
SWI-Prolog RDF parser

Jan Wielemaker
SWI,

University of Amsterdam
The Netherlands

E-mail: jan@swi.psy.uva.nl

November 16, 2001

Abstract

[RDF]http://www.w3.org/RDF/ (Resource Description Format) is a [W3C]http://www.w3.org/
standard for expressing meta-data about web-resources. It has three representations pro-
viding the same semantics. RDF documents are normally transferred as XML documents
using the RDF-XML syntax. This format is unsuitable for processing. The parser defined
here converts an RDF-XML document into the triple notation.

Contents

1 Introduction 2

2 Parsing RDF in Prolog 2

3 Predicates 3
3.1 Name spaces . 4
3.2 Low-level access . 4

4 Testing the RDF translator 5

A Metrics 5

B Installation 6
B.1 Unix systems . 6
B.2 Windows . 6

1

[
[

1 Introduction

RDF is a promising standard for representing meta-data about documents on the web as well
as exchanging frame-based data (e.g. ontologies). RDF is often associated with ‘semantics on
the web’. It consists of a formal data-model defined in terms of triples. In addition, a graph
model is defined for visualisation and an XML application is defined for exchange.

‘Semantics on the web’ is also associated with the Prolog programming language. It is
assumed that Prolog is a suitable vehicle to reason with the data expressed in RDF models.
Most of the related web-infra structure (e.g. XML parsers, DOM implementations) are defined
in Java, Perl, C or C++.

Various routes are available to the Prolog user. Low-level XML parsing is due to its nature
best done in C or C++. These languages produce fast code. As XML/SGML are at the basis
of most of the other web-related formats we will benefit most here. XML and SGML, being
very stable specifications, make fast compiled languages even more attractive.

But what about RDF? RDF-XML is defined in XML, and provided with a Prolog term
representing the XML document processing it according to the RDF syntax is quick and easy
in Prolog. The alternative, getting yet another library and language attached to the system,
is getting less attractive. In this document we explore the suitability of Prolog for processing
XML documents in general and into RDF in particular.

2 Parsing RDF in Prolog

We realised an RDF compiler in Prolog on top of the sgml2pl package (providing a name-
space sensitive XML parser). The transformation is realised in two passes.

The first pass rewrites the XML term into a Prolog term conveying the same information
in a more friendly manner. This transformation is defined in a high-level pattern matching
language defined on top of Prolog with properties similar to DCG (Definite Clause Grammar).

The source of this translation is very close to the BNF notation used by the [specification]http://www.w3.org/TR/REC-
rdf-syntax/, so correctness is ‘obvious’. Below is a part of the definition for RDF containers.
Note that XML elements are represented using a term of the format:

element(Name, [AttrName = Value...], [Content ...])

memberElt(LI) ::=
\referencedItem(LI).

memberElt(LI) ::=
\inlineItem(LI).

referencedItem(LI) ::=
element(\rdf(li),

[\resourceAttr(LI)],
[]).

inlineItem(literal(LI)) ::=
element(\rdf(li),

[\parseLiteral],
LI).

2

[

inlineItem(description(description, _, _, Properties)) ::=
element(\rdf(li),

[\parseResource],
\propertyElts(Properties)).

inlineItem(LI) ::=
element(\rdf(li),

[],
[\rdf_object(LI)]), !. % inlined object

inlineItem(literal(LI)) ::=
element(\rdf(li),

[],
[LI]). % string value

Expression in the rule that are prefixed by the \ operator acts as invocation of another rule-set.
The body-term is converted into a term where all rule-references are replaced by variables.
The resulting term is matched and translation of the arguments is achieved by calling the
appropriate rule. Below is the Prolog code for the referencedItem rule:

referencedItem(A, element(B, [C], [])) :-
rdf(li, B),
resourceAttr(A, C).

Additional code can be added using a notation close to the Prolog DCG notation. Here is
the rule for a description, producing properties both using propAttrs and propertyElts.

description(description, About, BagID, Properties) ::=
element(\rdf(’Description’),

\attrs([\?idAboutAttr(About),
\?bagIdAttr(BagID)

| \propAttrs(PropAttrs)
]),

\propertyElts(PropElts)),
{ !, append(PropAttrs, PropElts, Properties)
}.

3 Predicates

The parser is designed to operate in various environments and therefore provides interfaces
at various levels. First we describe the top level defined in library(rdf), simply parsing a
PDF-XML file into a list of triples. Please note these are not asserted into the database
because it is not necessarily the final format the user wishes to reason with and it is not clean
how the user wants to deal with multiple RDF documents. Some options are using global
URI’s in one pool, in Prolog modules or using an additional argument.

load rdf(+File, -Triples)
Same as load rdf(File, Triples, []).

3

load rdf(+File, -Triples, +Options)
Read the RDF-XML file File and return a list of Triples. Options defines additional
processing options. Currently defined options are:

base uri(BaseURI)
If provided local identifiers and identifier-references are globalised using this URI.
If omited or the atom [], local identifiers are not tagged.

The Triples list is a list of rdf(Subject, Predicate, Object) triples. Subject is either a plain
resource (an atom), or one of the terms each(URI) or prefix(URI) with the obvious
meaning. Predicate is either a plain atom for explicitely non-qualified names or a term
NameSpace:Name. If NameSpace is the defined RDF name space it is returned as the
atom rdf. Finally, Object is a URI, a Predicate or a term of the format literal(Value)
for literal values. Value is either a plain atom or a parsed XML term (list of atoms and
elements).

3.1 Name spaces

XML name spaces are identified using a URI. Unfortunately various URI’s are in com-
mon use to refer to RDF. The rdf_parser.pl module therefore defines the namespace as
a multifile/1 predicate, that can be extended by the user. For example, to parse the
[Netscape OpenDirectory]http://www.mozilla.org/rdf/doc/inference.html structure.rdf file,
the following declarations are used:

:- multifile
rdf_parser:rdf_name_space/1.

rdf_parser:rdf_name_space(’http://www.w3.org/TR/RDF/’).
rdf_parser:rdf_name_space(’http://directory.mozilla.org/rdf’).
rdf_parser:rdf_name_space(’http://dmoz.org/rdf’).

The initial definition of this predicate is given below.

rdf_name_space(’http://www.w3.org/1999/02/22-rdf-syntax-ns#’).
rdf_name_space(’http://www.w3.org/TR/REC-rdf-syntax’).

3.2 Low-level access

The above defined load rdf/[2,3] is not always suitable. For example, it cannot deal with
documents where the RDF statement is embedded in an XML document. It also cannot deal
with really large documents (e.g. the Netscape OpenDirectory project, currently about 90
MBytes), without huge amounts of memory.

For really large documents, the sgml2pl parser can be programmed to handle the content
of a specific element (i.e. <rdf:RDF>) element-by-element. The parsing primitives defined in
this section can be used to process these one-by-one.

4

[

xml to rdf(+XML, +BaseURI, -Triples)
Process an XML term produced by load structure/3 using the dialect(xmlns) output
option. XML is either a complete <rdf:RDF> element, a list of RDF-objects (container
or description) or a single description of container.

process rdf(+File, +BaseURI, :OnTriples)
Exploits the call-back interface of sgml2pl, calling OnTriples with the list of triples
resulting from a single top level RDF object for each RDF element in the file. This
predicate can be used to process arbitrary large RDF files as the file is processed object-
by-object. The example below simply asserts all triples into the database:

assert_list([]).
assert_list([H|T]) :-

assert(H),
assert_list(T).

?- process_rdf(’structure,rdf’, [], assert_list).

4 Testing the RDF translator

A test-suite and driver program are provided by rdf_test.pl in the source directory. To run
these tests, load this file into Prolog in the distribution directory. The test files are in the
directory suite and the proper output in suite/ok. Predicates provided by rdf_test.pl:

suite(+N)
Run test N using the file suite/tN.rdf and display the RDF source, the intermediate
Prolog representation and the resulting triples.

passed(+N)
Process suite/tN.rdf and store the resulting triples in suite/ok/tN.pl for later vali-
dation by test/0.

test
Run all tests and classify the result.

A Metrics

It took three days to write and one to document the Prolog RDF parser. A significant part
of the time was spent understanding the RDF specification.

The size of the source (including comments) is given in the table below.

lines words bytes file function
109 255 2663 rdf.pl Driver program
312 649 6416 rdf parser.pl 1-st phase parser
246 752 5852 rdf triple.pl 2-nd phase parser
126 339 2596 rewrite.pl rule-compiler
793 1995 17527 total

5

We also compared the performance using an RDF-Schema file generated by [Protege-
2000]http://www.smi.stanford.edu/projects/protege/ and interpreted as RDF. This file con-
tains 162 descriptions in 50 Kbytes, resulting in 599 triples. Environment: Intel Pentium-
II/450 with 384 Mbytes memory running SuSE Linux 6.3.

The parser described here requires 0.15 seconds excluding 0.13 seconds Prolog startup
time to process this file. The [Pro Solutions]http://www.pro-solutions.com/rdfdemo/ parser
(written in Perl) requires 1.5 seconds exluding 0.25 seconds startup time.

B Installation

B.1 Unix systems

Installation on Unix system uses the commonly found configure, make and make install se-
quence. SWI-Prolog should be installed before building this package. If SWI-Prolog is not
installed as pl, the environment variable PL must be set to the name of the SWI-Prolog
executable. Installation is now accomplished using:

% ./configure
% make
% make install

This installs the Prolog library files in $PLBASE/library, where $PLBASE refers to the SWI-
Prolog ‘home-directory’.

B.2 Windows

Run the file setup.pl by double clicking it. This will install the required files into the
SWI-Prolog directory and update the library directory.

6

[
[

	Introduction
	Parsing RDF in Prolog
	Predicates
	Name spaces
	Low-level access

	Testing the RDF translator
	Metrics
	Installation
	Unix systems
	Windows

