Templates: Prototype document functions®

Frank Mittelbach, Chris Rowley, David Carlisle, IXTEX Project!
January 25, 2026

1 Introduction

There are three broad “layers” between putting down ideas into a source file and ending
up with a typeset document. These layers of document writing are

1. authoring of the text with mark-up;
2. document layout design;
3. implementation (with TEX programming) of the design.

We write the text as an author, and we see the visual output of the design after the
document is generated; the TEX implementation in the middle is the glue between the
two.

IXTEX’s greatest success has been to standardise a system of mark-up that balances
the trade-off between ease of reading and ease of writing to suit almost all forms of
technical writing. It’s other original strength was a good background in typographical
design; while the standard IATEX 2¢ classes look somewhat dated now in terms of their
visual design, their typography is generally sound (barring the occasional minor faults).

However, IXTEX 2¢ has always lacked a standard approach to customising the visual
design of a document. Changing the looks of the standard classes involved either:

e Creating a new version of the implementation code of the class and editing it.

o Loading one of the many packages to customise certain elements of the standard
classes.

e Loading a completely different document class, such as KOMA-Script or memoir,
that allows easy customization.

All three of these approaches have their drawbacks and learning curves.

The idea behind Ittemplates is to cleanly separate the three layers introduced at
the beginning of this section, so that document authors who are not programmers can
easily change the design of their documents. Ittemplates also makes it easier for INTEX
programmers to provide their own customizations on top of a pre-existing class.

*This file has version v1.0h dated 2026-01-23, © IATEX Project.
TE-mail: latex-team@latex-project.org

mailto:latex-team@latex-project.org

2 What is a document?

Besides the textual content of the words themselves, the source file of a document contains
mark-up elements that add structure to the document. These elements include sectional
divisions, figure/table captions, lists of various sorts, theorems/proofs, and so on. The
list will be different for every document that can be written.

Each element can be represented logically without worrying about the formatting,
with mark-up such as \section, \caption, \begin{enumerate} and so on. The output
of each one of these document elements will be a typeset representation of the information
marked up, and the visual arrangement and design of these elements can vary widely in
producing a variety of desired outcomes.

For each type of document element, there may be design variations that contain
the same sort of information but present it in slightly different ways. For example, the
difference between a numbered and an unnumbered section, \section and \sectionx,
or the difference between an itemized list or an enumerated list.

There are three distinct layers in the definition of “a document” at this level

1. semantic elements such as the ideas of sections and lists;
2. a set of design solutions for representing these elements visually;
3. specific variations for these designs that represent the elements in the document.

In the parlance of the template system, these are called types, templates, and instances,
and they are discussed below in sections 4, 5, and 7, respectively.

3 Types, templates, and instances

By formally declaring documents to be composed of mark-up elements grouped into types,
which are interpreted and typeset with a set of templates, each of which has one or more
instances with which to compose each and every semantic unit of the text, we can cleanly
separate the components of document construction.

All of the structures provided by the template system are global, and do not respect

TEX grouping.

4 Template types

An template type (sometimes just “type”) is an abstract idea of a document element that
takes a fixed number of arguments corresponding to the information from the document
author that it is representing. A sectioning type, for example, might take three inputs:
“title”, “short title”, and “label”.

Any given document class will define which types are to be used in the document,
and any template of a given type can be used to generate an instance for the type.
(Of course, different templates will produce different typeset representations, but the
underlying content will be the same.)

\NewTemplateType

\DeclareTemplateInterface

\NewTemplateType {(template type)} {(no. of args)}
This function defines an (template type) taking (number of arguments), where the
(type) is an abstraction as discussed above. For example,

\NewTemplateType{sectioning}{3}

creates a type “sectioning”, where each use of that type will need three arguments.

5 Templates

A template is a generalized design solution for representing the information of a specified
type. Templates that do the same thing, but in different ways, are grouped together by
their type and given separate names. There are two important parts to a template:

o the parameters it takes to vary the design it is producing;
e the implementation of the design.

As a document author or designer does not care about the implementation but rather only
the interface to the template, these two aspects of the template definition are split into two
independent declarations, \DeclareTemplateInterface and \DeclareTemplateCode.

\DeclareTemplateInterface

{(type)} {(template)} {(no. of args)}

{(key 1list)}
A (template) interface is declared for a particular (type), where the (number of
arguments) must agree with the type declaration. The interface itself is defined by
the (key list), which is itself a key—value list taking a specialized format:

(key1) : (key typel) ,
(key2) : (key type2) ,
(key3) : (key type3) = (default3) ,
(key4) : (key type4) = (default4) ,

Each (key) name should consist of ASCII characters, with the exception of ,, = and :.
The recommended form for key names is to use lower case letters, with dashes to separate
out different parts. Spaces are ignored in key names, so they can be included or missed
out at will. Each (key) must have a (key type), which defines the type of input that
the (key) requires. A full list of key types is given in Table 1. Each key may have a
(default) value, which will be used in by the template if the (key) is not set explicitly.
The (default) should be of the correct form to be accepted by the (key type) of the
(key): this is not checked by the code. Expressions for numerical values are evaluated
when the template is used, thus for example values given in terms of em or ex will be set
respecting the prevailing font.

Key-type Description of input

boolean true or false

choice{(choices)} A list of pre-defined (choices)

commalist A comma-separated list

function{(N)} A (protected) function definition with N arguments (N from 0 to 9)
instance{(name)} An instance of type (name)

integer An integer or integer expression

length A fixed length

muskip A math length with shrink and stretch components
real A real (floating point) value

skip A length with shrink and stretch components
tokenlist A token list: any text or commands

Table 1: Key-types for defining template interfaces with \DeclareTemplateInterface.

\KeyValue \KeyValue {(key name)}

There are occasions where the default (or value) for one key should be taken from another.
The \KeyValue function can be used to transfer this information without needing to know
the internal implementation of the key:

\DeclareTemplateInterface { type } { template } { no. of args }
{
key-name-1 : key-type = value ,
key-name-2 : key-type = \KeyValue { key-name-1 },

\DeclareTemplateCode

\AssignTemplateKeys

Key-type Description of binding

boolean Boolean variable, e.g. \1_tmpa_bool

choice List of choice implementations (see Section 6)
commalist Comma list, e.g. \1_tmpa_clist

function Function taking N arguments, e.¢g. \use_i:nn

instance

integer Integer variable, e.g. \1_tmpa_int
length Dimension variable, e.g. \1_tmpa_dim
muskip Muskip variable, e.g. \1_tmpa_muskip
real Floating-point variable, e.g. \1_tmpa_fp
skip Skip variable, e.g. \1_tmpa_skip

tokenlist Token list variable, e.g. \1_tmpa_t1

Table 2: Bindings required for different key types when defining template implementa-
tions with \DeclareTemplateCode. Apart from choice and function all of these accept
the key word global to carry out a global assignment.

\DeclareTemplateCode

{(type)} {(template)} {(no. of args)}

{(key bindings)} {(code)}
The relationship between a templates keys and the internal implementation is created
using the \DeclareTemplateCode function. As with \DeclareTemplateInterface, the
(template) name is given along with the (type) and (number of arguments) required.
The (key bindings) argument is a key—value list which specifies the relationship between
each (key) of the template interface with an underlying (variable).

N

(key1) = (variablel),
(key2) = (variable2),
(key3) = global (variable3),
(key4) = global (variabled4),

N

With the exception of the choice, code and function key types, the (variable) here
should be the name of an existing IXTEX3 register. As illustrated, the key word “global”
may be included in the listing to indicate that the (variable) should be assigned globally.
A full list of variable bindings is given in Table 2.

The (code) argument of \DeclareTemplateCode is used as the replacement text for
the template when it is used, either directly or as an instance. This may therefore accept
arguments #1, #2, etc. as detailed by the (number of arguments) taken by the type.

\AssignTemplateKeys

In the final argument of \DeclareTemplateCode the assignment of keys defined by
the template may be delayed by including the command \AssignTemplateKeys. If
this is mot present, keys are assigned immediately before the template code. If an
\AssignTemplateKeys command is present, assignment is delayed until this point. Note
that the command must be directly present in the code, not placed within a nested
command /macro.

\SetKnownTemplateKeys \SetKnownTemplateKeys {(type)} {(template)} {(keyvals)}

\SetTemplateKeys
\UnusedTemplateKeys

\SetTemplateKeys {(type)} {(template)} {(keyvals)}
\UnusedTemplateKeys % all (keyvals) unused by previous \SetKnownTemplateKeys

In the final argument of \DeclareTemplateCode one can also overwrite (some of)
the current template key value settings by using the command \SetKnownTemplateKeys
or \SetTemplateKeys, i.e., they can overwrite the template default values and the values
assigned by the instance.

The \SetKnownTemplateKeys and \SetTemplateKeys commands are only supported
within the code of a template; using them elsewhere has unpredictable results. If they
are used together with \AssignTemplateKeys then the latter command should come first
in the template code.

The main use case for these commands is the situation where there is an argument
(normally #1) to the template in which a key/value list can be specified that overwrites
the normal settings. In that case one could use

\SetKnownTemplateKeys{(type) H (template)}{#1}

to process this key/value list inside the template.

If \SetKnownTemplateKeys is executed and the (keyvals) argument contains keys
not known to the (template) they are simply ignored and stored in the tokenlist
\UnusedTemplateKeys without generating an error. This way it is possible to apply
the same key/val list specified by the user on a document-level command or environment
to several templates, which is useful, if the command or environment is implemented by
calling several different template instances.

As a variation of that, you can use this key/val list the first time, and for the
next template instance use what remains in \UnusedTemplateKeys (i.e., the key/val
list with only the keys that have not been processed previously). The final process-
ing step could then be \SetTemplateKeys, which unconditionally attempts to set the
(keyvals) received in its third argument. This command complains if any of them are
unknown keys. Alternatively, you could use \SetKnownTemplateKeys and afterwards
check whether \UnusedTemplateKeys is empty.'

For example, a list, such as enumerate, is made up from a blockenv, block, list,
and a para template and in the single user-supplied optional argument of enumerate
key/values for any of these templates might be specified.

In fact, in the particular example of list environments, the supplied key/value list
is also saved and then applied to each \item which is implemented through an item
template. This way, one can specify one-off settings for all the items of a single list
(on the environment level), as well as to individual items within that list (by specify-
ing them in the optional argument of an \item). With \SetKnownTemplateKeys and
\SetTemplateKeys working together, it is possible to provide this flexibility and still
alert the user when one of their keys is misspelled.

On the other hand you may want to allow for “misspellings” without generating an
error or a warning. For example, if you define a template that accepts only a few keys,
you might just want to ignore anything specified in the source when you use this template
in place of a different one, without the need to alter the document source. Or you might

1Using \SetTemplateKeys exposes the inner structure of the template keys when generating an er-
ror. This is something one may want to avoid as it can be confusing to the user, especially if sev-
eral templates are involved. In that case use \SetKnownTemplateKeys and afterwards check whether
\UnusedTemplateKeys is empty; if it is not empty then generate your own error message.

\DeclareTemplateCopy

just generate a warning message, which is easy, given that the unused key/values are
available in the \UnusedTemplateKeys variable.

\DeclareTemplateCopy
{(type)} {(template2)} {(templatel)}

Copies (templatel) of (type) to a new name (template2): the copy can then be edited
independent of the original.

6 Multiple choices

The choice key type implements multiple choice input. At the interface level, only the
list of valid choices is needed:

\DeclareTemplateInterface { foo } { bar > { 0 }
{ key-name : choice { A, B, C } }

where the choices are given as a comma-list (which must therefore be wrapped in braces).
A default value can also be given:

\DeclareTemplateInterface { foo } { bar } { 0 }
{ key-name : choice { A, B, C} =4}

At the implementation level, each choice is associated with code, using a nested
key—value list.

\DeclareTemplateCode { foo } { bar } { 0 }

{
key-name =
{
A = Code-A ,
B = Code-B ,
C = Code-C
}
}
{...}

The two choice lists should match, but in the implementation a special unknown choice
is also available. This can be used to ignore values and implement an “else” branch:

\DeclareTemplateCode { foo } { bar } { 0 }

{
key-name =
{
A = Code-A ,
B = Code-B ,
C = Code-C ,
unknown = Else-code
}
}
{...}

\DeclarelInstance

\InstanceValue x

The unknown entry must be the last one given, and should not be listed in the interface
part of the template.

For keys which accept the values true and false both the boolean and choice key
types can be used. As template interfaces are intended to prompt clarity at the design
level, the boolean key type should be favored, with the choice type reserved for keys
which take arbitrary values.

7 Instances

After a template is defined it still needs to be put to use. The parameters that it expects
need to be defined before it can be used in a document. Every time a template has
parameters given to it, an instance is created, and this is the code that ends up in the
document to perform the typesetting of whatever pieces of information are input into it.

For example, a template might say “here is a section with or without a number that
might be centered or left aligned and print its contents in a certain font of a certain size,
with a bit of a gap before and after it” whereas an instance declares “this is a section
with a number, which is centered and set in 12 pt italic with a 10 pt skip before and a
12 pt skip after it”. Therefore, an instance is just a frozen version of a template with
specific settings as chosen by the designer.

\DeclarelInstance
{(type)} {(instance)} {(template)} {(parameters)}

This function uses a (template) for an (type) to create an (instance). The (instance)
will be set up using the (parameters), which will set some of the (keys) in the
(template).

As a practical example, consider a type for document sections (which might include
chapters, parts, sections, etc.), which is called sectioning. One possible template for
this type might be called basic, and one instance of this template would be a numbered
section. The instance declaration might read:

\DeclareInstance { sectioning } { section-num } { basic }
{

numbered

true ,
justification = center ,

font =\normalsize\itshape ,
before-skip = 10pt ,
after-skip = 12pt ,

}

Of course, the key names here are entirely imaginary, but illustrate the general idea of
fixing some settings.

\InstanceValue {(type)} {(instance)} {(key)}

Expands to the current value for the (key) stored in the (instance) of (type). If the
(instance) does not exist, the expansion is empty. The result is returned within the
\unexpanded primitive (\exp_not:n),

\IfInstanceExistsT
\IfInstanceExistsF
\IfInstanceExistsTF

\DeclareInstanceCopy

\UseInstance

\UseTemplate

\IfInstanceExistsTF {(type)} {(instance)} {(true code)} {(false code)}

Tests if the named (instance) of a (type) exists, and then inserts the appropriate code
into the input stream.

\DeclareInstanceCopy
{(type)} {(instance2)} {(instancel)}

Copies the (values) for (instancel) for an (type) to (instance2).

8 Document interface

After the instances have been chosen, document commands must be declared to use those
instances in the document. \UselInstance calls instances directly, and this command
should be used internally in document-level mark-up.

\UseInstance

{(type)} {(instance)} (arguments)
Uses an (instance) of the (type), which will require (arguments) as determined by the
number specified for the (type). The (instance) must have been declared before it can
be used, otherwise an error is raised.

\UseTemplate {(type)} {(template)}
{(settings)} (arguments)
Uses the (template) of the specified (type), applying the (settings) and absorbing
(arguments) as detailed by the (type) declaration. This in effect is the same as creating
an instance using \DeclareInstance and immediately using it with \UseInstance, but
without the instance having any further existence. This command is therefore useful
when a template needs to be used only once.
This function can also be used as the argument to instance key types:

\DeclareInstance { type } { template } { instance }
{
instance-key =
\UseTemplate { type2 } { template2 } { <settings> }

9 Changing existing definitions

Template parameters may be assigned specific defaults for instances to use if the instance
declaration doesn’t explicit set those parameters. In some cases, the document designer
will wish to edit these defaults to allow them to “cascade” to the instances. The alterna-
tive would be to set each parameter identically for each instance declaration, a tedious
and error-prone process.

\EditTemplateDefaults \EditTemplateDefaults
{(type)} {(template)} {(new defaults)}

Edits the (defaults) for a (template) for an (type). The (new defaults), given as
a key—value list, replace the existing defaults for the (template). This means that the
change will apply to instances declared after the editing, but that instances which have
already been created are unaffected.

\EditInstance \EditInstance
{(type)} {(instance)} {(new values)}

Edits the (values) for an (instance) for an (type). The (new values), given as a key—
value list, replace the existing values for the (instance). This function is complementary
to \EditTemplateDefaults: \EditInstance changes a single instance while leaving the
template untouched.

9.1 Expanding the values of keys

To allow the user to apply expansion of values when the key is set, key names can be
followed by an expansion specifier. This is given by appending : and a single letter
specifier to the key name. These letters are the normal argument specifiers for expl3,
thus they may be one of n (redundant but supported), o, V, v, e, N (again redundant) or
c. Expansion of a control sequence name is particularly useful when you need to refer to
an internal I TEX 2¢ or an L3 programming layer variable, e.g.,

key-a:c = Qitemdepth , % use \@itemdepth as the value
key-b:v @itemdepth % use the current value of \@itempdepth as the value

10 Getting information about templates and instances

\ShowInstanceValues \ShowInstanceValues {(type)} {(instance)}

Shows the (values) for an (instance) of the given (type) at the terminal.

\ShowTemplateCode \ShowTemplateCode {(type)} {(template)}

Shows the (code) of a (template) for an (type) in the terminal.

\ShowTemplateDefaults \ShowTemplateDefaults {(type)} {(template)}

Shows the (default) values of a (template) for an (type) in the terminal.

\ShowTemplateInterface \ShowTemplateInterface {(type)} {(template)}

Shows the (keys) and associated (key types) of a (template) for an (type) in the
terminal.

10

\ShowTemplateVariables \ShowTemplateVariables {(type)} {(template)}

Shows the (variables) and associated (keys) of a (template) for an (type) in the
terminal. Note that code and choice keys do not map directly to variables but to
arbitrary code. For choice keys, each valid choice is shown as a separate entry in the
list, with the key name and choice separated by a space, for example

Template ’example’ of type ’example’ has variable mapping:
> demo unknown => \def \demo {7}

> demo ¢ => \def \demo {c}

> demo b => \def \demo {b}

> demo a => \def \demo {a}.

would be shown for a choice key demo with valid choices a, b and c, plus code for an
unknown branch.

11 The implementation

1 (@@=template)

2 (x2ekernel)
s \message{templates,}
4 (/2ekernel)

s (x2ekernel | latexrelease)
s \ExplSyntaxOn

7 (latexrelease) \NewModuleRelease{2024/06/01}{1ttemplates}
s (latexrelease) {Prototype~document~commands}},

11.1 Variables and constants

\c__template_code_root_tl
\c__template_defaults_root_tl
\c__template_instances_root_tl
\c__template_keytypes_root_tl
\c__template_key_order_root_tl
\c__template_restrict_root_tl
\c__template_values_root_tl
\c__template_vars_root_tl

So that literal values are kept to a minimum.

o \tl_const:Nn \c__template_code_root_tl { template~code~>~ }

10 \tl_const:Nn \c__template_defaults_root_tl { template~defaults~>~ }
11 \tl_const:Nn \c__template_instances_root_tl { template~instance~>~ }
12 \tl_const:Nn \c__template_keytypes_root_tl { template-~key~types~>~ }
15 \tl_const:Nn \c__template_key_order_root_tl { template-~key~order~>~ }
14 \tl_const:Nn \c__template_values_root_tl { template~values~>~ }

15 \tl_const:Nn \c__template_vars_root_tl { template~vars~>~ }

11

\c__template_keytypes_arg_seq

A list of keytypes which also need additional data (an argument), used to parse the
keytype correctly.

16 \seq_const_from_clist:Nn \c__template_keytypes_arg_seq

17 { choice , function , instance }

\g__template_type_prop For storing types and the associated number of arguments.

15 \prop_new:N \g__template_type_prop

\1__template_assignments_tl

When creating an instance, the assigned values are collected here.
10 \tl_new:N \1__template_assignments_tl

\1__template_default_tl The default value for a key is recovered here from the property list in which it is stored.

20 \tl_new:N \1__template_default_tl

\1__template_error_bool A flag for errors to be carried forward.

21 \bool_new:N \1__template_error_bool

\1__template_global_bool Used to indicate that assignments should be global.
22 \bool_new:N \1__template_global_bool

\1__template_key_name_tl
\1__template_keytype_tl
\1__template_keytype_arg_tl
\1__template_value_tl
\1__template_var_tl

When defining each key in a template, the name and type of the key need to be separated
and stored. Any argument needed by the keytype is also stored separately.

23 \tl_new:N \1__template_key_name_tl

22 \tl_new:N \1__template_keytype_tl

s \tl_new:N \1__template_keytype_arg_tl
26 \tl_new:N \1__template_value_tl

7 \tl_new:N \1__template_var_tl

N

\1__template_value_exp_str

s \str_new:N \1__template_value_exp_str

12

\1__template_keytypes_prop
\1__template_key_order_seq
\1__template_values_prop
\1__template_vars_prop

\1__template_tmp_clist
\1__template_tmp_dim
\1__template_tmp_int
\1__template_tmp_muskip
\1__template_tmp_skip
\1__template_tmp_tl

\s__template_mark
\s__template_stop

\q__template_nil

__template_quark_if_nil_p:n
__template_quark_if_nil:nTF

__template_execute if arg agree:mnT

To avoid needing too many difficult-to-follow csname assignments, various scratch token
registers are used to build up data, which is then transferred

20 \prop_new:N \1__template_keytypes_prop
50 \seq_new:N \1__template_key_order_seq
;1 \prop_new:N \1__template_values_prop

2> \prop_new:N \1__template_vars_prop

Scratch space.

33 \clist_new:N \1__template_tmp_clist

3 \dim_new:N \1__template_tmp_dim

35 \int_new:N \1__template_tmp_int

56 \muskip_new:N \1__template_tmp_muskip
57 \skip_new:N \1__template_tmp_skip

35 \tl_new:N \1__template_tmp_tl

Internal scan marks.

30 \scan_new:N \s__template_mark
20 \scan_new:N \s__template_stop

Internal quarks.

s \quark_new:N \q__template_nil

Branching quark conditional.

22 __kernel_quark_new_conditional:Nn __template_quark_if _nil:N { F }

(End of definition for __template_quark_if_nil:nTF.)

11.2 Testing existence and validity

There are a number of checks needed for either the existence of a type, template or
instance. There are also some for the validity of a particular call. All of these are
collected up here.

A test agreement between the number of arguments for the template type and that spec-
ified when creating a template. This is not done as a separate conditional for efficiency
and better error message

23 \cs_new_protected:Npn __template_execute_if_arg_agree:nnT #1#2#3

44 {

45 \prop_get:NnN \g__template_type_prop {#1} \1__template_tmp_tl
46 \int_compare:nNnTF {#2} = \1__template_tmp_t1l

47 {#3}

a8 {

49 \msg_error:nneee { template } { argument-number-mismatch }
50 {#1} { \1__template_tmp_tl } {#2}

51 }

52 ¥

13

(End of definition for __template_execute_if_arg_agree:nnT.)

_template execute if code exist:ml A template is only fully declared if the code has been set up, which can be checked by
looking for the template function itself.

53 \cs_new_protected:Npn __template_execute_if_code_exist:nnT #1#2#3

54 {

55 \cs_if_exist:cTF { \c__template_code_root_tl #1 / #2 }

56 {#3}

57 { \msg_error:nnnn { template } { no-template-code } {#1} {#2} }
55

(End of definition for __template_execute_if_code_exist:nnT.)

\template execute if keytype exist:nT The test for valid keytypes looks for a function to set up the key, which is part of the
ype exist: VT “code” side of the template definition. This avoids having different lists for the two parts
of the process.

__template execute if key

50 \cs_new_protected:Npn __template_execute_if_keytype_exist:nT #1#2

60 {

61 \cs_if_exist:cTF { __template_store_value_ #1 :n }

62 {#2}

63 { \msg_error:nnn { template } { unknown-keytype } {#1} }
64 }

os \cs_generate_variant:Nn __template_execute_if_keytype_exist:nT { V }
(End of definition for __template_execute_if_keytype_exist:nT.)

_template execute if type exist:nT To check that a particular type is valid.
6 \cs_new_protected:Npn __template_execute_if_type_exist:nT #1#2

67 {

68 \prop_if_in:NnTF \g__template_type_prop {#1}

69 {#2}

70 { \msg_error:nnn { template } { unknown-type } {#1} }
71 }

(End of definition for __template_execute_if_type_exist:nT.)

\ template execute if keys exist:mI To check that the keys for a template have been set up before trying to create any code,
a simple check for the correctly-named keytype property list.

72 \cs_new_protected:Npn __template_if_keys_exist:nnT #1#2#3

73 {

74 \cs_if_exist:cTF { \c__template_keytypes_root_tl #1 / #2 }

75 {#3}

76 { \msg_error:nnnn { template } { unknown-template } {#1} {#2} }
77 }

(End of definition for __template_execute_if_keys_exist:nnT.)

__template_if key_value:nTF Tests for the first token in a string being \KeyValue.
__template_if_key_value:VIF 7% \prg_new_conditional:Npnn __template_if_key_value:n #1 { T , F , TF }

79 {

80 \str_if_eq:noTF { \KeyValue } { \tl_head:w #1 \q_nil \g_stop }
81 \prg_return_true:

82 \prg_return_false:

83 }

s \prg_generate_conditional_variant:Nnn __template_if_key_value:n { V} { T , F , TF }

14

(End of definition for __template_if_key_value:nTF.)

_template if instance exist:mTF Testing for an instance

e \prg_new_conditional:Npnn __template_if_instance_exist:nn #1#2 { T, F, TF }

86 {

87 \cs_if_exist:cTF { \c__template_instances_root_tl #1 / #2 }
88 \prg_return_true:

89 \prg_return_false:

I

(End of definition for __template_if_instance_exist:nnTF.)

_template if use template:n’F Tests for the first token in a string being \UseTemplate.
o1 \prg_new_conditional:Npnn __template_if_use_template:n #1 { TF }

92 {

93 \str_if_eq:noTF { \UseTemplate } { \tl_head:w #1 \g_nil \q_stop }
o4 \prg_return_true:

95 \prg_return_false:

96 }

(End of definition for __template_if_use_template:nTF.)

11.3 Saving and recovering property lists

The various property lists for templates have to be shuffled in and out of storage.

\ template store defaults:mn The defaults and keytypes are transferred from the scratch property lists to the “proper”

_template store keytypes:mn lists for the template being created.
__template_store_values:nn o7 \cs_new_protected:Npn __template_store_defaults:nn #1#2
__template_store_vars:nn 08 {
99 \debug_suspend:
100 \prop_gclear_new:c { \c__template_defaults_root_tl #1 / #2 1}
101 \prop_gset_eq:cN { \c__template_defaults_root_tl #1 / #2 }
102 \1__template_values_prop
103 \debug_resume:
104 }
105 \cs_new_protected:Npn __template_store_keytypes:nn #1#2
106 {
107 \debug_suspend:
108 \prop_if_exist:cTF { \c__template_keytypes_root_tl #1 / #2 }
109 {
110 \msg_info:nnnn { template } { declare-template-interface } {#1} {#2}

111 \prop_gclear:c { \c__template_keytypes_root_tl #1 / #2 }

113 { \prop_new:c { \c__template_keytypes_root_tl #1 / #2 } }
114 \prop_gset_eq:cN { \c__template_keytypes_root_tl #1 / #2 }
115 \1__template_keytypes_prop

116 \seq_gclear_new:c { \c__template_key_order_root_tl #1 / #2 }
117 \seq_gset_eq:cN { \c__template_key_order_root_tl #1 / #2 }
118 \1__template_key_order_seq

119 \debug_resume:

120 ¥

121 \cs_new_protected:Npn __template_store_values:nn #1#2

122 {

15

123 \debug_suspend:

124 \prop_clear_new:c { \c__template_values_root_tl #1 / #2 }
125 \prop_set_eq:cN { \c__template_values_root_tl #1 / #2 }
126 \1__template_values_prop

127 \debug_resume:

128 }

120 \cs_new_protected:Npn __template_store_vars:nn #1#2

130 {

131 \debug_suspend:

132 \prop_gclear_new:c { \c__template_vars_root_tl #1 / #2 }
133 \prop_gset_eq:cN { \c__template_vars_root_tl #1 / #2 }
134 \1__template_vars_prop

135 \debug_resume:

136 }

(End of definition for __template_store_defaults:nn and others.)

_template recover defaults:mn Recovering the stored data for a template is rather less complex than storing it. All that
_template recover keytypes:n happens is the data is transferred from the permanent to the scratch storage. However,
__template recover values:nn we need to check the scratch storage does exist.
__template_recover_vars:nn 137 \cs_new_protected:Npn __template_recover_defaults:nn #1#2
138 {
139 \prop_if_exist:cTF
140 { \c__template_defaults_root_tl #1 / #2 }
141 {
142 \prop_set_eq:Nc \1__template_values_prop
143 { \c__template_defaults_root_tl #1 / #2 }
144 }
145 { \prop_clear:N \1__template_values_prop }
146 }
u7 \cs_new_protected:Npn __template_recover_keytypes:nn #1#2
148 {
149 \prop_if_exist:cTF
150 { \c__template_keytypes_root_tl #1 / #2 }
151 {
152 \prop_set_eq:Nc \1__template_keytypes_prop
153 { \c__template_keytypes_root_tl #1 / #2 }
154 }
155 { \prop_clear:N \1__template_keytypes_prop }
156 \seq_if_exist:cTF { \c__template_key_order_root_tl #1 / #2 }
157 {
158 \seq_set_eq:Nc \1__template_key_order_seq
150 { \c__template_key_order_root_tl #1 / #2 }
160 }
161 { \seq_clear:N \1__template_key_order_seq }
162 ¥
163 \cs_new_protected:Npn __template_recover_values:nn #1#2
164 {
165 \prop_if_exist:cTF
166 { \c__template_values_root_tl #1 / #2 }
167 {
168 \prop_set_eq:Nc \1__template_values_prop
160 { \c__template_values_root_tl #1 / #2 }
170 }

16

__template_define_type:nn
__template_declare_type:nn

__template declare template keys:nnnn

171 { \prop_clear:N \1__template_values_prop }

172 }

173 \cs_new_protected:Npn __template_recover_vars:nn #1#2
174 {

175 \prop_if_exist:cTF

176 { \c__template_vars_root_tl #1 / #2 }

177 {

178 \prop_set_eq:Nc \1__template_vars_prop
179 { \c__template_vars_root_tl #1 / #2 }
180 }

181 { \prop_clear:N \1__template_vars_prop }
182 }

(End of definition for __template_recover_defaults:nn and others.)

11.4 Creating new template types

Although the type is the “top level” of the template system, it is actually very easy
to implement. All that happens is that the number of arguments required is recorded,
indexed by the name of the type.

13 \cs_new_protected:Npn __template_define_type:nn #1#2

184 {

185 \prop_if_in:NnTF \g__template_type_prop {#1}

186 { \msg_error:nnn { template } { type-already-defined } {#1} }
187 { __template_declare_type:nn {#1} {#2} }

188 3

120 \cs_new_protected:Npn __template_declare_type:nn #1#2

190 {

191 \int_set:Nn \1__template_tmp_int {#2}

192 \int_compare:nTF { 0 <= \1__template_tmp_int <= 9 }

193 {

104 \msg_info:nnnV { template } { declare-type }

195 {#1} \1__template_tmp_int

196 \prop_gput:NnV \g__template_type_prop {#1}

197 \1__template_tmp_int

98 }

199 {

200 \msg_error:nnnV { template } { bad-number-of-arguments }
201 {#1} \1__template_tmp_int

202 }

203 }

(End of definition for __template_define_type:nn and __template_declare_type:nn.)

11.5 Design part of template declaration

The “design” part of a template declaration defines the general behaviour of each key,
and possibly a default value. However, it does not include the implementation. This
means that what happens here is the two properties are saved to appropriate lists, which
can then be used later to recover the information when implementing the keys.

The main function for the “design” part of creating a template starts by checking that
the type exists and that the number of arguments required agree. If that is all fine, then
the two storage areas for defaults and keytypes are initialised. The mechanism is then

17

set up for the I3keys module to actually parse the keys. Finally, the code hands of to the
storage routine to save the parsed information properly.

204 \cs_new_protected:Npn __template_declare_template_keys:nnnn #1#2#3#4

205 {

206 __template_execute_if_type_exist:nT {#1}

207 {

208 __template_execute_if_arg_agree:nnT {#1} {#3}
209 {

210 \prop_clear:N \1__template_values_prop

211 \prop_clear:N \1__template_keytypes_prop
212 \seq_clear:N \1__template_key_order_seq

213 \keyval_parse:NNn

214 __template_parse_keys_elt:n __template_parse_keys_elt:nn {#4}
215 __template_store_defaults:nn {#1} {#2}

216 __template_store_keytypes:nn {#1} {#2}

217 }

218 }

219 }

(End of definition for __template_declare_template_keys:nnnn.)

__template_parse_keys_elt:n Processing the key part of the key—value pair is always carried out using this function,
\ template parse keys elt au:n even if a value was found. First, the key name is separated from the keytype, and if
\template parse keys elt aux: necessary the keytype is separated into two parts. This information is then used to check

that the keytype is valid, before storing the keytype (plus argument if necessary) as a
property of the key name. The key name is also stored (in braces) in the token list to
record the order the keys are defined in.

»

20 \cs_new_protected:Npn __template_parse_keys_elt:n #1

221 {

222 __template_split_keytype:n {#1}

23 \bool_if:NF \1__template_error_bool

224 {

225 __template_execute_if_keytype_exist:VT \1__template_keytype_tl
226 {

227 \seq_map_function:NN \c__template_keytypes_arg_seq
208 __template_parse_keys_elt_aux:n

229 \bool_if:NF \1__template_error_bool

230 {

231 \seq_if_in:NoTF \1__template_key_order_seq

232 \1__template_key_name_tl

233 {

234 \msg_error:nnV { template } { duplicate-key-interface }
25 \1__template_key_name_t1l

236 }

237 { __template_parse_keys_elt_aux: }

238 }

239 }

240 }

241 }

22 \cs_new_protected:Npn __template_parse_keys_elt_aux:n #1

243 {

244 \str_if_eq:VnT \1__template_keytype_t1l {#1}

245 {

246 \tl_if_empty:NT \1__template_keytype_arg_ tl

18

__template_parse keys_elt:mn

__template_split_keytype:n

__template split keytype aux:w

254

255

256

258

}

{
\msg_error:nnn { template } { keytype-requires-argument } {#1}
\bool_set_true:N \1__template_error_bool
\seq_map_break:
}
}

\cs_new_protected:Npn __template_parse_keys_elt_aux:

{

}

\tl_set:Ne \1__template_tmp_tl
{
\1__template_keytype_tl
\tl_if_empty:NF \1__template_keytype_arg_tl
{ { \1__template_keytype_arg_tl } }
}
\prop_put:NVV \1__template_keytypes_prop \1__template_key_name_tl
\1__template_tmp_tl
\seq_put_right:NV \1__template_key_order_seq \1__template_key_name_tl
\str_if_eq:VnT \1__template_keytype_tl { choice }
{
\clist_if_in:NnT \1__template_keytype_arg_tl { unknown }
{ \msg_error:nn { template } { choice-unknown-reserved } }

(End of definition for __template_parse_keys_elt:n, __template_parse_keys_elt_aux:n, and __-
template_parse_keys_elt_aux:.)

For keys which have a default, the keytype and key name are first separated out by the
__template_parse_keys_elt:n routine, before storing the default value in the scratch
property list.

271

\cs_

{

}

new_protected:Npn __template_parse_keys_elt:nn #1#2

__template_parse_keys_elt:n {#1}
\use:c { __template_store_value_ \1__template_keytype_tl :n } {#2}

(End of definition for __template_parse_keys_elt:nn.)

The keytype and key name should be separated by :. As the definition might be given
inside or outside of a code block, the category code of colons is standardised. After that,
the standard delimited argument method is used to separate the two parts.

\cs_

{

new_protected:Npe __template_split_keytype:n #1

\exp_not:N \bool_set_false:N \exp_not:N \1__template_error_bool
\tl_set:Nn \exp_not:N \1__template_tmp_t1l {#1}

\tl_replace_all:Nnn \exp_not:N \1__template_tmp_tl { : } { \token_to_str:N :

\tl_if_in:VnTF \exp_not:N \1__template_tmp_tl { \token_to_str:N : }
{
\exp_not:n
{
\tl_clear:N \1__template_key_name_tl
\exp_after:wN __template_split_keytype_aux:w
\1__template_tmp_tl \s__template_stop

19

}

__template split keyty

pe_arg:n

__template split keytype arg:V

__template split key

ype_arg_aux:n

__template_split_keytype arg aux:w

293

294

295

296

297

298

305

306

308

309

310

311

312

313

314

315

316

317

318

}
{
\exp_not:N \bool_set_true:N \exp_not:N \1__template_error_bool
\msg_error:nnn { template } { missing-keytype } {#1}
}
}
\use:e
{

}

\cs_new_protected:Npn \exp_not:N __template_split_keytype_aux:w
#1 \token_to_str:N : #2 \s__template_stop

{
\tl_put_right:Ne \exp_not:N \1__template_key_name_tl
{
\exp_not:N \tl_trim_spaces:e
{ \exp_not:N \tl_to_str:n {#1} }
}
\tl_if_in:nnTF {#2} { \token_to_str:N : }
{
\tl_put_right:Nn \exp_not:N \1__template_key_name_tl
{ \token_to_str:N : }
\exp_not:N __template_split_keytype_aux:w #2 \s__template_stop
}
{
\exp_not:N \tl_if_empty:NTF \exp_not:N \1__template_key_name_tl
{
\msg_error:nnn { template } { empty-key-name }
{ \token_to_str:N : #2 }
}
{ \exp_not:N __template_split_keytype_arg:n {#2} }
}
}

(End of definition for __template_split_keytype:n and __template_split_keytype_aux:w.)

The second stage of sorting out the keytype is to check for an argument. As there is no
convenient delimiting token to look for, a check is made instead for each possible text
value for the keytype. To keep things faster, this only involves the keytypes that need
an argument. If a match is made, then a check is also needed to see that it is at the
start of the keytype information. All being well, the split can then be applied. Any
non-matching keytypes are assumed to be “correct” as given, and are left alone (this is

checked by other code).
221 \cs_new_protected:Npn __template_split_keytype_arg:n #1

322

323

329

330

331

{

\tl_set:Ne \1__template_keytype_tl { \tl_trim_spaces:n {#1} }
\tl_clear:N \1__template_keytype_arg_tl
\cs_set_protected:Npn __template_split_keytype_arg_aux:n ##1
{
\tl_if_in:nnT {#1} {##1}
{
\cs_set:Npn __template_split_keytype_arg_aux:w
####1 ##1 ####2 \s__template_stop
{

20

__template_store_value boolean:n

__template_store_value:n
__template store value choice:n
__template store value function:n

__template store value instance:n

332 \tl_if_blank:nT {####1}

333 {

334 \tl_set:Ne \1__template_keytype_tl

335 { \tl_trim_spaces:n {##1} }

336 \tl_if_blank:nF {####2}

337 {

338 \tl_set:Ne \1__template_keytype_arg_tl
339 { \use:n ####2 }

340 }

341 \seq_map_break:

342 }

343 }

344 __template_split_keytype_arg_aux:w #1 \s__template_stop
345 }

346 }

347 \seq_map_function:NN \c__template_keytypes_arg_seq

348 __template_split_keytype_arg_aux:n

349 }

;50 \Ccs_generate_variant:Nn __template_split_keytype_arg:n { V }
351 \cs_new:Npn __template_split_keytype_arg_aux:n #1 { }
352 \cs_new:Npn __template_split_keytype_arg_aux:w #1 \s__template_stop { }

(End of definition for __template_split_keytype_arg:n, __template_split_keytype_arg_aux:n, and
__template_split_keytype_arg_aux:w.)

11.5.1 Storing values

As lttemplates pre-processes key values for efficiency reasons, there is a need to convert
the values given as defaults into “ready to use” data. The same general idea is true when
an instance is declared. However, assignments are not made until an instance is used,
and so there has to be some intermediate storage. Furthermore, the ability to delay
evaluation of results is needed. To achieve these aims, a series of “process and store”
functions are defined here.

All of the information about the key (the key name and the keytype) is already
stored as variables. The same property list is always used to store the data, meaning
that the only argument required is the value to be processed and potentially stored.

553 \cs_new_protected:Npn __template_store_value_boolean:n #1
32 { \prop_put:Non \1__template_values_prop \1__template_key_name_t1l {#1} }

(End of definition for __template_store_value_boolean:n.)

With no need to worry about delayed evaluation, these keytypes all just store the input
directly.

55 \cs_new_protected:Npn __template_store_value:n #1

556 { \prop_put:Non \1__template_values_prop \1__template_key_name_tl {#1} }
357 \cs_new_eq:NN __template_store_value_choice:n __template_store_value:n
355 \cs_new_eq:NN __template_store_value_function:n __template_store_value:n
550 \cs_new_eq:NN __template_store_value_instance:n __template_store_value:n

(End of definition for __template_store_value:n and others.)

21

_template store value anx:lin Storing values in \1__template_values_prop is in most cases the same.

__template_store value_integer:n 30 \cs_new_protected:Npn __template_store_value_aux:Nn #1#2
__template_store_value_length:n 50 { \prop_put:Non \1__template_values_prop \l__template_key_name_tl {#2} }
__template store value muskip:n s2 \cs_new_protected:Npn __template_store_value_integer:n

\ template store value real:n 33 { __template_store_value_aux:Nn \int_eval:n }

\C:mﬂﬁam:gwm:mwwiﬁjpn s34 \cs_new_protected:Npn __template_store_value_length:n

365 { __template_store_value_aux:Nn \dim_eval:n }

366 \cs_new_protected:Npn __template_store_value_muskip:n

57 { __template_store_value_aux:Nn \muskip_eval:n }

56 \cs_new_protected:Npn __template_store_value_real:n

s0 { __template_store_value_aux:Nn \fp_eval:n }

570 \cs_new_protected:Npn __template_store_value_skip:n

371 { __template_store_value_aux:Nn \skip_eval:n }

32 \cs_new_protected:Npn __template_store_value_tokenlist:n

53 { __template_store_value_aux:Nn \use:n }

;72 \cs_new_eq:NN __template_store_value_commalist:n __template_store_value_tokenlist:n

__template store value tokenlist:n

__template store value commalist:n

(End of definition for __template_store_value_aux:Nn and others.)

11.6 Implementation part of template declaration

_template declare template code:nnmn The main function for implementing a template starts with a couple of simple checks to
_template declare template code:nnmn make sure that there are no obvious mistakes: the number of arguments must agree and
the template keys must have been declared.
375 \cs_new_protected:Npn __template_declare_template_code:nnnnn #1#2#3#4#5

376 {

377 __template_execute_if_type_exist:nT {#1}

378 {

379 __template_execute_if_arg_agree:nnT {#1} {#3}

380 {

381 __template_if_keys_exist:nnT {#1} {#2}

382 {

383 __template_store_key_implementation:nnn {#1} {#2} {#4}
384 \str_if_in:nnTF {#5} { AssignTemplateKeys }

385 {

386 \regex_match:nnTF { \c { AssignTemplateKeys } } {#5}
387 { __template_declare_template_code:nnnn {#1} {#2} {#3} {#5} }
388 {

389 __template_declare_template_code:nnnn

300 {#1} {#2} {#3} { \AssignTemplateKeys #5 }

3901 }

392 }

393 {

394 __template_declare_template_code:nnnn

395 {#1} {#2} {#3} { \AssignTemplateKeys #5 }

396 }

397 }

398 }

399 }

400 }

201 \cs_new_protected:Npn __template_declare_template_code:nnnn #1#2#3#4

402 {

403 \cs_if_exist:cT { \c__template_code_root_tl #1 / #2 }

404 { \msg_info:nnnn { template } { declare-template-code } {#1} {#2} }

22

405 \cs_generate_from_arg_count:cNnn

406 { \c__template_code_root_tl #1 / #2 }
407 \cs_gset_protected:Npn {#3} {#4}
408 }

(End of definition for __template_declare_template_code:nnnnn and __template_declare_template_-
code:nnnn.)

\ template store key implenentation:nn Actually storing the implementation part of a template is quite easy as it only requires
the list of keys given to be turned into a property list. There is also some error-checking
to do, hence the need to have the list of defined keytypes available. In certain cases (when
choices are involved) parsing the key results in changes to the default values. That is
why they are loaded and then saved again.

200 \cs_new_protected:Npn __template_store_key_implementation:nnn #1#2#3

410 {

411 __template_recover_defaults:nn {#1} {#2}

412 __template_recover_keytypes:nn {#1} {#2}

413 \prop_clear:N \1__template_vars_prop

414 \keyval_parse:nnn

a15 { __template_parse_vars_elt:n } { __template_parse_vars_elt:nnn { #1 / #2 } } {#3}
416 __template_store_vars:nn {#1} {#2}

417 \prop_map_inline:Nn \1__template_keytypes_prop

418 { \msg_error:nnnnn { template } { key-not-implemented } {##1} {#2} {#1} }

a9}

(End of definition for __template_store_key_implementation:nnn.)

__template_parse_vars_elt:n At the implementation stage, every key must have a value given. So this is an error
function.

20 \cs_new_protected:Npn __template_parse_vars_elt:n #1
21 { \msg_error:nnn { template } { key-no-variable } {#1} }

(End of definition for __template_parse_vars_elt:n.)

\template parse vars elt:nmn - The actual storage part here is very simple: the storage bin name is placed into the
_template parse vars elt aux:nn property list. At the same time, a comparison is made with the keytypes defined earlier:
_ template parse vars elt awc:ny if there is a mismatch then an error is raised.

__template parse vars elt awcnn ., \cs_new_protected:Npn __template_parse_vars_elt:nnn #1#2#3
__template parse vars elt aux:nne o3

__template parse vars elt key:mn 424 \tl_set:Ne \1__template_key_name_tl
425 { \tl_trim_spaces:e { \tl_to_str:n {#2} } }
426 \prop_get:NVNTF \1__template_keytypes_prop
427 \1__template_key_name_tl
428 \1__template_keytype_t1l
429 {
430 __template_split_keytype_arg:V \1__template_keytype_tl
431 __template_parse_vars_elt_aux:nn {#1} {#3}
432 \prop_remove:NV \1__template_keytypes_prop \1__template_key_name_tl
433 }
434 { \msg_error:nnn { template } { unknown-key } {#2} }
a5}

23

Split off any leading global and they look for the way to implement.

236 \cs_new_protected:Npn __template_parse_vars_elt_aux:nn #1#2

437 {

438 __template_parse_vars_elt_aux:nw {#1} #2 global global \s__template_stop
439 }

20 \cs_new_protected:Npn __template_parse_vars_elt_aux:nw

441 #1#2 global #3 global #4 \s__template_stop

442 {

443 \tl_if_blank:nTF {#4}

444 { __template_parse_vars_elt_aux:nnn {#1} { } {#2} }
445 {

446 \tl_if_blank:nTF {#2}

447 {

448 __template_parse_vars_elt_aux:nne

449 {#1} { global } { \tl_trim_spaces:n {#3} }
450 }

451 { \msg_error:nnn { template } { bad-variable } { #2 global #3 } }
452 ¥

453 }

.54 \cs_new_protected:Npn __template_parse_vars_elt_aux:nnn #1#2#3

455 {

456 \str_case:VnF \1__template_keytype_tl

457 {

458 { choice } { __template_implement_choices:nn {#1} {#3} }
459 { function }

460 {

461 \cs_if_exist:NF #3

462 { \cs_new:Npn #3 { } }

463 __template_parse_vars_elt_key:nn {#1}

464 {

465 .code:n =

466 {

467 \cs_generate_from_arg_count:NNnn

468 \exp_not:N #3

469 \exp_not:c

470 { cs_ \str_if_eq:nnT {#1} { global } { g } set:Npn }
a1 { \exp_not:V \1__template_keytype_arg_tl }
472 {##1}

A73 }

474 }

475 \prop_put:NVn \1__template_vars_prop

a76 \1__template_key_name_tl {#2#3}

477 }

a7s { instance }

479 {

480 __template_parse_vars_elt_key:nn {#1}

481 {

482 .code:n =

483 {

484 \exp_not:c

485 { cs_ \str_if_eq:nnT {#1} { global } { g } set:Npn }
486 \exp_not:N #3 { \UseInstance {##1} }

487 T

24

489 \prop_put:NVn \1__template_vars_prop

490 \1__template_key_name_tl {#2#3}

491 }

492 }

493 {

494 \tl_if_single:nTF {#3}

495 {

496 \cs_if_exist:NF #3

497 { \use:c { __template_map_var_type: _new:N } #3 }
498 __template_parse_vars_elt_key:nn {#1}

499 {

500 . __template_map_var_type:

501 _ \str_if_eq:nnT {#1} { global } { g } set:N
502 = \exp_not:N #3

503 }

504 \prop_put:NVn \1__template_vars_prop

505 \1__template_key_name_tl {#2#3}

506 }

507 { \msg_error:nnn { template } { bad-variable } {#2#3} }
508 }

509 }

5.0 \Ccs_generate_variant:Nn __template_parse_vars_elt_aux:nnn { nne }
511 \cs_new_protected:Npn __template_parse_vars_elt_key:nn #1#2

512 {
513 \keys_define:ne { template / #1 }
514 { \1__template_key_name_tl #2 }
515 }

(End of definition for __template_parse_vars_elt:nnn and others.)

__template_map_var_type: Turn a “friendly” variable type into an expl3 one.

si6 \cs_new:Npn __template_map_var_type:

517 {

518 \str_case:Vn \1__template_keytype_tl
519 {

520 { boolean } { bool }
521 { commalist } { clist }
522 { integer } { int }

523 { length } { dim }

524 { muskip } { muskip }
525 { real } {fp}

526 { skip } { skip }
527 { tokenlist } { t1 }

528 }

529 }

(End of definition for __template_map_var_type:.)

\ template implement choices:nn Implementing choices requires a second key—value loop. So after a little set-up, the
_template implement choices default: standard parser is called.
530 \cs_new_protected:Npn __template_implement_choices:nn #1#2
531 {
532 \clist_set:NV \1__template_tmp_clist \1__template_keytype_arg_tl
533 \prop_put:NVn \1__template_vars_prop \l1__template_key_name_tl { }

25

534 \keys_define:ne { template / #1 } { \1__template_key_name_tl .choice: }

535 \keyval_parse:nnn

536 { __template_implement_choice_elt:n }

537 { __template_implement_choice_elt:nnn {#1} }

538 {#2}

539 \prop_get:NVNT \1__template_values_prop \l__template_key_name_tl
540 \1__template_tmp_tl

541 { __template_implement_choices_default: }

542 \clist_if_empty:NF \1__template_tmp_clist

543 {

544 \clist_map_inline:Nn \1__template_tmp_clist

545 { \msg_error:nnn { template } { choice-not-implemented } {#i#1} }
546 }

547 }

A sanity check for the default value, so that an error is raised now and not when converting
to assignments.

55 \cs_new_protected:Npn __template_implement_choices_default:

549 {

550 \tl_set:Ne \1__template_tmp_tl

551 { \1__template_key_name_tl \c_space_tl \1__template_tmp_tl }

552 \prop_if_in:NVF \1__template_vars_prop \l__template_tmp_tl

553 {

554 \tl_set:Ne \1__template_tmp_tl

555 { \1__template_key_name_tl \c_space_tl \1__template_tmp_tl }

556 \prop_if_in:NVF \1__template_vars_prop \l__template_tmp_tl

557 {

558 \prop_get:NVN \1__template_keytypes_prop \1__template_key_name_tl
550 \1__template_tmp_tl

560 __template_split_keytype_arg:V \1__template_tmp_tl

561 \prop_get:NVN \1__template_values_prop \1__template_key_name_tl
562 \1__template_tmp_tl

563 \msg_error:nnVV { template } { unknown-default-choice }

564 \1__template_key_name_t1l

565 \1__template_key_name_tl

566 T

567 }

568 }

(End of definition for __template_implement_choices:nn and __template_implement_choices_-
default:.)

_template implement choice elt:nmn The actual storage of the implementation of a choice is mainly about error checking. The

__template implement choice elt aw:nnn code here ensures that all choices have to have been declared, apart from the special

_template implement choice elt awrn unknown choice, which must come last. The code for each choice is stored along with the
_template implement choice elt:n key name in the variables property list.

se0 \cs_new_protected:Npn __template_implement_choice_elt:nnn #1#2#3

570 {

571 \clist_if_empty:NTF \1__template_tmp_clist

572 {

573 \str_if_eq:nnTF {#2} { unknown }

574 { __template_implement_choice_elt_aux:nnn {#1} {#2} {#3} }
575 { __template_implement_choice_elt_aux:n {#2} }

576 }

26

577 {

578 \clist_if_in:NnTF \1__template_tmp_clist {#2}

579 {

580 \clist_remove_all:Nn \1__template_tmp_clist {#2}

581 __template_implement_choice_elt_aux:nnn {#1} {#2} {#3}
582 }

583 { __template_implement_choice_elt_aux:n {#2} }

584 }

585 }

ss6 \CS_new_protected:Npn __template_implement_choice_elt_aux:n #1

587 {

588 \prop_get:NVN \1__template_keytypes_prop \1__template_key_name_tl
580 \1__template_tmp_tl

590 __template_split_keytype_arg:V \1__template_tmp_tl

501 \msg_error:nnVn { template } { unknown-choice } \1__template_key_name_tl {#1}
502 }

503 \cs_new_protected:Npn __template_implement_choice_elt_aux:nnn #1#2#3
504 {

595 \keys_define:ne { template / #1 }

506 { \1__template_key_name_tl / #2 .code:n = { \exp_not:n {#3} } }
597 \tl_set:Ne \1__template_tmp_tl

598 { \1__template_key_name_tl \c_space_tl #2 }

500 \prop_put:NVn \1__template_vars_prop \1__template_tmp_tl {#3}

600 }

s01 \cs_new_protected:Npn __template_implement_choice_elt:n #1

602 {

603 \msg_error:nnVn { template } { choice-requires-code }

604 \1__template_key_name_t1l {#1}

605 }

(End of definition for __template_implement_choice_elt:nnn and others.)

11.7 Editing template defaults

\template edit defaults:nnn Editing the template defaults means getting the values back out of the store, then parsing

the list of new values before putting the updated list back into storage.

606 \cs_new_protected:Npn __template_edit_defaults:nnn #1#2#3

607 {

608 __template_if_keys_exist:nnT {#1} {#2}

609 {

610 __template_recover_defaults:nn {#1} {#2}
611 __template_parse_values:nnn {#1} {#2} {#3}
612 __template_store_defaults:nn {#1} {#2}

613 ¥

614 }

(End of definition for __template_edit_defaults:nnn.)

__template_parse_values:nnn The routine to parse values is the same for both editing a template and setting up an
instance. So the code here does only the minimum necessary for reading the values.
615 \cs_new_protected:Npn __template_parse_values:nnn #1#2#3
616 {
617 __template_recover_keytypes:nn {#1} {#2}
618 \keyval_parse:NNn

27

\

\

__template_parse values elt:n

__template parse values elt:nn

__template parse values_elt_aux:w

__template_parse_values_elt_aux:n

__template parse values exp:o

__template parse v

__template _parse_

__template_parse v

__template parse values exp:n

ralues exp:V

__template parse_values_exp:v

values_exp:e

__template parse values exp:N

ralues_exp:c

619 __template_parse_values_elt:n __template_parse_values_elt:nn {#3}

(End of definition for __template_parse_values:nnn.)

Every key needs a value, so this is just an error routine.

o1 \cs_new_protected:Npn __template_parse_values_elt:n #1
622 {

623 \bool_set_true:N \1__template_error_bool

624 \msg_error:nnn { template } { key-no-value } {#1}
625 }

(End of definition for __template_parse_values_elt:n.)

To store the value, find the keytype then call the saving function. These need the current
key name, stored in \1__template_key_name_t1l.

o6 \cs_new_protected:Npn __template_parse_values_elt:nn #1#2

627 {

628 \use:e

629 {

630 __template_parse_values_elt_aux:w

631 \tl_trim_spaces:e { \tl_to_str:in { #1 : n : } }

632 \exp_not:N \q_stop

633 }

634 \prop_get:NVNTF \1__template_keytypes_prop \1__template_key_name_tl
635 \1__template_tmp_tl

636 { __template_parse_values_elt_aux:n {#2} }

637 { \msg_error:nnV { template } { unknown-key } \1__template_key_name_tl }
638 }

539 \use:e

640 {

641 \cs_new_protected:Npn \exp_not:N __template_parse_values_elt_aux:w
642 #1 \token_to_str:N : #2 \token_to_str:N : #3 \exp_not:N \g_stop
643 3

644 {

645 \tl_set:Nn \1__template_key_name_tl {#1}

646 \str_set:Nn \1__template_value_exp_str {#2}

647 }

s1s \cs_new_protected:Npn __template_parse_values_elt_aux:n #1

649 {

650 __template_split_keytype_arg:V \1__template_tmp_tl

651 \cs_if_exist_use:cF { __template_parse_values_exp: \l__template_value_exp_str }
652 {

653 \msg_error:nnV { template } { unknown-expansion } \1__template_value_exp_str
654 \use_none:n

655 ¥

656 {#1}

657 }

o5 \cs_new_protected:Npn __template_parse_values_exp:n #1

o0 { \use:c { __template_store_value_ \1__template_keytype_tl :n } {#1} }

s0 \CS_generate_variant:Nn __template_parse_values_exp:n { o , V, v , e }

661 \cs_new_eq:NN __template_parse_values_exp:N __template_parse_values_exp:n
6> \cs_generate_variant:Nn __template_parse_values_exp:N { c }

(End of definition for __template_parse_values_elt:nn and others.)

28

\

__template template set eq:nnn

__template declare instance:nnnn

__template declare instance aux:nnnn

To copy a template, each of the lists plus the code has to be copied across. To keep this
independent of the list storage system, it is all done with two-part shuffles.

63 \cs_new_protected:Npn __template_template_set_eq:nnn #1#2#3

664 {

665 __template_recover_defaults:nn {#1} {#3}

666 __template_store_defaults:nn {#1} {#2}

667 __template_recover_keytypes:nn {#1} {#3}

668 __template_store_keytypes:nn {#1} {#2}

669 __template_recover_vars:nn {#1} {#3}

670 __template_store_vars:nn {#1} {#2}

671 \cs_if_exist:cT { \c__template_code_root_tl #1 / #2 }
672 { \msg_info:nnnn { template } { declare-template-code } {#1} {#2} }
673 \cs_gset_eq:cc { \c__template_code_root_tl #1 / #2 }
674 { \c__template_code_root_tl #1 / #3 }

675 ¥

(End of definition for __template_template_set_eq:nnn.)

11.8 Creating instances of templates

Making an instance has two distinct parts. First, the keys given are parsed to transfer
the values into the structured data format used internally. This allows the default and
given values to be combined with no repetition. In the second step, the structured data
is converted to pre-defined variable assignments, and these are stored in the function for
the instance.

o6 \cs_new_protected:Npn __template_declare_instance:nnnn #1#2#3#4

677 {

678 __template_execute_if_code_exist:nnT {#1} {#2}

679 {

680 __template_recover_defaults:nn {#1} {#2}

681 __template_recover_vars:nn {#1} {#2}

682 __template_declare_instance_aux:nnnn {#1} {#2} {#3} {#4}
683 }

684 }

635 \cs_new_protected:Npn __template_declare_instance_aux:nnnn #1#2#3#4

686 {

687 \bool_set_false:N \1__template_error_bool

688 __template_parse_values:nnn {#1} {#2} {#4}

689 \bool_if:NF \1__template_error_bool

690 {

691 \prop_put:Nnn \1__template_values_prop { from~template } {#2}

602 __template_store_values:nn {#1} {#3}

693 __template_convert_to_assignments:

64 \cs_if_exist:cT { \c__template_instances_root_tl #1 / #3 }

695 { \msg_info:nnnn { template } { declare-instance } {#3} {#1} }
696 \cs_set_protected:cpe { \c__template_instances_root_tl #1 / #3 }
697 {

698 \exp_not:N __template_assignments_push:n

699 { \exp_not:V \1__template_assignments_tl }

700 \exp_not:c { \c__template_code_root_tl #1 / #2 }

701 }

702 }

703 ¥

29

__template instance set_eq:nmn

__template_edit_instance:nmn
__template edit instance aux:nnnnn

__template edit instance aux:nVnnn

__template convert to assignments:

__template_convert to_assignments aux:n
__template convert to assignments aux:nn

__template convert to assignments aux:nV

(End of definition for __template_declare_instance:nnnn and __template_declare_instance_-
aux:nnnn.)

Copy—paste an instance.

704+ \cs_new_protected:Npn __template_instance_set_eq:nnn #1#2#3

705 {

706 __template_if_instance_exist:nnTF {#1} {#3}

707 {

708 __template_recover_values:nn {#1} {#3}

700 __template_store_values:nn {#1} {#2}

710 \cs_if_exist:cT { \c__template_instances_root_tl #1 / #2 }

71 { \msg_info:nnnn { template } { declare-instance } {#2} {#1} }
712 \cs_set_eq:cc { \c__template_instances_root_tl #1 / #2 }

713 { \c__template_instances_root_tl #1 / #3 }

714 }

715 { \msg_error:nnnn { template } { unknown-instance } {#1} {#3} }
716 }

(End of definition for __template_instance_set_eq:nnn.)

Editing an instance is almost identical to declaring one. The only variation is the source
of the values to use. When editing, they are recovered from the previous instance run.

717 \cs_new_protected:Npn __template_edit_instance:nnn #1#2#3
718 {

719 __template_if_instance_exist:nnTF {#1} {#2}

720 {

721 __template_recover_values:nn {#1} {#2}

722 \prop_get:NnN \1__template_values_prop { from~template }

723 \1__template_tmp_tl

724 __template_edit_instance_aux:nVnn

725 {#1} \1__template_tmp_tl {#2} {#3}

726 }

727 { \msg_error:nnnn { template } { unknown-instance } {#1} {#2} }
728 3

720 \cs_new_protected:Npn __template_edit_instance_aux:nnnn #1#2#3#4
730 {

731 __template_recover_vars:nn {#1} {#2}

732 __template_declare_instance_aux:nnnn {#1} {#2} {#3} {#4}

733 }

73 \cs_generate_variant:Nn __template_edit_instance_aux:nnnn { nV }

(End of definition for __template_edit_instance:nnn and __template_edit_instance_aux:nnnnn.)

The idea on converting to a set of assignments is to loop over each key, so that the loop
order follows the declaration order of the keys. This is done using a sequence as property
lists are not “ordered”.

735 \cs_new_protected:Npn __template_convert_to_assignments:

736 {

737 \tl_clear:N \1__template_assignments_tl

738 \seq_map_function:NN \1__template_key_order_seq
739 __template_convert_to_assignments_aux:n

740 }

71 \cs_new_protected:Npn __template_convert_to_assignments_aux:n #1

742 {

30

743 \prop_get:NnN \1__template_keytypes_prop {#1} \1__template_tmp_tl

744 __template_convert_to_assignments_aux:nV {#1} \1__template_tmp_tl

745 }
The second auxiliary function actually does the work. The arguments here are the key
name (#1) and the keytype (#2). From those, the value to assign and the name of the
appropriate variable are recovered. A bit of work is then needed to sort out keytypes
with arguments (for example instances), and to look for global assignments. Once that
is done, a hand-off can be made to the handler for the relevant keytype.

726 \cs_new_protected:Npn __template_convert_to_assignments_aux:nn #1#2

747 {

748 \prop_get:NnNT \1__template_values_prop {#1} \1__template_value_tl
749 {

750 \prop_get:NnNTF \1__template_vars_prop {#1} \1__template_var_tl
751 {

752 __template_split_keytype_arg:n {#2}

753 \str_if_eq:VnF \1__template_keytype_tl { choice }

754 {

755 \str_if_eq:VnF \1__template_keytype_tl { code }

756 { __template_find_global: }

757 }

758 \tl_set:Nn \1__template_key_name_t1l {#1}

750 \cs_if_exist_use:cF { __template_assign_ \1__template_keytype_tl : }
760 { __template_assign_variable: }

761 }

762 { \msg_error:nnn { template } { unknown-attribute } {#1} }

763 }

764 }

765 \CcS_generate_variant:Nn __template_convert_to_assignments_aux:nn { nV }

(End of definition for __template_convert_to_assignments:, __template_convert_to_assignments_-
aux:n, and __template_convert_to_assignments_aux:nn.)

__template_find_global: Global assignments should have the phrase global at the front. This is pretty easy to

__template_find global aux:w find: no other error checking, though.
766 \cs_new_protected:Npn __template_find_global:
767 {
768 \bool_set_false:N \1__template_global_bool
769 \tl_if_in:onT \1__template_var_tl { global }
770 {
71 \exp_after:wN __template_find_global_aux:w \1__template_var_tl \s__template_stop
772 ¥
773 }
772 \cs_new_protected:Npn __template_find_global_aux:w #1 global #2 \s__template_stop
775 {
776 \tl_set:Nn \1__template_var_tl {#2}
777 \bool_set_true:N \1__template_global_bool
778 }

(End of definition for __template_find_global: and __template_find_global_aux:w.)

_ template instance value:nmn For editing templates.

779 \cs_new:Npn __template_instance_value:nnn #1#2#3

780 {
781 __template_if_instance_exist:nnT {#1} {#2}

31

__template_use_template:nnn

__template_assign_boolean:

__template assign boolean aux:n

782 { \prop_item:cn { \c__template_values_root_tl #1 / #2 } {#3} }

(End of definition for __template_instance_value:nnn.)

11.9 Using templates directly

Directly use a template with a particular parameter setting. This is also picked up if used
in a nested fashion inside a parameter list. The idea is essentially the same as creating
an instance, just with no saving of the result.

73¢ \cs_new_protected:Npn __template_use_template:nnn #1#2#3

785 {

786 __template_execute_if_code_exist:nnT {#1} {#2}
787 {

788 __template_recover_defaults:nn {#1} {#2}

789 __template_recover_vars:nn {#1} {#2}

790 __template_parse_values:nnn {#1} {#2} {#3}
791 __template_convert_to_assignments:

792 \use:c { \c__template_code_root_tl #1 / #2 }
793 }

794 }

(End of definition for __template_use_template:nnn.)

11.10 Assigning values to variables

Setting a Boolean value is slightly different to everything else as the value can be used
to work out which set function to call. As long as there is no need to recover things
from another variable, everything is pretty easy. If there is, then we need to allow for
the fact that the recovered value here will not be expandable, so needs to be converted
to something that is.

705 \cs_new_protected:Npn __template_assign_boolean:

796 {

797 \bool_if:NTF \1__template_global_bool

798 { __template_assign_boolean_aux:n { bool_gset } }
799 { __template_assign_boolean_aux:n { bool_set } }
800 }

s01 \cs_new_protected:Npn __template_assign_boolean_aux:n #1
802 {

803 __template_if_key_value:VTF \1__template_value_tl
804 {

805 __template_key_to_value:

806 \tl_put_right:Ne \1__template_assignments_tl

807 {

808 \exp_not:c { #1 _eq:NN }

809 \exp_not:V \1__template_var_tl

810 \exp_not:V \1__template_value_tl

811 }

812 }

813 {

814 \tl_put_right:Ne \1__template_assignments_tl

815 {

816 \exp_not:c { #1 _ \1__template_value_tl :N }

32

817 \exp_not:V \1__template_var_tl
818 }

819 }

820 T

(End of definition for __template_assign_boolean: and __template_assign_boolean_aux:n.)

__template_assign_choice: The idea here is to find either the choice as-given or else the special unknown choice, and
_template assign choice aux:nf to copy the appropriate code across.

__template assign_choice_aux:eF 21 \cs_new_protected:Npn __template_assign_choice:

822 {

823 __template_assign_choice_aux:eF

824 { \1__template_key_name_tl \c_space_tl \1__template_value_tl }
825 {

826 __template_assign_choice_aux:eF

827 { \1__template_key_name_tl \c_space_tl unknown }

828 {

829 \prop_get:NVN \1__template_keytypes_prop \1__template_key_name_tl
830 \1__template_tmp_tl

831 __template_split_keytype_arg:V \1__template_tmp_tl

832 \msg_error:nnVV { template } { unknown-choice }

833 \1__template_key_name_tl

834 \1__template_value_tl

835 }

836 }

837 }

s3s \cs_new_protected:Npn __template_assign_choice_aux:nF #1

839 {

840 \prop_get:NnNTF \1__template_vars_prop {#1} \1__template_tmp_tl
841 { \tl_put_right:NV \1__template_assignments_tl \1__template_tmp_tl }
842 }

23 \cs_generate_variant:Nn __template_assign_choice_aux:nF { e }

(End of definition for __template_assign_choice: and __template_assign_choice_aux:nF.)

__template_assign_function: This looks a bit messy but is only actually one function.

__template_assign_function aux:N s \cs_new_protected:Npn __template_assign_function:
845 {
846 \bool_if:NTF \1__template_global_bool
847 { __template_assign_function_aux:N \cs_gset_protected:Npn }
848 { __template_assign_function_aux:N \cs_set_protected:Npn }
849 }
ss0 \cs_new_protected:Npn __template_assign_function_aux:N #1
851 {
852 \tl_put_right:Ne \1__template_assignments_tl
853 {
854 \cs_generate_from_arg_count : NNnn
855 \exp_not:V \1__template_var_tl
856 \exp_not:N #1
857 { \exp_not:V \1__template_keytype_arg_tl }
858 { \exp_not:V \1__template_value_tl }
859 }
860 }

(End of definition for __template_assign_function: and __template_assign_function_aux:N.)

33

__template_assign_instance:

__template assign instance aux:N

__template_assign_variable:

__template assign variable:n

Using an instance means adding the appropriate function creation to the tl. No checks
are made at this stage, so if the instance is not valid then errors will arise later.

s61 \cs_new_protected:Npn __template_assign_instance:

862 {

863 \bool_if:NTF \1__template_global_bool

864 { __template_assign_instance_aux:N \cs_gset_protected:Npn }
865 { __template_assign_instance_aux:N \cs_set_protected:Npn }
866 }

s7 \cs_new_protected:Npn __template_assign_instance_aux:N #1

868 {

869 \tl_put_right:Ne \1__template_assignments_tl

870 {

871 \exp_not:N #1 \exp_not:V \1__template_var_tl

872 {

873 __template_use_instance:nn

874 { \exp_not:V \1__template_keytype_arg_tl }

875 { \exp_not:V \1__template_value_tl }

876 T

877 }

878 }

(End of definition for __template_assign_instance: and __template_assign_instance_aux:N.)

A general-purpose function for all of the other assignments. As long as the value is not
coming from another variable, the stored value is simply transferred for output. We
use V-type expansion for the \KeyValue case: for token lists this is essential, whilst for
register-based variables, it does no harm and avoids needing a low-level test.

e79 \cs_new_protected:Npn __template_assign_variable:

880 {

881 \exp_args:Ne __template_assign_variable:n

882 {

883 __template_map_var_type:

884 _

885 \bool_if:NT \1__template_global_bool { g }
886 set:N

887 }

888 }

Notice we need a V-type variant for each (g) set operation here: these need to be provided
by expl3.

s0 \cs_new_protected:Npn __template_assign_variable:n #1

890 {

801 __template_if_key_value:VTF \1__template_value_tl
892 {

893 __template_key_to_value:

804 \tl_put_right:Ne \1__template_assignments_tl
8905 {

896 \exp_not:c { #1 V } \exp_not:V \1__template_var_tl
897 \exp_not:V \1__template_value_tl

898 T

899 }

900 {

901 \tl_put_right:Ne \1__template_assignments_tl
902 {

34

903 \exp_not:c { #1 n } \exp_not:V \1__template_var_tl
904 { \exp_not:V \1__template_value_tl }

905 }

906 }

907 }

(End of definition for __template_assign_variable: and __template_assign_variable:n.)

__template_key_to_value: The idea here is to recover the attribute value of another key. To do that, the marker is
_template key to value auri:v removed and a look up takes place. If this is successful, then the name of the variable of
_template key to value aurii:v the attribute is returned. This assumes that the value will be used in context where it
will be converted to a value, for example when setting a number. There is also a need to
check in case the copied value happens to be global.
o5 \cs_new_protected:Npn __template_key_to_value:
oo { \exp_after:wN __template_key_to_value_auxi:w \1__template_value_tl }
o0 \cs_new_protected:Npn __template_key_to_value_auxi:w \KeyValue #1

911 {

012 \tl_set:Ne \1__template_tmp_tl { \tl_trim_spaces:e { \tl_to_str:n {#1} } }
013 \prop_get:NVNTF \1__template_vars_prop \l__template_tmp_tl

014 \1__template_value_tl

915 {

916 \exp_after:wN __template_key_to_value_auxii:w \1__template_value_tl

017 \s__template_mark global \g__template_nil \s__template_stop

918 }

919 { \msg_error:nnV { template } { unknown-attribute } \1__template_tmp_t1l }
920 }

o1 \cs_new_protected:Npn __template_key_to_value_auxii:w #1 global #2#3 \s__template_stop
922 {

023 __template_quark_if_nil:NF #2

924 { \tl_set:Nn \1__template_value_tl {#2} }

925 ¥

(End of definition for __template_key_to_value:, __template_key_to_value_auxi:w, and __-
template_key_to_value_auxii:w)

11.11 Using instances

__template_use_instance:nn Using an instance is just a question of finding the appropriate function. If nothing is
_template use instance aux:nlinnn found, an error is raised. One complication is that if the first token of argument #2 is
_template use instance au:in \UseTemplate then that is also valid. There is an error-test to make sure that the types

agree, and if so the template is used directly.

926 \cs_new_protected:Npn __template_use_instance:nn #1#2

927 {

928 __template_if_use_template:nTF {#2}

929 { __template_use_instance_aux:nNnnn {#1} #2 }

930 { __template_use_instance_aux:nn {#1} {#2} }

931 }

022 \cs_new_protected:Npn __template_use_instance_aux:nNnnn #1#2#3#4#5
933 {

934 \str_if_eq:nnTF {#1} {#3}

935 { __template_use_template:nnn {#3} {#4} {#5} }

036 { \msg_error:nnnn { template } { type-mismatch } {#1} {#3} }
937 }

35 \cs_new_protected:Npn __template_use_instance_aux:nn #1#2

35

939 {

940 __template_if_instance_exist:nnTF {#1} {#2}

041 { \use:c { \c__template_instances_root_tl #1 / #2 } }

942 { \msg_error:nnnn { template } { unknown-instance } {#1} {#2} }
943 }

(End of definition for __template_use_instance:nn, __template_use_instance_aux:nNnnn, and _-
_template_use_instance_aux:nn.)
11.12 Assignment manipulation
A few functions to transfer assignments about, as this is needed by \AssignTemplateKeys.
__template_assignments_pop: To actually use the assignments.
0ss \cs_new:Npn __template_assignments_pop: { \1__template_assignments_tl }
(End of definition for __template_assignments_pop:.)
\

_template assigments push:n Here, the assignments are stored for later use.

015 \cs_new_protected:Npn __template_assignments_push:n #1
o6 { \tl_set:Nn \1__template_assignments_tl {#1} }

(End of definition for __template_assignments_push:n.)

11.13 Showing templates and instances

__template_show_code:nn Showing the code for a template is just a translation of \cs_show:c.
917 \cs_new_protected:Npn __template_show_code:nn #1#2
048 { \cs_show:c { \c__template_code_root_tl #1 / #2 } }

(End of definition for __template_show_code:nn.)

__template_show_defaults:nn A modified version of the property-list printing code, such that the output refers to
__template_show_keytypes:nn templates and instances rather than to the underlying structures.

__template_show_vars:nn 019 \cs_new_protected:Npn __template_show_defaults:nn #1#2
__template_show:Nnnn 0 o

951 __template_if_keys_exist:nnT {#1} {#2}

952 {

053 __template_recover_defaults:nn {#1} {#2}

954 __template_show:Nnnn \1__template_values_prop
955 {#1} {#2} { default~values }

956 }

957 }

oss \cs_new_protected:Npn __template_show_keytypes:nn #1#2
959 {

960 __template_if_keys_exist:nnT {#1} {#2}

961 {

962 __template_recover_keytypes:nn {#1} {#2}

963 __template_show:Nnnn \1__template_keytypes_prop
964 {#1} {#2} { interface }

965 }

966 }

o7 \cs_new_protected:Npn __template_show_vars:nn #1#2

968 {

36

969 __template_execute_if_code_exist:nnT {#1} {#2}

970 {

o71 __template_recover_vars:nn {#1} {#2}

972 __template_show:Nnnn \1__template_vars_prop
o73 {#1} {#2} { variable~mapping }

974 }

975 }

076 \cs_new_protected:Npn __template_show:Nnnn #1#2#3#4
977 {

o78 \msg_show:nneeee { template } { show-attribute }
979 { \tl_to_str:n {#2} }

980 { \tl_to_str:n {#3} }

081 { \tl_to_str:n {#4} }

082 { \prop_map_function:NN #1 \msg_show_item_unbraced:nn }
983 }

(End of definition for __template_show_defaults:nn and others.)

__template_show_values:nn Instance values are a little more complex, as is the template to consider.

934 \cs_new_protected:Npn __template_show_values:nn #1#2

985 {

986 __template_if_instance_exist:nnTF {#1} {#2}

987 {

988 __template_recover_values:nn {#1} {#2}

989 \msg_show:nneee { template } { show-values }

990 { \tl_to_str:n {#1} }

991 { \tl_to_str:n {#2} }

992 {

993 \prop_map_function:NN \1__template_values_prop
994 \msg_show_item_unbraced:nn

995 }

996 }

997 { \msg_info:nnnn { template } { unknown-instance } {#1} {#2} }
998 }

(End of definition for __template_show_values:nn.)

11.14 Messages

The text for error messages: short and long text for all of them.

o0 \msg_new:nnnn { template } { argument-number-mismatch }
w0 { Template~type~’#1’~takes~#2~argument(s). }

1001 {

1002 Templates~of~type~’#1’~require~#2~argument (s) .\\
1003 You~have~tried~to~make~a~template~for~’#1’~

1004 with~#3~argument (s) ,~which~is~not~possible:~

1005 the~number~of~arguments~must~agree.

1006 }

1007 \msg_new:nnnn { template } { bad-number-of-arguments }
wos { Bad~number~of ~arguments~for~template~type~’#1’. }

1009 {

1010 A~template~may~accept~between~O~and~9~arguments.\\
1011 You~asked~to~use~#2~arguments:~this~is~not~supported.
1012 }

37

1013

1014

1015

1016

1018

1019

1020

1021

1022

1023

1024

1025

1026

1028

1029

1030

1031

1033

1034

1035

1036

1037

1038

1039

1040

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1062

1063

1064

1065

1066

\msg_new:nnnn { template } { bad-variable }
{ Incorrect~variable~description~’#1’. }

{
The~argument~’#1’~is~not~of~the~form \\
~~’<variable>’\\
~or~\\
~~’global~<variable>’.\\
It~must~be~given~in~one~of~these~formats~to~be~used~in~a~template.
}

\msg_new:nnnn { template } { choice-not-implemented }
{ The~choice~’#1’~has~no~implementation. }
{
Each~choice~listed~in~the~interface~for~a~template~must~
have~an~implementation.
}
\msg_new:nnnn { template } { choice-no-code }
{ The~choice~’#1’~requires~implementation~details. }
{
When~creating~template~code~using~\DeclareTemplateCode, ~
each~choice~name~must~have~an~associated~implementation.\\
This~should~be~given~after~a~’=’~sign:~LaTeX~did~not~find~one.
}
\msg_new:nnnn { template } { choice-requires-code }
{ The~choice~’#2’~for~key~’#1’~requires~an~implementation. }
{
You~should~have~put:\\
\ \ #1~:~choice~{~#2 = <code> ~} \\
but~LaTeX~did~not~find~any~<code>.
}
\msg_new:nnnn { template } { duplicate-key-interface }
{ Key~’#1’~appears~twice~in~interface~definition~\msg_line_context:.
{
Each~key~can~only~have~one~interface~declared~in~a~template.\\
LaTeX~found~two~interfaces~for~’#1’.
}
\msg_new:nnnn { template } { keytype-requires-argument }
{ The~key~type~’#1’~requires~an~argument~\msg_line_context:. }
{
You~should~have~put:\\
\ \ <key-name>~:~#1~{~<argument>~} \\
but~LaTeX~did~not~find~an~<argument>.
}
\msg_new:nnnn { template } { invalid-keytype }
{ The~key~’#1’~is~missing~a~key-type~\msg_line_context:. }
{
Each~key~in~a~template~requires~a~key-type,~given~in~the~form:\\
\ \ <key>~:~<key-type>\\
LaTeX~could~not~find~a~<key-type>~in~your~input.
}
\msg_new:nnnn { template } { key-no-value }
{ The~key~’#1’~has~no~value~\msg_line_context:. }
{
When~creating~an~instance~of~a~template~
every~key~listed~must~include~a~value:\\

38

1067 \ \ <key>~=~<value>

1068 }

1060 \msg_new:nnnn { template } { key-no-variable }

w0 { The~key~’#1’~requires~implementation~details~\msg_line_context:. }

1071 {

1072 When~creating~template~code~using~\DeclareTemplateCode, ~

1073 each~key~name~must~have~an~associated~implementation.\\

1074 This~should~be~given~after~a~’=’~sign:~LaTeX~did~not~find~one.
1075 }

w076 \msg_new:nnnn { template } { key-not-implemented }

1077 { Key~’#1’~has~no~implementation~\msg_line_context:. }

1078 {

1079 The~definition~of~key~implementations~for~template~’#2’~

1080 of ~template~type~’#3’~does~not~include~any~details~for~key~’#1’.\\
1081 The~key~was~declared~in~the~interface~definition, ~

1082 and~so~an~implementation~is~required.

1083 }

s+ \msg_new:nnnn { template } { missing-keytype }
s { The~key~’#1’~is~missing~a~key-type~\msg_line_context:. }
1086 {

1087 Key~interface~definitions~should~be~of~the~form\\
1088 \ O\ #1~:~<key-type>\\

1089 but~LaTeX~could~not~find~a~<key-type>.

1090 }

1001 \msg_new:nnnn { template } { no-template-code }

1092 {

1093 The~template~’#2’~of~type~’#1’~is~unknown~

1004 or~has~no~implementation.

1095 }

1096 {

1007 There~is~no~code~available~for~the~template~name~given.\\
1008 This~should~be~given~using~\DeclareTemplateCode.
1099 }

1100 \msg_new:nnnn { template } { type-already-defined }

101 { Template~type~’#1’~already~defined. }

1102 {

1103 You~have~used~\NewTemplateType~

1104 with~a~template~type~that~has~already~been~defined.

1105 T

1100 \msg_new:nnnn { template } { type-mismatch }

107 { Template~types~’#1’~and~’#2’~do~not~agree. }

1108 {

1109 You~are~trying~to~use~a~template~directly~with~\UseInstance
1110 (or~a~similar~function) ,~but~the~template~types~do~not~match.
1111 }

1112 \msg_new:nnnn { template } { unknown-attribute }

iz { The~template~attribute~’#1’~is~unknown. }

1114 {

1115 There~is~a~definition~in~the~current~template~reading\\
1116 \ \ \token_to_str:N \KeyValue {~#1~} \\

1117 but~there~is~no~key~called~’#1’.

1118 }

1110 \msg_new:nnnn { template } { unknown-choice }
1120 { The~choice~’#2’~was~not~declared~for~key~’#1’. }

39

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

{

}

The~key~’#1’~takes~a~fixed~list~of~choices~
and~this~list~does~not~include~’#2’.

\msg_new:nnnn { template } { unknown-default-choice }

{
{

}

The~default~choice~’#2’~was~not~declared~for~key~’#1’. }

The~key~’#1’~takes~a~fixed~list~of~choices~
and~this~list~does~not~include~’#2’.

\msg_new:nnnn { template } { unknown-expansion }

{
{

}

The~expansion~type~’#1’~is~unknown. }

Key~values~can~only~be~expanded~using~one~of~the~pre-defined~methods: ~
n,~o,~V,~v,~e,~N~or~c.

\msg_new:nnnn { template } { unknown-instance }

{
{

}

The~instance~’#2’~of~type~’#1’~is~unknown. }

You~have~asked~to~use~an~instance~’#2’,~
but~this~has~not~been~created.

\msg_new:nnnn { template } { unknown-key }

{
{

}

Unknown~template~key~’#1’. }

The~key~’#1’~was~not~declared~in~the~interface~
for~the~current~template.

\msg_new:nnnn { template } { unknown-keytype }

{
{

}

The~key-type~’#1’~is~unknown. }

Valid~key-types~are:\\
-~boolean;\\
-~choice;\\
-~commalist;\\
-~function;\\
-~instance;\\
-~integer;\\
-~length;\\
—~muskip;\\
-~real;\\
-~skip;\\
-~tokenlist.

\msg_new:nnnn { template } { unknown-type }

{
{

}

The~template~type~’#1’~is~unknown. }

A~template~type~needs~to~be~defined~with~\NewTemplateType
prior~to~using~it.

\msg_new:nnnn { template } { unknown-template }

{
{

The~template~’#2’~of~type~’#1’~is~unknown. }

No~interface~has~been~declared~for~a~template~

40

\NewTemplateType
\DeclareTemplateInterface
\DeclareTemplateCode
\DeclareTemplateCopy
\EditTemplateDefaults
\UseTemplate
\DeclareInstance
\DeclareInstanceCopy
\EditInstance
\UseInstance

1175

1176

1177

1178

1179

1180

1182

1183

1185

1186

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

'#2’~of ~template~type~’#1’.
}

Information messages only have text: more text should not be needed.

\msg_new:nnn { template } { declare-instance }
{ Declaring~instance~~’#1’~of~type~#2~\msg_line_context:. }
\msg_new:nnn { template } { declare-template-code }
{ Declaring~code~for~template~’#2’~of~template~type~’#1’~\msg_line_context:.
\msg_new:nnn { template } { declare-template-interface }
{
Declaring~interface~for~template~’#2’~of~template~type~’#1’~
\msg_line_context:.
}
\msg_new:nnn { template } { declare-type }
{ Declaring~template~type~’#1’~taking~#2~argument (s)~\msg_line_context:. }
\msg_new:nnn { template } { show-attribute }

{
The~template~’#2’~of~type~’#1’~has~
\tl_if_empty:nTF {#4} { no~#3. } { #3 : #4 }

}

\msg_new:nnn { template } { show-values }

{
The~instance~’#2’~of~type~’#1’~has~
\tl_if_empty:nTF {#3} { no-values. } { values: #3 }

}

Also add template to the LaTeX messages.
\prop_gput:Nnn \g_msg_module_type_prop { template } { LaTeX }

11.15 User functions

All simple translations.

1199

\cs_new_protected:Npn \NewTemplateType #1#2

{ __template_define_type:nn {#1} {#2} }
\cs_new_protected:Npn \DeclareTemplateInterface #1#2#3#4

{ __template_declare_template_keys:nnnn {#1} {#2} {#3} {#4} }
\cs_new_protected:Npn \DeclareTemplateCode #1#2#3#4#5

{ __template_declare_template_code:nnnnn {#1} {#2} {#3} {#4} {#5} }

s \cs_new_protected:Npn \DeclareTemplateCopy #1#2#3

{ __template_template_set_eq:nnn {#1} {#2} {#3} }
\cs_new_protected:Npn \EditTemplateDefaults #1#2#3

{ __template_edit_defaults:nnn {#1} {#2} {#3} }
\cs_new_protected:Npn \UseTemplate #1#2#3

{ __template_use_template:nnn {#1} {#2} {#3} }
\cs_new_protected:Npn \DeclareInstance #1#2#3#4

{ __template_declare_instance:nnnn {#1} {#3} {#2} {#4} }

s \cs_new_protected:Npn \DeclareInstanceCopy #1#2#3

{ __template_instance_set_eq:nnn {#1} {#2} {#3} }
\cs_new_protected:Npn \EditInstance #1#2#3
{ __template_edit_instance:nnn {#1} {#2} {#3} }

7 \cs_new_protected:Npn \UseInstance #1#2

{ __template_use_instance:nn {#1} {#2} }

(End of definition for \NewTemplateType and others. These functions are documented on page 3.)

41

\ShowTemplateCode The show functions are again just translation.

\ShowTemplateDefaults ., \cs_new_protected:Npn \ShowTemplateCode #1#2
\ShowTemplateInterface 1 { __template_show_code:nn {#1} {#2} }
\ShowTemplateVariables 12 \cs_new_protected:Npn \ShowTemplateDefaults #1#2

\ShowInstanceValues 1222 { __template_show_defaults:nn {#1} {#2} }
1223 \cs_new_protected:Npn \ShowTemplateInterface #1#2
122¢ { __template_show_keytypes:nn {#1} {#2} }
1225 \cs_new_protected:Npn \ShowTemplateVariables #1#2
1226 { __template_show_vars:nn {#1} {#2} }
1227 \cs_new_protected:Npn \ShowInstanceValues #1#2
1228 { __template_show_values:nn {#1} {#2} }

(End of definition for \ShowTemplateCode and others. These functions are documented on page 10.)

\IfInstanceExistsT More direct translation.

\IfInstanceExistsF ., \cs_new:Npn \IfInstanceExistsTF #1#2
\IfInstanceExistsTF 15 { __template_if_instance_exist:nnTF {#1} {#2} }
1231 \cs_new:Npn \IfInstanceExistsT #1#2
1232 { __template_if_instance_exist:nnT {#1} {#2} }
1233 \cs_new:Npn \IfInstanceExistsF #1#2
13 { __template_if_instance_exist:nnF {#1} {#2} }

(End of definition for \IfInstanceExistsT, \IfInstanceExistsF, and \IfInstanceExistsTF. These
functions are documented on page 9.)

\KeyValue Simply dump the argument when executed: this should not happen.
1235 \cs_new_protected:Npn \KeyValue #1 {#1}

(End of definition for \KeyValue. This function is documented on page 4.)

\InstanceValue

1236 \cs_new:Npn \InstanceValue #1#2#3
1237 { __template_instance_value:nnn {#1} {#2} {#3} }

(End of definition for \InstanceValue. This function is documented on page 8.)

\AssignTemplateKeys A short call to use a token register by proxy.
1233 \cs_new_protected:Npn \AssignTemplateKeys { __template_assignments_pop: }

(End of definition for \AssignTemplateKeys. This function is documented on page 5.)

\SetKnownTemplateKeys A friendly wrapper, with some speed up for the common case of the third argument being
\SetTemplateKeys empty.

1230 \cs_new_protected:Npn \SetKnownTemplateKeys #1#2#3

1240 {

1241 \tl_if_empty:oTF {#3}

1242 {

1243 \tl_set_eq:NN \UnusedTemplateKeys \c_empty_tl

1244 }

1245 {

1246 \keys_set_known:noN { template / #1 / #2 } {#3} \UnusedTemplateKeys
1247 ¥

124¢ }

42

1220 \cs_new_protected:Npn \SetTemplateKeys #1#2#3

1250 {

1251 \tl_if_empty:oF {#3}

1252 {

1253 \keys_set:no { template / #1 / #2 } {#3}
1254 }

1255 }

1256 \t1l_new:N \UnusedTemplateKeys

(End of definition for \SetKnownTemplateKeys and \SetTemplateKeys. These functions are documented

on page 6.)

157 (latexrelease) \IncludeInRelease{0000/00/00}{1ttemplates})

)
1255 (latexrelease)
1250 (latexrelease)

1260 (latexrelease) \EndModuleRelease

1261 \ExplSyntax0ff

162 (/2ekernel | latexrelease)

{Prototype~document~commands}/,

We need to stop DocStrip treating @@ in a special way at this point.

1263 <@@=>

Index

The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

Symbols
AN 1002, 1010, 1016
1017, 1018, 1019, 1032, 1038, 1039
1045, 1051, 1052, 1058, 1059, 1066
1073, 1080, 1087, 1088, 1097, 1115
1116, 1152, 1153, 1154, 1155, 1156

1157, 1158, 1159, 1160, 1161, 1162
o 1039, 1052, 1059, 1067, 1088, 1116

A
\AssignTemplateKeys ...

bool commands:
\bool_if:NTF

. 863, 885, 223, 229, 689, 797, 846
\bool _new:N 21, 22
\bool_set_false:N 278, 687, 768
249, 291, 623, 777

\bool_set_true:N ...
\1_tmpa_bool

\C 386

\caption

1238, 390, 395, 36

clist commands:

\clist_if_empty:NTF 542, 571
\clist_if_in:NnTF 267, 578
\clist_map_inline:Nn 544
\clist_new:N 33
\clist_remove_all:Nn 580
\clist_set:Nn 532
\l_tmpa_clist 5

cs commands:

\cs_generate_from_arg_count :NNnn
.................. 854, 405, 467

\cs_generate_variant:Nn
65, 350, 510, 660, 662, 734, 765, 843

\cs_gset_eq:NN 673
\cs_gset_protected:Npn . 864, 407, 847
\cs_if_exist:NTF 55,
61, 74, 87, 403, 461, 496, 671, 694, 710
\cs_if_exist_use:NTF 651, 759
\cs_new:Npn 944, 1229, 1231,

1233, 1236, 351, 352, 462, 516, 779
\cs_new_eq:NN 357, 358, 359, 374, 661
\cs_new_protected:Npe 276
\cs_new_protected:Npn 850, 861, 867

879, 889, 908, 910, 921, 926, 932,

938, 945, 947, 949, 958, 967, 976,
984, 1199, 1201, 1203, 1205, 1207,
1209, 1211, 1213, 1215, 1217, 1219
1221, 1223, 1225, 1227, 1235, 1238
1239, 1249, 43, 53, 59, 66, 72, 97,
105, 121, 129, 137, 147, 163, 173,
183, 189, 204, 220, 242, 254, 271,
297, 321, 353, 355, 360, 362, 364,
366, 368, 370, 372, 375, 401, 409,
420, 422, 436, 440, 454, 511, 530,
548, 569, 586, 593, 601, 606, 615,
621, 626, 641, 648, 658, 663, 676,
685, 704, 717, 729, 735, 741, 746,
766, 774, 784, 795, 801, 821, 838, 844
\cs_set:Npn 329
\cs_set_eq:NN

696
848, 865, 325
948, 36

\cs_set_protected:Npe

\cs_set_protected:Npn
\cs_show:N

debug commands:
. 103, 119, 127, 135
... 99,107, 123, 131

\debug_resume:
\debug_suspend:

\DeclareInstance 1199, 8
\DeclarelInstanceCopy 1199, 9
\DeclareTemplateCode
........ 1031, 1072, 1098, 1199, 5
\DeclareTemplateCopy 1199, 7
\DeclareTemplateInterface 1199, 8
dim commands:
\dim_eval:n 365
\dim_new:N 34
\l_tmpa_dim 5
E
\EditInstance 1199, 10
\EditTemplateDefaults 1199, 10
\EndModuleRelease 1260

exp commands:
\exp_after:wN
\exp_args:Ne 881
\exp_not:N

. 856, 871, 896, 903, 278, 279, 280,

281, 291, 297, 300, 302, 303, 307,

309, 312, 317, 468, 469, 484, 486,
502, 632, 641, 642, 698, 700, 808, 816

\exp_not:n 855, 857

858, 871, 874, 875, 896, 897, 903,
904, 283, 471, 596, 699, 809, 810, 817
\ExplSyntax0ff 1261

\ExplSyntaxOn

fp commands:

\fp_eval:in 369
\L_tmpa_fpvvii 5
I
\IfInstanceExistsF 1229, 9
\IfInstanceExistsT 1229, 9
\IfInstanceExistsTF 1229, 9
\IncludeInRelease 1257
\InstanceValue 1236, §
int commands:
\int_compare:nNnTF 46
\int_compare:nTF 192
\int_eval:n 363
\int_new:N 35
\int_set:Nn 191
\l_tmpa_int 5
\item 6

kernel internal commands:
__kernel_quark_new_conditional:Nn

.......................... 42
keys commands:
\keys_define:nn 513, 534, 595
\keys_set:nn 1253
\keys_set_known:nnN 1246
keyval commands:
\keyval_parse:NNn 213, 618
\keyval_parse:nnn 414, 535

\KeyValue 910, 1116, 1235, 80, 14
M
\IMeSSage 3
msg commands:
\msg_error:nn 268

\msg_error:nnn 919,
63, 70, 186, 234, 248, 292, 314, 421,
434, 451, 507, 545, 624, 637, 653, 762

\msg_error:nnnn 936, 942,
57, 76, 200, 563, 591, 603, 715, 727, 832

\msg_error:nnnnn 49, 418

\msg_info:nnnn

. 997, 110, 194, 404, 672, 695, 711

\msg_line_context:

1043, 1049, 1056, 1063, 1070
1077, 1085, 1178, 1180, 1184, 1187
\g_msg_module_type_prop 1198
\msg_new:nnn
1177, 1179, 1181, 1186, 1188, 1193

\msg_new:nnnn 999,
1007, 1013, 1022, 1028, 1035, 1042,
1048, 1055, 1062, 1069, 1076, 1084,

44

1091, 1100, 1106, 1112, 1119, 1125,

1131, 1137, 1143, 1149, 1165, 1171
\msg_show:nnnnn 989
\msg_show:nnnnnn 978
\msg_show_item_unbraced:nn . 982, 994

muskip commands:
\muskip_eval:n 367
\muskip_new:N 36
\1_tmpa_muskip 5
N
\NewModuleRelease 7
\NewTemplateType 1103, 1168, 1199, 3
P

prg commands:
\prg_generate_conditional -

variant:Nnn 84
\prg_new_conditional:Npnn . 78, 85, 91
\prg_return_false: 82, 89, 95
\prg_return_true: 81, 88, 94

prop commands:
\prop_clear:N
. 145, 155, 171,

\prop_clear_new:N 124
\prop_gclear:N 111
\prop_gclear_new:N 100, 132

\prop_get :NnN
45, 558, 561,
\prop_get :NnNTF
... 913, 426, 539,
\prop_gput :Nnn
\prop_gset_eq:NN
\prop_if_exist:NTF
108, 139, 149, 165, 175
.. 68, 185, 552, 556

634, 748, 750, 840
1198, 196
101, 114, 133

\prop_if_in:NnTF ..

\prop_item:Nn 782
\prop_map_function:NN 982, 993
\prop_map_inline:Nn 417
\prop_new:N 18, 29, 31, 32, 113
\prop_put:Nnn 262, 354,

356, 361, 475, 489, 504, 533, 599, 691
432
125, 142, 152, 168, 178

\prop_remove:Nn
\prop_set_eq:NN

Q
quark commands:
\NQ il L 80, 93
\quark_new:N 41
\g_stop 80, 93, 632, 642

quark internal commands:
\q__template_nil

45

R
regex commands:

\regex_match:nnTF 386
S
scan commands:
\scan_new:N 39, 40
scan internal commands:
\s__template_mark 917, 39, 13

\s__template_stop
917, 921, 40, 287, 298, 309
330, 344, 352, 438, 441, 771, T74, 13

\section 2
seq commands:
\seq_clear:N 161, 212
\seq_const_from_clist:Nn 16
\seq_gclear_new:N 116
\seq_gset_eq:NN 117
\seq_if_exist:NTF 156
\seq_if_in:NnTF 231
\seq_map_break: 250, 341
\seq_map_function:NN 227, 347, 738
\seq_new:N 30
\seq_put_right:Nn 264
\seq_set_eq:NN 158
\SetKnownTemplateKeys 1239, 6
\SetTemplateKeys 1239, 6
\ShowInstanceValues 1219, 10
\ShowTemplateCode 1219, 10
\ShowTemplateDefaults 1219, 10
\ShowTemplateInterface 1219, 10
\ShowTemplateVariables 1219, 11
skip commands:
\skip_eval:n 371
\skip_new:N 37
\l_tmpa_skip 5
str commands:
\str_case:nn 518
\str_case:nnTF 456
\str_if_eq:nnTF 934, 80, 93

244, 265, 470, 485, 501, 573, 753, 755

\str_if_in:nnTF 384
\str_new:N 28
\str_set:Nn 646
T
template internal commands:
__template_assign_boolean: 795, 795

__template_assign_boolean_aux:n
795, 798, 799, 801
. 821, 821

__template_assign_choice:

__template_assign_choice_-
aux :nTF . 821, 823, 826, 838, 843

__template_assign_function: 844, 844

__template_assign_function_-
aux:N 848, 850, 844, 847
__template_assign_instance: 861, 861
__template_assign_instance_-
aux:N 861, 864, 865, 867
__template_assign_variable:
.................. 879, 879, 760
__template_assign_variable:n ...
.................. 879, 881, 889
__template_assignments_pop: ..
................ 944, 944, 1238
__template_assignments_push:n ..
.................. 945, 945, 698
\1__template_assignments_tl .
........ 852, 869, 894, 901, 944,
946, 19, 699, 737, 806, 814, 841, 12
\c__template_code_root_tl
................ 9, 948, 55,
403, 406, 671, 673, 674, 700, 792, 11
__template_convert_to_assignments:
.............. 693, 735, 735, 791
__template_convert_to_assignments_-

QUXIN ... 735, 739, 741
__template_convert_to_assignments_-
aux:nn 735, 744, 746, 765

__template_declare_instance:nnnn
................. 1212, 676, 676

__template_declare_instance_-
aux:nnnn 676, 682, 685, 732

__template_declare_template_-

code:nnnn .. 375, 387, 389, 394, 401
__template_declare_template_-
code:nnnnn 1204, 375, 375
__template_declare_template_-
keys:nnnn 1202, 204, 204
__template_declare_type:nn
.................. 183, 187, 189
\1__template_default_tl 20, 12

\c__template_defaults_root_tl ...
......... 10, 100, 101, 140, 143, 11
__template_define_type:nn
................. 1200, 183, 183
__template_edit_defaults:nnn . ..
................. 1208, 606, 606
__template_edit_instance:nnn . . .
................. 1216, 717, 717
__template_edit_instance_-

aux:nnnn 724, 729, 734
__template_edit_instance_-
QUXINNNNN 717

\1__template_error_bool . 21,223
229, 249, 278, 291, 623, 687, 689, 12

__template_execute_if_arg_-
agree:nnTF 43, 43, 208, 379

46

__template_execute_if_code_-
exist:nnTF 969, 53, 53, 678, 786
__template_execute_if_keys_-
exist:nnTF 72
__template_execute_if_keytype_-
exist:nTF 59, 59, 65, 225
__template_execute_if_type_-
exist:nTF 66, 66, 206, 377
__template_find_global: 756, 766, 766
__template_find_global_aux:w . ..
.................. 766, 771, 774
\1__template_global_bool
863, 885, 22, 768, 777, 797, 846, 12
__template_if_instance_exist:nn 85
__template_if_instance_exist:nnTF
...................... 940,
986, 1230, 1232, 1234, 85, 706, 719, 781
__template_if_key_value:n .. 78, 84
__template_if_key_value:nTF .
................... 891, 78, 803
__template_if_keys_exist:nnTF ..
............ 951, 960, 72, 381, 608

__template_if_use_template:n ... 91
__template_if_use_template:nTF .
...................... 928, 91
__template_implement_choice_-
eltin 536, 569, 601
__template_implement_choice_-
eltinnn 537, 569, 569
__template_implement_choice_-
elt_aux:n 569, 575, 583, 586

__template_implement_choice_-
elt_aux:nnn 569, 574, 581, 593
__template_implement_choices:nn
.................. 458, 530, 530
__template_implement_choices_-
default: 530, 541, 548
__template_instance_set_eq:nnn .
................. 1214, 704, 704
__template_instance_value:nnn ..
................. 1237, 779, 779
\c__template_instances_root_tl ..
11, 941, 87, 694, 696, 710, 712, 713, 11
\1__template_key_name_tl
..... 23, 232, 235, 262, 264, 285,
300, 307, 312, 354, 356, 361, 424,
427, 432, 476, 490, 505, 514, 533,
534, 539, 551, 555, 558, 561, 564,
565, 588, 591, 596, 598, 604, 634,
637, 645, 758, 824, 827, 829, 833, 28
\c__template_key_order_root_tl ..
......... 13, 116, 117, 156, 159, 11
\1__template_key_order_seq .. 30,
118, 158, 161, 212, 231, 264, 738, 13

__template_key_to_value:
.............. 893, 908, 908, 805
__template_key_to_value_auxi:w .
.................. 908, 909, 910
__template_key_to_value_auxii:w
.................. 908, 916, 921
\1__template_keytype_arg_tl
............ 857, 874, 25, 246,
259, 260, 267, 324, 338, 471, 532, 12
\1__template_keytype_tl . 24, 225
244, 258, 265, 274, 323, 334, 428,
430, 456, 518, 659, 753, 755, 759, 12
__template_keytypes_arg_seq ...
................ 16, 227, 347, 12
\1__template_keytypes_prop . 963
29, 115, 152, 155, 211, 262, 417
426, 432, 558, 588, 634, 743, 829, 13
\c__template_keytypes_root_tl 12,

\¢c

74, 108, 111, 113, 114, 150, 153, 11
__template_map_var_type:
........... 883, 497, 500, 516, 516
__template_parse_keys_elt:n
............ 214, 220, 220, 273, 19
__template_parse_keys_elt:nn ...
.................. 214, 271, 271
__template_parse_keys_elt_aux:
................. 220, 237, 254
__template_parse_keys_elt_aux:n
.................. 220, 228, 242
__template_parse_values:nnn ..
........... 611, 615, 615, 688, 790
__template_parse_values_elt:n ..
.................. 619, 621, 621
__template_parse_values_elt:nn .
.................. 619, 626, 626
__template_parse_values_elt_-
AQUXID ... 626, 636, 648
__template_parse_values_elt_-
QUXIW .o 626, 630, 641
__template_parse_values_exp:N ..
.................. 626, 661, 662
__template_parse_values_exp:n ..
.............. 626, 658, 660, 661
__template_parse_vars_elt:n
.................. 415, 420, 420
__template_parse_vars_elt:nnn ..
.................. 415, 422, 422
__template_parse_vars_elt_-
QUXINN 422, 431, 436
__template_parse_vars_elt_-
. 422, 444, 448, 454, 510
__template_parse_vars_elt_-
QUXIOW 422, 438, 440

aux:nnn

47

__template_parse_vars_elt_-

key:nn 422, 463, 480, 498, 511
__template_quark_if_nil:N 42
__template_quark_if_nil:NTF .. 923
__template_quark_if_nil:nTF ... 42
__template_quark_if_nil_p:n ... 42

__template_recover_defaults:nn .
953, 137, 137, 411, 610, 665, 680, 788
__template_recover_keytypes:nn .
....... 962, 137, 147, 412, 617, 667
__template_recover_values:nn . ..
........... 988, 137, 163, 708, 721
__template_recover_vars:nn

. 971, 137, 173, 669, 681, 731, 789
\c__template_restrict_root_tl ... 11
__template_show:Nnnn

........... 949, 954, 963, 972, 976
__template_show_code:nn
................. 947, 947, 1220
__template_show_defaults:nn .
................. 949, 949, 1222
__template_show_keytypes:nn .
................. 949, 958, 1224
__template_show_values:nn
................. 984, 984, 1228

................. 949, 967, 1226
__template_split_keytype:n .
.................. 222, 276, 276
__template_split_keytype_arg:n .
.................. 317, 321,
321, 350, 430, 560, 590, 650, 752, 831
__template_split_keytype_arg_-

aux:in ..., .. 321, 325, 348, 351
__template_split_keytype_arg_-
QUKW 321, 329, 344, 352

__template_split_keytype_aux:w .
.............. 276, 286, 297, 309

__template_store_defaults:nn . ..
............ 97, 97, 215, 612, 666

__template_store_key_implementation:nnn

.................. 383, 409, 409
__template_store_keytypes:nn . ..
............... 97, 105, 216, 668
__template_store_value:n
........... 355, 355, 357, 358, 359
__template_store_value_aux:Nn ..
360, 360, 363, 365, 367, 369, 371, 373
__template_store_value_boolean:n
..................... 353, 353
__template_store_value_choice:n
..................... 355, 357
__template_store_value_commalist:n
..................... 360, 374

__template_store_value_function:n
.................... 355, 358
__template_store_value_instance:n
..................... 355, 359
__template_store_value_integer:n
.................... 360, 362
__template_store_value_length:n
..................... 360, 364
__template_store_value_muskip:n
..................... 360, 366
__template_store_value_real:n ..
..................... 360, 368
__template_store_value_skip:n . .
..................... 360, 370
__template_store_value_tokenlist:n
.................. 360, 372, 374
__template_store_values:nn ..
............... 97, 121, 692, 709
__template_store_vars:nn
............... 97, 129, 416, 670
__template_template_set_eq:nnn .
................ 1206, 663, 663
\1__template_tmp_clist

. 33, 532, 542, 544, 571, 578, 580, 13
\1__template_tmp_dim 34, 13
\1__template_tmp_int

..... 35, 191, 192, 195, 197, 201, 18

\1__template_tmp_muskip 36, 13
\1__template_tmp_skip 37, 13
\1__template_tmp_tl 912,

913, 919, 38, 45, 46, 50, 256, 263,
279, 280, 281, 287, 540, 550, 551,
552, 554, 555, 556, 559, 560, 562,
589, 590, 597, 599, 635, 650, 723,
725, 743, 744, 830, 831, 840, 841, 15
\g__template_type_prop
........... 18, 45, 68, 185, 196, 12
__template_use_instance:nn ..
............. 873, 926, 926, 1218
__template_use_instance_aux:nn .
.................. 926, 930, 938
__template_use_instance_-
aux:nNnnn 926, 929, 932
__template_use_template:nnn .
............. 935, 1210, 784, 784
\1__template_value_exp_str
............ 28, 646, 651, 653, 12
\1__template_value_tl .. 858, 875,
891, 897, 904, 909, 914, 916, 924,
26, 748, 803, 810, 816, 824, 834, 12

48

\1__template_values_prop
............ 954, 993, 31, 102,
126, 142, 145, 168, 171, 210, 354,
356, 361, 539, 561, 691, 722, 748, 13

\c__template_values_root_tl .
..... 14, 124, 125, 166, 169, 782, 11

\1__template_var_tl
........... 855, 871, 896, 903,

27, 750, 769, 771, 776, 809, 817, 12

\1__template_vars_prop .. 913, 972
32, 134, 178, 181, 413, 475, 489,
504, 533, 552, 556, 599, 750, 840, 13

\c__template_vars_root_tl
......... 15, 132, 133, 176, 179, 11

tl commands:

\c_empty_tl 1243
\c_space_tl 551, 555, 598, 824, 827
\tl_clear:N 285, 324, 737
\tl_const:Nn .. 9,10, 11, 12, 13, 14, 15
\tl_head:w 80, 93
\tl_if_ blank:nTF ... 332, 336, 443, 446

\tl_if_empty:NTF 246, 259, 312
\tl_if_empty:nTF 1191, 1196, 1241, 1251
\tl_if_in:nnTF . 281, 305, 327, 769

\tl_if_single:nTF 494
\tl new:N
. 19, 20, 23, 24, 25, 26, 27, 38, 1256
\tl_put_right:Nn 852,
869, 894, 901, 300, 307, 806, 814, 841
\tl_replace_all:Nnn 280
\tl_set:Nn

. 912, 924, 946, 256, 279, 323, 334,
338, 424, 550, b4, 597, 645, 758, 776
\tl_set_eq:NN 1243

\tl_to_str:n 912,
979, 980, 981, 990, 991, 303, 425, 631

\tl_trim_spaces:n
. 912, 302, 323, 335, 425, 449, 631
\l_tmpa_tl 5

token commands:

\token_to_str:N
1116, 280, 281, 298, 305, 308, 315, 642

U
\UnusedTemplateKeys .. 1243, 1246, 1256, 6
use commands:

\use:N 941, 274, 497, 659, 792
\use:n 295, 339, 373, 628, 639
\use_i:nn 5
\use_none:n 654
\UselInstance 1109, 1199, 486, 9
\UseTemplate 1199, 93, 9

	1 Introduction
	2 What is a document?
	3 Types, templates, and instances
	4 Template types
	5 Templates
	6 Multiple choices
	7 Instances
	8 Document interface
	9 Changing existing definitions
	9.1 Expanding the values of keys

	10 Getting information about templates and instances
	11 The implementation
	11.1 Variables and constants
	11.2 Testing existence and validity
	11.3 Saving and recovering property lists
	11.4 Creating new template types
	11.5 Design part of template declaration
	11.5.1 Storing values

	11.6 Implementation part of template declaration
	11.7 Editing template defaults
	11.8 Creating instances of templates
	11.9 Using templates directly
	11.10 Assigning values to variables
	11.11 Using instances
	11.12 Assignment manipulation
	11.13 Showing templates and instances
	11.14 Messages
	11.15 User functions

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	I
	K
	M
	N
	P
	Q
	R
	S
	T
	U

