OpenPGP:SDK

"PGP is not just for email"

Ben Laurie and Rachel Willmer Nominet Ltd EuroOSCON 2005

Overview

The OpenPGP:SDK What PGP does History <u>Current state of play</u> PGP not just for email Other applications The OpenPGP:SDK

OpenPGP:SDK

New open source library for OpenPGP Developed from scratch Apache/BSD licence Portable BSD/Linux/Solaris known to work <u>http://openpgp.nominet.org.uk</u>

What PGP does

 "OpenPGP software uses a combination of strong publickey and symmetric cryptography to provide security services for electronic communications and data storage". [Source: RFC 2440]

Provides:

- Confidentiality via Encryption
- Authentication via Digital Signatures
- Key Management

Common Usages:

- Public-key Email Encryption and Signing
- Secure Disk storage
- Software Signing

OpenPGP timeline

PGP not just for email

Main use is email
Secondary use is secure disk storage
Software signing

Other Applications

Authorisation for use of automated services

X.509 Client certification using PGP

Notarisation
 Medical research
 Copyright

Example: Automated Authenticated Services

Network Solutions use PGP for authentication of DNS changes

- Also Nominet (who have funded the OpenPGP:SDK) and RIPE
- Apache Software Foundation trialling PGP in their new CA project

DNS

- Network Solutions, Nominet
 Simple system:

 Domain owner registers key
 Domain changes sent by PGP-signed email
 Begistrar checks request is signed by
 - Registrar checks request is signed by registered key

Apache CA

A signs "B owns project Q"

B signs "P is subproject of project Q"

 B signs "User X has access to project P"

Validation steps

To check that user X has subversion access to project P:

- Validate that A is ASF board member
 - Build keyring, check signature
- Validate that A has signed B's right to control project Q
 - Build keyring, check signature
- Validate that B has signed project P as subproject of project Q
 - Build keyring, check signature
- Validate that B has signed user X as member of project P
 - Build keyring, check signature

8 invocations of command line tool for 1 user validation

SDK gives you the ability to do fine-grain operations within a single process

Example: X.509/PGP certificates for online authentication

- What's wrong with X.509 certificates?
 - Hierachical structure
 - Command line tool complicated
 - Long-winded process to get certificate
- What's right with X.509 certificates?
 Leverage existing browser/server infrastructure

Solution: combine X.509 with PGP web of trust

X.509/PGP – how it would work

Server wants access control with Public Key cryptography

Setup:

- User sends PGP key to server for signing
- Utility to create X.509 client cert with PGP public key embedded (New)
- (X.509 cert can be self-signed, signature is irrelevant)
- User installs X.509 cert in browser

Usage:

- Browser provides cert to server
- Server ignores X.509 signature and checks PGP key
- Is PGP key valid and signed by server?
- If yes, access granted
- Benefit of this approach:
 - Usability: Uses existing browser/server auth mechanism
 - Uses PGP "web of trust"
 - X.509 certificate merely conduit for PGP key exchange

Example: Notarisation

- "Real World" example: copyright protection
- Online equivalent: can do today with existing tools with manual process
- Automated online process would benefit from library
- Applications: copyright, medical research
- Blind Notarisation

The OpenPGP:SDK

A low-level C API for OpenPGP
Based around C structures for each OpenPGP data structure
Can parse OpenPGP packets to produce structures...

...or, use structures to construct packets

The Parser

You provide:

- A Reader: A function that will read data (e.g. from a file, a socket or some memory)
- A Callback: which consumes parsed packets

We provide:

- Some standard readers (e.g. from file desciptor, from memory)
- Stackable readers (e.g. read armoured data or compressed packets)
- A basic parser
- Stackable parsers (e.g. accumulate a keyring)

The Reader

Trivial interface – given a buffer and a length, reads as much as it can
Is not expected to...
Buffer
Seek
Skip data
Can stack on top of another reader

The Callback

Called for each parsed packet

 Handed the structure corresponding to the packet

Also called for errors

- Indefinite length packets are chunked (e.g. signed cleartext)
- Callbacks can be stacked (e.g. chunked packets could be consolidated in a stacked callback)

Support Library

Low-level functions

- Hashes
- Encryption
- Signatures
- Compression
- Big Number operations
- Mostly provided by OpenSSL, but pluggable

Support Library

High-level functions (using OpenPGP:SDK data structures)

- Check OpenPGP signature
 - On key, subkey, data, cleartext...
- Generate OpenPGP signature
- Decrypt encrypted packets
- Generate encrypted packets
- Etc...

Packet Construction

(At least) one API per packet type

- Completely freedom to construct all valid packets in any order
- Packets are constructed from C data structures
- Packets are constructed in memory then you do what you want with them
- We may provide higher-level APIs to construct standard sequences of packets

Example – Read a Keyring

memset(&keyring,'\0',sizeof keyring);
ops_parse_options_init(&opt);

ops_parse_and_accumulate(&keyring,&opt);

close(arg.fd);

Example – Verify Cleartext Sig I

case OPS_PTAG_CT_SIGNED_CLEARTEXT_HEADER:

free(signed_data);
signed_data=NULL;
length=0;
break;

case OPS_PTAG_CT_SIGNED_CLEARTEXT_TRAILER: signed_hash=content->signed_cleartext_trailer.hash; return OPS_KEEP_MEMORY;

Example – Verify Cleartext Sig II

```
case OPS_PTAG_CT_SIGNATURE:
```

```
signer=ops_keyring_find_key_by_id(&keyring,
```

content->signature.signer_id);

```
if(!signer)
    {
    fprintf(stderr,"SIGNER UNKNOWN!!!\n");
    exit(2);
    }
```

if(ops_check_hash_signature(signed_hash,&content->signature,

```
ops_get_public_key_from_data(signer)))
{
    puts("Good signature...\n");
    fputs(signed_data,stdout);
    free(signed_data);
    length=0;
    }
else
    {
    fprintf(stderr,"BAD SIGNATURE!!!\n");
    exit(1);
    }
break;
```

Header

Hashed Subpacket 1

Hashed Subpacket 2, etc

Unhashed Subpacket 1

Unhashed Subpacket 2, etc

Signature

Example – Write Self-Signed Key

ops_write_struct_public_key(&skey.public_key,&opt);

ops_fast_create_user_id(&id,user_id); ops_write_struct_user_id(&id,&opt);

ops_keyid(keyid,&skey.public_key); ops_signature_add_issuer_key_id(&sig,keyid);

ops_signature_add_primary_user_id(&sig,ops_true);

ops_signature_hashed_subpackets_end(&sig);

ops_write_signature(&sig,&skey.public_key,&skey,&opt);

The OpenPGP:SDK

http://openpgp.nominet.org.uk/