A C++ interface to SWI-Prolog

Jan Wielemaker
SWI,
University of Amsterdam
The Netherlands
E-mail: jan@swi.psy.uva.nl

February 7, 2001

Abstract

This document describes a C++ interface to SWI-Prolog. SWI-Prolog could be used with C++
for a very long time, but only by calling the extern "C" functions of the C-interface. The interface
described herein provides a true C++ layer around the C-interface for much more concise and
natural programming from C++. The interface deals with automatic type-conversion to and from

native C data-types, transparent mapping of exceptions, making queries to Prolog and registering
foreign predicates.

Contents

10

11

12

Introduction 4
Overview 4
Examples 5
3.1 HelloWorld) e 5
3.2 Addingnumbers e 6
3.3 Averageof solutions. 6
The class PITerm 7
4.1 ConstruCtors v e e e e e e e e e e e e e 7
4.2 Casting PITermtonative C-types. o i i i i e e 8
4.3 Unification 0 8
4.4 CompariSON. . . . v v v e e e e e e e e e 9
4.5 Analysingcompoundterms. e 9
4.6 Miscellaneous e e e e 10
47 TheclassPIString e 10
4.8 TheclassPICodeList o o i e e e 10
49 Theclass PICharList. e e e e 11
410 TheclassPICompound. e 11
411 TheclassPITail e e e e 11
The class PlITermv 12
Supporting Prolog constants 13
The class PIRegister 14
The class PlQuery 15
8.1 TheclassPIFrame. 0 e 16
The PREDICATE macro 17
9.1 Controlling the Prolog destinationmodule. 17
Exceptions 18
10.1 Theclass PIExceptian. e e 18
10.2 Theclass PITypeError. e e e e e e e e 19
10.3 Theclass PIDomainErrar. v v v i e e e e e e e e e e e e 19
Embedded applications 20
Considerations 20
12.1 The C++versusthe Cinterface i i i i i 20
12.2 Static linkingand embedding. oL 20
12.3 Status and compilerversions. Lo e e e 21
12.4 Limitations e e e e e e e e e 21

13 Conclusions

21

1 Introduction

C++ provides a number of features that make it possible to define a much more natural and concise
interface to dynamically typed languages than plain C does. Using programmable type-conversion
(casting, native data-types can be translated automatically into appropriate Prolog types, automatic
destructors can be used to deal with most of the cleanup required and C++ exception handling can be
used to map Prolog exceptions and interface conversion errors to C++ exceptions, which are automat-
ically mapped to Prolog exceptions as control is turned back to Prolog.

Acknowledgements

| would like to thank Anjo Anjewierden for comments on the definition, implementation and docu-
mentation of this package.

2 Overview

The most useful area for exploiting C++ features is type-conversion. Prolog variables are dynamically
typed and all information is passed around using the C-interfacetéype t . In C++,term_t is
embedded in théightweight classPITerm Constructors and operator definitions provide flexible
operations and integration with important C-typeldr * ,long anddouble).

The list below summarises the classes defined in the C++ interface.

Class PITerm
Generic Prolog term. Provides constructors and operators for conversion to native C-data and
type-checking.

Class PIString
Subclass oPITermwith constructors for building Prolog string objects.

Class PICodeList
Subclass oPITermwith constructors for building Prolog lists of ASCII values.

Class PICharList
Subclass ofPITerm with constructors for building Prolog lists of one-character atoms (as
atom_chars/2).

Class PICompound
Subclass oPITermwith constructors for building compound terms.

Class PITall
SubClass oPITermfor building and analysing Prolog lists.

Class PITermv
Vector of Prolog terms. See PL_new_term_refs(). [fheoperator is overloaded to access
elements in this vectoRITermvis used to build complex terms and provide argument-lists to
Prolog goals.

Class PIException
Subclass oPITermrepresenting a Prolog exception. Provides methods for the Prolog commu-
nication and mapping to human-readable text representation.

4

Class PITypeError
Subclass oPIExceptionfor representing a Prolalype_error exception.

Class PIDomainError
Subclass oPIExceptiorfor representing a Prologomain_error exception.

Class PIAtom
Allow for manipulating atoms in their internal Prolog representation for fast comparison.

Class PIQuery
Represents opening and enumerating the solutions to a Prolog query.

Class PIFrame
This utility-class can be used to discard unused term-references as well as tatde *
backtracking

Class PIEngine
This class is used iembeddedpplications (applications where the main control is held in
C++). It provides creation and destruction of the Prolog environment.

Class PIRegister
The encapsulation of PL_register_foreign() is defined to be able to use C++ global constructors
for registering foreign predicates.

The required C(++) function header and registration of a predicate is arranged through a macro
calledPREDICATE() .

3 Examples

Before going into a detailed description of the C++ classes we present a few examples illustrating the
‘feel’ of the interface.

3.1 Hello(World)

This very simple example shows the basic definition of the predivallte/l and how a Prolog
argument is converted to C-data:

PREDICATE(hello, 1)
{ cout « "Hello " « (char *)Al « endl;

return TRUE;
}

The arguments to PREDICATE() are the name and arity of the predicate. The mgajogrévide
access to the predicate arguments by position and are of th@jjpen Casting &PITermto achar
* provides the natural type-conversion for most Prolog data-types, using the outputesf
otherwise:

?- hello(world).
Hello world

Yes
?- hello(X)
Hello _G170

X = G170

3.2 Adding numbers

This example shows arithmetic using the C++ interface, including unification, type-checking and
conversion. The predicateld/3 adds the two first arguments and unifies the last with the result.

PREDICATE(add, 3)
{ return A3 = (long)Al + (long)A2;

}

Casting aPITermto along performs a PL_get long() and throws a C++ exception if the Prolog
argument is not a Prolog integer or float that can be converted without lossrig a The= operator
of PITermis defined to perform unification and returiRUEor FALSE depending on the result.

?- add(1, 2, X).

X = 3.

?- add(a, 2, X).

[WARNING: Type error: ‘integer expected, found ‘a’]
Exception: (7) add(a, 2, _G197) ?

3.3 Average of solutions

This example is a bit harder. The predicagerage/3 is defined to take the template
average(+Var, :Goal, -Average), wheB»al binds Var and will unify Averagewith average of the
(integer) results.

PIQuerytakes the name of a predicate and the goal-argument vector as arguments. From this
information it deduces the arity and locates the predicate. the member-function next_solution() yields
TRUE(f there was a solution anelALSE otherwise. If the goal yielded a Prolog exception it is mapped
into a C++ exception.

PREDICATE(average, 3)
{ long sum = 0;
long n = O;

PIQuery qg("call", PITermv(A2));
while(g.next_solution())
{ sum += (long)A1,;

n++;

}

return A3 = (double)sum/(double)n;

}

4 The class PITerm

As we have seen from the examples, i@ermclass plays a central role in conversion and operating
on Prolog data. This section provides complete documentation of this class.

4.1 Constructors

PlTerm::PITerm ()
Creates a new initialised term (holding a Prolog variable).

PITerm::PITerm (term_t?)
Converts between the C-interface and the C++ interface by turning the term-reference into an
instance oPITerm Note that, being a lightweight class, this is a no-op at the machine-level!

PITerm::PITerm (const char *text
Creates a term-references holding a Prolog atom represdeating

PITerm::PITerm (const PIAtom &atom
Creates a term-references holding a Prolog atom from an atom-handle.

PlTerm::PITerm (long n)
Creates a term-references holding a Prolog integer represemnting

PITerm::PITerm (double j
Creates a term-references holding a Prolog float representing

PITerm::PITerm (void *ptr)
Creates a term-references holding a Prolog pointer. A pointer is represented in Prolog as a
mangled integer. The mangling is designed to make most pointers fitiagmad-integerAny
valid pointer can be represented. This mechanism can be used to represent pointers to C++
objects in Prolog. Please note that ‘myclass’ should define conversion to angdidont .

PREDICATE(make_my_object, 1)
{ myclass *myobj = new myclass();

return Al = (void *)myobj;
}

PREDICATE(free_my_object, 1)
{ myclass *myobj = (void *)Al;

delete(myobj);
return TRUE;
}

4.2 Casting PITerm to native C-types

PITermcan be casted to the following types:

PITerm:.operator term_t (void)
This cast is used for integration with the C-interface primitives.

PITerm::operator long (void)
Yields along if the PITermis a Prolog integer or float that can be converted without loss to a
long. throws aype_error exception otherwise.

PITerm:.operator int (void)
Same as folong , but might represent fewer bits.

PITerm::operator double (void)
Yields the value as a C doubleRiTermrepresents a Prolog integer or float.

PlTerm::operator char * (void)
Converts the Prolog argument using PL_get chars() using the flags
CVT_ALL|CVT_WRITE|BUF_RING, which implies Prolog atoms and strings are con-
verted to the represented text. All other data is handedrite/l . If the text is static in
Prolog, a direct pointer to the string is returned. Otherwise the text is saved in a ring of 16
buffers and must be copied to avoid overwriting.

PlTerm::operator void * (void)
Extracts pointer value from a term. The term should have been created by
PlTerm::PITerm(void*).

4.3 Unification

int PlTerm:.operator =(Typée
The operator= is defined for theTypes PlTermlong , double , char * andPlAtom It
performs Prolog unification and returfRUEIf successful andFALSE otherwise.

The boolean return-value leads to somewhat unconventional-looking code as normally, assign-
ment returns the value assigned in C. Unification however is fundamentally different to assign-
ment as it can succeed or fail. Here is a common example.

PREDICATE(hostname, 1)
{ char buf[32];

if (gethostname(buf, sizeof(buf)) == 0)
return Al = buf;

return FALSE;

4.4 Comparison

int PITerm::operator ==(const PITerm &}

int PlTerm:.operator != (const PITerm &}

int PlTerm::operator <(const PITerm &}

int PITerm::operator >(const PITerm &}

int PlTerm::operator <=(const PITerm &}

int PlTerm::operator >=(const PITerm &}
Compare the instance wittand return the result according to the Prolog defstaddard order
of terms

int PlTerm::operator == (long nun)

int PlTerm:.operator != (long num

int PlTerm::operator <(long num)

int PITerm::operator >(long nun)

int PlTerm::operator <=(long numn)

int PlTerm::operator >=(long numn)
ConvertPITermto along and perform standard C-comparison between the two long integers.
If PITermcannot be convertedtgpe _error s raised.

int PITerm::operator ==(const char }
Yields TRUEIf the PITermis an atom or string representing the same text as the argument,
FALSE if the conversion was successful, but the strings are not equal atypanerror
exception if the conversion failed.

Below are some typical examples. See sectidor direct manipulation of atoms in their internal
representation.

Al < O TestAlto hold a Prolog integer or float that can be
transformed lossless to an integer less than zero.

Al < PITerm(0) Alis before the term ‘0’ in the ‘standard order of terms|.
This means that iAlrepresents an atom, this test yields
TRUE

Al == PICompound("a(1)") TestAlto represent the teria(1) .

Al == "now" TestAlto be an atom or string holding the text “now”.

4.5 Analysing compound terms

Compound terms can be viewed as an array of terms with a name and arity (length). This view is
expressed by overloading the operator.

A type_error s raised if the argument is not compound andbaain_error if the index
is out of range.

In addition, the following functions are defined:

PITerm PITerm::operator [] (int arg)
If the PITermis a compound term andrg is between 1 and the arity of the term, return
a newPITermrepresenting the arg-th argument of the term.Plifermis not compound, a
type_error s raised. Idarg is out of range, @lomain_error is raised. Please note the

counting from 1 which is consistent to Prologisg/3 predicate, but inconsistent to C’s nor-
mal view on an array. See also cl&€ompound The following example teststo represent
a term with first-argument an atom or string equagtat .

|f(X[1] == "gnat")

const char * PlTerm::name()
Return aconst char * holding the name of the functor of the compound term. Raises a
type_error if the argument is not compound.

int PlTerm::arity ()
Returns the arity of the compound term. Raisdagpe _error if the argument is not com-
pound.

4.6 Miscellaneous

int PlTerm::type()
Yields the actual type of the term as PL_term_type(). Return value®lar&/ ARIABLE,
PL_FLOAT, PL_INTEGER PL_ATOMPL_STRINGor PL_TERM

To avoid very confusing combinations of constructors and therefore possible undesirable effects
a number of subclasses BfTermhave been defined that provide constructors for creating special
Prolog terms. These subclasses are defined below.

4.7 The class PIString

A SWI-Prolog string represents a byte-string on the global stack. It's lifetime is the same as for com-
pound terms and other data living on the global stack. Strings are not only a compound representation
of text that is garbage-collected, but as they can contain 0-bytes, they can be used to contain arbitrary
C-data structures.

PIString::PIString (const char *text
Create a SWI-Prolog string object from a O-terminated C-string.tékigs copied.

PIString::PIString (const char *text, int leh
Create a SWI-Prolog string object from a C-string with specified length.t&tenay contain
O-characters and is copied.

4.8 The class PICodeList

PICodelList::PICodeList(const char *text
Create a Prolog list of ASCII codes from a O-terminated C-string.

10

4.9 The class PICharList

Character lists are compliant to Prologem_chars/2 predicate.

PICharList::PICharList (const char *text
Create a Prolog list of one-character atoms from a O-terminated C-string.

4.10 The class PICompound

PICompound::PICompound(const char *text
Create a term by parsing (asad/1) the text If the textis not valid Prolog syntax, a
syntax_error exception is raised. Otherwise a new term-reference holding the parsed text
is created.

PICompound::PICompound(const char *functor, PITermv args
Create a compound term with the given name from the given vector of argumen®lT8eav
for details. The example below creates the Prolog teetto(world)

PICompound("hello", PITermv("world"))

411 The class PITall

The clas<PITail is both for analysing and constructing lists. It is callidail as enumeration-steps
make the term-reference follow the ‘tail’ of the list.

PITail::PITail (PITerm lis)
A PITail is created by making a new term-reference pointing to the same obje®ITA# is
used to enumerate or build a Prolog list, the inilistiterm-reference keeps pointing to the head
of the list.

int PITail::append(const PITerm &elemeht
Appendselemento the list and make thBITail reference point to the new variable tail. Af
is a variable, and this function is called on it using the argurignat” , a list of the form
[gnat|B] s created and thBITail object now points to the new variale

This function return§ RUEIf the unification succeeded alALSE otherwise. No exceptions
are generated.

The example below translates the main() argument vector to Prolog and calls the prolog predi-
cateentry/1 with it.

int
main(int argc, char **argv)
{ PIEngine e(argv[0)]);
PITermv av(1);
PITail I(av[0]);

for(int i=0; i<argc; i++)
l.append(argv[i]);

11

l.close();

PIQuery q("entry", av);
return g.next_solution() ? 0 : 1,

}

int PITail::close()
Unifies the term witl]] and returns the result of the unification.

int PITail::next (PITerm &)
Bind t to the next element of the lifITail and advancdITail. ReturnsTRUEoON success
andFALSE f PITail represents the empty list. HITail is neither a list nor the empty list, a
type_error is thrown. The example below prints the elements of a list.

PREDICATE(write_list, 1)
{ PITail tail(Al);
PlTerm e;

while(tail.next(e))
cout « (char *)e « endl

return TRUE;

5 The class PITermv

The class PITermv represents an array of term-references. This type is used to
pass the arguments to a foreignly defined predicate, construct compound terms (see
PITerm::PITerm(const char *name, PITermv argumenjsand to create queries (sB&uery).

The only useful member function is the overloading[jf, providing (0-based) access to the
elements. Range checking is performed and raigsksyain_error exception.

The constructors for this class are below.

PlTermv::PITermv (int sizg
Create a new array of term-references, all holding variables.

PlTermv::PITermv (int size, term_t tp
Convert a C-interface defined term-array into an instance.

PlTermv::PITermv (PITerm ..)
Create a vector from 1 to 5 initialising arguments. For example:

load _file(const char *file)
{ return PICall("compile”, PITermv(file));

}

12

If the vector has to contain more than 5 elements, the following construction should be used:

{ PITermv av(10);

av[0] = "hello";

6 Supporting Prolog constants

Both for quick comparison as for quick building of lists of atoms, it is desirable to provide access
to Prolog’s atom-table, mapping handles to unique string-constants. If the handles of two atoms are
different it is guaranteed they represent different text strings.

Suppose we want to test whether a term represents a certain atom, this interface presents a large
number of alternatives:

Direct comparision to char *

Example:

PREDICATE(test, 1)
{if (A1l == "read")

This writes easily and is the preferred method is performance is not critical and only a few comparisons
have to be made. It validatéd to be a term-reference representing text (atom, string, integer or float)
extracts the represented text and uses strcmp() to match the strings.

Direct comparision to PIAtom

Example:
static PIAtom ATOM_read("read");

PREDICATE(test, 1)
{if (Al == ATOM _read)

This case raises gype_error if Alis not an atom. Otherwise it extacts the atom-handle and
compares it to the atom-handle of the gloPd\tomobject. This approach is faster and provides
more strict type-checking.

Extraction of the atom and comparison to PIAtom

Example:

13

static PIAtom ATOM_read("read");

PREDICATE(test, 1)
{ PIAtom al(Al);

if (al == ATOM _read)

This approach is basically the same as seddidout in nested if-then-else the extraction of the atom
from the term is done only once.

Extraction of the atom and comparison to char *

Example:

PREDICATE(test, 1)
{ PIAtom al(Al);

if (al == "read")

This approach extracts the atom once and for each test extracts the represented string from the atom
and compares it. It avoids the need for global atom constructors.

PIAtom::PIAtom (atom_t handl®
Create from C-interface atom handle. Used internally and for integration with the C-interface.

PIAtom::PIAtom (const char *text
Create from a string. Thiextis copied if a new atom is created.

PIAtom::PIAtom (const PITerm &}
If t represents an atom, the new instance represents this atom. Othetyjge error is
thrown.

int PIAtom:.operator ==(const char *text
Yields TRUEIf the atom representext FALSE otherwise. Performs a strcmp() for this.

int PIAtom::operator == (const PIAtom &3
Compares the two atom-handles, returniiRjJEor FALSE

7 The class PIRegister

This class encapsulates PL_register_foreign(). It is defined as a class rather then a function to exploit
the C++global constructofeature. This class provides a constructor to deal with the PREDICATE()
way of defining foreign predicates as well as constructors to deal with more conventional foreign
predicate definitions.

14

PIRegister::PIRegiste(const char *name, int arity, foreign_t (f)(term_t t0, int a, control_t §tx)
Registerf as a the implementation of the foreign predicatame/(arity). This interface uses
the PL_FA_VARARGRSalling convention, where the argument list of the predicate is passed
using an array oferm_t objects as returned by PL_new_term_refs(). This interface poses no
limits on the arity of the predicate and is faster, especially for a large number of arguments.

PIRegister::PIRegiste(const char *name, foreign_t (*f)(PITerm a0, .).)
Registers functions for use with the traditional calling conventional, where each positional ar-
gument to the predicate is passed as an argument to the fuficfitnis can be used to define
functions as predicates similar to what is used in the C-interface:

static foreign_t
pl_hello(PITerm al)

{ .
}

PIRegister x_hello_1("hello”, 1, pl_hello);

This construct is currently supported upto 3 arguments.

8 The class PlQuery
This class encapsulates the call-backs onto Prolog.

PIQuery::PIQuery (const char *name, const PITermv &av
Create a query whemamedefines the name of the predicate awthe argument vector. The
arity is deduced fronav. The predicate is located in the Prolog moduser .

PIQuery::PIQuery (const char *module, const char *name, const PlITermv &av
Same, but performs the predicate lookup in the indicated module.

int PIQuery::next_solution()
Provide the next solution to the query. Yiel#RUEIif successful andcFALSE if there are no
(more) solutions. Prolog exceptions are mapped to C++ exceptions.

Below is an example listing the currently defined Prolog modules to the terminal.

PREDICATE(list_modules, 0)
{ PITermv av(l);

PIQuery q("current_module", av);
while(g.next_solution())
cout « (char *)av[0] « endl;

return TRUE;
}

In addition to the above, the following functions have been defined.

15

int PICall(const char *predicate, const PITermv &av
Creates ®&IQueryfrom the arguments generates the first next_solution() and destroys the query.
Returns the result of next_solution() or an exception.

int PICall(const char *module, const char *predicate, const PITermv &av
Same, locating the predicate in the named module.

int PICall(const char *goal
Translategoalinto a term and calls this term as the other PICall() variations. Especially suitable
for simple goals such as making Prolog load a file.

8.1 The class PlIFrame

The classPIFrameprovides an interface to discard unused term-references as well as rewinding uni-
fications @lata-backtrackiny Reclaiming unused term-references is automatically performed after a
call to a C++-defined predicate has finished and returns control to Prolog. In this sdelfasime

is rarely of any use. This class comes into play if the toplevel program is defined in C++ and calls
Prolog multiple times. Setting up arguments to a query requires term-references anB|tsamge

is the only way to reclaim them.

PIFrame::PIFrame()
Creating an instance of this class marks all term-references created afterwards to be valid only
in the scope of this instance.

PIFrame::~PlFrame()
Reclaims all term-references created after constructing the instance.

void PIFrame::rewind()
Discards all term-referencesd global-stack data created as well as undoing all unifications
after the instance was created.

A typical use forPIFrameis the definition of C++ functions that call Prolog and may be called
repeatedly from C++. Consider the definition of assertWord(), adding a facirid/1 :

void
assertWord(const char *word)
{ PIFrame fr;

PITermv av(1);

av[l] = PICompound("word", PITermv(word));
PIQuery g("assert", av);
g.next_solution();

}

This example shows the most sensible uselBfameif it is used in the context of a foreign predicate.
The predicate’s thruth-value is the same as for the Prolog unification (=/2), but has no side effects. In
Prolog one would use double negation to achieve this.

16

PREDICATE(can_unify, 2)
{ PIFrame fr;

int rval = (A1=A2);
fr.rewind();
return rval;

}

9 The PREDICATE macro

The PREDICATE macro is there to make your code look nice, taking care of the interface to the
C-defined SWI-Prolog kernel as well as mapping exceptions. Using the macro

PREDICATE(hello, 1)
is the same as writing:

static foreign_t pl_hello_ 1(PITermv _av);

static foreign_t
_pl_hello__1(term_t tO, int arity, control_t ctx)
{ try
{ return pl_hello__1(PITermv(1, t0));
} catch (PlITerm &ex)
{ return ex.raise();
}
}

static PIRegister _x_hello__1("hello”, 1, pl hello_ 1);

static foreign_t
pl_hello__1(PITermv _av)

The first function converts the parameters passed from the Prolog kern@liernvinstance and
maps exceptions raised in the body to Prolog exceptions PlRegisterglobal constructor registers
the predicate. Finally, the function header for the implementation is created.

9.1 Controlling the Prolog destination module

With no special precautions, the predicates are defined into the module from which
load_foreign_library/1 was called, or in the modulgser if there is no Prolog context from
which to deduce the module such as while linking the extension statically with the Prolog kernel.

Alternatively,beforeloading the SWI-Prolog include file, the macro PROLOG_MODULE may be
defined to a string containing the name of the destination module. A module name may only contain
alpha-numerical characters (letters, digits,). See the example below:

17

#define PROLOG_MODULE "math"
#include <SWiI-Prolog.h>
#include <math.h>

PREDICATE(pi, 1)
{ Al = M_PI;
}

?- math:pi(X).

X = 3.14159

10 Exceptions

Prolog exceptions are mapped to C++ exceptions using the sulbtEsseptionof PITermto repre-
sent the Prolog exception term. All type-conversion functions of the interface raise Prolog-compliant
exceptions, providing decent error-handling support at no extra work for the programmer.

For some commonly used exceptions, subclassBfofceptiorhave been created to exploit both
their constructors for easy creation of these exceptions as well as selective trapping in C++. Currently,
these ardITypeErorandPIDomainError.

To throw an exception, create an instance RiExceptionand use throw() or PIExcep-
tion::.cppThrow(). The latter refines the C++ exception class according to the represented Prolog
exception before calling throw().

char *data = "users";

throw PIException(PICompound("no_database", PlTerm(data)));

10.1 The class PIException

This subclass oPITermis used to represent exceptions. Currently defined methods are:

PIException::PIException(const PITerm &}
Create an exception from a general Prolog term. This is provides the interface for throwing any
Prolog terms as an exception.

PIException::operator char * (void)
The exception is translated into a message as producedritymessage/2 . The character
data is stored in a ring. Example:

try

{ PICall("consult(load)";

} catch (PIException &ex)
{ cerr « (char *) ex « endl

}

18

int plThrow ()
Used in the PREDICATE() wrapper to pass the exception to Prolog. See PL_raise_exeption().

int

O

ppThrow()

Used by PIQuery::next_solution() to refine a genBtiExceptiorrepresenting a specific class of
Prolog exceptions to the corresponding C++ exception class and finally then executes throw().
Thus, if aPIExceptiorrepresents the term

error (type_error (Expected, Actual), Context

PIException::cppThrow() throws RITypeEror exception. This ensures consistency in the
exception-class whether the exception is generated by the C++-interface or returned by Pro-
log.

The following example illustrates this behaviour:

PREDICATE(call_atom, 1)
{ try
{ return PICall((char *)Al);
} catch (PITypeError &ex)
{ cerr « "Type Error caugth in C++" « endl;
cerr « "Message: \"" « (char *)ex « "\" « endl,
return FALSE;

10.2 The class PITypeError

A type errorexpresses that a term does not satisfy the expected basic Prolog type.

PITypeError::PITypeError (const char *expected
const PITerm &actual Creates an ISO standard Prolog error term expressigxptetedype
andactualterm that does not satisfy this type.

10.3 The class PIDomainError

A domain errorexpresses that a term satisfies the basic Prolog type expected, but is unacceptable to
the restricted domain expected by some operation. For example, the standarddpenidg) call

expect ario_mode (read, write, append, ...). If an integer is provided, thistigoe error, if an atom

other than one of the defined io-modes is provided itdemain errot

PIDomainError::PIDomainError (const char *expected

const PlITerm &actual Creates an 1SO standard Prolog error term expressingeptated
domain and thactualterm found.

19

11 Embedded applications

Most of the above assumes Prolog is ‘in charge’ of the application and C++ is used to add functionality
to Prolog, either for accessing external resources or for performance reasons. In some applications,
there is anain-programand we want to use Prolog asagic server For these applications, the class
PIEnginehas been defined.

Only a single instance of this class can exist in a process. When used in a multi-threading applica-
tion, only one thread at a time may have a running query on this engine. Applications should ensure
this using proper locking techniqués.

PIEngine::PIEnging(int argc, char **argv)
Initialises the Prolog engine. The application should make sure tcapge®] from its main
function, which is needed in the Unix version to find the running executable. See PL _initialise()
for details.

PIEngine::PIEngine(char *argvQ)
Simple constructure using the main constructor with the specified argumeargfg0]

PIEngine::~PIEngine()
Calls PL_cleanup() to destroy all data created by the Prolog engine.

Section4.11has a simple example using this class.

12 Considerations

12.1 The C++ versus the C interface

Not all functionality of the C-interface is provided, but BEfermandterm_t are essentially the
same thing with automatic type-conversion between the two, this interface can be freely mixed with
the functions defined for plain C.

Using this interface rather than the plain C-interface requires a little more resources. More term-
references are wasted (but reclaimed on return to Prolog or Bétingmeé). Use of some intermediate
types functor_t etc.) is not supported in the current interface, causing more hash-table lookups.
This could be fixed, at the price of slighly complicating the interface.

12.2 Static linking and embedding

The mechanisms outlined in this document can be used for static linking with the SWI-Prolog ker-
nel usingplld(1) . In general the C++ linker should be used to deal with the C++ runtime li-
braries and global constructors. As of SWI-Prolog 3.2.9, PL_register_foreign() can beheftee
PL_initialise(), which is required to handle the calls from the gldd&egistercalls.

For Unix, there is a multi-threaded version of SWI-Prolog. In this version each thread can create and destroy a thread-
engine. There is currently no C++ interface defined to access this functionality, though —of course— you can use the
C-functions.

20

12.3 Status and compiler versions

The current interface is entirely defined in tie file using inlined code. This approach has a few
advantages: as no C++ code is in the Prolog kernel, different C++ compilers with different name-
mangling schemas can cooperate smoothly.

Also, changes to the header file have no consequences to binary compatibility with the SWI-Prolog
kernel. This makes it possible to have different versions of the header file with few compatibility
consequences. If the interface stabilises we will consider options to share more code.

12.4 Limitations

Currently, the following limitations are recognised:

e Predicate naming
Using the PREDICATE() macro, only predicates with a name that is valid as part of a C-symbol
can be defined. Notably this makes the definition of predicates with names consistymglwudl
characterampossible.

e Non-deterministic predicates
The current interface does not provide for foreign-defined non-deterministic predicates. It

would not be hard to add this.

13 Conclusions

In this document, we presented a high-level interface to Prolog exploying automatic type-conversion
and exception-handling defined in C++.
Programming using this interface is much more natural and requires only little extra resources in

terms of time and memory.
Especially the smooth integration between C++ and Prolog exceptions reduce the coding effort

for type checking and reporting in foreign predicates.

21

Index

add/3,6

arg/3,10

assert16
atom_chars/4, 11
average/36

cppThrow(),19
entry/1,11

hello/1,5
load_foreign_library/117
open/3,19

PlAtomclass 5, 8, 13
PIAtom::operator ==()14
PIAtom::PlAtom(),14

PICall(), 16

PICharListclass 4
PICharList::PICharList()11
PICodelListclass 4
PlCodeList::PICodeList()1.0
PICompounclass 4, 10
PICompound::PICompound(}.1
PIDomainErrorclass 5, 18
PIDomainError::PIDomainError(),9
PIEngineclass 5, 20
PIEngine:=PIEngine(),20
PIEngine::PIEngine(R0
PIExceptiorclass 4, 5, 18, 19
PIException::operator char *().8
PIException::PIException(),8
PlFrameclass 5, 16, 20
PIFrame:+~PIFrame(),16
PIFrame::PIFrame(),6
PIFrame::rewind()16
PIQueryclass 5, 6, 12, 16
PIQuery::next_solution(}15
PIQuery::PIQuery()15
PIRegisterlass 5, 17, 20
PIRegister::PIRegister(1,5
PIStringclass 4
PIString::PIString(),10

PlTail class 4, 11, 12

22

PITail::append()11
PlTail::close(),12
PITail::next(),12
PlTail::PITail(), 11
PITermclass 4-10, 18, 20
PlTerm::arity(),10
PITerm::name()10
PITerm::operator !=()9
PITerm::operatok(), 9
PlTerm::operatok=(), 9
PITerm::operator-(), 9
PlTerm::operator-=(), 9
PlTerm::operator =()3
PITerm:.operator ==(9
PlTerm::operator []()9
PITerm:.operator char *(B
PITerm::operator double(3,
PITerm:.operator int()3
PITerm::operator long(8
PITerm::operator term_t(3
PITerm::operator void *()3
PlTerm::PITerm(),/
PITerm::type(),10
PlTermvclass 4, 11, 12, 17
PITermv::PITermv()]12
plThrow(), 19
PITypeErorclass 18, 19
PITypeErrorclass 5
PITypeError::PITypeError()19
print_message/2,8

read/1,11

word/1,16
write/1,5, 8

	Introduction
	Overview
	Examples
	Hello(World)
	Adding numbers
	Average of solutions

	The class PlTerm
	Constructors
	Casting PlTerm to native C-types
	Unification
	Comparison
	Analysing compound terms
	Miscellaneous
	The class PlString
	The class PlCodeList
	The class PlCharList
	The class PlCompound
	The class PlTail

	The class PlTermv
	Supporting Prolog constants
	The class PlRegister
	The class PlQuery
	The class PlFrame

	The PREDICATE macro
	Controlling the Prolog destination module

	Exceptions
	The class PlException
	The class PlTypeError
	The class PlDomainError

	Embedded applications
	Considerations
	The C++ versus the C interface
	Static linking and embedding
	Status and compiler versions
	Limitations

	Conclusions

