
The XIM Transport Specification

Revision 0.1

X Version 11, Release 7

libX11 1.3.1

Takashi Fujiwara

FUJITSU LIMITED

ABSTRACT

This specification describes the transport layer interfaces between Xlib and IM
Server, which makes various channels usable such as X protocol or, TCP/IP,
DECnet and etc.



Copyright © 1994 by FUJITSU LIMITED

Permission to use, copy, modify, and distribute this documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice and this permission notice appear in all copies. Fujitsu makes no representa-
tions about the suitability for any purpose of the information in this document. This documentation is provided as is
without express or implied warranty.

Copyright © 1994 X Consortium

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documenta-
tion files (the ‘‘Software’’), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Soft-
ware.

THE SOFTWARE IS PROVIDED ‘‘A S IS’’, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTIC-
ULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTH-
ERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to pro-
mote the sale, use or other dealings in this Software without prior written authorization from the X Consortium.

X Window Systemis a trademark of The Open Group.



1. Intr oduction
The Xlib XIM implementation is layered into three functions, a protocol layer, an interface layer
and a transport layer. The purpose of this layering is to make the protocol independent of trans-
port implementation. Each function of these layers are:

The protocol layer
implements overall function of XIM and calls the interface layer functions when it
needs to communicate to IM Server.

The interface layer
separates the implementation of the transport layer from the protocol layer, in other
words, it provides implementation independent hook for the transport layer functions.

The transport layer
handles actual data communication with IM Server. It is done by a set of several func-
tions named transporters.

This specification describes the interface layer and the transport layer, which makes various com-
munication channels usable such as X protocol or, TCP/IP, DECnet, STREAM, etc., and provides
the information needed for adding another new transport layer. In addition, sample implementa-
tions for the transporter using the X connection is described in section 4.

2. Initialization

2.1. Registeringstructur e to initialize
The structure typed as TransportSW contains the list of the transport layer the specific implemen-
tations supports.

typedef struct {
char *transport_name;
Bool (*config);

} TransportSW;

transport_name name of transport(*1)

config initial configuration function

A sample entry for the Xlib supporting transporters is shown below:

TransportSW _XimTransportRec[] = {
/* char*:
* t ransport_name, Bool (*config)()
*/

‘‘ X’ ’, _XimXConf,
‘‘ tcp’’, _XimTransConf,
‘‘ local’’, _XimTransConf,
‘‘ decnet’’, _XimTransConf,
‘‘ streams’’, _XimTransConf,
(char *)NULL, (Bool (*)())NULL,

};

(*1) Refer to "The Input Method Protocol: Appendix B"

1



XIM Transport Specification libX11 1.3.1

2.2. Initialization function
The following function will be called once when Xlib configures the transporter functions.

Bool (*config)(im, transport_data)
XIM im;
char*transport_data;

im Specifies XIM structure address.

transport_dataSpecifies the data specific to the transporter, in IM Server address. (*1)

This function must setup the transporter function pointers.

The actualconfigfunction will be chosen by IM Server at the pre-connection time, matching by
thetransport_namespecified in the_XimTransportRec array; The specific members of Xim-
Proto structure listed below must be initialized so that point they appropriate transporter func-
tions.

If the specified transporter has been configured successfully, this function returns True. There is
no Alternative Entry for config function itself.

The structure XimProto contains the following function pointers:

Bool (*connect)(); /* Open connection */
Bool (*shutdown)(); /* Close connection */
Bool (*write)(); /* Write data */
Bool (*read)(); /* Read data */
Bool (*flush)(); /* Flush data buffer */
Bool (*register_dispatcher)(); /*Register asynchronous data handler */
Bool (*call_dispatcher)(); /* Call dispatcher */

These functions are called when Xlib needs to communicate the IM Server. These functions must
process the appropriate procedure described below.

3. Theinterface/transport layer functions
Following functions are used for the transport interface.

Table 3-1; The Transport Layer Functions.

Alternati ve Entry XimPr oto member
(Interface Layer) (Transport Layer)

Section

_XimConnect connect 3.1

_XimShutdown shutdown 3.2

_XimWrite write 3.3

_XimRead read 3.4

_XimFlush flush 3.5

_XimRegisterDispatcher register_dispatcher 3.6

_XimCallDispatcher call_dispatcher 3.7

The Protocol layer calls the above functions using the Alternative Entry in the left column. The
transport implementation defines XimProto member function in the right column. The Alternative
Entry is provided so as to make easier to implement the Protocol Layer.

(*1) Refer to "The Input Method Protocol: Appendix B"

2



XIM Transport Specification libX11 1.3.1

3.1. Openingconnection
WhenXOpenIM is called, the following function is called to connect with the IM Server.

Bool (*connect)(im)
XIM im;

im Specifies XIM structure address.

This function must establishes the connection to the IM Server. If the connection is established
successfully, this function returns True. TheAlternative Entry for this function is:

Bool _XimConnect(im)
XIM im;

im Specifies XIM structure address.

3.2. Closingconnection
WhenXCloseIM is called, the following function is called to disconnect the connection with the
IM Server. The Alternative Entry for this function is:

Bool (*shutdown)(im)
XIM im;

im Specifies XIM structure address.

This function must close connection with the IM Server. If the connection is closed successfully,
this function returns True. The Alternative Entry for this function is:

Bool _XimShutdown(im)
XIM im;

im Specifies XIM structure address.

3.3. Writing data
The following function is called, when Xlib needs to write data to the IM Server.

Bool (*write)(im, len, data)
XIM im;
INT16 len;
XPointerdata;

im Specifies XIM structure address.

len Specifies the length of writing data.

data Specifies the writing data.

This function writes thedatato the IM Server, reg ardless of the contents. The number of bytes is
passed tolen. The writing data is passed todata. If data is sent successfully, the function returns
True. Refer to "The Input Method Protocol" for the contents of the writing data. The Alternative
Entry for this function is:

Bool _XimWrite(im, len, data)
XIM im;
INT16 len;
XPointerdata;

im Specifies XIM structure address.

3



XIM Transport Specification libX11 1.3.1

len Specifies the length of writing data.

data Specifies the writing data.

3.4. Readingdata
The following function is called when Xlib waits for response from IM server synchronously.

Bool (*read)(im, read_buf, buf_len, ret_len)
XIM im;
XPointerread_buf;
int buf_len;
int *ret_len;

im Specifies XIM structure address.

read_buf Specifies the buffer to store data.

buf_len Specifies the size of thebuffer

ret_len Specifies the length of stored data.

This function stores the read data inread_buf, which size is specified asbuf_len. The size of data
is set toret_len. This function return True, if the data is read normally or reading data is com-
pleted.

The Alternative Entry for this function is:

Bool _XimRead(im, ret_len, buf, buf_len, predicate, predicate_arg)
XIM im;
INT16 *ret_len;
XPointerbuf;
int buf_len;
Bool (*predicate)();
XPointerpredicate_arg;

im Specifies XIM structure address.

ret_len Specifies the size of thedatabuffer.

buf Specifies the buffer to store data.

buf_len Specifies the length ofbuffer.

predicate Specifies the predicate for the XIM data.

predicate_arg Specifies the predicate specific data.

The predicate procedure indicates whether thedata is for the XIM or not.lenThis function stores
the read data inbuf, which size is specified asbuf_len. The size of data is set toret_len. If preedi-
cate()returns True, this function returns True. If not, it calls the registered callback function.

The procedure and its arguments are:

Bool (*predicate)(im, len, data, predicate_arg)
XIM im;
INT16 len;
XPointerdata;
XPointerpredicate_arg;

im Specifies XIM structure address.

len Specifies the size of thedatabuffer.

data Specifies the buffer to store data.

4



XIM Transport Specification libX11 1.3.1

predicate_arg Specifies the predicate specific data.

3.5. Flushingbuffer
The following function is called when Xlib needs to flush the data.

void (*flush)(im)
XIM im;

im Specifies XIM structure address.

This function must flush the data stored in internal buffer on the transport layer. If data transfer is
completed, the function returns True. TheAlternative Entry for this function is:

void _XimFlush(im)
XIM im;

im Specifies XIM structure address.

3.6. Registeringasynchronous data handler
Xlib needs to handle asynchronous response from IM Server. This is because some of the XIM
data occur asynchronously to X events.

Those data will be handled in theFilter, and theFilter will call asynchronous data handler in the
protocol layer. Then it calls dispatchers in the transport layer. The dispatchers are implemented by
the protocol layer. This function must store the information and prepare for later call of the dis-
patchers using_XimCallDispatcher.
When multiple dispatchers are registered, they will be called sequentially in order of registration,
on arrival of asynchronous data. The register_dispatcher is declared as following:

Bool (*register_dispatcher)(im, dispatcher, call_data)
XIM im;
Bool (*dispatcher)();
XPointercall_data;

im Specifies XIM structure address.

dispatcher Specifies the dispatcher function to register.

call_data Specifies a parameter for thedispatcher.

The dispatcher is a function of the following type:

Bool (*dispatcher)(im, len, data, call_data)
XIM im;
INT16 len;
XPointerdata;
XPointercall_data;

im Specifies XIM structure address.

len Specifies the size of thedatabuffer.

data Specifies the buffer to store data.

call_data Specifies a parameter passed to the register_dispatcher.

The dispatcher is provided by the protocol layer. They are called once for every asynchronous
data, in order of registration. If the data is used, it must return True. otherwise, it must return
False.

5



XIM Transport Specification libX11 1.3.1

If the dispatcher function returns True, the Transport Layer assume that the data has been pro-
cessed by the upper layer. The Alternative Entry for this function is:

Bool _XimRegisterDispatcher(im, dispatcher, call_data)
XIM im;
Bool (*dispatcher)();
XPointercall_data;

im Specifies XIM structure address.

dispatcher Specifies the dispatcher function to register.

call_data Specifies a parameter for thedispatcher.

3.7. Callingdispatcher
The following function is used to call the registered dispatcher function, when the asynchronous
response from IM Server has arrived.

Bool (*call_dispatcher)(im, len, data)
XIM im;
INT16 len;
XPointerdata;

im Specifies XIM structure address.

len Specifies the size ofdatabuffer.

data Specifies the buffer to store data.

The call_dispatcher must call the dispatcher function, in order of their registration.lenanddata
are the data passed to register_dispatcher.

The return values are checked at each invocation, and if it finds True, it immediately return with
true for its return value.

It is depend on the upper layer whether the read data is XIM Protocol packet unit or not. The
Alternative Entry for this function is:

Bool _XimCallDispatcher(im, len, data)
XIM im;
INT16 len;
XPointercall_data;

6



XIM Transport Specification libX11 1.3.1

4. Sampleimplementations for the Transport Layer
Sample implementations for the transporter using the X connection is described here.

4.1. XTr ansport
At the beginning of the X Transport connection for the XIM transport mechanism, two different
windows must be created either in an Xlib XIM or in an IM Server, with which the Xlib and the
IM Server exchange the XIM transports by using the ClientMessage events and Window Proper-
ties. Inthe following, the window created by the Xlib is referred as the "client communication
window", and on the other hand, the window created by the IM Server is referred as the "IMS
communication window".

4.1.1. Connection
In order to establish a connection, a communication window is created. AClientMessage in the
following event’s format is sent to the owner window of XIM_SERVER selection, which the IM
Server has created.

Refer to "The Input Method Protocol" for the XIM_SERVER atom.

Table 4-1; The ClientMessage sent to the IMS window.

Structur e Member Contents

int type ClientMessage
u_long serial Set by the X Window System
Bool send_event Setby the X Window System
Display *display The display to which connects
Window window IMS Window ID
Atom message_type XInternAtom(display, ‘‘_XIM_XCONNECT’’, False)
int format 32
long data.l[0] client communication window ID
long data.l[1] client-major-transport-version (*1)
long data.l[2] client-major-transport-version (*1)

In order to establish the connection (to notify the IM Server communication window), the IM
Server sends a ClientMessage in the following event’s format to the client communication win-
dow.

Table 4-2; The ClientMessage sent by IM Server.

Structur e Member Contents

int type ClientMessage
u_long serial Set by the X Window System
Bool send_event Setby the X Window System
Display *display The display to which connects
Window window client communication window ID
Atom message_type XInternAtom(display, ‘‘_XIM_XCONNECT’’, False)
int format 32
long data.l[0] IMS communication window ID
long data.l[1] server-major-transport-version (*1)
long data.l[2] server-minor-transport-version (*1)
long data.l[3] dividing size between ClientMessage and Property (*2)

7



XIM Transport Specification libX11 1.3.1

(*1) major/minor-transport-version
The read/write method is decided by the combination of major/minor-transport-ver-
sion, as follows:

Table 4-3; The read/write method and the major/minor-transport-version

Tr ansport-version read/write

major minor

0 0 only-CM & Property-with-CM
1 only-CM & multi-CM
2 only-CM & multi-CM & Property-with-CM

1 0 PropertyNotify

2 0 only-CM & PropertyNotify
1 only-CM & multi-CM & PropertyNotify

only-CM : data is sent via a ClientMessage
multi-CM : data is sent via multiple ClientMessages
Property-with-CM : data is written in Property, and its Atom

is send via ClientMessage
PropertyNotify : data is written in Property, and its Atom

is send via PropertyNotify

The method to decide major/minor-transport-version is as follows:

(1) Theclient sends 0 as major/minor-transport-version to the IM Server. The client must
support all methods in Table 4-3. The client may send another number as
major/minor-transport-version to use other method than the above in the future.

(2) TheIM Server sends its major/minor-transport-version number to the client. The client
sends data using the method specified by the IM Server.

(3) If major/minor-transport-version number is not available, it is regarded as 0.

(*2) dividing size between ClientMessage and Property
If data is sent via both of multi-CM and Property, specify the dividing size between
ClientMessage and Property. The data, which is smaller than this size, is sent via
multi-CM (or only-CM), and the data, which is lager than this size, is sent via Prop-
erty.

4.1.2. read/write
The data is transferred via either ClientMessage or Window Property in the X Window System.

4.1.2.1. Format for the data from the Client to the IM Server
ClientMessage

If data is sent via ClientMessage event, the format is as follows:

Table 4-4; The ClientMessage event’s format (first or middle)

Structur e Member Contents

8



XIM Transport Specification libX11 1.3.1

Structur e Member Contents

int type ClientMessage
u_long serial Set by the X Window System
Bool send_event Setby the X Window System
Display *display The display to which connects
Window window IMS communication window ID
Atom message_type XInternAtom(display, ‘‘_XIM_MOREDAT A’ ’, False)
int format 8
char data.b[20] (read/write DAT A : 20 byte)

Table 4-5; The ClientMessage event’s format (only or last)

Structur e Member Contents

int type ClientMessage
u_long serial Set by the X Window System
Bool send_event Setby the X Window System
Display *display The display to which connects
Window window IMS communication window ID
Atom message_type XInternAtom(display, ‘‘_XIM_PROT OCOL’’ , False)
int format 8
char data.b[20] (read/write DAT A : MAX 20 byte) (*1)

(*1) If the data is smaller than 20 byte, all data other than available data must be 0.

Property
In the case of large data, data will be sent via the Window Property for the efficiency. There
are the following two methods to notify Property, and transport-version is decided which
method is used.

(1) TheXChangeProperty function is used to store data in the client communication win-
dow, and Atom of the stored data is notified to the IM Server via ClientMessage event.

(2) TheXChangeProperty function is used to store data in the client communication win-
dow, and Atom of the stored data is notified to the IM Server via PropertyNotify event.

The arguments of the XChangeProperty are as follows:

Table 4-6; The XChangeProperty event’s format

Ar gument Contents

Display *display The display to which connects
Window window IMS communication window ID
Atom property read/write property Atom (*1)
Atom type XA_STRING
int format 8
int mode PropModeAppend
u_char *data read/write DAT A
int nelements length of DAT A

(*1) Theread/write property ATOM allocates the following strings byXInternAtom .
‘‘ _clientXXX’’

9



XIM Transport Specification libX11 1.3.1

The client changes the property with the mode of PropModeAppend and the IM Server will
read it with the delete mode i.e. (delete = True).

If Atom is notified via ClientMessage event, the format of the ClientMessage is as follows:

Table 4-7; The ClientMessage event’s format to send Atom of property

Structur e Member Contents

int type ClientMessage
u_long serial Set by the X Window System
Bool send_event Setby the X Window System
Display *display The display to which connects
Window window IMS communication window ID
Atom message_type XInternAtom(display, ‘‘_XIM_PROT OCOL’’ , False)
int format 32
long data.l[0] length of read/write property Atom
long data.l[1] read/write property Atom

4.1.2.2. Format for the data from the IM Server to t he Client
ClientMessage

The format of the ClientMessage is as follows:

Table 4-8; The ClientMessage event’s format (first or middle)

Structur e Member Contents

int type ClientMessage
u_long serial Set by the X Window System
Bool send_event Setby the X Window System
Display *display The display to which connects
Window window client communication window ID
Atom message_type XInternAtom(display, ‘‘_XIM_MOREDAT A’ ’, False)
int format 8
char data.b[20] (read/write DAT A : 20 byte)

Table 4-9; The ClientMessage event’s format (only or last)

Structur e Member Contents

int type ClientMessage
u_long serial Set by the X Window System
Bool send_event Setby the X Window System
Display *display The display to which connects
Window window client communication window ID
Atom message_type XInternAtom(display, ‘‘_XIM_PROT OCOL’’ , False)
int format 8
char data.b[20] (read/write DAT A : MAX 20 byte) (*1)

(*1) If the data size is smaller than 20 bytes, all data other than available data must be 0.

Property

10



XIM Transport Specification libX11 1.3.1

In the case of large data, data will be sent via the Window Property for the efficiency. There
are the following two methods to notify Property, and transport-version is decided which
method is used.

(1) TheXChangeProperty function is used to store data in the IMS communication win-
dow, and Atom of the property is sent via the ClientMessage event.

(2) TheXChangeProperty function is used to store data in the IMS communication win-
dow, and Atom of the property is sent via PropertyNotify event.

The arguments of the XChangeProperty are as follows:

Table 4-10; The XChangeProperty event’s format

Ar gument Contents

Display *display The display which to connects
Window window client communication window ID
Atom property read/write property Atom (*1)
Atom type XA_STRING
int format 8
int mode PropModeAppend
u_char *data read/write DAT A
int nelements length of DAT A

(*1) Theread/write property ATOM allocates some strings, which are not allocated by the
client, byXInternAtom .

The IM Server changes the property with the mode of PropModeAppend and the client
reads it with the delete mode, i.e. (delete = True).

If Atom is notified via ClientMessage event, the format of the ClientMessage is as follows:

Table 4-11; The ClientMessage event’s format to send Atom of property

Structur e Member Contents

int type ClientMessage
u_long serial Set by the X Window System
Bool send_event Setby the X Window System
Display *display The display to which connects
Window window client communication window ID
Atom message_type XInternAtom(display, ‘‘_XIM_PROT OCOL’’ , False)
int format 32
long data.l[0] length of read/write property ATOM
long data.l[1] read/write property ATOM

4.1.3. ClosingConnection
If the client disconnect with the IM Server, shutdown function should free the communication
window properties and etc..

5. References
[1] Masahiko Narita and Hideki Hiura,‘‘ The Input Method Protocol’’

11


