — sine X;
cos(x) — cosine X;
tan(x) — tangent Xx;
sinh(x) — hyperbolic sine of x;
cosh(x) — hyperbolic cosine of x;
tanh(x) — hyperbolic tangent of x;
asin(x) — arcsine of x;
acos(x) — arc cosine of x;
atan(x) — arctangent of x;
rand(x) — random number from 0 to x;
lg(x) — decimal logarithm of x;
In(x) — natural logarithm of x;
exp(x) — exponent of x;
pow(x,x1) — erection of x to the power x1;
max(x,x1) — maximum value of x and x1;
min(x,x1) — minimum value of x and x1;
sqrt(x) — the square root of x;
abs(x) — absolute value of x;
sign(x) — sign of x;
ceil(x) — rounding the number X to a greater integer;
floor(x) — rounding the number x to a smaller integer.

1.4. Operators of the language

The total list of operators of the language:
« if — operator of the condition “If”;
« else — operator of the condition “ELSE”;
+ while — description of the loop while;
« for — description of the loop for;
+ break — interrupt of the execution of the loop;
- continue — continue the execution of the loop from the beginning;
- using — allows to establish scope of functions of often used library (using Special. FLibSYS;)
for future reference only by means of the function name;
- return — interruption of the function and return of the result, the result is copied to the attribute
with the flag return (return 123;).

1.4.1. Conditional operators

The language of module supports two types of conditions. First — this is the operation of condition for
use within the expression, the second — a global, based on the conditional operators.

Conditions inside the expression is based on the operations of «?» And «:». As an example we'll write
the following practical expression <st open=(pos>=100)?true:false;>, which reads as «If the variable
<pos> greater than or equal to 100, the variable st open is set to true, otherwise — to false.

The global condition is based on the conditional operators «if» and «else». An example is the same
expression, but written by other means <if(pos>100) st open=true; else st open=false;>. As shown, the
expression is written in a different way, but is read in the same way.

1.4.2. Loops

Two types of loops are supported : while and for. The syntax of the loops corresponds to programming
languages: C++, Java, and JavaScript.

Loop while generally written as follows: while(<condition>) <body of the loop>,; Loop for is written
as follows: for(<pre-initialization>;<condition>;<post-calculation>) <body of the loop>,

Where:
<condition> — expression, determining the condition;
<body of the loop> — the body of the loop of multiple execution;
<pre-initialization> — expression of pre-initialization of variable of the loop;
<post-calculation> — expression of modification of parameters of the loop after the next iteration.

1.4.3. Special characters of string variables

The language supports the following special characters of string variables:
"n' — line feed;
"\t' — tabulation symbol,
"b' — culling;
"\f — page feed;
"r' — carriage return;
"\' — the character itself '\'.

1.5. Examples of programs on the language

Here are some examples of programs on Java-like language:

//Model of the course of the executive machinery of ball valve
if(! (st _close && !com) && ! (st open && com))

{

7

tmp up=(pos>0&&p0s<100) ?0: (tmp up>0&&lst com==com) ?tmp up-1./frqg:t up;
pos+=(tmp up>0)?0: (100.* (com?1.:-1.))/(t_full*frq);
pos=(p0os>100)?2100: (pos<0) ?20:pos;
st _open=(pos>=100) ?true:false;
st close=(pos<=0)?true:false; lst com=com;
}
//Valve model
Qr=Q0+Q0*Kpr* (P1-1)+0.01;
Sr=(S _k11*1 k11+S kl2*1 k12)/100.;
Ftmp= (Pi>2.*Po) ?Pi*pow (Q0*0.75/Ti,0.5) :
(Po>2.*Pi) ?Po*pow (Q0*0.75/To,0.5) :
pow (abs (Q0* (pow (Pi,2) -pow (Po,2))/Ti),0.5);
Fi-=(Fi-7260.*Sr*sign (Pi-Po) *Ftmp) / (0.01*1lo*frq) ;
Po+=0.27* (Fi-Fo)/ (So*1o*Q0*frq) ;
Po=(Po<0) ?0: (Po>100)?2100:Po;
To+=(abs (Fi) * (Ti*pow (Po/Pi,0.02)-To) +
(Fwind+1) * (Twind-To) /Riz) / (Ct*So*1lo*Qr*frq) ;

2. Controller and its configuration

The controller of the module connects with the functions of libraries, built with his help, to provide
immediate calculations. In order to provide calculated data in the system OpenSCADA parameters can be
created in the controller. Example of the configuration tab of the controller of the given type depicted in
Figure 2.

urator of OpenSCADA: Demo station
File Edit View Help QTStarter

8B O0C0O0O0O =X L2000 28

Mame Type
| . : | : Controller: Test calculator
= e Demo station Local static
-
== Data Bazes Subsysten Cortroller l Parameters | Calcing]
i security Subsysten
? Transports Subsysten _ State
-y T it protocol Subsyst .
e Transport protocols LBEYSIEN Status: Started. Calc time 26 mks.
= J Data acquisition Subsysten
El- Module: Module Enable: [w|
Data sources gate Mocule i
ModBus Module Run: ¥
DCOM client Moclule Controller DB [n_n | vl
SHMP cliert Mocule
Block based calculator Mocule ~—Canfig
¥& SystemDA Module D:
Sound cardl Module - testCalc
Logic level Madule Mame: [Test calculator
=} Java-like based calculator Module D N
= Contrelier: Controller e
=1 Test calculator Controller Test calculator
test Parameter
Library: Library
Siemens DAQ Moclule
Diamond DA boards Mocule
Template library: Template lit
| Archives Subsysten To enable: [w]
({9 Specials Subsysten To start: []
I!l User interfaces Subsysten
¥ Modules sheduler Subsysten Redundart: n
Loop Remote stz Preferable run: | <High level= ﬂ
Loop S5L Remote stz]
PL¥A Remate st Parameters table: [testCaICJ:rm]
Met book Remote stz Cortroller's function: [Cnntroller.tes*t | v]
Calc period (ms): 1000 =
[Il [III] teration numkber in the calc period: E

 fomr)

Fig.2. Configuration tab of the controller.

From this tab you can set:
« The state of the controller, as follows: Status, «Enabled», «Running» and the name of the
database containing the configuration.
« Id, name and description of the controller.
+ The state, in which the controller must be translated at boot: «Enabled» and «Runningy.
+ Horizontal mode of redundancy and performance preference of the controller.
- Name of table to store the settings.
+ Address of the computational function.
« Period, priority and number of iterations in one cycle of computing task.

9

« Automatic synchronization period of blocks with the database.
+ Save/load controller to/from the database.

Tab “Calculations” of the controller (Fig. 3) contains the parameters and the text of the program,
directly performed by the controller. Also for monitoring of execution the time of calculating of the
program is shown.

w2 L OT Configurator of OpenSCADA: Demo station

File Edit Yiew Help QTStarter
O hat L' 200 @0
88000 = &% u)|® R
Name Type
| . - | = Controller: Test calculator
= ‘ Demo station Local s
“m Data E_ESES Subsysg [Controller | Parameters] Calcing 1
ﬁﬁ, Security Subsys
? Transports Subsys Data:
@ Transport protocols Subsys T
El- | Data acouistion Subsys - _Id | Nameﬂ | Type |h:1c:de | value B
=l Module: Module -
Data sources gate Module 3 |f_stop Function stop flag Boolean Input i
ModBus Maodule .
DCOM clllem Module 4| out out Real Output 30
SHMP client Module
Block based calculator Module .
test Test St Cutput 13.0453833253334
W SystemDA Module 5|t © " ?
Sound card Module m
Logic level Madule G |offset Offset Integer Input 100
= Java-like based calculator Module P‘; ramm:
=l Controller: Control g :
[l Test calculator Contral out+=10;
) test P_ﬂl'ﬂme if{out=100) out=0,
Library: Library iModBus Unidrive pos pos=out;
Siemens DAQ Moclule IModBus testRTU test pos=out;
Diamond DA boards Medule test = rand{offset*0.4);
Template library: Templ Ihval="Test"
[| Archives Subsy Nif{ val=="Test1" || val=="Test2") test="TestN", else test="Test",
4 Specials Subsy
I!I User interfaces Subsys
& Modules sheduler Subsys
=) Loop Remote +
=) | oop SSL Remaote ™
Jfomen]

Fig.3. Tab “Calculations” of the controller.

3. The parameter of the controller and its configuration

Parameter of the controller of the module executes the function of providing the access to the results of
computation of the controller to the system OpenSCADA by attributes if the parameters. Configuration tab
contains only one specific field of the, set the controller only contains a field of listing the parameters of
calculated function, which should be reflected.

10

4. Libraries of functions of module

The module provides a mechanism to create libraries of user functions on Java-like language. Example
of the configuration tab of the library is depicted in Figure 4. The tab contains the basic fields: status,
identifier, name and description, and also address of the table, in which the library is kept. In the
“Functions” tab of the library besides the list of functions the form of copying functions is contained.

-+ | QT Configurator of OpenSCADA: Demo station

File

Edit “iew Help QTStarter

85000 %=

| Mame

B

@ Transport protocols

J Data acquisition
= Module:

-3

0-&-8-B-55

Data sources gate
ModBus

DCON client

SHMP client

Block based calculator
¥ SystemDA
Sound card

Logic level

Java-like based calculator
Controlier:

=l Library:

&)

sys_compile

= Controllers
test1
test

Fun .
Service procedures Lk

.

Report's documents Lib
Technological devices Lib

Lilx

Lik
Lik
Fur

)

]

L2200 S
Function's library: Controller

Library Functions

—State

Accessing. [

Library DB: ["." lib_Controllers

—Config

I controller

Marme: [Controllers

Description:

Programms of cortrollers based on JavalLikeCalc.

#|foman]

Fig.4. Tab of the configuration of the library.

5. User functions of the module

Function, as well as the library, contains the basic configuration tab, tab of the formation of the
program and the parameters of function (Fig. 1), as well as the performance tab of the created function.

	The module of subsystem “Data acquisition” <JavaLikeCalc>
	Introduction
	 1. Java-like language
	 1.1. Elements of language
	 1.2. Operations of language
	 1.3. Embedded functions of language
	 1.4. Operators of the language
	 1.5. Examples of programs on the language

	 2. Controller and its configuration
	 3. The parameter of the controller and its configuration
	 4. Libraries of functions of module
	 5. User functions of the module

