
SWI-Prolog C-library

Jan Wielemaker
SWI,

University of Amsterdam
The Netherlands

E-mail: jan@swi.psy.uva.nl

March 11, 2003

Abstract

This document describes commonly used foreign language extensions to SWI-Prolog dis-
tributed as a package known under the nameclib. The package defines a number of Prolog li-
braries with accompagnying foreign libraries.

unix This library provides Unix process control using fork(), exec(), pipe(), etc.

files This library provides low-level access to file objects.

cgi This library provides access to CGI form-data if Prolog is used for CGI-scripting.

crypt This library provides access to Unix password encryption.

mime This library decodes MIME messages.

socket This library provides access to TCP/IP communication.

streampool Dispatch input from a pool of (socket) streams.

time This library provides timing (alarm) functions.

rlimit Provides access to POSIX resource limits (CPU, memory, files).

On Windows systems, theunix andcrypt libraries can only be used if the whole SWI-
Prolog suite is compiled using Cywin. The other libraries have been ported to native Windows.

1

Contents

1 Introduction 3

2 Unix Process manipulation library 3

3 File manipulation library 5

4 Socket library 5
4.1 Server applications. 7
4.2 Client applications . 8
4.3 The streampool library . 8

5 CGI Support library 9
5.1 Some considerations. 10

6 MIME decoding library 10

7 Unix password encryption library 11

8 Memory files 12

9 Time and alarm library 12

10 Limiting process resources 13

11 Installation 14
11.1 Unix systems. 14

2

1 Introduction

Many useful facilities offered by one or more of the operating systems supported by SWI-Prolog are
not supported by the SWI-Prolog kernel distribution. Including these would enlarge thefootprint and
complicate portability matters while supporting only a limited part of the user-community.

This document describesunix to deal with the Unix process API,socket to deal with inet-
domain stream-sockets,cgi to deal with getting CGI form-data if SWI-Prolog is used as a CGI
scripting language andcrypt to provide access to Unix password encryption.

2 Unix Process manipulation library

The unix library provides the commonly used Unix primitives to deal with process management.
These primitives are useful for many tasks, including server management, parallel computation, ex-
ploiting and controlling other processes, etc.

The predicates are modelled closely after their native Unix counterparts. Higher-level primitives,
especially to make this library portable to non-Unix systems are desirable. Using these primitives and
considering that process manipulation is not a very time-critical operation we anticipate these libraries
to be developed in Prolog.

fork(-Pid)
Clone the current process into two branches. In the child,Pid is unified tochild . In the
original process,Pid is unified to the process identifier of the created child. Both parent and
child are fully functional Prolog processes running the same program. The processes share open
I/O streams that refer to Unix native streams, such as files, sockets and pipes. Data is not shared,
though on most Unix systems data is initially shared and duplicated only if one of the programs
attempts to modify the data.

Unix fork() is the only way to create new processes andfork/2 is a simple direct interface
to it.

exec(+Command(...Args...))
Replace the running program by startingCommandusing the given commandline arguments.
Each command-line argument must be atomic and is converted to a string before passed to the
Unix call execvp() .

Unix exec() is the only way to start an executable file executing. It is commonly used together
with fork/1 . For example to startnetscape on an URL in the background, do:

run_netscape(URL) :-
(fork(child),

exec(netscape(URL))
; true
).

Using this code, netscape remains part of the process-group of the invoking Prolog process and
Prolog does not wait for netscape to terminate. The predicatewait/2 allows waiting for a
child, whiledetach IO/0 disconnects the child as a deamon process.

3

wait(-Pid, -Status)
Wait for a child to change status. Then report the child that changed status as well as the
reason.Statusis unified withexited (ExitCode) if the child with pidPid was terminated by
calling exit() (Prologhalt/[0,1]). ExitCodeis the return=status.Statusis unified with
signaled (Signal) if the child died due to a software interrupt (seekill/2). Signalcontains
the signal number. Finally, if the process suspended execution due to a signal,Statusis unified
with stopped (Signal).

kill(+Pid, +Signal)
Deliver a software interrupt to the process with identifierPid using software-interrupt number
Signal. See alsoon signal/2 . The meaning of the signal numbers can be found in the Unix
manual.1.

pipe(-InSream, -OutStream)
Create a communication-pipe. This is normally used to make a child communicate to its parent.
After pipe/2 , the process is cloned and, depending on the desired direction, both processes
close the end of the pipe they do not use. Then they use the remaining stream to communicate.
Here is a simple example:

:- use_module(library(unix)).

fork_demo(Result) :-
pipe(Read, Write),
fork(Pid),
(Pid == child
-> close(Read),

format(Write, ’˜q.˜n’,
[hello(world)]),

flush_output(Write),
halt

; close(Write),
read(Read, Result),
close(Read)

).

dup(+FromStream, +ToStream)
Interface to Unix dup2(), copying the underlying filedescriptor and thus making both streams
point to the same underlying object. This is normally used together withfork/1 andpipe/2
to talk to an external program that is designed to communicate using standard I/O.

Both FromStreamandToStreameither refer to a Prolog stream or an integer descriptor number
to refer directly to OS descriptors. See alsodemo/pipe.pl in the source-distribution of this
package.

detach IO
This predicate is intended to create Unix deamon-processes. It preforms two actions. First of

1kill/2 should support interrupt-names as well

4

all, the I/O streamsuser input , user output anduser error are closed and rebound
to a Prolog stream that returns end-of-file on any attempt to read and starts writing to a file
named/tmp/pl-out.pid (where〈pid〉 is the process-id of the calling Prolog) on any at-
tempt to write. This file is opened only if there is data available. This is intended for debugging
purposes.2 Finally, the process is detached from the current process-group and its controlling
terminal.

3 File manipulation library

The files library provides additional operations on files from SWI-Prolog. It is currently very
incomplete.

set time file(+File, -OldTimes, +NewTimes)
Query and set POSIX time attributes of a file. BothOldTimesandNewTimesare lists of option-
terms. Times are represented in SWI-Prolog’s standard floating point numbers. New times may
be specified asnow to indicate the current time. Defined options are:

access(Time)
Describes the time of last access of the file. This value can be read and written.

modified(Time)
Describes the time the contents of the file was last modified. This value can be read and
written.

changed(Time)
Describes the time the file-structure itself was changed by adding (link()) or removing
(unlink()) names.

Here are some example queries. The first retrieves the access-time, while the second sets the
last-modified time to the current time.

?- set_time_file(foo, [acess(Access)], []).
?- set_time_file(foo, [], [modified(now)]).

4 Socket library

The socket library provides TCP inet-domain sockets from SWI-Prolog, both client and server-
side communication. The interface of this library is very close to the Unix socket interface, also
supported by the MS-WindowswinsockAPI. Since SWI-Prolog 4.0, XPCE is part of SWI-Prolog and
offerssocket. XPCE provides an event-driven interface to sockets, handling multiple open sockets in
paralel.

In the future we hope to provide a more high-level socket interface defined in Prolog and based
on these primitives.

2More subtle handling of I/O, especially for debugging is required: communicate with the syslog deamon and optionally
start a debugging dialog on a newly created (X-)terminal should be considered.

5

tcp socket(-SocketId)
Creates anINET -domain stream-socket and unifies an identifier to it withSocketId. On MS-
Windows, if the socket library is not yet initialised, this will also initialise the library.

tcp closesocket(+SocketId)
Closes the indicated socket, makingSocketIdinvalid. Normally, sockets are closed by closing
both stream handles returned byopen socket/3 . There are two cases wheretcp close socket/1
is used because there are no stream-handles:

• After tcp accept/3 , the server does afork/1 to handle the client in a sub-process.
In this case the accepted socket is not longer needed from the main server and must be
discarded usingtcp close socket/1 .

• If, after discovering the connecting client withtcp accept/3 , the server does not
want to accept the connection, it should discard the accepted socket immediately using
tcp close socket/1 .

tcp open socket(+SocketId, -InStream, -OutStream)
Open two SWI-Prolog I/O-streams, one to deal with input from the socket and one with output
to the socket. Iftcp bind/2 has been called on the socket.OutSreamis useless and will not
be created. After closing bothInStreamandOutSream, the socket itself is discarded.

tcp bind(+Socket, ?Port)
Bind the socket toPort on the current machine. This operation, together withtcp listen/2
andtcp accept/3 implement theserver-side of the socket interface. IfPort is unbound, the
system picks an arbitrary free port and unifiesPort with the selected port number.

tcp listen(+Socket, +Backlog)
Tells, aftertcp bind/2 , the socket to listen for incoming requests for connections.Backlog
indicates how many pending connection requests are allowed. Pending requests are requests
that are not yet acknowledged usingtcp accept/3 . If the indicated number is exceeded, the
requesting client will be signalled that the service is currently not available. A suggested default
value is 5.

tcp accept(+Socket, -Slave, -Peer)
This predicate waits on a server socket for a connection request by a client. On success, it
creates a new socket for the client and binds the identifier toSlave. Peer is bound to the IP-
address of the client.

tcp connect(C)
lient-interface to connect a socket to a givenPort on a givenHost. After successful completion,
tcp open socket/3 can be used to create I/O-Streams to the remote socket.

tcp setopt(+Socket, +Option)
Set options on the socket. Defined options are:

reuseaddr
Allow servers to reuse a port without the system being completely sure the port is no
longer in use.

6

dispatch(Bool)
In GUI environments (using XPCE or the Windows plwin.exe executable) this flags de-
fines whether or not any events are dispatched on behalf of the user interface. Default is
true . Only very specific situations require setting this tofalse .

tcp fcntl(+Stream, +Action, ?Argument)
Interface to the Unixfcntl() call. Currently only suitable to deal switch stream to non-
blocking mode using:

...
tcp_fcntlStream, setfl. nonblock),
...

As of SWI-Prolog 3.2.4, handling of non-blocking stream is supported. An attempt to read from
a non-blocking stream returns -1 (orend of file for read/1), butat end of stream/1
fails. On actual end-of-input,at end of stream/1 succeeds.

tcp host to address(?HostName, ?Address)
Translate between a machines host-name and it’s (IP-)address. IfHostNameis an atom, it is
resolved usinggethostbyname() and the IP-number is unified toAddressusing a term of
the formatip (Byte1, Byte2, Byte3, Byte4). Otherwise, ifAddressis bound to aip/4 term, it
is resolved bygethostbyaddr() and the canonical hostname is unified withHostName.

gethostname(-Hostname)
Return the official fully qualified name of this host. This is achieved by calling gethostname()
followed by gethostbyname() and return the official name of the host (h name) of the structure
returned by the latter function.

4.1 Server applications

The typical sequence for generating a server application is defined below:

create_server(Port) :-
tcp_socket(Socket),
tcp_bind(Socket, Port),
tcp_listen(Socket, 5),
tcp_open_socket(Socket, AcceptFd, _),
<dispatch>

There are various options for〈dispatch〉. One is to keep track of active clients and server-sockets
usingwait for input/3 . If input arrives at a server socket, usetcp accept/3 and add the
new connection to the active clients. Otherwise deal with the input from the client. Another is to use
(Unix) fork/1 to deal with the client in a separate process.

Usingfork/1 , 〈dispatch〉 may be implemented as:

dispatch(AcceptFd) :-
tcp_accept(AcceptFd, Socket, _Peer),
fork(Pid)

7

(Pid == child
-> tcp_open_socket(Socket, In, Out),

handle_service(In, Out),
close(In),
close(Out),
halt

; tcp_close_socket(Socket)
),
dispatch(AcceptFd).

4.2 Client applications

The skeleton for client-communication is given below.

create_client(Host, Port) :-
tcp_socket(Socket),
tcp_connect(Socket, Host:Port),
tcp_open_socket(Socket, ReadFd, WriteFd),
<handle I/O using the two streams>
close(ReadFd),
close(WriteFd).

To deal with timeouts and multiple connections,wait for input/3 and/or non-blocking streams
(seetcp fcntl/3) can be used.

4.3 The streampool library

Thestreampool library dispatches input from multiple streams based onwait for input/3 .
It is part of the clib package as it is used most of the time together with thesocket library. On
non-Unix systems it often can only be used with socket streams.

With SWI-Prolog 5.1.x, multi-threading often provides a good alternative to using this library.
In this schema one thread watches the listening socket waiting for connections and either creates a
thread per connection or processes the accepted connections with a pool ofworker threads. The
library http/thread httpd provides an example realising a mult-threaded HTTP server.

add stream to pool(+Stream, :Goal)
Add Stream, which must be an input stream and —on non-unix systems— connected to a socket
to the pool. If input is available onStream, Goal is called.

deletestream from pool(+Stream)
Delete the given stream from the pool. Succeeds, even ifStreamis no member of the pool. If
Streamis unbound the entire pool is emtied but unlikeclose stream pool/0 the streams
are not closed.

closestream pool
Empty the pool, closing all streams that are part of it.

8

dispatch stream pool(+TimeOut)
Wait for maximum ofTimeOutfor input on any of the streams in the pool. If there is input,
call theGoal associated withadd stream to pool/2 . If Goal fails or raises an exception
a message is printed.TimeOutis described withwait for input/3 .

If Goal is called, there issomeinput on the associated stream.Goalmust be careful not to block
as this will block the entire pool.3

stream pool main loop
Callsdispatch stream pool/1 in a loop until the pool is empty.

Below is a very simple example that reads the first line of input and echos it back.

:- use_module(library(streampool)).

server(Port) :-
tcp_socket(Socket),
tcp_bind(Socket, Port),
tcp_listen(Socket, 5),
tcp_open_socket(Socket, In, _Out),
add_stream_to_pool(In, accept(Socket)),
stream_pool_main_loop.

accept(Socket) :-
tcp_accept(Socket, Slave, Peer),
tcp_open_socket(Slave, In, Out),
add_stream_to_pool(In, client(In, Out, Peer)).

client(In, Out, _Peer) :-
read_line_to_codes(In, Command),
close(In),
format(Out, ’Please to meet you: ˜s˜n’, [Command]),
close(Out),
delete_stream_from_pool(In).

5 CGI Support library

This is currently a very simple library, providing support for obtaining the form-data for a CGI script:

cgi get form(-Form)
Decodes standard input and the environment variables to obtain a list of arguments passed to the
CGI script. This predicate both deals with the CGIGET method as well as thePOST method.
If the data cannot be obtained, anexistence error exception is raised.

Below is a very simple CGI script that prints the passed parameters. To test it, compile this pro-
gram using the command below, copy it to your cgi-bin directory (or make it otherwise known as a
CGI-script) and make the queryhttp://myhost.mydomain/cgi-bin/cgidemo?hello=world

3This is hard to achieve at the moment as none of the Prolog read-commands provide for a timeout.

9

% pl -o cgidemo --goal=main --toplevel=halt -c cgidemo.pl

:- use_module(library(cgi)).

main :-
cgi_get_form(Arguments),
format(’Content-type: text/html˜n˜n’, []),
format(’<HTML>˜n’, []),
format(’<HEAD>˜n’, []),
format(’<TITLE>Simple SWI-Prolog CGI script</TITLE>˜n’, []),
format(’</HEAD>˜n˜n’, []),
format(’<BODY>˜n’, []),
format(’<P>’, []),
print_args(Arguments),
format(’<BODY>˜n</HTML>˜n’, []).

print_args([]).
print_args([A0|T]) :-

A0 =.. [Name, Value],
format(’˜w=˜w
˜n’, [Name, Value]),
print_args(T).

5.1 Some considerations

Printing an HTML document usingformat/2 is not really a neat way of producing HTML. A high-
level alternative is provided byhttp/html write from the XPCE package.

6 MIME decoding library

MIME (Multipurpose Internet Mail Extensions) is a format for serializing multiple typed data ob-
jects. It was designed for E-mail, but it is also used for other applications such packaging multiple
values using the HTTP POST request on web-servers. Double Precision, Inc. has produced the C-
libraries rfc822 (mail) and rfc2045 (MIME) for decoding and manipulating MIME messages. The
mime library is a Prolog wrapper around the rfc2045 library for deconding MIME messages.

The general name ‘mime’ is used for this library as it is anticipated to add MIME-creation func-
tionality to this message.

Currently the mime library defines one predicate:

mime parse(Data, Parsed)
ParseDataand unify the result toParsed. Data is one of:

stream(Stream)
Parse the data fromStreamupto the end-of-file.

stream(Stream, Length)
Parse a maximum ofLengthcharacters fromStreamor upto the end-of-file, whichever
comes first.

10

Text
Atoms, strings, code- and character lists are treated as valid sources of data.

Parsedis a tree structure ofmime(Attributes, Data, PartList) terms. Currently eitherData is the
empty atom orPartList is an empty list.4 Data is an atom holding the message data. The library
automatically decodesbase64andquoted-printablemessages. See also thetransfer encoding
attribute below.

PartList is a list ofmime/3 terms. Attributesis a list holding a subset of the following argu-
ments. For details please consult the RFC2045 document.

type(Atom)
Denotes the Content-Type, how theDatashould be interpreted.

transfer encoding(Atom)
How theDatawas encoded. This is not very interesting as the library decodes the content
of the message.

character set(Atom)
The character set used for text data. Note that SWI-Prolog’s capabilities for character-set
handling are limited.

language(Atom)
Language in which the text-data is written.

id(Atom)
Identifier of the message-part.

description(Atom)
Descrptive text for theData.

disposition(Atom)
Where the data comes from. The current library only deals with ‘inline’ data.

name(Atom)
Name of the part.

filename(Atom)
Name of the file the data should be stored in.

NOTE This library is only built and installed if the maildrop libraries are installed on your system.

7 Unix password encryption library

Thecrypt library definescrypt/2 for encrypting and testing Unix passwords:

crypt(+Plain, ?Encrypted)
This predicate can be used in three modes. IfEncryptedis unbound, it will be unified to a
string (list of character-codes) holding a random encryption ofPlain. If Encryptedis bound to
a list holding 2 characters and an unbound tail, these two character are used for thesalt of the
encryption. Finally, ifEncryptedis instantiated to an encrypted password the predicate succeeds
iff Encryptedis a valid encryption ofPlain.

4It is unclear to me whether a MIME note can contain a mixture of content and parts, but I believe the answer is ‘no’.

11

Plain is either an atom, SWI-Prolog string, list of characters or list of character-codes. It is not
advised to use atoms, as this implies the password will be available from the Prolog heap as a
defined atom.

8 Memory files

The memfile provides an alternative to temporary files, intended for temporary buffering of data.
Memory files in general are faster than temporary files and do not suffer from security riscs or naming
conflicts associated with temporary-file management. They do assume proper memory management
by the hosting OS and cannot be used to pass data to external processes using a file-name.

There is no limit to the number of memory streams, nor the size of them. However, memory-
streams cannot have multiple streams at the same time (i.e. cannot be opened for reading and writing
at the same time).

These predicates are first of all intended for building higher-level primitives. See alsosformat/3 ,
atom to term/3 , term to atom/2 and the XPCE primitivepce open/3 .

new memory file(-Handle)
Create a new memory file and return a unique opaque handle to it.

free memory file(+Handle)
Discard the memory file and its contents. If the file is open it is first closed.

open memory file(+Handle, +Mode, -Stream)
Open the memory-file.Mode is currently one ofread or write . The resulting handling is
closed usingclose/1 .

sizememory file(+Handle, -Bytes)
Return the content-length of the memory-file itBytes. The file should be closed and contain
data.

atom to memory file(+Atom, -Handle)
Turn an atom into a read-only memory-file containing the (shared) characters of the atom.
Opening this memory-file in modewrite yields a permission error.

memory file to atom(+Handle, -Atom)
Return the content of the memory-file inAtom.

memory file to codes(+Handle, -Codes)
Return the content of the memory-file as a list of character-codes inCodes.

9 Time and alarm library

Thetime provides timing and alarm functions.

alarm(+Time, :Callable, -Id, +Option)
ScheduleCallable to be calledTimeseconds from now.Time is a number (integer or float).
Callable is called on the next pass through a call- or redo-port of the Prolog engine, or a call to
the PLhandlesignals() routine from SWI-Prolog.Id is unified with a reference to the timer.

12

The resolution of the alarm depends on the underlying implementation. On Unix systems it is
based on setitimer(), on Windows on timeSetEvent() using a resolution specified at 50 millisec-
onds. Long-running foreign predicates that do not call PLhandlesignals() may further delay
the alarm.

Optionsis a list ofName(Value) terms. Defined options are:

remove(Bool)
If true (defaultfalse), the timer is removed automatically. Otherwise it must be de-
lated explicitly usingremove alarm/1 .

alarm(+Time, :Callable, -Id)
Same asalarm (Time, Callable, Id, []).

remove alarm(+Id)
Remove an alarm. If it is not yet fired, it will not be fired any more.

current alarm(?At, ?:Callable, ?Id, ?Status)
Enumerate the not-yet-removed alarms.Statusis one ofdone if the alarm has been called,
next if it is the next to be fired andscheduledotherwise.

call with time limit(+Time, :Goal)
Call Goal asonce/1 . If Goal doesn’t complete withinTimeseconds, exit using the exception
time limit exceeded . Seecatch/3 .

Please note that this predicate usesalarm/4 and therefore isnot capable to break out of
long running goals such assleep/1 , blocking I/O or other long-running (foreign) predicates.
Blocking I/O can be handled using the timeout option ofread term/3 .

10 Limiting process resources

The rlimit library provides an interface to the POSIX getrlimit()/setrlimit() API that control the
maximum resource-usage of a process or group of processes. This call is especially useful for server
such as CGI scripts and inetd-controlled servers to avoid an uncontrolled script claiming too much
resources.

rlimit(+Resource, -Old, +New)
Query and/or set the limit forResource. Time-values are in seconds and size-values are counted
in bytes. The following values are supported by this library. Please note that not all resources
may be available and accessible on all platforms. This predicate can throw a variety of excep-
tions. In portable code this should be guarded withcatch/3 . The defined resources are:

cpu CPU time in seconds
fsize Maximum filesize
data max data size
stack max stack size
core max core file size
rss max resident set size
nproc max number of processes
nofile max number of open files
memlock max locked-in-memory address

13

When the process hits a limit POSIX systems normally send the process a signal that termi-
nates it. These signals may be catched using SWI-Prolog’son signal/3 primitive. The code
below illustrates this behaviour. Please note that asynchronous signal handling is dangerous, es-
pecially when using threads. 100% fail-safe operation cannot be guaranteed, but this procedure
will inform the user properly ‘most of the time’.

rlimit_demo :-
rlimit(cpu, _, 2),
on_signal(xcpu, _, cpu_exceeded),
(repeat, fail).

cpu_exceeded(_Sig) :-
format(user_error, ’CPU time exceeded˜n’, []),
halt(1).

11 Installation

11.1 Unix systems

Installation on Unix system uses the commonly foundconfigure, makeandmake installsequence.
SWI-Prolog should be installed before building this package. If SWI-Prolog is not installed aspl , the
environment variablePL must be set to the name of the SWI-Prolog executable. Installation is now
accomplished using:

% ./configure
% make
% make install

This installs the foreign libraries in$PLBASE/lib/$PLARCH and the Prolog library files in$PLBASE/
library , where$PLBASErefers to the SWI-Prolog ‘home-directory’.

14

	Introduction
	Unix Process manipulation library
	File manipulation library
	Socket library
	Server applications
	Client applications
	The stream_pool library

	CGI Support library
	Some considerations

	MIME decoding library
	Unix password encryption library
	Memory files
	Time and alarm library
	Limiting process resources
	Installation
	Unix systems

