
SWI-Prolog HTTP support

Jan Wielemaker
SWI,

University of Amsterdam
The Netherlands

E-mail: jan@swi.psy.uva.nl

June 30, 2003

Abstract

This article documents the package HTTP, a series of libraries for accessing data on HTTP
servers as well as provide HTTP server capabilities from SWI-Prolog. Both server and client are
modular libraries. The server can be operated from the Unixinetd super-daemon as well as as
a stand-alone server.

1

Contents

1 Introduction 3

2 The HTTP client libraries 3
2.1 Thehttp/http open library . 3
2.2 Thehttp/http client library . 4

2.2.1 The MIME client plug-in. 6
2.2.2 The SGML client plug-in. 6

3 The HTTP server libraries 7
3.1 The ‘Body’ . 7
3.2 Request format. 8

3.2.1 Handling POST requests. 9
3.3 Running the server. 9

3.3.1 Common server interface options. 10
3.3.2 From an interactive Prolog session using XPCE. 10
3.3.3 Multi-threaded Prolog. 11
3.3.4 From (Unix) inetd . 12
3.3.5 MS-Windows. 13
3.3.6 As CGI script. 13

3.4 The wrapper library. 13
3.5 Thehttp/html write library . 14

3.5.1 Emitting HTML documents. 16
3.5.2 Adding rules forhtml/1 . 16
3.5.3 Generating layout. 17
3.5.4 Examples. 17
3.5.5 Remarks on thehttp/html write library 18

4 Security 19

5 Status 20

2

1 Introduction

The HTTP (HyperText Transfer Protocol) is the W3C standard protocol for transferring information
between a web-client (browser) and a web-server. The protocol is a simpleenvelopeprotocol where
standard name/value pairs in the header are used to split the stream into messages and communicate
about the connection-status. Many languages have client and or server libraries to deal with the HTTP
protocol, making it a suitable candidate for general purpose client-server applications. It is the basis
of popular agent protocols such as SOAP and FIPA.

In this document we describe a modular infra-structure to access web-servers from SWI-Prolog
and turn Prolog into a web-server. The server code is designed to allow the same ‘body’ to be used
from an interactive server for debugging or providing services from otherwise interactive applications,
run the body from aninetdsuper-server or as a CGI script behind a generic web-server.

The design of this module is different from the competing XPCE-based HTTP server located in
http/httpd.pl , which intensively uses XPCE functionality to reach its goals. Using XPCE is
not very suitable for CGI or inetd-driven servers due to required X11 connection and much larger
footprint.

Acknowledgements

This work has been carried out under the following projects: GARP, MIA, IBROW and KITS. The
following people have pioneered parts of this library and contributed with bug-report and suggestions
for improvements: Anjo Anjewierden, Bert Bredeweg, Wouter Jansweijer and Bob Wielinga.

2 The HTTP client libraries

This package provides two packages for building HTTP clients. The first,http/http open is a
very lightweight library for opening a HTTP URL address as a Prolog stream. It can only deal with
the HTTP GET protocol. The second,http/http client is a more advanced library dealing with
keep-alive, chunked transferand a plug-in mechanism providing conversions based on the MIME
content-type.

2.1 Thehttp/http open library

The libraryhttp/http open provides a very simple mechanism to read data from an HTTP server
using the HTTP 1.0 protocol and HTTP GET access method. It defines one predicate:

http open(+URL, -Stream, +Options)
Open the data at the HTTP server as a Prolog stream. After this predicate succeeds the data
can be read fromStream. After completion this stream must be closed using the built-in Prolog
predicateclose/1 . Optionsprovides additional options:

timeout(+Timeout)
If provided, set a timeout on the stream usingset stream/2 . With this option if no
new data arrives withinTimeoutseconds the stream raises an exception. Default is to wait
forever (infinite).

header(+Name, -AtomValue)
If provided,AtomValueis unified with the value of the indicated field in the reply header.

3

Nameis matched case-insensitive and the underscore () matches the hyphen (-). Multiple
of these options may be provided to extract multiple header fields. If the header is not
availableAtomValueis unified to the empty atom (”).

size(-Size)
If providedSizeis unified with the value of theContent-Length fields of the reply-
header.

proxy(+Host, +Port)
Use an HTTP proxy to connect to the outside world.

user agent(+Agent)
Defines the value of theUser-Agent field of the HTTP header. Default isSWI-
Prolog (http://www.swi-prolog.org) .

Here is a simple example:

?- http_open(’http://www.swi-prolog.org/news.html’, In, []),
copy_stream_data(In, user_output),
close(In).

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">

<HTML>
<HEAD>
<TITLE>News</TITLE>
</HEAD>
...

2.2 Thehttp/http client library

Thehttp/http client library provides more powerful access to reading HTTP resources, pro-
viding keep-aliveconnections,chunkedtransfer and conversion of the content, such as breaking down
multipartdata, parsing HTML, etc. The library announces itself as providingHTTP/1.1 .

http get(+URL, -Reply, +Options)
Performs a HTTP GET request on the given URL and then reads the reply using
http read data/3 . Defined options are:

connection(ConnectionType)
If close (default) a new connection is created for this request and closed after the request
has completed. If’Keep-Alive’ the library checks for an open connection on the
requested host and port and re-uses this connection. The connection is left open if the
other party confirms the keep-alive and closed otherwise.

http version(Major-Minor)
Indicate the HTTP protocol version used for the connection. Default is1.1 .

proxy(+Host, +Port)
Use an HTTP proxy to connect to the outside world.

4

user agent(+Agent)
Defines the value of theUser-Agent field of the HTTP header. Default isSWI-
Prolog (http://www.swi-prolog.org) .

Remaining options are passed tohttp read data/3 .

http post(+URL, +In, -Reply, +Options)
Performs a HTTP POST request on the given URL. It is equivalent tohttp get/3 , except for
providing aninput document, which is posted usinghttp post data/3 .

http read data(+Header, -Data, +Options)
Read data from an HTTP stream. Normally called fromhttp get/3 or http post/4 .
When dealing with HTTP POST in a server this predicate can be used to retrieve the posted
data.Headeris the parsed header.Optionsis a list ofName(Value) pairs to guide the translation
of the data. The following options are supported:

to(Target)
Do not try to interpret the data according to the MIME-type, but return it literally accord-
ing toTarget, which is one of:

stream(Output)
Append the data to the given stream, which should be a Prolog stream open for writ-
ing. This can be used to return save the data in a (memory-)file, XPCE object, forward
it to process using a pipe, etc.

atom
Return the result as an atom. Though SWI-Prolog has no limit on the size of atoms
and provides atom-garbage collection, this options should be used with care.1

codes
Return the page as a list of character-codes. This is especially useful for parsing it
using grammar rules.

content type(Type)
Overrule theContent-Type as provided by the HTTP reply header. Intented as a work-
around for badly configured servers.

If no to (Target) option is provided the library tries the registered plug-in conversion filters.
If none of these succeed it tries the built-in content-type handlers or returns the content as an
atom. The builtin content filters are described below. The provided plug-ins are described in
the following sections.

application/x-www-form-urlencoded
This is the default encoding mechanism for POST requests issued by a web-browser. It is
broken down to a list ofName= Valueterms.

Finally, if all else fails the content is returned as an atom.

http post data(+Data, +Stream, +ExtraHeader)
Write an HTTP POST request toStreamusing data fromData and passing the additional extra
headers fromExtraHeader. Data is one of:

1Currently atom-garbage collection is activated after the creation of 10,000 atoms.

5

html(+HTMLTokens)
Send an HTML token string as produced by the libraryhtml write described in section
section3.5.

file(+File)
Send the contents ofFile. The MIME type is derived from the filename extension using
file mime type/2 .

file(+File, +Type)
Send the contents ofFile using the provided MIME type.

cgi stream(+Stream, +Len)
Read the input fromStreamwhich, like CGI data starts with a partial HTTP header. The
fields of this header are merged with the providedExtraHeaderfields. The firstLenchar-
acters ofStreamare used.

form(+ListOfParameter)
Send data of the MIME typeapplication/x-www-form-urlencoded as pro-
duced by browsers issuing a POST request from an HTML form.ListOfParameteris
a list ofName=Valueor Name(Value).

List
If the argument is a plain list, it is sent using the MIME typemultipart/mixed and
packed usingmime pack/3 . Seemime pack/3 for details on the argument format.

2.2.1 The MIME client plug-in

This plug-in libraryhttp/http mime plugin breaks multipart documents that are recognised
by theContent-Type: multipart/form-data or Mime-Version: 1.0 in the header
into a list of Name = Value pairs. This library deals with data from web-forms using the
multipart/form-data encoding as well as the FIPA agent-protocol messages.

2.2.2 The SGML client plug-in

This plug-in library http/http sgml plugin provides a bridge between the
SGML/XML/HTML parser provided bysgml and the http client library. After loading this
hook the following mime-types are automatically handled by the SGML parser.

text/html
Handed tosgml using W3C HTML 4.0 DTD, suppressing and ignoring all HTML syntax
errors.Optionsis passed toload structure/3 .

text/xml
Handed to sgml using dialect xmlns (XML + namespaces). Options is passed to
load structure/3 . In particular,dialect (xml) may be used to suppress namespace han-
dling.

text/x-sgml
Handled tosgml using dialectsgml . Optionsis passed toload structure/3 .

6

thread_httpd.pl

xpce_httpd.pl

inetd_httpd.pl

http_wrapper.pl Body.pl

Unix inetd based servers

XPCE event-driven servers

Multi-threaded severs

User’s application codeHTTP protocolSelect server-type

Figure 1: Design of the HTTP server

3 The HTTP server libraries

The HTTP server library consists of two parts. The first deals with connection management and has
three different implementation depending on the desired type of server. The second implements a
generic wrapper for decoding the HTTP request, calling user code to handle the request and encode
the answer. This design is summarised in figure1.

The functional body of the user’s code is independent from the selected server-type, making it
easy to switch between the supported server types. Especially the XPCE-based event-driven server is
comfortable for debugging but less suitable for production servers. We start the description with how
the user must formulate the functionality of the server.

3.1 The ‘Body’

The server-body is the code that handles the request and formulates a reply. To facilitate all mentioned
setups, the body is driven byhttp wrapper/3 . The goal is called with the parsed request (see
section3.2) as argument andcurrent output set to a temporary buffer. Its task is closely related
to the task of a CGI script; it must write a header declaring holding at least theContent-type field
and a body. Here is a simple body writing the request as an HTML table.

reply(Request) :-
format(’Content-type: text/html˜n˜n’, []),
format(’<html>˜n’, []),
format(’<table border=1>˜n’),
print_request(Request),
format(’˜n</table>˜n’),

7

format(’</html>˜n’, []).

print_request([]).
print_request([H|T]) :-

H =.. [Name, Value],
format(’<tr><td>˜w<td>˜w˜n’, [Name, Value]),
print_request(T).

3.2 Request format

The body-code (see section3.1) is driven by a Request. This request is generated from
http read request/2 defined inhttp/http header .

http read request(+Stream, -Request)
Reads an HTTP request fromStreamand unifyRequestwith the parsed request.Requestis a list
of Name(Value) elements. It provides a number of predefined elements for the result of parsing
the first line of the request, followed by the additional request parameters. The predefined fields
are:

input(Stream)
TheStreamis passed along, allowing to read more data or requests from the same stream.
This field is always present.

method(Method)
Methodis one ofget , put or post . This field is present if the header has been parsed
successfully.

path(Path)
Path associated to the request. This field is always present.

search(ListOfNameValue)
Search-specification of URI. This is the part after the?, normally used to transfer data
from HTML forms that use the ‘GET’ protocol. In the URL it consists of a www-form-
encoded list ofName=Valuepairs. This is mapped to a list of PrologName=Valueterms
with decoded names and values. This field is only present if the location contains a search-
specification.

http version(Major-Minor)
If the first line contains theHTTP/Major.Minor version indicator this element indicate
the HTTP version of the peer. Otherwise this field is not present.

If the first line of the request is tagged withHTTP/Major.Minor, http read request/2
reads all input upto the first blank line. This header consists ofName:Valuefields. Each such
field appears as a termName(Value) in the Request, whereNameis canonised for use with
Prolog. Canonisation implies that theNameis converted to lower case and all occurrences
of the - are replaced by. The value for theContent-length fields is translated into an
integer.

Here is an example:

8

?- http_read_request(user, X).
|: GET /mydb?class=person HTTP/1.0
|: Host: gollem
|:
X = [input(user),

method(get),
search([class = person

]),
path(’/mydb’),
http_version(1-0),
host(gollem)

].

3.2.1 Handling POST requests

Where the HTTPGET operation is intended to get a document, using apath and possibly some
additional search information, thePOSToperation is intended to hand potentially large amounts of
data to the server for processing.

The Requestparameter above contains the termmethod (post). The data posted is left on the
input stream that is available through the terminput (Stream) from theRequestheader. This data
can be read usinghttp read data/3 from the HTTP client library. Here is a demo implementation
simply returning the parsed pasted data as plain http://db.cwi.nl/projecten/project.php4?prjnr=129text
(assumingpp/1 pretty-prints the data).

reply(Request) :-
member(method(post), Request), !,
http_read_data(Request, Data, []),
format(’Content-type: text/plain˜n˜n’, []),
pp(Data).

If the POST is initiated from a browser, content-type is generally eitherapplication/x-www-
form-urlencoded or multipart/form-data . The latter is broken down automatically if the
plug-inhttp/http mime plugin is loaded.

3.3 Running the server

The functionality of the server should be defined in one Prolog file (of course this file is allowed to
load other files). Depending on the wanted server setup this ‘body’ is wrapped into a small Prolog file
combining the body with the appropriate server interface. There are three supported server-setups:

• Usingxpce httpd for an event-driven server
This approach provides a single-threaded event-driven application. The clients talk to XPCE
sockets that collect an HTTP request. The server infra-structure can talk to multiple clients
simultaneously, but once a request is complete the wrappers call the user’s goal and blocks
all further activity until the request is handled. Requests from multiple clients are thus fully
serialised in one Prolog process.

This server setup is very suitable for debugging as well as embedded server in simple applica-
tions in a fairly controlled environment.

9

• Usingthread httpd for a multi-threaded server
This server exploits the multi-threaded version of SWI-Prolog, running the users body code
parallel from a pool of worker threads. As it avoids the state engine and copying required in the
event-driven server it is generally faster and capable to handle multiple requests concurrently.

This server is a harder to debug due to the involved threading. It can provide fast communica-
tion to multiple clients and can be used for more demanding embedded servers, such as agent
platforms.

• Using inetd httpd for server-per-client
In this setup the Unixinetd user-daemon is used to initialise a server for each connection.
This approach is especially suitable for servers that have a limited startup-time. In this setup a
crashing client does not influence other requests.

This server is very hard to debug as the server is not connected to the user environment. It
provides a robust implementation for servers that can be started quickly.

3.3.1 Common server interface options

All the server interfaces providehttp server (:Goal, +Options) to create the server. The list of
options differ, but the servers share common options:

port(?Port)
Specify the port to listen to for stand-alone servers.Port is either an integer or unbound. If
unbound, it is unified to the selected free port.

after(:Goal)
Specify a goal to be run on the query just like the first argument ofhttp server/2 . This
goal however is startedafter the request has been answered. It is called usingcall (Goal,
Request). This extension was added to support the FIPA-HTTP protocol, which issues HTTP
POST requests on the server. The server answers these requests with an empty document before
starting processing. Theafter -option is used for the processing:

:- http_server(reply, [after(action), ...]).

reply(Request) :-
format(’Content-type: text/plain\r\n\r\n’).

action(Request) :-
<start agent work on request>

3.3.2 From an interactive Prolog session using XPCE

Thehttp/xpce httpd.pl provides the infrastructure to manage multiple clients with an event-
driven control-structure. This version can be started from an interactive Prolog session, providing a
comfortable infra-structure to debug the body of your server. It also allows the combination of an
(XPCE-based) GUI with web-technology in one application.

10

http server(:Goal, +Options)
Create an instance ofinteractivehttpd. Optionsmust provide theport (?Port) option to specify
the port the server should listen to. IfPort is unbound an arbitrary free port is selected andPort
is unified to this port-number. The only other option provided is theafter (:Goal) option.

The filedemo_xpce gives a typical example of this wrapper, assumingdemo_body defines the
predicatereply/1 .

:- use_module(xpce_httpd).
:- use_module(demo_body).

server(Port) :-
http_server(reply, Port, []).

The created server opens a server socket at the selected address and waits for incoming connections.
On each accepted connection it collects input until an HTTP request is complete. Then it opens an
input stream on the collected data and using the output stream directed to the XPCEsocketit calls
http wrapper/3 . This approach is fundamentally different compared to the other approaches:

• Server can handle multiple connections
When inetd will start a server for eachclient, and CGI starts a server for eachrequest, this
approach starts a single server handling multiple clients.

• Requests are serialised
All calls to Goalare fully serialised, processing on behalf of a new client can only start after all
previous requests are answered. This easier and quite acceptable if the server is mostly inactive
and requests take not very long to process.

• Lifetime of the server
The server lives as long as Prolog runs.

3.3.3 Multi-threaded Prolog

Thehttp/thread httpd.pl provides the infrastructure to manage multiple clients using a pool
of worker-threads. This realises a popular server design, also seen in SUN JavaBeans and Microsoft
.NET. As a single persistent server process maintains communication to all clients startup time is not
an important issue and the server can easily maintain state-information for all clients.

http server(:Goal, +Options)
Create the server.Optionsmust provide theport (?Port) option to specify the port the server
should listen to. IfPort is unbound an arbitrary free port is selected andPort is unified to this
port-number. The server consists of a small Prolog thread accepting new connection onPort
and dispatching these to a pool of workers. DefinedOptionsare:

port(?Port)
Port the server should listen to. If unboundPort is unified with the selected free port.

11

workers(+N)
Defines the number of worker threads in the pool. Default is to usetwoworkers. Choosing
the optimal value for best performance is a difficult task depending on the number of CPUs
in your system and how much resources are required for processing a request. Too high
numbers makes your system switch too often between threads or even swap if there is not
enough memory to keep all threads in memory, while a too low number causes clients to
wait unnecessary for other clients to complete. See alsohttp workers/2 .

timeout(+SecondsOrInfinite)
Determines the maximum period of inactivity handling a request. If no data arrives within
the specified time since the last data arrived the connection raises an exception, the worker
discards the client and returns to the pool-queue for a new client. Default isinfinite ,
making each worker wait forever for a request to complete. Without a timeout, a worker
may wait forever on an a client that doesn’t complete its request.

local(+KBytes)
Size of the local-stack for the workers. Default is taken from the commandline option.

global(+KBytes)
Size of the global-stack for the workers. Default is taken from the commandline option.

trail(+KBytes)
Size of the trail-stack for the workers. Default is taken from the commandline option.

after(:Goal)
After replying a request, executeGoalproviding the request as argument.

http current server(?:Goal, ?Port)
Query the running servers. Note thathttp server/3 can be called multiple times to create
multiple servers on different ports.

http workers(:Port, ?Workers)
Query or manipulate the number of workers of the server identified byPort. If Workersis
unbound it is unified with the number of running servers. If it is an integer greater than the
current size of the worker pool new workers are created with the same specification as the
running workers. If the number is less than the current size of the worker pool, this predicate
inserts a number of ‘quit’ requests in the queue, discarding the excess workers as they finish
their jobs (i.e. no worker is abandoned while serving a client).

This can be used to tune the number of workers for performance. Another possible application
is to reduce the pool to one worker to facilitate easier debugging.

3.3.4 From (Unix) inetd

All modern Unix systems handle a large number of the services they run through the super-server
inetd. This program reads/etc/inetd.conf and opens server-sockets on all ports defined in this
file. As a request comes in it accepts it and starts the associated server such that standard I/O refers to
the socket. This approach has several advantages:

• Simplification of servers
Servers don’t have to know about sockets and -operations.

12

• Centralised authorisation
Usingtcpwrapperssimple and effective firewalling of all services is realised.

• Automatic start and monitor
The inetd automatically starts the server ‘just-in-time’ and starts additional servers or restarts a
crashed server according to the specifications.

The very small generic script for handling inetd based connections is ininetd_httpd , defining
http server/1 :

http server(:Goal, +Options)
Initialises and runshttp wrapper/3 in a loop until failure or end-of-file. This server does
not support thePort option as the port is specified with theinetd configuration. The only
supported option isAfter.

Here is the example fromdemo_inetd

#!/usr/bin/pl -t main -q -f
:- use_module(demo_body).
:- use_module(inetd_httpd).

main :-
http_server(reply).

With the above file installed in/home/jan/plhttp/demo_inetd , the following line in/etc/
inetd enables the server at port 4001 guarded bytcpwrappers. After modifying inetd, send the
daemon theHUPsignal to make it reload its configuration. For more information, please check
inetd.conf(5) .

4001 stream tcp nowait nobody /usr/sbin/tcpd /home/jan/plhttp/demo_inetd

3.3.5 MS-Windows

There are rumours thatinetdhas been ported to Windows.

3.3.6 As CGI script

To be done.

3.4 The wrapper library

The body is called by the modulehttp/http wrapper.pl . This module realises the commu-
nication between the I/O streams and the body described in section3.1. The interface is realised by
http wrapper/3 :

http wrapper(:Goal, +In, +Out, -Connection, +Options)
Handle an HTTP request whereIn is an input stream from the client,Out is an output stream
to the client andGoal defines the goal realising the body.Connectionis unified to’Keep-
alive’ if both ends of the connection want to continue the connection orclose if either side

13

wishes to close the connection. The only option provided isrequest (-Request), providing the
executed request to the caller.

This predicate reads an HTTP request-header fromIn, redirects current output to a memory file
and then runscall(Goal, Request) , watching for exceptions and failure. IfGoal exe-
cutes successfully it generates a complete reply from the created output. Otherwise it generates
an HTTP server error with additional context information derived from the exception.

3.5 Thehttp/html write library

Producing output for the web in the form of an HTML document is a requirement for many Prolog
programs. Just usingformat/2 is satisfactory as it leads to poorly readable programs generating
poor HTML. This library is based on using DCG rules.

Thehttp/html write structures the generation of HTML from a program. It is an extensible
library, providing aDCG framework for generating legal HTML under (Prolog) program control. It
is especially useful for the generation of structured pages (e.g. tables) from Prolog data structures.

The normal way to use this library is through the DCGhtml/1 . This grammar-rule provides the
central translation from a structured term with embedded calls to additional translation rules to a list
of atoms that can then be printed usingprint html/[1,2] .

html(:Spec) -->
http://db.cwi.nl/projecten/project.php4?prjnr=129The DCG rulehtml/1 is the main predicate
of this library. It translates the specification for an HTML page into a list of atoms that can be
written to a stream usingprint html/[1,2] . The expansion rules of this predicate may be
extended by defining the multifile DCG htmlwrite:expand/1.Specis either a single specifica-
tion or a list of single specifications. Using nested lists is not allowed to avoid ambiguity caused
by the atom[]

• Atomic data
Atomic data is quoted using thehtml quoted/1 DCG.

• Fmt - Args
Fmt andArgs are used as format-specification and argument list tosformat/3 . The
result is quoted and added to the output list.

• \ List
Escape sequence to add atoms directly to the output list. This can be used to embed
external HTML code.

• \ Term
Invoke the grammar ruleTermin the calling module. This is the common mechanism to
realise abstraction and modularisation in generating HTML.

• Module:Term
Invoke the grammar rule〈Module〉:〈Term〉. This is similar to\ Termbut allows for invok-
ing grammar rules in external packages.

• &(Entity)
Emit &〈Entity〉; .

• Tag(Content)
Emit HTML elementTagusingContentand no attributes.Contentis handled tohtml/1 .
See section3.5.3for details on the automatically generated layout.

14

• Tag(Attributes, Content)
Emit HTML elementTag usingAttributesandContent. Attributesis either a single at-
tribute of a list of attributes. Each attributes is of the formatName(Value) or Name(Value).

page(:HeadContent, :BodyContent) -->
The DCG rulepage/2 generated a complete page, including the SGMLDOCTYPEdeclaration.
HeadContentare elements to be placed in thehead element andBodyContentare elements to
be placed in thebody element.

http://db.cwi.nl/projecten/project.php4?prjnr=129To achieve common style (background, page
header and footer), it is possible to define DCG ruleshead/1 and/orbody/1 . Thepage/1
rule checks for the definition of these DCG rules in the module it is called from as well as
in the user module. If no definition is found, it creates a head with only theHeadContent
(note that thetitle is obligatory) and abody with bgcolor set towhite and the provided
BodyContent.

Note that further customisation is easily achieved usinghtml/1 directly aspage/2 is (besides
handling the hooks) defined as:

page(Head, Body) -->
html([\[’<!DOCTYPE HTML PUBLIC "-

//IETF//DTD HTML 4.0//EN">\n’],
html([head(Head),

body(bgcolor(white), Body)
])

]).

page(:Contents) -->
This version of thepage/[1,2] only gives you the SGMLDOCTYPEand theHTMLelement.
Contentsis used to generate both the head and body of the page.

html begin(+Begin) -->
Just open the given element.Beginis either an atom or a compound term, In the latter case the
arguments are used as arguments to the begin-tag. Some examples:

html_begin(table)
html_begin(table(border(2), align(center)))

This predicate provides an alternative to using the\ Commandsyntax in thehtml/1 speci-
fication. The following two fragments are the same. The preferred solution depends on your
preferences as well as whether the specification is generated or entered by the programmer.

table(Rows) -->
html(table([border(1), align(center), width(’80%’)],

[\table_header,
\table_rows(Rows)

])).

15

% or

table(Rows) -->
html_begin(table(border(1), align(center), width(’80%’))),
table_header,
table_rows,
html_end(table).

html end(+End) -->
End an element. Seehtml begin/1 for details.

3.5.1 Emitting HTML documents

Thehtml/1 grammar rules translates a specification into a list of atoms and layout instructions. Cur-
rently the layout instructions are terms of the formatnl (N), requesting at leastN newlines. Multiple
consequtivenl (1) terms are combined to an atom containing the maximum of the requested number
of newline characters.

To simplify handing the data to a client or storing it into a file, the following predicates are avail-
able from this library:

print html(+List)
Print the token list to the Prolog current output stream.

print html(+Stream, +List)
Print the token list to the specified output stream

html print length(+List, -Length)
When callinghtml print/[1,2] onList, Lengthcharacters will be produced. Knowing the
length is needed to provide theContent-length field of an HTTP reply-header.

3.5.2 Adding rules forhtml/1

In some cases it is practical to extend the translations imposed byhtml/1 . When using XPCE for
example, it is comfortable to be able defining default translation to HTML for objects. We also used
this technique to define translation rules for the output of the SWI-Prologsgml package.

Thehtml/1 rule first calls the multifile ruleset htmlwrite:expand/1. The other predicates contain
commonly rules for defining new rules.

html write:expand(+Spec) -->
Hook to add additional translationrules forhtml/1 .

html quoted(+Atom) -->
Emit the text inAtom, inserting entity-references for the SGML special characters<&>.

html quoted attribute(+Atom) -->
Emit the text inAtomsuitable for use as an SGML attribute, inserting entity-references for the
SGML special characters<&>’" .

16

3.5.3 Generating layout

Though not strictly necessary, the library attempts to generate reasonable layout in SGML output. It
does this only by inserting newlines before and after tags. It does this on the basis of the multifile
predicate htmlwrite:layout/3

html write:layout(+Tag, -Open, -Close)
Specify the layout conventions for the elementTag, which is a lowercase atom.Openis a term
Pre-Post. It defines that the element should have at leastPre newline characters before and
Postafter the tag. TheClosespecification is similar, but in addition allows for the atom- ,
requesting the output generator to omit the close-tag altogether orempty , telling the library
that the element has declared empty content. In this case the close-tag is not emitted either, but
in additionhtml/1 interpretsArg in Tag(Arg) as a list of attributes rather than the content.

A tag that does not appear in this table is emitted without additional layout. See also
print html/[1,2] . Please consult the library source for examples.

3.5.4 Examples

In the following example we will generate a table of Prolog predicates we find from the SWI-Prolog
help system based on a keyword. The primary database is defined by the predicatepredicate/5
We will make hyperlinks for the predicates pointing to their documentation.

html_apropos(Kwd) :-
findall(Pred, apropos_predicate(Kwd, Pred), Matches),
phrase(apropos_page(Kwd, Matches), Tokens),
print_html(Tokens).

% emit page with title, header and table of matches

apropos_page(Kwd, Matches) -->
page([title([’Predicates for ’, Kwd])

],
[h2(align(center),

[’Predicates for ’, Kwd]),
table([align(center),

border(1),
width(’80%’)

],
[tr([th(’Predicate’),

th(’Summary’)
])

| \apropos_rows(Matches)
])

]).

% emit the rows for the body of the table.

apropos_rows([]) -->

17

[].
apropos_rows([pred(Name, Arity, Summary)|T]) -->

html([tr([td(\predref(Name/Arity)),
td(em(Summary))

])
]),

apropos_rows(T).

% predref(Name/Arity)
%
% Emit Name/Arity as a hyperlink to
%
% /cgi-bin/plman?name=Name&arity=Arity
%
% we must do form-encoding for the name as it may con-
tain illegal
% characters. www_form_encode/2 is defined in library(url).

predref(Name/Arity) -->
{ www_form_encode(Name, Encoded),

sformat(Href, ’/cgi-bin/plman?name=˜w&arity=˜w’,
[Encoded, Arity])

},
html(a(href(Href), [Name, /, Arity])).

% Find predicates from a keyword. ’$apro-
pos_match’ is an internal
% undocumented predicate.

apropos_predicate(Pattern, pred(Name, Arity, Summary)) :-
predicate(Name, Arity, Summary, _, _),
(’$apropos_match’(Pattern, Name)
-> true
; ’$apropos_match’(Pattern, Summary)
).

3.5.5 Remarks on thehttp/html write library

This library is the result of various attempts to reach at a more satisfactory and Prolog-minded way to
produce HTML text from a program. We have been using Prolog for the generation of web pages in
a number of projects. Just usingformat/2 never was a real option, generating error-prone HTML
from clumsy syntax. We started with a layour on top of format, keeping track of the current nesting
and thus always capable of properly closing the environment.

DCG based translation however naturally exploits Prologs term-rewriting primitives. If generation
fails for whatever reason it is easy to produce an alternative document (for example holding an error
message).

18

The approach presented in this library has been used in combination withhttp/httpd in three
projects: viewing RDF in a browser, selecting fragments from an analysed document and presenting
parts of the XPCE documentation using a browser. It has proven to be able to deal with generating
pages quickly and comfortably.

In a future version we will probably define agoal expansion/2 to do compile-time optimi-
sation of the library. Quotation of known text and invokation of sub-rules using the\ RuleSetand
〈Module〉:〈RuleSet〉 operators are costly operations in the analysis that can be done at compile-time.

4 Security

Writing servers is an inherently dangerous job that should be carried out with some considerations.
You have basically started a program on a public terminal and invited strangers to use it. When using
the interactive server or inetd based server the server runs under your privileges. Using CGI scripted it
runs with the privileges of your web-server. Though it should not be possible to fatally compromise a
Unix machine using user privileges, getting unconstrained access to the system is highly undesirable.

Symbolic languages have an additional handicap in their inherent possibilities to modify the run-
ning program and dynamically create goals (this also applies to the popular perl and java scripting
languages). Here are some guidelines.

• Check your input
Hardly anything can go wrong if you check the validity of query-arguments before formulating
an answer.

• Check filenames
If part of the query consists of filenames or directories, check them. This also applies to files you
only read. Passing names as/etc/passwd , but also../../../../../etc/passwd
are tried by experienced hackers to learn about the system they want to attack. So, expand
provided names usingabsolute file name/[2,3] and verify they are inside a folder
reserved for the server. Avoid symbolic links from this subtree to the outside world. The
example below checks validity of filenames. The first call ensures proper canonisation of the
paths to avoid an mismatch due to symbolic links or other filesystem ambiguities.

check_file(File) :-
absolute_file_name(’/path/to/reserved/area’, Reserved),
absolute_file_name(File, Tried),
atom_concat(Reserved, _, Tried).

• Check scripts
Should input in any way activate external scripts usingshell/1 or
open(pipe(Command), ...) , verify the argument once more.

• Check meta-calling
Theattractive situation for you and your attacker is below:

reply(Query) :-
member(search(Args), Query),

19

member(action=Action, Query),
member(arg=Arg, Query),
call(Action, Arg). % NEVER DO THIS

All your attacker has to do is specifyAction asshell andArg as /bin/sh and he has an
uncontrolled shell!

5 Status

The current library has been developed and tested in a number of internal and funded projects at the
SWI department of the University of Amsterdam. With this release we hope to streamline deployment
within these projects as well as let other profit from the possibilities to use Prolog directly as a web-
server.

This library is by no means complete and you are free to extend it. Partially or completely lacking
are notably session management and authorisation.

20

	Introduction
	The HTTP client libraries
	The http/http_open library
	The http/http_client library
	The MIME client plug-in
	The SGML client plug-in

	The HTTP server libraries
	The `Body'
	Request format
	Handling POST requests

	Running the server
	Common server interface options
	From an interactive Prolog session using XPCE
	Multi-threaded Prolog
	From (Unix) inetd
	MS-Windows
	As CGI script

	The wrapper library
	The http/html_write library
	Emitting HTML documents
	Adding rules for html/1
	Generating layout
	Examples
	Remarks on the http/html_write library

	Security
	Status

