
SWI-Prolog/XPCE Semantic Web Library

Jan Wielemaker
SWI,

University of Amsterdam
The Netherlands

E-mail: jan@swi.psy.uva.nl

September 11, 2003

Abstract

This document describes a library for dealing with standards from the W3C standard for the
Semantic Web. Like the standards themselves (RDF, RDFS and OWL) this infrastructure is mod-
ular. It consists of Prolog packages for reading, querying and storing semantic web documents
as well as XPCE libraries that provide visualisation and editing. The Prolog libraries can be used
without the XPCE GUI modules. The library can handle upto about 2 millionRDF tripleson
current commonly used hardware (256MB memory, Pentium 1.5Ghz).

1

Contents

1 Introduction 3

2 Modules 3

3 Module rdf db 3
3.1 Query the RDF database. 4
3.2 Modifying the database. 5
3.3 Loading and saving to file. 6

3.3.1 Partial save. 7
3.3.2 Fast loading and saving. 7

3.4 Namespace Handling. 7
3.5 Miscellaneous predicates. 8
3.6 Issues with rdfdb . 9

4 Module rdfs 10
4.1 Hierarchy and class-individual relations. 10
4.2 Collections and Containers. 10
4.3 Labels and textual search. 11

5 Module rdf edit 11
5.1 Transaction management. 11
5.2 Encapsulated predicates. 12
5.3 High-level modification predicates. 12
5.4 Undo . 12
5.5 Journalling . 13
5.6 Broadcasting change events. 13

2

rdf_db.pl

rdfs.plowl.pl

rdf.pl

RDF documents

rdf_edit.pl

RDF Triple-Store Journal

Hierachy GUI Select GUI Tabular GUI RDF Diagram GUI

broadcast.pl

Change Events
Assert
Retract
update

Query Query

Query

Query

Assert

Query

Quick Save/Restore
Action Log

Restore

Assert
Retract
update

WriteRead

Figure 1: Modules for the Semantic Web library

1 Introduction

SWI-Prolog has started support for web-documents with the development of a small and fast
SGML/XML parser, followed by an RDF parser (early 2000). With thesemweb library we pro-
vide more high level support for manipulating semantic web documents. The semantic web is a likely
point of orientation for knowledge representation in the future, making a library designed in its spirit
promising.

2 Modules

Central to this library is the modulerdf_db.pl , providing storage and basic querying for RDF
triples. This triple store is filled using the RDF parser realised byrdf.pl . The storage module
can quickly save and load (partial) databases. The modulesrdfs.pl andowl.pl add querying
in terms of the more powerful RDFS and OWL languages. Modulerdf_edit.pl adds editing,
undo, journaling and change-forwarding. Finally, a variety of XPCE modules visualise and edit the
database. Figure figure1 summarised the modular design.

3 Module rdf db

The central module is calledrdf_db . It provides storage and indexed querying of RDF triples.
Triples are stored as a quintuple. The first three elements denote the RDF triple.File andLineprovide
information about the origin of the triple.

{Subject Predicate Object File Line}

3

The actual storage is provided by theforeign language (C)modulerdf_db.c . Using a dedicated
C-based implementation we can reduced memory usage and improve indexing capabilities.1 Currently
the following indexing is provided.

• Any of the 3 fields of the triple

• Subject+ PredicateandPredicate+ Object

• Predicatesare indexed on thehighest property. In other words, if predicates are related through
subPropertyOf predicates indexing happens on the most abstract predicate. This makes
calls tordf has/4 very efficient.

• Literal Objectsare indexed case-insensitive to make case-insensitive queries fully indexed. See
rdf/3 .

3.1 Query the RDF database

rdf(?Subject, ?Predicate, ?Object)
Elementary query for triples.SubjectandPredicateare atoms representing the fully qualified
URL of the resource.Objectis either an atom representing a resource orliteral (Text) if the
object is a literal value.2 If a value of the formNameSpaceID: NameSpaceIDis provided it is
expanded to a ground atom usingexpand goal/2 . This implies you can use this construct
in compiled code without paying a preformance penalty. See also section3.4. For querying
purposes,Objectcan be of the formliteral (+Query, -Value), whereQueryis one of

exact(+Text)
Perform exact, but case-insensitive match. This query is fully indexed.

substring(+Text)
Match any literal that containsTextas a case-insensitive substring. The query is not in-
dexed onObject.

word(+Text)
Match any literal that containsTextdelimited by a non alpha-numeric character, the start
or end of the string. The query is not indexed onObject.

prefix(+Text)
Match any literal that starts withText. This call is intended forcompletion. The query is
not indexed onObject.

Backtracking never returns duplicate triples. Duplicates can be retrieved usingrdf/4 .

rdf(?Subject, ?Predicate, ?Object, ?Source)
As rdf/3 but in addition return the source-location of the triple. The source is either a plain
atom or a term of the formatAtom: AtomwhereAtomis intended to be used as filename or URL
and Integer for representing the line-number. Unlikerdf/3 , this predicate does not remove
duplicates from the result set.

1The orginal implementation was in Prolog. This version was implemented in 3 hours, where the C-based implemen-
tation costed a full week. The C-based implementation requires about half the memory and provides about twice the
performance.

2The current implementation has no provisions for XML-Schema typed literals.

4

rdf has(?Subject, ?Predicate, ?Object, -TriplePred)
This query exploits the RDFSsubPropertyOf relation. It returns any triple whose stored
predicate equalsPredicateor can reach this by following the recursivesubPropertyOfrelation.
The actual stored predicate is returned inTriplePred. The example below gets all subclasses
of an RDFS (or OWL) class, even if the relation used is notrdfs:subClassOf , but a user-
defined sub-property thereof.3

subclasses(Class, SubClasses) :-
findall(S, rdf_has(S, rdfs:subClassOf, Class), SubClasses).

Note thatrdf has/4 and rdf has/3 can return duplicate answers if they use a different
TriplePred.

rdf has(?Subject, ?Predicate, ?Object)
Same asrdf has (Subject, Predicate, Object,).

rdf reachable(?Subject, +Predicate, ?Object)
Is true if Objectcan be reached fromSubjectfollowing the transitive predicatePredicateor
a sub-property thereof. When used with eitherSubjector Objectunbound, it first returns the
origin, followed by the reachable nodes in breath-first search-order. It never generates the same
node twice and is robust against cycles in the transitive relation. With all arguments instantiated
it succeeds deterministically of the relation if a path can be found fromSubjectto Object.
Searching starts atSubject, assuming the branching factor is normally lower. A call with both
SubjectandObjectunbound raises an instantiation error. The following example generates all
subclasses ofrdfs:Resource :

?- rdf_reachable(X, rdfs:subClassOf, rdfs:’Resource’).

X = ’http://www.w3.org/2000/01/rdf-schema#Resource’ ;

X = ’http://www.w3.org/2000/01/rdf-schema#Class’ ;

X = ’http://www.w3.org/1999/02/22-rdf-syntax-ns#Property’ ;

...

rdf subject(?Subject)
Enumerate resources appearing as a subject in a triple. The main reason for this predicate is to
generate the known subjectswithout duplicatesas one gets usingrdf (Subject, ,).

3.2 Modifying the database

As depicted in figure1, there are two levels of modification. Therdf_db module simply modifies,
where therdf_edit library provides transactions and undo on top of this. Applications that wish to
use therdf_edit layer mustneveruse the predicates from this section directly.

3This predicate realises semantics defined in RDF-Schema rather than RDF. It is part of therdf db module because
the indexing of this module incorporates therdfs:subClassOf predicate.

5

rdf assert(+Subject, +Predicate, +Object)
Assert a new triple into the database. This is equivalent tordf assert/4 usingSourceRef
user . Subject and Predicate are resources. Object is either a resource or a term
literal (Value). All arguments are subject to name-space expansion (see section3.4).

rdf assert(+Subject, +Predicate, +Object, +SourceRef)
As rdf assert/3 , addingSourceRefto specify the orgin of the triple.SourceRefis either an
atom or a term of the formatAtom:Int whereAtomnormally refers to a filename andInt to the
line-number where the description starts.

rdf retractall(?Subject, ?Predicate, ?Object)
Removes all matching triples from the database. Previous Prolog implementations also pro-
vided a backtrackingrdf retract/3 , but this proved to be rarely used and could always be
replaced withrdf retractall/3 . As rdf retractall/4 using an unboundSourceRef.

rdf retractall(?Subject, ?Predicate, ?Object, ?SourceRef)
As rdf retractall/4 , also matching on theSourceRef. This is particulary useful to update
all triples coming from a loaded file.

rdf update(+Subject, +Predicate, +Object, +Action)
Replaces one of the three fields on the matching triples depending onAction:

subject(Resource)
Changes the first field of the triple.

predicate(Resource)
Changes the second field of the triple.

object(Object)
Changes the last field of the triple to the given resource orliteral (Value).

3.3 Loading and saving to file

Therdf_db module can read and write RDF-XML for import and export as well as a binary format
built for quick load and save described in section3.3.2. Here are the predicates for portable RDF load
and save.

rdf load(+In)
Load triples fromIn, which is either a stream opened for reading or an atom specifying a
filename. This predicate callsprocess rdf/3 to read the source one description at a time,
avoiding limits to the size of the input. IfIn is a file, rdf load/1 provides for caching
the results for quick-load usingrdf load db/1 described below. Caching is activated by
creating a directory.cache (or _cache on Windows) in the directory holding the.rdf
files. Cached RDF files are loaded at approx. 25 times the speed of RDF-XML files.

rdf save(+File)
Save all known triples to the givenFile.

rdf save(+File, +FileRef)
Save all triples whose file-part of theirSourceRefmatchesFileRef to the givenFile. Saving
arbitrary selections is possible using predicates from section3.3.1.

6

rdf source(?File)
Test or enumerate the files loaded usingrdf load/1 .

rdf make
Re-load all RDF sourcefiles (seerdf source/1) that have changed since they were loaded
the last time. This implies all triples that originate from the file are removed and the file is
re-loaded. If the file is cached a new cache-file is written. Please note that the new triples are
added at the end of the database, possibly changing the order of (conflicting) triples.

3.3.1 Partial save

Sometimes it is necessary to make more arbitrary selections of material to be saved or exchange RDF
descriptions over an open network link. The predicates in this section provide for this.

rdf saveheader(+Stream, ?FileRef)
Save an RDF header, with the XML header,DOCTYPE, ENTITY and opening therdf:RDF
element with appropriate namespace declarations. It uses the primitives from section3.4 to
generate the required namespaces and desired short-name.

rdf savefooter(+Stream)
Close the work opened withrdf save header/2 .

rdf savesubject(+Stream, +Subject, +FileRef)
Save everything known aboutSubjectthat matchesFileRef. Using an variable forFileRefsaves
all triples withSubject.

3.3.2 Fast loading and saving

Loading and saving RDF format is relatively slow. For this reason we designed a binary format that
is more compact, avoids the complications of the RDF parser and avoids repetitive lookup of (URL)
identifiers. Especially the speed improvement of about 25 times is worth-while when loading large
databases. These predicates are used for caching byrdf load/1 under certain conditions.

rdf savedb(+File)
Save all known triples intoFile. The saved version includes theSourceRefinformation.

rdf savedb(+File, +FileRef)
Save all triples withSourceRef FileRef, regardless of the line-number. For example, usinguser
all information added usingrdf assert/3 is stored in the database.

rdf load db(+File)
Load triples fromFile.

3.4 Namespace Handling

Prolog code often contains references to constant resources in a known XML namespace. For exam-
ple, http://www.w3.org/2000/01/rdf-schema#Class refers to the most general notion
of a class. Readability and maintability concerns require for abstraction here. The dynamic and
multifile predicate rdfdb:ns/2 maintains a mapping between short meaningful names and namespace
locations very much like the XMLxmlns construct. The initial mapping contains the namespaces
required for the semantic web languages themselves:

7

ns(rdf, ’http://www.w3.org/1999/02/22-rdf-syntax-ns#’).
ns(rdfs, ’http://www.w3.org/2000/01/rdf-schema#’).
ns(owl, ’http://www.w3.org/2002/7/owl#’).
ns(xsd, ’http://www.w3.org/2000/10/XMLSchema#’).
ns(dc, ’http://purl.org/dc/elements/1.1/’).
ns(eor, ’http://dublincore.org/2000/03/13/eor#’).

All predicates for the semweb libraries usegoal expansion/2 rules to make the SWI-Prolog
compiler rewrite terms of the formId : Id into the fully qualified URL. In addition, the following
predicates are supplied:

rdf equal(Resource1, Resource2)
Defined asResource1, Resource2= Resource1, Resource2As this predicate is subject to goal-
expansion it can be used to obtain or test global URL values to readable values. The follow-
ing goal unifiesX with http://www.w3.org/2000/01/rdf-schema#Class without
more runtime overhead than normal Prolog unification.

rdf_equal(rdfs:’Class’, X)

rdf register ns(+Alias, +URL)
Register Alias as a shorthand forURL. Note that the registration must be done before
loading any files using them as namespace aliases are handled at compiletime through
goal expansion/2 .

rdf global id(?Alias:Local, ?Global)
Runtime translation betweenAlias andLocal and aGlobal URL. Expansion is normally done
at compiletime. This predicate is often used to turn a global URL into a more readable term.

rdf global term(+Term0, -Term)
Expands allAlias:Local in Term0and return the result inTerm. Use infrequently for runtime
expansion of namespace identifiers.

rdf split url(?Base, ?Local, ?URL)
Split a URL into a prefix and local part if used in mode -,-,+ or simply behave as
atom concat/3 in other modes. TheURL is split on the last# or / character.

3.5 Miscellaneous predicates

This section describes the remaining predicates of therdf_db module.

rdf node(-Id)
Generate a unique reference. The returned atom is guaranteed not to occur in the current
database in any field of any triple.

rdf source location(+Subject, -SourceRef)
Return the source-location asFile:Lineof the first triple that is aboutSubject.

rdf generation(-Generation)
Returns theGenerationof the database. Each modification to the database increments the gen-
eration. It can be used to check the validity of cached results deduced from the database.

8

rdf statistics(?Statistics)
Report statistics collected by therdf_db module. Defined values forStatisticsare:

lookup(?Index, -Count)
Number of lookups using a pattern of instantiated fields.Index is a termrdf (S,P,O),
whereS, P andO are either+ or - . For examplerdf (+,+,-) returns the lookups with
subject and predicate specified and object unbound.

properties(-Count)
Number of unique values for the second field of the triple set.

sources(-Count)
Number of files loaded throughrdf load/1 .

subjects(-Count)
Number of unique values for the first field of the triple set.

triples(-Count)
Total number of triples in the database.

rdf match label(+Method, +Search, +Atom)
True if SearchmatchesAtomas defined byMethod. All matching is performed case-insensitive.
Defines methods are:

exact
Perform exact, but case-insensitive match.

substring
Searchis a sub-string ofText.

word
Searchappears as a whole-word inText.

prefix
Textstart withSearch.

3.6 Issues with rdf db

This RDF low-level module has been created after two year experimenting with a plain Prolog based
module and a brief evaluation of a second generation pure Prolog implementation. The was to be
able to handle upto aboud 2 million triples on standard (notebook) hardware and deal efficiently with
subPropertyOf which was identified as a crucial feature of RDFS to realise fusion of different
data-sets.

The following issues are identified and not solved in suitable manner.

Logical update as provided by Prolog means that active queries are not affected by subsequent mod-
ification of the database. The current C-based implementation adheres theimmediateupdate
model, mainly because the current foreign language interface does not provide the required
information to realise logical updates in C.

Property hierarchy The system currently cannot deal with properties that have multiple parents if
not all parents ultimately have the save root. I.e. there must be a single root property for each
property hierarchy. Although the design accomodates for this case, it has not yet been imple-
mented.

9

subPropertyOf of subPropertyOf is not supported.

4 Module rdfs

The rdfs library adds interpretation of the triple store in terms of concepts from RDF-Schema
(RDFS).

4.1 Hierarchy and class-individual relations

The predicates in this section explore therdfs:subPropertyOf , rdfs:subClassOf and
rdf:type relations. Note that the most fundamental of these,rdfs:subPropertyOf , is also
used byrdf has/[3,4] .

rdfs subproperty of(?SubProperty, ?Property)
True ifSubPropertyis equal toPropertyorPropertycan be reached fromSubPropertyfollowing
therdfs:subPropertyOf relation. It can be used to test as well as generate sub-properties
or super-properties. Note that the commonly used semantics of this predicate is wired into
rdf has/[3,4] .4.5

rdfs subclassof(?SubClass, ?Class)
True if SubClassis equal toClass or Class can be reached fromSubClassfollowing the
rdfs:subClassOf relation. It can be used to test as well as generate sub-classes or super-
classes.6.

rdfs classproperty(+Class, ?Property)
True if the domain ofProperty includesClass. Used to generate all properties that apply to a
class.

rdfs individual of(?Resource, ?Class)
True if Resourceis an indivisual ofClass. This impliesResourcehas anrdf:type property
that refers toClassor a sub-class thereof. Can be used to test, generate classesResourcebelongs
to or generate individuals described byClass.

4.2 Collections and Containers

The RDF constructrdf:parseType =Collection constructs a list using therdf:first and
rdf:next relations.

rdfs member(?Resource, +Set)
Test or generate the members ofSet. Set is either an individual ofrdf:List or
rdf:Container .

rdfs list to prolog list(+Set, -List)
ConvertSet, which must be an individual ofrdf:List into a Prolog list of objects.

4BUG: The current implementation cannot deal with cycles
5BUG: The current implementation cannot deal with predicates that are anrdfs:subPropertyOf of

rdfs:subPropertyOf , such asowl:samePropertyAs .
6BUG: The current implementation cannot deal with cycles

10

4.3 Labels and textual search

Textual search is partly handled by the predicates from therdf db module and its underlying C-
library. For example, literal objects are hashed case-insensitive to speed up the commonly used case-
insensitive search.

rdfs label(?Resource, ?Label)
Extract the label fromResourceor generate all resources with the givenLabel. The label is
either associated using a sub-property ofrdfs:label or it is extracted from the URL using
rdf split url/3 .

rdfs ns label(?Resource, ?Label)
Similar to rdfs label/2 , but prefixes the result using the declared namespace alias (see
section3.4) to facilitate user-friendly labels in applications using multiple namespaces that may
lead to confusion.

rdfs find(+String, +Description, +Properties, +Method, -Subject)
Find (on backtracking)Subjects that satisfy a search specification for textual attributes.String
is the string searched for.Descriptionis an OWL description (see section??) specifying can-
didate resources.Propertiesis a list of properties to search for literal objects whererdfs:label
is replaced by a call tordfs label/2 and finally,Methoddefines the textual matching algo-
rithm. All textual mapping is performed case-insensitive. The matching-methods are described
with rdf match label/3 .

5 Module rdf edit

The modulerdf_edit.pl is a layer than encasulates the modification predicates from section3.2
for use from a (graphical) editor of the triple store. It adds the following features:

• Transaction management
Modifications are grouped intotransactionsto safeguard the system from failing operations as
well as provide meaningfull chunks for undo and journalling.

• Undo
Undo and redo-transactions using a single mechanism to support user-friendly editing.

• Journalling
Record all actions to support analysis, versioning, crash-recovery and an alternative to saving.

5.1 Transaction management

Transactions group low-level modification actions together.

rdfe transaction(:Goal)
RunGoal, recording all modifications to the triple store made through section5.2. Execution is
performed as inonce/1 . If Goal succeeds the changes are committed. IfGoal fails or throws
an exception the changes are reverted.

11

Transactions may be nested. A failing nested transaction only reverts the actions performed in-
side the nested transaction. If the outer transaction succeeds it is committed normally. Contrary,
if the outer transaction fails, comitted nested transactions are reverted as well.

A successful outer transaction (‘level-0’) may be undone usingrdfe undo/0 .

5.2 Encapsulated predicates

The following predicates encapsulate predicates from therdf_db module that modify the triple store.
These predicates can only be called when inside atransaction. Seerdfe transaction/1 .

rdfe assert(+Subject, +Predicate, +Object)
Encapsulatesrdf assert/3 .

rdfe retractall(?Subject, ?Predicate, ?Object)
Encapsulatesrdf retractall/3 .

rdfe update(+Subject, +Predicate, +Object, +Action)
Encapsulatesrdf update/4 .

rdf load(+In)
Encapsulatesrdf load/1 .

5.3 High-level modification predicates

This section describes a (yet very incomplete) set of more high-level operations one would like to be
able to perform. Eventually this set may include operations based on RDFS and OWL.

rdfe delete(+Resource)
Delete all traces ofresource. This implies all triples whereResourceappears assubject, predi-
cateor object. This predicate starts a transation.

5.4 Undo

Undo aims at user-level undo operations from a (graphical) editor.

rdfe undo
Revert the last outermost (‘level 0’) transaction (seerdfe transaction/1). Successive
calls go further back in history. Fails if there is no more undo information.

rdfe redo
Revert the lastrdfe undo/0 . Successive calls revert morerdfe undo/0 operations. Fails
if there is no more redo information.

rdfe can undo
Test if there is another transaction that can be reverted. Used for activating menus in a graphical
environment.

rdfe can redo
Test if there is another undo that can be reverted. Used for activating menus in a graphical
environment.

12

5.5 Journalling

Optionally, every action through this module is immediately send to ajournal-file. The journal pro-
vides a full log of all actions with a time-stamp that may be used for inspection of behaviour, version
management, crash-recovery or an alternative to regular save operations.

rdfe open journal(+File, +Mode)
Open a existing or new journal. IfModeequalaappend andFile exists, the journal is first
replayed. Seerdfe replay journal/1 . If Mode is write the journal is truncated if it
exists.

rdfe closejournal
Close the currently open journal.

rdfe current journal(-Path)
Test whether there is a journal and to which file the actions are journalled.

rdfe replay journal(+File)
Read a jorunal, replaying all actions in it. To do so, the system reads the journal a transaction
at a time. If the transaction is closed with acommitit executes the actions inside the journal.
If it is closed with arollback or not closed at all due to a crash the actions inside the journal
are discarded. Using this predicate only makes sense to inspect the state at the end of a journal
without modifying the journal. Normally a journal is replayed using theappend mode of
rdfe open journal/2 .

5.6 Broadcasting change events

To realise a modular graphical interface for editing the triple store, the system must use some sort of
eventmechanism. This is implemented by the XPCE librarybroadcast which is described in the
XPCE User Guide. In this section we describe the terms brodcasted by the library.

rdf transaction(+Id)
A ‘level-0’ transaction has been committed. The system passes the identifier of the transaction
in Id. In the current implementation there is no way to find out what happened inside the
transaction. This is likely to change in time.

If a transaction is reverted due to failure or exceptionno event is broadcasted. The initiating
GUI element is supposed to handle this possibility itself and other components are not affected
as the triple store is not changed.

rdf undo(+Type, +Id)
This event is broadcasted after anrdfe undo/0 or rdfe redo/0 . Typeis one ofundo or
redo andId identifies the transaction as above.

13

Index

atomconcat/3,8

broadcast,13
broadcastlibrary, 13

Collection
parseType,10

event,13
expandgoal/2,4

goal expansion/2,8

journal,11, 13

once/1,11

parseType
Collection,10

processrdf/3, 6

RDF-Schema,10
rdf/3, 4
rdf/4, 4
rdf assert/3,6
rdf assert/4,6
rdf db library, 5, 11
rdf equal/2,8
rdf generation/1,8
rdf global id/2, 8
rdf global term/2,8
rdf has/3,5
rdf has/4,5
rdf load/1,6, 12
rdf load db/1,7
rdf make/0,7
rdf matchlabel/3,9
rdf node/1,8
rdf reachable/3,5
rdf registerns/2,8
rdf retractall/3,6
rdf retractall/4,6
rdf save/1,6
rdf save/2,6
rdf savedb/1,7
rdf savefooter/1,7

rdf saveheader/2,7
rdf savesubject/3,7
rdf source/1,7
rdf sourcelocation/2,8
rdf split url/3, 8
rdf statistics/1,9
rdf subject/1,5
rdf update/4,6
rdf assert/3,6, 7, 12
rdf assert/4,6
rdf has/3,5
rdf has/4,4, 5
rdf has/[3

4], 10
rdf load/1,6, 7, 9, 12
rdf load db/1,6
rdf matchlabel/3,11
rdf retractall/3,6, 12
rdf retractall/4,6
rdf saveheader/2,7
rdf source/1,7
rdf split url/3, 11
rdf update/4,12
rdfe assert/3,12
rdfe can redo/0,12
rdfe canundo/0,12
rdfe closejournal/0,13
rdfe currentjournal/1,13
rdfe delete/1,12
rdfe openjournal/2,13
rdfe redo/0,12
rdfe replay journal/1,13
rdfe retractall/3,12
rdfe transaction/1,11
rdfe undo/0,12
rdfe update/4,12
rdfe openjournal/2,13
rdfe redo/0,13
rdfe replay journal/1,13
rdfe transaction/1,12
rdfe undo/0,12, 13
rdfs library, 10
rdfs classproperty/2,10
rdfs find/5,11

14

rdfs individual of/2, 10
rdfs label/2,11
rdfs list to prolog list/2, 10
rdfs member/2,10
rdfs ns label/2,11
rdfs subclassof/2, 10
rdfs subpropertyof/2, 10
rdfs label/2,11

search,11

transactions,11

undo,11, 12

15

	Introduction
	Modules
	Module rdf_db
	Query the RDF database
	Modifying the database
	Loading and saving to file
	Partial save
	Fast loading and saving

	Namespace Handling
	Miscellaneous predicates
	Issues with rdf_db

	Module rdfs
	Hierarchy and class-individual relations
	Collections and Containers
	Labels and textual search

	Module rdf_edit
	Transaction management
	Encapsulated predicates
	High-level modification predicates
	Undo
	Journalling
	Broadcasting change events

