SWI-Prolog RDF parser

Jan Wielemaker
SWI,
University of Amsterdam
The Netherlands
E-mail: jan@swi.psy.uva.nl

November 7, 2003

Abstract

RDF (ResourceDescriptionFormat) is a W3C standard for expressing meta-data about web-
resources. It has two representations providing the same semantics. RDF documents are normally
transferred as XML documents using the RDF-XML syntax. This format is unsuitable for pro-
cessing. The parser defined here converts an RDF-XML document intiopieenotation.

Contents

1 Introduction

RDF is a promising standard for representing meta-data about documents on the web as well as ex-
changing frame-based data (e.g. ontologies). RDF is often associated with ‘semantics on the web’. It
consists of a formal data-model defined in term¢rigies. In addition, agraphmodel is defined for
visualisation and an XML application is defined for exchange.

‘Semantics on the web’ is also associated with the Prolog programming language. It is assumed
that Prolog is a suitable vehicle to reason with the data expressed in RDF models. Most of the related
web-infra structure (e.g. XML parsers, DOM implementations) are defined in Java, Perl, C or C++.

Various routes are available to the Prolog user. Low-level XML parsing is due to its nature best
done in C or C++. These languages produce fast code. As XML/SGML are at the basis of most
of the other web-related formats we will benefit most here. XML and SGML, being very stable
specifications, make fast compiled languages even more attractive.

But what about RDF? RDF-XML is defined in XML, and provided with a Prolog term representing
the XML document processing it according to the RDF syntax is quick and easy in Prolog. The
alternative, getting yet another library and language attached to the system, is getting less attractive.
In this document we explore the suitability of Prolog for processing XML documents in general and
into RDF in particular.

2 Parsing RDF in Prolog

We realised an RDF compiler in Prolog on top of tgml2pl package (providing a hame-space
sensitive XML parser). The transformation is realised in two passes.

The first pass rewrites the XML term into a Prolog term conveying the same information in a more
friendly manner. This transformation is defined in a high-level pattern matching language defined on
top of Prolog with properties similar to DCG (Definite Clause Grammar).

The source of this translation is very close to the BNF notation used by the specification, so
correctness is ‘obvious’. Below is a part of the definition for RDF containers. Note that XML elements
are represented using a term of the format:

element (Name, [AttrName = Value...], [Content .).]

memberEIlt(Ll) ::=
\referencedltem(LlI).

memberEIt(LI) ::=
\inlineltem(LI).

referencedlitem(Ll) ::=
element(\rdf(li),
[\resourceAttr(LIl)],

1)2

inlineltem(literal(LIl)) ::=
element(\rdf(li),
[\parselLiteral],
LI).
inlineltem(description(description, _, _, Properties)) ::=

2

element(\rdf(li),
[\parseResource],
\propertyElts(Properties)).
inlineltem(LI) ::=
element(\rdf(li),
[,
[\rdf_object(LD)]), !. % inlined object
inlineltem(literal(LI)) ::=
element(\rdf(li),
[,

[LI]). % string value

Expression in the rule that are prefixed by theperator acts as invocation of another rule-set. The
body-term is converted into a term where all rule-references are replaced by variables. The resulting
term is matched and translation of the arguments is achieved by calling the appropriate rule. Below is
the Prolog code for theeferencedltemrule:

referencedltem(A, element(B, [C], []) :-
rdf(li, B),
resourceAttr(A, C).

Additional code can be added using a notation close to the Prolog DCG notation. Here is the rule for
a description, producing properties both usmmgpAttrs andpropertyElts.

description(description, About, BagID, Properties) ::=
element(\rdf('Description’),
\attrs([\?idAboutAttr(About),
\?bagldAttr(BagID)
| \propAttrs(PropAttrs)
)
\propertyElts(PropElts)),
{ !, append(PropAttrs, PropElts, Properties)
}

3 Predicates

The parser is designed to operate in various environments and therefore provides interfaces at various
levels. First we describe the top level definedrdfi , simply parsing a PDF-XML file into a list

of triples. Please note these aret asserted into the database because it is not nhecessarily the final
format the user wishes to reason with and it is not clean how the user wants to deal with multiple
RDF documents. Some options are using global URI's in one pool, in Prolog modules or using an
additional argument.

load_rdf(+File, -Triples)
Same asoad _rdf (File, Triples, []).

load_rdf(+File, -Triples, +Optiong
Read the RDF-XML fileFile and return a list offriples. Optionsdefines additional processing
options. Currently defined options are:

baseuri(BaseUR)
If provided local identifiers and identifier-references are globalised using this URI. If
omited or the atonf] , local identifiers are not tagged.

expand.foreachBoolear)
If Booleanistrue , expanddf:aboutEach into a set of triples. By default the parser
generatesdf (each(Container), Predicate, Subject

blank _nodesModég
If Modeis share , blank-node properties (i.e. complex properties without identifier) are
reused if they result in exactly the same triple-set. Two descriptions are shared if their
intermediate description is the same. This means they should produce the same set of
triples in the same order.

The Triplesllist is a list of rdf (Subject, Predicate, Objéctriples. Subjectis either a plain
resource (an atom), or one of the tereach (URI) orprefix (URI) with the obvious meaning.
Predicateis either a plain atom for explicitely non-qualified names or a tdameSpac&lame
If NameSpaces the defined RDF name space it is returned as the eddbm Finally, Objectis
a URI, aPredicateor a term of the formditeral (Value for literal values.Valueis either a
plain atom or a parsed XML term (list of atoms and elements).

3.1 Name spaces

XML name spaces are identified using a URI. Unfortunately various URI’s are in common use to re-
fer to RDF. Therdf parser.pl module therefore defines the namespace amikifile/1

predicate, that can be extended by the user. For example, to parse the Netscape OpenDirectory
structure.rdf file, the following declarations are used:

.- multifile
rdf_parser:rdf_name_space/l.

rdf_parser:rdf_name_space(http://www.w3.0rg/TR/RDF/’).
rdf_parser:rdf _name_space(http://directory.mozilla.org/rdf").
rdf_parser:rdf_name_space(’http://dmoz.org/rdf’).

The initial definition of this predicate is given below.

rdf_name_space(http://www.w3.0rg/1999/02/22-rdf-syntax-ns#).
rdf_name_space(http://www.w3.0rg/TR/REC-rdf-syntax’).

3.2 Low-level access

The above definetbad _rdf/[2,3] is not always suitable. For example, it cannot deal with doc-
uments where the RDF statement is embedded in an XML document. It also cannot deal with really

large documents (e.g. the Netscape OpenDirectory project, currently about 90 MBytes), without huge
amounts of memory.

For really large documents, tisgml2pl parser can be programmed to handle the content of a spe-
cific element (i.e.<rdf:RDF>) element-by-element. The parsing primitives defined in this section
can be used to process these one-by-one.

xml_to_rdf(+XML, +BaseURI, -Triple¥
Process an XML term produced byad _structure/3 using thedialect (xmlIng output
option. XML is either a completerdf:RDF> element, a list of RDF-objects (container or
description) or a single description of container.

processrdf(+Input, :OnTriples, +Option¥

Exploits the call-back interface afgmi2pl, calling OnTriples (Triples, File:Ling with the

list of triples resulting from a single top level RDF object for each RDF element in the input
as well as the source-location where the description stamadt is either a file name or term
stream (Stream. When using a stream all triples are associated to the value bse_uri

option. This predicate can be used to process arbitrary large RDF files as the file is processed
object-by-object. The example below simply asserts all triples into the database:

assert_list([],).

assert_list([H|T], Source) :-
assert(H),
assert_list(T, Source).

?- process_rdf(’structure,rdf’, assert_list, []).

Optionsare described witload _rdf/3 . The optionexpand _foreach is not supported as
the container may be in a different description.

4 Testing the RDF translator

A test-suite and driver program are providedrif test.pl in the source directory. To run these
tests, load this file into Prolog in the distribution directory. The test files are in the diresidey
and the proper output isuite/ok . Predicates provided byf test.pl

suite(+N)
Run tesiN using the filesuite/tN.rdf and display the RDF source, the intermediate Prolog
representation and the resulting triples.

passedfN)
Processuite/tN.rdf and store the resulting triples suite/ok/tN.pl for later vali-

dation bytest/0

test
Run all tests and classify the result.

10lder versions used the calling conventiprocess _rdf(+File, +BaseURI, :OnTriples (.) This order is
still recognised for compatibility.

A Metrics

It took three days to write and one to document the Prolog RDF parser. A significant part of the time
was spent understanding the RDF specification.
The size of the source (including comments) is given in the table below.

lines words bytes| file function

109 255 2663 rdf.pl Driver program
312 649 6416 rdf_parser.pl| 1-st phase parset
246 752 5852 rdf_triple.pl | 2-nd phase parse
126 339 2596 rewrite.pl rule-compiler
793 1995 17527 total

=

We also compared the performance using an RDF-Schema file generated by Protege-2000 and
interpreted as RDF. This file contains 162 descriptions in 50 Kbytes, resulting in 599 triples. Environ-
ment: Intel Pentium-11/450 with 384 Mbytes memory running SUSE Linux 6.3.

The parser described here requires 0.15 seconds excluding 0.13 seconds Prolog startup time to
process this file. The Pro Solutions parser (written in Perl) requires 1.5 seconds exluding 0.25 seconds
startup time.

B Installation

B.1 Unix systems

Installation on Unix system uses the commonly fowmafigure makeand make installsequence.
SWI-Prolog should be installed before building this package. If SWI-Prolog is not instalfgd ése
environment variabl®L must be set to the name of the SWI-Prolog executable. Installation is now
accomplished using:

% ./configure
% make
% make install

This installs the Prolog library files iSPLBASE/library , where$PLBASE refers to the SWI-
Prolog ‘home-directory’.

B.2 Windows

Run the filesetup.pl by double clicking it. This will install the required files into the SWI-Prolog
directory and update the library directory.

