/* * Copyright 2018-2021 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * HMAC low level APIs are deprecated for public use, but still ok for internal * use. */ #include "internal/deprecated.h" #include #include #include #include #include #include #include #include #include "internal/cryptlib.h" #include "internal/numbers.h" #include "crypto/evp.h" #include "prov/provider_ctx.h" #include "prov/providercommon.h" #include "prov/implementations.h" #include "prov/provider_util.h" #include "pbkdf2.h" /* Constants specified in SP800-132 */ #define KDF_PBKDF2_MIN_KEY_LEN_BITS 112 #define KDF_PBKDF2_MAX_KEY_LEN_DIGEST_RATIO 0xFFFFFFFF #define KDF_PBKDF2_MIN_ITERATIONS 1000 #define KDF_PBKDF2_MIN_SALT_LEN (128 / 8) static OSSL_FUNC_kdf_newctx_fn kdf_pbkdf2_new; static OSSL_FUNC_kdf_freectx_fn kdf_pbkdf2_free; static OSSL_FUNC_kdf_reset_fn kdf_pbkdf2_reset; static OSSL_FUNC_kdf_derive_fn kdf_pbkdf2_derive; static OSSL_FUNC_kdf_settable_ctx_params_fn kdf_pbkdf2_settable_ctx_params; static OSSL_FUNC_kdf_set_ctx_params_fn kdf_pbkdf2_set_ctx_params; static OSSL_FUNC_kdf_gettable_ctx_params_fn kdf_pbkdf2_gettable_ctx_params; static OSSL_FUNC_kdf_get_ctx_params_fn kdf_pbkdf2_get_ctx_params; static int pbkdf2_derive(const char *pass, size_t passlen, const unsigned char *salt, int saltlen, uint64_t iter, const EVP_MD *digest, unsigned char *key, size_t keylen, int extra_checks); typedef struct { void *provctx; unsigned char *pass; size_t pass_len; unsigned char *salt; size_t salt_len; uint64_t iter; PROV_DIGEST digest; int lower_bound_checks; } KDF_PBKDF2; static void kdf_pbkdf2_init(KDF_PBKDF2 *ctx); static void *kdf_pbkdf2_new(void *provctx) { KDF_PBKDF2 *ctx; if (!ossl_prov_is_running()) return NULL; ctx = OPENSSL_zalloc(sizeof(*ctx)); if (ctx == NULL) { ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE); return NULL; } ctx->provctx = provctx; kdf_pbkdf2_init(ctx); return ctx; } static void kdf_pbkdf2_cleanup(KDF_PBKDF2 *ctx) { ossl_prov_digest_reset(&ctx->digest); OPENSSL_free(ctx->salt); OPENSSL_clear_free(ctx->pass, ctx->pass_len); memset(ctx, 0, sizeof(*ctx)); } static void kdf_pbkdf2_free(void *vctx) { KDF_PBKDF2 *ctx = (KDF_PBKDF2 *)vctx; if (ctx != NULL) { kdf_pbkdf2_cleanup(ctx); OPENSSL_free(ctx); } } static void kdf_pbkdf2_reset(void *vctx) { KDF_PBKDF2 *ctx = (KDF_PBKDF2 *)vctx; void *provctx = ctx->provctx; kdf_pbkdf2_cleanup(ctx); ctx->provctx = provctx; kdf_pbkdf2_init(ctx); } static void kdf_pbkdf2_init(KDF_PBKDF2 *ctx) { OSSL_PARAM params[2] = { OSSL_PARAM_END, OSSL_PARAM_END }; OSSL_LIB_CTX *provctx = PROV_LIBCTX_OF(ctx->provctx); params[0] = OSSL_PARAM_construct_utf8_string(OSSL_KDF_PARAM_DIGEST, SN_sha1, 0); if (!ossl_prov_digest_load_from_params(&ctx->digest, params, provctx)) /* This is an error, but there is no way to indicate such directly */ ossl_prov_digest_reset(&ctx->digest); ctx->iter = PKCS5_DEFAULT_ITER; ctx->lower_bound_checks = ossl_kdf_pbkdf2_default_checks; } static int pbkdf2_set_membuf(unsigned char **buffer, size_t *buflen, const OSSL_PARAM *p) { OPENSSL_clear_free(*buffer, *buflen); *buffer = NULL; *buflen = 0; if (p->data_size == 0) { if ((*buffer = OPENSSL_malloc(1)) == NULL) { ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE); return 0; } } else if (p->data != NULL) { if (!OSSL_PARAM_get_octet_string(p, (void **)buffer, 0, buflen)) return 0; } return 1; } static int kdf_pbkdf2_derive(void *vctx, unsigned char *key, size_t keylen, const OSSL_PARAM params[]) { KDF_PBKDF2 *ctx = (KDF_PBKDF2 *)vctx; const EVP_MD *md; if (!ossl_prov_is_running() || !kdf_pbkdf2_set_ctx_params(ctx, params)) return 0; if (ctx->pass == NULL) { ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_PASS); return 0; } if (ctx->salt == NULL) { ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_SALT); return 0; } md = ossl_prov_digest_md(&ctx->digest); return pbkdf2_derive((char *)ctx->pass, ctx->pass_len, ctx->salt, ctx->salt_len, ctx->iter, md, key, keylen, ctx->lower_bound_checks); } static int kdf_pbkdf2_set_ctx_params(void *vctx, const OSSL_PARAM params[]) { const OSSL_PARAM *p; KDF_PBKDF2 *ctx = vctx; OSSL_LIB_CTX *provctx = PROV_LIBCTX_OF(ctx->provctx); int pkcs5; uint64_t iter, min_iter; if (params == NULL) return 1; if (!ossl_prov_digest_load_from_params(&ctx->digest, params, provctx)) return 0; if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_PKCS5)) != NULL) { if (!OSSL_PARAM_get_int(p, &pkcs5)) return 0; ctx->lower_bound_checks = pkcs5 == 0; } if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_PASSWORD)) != NULL) if (!pbkdf2_set_membuf(&ctx->pass, &ctx->pass_len, p)) return 0; if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SALT)) != NULL) { if (ctx->lower_bound_checks != 0 && p->data_size < KDF_PBKDF2_MIN_SALT_LEN) { ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_SALT_LENGTH); return 0; } if (!pbkdf2_set_membuf(&ctx->salt, &ctx->salt_len,p)) return 0; } if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_ITER)) != NULL) { if (!OSSL_PARAM_get_uint64(p, &iter)) return 0; min_iter = ctx->lower_bound_checks != 0 ? KDF_PBKDF2_MIN_ITERATIONS : 1; if (iter < min_iter) { ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_ITERATION_COUNT); return 0; } ctx->iter = iter; } return 1; } static const OSSL_PARAM *kdf_pbkdf2_settable_ctx_params(ossl_unused void *ctx, ossl_unused void *p_ctx) { static const OSSL_PARAM known_settable_ctx_params[] = { OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_PROPERTIES, NULL, 0), OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_DIGEST, NULL, 0), OSSL_PARAM_octet_string(OSSL_KDF_PARAM_PASSWORD, NULL, 0), OSSL_PARAM_octet_string(OSSL_KDF_PARAM_SALT, NULL, 0), OSSL_PARAM_uint64(OSSL_KDF_PARAM_ITER, NULL), OSSL_PARAM_int(OSSL_KDF_PARAM_PKCS5, NULL), OSSL_PARAM_END }; return known_settable_ctx_params; } static int kdf_pbkdf2_get_ctx_params(void *vctx, OSSL_PARAM params[]) { OSSL_PARAM *p; if ((p = OSSL_PARAM_locate(params, OSSL_KDF_PARAM_SIZE)) != NULL) return OSSL_PARAM_set_size_t(p, SIZE_MAX); return -2; } static const OSSL_PARAM *kdf_pbkdf2_gettable_ctx_params(ossl_unused void *ctx, ossl_unused void *p_ctx) { static const OSSL_PARAM known_gettable_ctx_params[] = { OSSL_PARAM_size_t(OSSL_KDF_PARAM_SIZE, NULL), OSSL_PARAM_END }; return known_gettable_ctx_params; } const OSSL_DISPATCH ossl_kdf_pbkdf2_functions[] = { { OSSL_FUNC_KDF_NEWCTX, (void(*)(void))kdf_pbkdf2_new }, { OSSL_FUNC_KDF_FREECTX, (void(*)(void))kdf_pbkdf2_free }, { OSSL_FUNC_KDF_RESET, (void(*)(void))kdf_pbkdf2_reset }, { OSSL_FUNC_KDF_DERIVE, (void(*)(void))kdf_pbkdf2_derive }, { OSSL_FUNC_KDF_SETTABLE_CTX_PARAMS, (void(*)(void))kdf_pbkdf2_settable_ctx_params }, { OSSL_FUNC_KDF_SET_CTX_PARAMS, (void(*)(void))kdf_pbkdf2_set_ctx_params }, { OSSL_FUNC_KDF_GETTABLE_CTX_PARAMS, (void(*)(void))kdf_pbkdf2_gettable_ctx_params }, { OSSL_FUNC_KDF_GET_CTX_PARAMS, (void(*)(void))kdf_pbkdf2_get_ctx_params }, { 0, NULL } }; /* * This is an implementation of PKCS#5 v2.0 password based encryption key * derivation function PBKDF2. SHA1 version verified against test vectors * posted by Peter Gutmann to the PKCS-TNG mailing list. * * The constraints specified by SP800-132 have been added i.e. * - Check the range of the key length. * - Minimum iteration count of 1000. * - Randomly-generated portion of the salt shall be at least 128 bits. */ static int pbkdf2_derive(const char *pass, size_t passlen, const unsigned char *salt, int saltlen, uint64_t iter, const EVP_MD *digest, unsigned char *key, size_t keylen, int lower_bound_checks) { int ret = 0; unsigned char digtmp[EVP_MAX_MD_SIZE], *p, itmp[4]; int cplen, k, tkeylen, mdlen; uint64_t j; unsigned long i = 1; HMAC_CTX *hctx_tpl = NULL, *hctx = NULL; mdlen = EVP_MD_get_size(digest); if (mdlen <= 0) return 0; /* * This check should always be done because keylen / mdlen >= (2^32 - 1) * results in an overflow of the loop counter 'i'. */ if ((keylen / mdlen) >= KDF_PBKDF2_MAX_KEY_LEN_DIGEST_RATIO) { ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_KEY_LENGTH); return 0; } if (lower_bound_checks) { if ((keylen * 8) < KDF_PBKDF2_MIN_KEY_LEN_BITS) { ERR_raise(ERR_LIB_PROV, PROV_R_KEY_SIZE_TOO_SMALL); return 0; } if (saltlen < KDF_PBKDF2_MIN_SALT_LEN) { ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_SALT_LENGTH); return 0; } if (iter < KDF_PBKDF2_MIN_ITERATIONS) { ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_ITERATION_COUNT); return 0; } } hctx_tpl = HMAC_CTX_new(); if (hctx_tpl == NULL) return 0; p = key; tkeylen = keylen; if (!HMAC_Init_ex(hctx_tpl, pass, passlen, digest, NULL)) goto err; hctx = HMAC_CTX_new(); if (hctx == NULL) goto err; while (tkeylen) { if (tkeylen > mdlen) cplen = mdlen; else cplen = tkeylen; /* * We are unlikely to ever use more than 256 blocks (5120 bits!) but * just in case... */ itmp[0] = (unsigned char)((i >> 24) & 0xff); itmp[1] = (unsigned char)((i >> 16) & 0xff); itmp[2] = (unsigned char)((i >> 8) & 0xff); itmp[3] = (unsigned char)(i & 0xff); if (!HMAC_CTX_copy(hctx, hctx_tpl)) goto err; if (!HMAC_Update(hctx, salt, saltlen) || !HMAC_Update(hctx, itmp, 4) || !HMAC_Final(hctx, digtmp, NULL)) goto err; memcpy(p, digtmp, cplen); for (j = 1; j < iter; j++) { if (!HMAC_CTX_copy(hctx, hctx_tpl)) goto err; if (!HMAC_Update(hctx, digtmp, mdlen) || !HMAC_Final(hctx, digtmp, NULL)) goto err; for (k = 0; k < cplen; k++) p[k] ^= digtmp[k]; } tkeylen -= cplen; i++; p += cplen; } ret = 1; err: HMAC_CTX_free(hctx); HMAC_CTX_free(hctx_tpl); return ret; }