Package ‘rlibkriging’

January 27, 2026

Type Package

Title Kriging Models using the 'libKriging' Library

Version 0.9-3

Date 2026-01-26

Maintainer Yann Richet <yann.richet@asnr.fr>

Description Interface to 'libKriging' 'C++' library <https://github.com/1ibKriging> that should
provide most standard Kriging / Gaussian process regression features
(like in 'DiceKriging', 'kergp' or 'RobustGaSP' packages).
'libKriging' relies on Armadillo linear algebra library (Apache 2 license) by Conrad Sanderson,
'Ibfgsb_cpp' is a 'C++' port around by Pascal Have of 'Ibfgsb' library (BSD-3 license) by

Ciyou Zhu, Richard Byrd, Jorge Nocedal and Jose Luis Morales used for hyperparameters opti-
mization.

License Apache License (>=2)

Encoding UTF-8

LinkingTo Rcpp, ReppArmadillo

Depends R (>=4.2)

Imports Rcpp (>= 1.0.12), methods, DiceKriging
Suggests testthat, RobustGaSP, utils, foreach, roxygen2
SystemRequirements GNU make, cmake (>= 3.2.0), gcc

URL https://github.com/1libKriging
RoxygenNote 7.3.3
NeedsCompilation yes

Author Yann Richet [aut, cre] (ORCID: <https://orcid.org/0000-0002-5677-8458>),
Pascal Havé [aut],
Yves Deville [aut],
Conrad Sanderson [ctb],
Ciyou Zhu [ctb],
Richard Byrd [ctb],
Jorge Nocedal [ctb],
Jose Luis Morales [ctb],
Mike Smith [ctb]

https://github.com/libKriging
https://github.com/libKriging
https://orcid.org/0000-0002-5677-8458

2 Contents

Repository CRAN
Date/Publication 2026-01-27 12:30:02 UTC

Contents
as.km ..o 4
as.km.Kriging Lo e 4
as.km.NoiseKriging 5
as.km.NuggetKriging 6
as.list.Kriging 7
asdistNoiseKriging L 8
asdistNuggetKriging L 9
classKriging oL 10
classNoiseKriging e 10
classNuggetKriging e 11
COPY « v v e e e e e e e e e e e e e e 11
copy.Kriging 12
copy.NoiseKriging 12
copy.NuggetKriging e 13
covMat 14
covMat.Kriging e e e e 15
covMat.NoiseKriging L 16
covMat.NuggetKriging 17
fit 18
fitKriging e 18
fitNoiseKriging 20
fitNuggetKriging e 21
KM 23
KM-class e e 25
Kriging e e e 26
leaveOneOut 27
leaveOneOut.Kriging L 28
leaveOneOutFun 28
leaveOneOutFun.Kriging L 29
leaveOneOutVec L e 30
leaveOneOutVec. Kriging e 30
load . . . L e 32
load Kriging 33
load.NoiseKriging e 34
load.NuggetKriging L 35
logLikelihood 36
logLikelihood. Kriging e 36
logLikelihood.NoiseKriging 37
logLikelihood.NuggetKriging 38
logLikelihoodFun e 39
logLikelihoodFun. Kriging L o 39

logLikelihoodFun.NoiseKriging 40

Contents

Index

3

logLikelihoodFun.NuggetKriging 42
logMargPost 43
logMargPost.Kriging L 43
logMargPost.NuggetKriging 44
logMargPostFun 45
logMargPostFun.Kriging oL 45
logMargPostFun.NuggetKriging 47
NoiseKM e 48
NoiseKM-class e e 50
NoiseKriging e e 51
NuggetKM o e 52
NuggetKM-class e 54
NuggetKriging e e e 55
predict, KM-method L 57
predict,NoiseKM-method 58
predict, NuggetKM-method 60
predict.Kriging 61
predict.NoiseKriging 63
predict. NuggetKriging e 64
print. Kriging oL 65
print.NoiseKriging L 66
print.NuggetKriging L 67
SAVE . o i i e e e e e e e 68
save.Kriging e 68
save.NoiseKriging 69
save.NuggetKriging 70
simulate, KM-method 71
simulate,NoiseKM-method 72
simulate,NuggetKM-method Lo 74
simulate. Kriging L 75
simulate.NoiseKriging 76
simulate.NuggetKriging 78
update, KM-methodo 79
update,NoiseKM-method 81
update,NuggetKM-method L 83
update. Kriging 85
update.NoiseKriging 86
update.NuggetKriging 88
update_simulate e 89
update_simulate.Kriging 90
update_simulate.NoiseKriging o 91
update_simulate.NuggetKriging L 0. 92
94

4 as.km.Kriging

as.km Coerce an Object into a km Object

Description

Coerce an object into an object with S4 class "km" from the DiceKriging package.

Usage
as.km(x, ...)
Arguments
X Object to be coerced.
Further arguments for methods.
Details

Such a coercion is typically used to compare the performance of the methods implemented in the
current rlibkriging package to those which are available in the DiceKriging package.

Value

An object with S4 class "km".

as.km.Kriging Coerce aKriging object into the "km" class of the DiceKriging pack-
age.

Description

Coerce a Kriging object into the "km" class of the DiceKriging package.

Usage
S3 method for class 'Kriging'
as.km(x, .call = NULL, ...)
Arguments
X An object with S3 class "Kriging".
.call Force the call slot to be filled in the returned km object.

Not used.

as.km.NoiseKriging 5

Value

An object of having the S4 class "KM" which extends the "km" class of the DiceKriging package
and contains an extra Kriging slot.

Author(s)

Yann Richet <yann.richet@asnr.fr>

Examples

f <= function(x) 1 -1/ 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x*5 + 0.7)
set.seed(123)

X <- as.matrix(runif(10))

y <= f(X)

k <- Kriging(y, X, "matern3_2")
print(k)

k_km <- as.km(k)
print(k_km)

as.km.NoiseKriging Coerce aNoiseKriging object into the "km" class of the DiceKriging
package.

Description

Coerce a NoiseKriging object into the "km" class of the DiceKriging package.

Usage
S3 method for class 'NoiseKriging'
as.km(x, .call = NULL, ...)
Arguments
X An object with S3 class "NoiseKriging".
.call Force the call slot to be filled in the returned km object.
Not used.
Value

An object of having the S4 class "KM" which extends the "km" class of the DiceKriging package
and contains an extra NoiseKriging slot.

Author(s)

Yann Richet <yann.richet@asnr.fr>

6 as.km.NuggetKriging

Examples

f <= function(x) 1 -1/ 2 % (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x*5 + 0.7)
set.seed(123)

X <- as.matrix(runif(10))

y <= f(X) + X/10 * rnorm(nrow(X)) # add noise dep. on X

fit and print

k <- NoiseKriging(y, noise=(X/10)"2, X, kernel = "matern3_2")

print(k)

k_km <- as.km(k)
print(k_km)

as.km.NuggetKriging Coerce a NuggetKriging object into the "km" class of the DiceKrig-
ing package.

Description

Coerce a NuggetKriging object into the "km" class of the DiceKriging package.

Usage
S3 method for class 'NuggetKriging'
as.km(x, .call = NULL, ...)
Arguments
X An object with S3 class "NuggetKriging".
.call Force the call slot to be filled in the returned km object.
Not used.
Value

An object of having the S4 class "KM" which extends the "km" class of the DiceKriging package
and contains an extra NuggetKriging slot.

Author(s)

Yann Richet <yann.richet@asnr.fr>

Examples

f <= function(x) 1 -1/ 2 % (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x*5 + 0.7)
set.seed(123)

X <- as.matrix(runif(10))

y <= f(X) + 0.1 x rnorm(nrow(X))

k <- NuggetKriging(y, X, "matern3_2")

as.list. Kriging 7

print (k)

k_km <- as.km(k)
print(k_km)

as.list.Kriging Coerce aKriging Object into a List

Description

Coerce a Kriging Object into a List

Usage
S3 method for class 'Kriging'
as.list(x, ...)
Arguments
X An object with class "Kriging".
Ignored
Value

A list with its elements copying the content of the Kriging object fields: kernel, optim, objective,
theta (vector of ranges), sigma2 (variance), X, centerX, scaleX, y, centerY, scaleY, regmodel,
F, T, M, z, beta.

Author(s)

Yann Richet <yann.richet@asnr.fr>

Examples

f <= function(x) 1 -1/ 2 * (sin(12 * x) / (1 + x) + 2 *x cos(7 * x) * x"5 + 0.7)
set.seed(123)

X <- as.matrix(runif(10))

y <= f(X)

k <- Kriging(y, X, kernel = "matern3_2")

1 <- as.list(k)
cat(paste@(names(l), " =" , 1, collapse = "\n"))

8 as.list. NoiseKriging

as.list.NoiseKriging Coerce a NoiseKriging Object into a List

Description

Coerce a NoiseKriging Object into a List

Usage
S3 method for class 'NoiseKriging'
as.list(x, ...)
Arguments
X An object with class "NoiseKriging".
Ignored
Value

A list with its elements copying the content of the NoiseKriging object fields: kernel, optim,
objective, theta (vector of ranges), sigma2 (variance), X, centerX, scaleX, y, centerY, scaley,
regmodel, F, T, M, z, beta.

Author(s)

Yann Richet <yann.richet@asnr.fr>

Examples

f <= function(x) 1 -1/ 2 % (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x*5 + 0.7)
set.seed(123)

X <- as.matrix(runif(10))

y <= f(X) + X/10 * rnorm(nrow(X)) # add noise dep. on X

k <- NoiseKriging(y, noise=(X/10)"2, X, kernel = "matern3_2")

1 <- as.list(k)
cat(paste@(names(l), " =" , 1, collapse = "\n"))

as.list. NuggetKriging 9

as.list.NuggetKriging Coerce a NuggetKriging Object into a List

Description

Coerce a NuggetKriging Object into a List

Usage
S3 method for class 'NuggetKriging'
as.list(x, ...)
Arguments
X An object with class "NuggetKriging".
Ignored
Value

A list with its elements copying the content of the NuggetKriging object fields: kernel, optim,
objective, theta (vector of ranges), sigma2 (variance), X, centerX, scaleX, y, centerY, scaley,
regmodel, F, T, M, z, beta.

Author(s)

Yann Richet <yann.richet@asnr.fr>

Examples

f <= function(x) 1 -1/ 2 % (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x*5 + 0.7)
set.seed(123)

X <- as.matrix(runif(10))

y <= f(X) + 0.1 * rnorm(nrow(X))

k <- NuggetKriging(y, X, kernel = "matern3_2")

1 <- as.list(k)
cat(paste@(names(l), " =" , 1, collapse = "\n"))

10 classNoiseKriging

classKriging Shortcut to provide functions to the S3 class "Kriging"

Description

Shortcut to provide functions to the S3 class "Kriging"

Usage

classKriging(nk)
Arguments

nk A pointer to a C++ object of class "Kriging"
Value

An object of class "Kriging" with methods to access and manipulate the data

classNoiseKriging Shortcut to provide functions to the S3 class "NoiseKriging"

Description

Shortcut to provide functions to the S3 class "NoiseKriging"

Usage

classNoiseKriging(nk)

Arguments

nk A pointer to a C++ object of class "NoiseKriging"

Value

An object of class "NoiseKriging" with methods to access and manipulate the data

classNuggetKriging

11

classNuggetKriging Shortcut to provide functions to the S3 class "NuggetKriging"

Description

Shortcut to provide functions to the S3 class "NuggetKriging"

Usage

classNuggetKriging(nk)

Arguments

nk A pointer to a C++ object of class "NuggetKriging"

Value

An object of class "NuggetKriging" with methods to access and manipulate the data

copy Duplicate object.

Description

Duplicate a model given in object.

Usage
copy(object, ...)
Arguments
object An object representing a fitted model.
Ignored.
Value

The copied object.

12 copy.NoiseKriging

copy.Kriging Duplicate a Kriging Model

Description

Duplicate a Kriging Model

Usage

S3 method for class 'Kriging'
copy(object, ...)

Arguments

object An S3 Kriging object.
Not used.

Value

The copy of object.

Author(s)

Yann Richet <yann.richet@asnr.fr>

Examples

f <= function(x) 1 - 1/ 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x5 + 0.7)
set.seed(123)

X <- as.matrix(runif(10))

y <= £00

k <- Kriging(y, X, kernel = "matern3_2", objective="LMP")
print(k)

print(copy(k))

copy.NoiseKriging Duplicate a NoiseKriging Model

Description

Duplicate a NoiseKriging Model

copy.NuggetKriging

Usage
S3 method for class 'NoiseKriging'
copy(object, ...)

Arguments

object An S3 NoiseKriging object.
Not used.

Value

The copy of object.

Author(s)

Yann Richet <yann.richet@asnr.fr>

Examples

f <= function(x) 1 -1/ 2 % (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x*5 + 0.7)
set.seed(123)

X <- as.matrix(runif(10))

y <= f(X) + X/10 * rnorm(nrow(X))

k <- NoiseKriging(y, (X/10)*2, X, kernel = "matern3_2", objective="LL")
print(k)

print(copy(k))

13

copy.NuggetKriging Duplicate a NuggetKriging Model

Description

Duplicate a NuggetKriging Model

Usage
S3 method for class 'NuggetKriging'
copy(object, ...)

Arguments
object An S3 NuggetKriging object.

Not used.

14 covMat

Value

The copy of object.

Author(s)

Yann Richet <yann.richet@asnr.fr>

Examples

f <= function(x) 1 -1/ 2 % (sin(12 * x) / (1 + x) + 2 * cos(7 *x x) * x*5 + 0.7)
set.seed(123)

X <- as.matrix(runif(10))

y <= f(X) + 0.1 * rnorm(nrow(X))

k <- NuggetKriging(y, X, kernel = "matern3_2", objective="LMP")
print(k)

print(copy(k))

covMat covariance function

Description

Compute the covariance matrix of a model given in object, between given set of points.

Usage
covMat(object, ...)
Arguments
object An object representing a fitted model.
Further arguments of function (eg. points, range).
Value

The covariance matrix.

covMat.Kriging

15

covMat.Kriging Compute Covariance Matrix of Kriging Model

Description

Compute Covariance Matrix of Kriging Model

Usage
S3 method for class 'Kriging'
covMat(object, x1, x2, ...)

Arguments
object An S3 Kriging object.
x1 Numeric matrix of input points.
X2 Numeric matrix of input points.

Not used.
Value

A matrix of the covariance matrix of the Kriging model.

Author(s)

Yann Richet <yann.richet@asnr.fr>

Examples

f <= function(x) 1 -1/ 2 % (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x*5 + 0.7)
set.seed(123)

X <- as.matrix(runif(10))

y <= f(X)

k <- Kriging(y, X, kernel = "gauss")

x1 runif(10)
x2 = runif(10)

covMat(k, x1, x2)

16 covMat.NoiseKriging

covMat.NoiseKriging Compute Covariance Matrix of NoiseKriging Model

Description

Compute Covariance Matrix of NoiseKriging Model

Usage
S3 method for class 'NoiseKriging'
covMat(object, x1, x2, ...)

Arguments
object An S3 NoiseKriging object.
x1 Numeric matrix of input points.
X2 Numeric matrix of input points.

Not used.
Value

A matrix of the covariance matrix of the NoiseKriging model.

Author(s)

Yann Richet <yann.richet@asnr.fr>

Examples

f <= function(x) 1 -1/ 2 % (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x*5 + 0.7)
set.seed(123)

X <- as.matrix(runif(10))

y <= f(X) + X/10 * rnorm(nrow(X))

k <- NoiseKriging(y, (X/10)*2, X, "matern3_2")

x1 runif(10)
x2 = runif(10)

covMat(k, x1, x2)

covMat.NuggetKriging

17

covMat.NuggetKriging Compute Covariance Matrix of NuggetKriging Model

Description

Compute Covariance Matrix of NuggetKriging Model

Usage
S3 method for class 'NuggetKriging'
covMat(object, x1, x2, ...)

Arguments
object An S3 NuggetKriging object.
x1 Numeric matrix of input points.
X2 Numeric matrix of input points.

Not used.
Value

A matrix of the covariance matrix of the NuggetKriging model.

Author(s)

Yann Richet <yann.richet@asnr.fr>

Examples

f <= function(x) 1 -1/ 2 % (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x*5 + 0.7)
set.seed(123)

X <- as.matrix(runif(10))

y <= f(X)

k <- NuggetKriging(y, X, kernel = "gauss")

x1 runif(10)
x2 = runif(10)

covMat(k, x1, x2)

18 fit. Kriging

fit Fit model on data.

Description

Fit a model given in object.

Usage
fit(object, ...)
Arguments
object An object representing a fitted model.
Further arguments of function
Value

No return value. Kriging object argument is modified.

fit.Kriging FitKriging object on given data.

Description

The hyper-parameters (variance and vector of correlation ranges) are estimated thanks to the opti-
mization of a criterion given by objective, using the method given in optim.

Usage
S3 method for class 'Kriging'
fit(
object,
Y,
X,
regmodel = c("constant”, "linear”, "interactive”, "none"),

normalize = FALSE,

optim = c("BFGS", "Newton”, "none"),
objective = c("LL", "LOO", "LMP"),
parameters = NULL,

fit. Kriging 19

Arguments

object S3 Kriging object.

y Numeric vector of response values.

X Numeric matrix of input design.

regmodel Universal Kriging linear trend: "constant”, "linear”, "interactive”, "quadratic”.

normalize Logical. If TRUE both the input matrix X and the response y in normalized to
take values in the interval [0, 1].

optim Character giving the Optimization method used to fit hyper-parameters. Possible
values are: "BFGS”, "Newton" and "none”, the later simply keeping the values
given in parameters. The method "BFGS" uses the gradient of the objective
(note that "BGFS10"” means 10 multi-start of BFGS). The method "Newton" uses
both the gradient and the Hessian of the objective.

objective Character giving the objective function to optimize. Possible values are: "LL"
for the Log-Likelihood, "L00" for the Leave-One-Out sum of squares and "LMP"
for the Log-Marginal Posterior.

parameters Initial values for the hyper-parameters. When provided this must be named
list with elements "sigma2" and "theta"” containing the initial value(s) for the
variance and for the range parameters. If theta is a matrix with more than one
row, each row is used as a starting point for optimization.
Ignored.

Value

No return value. Kriging object argument is modified.

Author(s)

Yann Richet <yann.richet@asnr.fr>

Examples

f <= function(x) 1 -1/ 2 % (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x*5 + 0.7)
plot(f)

set.seed(123)

X <- as.matrix(runif(10))

y <= f(X)

points(X, y, col = "blue”, pch = 16)

k <- Kriging("matern3_2")
print(k)

fit(k,y,X)
print(k)

20

fit. NoiseKriging

fit.NoiseKriging

Fit NoiseKriging object on given data.

Description

The hyper-parameters (variance and vector of correlation ranges) are estimated thanks to the opti-
mization of a criterion given by objective, using the method given in optim.

Usage

S3 method for class 'NoiseKriging'

fit(
object,
Y,
noise,
X,

regmodel = c("constant”, "linear”, "interactive”, "none"),
normalize = FALSE,

optim = c("BFGS"”, "none"),

objective = c("LL"),

parameters =

Arguments
object
y
noise
X
regmodel

normalize

optim

objective

parameters

NULL,

S3 NoiseKriging object.
Numeric vector of response values.
Numeric vector of response variances.

Numeric matrix of input design.

nons non

Universal NoiseKriging "linear”, "interactive”, "quadratic”.

Logical. If TRUE both the input matrix X and the response y in normalized to
take values in the interval [0, 1].

Character giving the Optimization method used to fit hyper-parameters. Possible
values are: "BFGS" and "none”, the later simply keeping the values given in
parameters. The method "BFGS” uses the gradient of the objective (note that
"BGFS10" means 10 multi-start of BFGS).

Character giving the objective function to optimize. Possible values are: "LL"
for the Log-Likelihood.

Initial values for the hyper-parameters. When provided this must be named
list with elements "sigma2" and "theta"” containing the initial value(s) for the
variance and for the range parameters. If theta is a matrix with more than one
row, each row is used as a starting point for optimization.

Ignored.

fit. NuggetKriging 21

Value

No return value. NoiseKriging object argument is modified.

Author(s)

Yann Richet <yann.richet@asnr.fr>

Examples

f <= function(x) 1 -1/ 2 % (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x*5 + 0.7)
plot(f)

set.seed(123)

X <- as.matrix(runif(10))

y <= f(X) + X/10 * rnorm(nrow(X)) # add noise dep. on X

points(X, y, col = "blue”, pch = 16)

k <- NoiseKriging("matern3_2")
print(k)

fit(k,y,noise=(X/10)"2,X)
print(k)

fit.NuggetKriging Fit NuggetKriging object on given data.

Description

The hyper-parameters (variance and vector of correlation ranges) are estimated thanks to the opti-
mization of a criterion given by objective, using the method given in optim.

Usage
S3 method for class 'NuggetKriging'
fit(
object,
Y,
X,
regmodel = c("constant”, "linear”, "interactive”, "none"),

normalize = FALSE,
optim = c("BFGS"”, "none"),
objective = c("LL", "LMP"),
parameters = NULL,

22

Arguments
object

y
X

regmodel

normalize

optim

objective

parameters

Value

fit. NuggetKriging

S3 NuggetKriging object.
Numeric vector of response values.

Numeric matrix of input design.

non non

Universal NuggetKriging "linear”, "interactive”, "quadratic”.

Logical. If TRUE both the input matrix X and the response y in normalized to
take values in the interval [0, 1].

Character giving the Optimization method used to fit hyper-parameters. Possible
values are: "BFGS" and "none”, the later simply keeping the values given in
parameters. The method "BFGS" uses the gradient of the objective (note that
"BGFS10" means 10 multi-start of BFGS).

Character giving the objective function to optimize. Possible values are: "LL"
for the Log-Likelihood and "LMP" for the Log-Marginal Posterior.

Initial values for the hyper-parameters. When provided this must be named
list with some elements "sigma2”, "theta”, "nugget” containing the initial
value(s) for the variance, range and nugget parameters. If theta is a matrix
with more than one row, each row is used as a starting point for optimization.

Ignored.

No return value. NuggetKriging object argument is modified.

Author(s)

Yann Richet <yann.richet@asnr.fr>

Examples

f <= function(x) 1 -1/ 2 % (sin(12 * x) / (1 + x) + 2 * cos(7 *x x) * x*5 + 0.7)

plot(f)
set.seed(123)

X <- as.matrix(runif(10))
y <= f(X) + 0.1 * rnorm(nrow(X))
points(X, y, col = "blue”, pch = 16)

k <- NuggetKriging("matern3_2")

print(k)

fitck,y,X)
print(k)

KM

23

KM

Create an KM Object

Description

Create an object of S4 class "KM" similar to a km object in the DiceKriging package.

Usage

KM(

formula = ~1,
design,
response,

covtype = c("matern5_2", "gauss"”, "matern3_2", "exp"),

coef.trend = NULL,
coef.cov = NULL,
coef.var = NULL,
nugget = NULL,
nugget.estim = FALSE,
noise.var = NULL,
estim.method = c("MLE", "LOO"),
penalty = NULL,
optim.method = "BFGS",
lower = NULL,

upper = NULL,

parinit = NULL,
multistart = 1,
control = NULL,

gr = TRUE,

iso = FALSE,

scaling = FALSE,

knots = NULL,

kernel = NULL,

Arguments

formula

design
response
covtype

coef.trend

and ~ . 2.

is done.

Data frame. The design of experiments.
Vector of output values.

Covariance structure. For now all the kernels are tensor product kernels.

R formula object to setup the linear trend in Universal Kriging. Supports ~ 1, ~.

Optional value for a fixed vector of trend coefficients. If given, no optimization

24

KM
coef.cov Optional value for a fixed correlation range value. If given, no optimization is
done.
coef.var Optional value for a fixed variance. If given, no optimization is done.

nugget, nugget.estim, noise.var
Not implemented yet.

estim.method Estimation criterion. "MLE"” for Maximum-Likelihood or "L0O0" for Leave-One-
Out cross-validation.

penalty Not implemented yet.

optim.method Optimization algorithm used in the optimization of the objective given in estim.method.
Supports "BFGS".

lower, upper Not implemented yet.
parinit Initial values for the correlation ranges which will be optimized using optim.method.
multistart, control, gr, iso
Not implemented yet.
scaling, knots, kernel
Not implemented yet.

Ignored.

Details

The class "KM" extends the "km" class of the DiceKriging package, hence has all slots of "km". It
also has an extra slot "Kriging" slot which contains a copy of the original object.

Value

A KM object. See Details.

Author(s)

Yann Richet <yann.richet@asnr.fr>

See Also

km in the DiceKriging package for more details on the slots.

Examples

a 16-points factorial design, and the corresponding response

d<-2; n<-16

design.fact <- as.matrix(expand.grid(x1 seq(@, 1, length
x2 = seq(@, 1, length

y <- apply(design.fact, 1, DiceKriging::branin)

4,
H)

Using “km™ from DiceKriging and a similar “KM™ object

kriging model 1 : matern5_2 covariance structure, no trend, no nugget effect

km1l <- DiceKriging::km(design = design.fact, response =y, covtype = "gauss”,
parinit = c¢(.5, 1), control = list(trace = FALSE))

KM1 <- KM(design = design.fact, response =y, covtype = "gauss”,

KM-class 25

parinit = c(.5, 1))

KM-class S4 class for Kriging Models Extending the "km" Class

Description

This class is intended to be used either by using its own dedicated S4 methods or by using the S4
methods inherited from the "km" class of the libKriging package.

Slots

d,n,X,y,p,F Number of (numeric) inputs, number of observations, design matrix, response vector,
number of trend variables, trend matrix.

trend. formula, trend.coef Formula used for the trend, vector B of estimated (or fixed) trend
coefficients with length p.

covariance A S4 object with class "covTensorProduct” representing a covariance kernel.
noise.flag,noise.var Logical flag and numeric value for an optional noise term.
known.param A character code indicating what parameters are known.

lower,upper Bounds on the correlation range parameters.

method, penalty,optim.method, control,gr,parinit Objects defining the estimation criterion,
the optimization.

T,M,z Auxiliary variables (matrices and vectors) that can be used in several computations.
case The possible concentration (a.k.a. profiling) of the likelihood.
param.estim Logical. Is an estimation used?

Kriging A copy of the Kriging object used to create the current KM object.

Author(s)

Yann Richet <yann.richet@asnr.fr>

See Also

km-class in the DiceKriging package. The creator KM.

26

Kriging

Kriging Create an object with S3 class "Kriging" using the libKriging [i-

brary.

Description

The hyper-parameters (variance and vector of correlation ranges) are estimated thanks to the opti-
mization of a criterion given by objective, using the method given in optim.

Usage
Kriging(
y = NULL,
X = NULL,
kernel = NULL,
regmodel = c("constant”, "linear”, "interactive”, "none"),

normalize = FALSE,

optim = c("BFGS", "Newton”, "none"),
objective = c("LL", "LOO", "LMP"),
parameters = NULL

)
Arguments

y Numeric vector of response values.

X Numeric matrix of input design.

kernel Character defining the covariance model: "exp”, "gauss”, "matern3_2", "matern5_2".

regmodel Universal Kriging linear trend: "constant”, "linear”, "interactive”, "quadratic”.

normalize Logical. If TRUE both the input matrix X and the response y in normalized to
take values in the interval [0, 1].

optim Character giving the Optimization method used to fit hyper-parameters. Possible
values are: "BFGS”, "Newton" and "none”, the later simply keeping the values
given in parameters. The method "BFGS” uses the gradient of the objective
(note that "BGFS10"” means 10 multi-start of BFGS). The method "Newton" uses
both the gradient and the Hessian of the objective.

objective Character giving the objective function to optimize. Possible values are: "LL"
for the Log-Likelihood, "L0O0" for the Leave-One-Out sum of squares and "LMP"
for the Log-Marginal Posterior.

parameters Initial values for the hyper-parameters. When provided this must be named
list with elements "sigma2"” and "theta"” containing the initial value(s) for the
variance and for the range parameters. If theta is a matrix with more than one
row, each row is used as a starting point for optimization.

Value

An object with S3 class "Kriging". Should be used with its predict, simulate, update methods.

leaveOneOut

Author(s)

Yann Richet <yann.richet@asnr.fr>

Examples

f <= function(x) 1 - 1/ 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x5 + 0.7)
set.seed(123)

X <- as.matrix(runif(10))

y <= £00

fit and print

k <- Kriging(y, X, kernel = "matern3_2")

print(k)

X <- as.matrix(seq(from = @, to = 1, length.out = 101))
p <- predict(k, x = x, return_stdev = TRUE, return_cov = FALSE)

plot(f)
points(X, y)
lines(x, p$mean, col = "blue”)

polygon(c(x, rev(x)), c(p$mean - 2 * p$stdev, rev(p$mean + 2 * p$stdev)),
border = NA, col = rgh(0, 0, 1, 0.2))

s <- simulate(k, nsim = 10, seed = 123, x = x)

matlines(x, s, col = rgb(0, @, 1, 0.2), type = "1", 1ty = 1)

leaveOneOut Compute Leave-One-Out

Description

Compute the leave-One-Out error of a model given in object.

Usage
leaveOneOut (object, ...)
Arguments
object An object representing a fitted model.
Ignored.
Value

The Leave-One-Out sum of squares.

28 leaveOneOutFun

leaveOneOut.Kriging Get leaveOneOut of Kriging Model

Description

Get leaveOneOut of Kriging Model

Usage
S3 method for class 'Kriging'
leaveOneOut(object, ...)
Arguments
object An S3 Kriging object.
Not used.
Value

The leaveOneOut computed for fitted theta.

Author(s)

Yann Richet <yann.richet@asnr.fr>

Examples

f <= function(x) 1 -1/ 2 % (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x*5 + 0.7)
set.seed(123)

X <- as.matrix(runif(10))

y <= £(X)

k <- Kriging(y, X, kernel = "matern3_2", objective="L00")
print(k)

leaveOneOut (k)

leaveOneOutFun Leave-One-Out function

Description

Compute the leave-One-Out error of a model given in object, at a different value of the parameters.

Usage

leaveOneOutFun(object, ...)

leaveOneOutFun.Kriging 29

Arguments
object An object representing a fitted model.
Further arguments of function (eg. range).
Value

The Leave-One-Out sum of squares.

leaveOneOQutFun.Kriging
Compute Leave-One-Out (LOO) error for an object with S3 class
"Kriging" representing a kriging model.

Description

The returned value is the sum of squares ;" , [y; — @i (—;)]* where §; (_;) is the prediction of y;
based on the the observations y; with j # 1.

Usage

S3 method for class 'Kriging'

leaveOneOutFun(object, theta, return_grad = FALSE, bench = FALSE, ...)
Arguments

object A Kriging object.

theta A numeric vector of range parameters at which the LOO will be evaluated.

return_grad Logical. Should the gradient (w.r.t. theta) be returned?
bench Logical. Should the function display benchmarking output

Not used.

Value

The leave-One-Out value computed for the given vector 8 of correlation ranges.

Author(s)

Yann Richet <yann.richet@asnr.fr>

30 leaveOneOut Vec.Kriging

Examples

f <= function(x) 1 -1/ 2 % (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x*5 + 0.7)
set.seed(123)

X <- as.matrix(runif(10))

y <= £(X)

k <- Kriging(y, X, kernel = "matern3_2", objective = "L00", optim="BFGS")
print(k)

loo <- function(theta) leaveOneOutFun(k, theta)$leaveOneOut
t <- seq(from = 0.001, to = 2, length.out = 101)

plot(t, loo(t), type = "1")

abline(v = k$theta(), col = "blue")

leaveOneOQutVec Leave-One-Out vector

Description

Compute the leave-One-Out vector error of a model given in object, at a different value of the

parameters.
Usage
leaveOneOQutVec(object, ...)
Arguments
object An object representing a fitted model.
Further arguments of function (eg. range).
Value

The Leave-One-Out errors (mean and stdev) for each conditional point.

leaveOneOutVec.Kriging
Compute Leave-One-Out (LOO) vector error for an object with S3
class "Kriging" representing a kriging model.

Description

The returned value is the mean and stdev of 3J; (_;), the prediction of y; based on the the observations
y; with j # 4.

leaveOneOut Vec.Kriging 31

Usage
S3 method for class 'Kriging'
leaveOneQutVec(object, theta, ...)
Arguments
object A Kriging object.
theta A numeric vector of range parameters at which the LOO will be evaluated.
Not used.
Value

The leave-One-Out vector computed for the given vector 8 of correlation ranges.

Author(s)

Yann Richet <yann.richet@asnr.fr>

Examples

f <= function(x) 1 -1/ 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x*5 + 0.7)
set.seed(123)

X <- as.matrix(c(0.0, 0.25, 0.5, 0.75, 1.0))

y <= f(X)

k <- Kriging(y, X, kernel = "matern3_2")
print(k)

X <- as.matrix(seq(o, 1, , 101))
p <- predict(k, x, TRUE, FALSE)

plot(f)
points(X, y)
lines(x, p$mean, col = 'blue')

polygon(c(x, rev(x)), c(p$mean - 2 * p$stdev, rev(p$mean + 2 * p$stdev)),
border = NA, col = rgb(o, 0, 1, 0.2))

Compute leave-one-out (no range re-estimate) on 2nd point

X_no2 = X[-2,,drop=FALSE]

y_no2 = f(X_no2)

k_no2 = Kriging(y_no2, X_no2, "matern3_2", optim = "none", parameters = list(theta = k$theta()))
print(k_no2)

p_no2 <- predict(k_no2, x, TRUE, FALSE)

lines(x, p_no2$mean, col = 'red')

polygon(c(x, rev(x)), c(p_no2$mean - 2 * p_no2$stdev, rev(p_no2%$mean + 2 * p_no2$stdev)),
border = NA, col = rgb(1, 0, 9, 0.2))

Use leaveOneOutVec to get the same
loov = k$leaveOneOutVec(matrix(k$theta()))
points(X[2],loov$mean[2],col="red")

32

lines(rep(X[2],2),loov$mean[2]+2*c(-loov$stdev[2],loov$stdev[2]),col="red")

load

load Load any Kriging Model from a file storage. Back to base::load if not

a Kriging object.

Description

Load any Kriging Model from a file storage. Back to base::load if not a Kriging object.

Usage
load(filename, ...)
Arguments
filename A file holding any Kriging object.
Arguments used by base::load.
Value

The loaded "*"Kriging object, or nothing if base::load is used (update parent environment).

Author(s)

Yann Richet <yann.richet@asnr.fr>

Examples

f <= function(x) 1 -1/ 2 % (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x*5 + 0.7)
set.seed(123)

X <- as.matrix(runif(10))

y <= f(X)

k <- Kriging(y, X, kernel = "matern3_2", objective="LMP")
print(k)

outfile = tempfile("k.json")
save(k,outfile)

print(load(outfile))

load.Kriging

33

load.Kriging Load a Kriging Model from a file storage

Description

Load a Kriging Model from a file storage

Usage
load.Kriging(filename, ...)
Arguments
filename File name to load from.
Not used.
Value

The loaded Kriging object.

Author(s)

Yann Richet <yann.richet@asnr.fr>

Examples

f <= function(x) 1 -1/ 2 % (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x*5 + 0.7)
set.seed(123)

X <- as.matrix(runif(10))

y <= F(X)

k <- Kriging(y, X, kernel = "matern3_2", objective="LMP")
print(k)

outfile = tempfile("k.json")
save(k,outfile)

print(load.Kriging(outfile))
unlink(outfile)

34

load.NoiseKriging

load.NoiseKriging Load a NoiseKriging Model from a file storage

Description

Load a NoiseKriging Model from a file storage

Usage
load.NoiseKriging(filename, ...)
Arguments
filename File name to load from.
Not used.
Value

The loaded NoiseKriging object.

Author(s)

Yann Richet <yann.richet@asnr.fr>

Examples

f <= function(x) 1- 1/ 2 * (sin(12 *x x) / (1 + x) + 2 x cos(7 * x)*x"5 + 0.7)

set.seed(123)

X <- as.matrix(runif(10))

y <= f(X) + X/10 * rnorm(nrow(X))
points(X, y, col = "blue")

k <- NoiseKriging(y, (X/10)*2, X, "matern3_2")
print(k)

outfile = tempfile("k.json")
save(k,outfile)

print(load.NoiseKriging(outfile))
unlink(outfile)

load.NuggetKriging

35

load.NuggetKriging Load a NuggetKriging Model from a file storage

Description

Load a NuggetKriging Model from a file storage

Usage
load.NuggetKriging(filename, ...)
Arguments
filename File name to load from.
Not used.
Value

The loaded NuggetKriging object.

Author(s)

Yann Richet <yann.richet@asnr.fr>

Examples

f <= function(x) 1- 1/ 2 * (sin(12 *x x) / (1 + x) + 2 x cos(7 * x)*x"5 + 0.7)
set.seed(123)

X <- as.matrix(runif(10))

y <= f(X) + 0.1 *x rnorm(nrow(X))

points(X, y, col = "blue")

k <- NuggetKriging(y, X, "matern3_2")
print(k)

outfile = tempfile("k.json")
save(k,outfile)

print(load.NuggetKriging(outfile))
unlink(outfile)

36

logLikelihood.Kriging

loglLikelihood Compute Log-Likelihood

Description

Compute the log-Likelihood of a model given in object.

Usage
loglikelihood(object, ...)
Arguments
object An object representing a fitted model.
Ignored.
Value

The log-likelihood.

loglikelihood.Kriging Get Log-Likelihood of Kriging Model

Description

Get Log-Likelihood of Kriging Model

Usage
S3 method for class 'Kriging'
loglLikelihood(object, ...)
Arguments
object An S3 Kriging object.
Not used.
Value

The log-Likelihood computed for fitted theta.

Author(s)

Yann Richet <yann.richet@asnr.fr>

logLikelihood.NoiseKriging

Examples

f <= function(x) 1 -1/ 2 % (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x*5 + 0.7)
set.seed(123)

X <- as.matrix(runif(10))

y <= f(X)

k <- Kriging(y, X, kernel = "matern3_2", objective="LL")
print(k)

loglikelihood (k)

37

loglLikelihood.NoiseKriging
Get logLikelihood of NoiseKriging Model

Description

Get logLikelihood of NoiseKriging Model

Usage
S3 method for class 'NoiseKriging'
loglLikelihood(object, ...)
Arguments
object An S3 NoiseKriging object.
Not used.
Value

The logLikelihood computed for fitted thetasigma?2.

Author(s)

Yann Richet <yann.richet@asnr.fr>

Examples

f <= function(x) 1 -1/ 2 % (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x*5 + 0.7)
set.seed(123)

X <- as.matrix(runif(10))

y <= f(X) + X/10 * rnorm(nrow(X))

k <- NoiseKriging(y, (X/10)*2, X, kernel = "matern3_2", objective="LL")
print (k)

loglikelihood(k)

38 logLikelihood.NuggetKriging

loglLikelihood.NuggetKriging
Get logLikelihood of NuggetKriging Model

Description

Get logLikelihood of NuggetKriging Model

Usage
S3 method for class 'NuggetKriging'
loglLikelihood(object, ...)
Arguments
object An S3 NuggetKriging object.
Not used.
Value

The logLikelihood computed for fitted thetaqlpha.

Author(s)

Yann Richet <yann.richet@asnr.fr>

Examples

f <= function(x) 1 - 1/ 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x5 + 0.7)
set.seed(123)

X <- as.matrix(runif(10))

y <= f(X) + 0.1 * rnorm(nrow(X))

k <- NuggetKriging(y, X, kernel = "matern3_2", objective="LL")
print(k)

loglikelihood(k)

logLikelihoodFun 39

loglikelihoodFun Log-Likelihood function

Description

Compute the log-Likelihood of a model given in object, at a different value of the parameters.

Usage
loglLikelihoodFun(object, ...)
Arguments
object An object representing a fitted model.
Further arguments of function (eg. range).
Value

The log-likelihood.

loglLikelihoodFun.Kriging
Compute Log-Likelihood of Kriging Model

Description

Compute Log-Likelihood of Kriging Model

Usage

S3 method for class 'Kriging'
loglikelihoodFun(
object,
theta,
return_grad = FALSE,
return_hess = FALSE,
bench = FALSE,

40 logLikelihoodFun.NoiseKriging

Arguments
object An S3 Kriging object.
theta A numeric vector of (positive) range parameters at which the log-likelihood will
be evaluated.
return_grad Logical. Should the function return the gradient?
return_hess Logical. Should the function return Hessian?
bench Logical. Should the function display benchmarking output?
Not used.
Value

The log-Likelihood computed for given theta.

Author(s)

Yann Richet <yann.richet@asnr.fr>

Examples

f <= function(x) 1 -1/ 2 % (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x*5 + 0.7)
set.seed(123)

X <- as.matrix(runif(10))

y <= £(X)

k <- Kriging(y, X, kernel = "matern3_2")
print(k)

11 <- function(theta) loglLikelihoodFun(k, theta)$loglLikelihood
t <- seq(from = 0.001, to = 2, length.out = 101)

plot(t, 11(t), type = '1")
abline(v = k$theta(), col = "blue")

loglikelihoodFun.NoiseKriging
Compute Log-Likelihood of NoiseKriging Model

Description

Compute Log-Likelihood of NoiseKriging Model

Usage

S3 method for class 'NoiseKriging'
loglLikelihoodFun(object, theta_sigma2, return_grad = FALSE, bench = FALSE, ...)

logLikelihoodFun.NoiseKriging 41

Arguments

object An S3 NoiseKriging object.

theta_sigma2 A numeric vector of (positive) range parameters and variance at which the log-
likelihood will be evaluated.

return_grad Logical. Should the function return the gradient?
bench Logical. Should the function display benchmarking output
Not used.
Value

The log-Likelihood computed for given thetasigma?2.

Author(s)

Yann Richet <yann.richet@asnr.fr>

Examples

f <= function(x) 1 -1/ 2 % (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x*5 + 0.7)
set.seed(123)

X <- as.matrix(runif(10))

y <= f(X) + X/10 *rnorm(nrow(X))

k <- NoiseKriging(y, (X/10)*2, X, kernel = "matern3_2")
print(k)

theta® = k$theta()

11_sigma2 <- function(sigma2) loglLikelihoodFun(k, cbind(theta®,sigma2))$loglLikelihood
s2 <- seq(from = 0.001, to = 1, length.out = 101)

plot(s2, Vectorize(ll_sigma2)(s2), type = '1")

abline(v = k$sigma2(), col = "blue")

sigma20 = k$sigma2()

11_theta <- function(theta) loglLikelihoodFun(k, cbind(theta,sigma20))$loglLikelihood
t <- seq(from = 0.001, to = 2, length.out = 101)

plot(t, Vectorize(ll_theta)(t), type = '1l'")

abline(v = k$theta(), col = "blue")

11 <- function(theta_sigma2) logLikelihoodFun(k, theta_sigma2)$loglLikelihood

s2 <- seq(from = 9.001, to = 1, length.out = 31)

t <- seq(from = 0.001, to = 2, length.out = 31)
contour(t,s2,matrix(ncol=length(s2),1l(expand.grid(t,s2))),xlab="theta",ylab="sigma2")
points(k$theta(),k$sigma2(),col="blue')

42 logLikelihoodFun.NuggetKriging

loglikelihoodFun.NuggetKriging
Compute Log-Likelihood of NuggetKriging Model

Description

Compute Log-Likelihood of NuggetKriging Model

Usage
S3 method for class 'NuggetKriging'
loglLikelihoodFun(object, theta_alpha, return_grad = FALSE, bench = FALSE, ...)
Arguments
object An S3 NuggetKriging object.
theta_alpha A numeric vector of (positive) range parameters and variance over variance plus
nugget at which the log-likelihood will be evaluated.
return_grad Logical. Should the function return the gradient?
bench Logical. Should the function display benchmarking output
Not used.
Value

The log-Likelihood computed for given thetaslpha.

Author(s)

Yann Richet <yann.richet@asnr.fr>

Examples

f <= function(x) 1 - 1/ 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x5 + 0.7)
set.seed(123)

X <- as.matrix(runif(10))

y <= f(X) + 0.1 * rnorm(nrow(X))

k <- NuggetKriging(y, X, kernel = "matern3_2")
print(k)

thetad = k$theta()

11_alpha <- function(alpha) loglLikelihoodFun(k,cbind(theta®,alpha))$loglLikelihood
a <- seq(from = 0.9, to = 1.0, length.out = 101)

plot(a, Vectorize(ll_alpha)(a), type = "1",x1lim=c(0.9,1))

abline(v = k$sigma2()/(k$sigma2()+k$nugget()), col = "blue")

alpha@ = k$sigma2()/(k$sigma2()+k$nugget())
11_theta <- function(theta) loglLikelihoodFun(k,cbind(theta,alpha®))$loglLikelihood

logMargPost 43

t <- seq(from = 0.001, to = 2, length.out = 101)
plot(t, Vectorize(ll_theta)(t), type = '1")
abline(v = k$theta(), col = "blue")

11 <- function(theta_alpha) loglLikelihoodFun(k,theta_alpha)$loglikelihood

a <- seq(from = 0.9, to = 1.0, length.out = 31)

t <- seq(from = 0.001, to = 2, length.out = 101)
contour(t,a,matrix(ncol=length(a),ll(expand.grid(t,a))),xlab="theta",ylab="sigma2/(sigma2+nugget)")
points(k$theta(),k$sigma2()/(k$sigma2()+k$nugget()),col="blue")

logMargPost Compute log-Marginal Posterior

Description

Compute the log-Marginal Posterior of a model given in object.

Usage
logMargPost(object, ...)
Arguments
object An object representing a fitted model.
Ignored.
Value

The log-marginal posterior.

logMargPost.Kriging Get logMargPost of Kriging Model

Description

Get logMargPost of Kriging Model

Usage

S3 method for class 'Kriging'
logMargPost(object, ...)

Arguments

object An S3 Kriging object.
Not used.

44 logMargPost.NuggetKriging

Value

The logMargPost computed for fitted theta.

Author(s)

Yann Richet <yann.richet@asnr.fr>

Examples

f <= function(x) 1 -1/ 2 % (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x*5 + 0.7)
set.seed(123)

X <- as.matrix(runif(10))

y <= f(X)

k <- Kriging(y, X, kernel = "matern3_2", objective="LMP")
print(k)

logMargPost (k)

logMargPost.NuggetKriging
Get logMargPost of NuggetKriging Model

Description

Get logMargPost of NuggetKriging Model

Usage
S3 method for class 'NuggetKriging'
logMargPost(object, ...)
Arguments
object An S3 NuggetKriging object.
Not used.
Value

The logMargPost computed for fitted theta,lpha.

Author(s)

Yann Richet <yann.richet@asnr.fr>

logMargPostFun 45

Examples

f <= function(x) 1 -1/ 2 % (sin(12 * x) / (1 + x) + 2 * cos(7 *x x) * x*5 + 0.7)
set.seed(123)

X <- as.matrix(runif(10))

y <= f(X) + 0.1 * rnorm(nrow(X))

k <- NuggetKriging(y, X, kernel = "matern3_2", objective="LMP")
print(k)

logMargPost (k)

logMargPostFun log-Marginal Posterior function

Description
Compute the log-Marginal Posterior of a model given in object, at a different value of the param-
eters.

Usage

logMargPostFun(object, ...)

Arguments
object An object representing a fitted model.
Further arguments of function (eg. range).
Value

The log-marginal posterior.

logMargPostFun.Kriging

Compute the log-marginal posterior of a kriging model, using the
prior XXXY.

Description

Compute the log-marginal posterior of a kriging model, using the prior XXXY.

Usage

S3 method for class 'Kriging'
logMargPostFun(object, theta, return_grad = FALSE, bench = FALSE, ...)

46

Arguments

object

theta

return_grad

bench

Value

logMargPostFun.Kriging

S3 Kriging object.

Numeric vector of correlation range parameters at which the function is to be
evaluated.

Logical. Should the function return the gradient (w.r.t theta)?
Logical. Should the function display benchmarking output?

Not used.

The value of the log-marginal posterior computed for the given vector theta.

Author(s)

Yann Richet <yann.richet@asnr.fr>

References

XXXY A reference describing the model (prior, ...)

See Also

rgasp in the RobustGaSP package.

Examples

f <= function(x) 1 -1/ 2 % (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x*5 + 0.7)

set.seed(123)

X <- as.matrix(runif(10))

y <= £(X)

k <- Kriging(y, X, "matern3_2", objective="LMP")

print(k)

Imp <- function(theta) logMargPostFun(k, theta)$logMargPost

t <- seq(from = 0.01, to = 2, length.out = 101)

plot(t, lmp(t), type = "1")
abline(v = k$theta(), col =

"blue")

logMargPostFun.NuggetKriging 47

logMargPostFun.NuggetKriging

Compute the log-marginal posterior of a kriging model, using the
prior XXXY.

Description

Compute the log-marginal posterior of a kriging model, using the prior XXXY.

Usage
S3 method for class 'NuggetKriging'
logMargPostFun(object, theta_alpha, return_grad = FALSE, bench = FALSE, ...)
Arguments
object S3 NuggetKriging object.
theta_alpha Numeric vector of correlation range and variance over variance plus nugget pa-
rameters at which the function is to be evaluated.
return_grad Logical. Should the function return the gradient (w.r.t theta_alpha)?
bench Logical. Should the function display benchmarking output
Not used.
Value

The value of the log-marginal posterior computed for the given vector theta,lpha.

Author(s)

Yann Richet <yann.richet@asnr.fr>

References

XXXY A reference describing the model (prior, ...)

See Also

rgasp in the RobustGaSP package.

Examples

f <= function(x) 1 -1/ 2 % (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x*5 + 0.7)
set.seed(123)

X <- as.matrix(runif(10))

y <= f(X) + 0.1 x rnorm(nrow(X))

k <- NuggetKriging(y, X, "matern3_2", objective="LMP")

48

print (k)

thetad = k$theta()

lmp_alpha <- function(alpha) k$logMargPostFun(cbind(theta®,alpha))$logMargPost
a <- seq(from = 0.9, to = 1.0, length.out = 101)

plot(a, Vectorize(lmp_alpha)(a), type = "1",xlim=c(0.9,1))

abline(v = k$sigma2()/(k$sigma2()+k$nugget()), col = "blue")

alpha@ = k$sigma2()/(k$sigma2()+k$nugget())

Imp_theta <- function(theta) k$logMargPostFun(cbind(theta,alpha0))$logMargPost
t <- seq(from = 0.001, to = 2, length.out = 101)

plot(t, Vectorize(lmp_theta)(t), type = 'l")

abline(v = k$theta(), col = "blue")

Imp <- function(theta_alpha) k$logMargPostFun(theta_alpha)$logMargPost
t <- seq(from = 0.4, to = 0.6, length.out = 51)

a <- seq(from = 0.9, to = 1, length.out = 51)
contour(t,a,matrix(ncol=length(t),lmp(expand.grid(t,a))),
nlevels=50,xlab="theta"”,ylab="sigma2/(sigma2+nugget)")
points(k$theta(),k$sigma2()/(k$sigma2()+k$nugget()),col="blue")

NoiseKM

NoisekM Create an NoiseKM Object

Description

Create an object of S4 class "NoiseKM" similar to a km object in the DiceKriging package.

Usage
NoiseKM(
formula = ~1,
design,
response,
covtype = c("matern5_2", "gauss”, "matern3_2", "exp"),

coef.trend = NULL,
coef.cov = NULL,
coef.var = NULL,
nugget = NULL,
nugget.estim = FALSE,
noise.var,
estim.method = c("MLE", "L00"),
penalty = NULL,
optim.method = "BFGS",
lower = NULL,

upper = NULL,

parinit = NULL,
multistart = 1,
control = NULL,

NoiseKM 49

gr = TRUE,

iso = FALSE,
scaling = FALSE,
knots = NULL,
kernel = NULL,

)
Arguments

formula R formula object to setup the linear trend in Universal NoiseKriging. Supports
~1,~ and ~ ."2.

design Data frame. The design of experiments.

response Vector of output values.

covtype Covariance structure. For now all the kernels are tensor product kernels.

coef. trend Optional value for a fixed vector of trend coefficients. If given, no optimization
is done.

coef.cov Optional value for a fixed correlation range value. If given, no optimization is
done.

coef.var Optional value for a fixed variance. If given, no optimization is done.

nugget, nugget.estim
Not implemented.

noise.var Vector of output values variance.

estim.method Estimation criterion. "MLE" for Maximum-Likelihood or "L0O0" for Leave-One-
Out cross-validation.

penalty Not implemented yet.

optim.method Optimization algorithm used in the optimization of the objective given in estim.method.
Supports "BFGS".

lower, upper Not implemented yet.

parinit Initial values for the correlation ranges which will be optimized using optim.method.
multistart, control, gr, iso

Not implemented yet.
scaling, knots, kernel

Not implemented yet.

Ignored.

Details
The class "NoiseKM” extends the "km" class of the DiceKriging package, hence has all slots of
"km". It also has an extra slot "NoiseKriging" slot which contains a copy of the original object.
Value

A NoiseKM object. See Details.

50 NoiseKM-class

Author(s)

Yann Richet <yann.richet@asnr.fr>

See Also

km in the DiceKriging package for more details on the slots.

Examples

a 16-points factorial design, and the corresponding response
d<-2; n<-16
design.fact <- as.matrix(expand.grid(x1l seq(@, 1, length = 4),
x2 = seq(@, 1, length = 4)))
y <- apply(design.fact, 1, DiceKriging::branin) + rnorm(nrow(design.fact))

Using “km™ from DiceKriging and a similar “NoiseKM™ object
kriging model 1 : matern5_2 covariance structure, no trend, no nugget effect
kml <- DiceKriging::km(design = design.fact, response =y, covtype = "gauss”,
noise.var=rep(1,nrow(design.fact)),
parinit = c(.5, 1), control = list(trace = FALSE))
KM1 <- NoiseKM(design = design.fact, response =y, covtype = "gauss",
noise=rep(1,nrow(design.fact)), parinit = c(.5, 1))

NoiseKM-class S4 class for NoiseKriging Models Extending the "km" Class

Description

This class is intended to be used either by using its own dedicated S4 methods or by using the S4
methods inherited from the "km" class of the libKriging package.

Slots

d,n,X,y,p,F Number of (numeric) inputs, number of observations, design matrix, response vector,
number of trend variables, trend matrix.

trend.formula, trend.coef Formula used for the trend, vector B of estimated (or fixed) trend
coefficients with length p.

covariance A S4 object with class "covTensorProduct” representing a covariance kernel.
noise.flag,noise.var Logical flag and numeric value for an optional noise term.
known.param A character code indicating what parameters are known.

lower,upper Bounds on the correlation range parameters.

method, penalty,optim.method, control,gr,parinit Objects defining the estimation criterion,
the optimization.

T,M,z Auxiliary variables (matrices and vectors) that can be used in several computations.
case The possible concentration (a.k.a. profiling) of the likelihood.

param.estim Logical. Is an estimation used?

NoiseKriging A copy of the NoiseKriging object used to create the current NoiseKM object.

NoiseKriging

Author(s)

Yann Richet <yann.richet@asnr.fr>

See Also

km-class in the DiceKriging package. The creator NoiseKM.

51

NoiseKriging

Create an object with S3 class "NoiseKriging" using the libKriging

library.

Description

The hyper-parameters (variance and vector of correlation ranges) are estimated thanks to the opti-
mization of a criterion given by objective, using the method given in optim.

Usage

NoiseKriging(
y = NULL,
noise = NULL,
X = NULL,
kernel = NULL,

regmodel = c("constant”, "linear”, "interactive”, "none"),

normalize = FALSE,

optim = c("BFGS"”, "none"),
objective = c("LL"),
parameters = NULL

)
Arguments

y Numeric vector of response values.

noise Numeric vector of response variances.

X Numeric matrix of input design.

kernel Character defining the covariance model: "exp"”, "gauss”, "matern3_2", "matern5_2".

regmodel Universal NoiseKriging "linear”, "interactive”, "quadratic”.

normalize Logical. If TRUE both the input matrix X and the response y in normalized to
take values in the interval [0, 1].

optim Character giving the Optimization method used to fit hyper-parameters. Possible
values are: "BFGS" and "none”, the later simply keeping the values given in
parameters. The method "BFGS" uses the gradient of the objective (note that
"BGFS10" means 10 multi-start of BFGS).

objective Character giving the objective function to optimize. Possible values are: "LL"

for the Log-Likelihood.

52 NuggetKM
parameters Initial values for the hyper-parameters. When provided this must be named
list with elements "sigma2" and "theta"” containing the initial value(s) for the
variance and for the range parameters. If theta is a matrix with more than one
row, each row is used as a starting point for optimization.
Value
An object with S3 class "NoiseKriging”. Should be used with its predict, simulate, update
methods.
Author(s)
Yann Richet <yann.richet@asnr.fr>
Examples
f <= function(x) 1 -1/ 2 *x (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x*5 + 0.7)
set.seed(123)
X <- as.matrix(runif(10))
y <= f(X) + X/10 * rnorm(nrow(X)) # add noise dep. on X
fit and print
k <- NoiseKriging(y, noise=(X/10)*2, X, kernel = "matern3_2")
print(k)
X <- as.matrix(seq(from = @, to = 1, length.out = 101))
p <- predict(k,x = x, return_stdev = TRUE, return_cov = FALSE)
plot(f)
points(X, y)
lines(x, p$mean, col = "blue”)
polygon(c(x, rev(x)), c(p$mean - 2 * p$stdev, rev(p$mean + 2 * p$stdev)),
border = NA, col = rgb(e, 0, 1, 0.2))
s <- simulate(k, nsim = 10, seed = 123, x = X)
matlines(x, s, col = rgb(@, 0, 1, 0.2), type = "1", 1ty = 1)
NuggetkM Create an NuggetKM Object
Description
Create an object of S4 class "NuggetKM" similar to a km object in the DiceKriging package.
Usage
NuggetKM(
formula = ~1,

design,

NuggetKM

response,
covtype = c("matern5_2", "gauss"”, "matern3_2", "exp"),
coef.trend = NULL,

coef.cov = NULL,

coef.var = NULL,

nugget = NULL,

nugget.estim = TRUE,

noise.var = NULL,

estim.method = c("MLE", "LOO"),

penalty = NULL,

optim.method = "BFGS",

lower = NULL,

upper = NULL,

53

parinit = NULL,
multistart = 1,
control = NULL,

gr = TRUE,

iso = FALSE,

scaling = FALSE,

knots = NULL,

kernel = NULL,

)
Arguments

formula R formula object to setup the linear trend in Universal NuggetKriging. Supports
~1,~ and ~ ."2.

design Data frame. The design of experiments.

response Vector of output values.

covtype Covariance structure. For now all the kernels are tensor product kernels.

coef. trend Optional value for a fixed vector of trend coefficients. If given, no optimization
is done.

coef . cov Optional value for a fixed correlation range value. If given, no optimization is
done.

coef.var Optional value for a fixed variance. If given, no optimization is done.

nugget.estim, nugget

noise.var

estim.method

penalty
optim.method

lower, upper

Should nugget be estimated? (defaults TRUE) or given values.
Not implemented.

Estimation criterion. "MLE" for Maximum-Likelihood or "L00" for Leave-One-
Out cross-validation.

Not implemented yet.

Optimization algorithm used in the optimization of the objective given in estim.method.

Supports "BFGS".
Not implemented yet.

54 NuggetKM-class

parinit Initial values for the correlation ranges which will be optimized using optim.method.
multistart, control, gr, iso

Not implemented yet.
scaling, knots, kernel

Not implemented yet.

Ignored.

Details

The class "NuggetkM"” extends the "km" class of the DiceKriging package, hence has all slots of
"km". It also has an extra slot "NuggetKriging” slot which contains a copy of the original object.

Value

A NuggetKM object. See Details.

Author(s)

Yann Richet <yann.richet@asnr.fr>

See Also

km in the DiceKriging package for more details on the slots.

Examples

a 16-points factorial design, and the corresponding response
d<-2; n<-16
design.fact <- as.matrix(expand.grid(x1 = seq(@, 1, length = 4),
x2 = seq(@, 1, length = 4)))
y <- apply(design.fact, 1, DiceKriging::branin) + rnorm(nrow(design.fact))

Using “km™ from DiceKriging and a similar ~NuggetKM™ object
kriging model 1 : matern5_2 covariance structure, no trend, no nugget effect
km1l <- DiceKriging::km(design = design.fact, response =y, covtype = "gauss”,
nugget.estim=TRUE,
parinit = c¢(.5, 1), control = list(trace = FALSE))
KM1 <- NuggetKM(design = design.fact, response =y, covtype = "gauss”,
parinit = c(.5, 1))

NuggetkKM-class S4 class for NuggetKriging Models Extending the "km" Class

Description

This class is intended to be used either by using its own dedicated S4 methods or by using the S4
methods inherited from the "km" class of the libKriging package.

NuggetKriging 55

Slots
d,n,X,y,p,F Number of (numeric) inputs, number of observations, design matrix, response vector,
number of trend variables, trend matrix.

trend.formula, trend.coef Formula used for the trend, vector B of estimated (or fixed) trend
coefficients with length p.

covariance A S4 object with class "covTensorProduct” representing a covariance kernel.
noise.flag,noise.var Logical flag and numeric value for an optional noise term.
known.param A character code indicating what parameters are known.

lower,upper Bounds on the correlation range parameters.

method,penalty,optim.method, control,gr,parinit Objects defining the estimation criterion,
the optimization.

T,M,z Auxiliary variables (matrices and vectors) that can be used in several computations.
case The possible concentration (a.k.a. profiling) of the likelihood.
param.estim Logical. Is an estimation used?

NuggetKriging A copy of the NuggetKriging object used to create the current NuggetkM object.

Author(s)

Yann Richet <yann.richet@asnr.fr>

See Also
km-class in the DiceKriging package. The creator Nugge tKM.

NuggetKriging Create an object with S3 class "NuggetKriging” using the libKriging
library.

Description

The hyper-parameters (variance and vector of correlation ranges) are estimated thanks to the opti-
mization of a criterion given by objective, using the method given in optim.

Usage

NuggetKriging(
y = NULL,
X = NULL,
kernel = NULL,
regmodel = c("constant”, "linear”, "interactive”, "none"),
normalize = FALSE,
optim = c("BFGS"”, "none"),
objective = c("LL", "LMP"),
parameters = NULL

56 NuggetKriging

Arguments
y Numeric vector of response values.
X Numeric matrix of input design.
kernel Character defining the covariance model: "exp"”, "gauss”, "matern3_2", "matern5_2".
regmodel Universal NuggetKriging "linear”, "interactive”, "quadratic”.
normalize Logical. If TRUE both the input matrix X and the response y in normalized to
take values in the interval [0, 1].
optim Character giving the Optimization method used to fit hyper-parameters. Possible
values are: "BFGS” and "none”, the later simply keeping the values given in
parameters. The method "BFGS" uses the gradient of the objective (note that
"BGFS10" means 10 multi-start of BFGS).
objective Character giving the objective function to optimize. Possible values are: "LL"
for the Log-Likelihood and "LMP" for the Log-Marginal Posterior.
parameters Initial values for the hyper-parameters. When provided this must be named
list with some elements "sigma2”, "theta”, "nugget” containing the initial
value(s) for the variance, range and nugget parameters. If theta is a matrix
with more than one row, each row is used as a starting point for optimization.
Value

An object with S3 class "NuggetKriging"”. Should be used with its predict, simulate, update
methods.

Author(s)

Yann Richet <yann.richet@asnr.fr>

Examples

f <= function(x) 1 -1/ 2 % (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x5 + 0.7)
set.seed(123)

X <- as.matrix(runif(10))

y <= f(X) + 0.1 * rnorm(nrow(X))

fit and print

k <- NuggetKriging(y, X, kernel = "matern3_2")

print(k)

x <- sort(c(X,as.matrix(seq(from = @, to = 1, length.out = 101))))
p <- predict(k, x = x, return_stdev = TRUE, return_cov = FALSE)

plot(f)
points(X, y)
lines(x, p$mean, col = "blue")

polygon(c(x, rev(x)), c(p$mean - 2 * p$stdev, rev(p$mean + 2 * p$stdev)),
border = NA, col = rgh(0, 0, 1, 0.2))

s <- simulate(k, nsim = 10, seed = 123, x = x)

matlines(x, s, col = rgb(0, @, 1, 0.2), type = "1", 1ty = 1)

predict, KM-method 57

predict,KM-method Prediction Method for a KM Object

Description

Compute predictions for the response at new given input points. These conditional mean, the con-
ditional standard deviation and confidence limits at the 95% level. Optionnally the conditional
covariance can be returned as well.

Usage

S4 method for signature 'KM'
predict(
object,
newdata,
type = "UK",
se.compute = TRUE,
cov.compute = FALSE,
light.return = TRUE,
bias.correct = FALSE,
checkNames = FALSE,

)
Arguments
object KM object.
newdata Matrix of "new" input points where to perform prediction.
type character giving the kriging type. For now only "UK" is possible.
se.compute Logical. Should the standard error be computed?
cov.compute Logical. Should the covariance matrix between newdata points be computed?

light.return Logical. If TRUE, no auxiliary results will be returned (such as the Cholesky root
of the correlation matrix).

bias.correct Logical. If TRUE the UK variance and covariance are .

checkNames Logical to check the consistency of the column names between the design stored
in object@X and the new one given newdata.

Ignored.

Details

Without a dedicated predict method for the class "KM", this method would have been inherited
from the "km" class. The dedicated method is expected to run faster. A comparison can be made by
coercing a KM object to a km object with as. km before calling predict.

58 predict,NoiseKM-method

Value

A named list. The elements are the conditional mean and standard deviation (mean and sd), the pre-
dicted trend (trend) and the confidence limits (1ower95 and upper95). Optionnally, the conditional
covariance matrix is returned in cov.

Author(s)

Yann Richet <yann.richet@asnr.fr>

Examples

a 16-points factorial design, and the corresponding response

d<-2; n< 16

design.fact <- expand.grid(x1 = seq(@, 1, length = 4), x2 = seq(@, 1, length = 4))
y <- apply(design.fact, 1, DiceKriging::branin)

library(DiceKriging)

kriging model 1 : matern5_2 covariance structure, no trend, no nugget

m1 <- km(design = design.fact, response =y, covtype = "gauss”,

#it parinit = c¢(.5, 1), control = list(trace = FALSE))

KM1 <- KM(design = design.fact, response =y, covtype = "gauss”,
parinit = c(.5, 1))

Pred <- predict(KM1, newdata = matrix(.5,ncol = 2), type = "UK",
checkNames = FALSE, light.return = TRUE)

predict,NoiseKM-method
Prediction Method for a NoiseKM Object

Description

Compute predictions for the response at new given input points. These conditional mean, the con-
ditional standard deviation and confidence limits at the 95% level. Optionnally the conditional
covariance can be returned as well.

Usage

S4 method for signature 'NoisekM'
predict(

object,

newdata,

type = "UK",

se.compute = TRUE,

cov.compute = FALSE,

light.return = TRUE,

bias.correct = FALSE,

checkNames = FALSE,

predict,NoiseKM-method 59

Arguments

object
newdata
type
se.compute
cov.compute

light.return

bias.correct

checkNames

Details

NoiseKM object.

Matrix of "new" input points where to perform prediction.

character giving the kriging type. For now only "UK" is possible.

Logical. Should the standard error be computed?

Logical. Should the covariance matrix between newdata points be computed?

Logical. If TRUE, no auxiliary results will be returned (such as the Cholesky root
of the correlation matrix).

Logical. If TRUE the UK variance and covariance are .

Logical to check the consistency of the column names between the design stored
in object@X and the new one given newdata.

Ignored.

Without a dedicated predict method for the class "NoiseKM”, this method would have been in-
herited from the "km” class. The dedicated method is expected to run faster. A comparison can be
made by coercing a NoiseKM object to a km object with as. km before calling predict.

Value

A named list. The elements are the conditional mean and standard deviation (mean and sd), the pre-
dicted trend (trend) and the confidence limits (Lower95 and upper95). Optionnally, the conditional
covariance matrix is returned in cov.

Author(s)

Yann Richet <yann.richet@asnr.fr>

Examples

a 16-points factorial design, and the corresponding response

d<-2; n<-16

design.fact <- expand.grid(x1 = seq(@, 1, length = 4), x2 = seq(@, 1, length = 4))
y <- apply(design.fact, 1, DiceKriging::branin) + rnorm(nrow(design.fact))

library(DiceKriging)
kriging model 1 : matern5_2 covariance structure, no trend, no nugget

ml1 <- km(design = design.fact, response =y, covtype = "gauss",
#i# noise.var=rep(1,nrow(design.fact)),

#it parinit = c(.5, 1), control = list(trace = FALSE))

KM1 <- NoiseKM(design = design.fact, response =y, covtype = "gauss",

noise=rep(1,nrow(design.fact)),
parinit = c(.5, 1))

60

predict, NuggetKM-method

Pred <- predict(KM1, newdata = matrix(.5,ncol = 2), type = "UK",

checkNames = FALSE, light.return = TRUE)

predict,NuggetKM-method

Prediction Method for a NuggetKM Object

Description

Compute predictions for the response at new given input points. These conditional mean, the con-
ditional standard deviation and confidence limits at the 95% level. Optionnally the conditional
covariance can be returned as well.

Usage

S4 method for signature 'NuggetKM'

predict(
object,
newdata,
type = "UK",
se.compute =
cov.compute
light.return
bias.correct
checkNames =

Arguments

object
newdata
type
se.compute
cov.compute

light.return

bias.correct

checkNames

TRUE,

= FALSE,

= TRUE,
= FALSE,
FALSE,

NuggetKM object.

Matrix of "new" input points where to perform prediction.

character giving the kriging type. For now only "UK" is possible.

Logical. Should the standard error be computed?

Logical. Should the covariance matrix between newdata points be computed?

Logical. If TRUE, no auxiliary results will be returned (such as the Cholesky root
of the correlation matrix).

Logical. If TRUE the UK variance and covariance are .

Logical to check the consistency of the column names between the design stored
in object@X and the new one given newdata.

Ignored.

predict. Kriging 61

Details

Without a dedicated predict method for the class "NuggetKM”, this method would have been in-
herited from the "km" class. The dedicated method is expected to run faster. A comparison can be
made by coercing a NuggetKM object to a km object with as. km before calling predict.

Value

A named list. The elements are the conditional mean and standard deviation (mean and sd), the pre-
dicted trend (trend) and the confidence limits (Lower95 and upper95). Optionnally, the conditional
covariance matrix is returned in cov.

Author(s)

Yann Richet <yann.richet@asnr.fr>

Examples

a 16-points factorial design, and the corresponding response

d<-2; n<-16

design.fact <- expand.grid(x1 = seq(@, 1, length = 4), x2 = seq(@, 1, length = 4))
y <- apply(design.fact, 1, DiceKriging::branin) + rnorm(nrow(design.fact))

library(DiceKriging)
kriging model 1 : matern5_2 covariance structure, no trend, no nugget

ml1 <- km(design = design.fact, response =y, covtype = "gauss",
#it nugget.estim=TRUE,
#it parinit = c(.5, 1), control = list(trace = FALSE))

KM1 <- NuggetKM(design = design.fact, response =y, covtype = "gauss”,
parinit = c(.5, 1))

Pred <- predict(KM1, newdata = matrix(.5,ncol = 2), type = "UK",
checkNames = FALSE, light.return = TRUE)

predict.Kriging Predict from a Kriging object.

Description

Given "new" input points, the method compute the expectation, variance and (optionnally) the co-
variance of the corresponding stochastic process, conditional on the values at the input points used
when fitting the model.

Usage

S3 method for class 'Kriging'
predict(

object,

X,

62

return_stdev
return_cov =
return_deriv

Arguments
object
X
return_stdev
return_cov

return_deriv

Value

predict. Kriging

= TRUE,
FALSE,
= FALSE,

S3 Kriging object.

Input points where the prediction must be computed.

Logical. If TRUE the standard deviation is returned.

Logical. If TRUE the covariance matrix of the predictions is returned.

Logical. If TRUE the derivatives of mean and sd of the predictions are returned.

Ignored.

A list containing the element mean and possibly stdev and cov.

Note

The names of the formal arguments differ from those of the predict methods for the S4 classes
"km" and "KM". The formal x corresponds to newdata, stdev corresponds to se.compute and cov
to cov.compute. These names are chosen Python and Octave interfaces to libKriging.

Author(s)

Yann Richet <yann.richet@asnr.fr>

Examples

f <- function(x)
plot(f)
set.seed(123)

1-1/72x%(sin(12 x x) / (1 + x) + 2 * cos(7 * x) * x"5 + 0.7)

X <- as.matrix(runif(10))

y <= f(X)
points(X, y, col

k <- Kriging(y, X

x <-seq(from = 0,

= "blue”, pch = 16)
, "matern3_2")

to = 1, length.out = 101)

p <- predict(k, x)

lines(x, p$mean,

col = "blue")

polygon(c(x, rev(x)), c(p$mean - 2 * p$stdev, rev(p$mean + 2 * p$stdev)),
border = NA, col = rgb(o, 0, 1, 0.2))

predict.NoiseKriging 63

predict.NoiseKriging Predict from a NoiseKriging object.

Description

Given "new" input points, the method compute the expectation, variance and (optionnally) the co-

variance of the corresponding stochastic process, conditional on the values at the input points used
when fitting the model.

Usage

S3 method for class 'NoiseKriging'
predict(

object,

X,

return_stdev = TRUE,

return_cov = FALSE,

return_deriv = FALSE,

)
Arguments
object S3 NoiseKriging object.
X Input points where the prediction must be computed.

return_stdev Logical. If TRUE the standard deviation is returned.
return_cov Logical. If TRUE the covariance matrix of the predictions is returned.

return_deriv Logical. If TRUE the derivatives of mean and sd of the predictions are returned.

Ignored.

Value

A list containing the element mean and possibly stdev and cov.

Note

The names of the formal arguments differ from those of the predict methods for the S4 classes
"km" and "KM". The formal x corresponds to newdata, stdev corresponds to se.compute and cov
to cov.compute. These names are chosen Python and Octave interfaces to libKriging.

Author(s)

Yann Richet <yann.richet@asnr.fr>

64 predict. NuggetKriging

Examples

f <= function(x) 1 -1/ 2 % (sin(12 * x) / (1 + x) + 2 * cos(7 *x x) * x*5 + 0.7)
plot(f)

set.seed(123)

X <- as.matrix(runif(10))

y <= f(X) + X/10 * rnorm(nrow(X))

points(X, y, col = "blue”, pch = 16)

k <- NoiseKriging(y, (X/10)*2, X, "matern3_2")

x <-seq(from = @, to
p <- predict(k, x)

1, length.out = 101)

lines(x, p$mean, col = "blue")
polygon(c(x, rev(x)), c(p$mean - 2 * p$stdev, rev(p$mean + 2 * p$stdev)),
border = NA, col = rgb(o, 0, 1, 0.2))

predict.NuggetKriging Predict from a NuggetKriging object.

Description

Given "new" input points, the method compute the expectation, variance and (optionnally) the co-
variance of the corresponding stochastic process, conditional on the values at the input points used
when fitting the model.

Usage

S3 method for class 'NuggetKriging'
predict(

object,

X,

return_stdev = TRUE,

return_cov = FALSE,

return_deriv = FALSE,

)
Arguments
object S3 NuggetKriging object.
X Input points where the prediction must be computed.

return_stdev Logical. If TRUE the standard deviation is returned.
return_cov Logical. If TRUE the covariance matrix of the predictions is returned.
return_deriv Logical. If TRUE the derivatives of mean and sd of the predictions are returned.

Ignored.

print.Kriging 65

Value

A list containing the element mean and possibly stdev and cov.

Note

The names of the formal arguments differ from those of the predict methods for the S4 classes
"km" and "KM". The formal x corresponds to newdata, stdev corresponds to se.compute and cov
to cov.compute. These names are chosen Python and Octave interfaces to libKriging.

Author(s)

Yann Richet <yann.richet@asnr.fr>

Examples

f <= function(x) 1 -1/ 2 % (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x5 + 0.7)
plot(f)

set.seed(123)

X <- as.matrix(runif(10))

y <= f(X) + 0.1 * rnorm(nrow(X))

points(X, y, col = "blue”, pch = 16)

k <- NuggetKriging(y, X, "matern3_2")

include design points to see interpolation
x <- sort(c(X,seq(from = @, to = 1, length.out = 101)))
p <- predict(k, x)

lines(x, p$mean, col = "blue")
polygon(c(x, rev(x)), c(p$mean - 2 * p$stdev, rev(p$mean + 2 * p$stdev)),
border = NA, col = rgb(o, 0, 1, 0.2))

print.Kriging Print the content of a Kriging object.

Description

Print the content of a Kriging object.

Usage
S3 method for class 'Kriging'
print(x, ...)

Arguments
X A (S3) Kriging Object.

Ignored.

66 print.NoiseKriging

Value

String of printed object.

Author(s)

Yann Richet <yann.richet@asnr.fr>

Examples

f <= function(x) 1 -1/ 2 % (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x*5 + 0.7)
set.seed(123)

X <- as.matrix(runif(10))

y <= f(X)

k <- Kriging(y, X, "matern3_2")
print(k)

same thing
k

print.NoiseKriging Print the content of a NoiseKriging object.

Description

Print the content of a NoiseKriging object.

Usage
S3 method for class 'NoiseKriging'
print(x, ...)
Arguments
X A (S83) NoiseKriging Object.
Ignored.
Value

String of printed object.

Author(s)

Yann Richet <yann.richet@asnr.fr>

print.NuggetKriging

Examples

f <= function(x) 1 -1/ 2 % (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x*5 + 0.7)
set.seed(123)

X <- as.matrix(runif(10))

y <= f(X) + X/10 * rnorm(nrow(X)) # add noise dep. on X

k <- NoiseKriging(y, noise=(X/10)*2, X, kernel = "matern3_2")
print(k)

same thing
k

67

print.NuggetKriging Print the content of a NuggetKriging object.

Description

Print the content of a NuggetKriging object.

Usage
S3 method for class 'NuggetKriging'
print(x, ...)
Arguments
X A (S3) NuggetKriging Object.
Ignored.
Value

String of printed object.

Author(s)

Yann Richet <yann.richet@asnr.fr>

Examples

f <= function(x) 1 -1/ 2 % (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x5 + 0.7)
set.seed(123)

X <- as.matrix(runif(10))

y <= f(X) + 0.1 x rnorm(nrow(X))

k <- NuggetKriging(y, X, "matern3_2")
print(k)

same thing
k

68 save.Kriging

save Save a Kriging Model inside a file. Back to base::save if argument is
not a Kriging object.

Description

Save a Kriging Model inside a file. Back to base::save if argument is not a Kriging object.

Usage
save(object = NULL, filename = NULL, ...)
Arguments
object An object representing a model.
filename A file to save the object.
Arguments used by base::save.
Author(s)

Yann Richet <yann.richet@asnr.fr>

save.Kriging Save a Kriging Model to a file storage

Description

Save a Kriging Model to a file storage

Usage
S3 method for class 'Kriging'
save(object, filename, ...)
Arguments
object An S3 Kriging object.
filename File name to save in.
Not used.
Value

The loaded Kriging object.

save.NoiseKriging

Author(s)

Yann Richet <yann.richet@asnr.fr>

Examples

f <= function(x) 1 -1/ 2 % (sin(12 * x) / (1 + x) + 2 * cos(7 *x x) * x*5 + 0.7)
set.seed(123)

X <- as.matrix(runif(10))

y <= f(X)

k <- Kriging(y, X, kernel = "matern3_2", objective="LMP")
print(k)

outfile = tempfile("k.json")
save(k,outfile)
unlink(outfile)

69

save.NoiseKriging Save a NoiseKriging Model to a file storage

Description

Save a NoiseKriging Model to a file storage

Usage
S3 method for class 'NoiseKriging'
save(object, filename, ...)
Arguments
object An S3 NoiseKriging object.
filename File name to save in.
Not used.
Value

The loaded NoiseKriging object.

Author(s)

Yann Richet <yann.richet@asnr.fr>

70

Examples

save.NuggetKriging

f <= function(x) 1- 1/ 2 * (sin(12 * x) / (1 + x) + 2 x cos(7 * x)*x"5 + 0.7)

set.seed(123)
X <- as.matrix(runif(10))
y <= f(X) + X/10 * rnorm(nrow(X))

k <- NoiseKriging(y, (X/10)*2, X, "matern3_2")
print(k)

outfile = tempfile("k.json™)
save(k,outfile)
unlink(outfile)

save.NuggetKriging Save a NuggetKriging Model to a file storage

Description

Save a NuggetKriging Model to a file storage

Usage
S3 method for class 'NuggetKriging'
save(object, filename, ...)
Arguments
object An S3 NuggetKriging object.
filename File name to save in.
Not used.
Value

The loaded NuggetKriging object.

Author(s)

Yann Richet <yann.richet@asnr.fr>

Examples

f <= function(x) 1- 1 / 2 x (sin(12 * x) / (1 + x) + 2 * cos(7 * x)*x"5 + 0.7)

set.seed(123)

X <- as.matrix(runif(10))

y <= f(X) + 0.1 * rnorm(nrow(X))
points(X, y, col = "blue")

k <- NuggetKriging(y, X, "matern3_2")

simulate, KM-method

print (k)

71

outfile = tempfile("k.json™)
save(k,outfile)
unlink(outfile)

simulate,KM-method Simulation from a KM Object

Description

The simulate method is used to simulate paths from the kriging model described in object.

Usage

S4 method for signature 'KM'

simulate(
object,
nsim = 1,

seed = NULL,

newdata,

cond = TRUE,

nugget.sim
checkNames

Arguments

object
nsim
seed

newdata

cond

nugget.sim

checkNames

Details

FALSE,

A KM object.
Integer: number of response vectors to simulate.
Random seed.

Numeric matrix with it rows giving the points where the simulation is to be
performed.

Logical telling wether the simulation is conditional or not. Only TRUE is ac-
cepted for now.

Numeric. A postive nugget effect used to avoid numerical instability.

Check consistency between the design data X within object and newdata. The
default is FALSE. XXXY Not used!!!

Ignored.

Without a dedicated simulate method for the class "KM", this method would have been inherited
from the "km" class. The dedicated method is expected to run faster. A comparison can be made by
coercing a KM object to a km object with as. km before calling simulate.

72 simulate,Noise KM-method

Value

A numeric matrix with nrow(newdata) rows and nsim columns containing as its columns the sim-
ulated paths at the input points given in newdata.

XXX method simulate KM

Author(s)

Yann Richet <yann.richet@asnr.fr>

Examples

f <= function(x) 1 -1/ 2 * (sin(12 * x) / (1 + x) + 2 x cos(7 * x) * x"5 + 0.7)
plot(f)

set.seed(123)

X <- as.matrix(runif(5))

y <= f(X)
points(X, y, col = 'blue')
k <- KM(design = X, response =y, covtype = "gauss")

x <- seq(from = @, to = 1, length.out = 101)
s_x <- simulate(k, nsim = 3, newdata = x)
lines(x, s_x[, 11, col = 'blue')

lines(x, s_x[, 2], col = 'blue')

lines(x, s_x[, 31, col = 'blue')

simulate,NoiseKM-method
Simulation from a NoiseKM Object

Description

The simulate method is used to simulate paths from the kriging model described in object.

Usage

S4 method for signature 'NoisekM'
simulate(

object,

nsim = 1,

seed = NULL,

newdata,

cond = TRUE,

nugget.sim = 0,

checkNames = FALSE,

simulate,Noise KM-method 73

Arguments
object A NoiseKM object.
nsim Integer: number of response vectors to simulate.
seed Random seed.
newdata Numeric matrix with it rows giving the points where the simulation is to be
performed.
cond Logical telling wether the simulation is conditional or not. Only TRUE is ac-
cepted for now.
nugget.sim Numeric. A postive nugget effect used to avoid numerical instability.
checkNames Check consistency between the design data X within object and newdata. The
default is FALSE. XXXY Not used!!!
Ignored.
Details

Without a dedicated simulate method for the class "NoiseKM”, this method would have been in-
herited from the "km" class. The dedicated method is expected to run faster. A comparison can be
made by coercing a NoiseKM object to a km object with as . km before calling simulate.

Value

A numeric matrix with nrow(newdata) rows and nsim columns containing as its columns the sim-
ulated paths at the input points given in newdata.

XXX method simulate NoiseKM

Author(s)

Yann Richet <yann.richet@asnr.fr>

Examples

f <= function(x) 1 -1/ 2 * (sin(12 * x) / (1 + x) + 2 *x cos(7 * x) * x"5 + 0.7)
plot(f)

set.seed(123)

X <- as.matrix(runif(5))

y <= f(X) + 0.01*xrnorm(nrow(X))

points(X, y, col = 'blue')

k <- NoiseKM(design = X, response =y, covtype = "gauss”, noise=rep(0.012,nrow(X)))
x <- seq(from = @, to = 1, length.out = 101)

s_x <- simulate(k, nsim = 3, newdata = x)

lines(x, s_x[, 1], col 'blue')

lines(x, s_x[, 2], col 'blue')

lines(x, s_x[, 31, col = 'blue')

74 simulate,NuggetKM-method

simulate,NuggetkKM-method
Simulation from a NuggetKM Object

Description

The simulate method is used to simulate paths from the kriging model described in object.

Usage

S4 method for signature 'NuggetKM'
simulate(

object,

nsim = 1,

seed = NULL,

newdata,

cond = TRUE,

nugget.sim = 0,

checkNames = FALSE,

)
Arguments
object A NuggetKM object.
nsim Integer: number of response vectors to simulate.
seed Random seed.
newdata Numeric matrix with it rows giving the points where the simulation is to be
performed.
cond Logical telling wether the simulation is conditional or not. Only TRUE is ac-
cepted for now.
nugget.sim Numeric. A postive nugget effect used to avoid numerical instability.
checkNames Check consistency between the design data X within object and newdata. The
default is FALSE. XXXY Not used!!!
Ignored.
Details

Without a dedicated simulate method for the class "NuggetKM", this method would have been
inherited from the "km" class. The dedicated method is expected to run faster. A comparison can
be made by coercing a NuggetKM object to a km object with as . km before calling simulate.

Value

A numeric matrix with nrow(newdata) rows and nsim columns containing as its columns the sim-
ulated paths at the input points given in newdata.

XXX method simulate NuggetKM

simulate.Kriging 75

Author(s)

Yann Richet <yann.richet@asnr.fr>

Examples

f <= function(x) 1 -1/ 2 * (sin(12 * x) / (1 + x) + 2 *x cos(7 * x) * x*5 + 0.7)
plot(f)

set.seed(123)

X <- as.matrix(runif(5))

y <= f(X) + 0.01*rnorm(nrow(X))

points(X, y, col = 'blue')

k <- NuggetKM(design = X, response =y, covtype = "gauss")

x <- seq(from = @, to = 1, length.out = 101)

s_x <- simulate(k, nsim = 3, newdata = x)

lines(x, s_x[, 1], col = 'blue')

lines(x, s_x[, 2], col = 'blue')
lines(x, s_x[, 31, col = 'blue')
simulate.Kriging Simulation from a Kriging model object.

Description

This method draws paths of the stochastic process at new input points conditional on the values at
the input points used in the fit.

Usage
S3 method for class 'Kriging'
simulate(object, nsim = 1, seed = 123, x, will_update = FALSE, ...)
Arguments
object S3 Kriging object.
nsim Number of simulations to perform.
seed Random seed used.
X Points in model input space where to simulate.
will_update Set to TRUE if wish to use update_simulate(...) later.
Ignored.
Value

a matrix with nrow(x) rows and nsim columns containing the simulated paths at the inputs points
given in Xx.

76 simulate.NoiseKriging

Note

The names of the formal arguments differ from those of the simulate methods for the S4 classes
"km" and "KM". The formal x corresponds to newdata. These names are chosen Python and Octave
interfaces to libKriging.

Author(s)

Yann Richet <yann.richet@asnr.fr>

Examples

f <= function(x) 1 - 1/ 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x5 + 0.7)
plot(f)

set.seed(123)

X <- as.matrix(runif(10))

y <= f(X)

points(X, y, col = "blue")

k <- Kriging(y, X, kernel = "matern3_2")

x <- seq(from = @, to = 1, length.out = 101)
s <- simulate(k, nsim = 3, x = x)

lines(x, s[, 11, col = "blue")
lines(x, s[, 21, col = "blue")
lines(x, s[, 3], col = "blue")

simulate.NoiseKriging Simulation from a NoiseKriging model object.

Description

This method draws paths of the stochastic process at new input points conditional on the values at
the input points used in the fit.

Usage

S3 method for class 'NoiseKriging'
simulate(

object,

nsim = 1,

seed = 123,

X,

with_noise = NULL,

will_update = FALSE,

simulate.NoiseKriging 77

Arguments
object S3 NoiseKriging object.
nsim Number of simulations to perform.
seed Random seed used.
X Points in model input space where to simulate.
with_noise Set to array of values if wish to add the noise in the simulation.

will_update Set to TRUE if wish to use update_simulate(...) later.

Ignored.

Value

a matrix with nrow(x) rows and nsim columns containing the simulated paths at the inputs points
given in Xx.

Note

The names of the formal arguments differ from those of the simulate methods for the S4 classes
"km" and "KM". The formal x corresponds to newdata. These names are chosen Python and Octave
interfaces to libKriging.

Author(s)

Yann Richet <yann.richet@asnr.fr>

Examples

f <= function(x) 1 -1/ 2 % (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x*5 + 0.7)
plot(f)

set.seed(123)

X <- as.matrix(runif(10))

y <= f(X) + X/10 * rnorm(nrow(X))

points(X, y, col = "blue")

k <- NoiseKriging(y, (X/10)*2, X, kernel = "matern3_2")

x <- seq(from = 0, to 1, length.out = 101)
s <- simulate(k, nsim = 3, x = x)

lines(x, s[, 11, col = "blue")
lines(x, s[, 21, col = "blue")
lines(x, s[, 31, col = "blue")

78

simulate.NuggetKriging

simulate.NuggetKriging

Simulation from a NuggetKriging model object.

Description

This method draws paths of the stochastic process at new input points conditional on the values at
the input points used in the fit.

Usage

S3 method for class 'NuggetKriging'

simulate(
object,
nsim = 1,
seed = 123,
X,
with_nugget
will_update

Arguments

object

nsim

seed

X
with_nugget
will_update

Value

TRUE,
FALSE,

S3 NuggetKriging object.

Number of simulations to perform.

Random seed used.

Points in model input space where to simulate.

Set to FALSE if wish to remove the nugget in the simulation.
Set to TRUE if wish to use update_simulate(...) later.
Ignored.

a matrix with nrow(x) rows and nsim columns containing the simulated paths at the inputs points

given in Xx.

Note

The names of the formal arguments differ from those of the simulate methods for the S4 classes
"km" and "KM". The formal x corresponds to newdata. These names are chosen Python and Octave
interfaces to libKriging.

Author(s)

Yann Richet <yann.richet@asnr.fr>

update, KM-method 79

Examples

f <= function(x) 1 -1/ 2 *x (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x*5 + 0.7)
plot(f)

set.seed(123)

X <- as.matrix(runif(10))

y <= f(X) + 0.1 *rnorm(nrow(X))

points(X, y, col = "blue")

k <- NuggetKriging(y, X, kernel = "matern3_2")

x <- seq(from = @, to = 1, length.out = 101)
s <- simulate(k, nsim = 3, x = x)

lines(x, s[, 11, col = "blue")
lines(x, s[, 21, col = "blue")
lines(x, s[, 31, col = "blue")

update,KM-method Update a KM Object with New Points

Description

The update method is used when new observations are added to a fitted kriging model. Rather than
fitting the model from scratch with the updated observations added, the results of the fit as stored in
object are used to achieve some savings.

Usage

S4 method for signature 'KM'
update(
object,
newX,
newy,
newX.alreadyExist = FALSE,
cov.reestim = TRUE,
trend.reestim = cov.reestim,
nugget.reestim = FALSE,
newnoise.var = NULL,
kmcontrol = NULL,
newF = NULL,

Arguments

object A KM object.

80

newX

newy

update, KM-method

A numeric matrix containing the new design points. It must have object@d
columns in correspondence with those of the design matrix used to fit the model
which is stored as object@X.

A numeric vector of new response values, in correspondence with the rows of
newX.

newX.alreadyExist

cov.reestim

trend.reestim

nugget.reestim

newnoise.var
kmcontrol

newF

Details

Logical. If TRUE, newX can contain some input points that are already in
object@X.

Logical. If TRUE, the vector theta of correlation ranges will be re-estimated
using the new observations as well as the observations already used when fitting
object. Only TRUE can be used for now.

Logical. If TRUE the vector beta of trend coefficients will be re-estimated using
all the observations. Only TRUE can be used for now.

Logical. If TRUE the nugget effect will be re-estimated using all the observations.
Only FALSE can be used for now.

Optional variance of an additional noise on the new response.
A list of options to tune the fit. Not available yet.

New trend matrix. XXXY?

Ignored.

Without a dedicated update method for the class "KM", this would have been inherited from the
class "km". The dedicated method is expected to run faster. A comparison can be made by coercing
a KM object to a km object with as. km before calling update.

Value

The updated KM object.

Author(s)

Yann Richet <yann.richet@asnr.fr>

See Also

as. km to coerce a KM object to the class "km".

Examples

f <= function(x) 1 -1/ 2 % (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x*5 + 0.7)

plot(f)
set.seed(123)

X <- as.matrix(runif(5))

y <= £(X)

points(X, y, col = "blue")
KMobj <- KM(design = X, response = y,covtype = "gauss")
x <- seq(from = @, to = 1, length.out = 101)

update,Noise KM-method 81

p_x <- predict(KMobj, x)

lines(x, p_x$mean, col = "blue")
lines(x, p_x$lower95, col = "blue")
lines(x, p_x$upper95, col = "blue")
newX <- as.matrix(runif(3))

newy <- f(newX)

points(newX, newy, col = "red")

replace the object by its udated version
KMobj <- update(KMobj, newX=newX, newy=newy)

x <- seq(from = @, to = 1, length.out = 101)
p2_x <- predict(KMobj, x)

lines(x, p2_x$mean, col = "red")

lines(x, p2_x$lower95, col = "red")

lines(x, p2_x$upper95, col = "red")

update,NoiseKM-method Update a NoiseKM Object with New Points

Description

The update method is used when new observations are added to a fitted kriging model. Rather than
fitting the model from scratch with the updated observations added, the results of the fit as stored in
object are used to achieve some savings.

Usage

S4 method for signature 'NoisekM'
update(
object,
newx,
newy,
newnoise.var,
newX.alreadyExist = FALSE,
cov.reestim = TRUE,
trend.reestim = cov.reestim,
nugget.reestim = FALSE,
kmcontrol = NULL,
newF = NULL,

Arguments

object A NoiseKM object.

82

update,NoiseKM-method
newX A numeric matrix containing the new design points. It must have object@d
columns in correspondence with those of the design matrix used to fit the model
which is stored as object@X.
newy A numeric vector of new response values, in correspondence with the rows of

newX.

newnoise.var Variance of an additional noise on the new response.

newX.alreadyExist
Logical. If TRUE, newX can contain some input points that are already in
objecte@X.

cov.reestim Logical. If TRUE, the vector theta of correlation ranges will be re-estimated
using the new observations as well as the observations already used when fitting
object. Only TRUE can be used for now.

trend.reestim Logical. If TRUE the vector beta of trend coefficients will be re-estimated using
all the observations. Only TRUE can be used for now.

nugget.reestim Logical. If TRUE the nugget effect will be re-estimated using all the observations.
Only FALSE can be used for now.

kmcontrol A list of options to tune the fit. Not available yet.
newF New trend matrix. XXXY?
Ignored.
Details

Without a dedicated update method for the class "NoiseKM”, this would have been inherited from
the class "km"”. The dedicated method is expected to run faster. A comparison can be made by
coercing a NoiseKM object to a km object with as. km before calling update.

Value

The updated NoiseKM object.

Author(s)

Yann Richet <yann.richet@asnr.fr>

See Also

as. km to coerce a NoiseKM object to the class "km".

Examples

f <= function(x) 1 -1/ 2 % (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x*5 + 0.7)
plot(f)

set.seed(123)

X <- as.matrix(runif(5))

y <= f(X) + 0.01*rnorm(nrow(X))

points(X, y, col = "blue")

KMobj <- NoiseKM(design = X, response =y, noise=rep(0.01%2,5), covtype = "gauss")
x <- seq(from = @, to = 1, length.out = 101)

update,NuggetKM-method 83

p_x <- predict(KMobj, x)

lines(x, p_x$mean, col = "blue")
lines(x, p_x$lower95, col = "blue")
lines(x, p_x$upper95, col = "blue")

newX <- as.matrix(runif(3))

newy <- f(newX) + 0.01*rnorm(nrow(newX))
points(newX, newy, col = "red")

replace the object by its udated version
KMobj <- update(KMobj, newX=newX, newy=newy, newnoise.var=rep(0.01%2,3))

x <- seq(from = @, to = 1, length.out = 101)
p2_x <- predict(KMobj, x)

lines(x, p2_x$mean, col = "red")

lines(x, p2_x$lower95, col = "red")

lines(x, p2_x$upper95, col = "red")

update,NuggetKM-method
Update a NuggetKM Object with New Points

Description

The update method is used when new observations are added to a fitted kriging model. Rather than
fitting the model from scratch with the updated observations added, the results of the fit as stored in
object are used to achieve some savings.

Usage

S4 method for signature 'NuggetKM'
update(
object,
newX,
newy,
newX.alreadyExist = FALSE,
cov.reestim = TRUE,
trend.reestim = cov.reestim,
nugget.reestim = FALSE,
newnoise.var = NULL,
kmcontrol = NULL,
newF = NULL,

Arguments

object A NuggetKM object.

84

newX

newy

update,NuggetKM-method

A numeric matrix containing the new design points. It must have object@d
columns in correspondence with those of the design matrix used to fit the model
which is stored as object@X.

A numeric vector of new response values, in correspondence with the rows of
newX.

newX.alreadyExist

cov.reestim

trend.reestim

nugget.reestim

newnoise.var
kmcontrol

newF

Details

Logical. If TRUE, newX can contain some input points that are already in
object@X.

Logical. If TRUE, the vector theta of correlation ranges will be re-estimated
using the new observations as well as the observations already used when fitting
object. Only TRUE can be used for now.

Logical. If TRUE the vector beta of trend coefficients will be re-estimated using
all the observations. Only TRUE can be used for now.

Logical. If TRUE the nugget effect will be re-estimated using all the observations.
Only FALSE can be used for now.

Optional variance of an additional noise on the new response.
A list of options to tune the fit. Not available yet.

New trend matrix. XXXY?

Ignored.

Without a dedicated update method for the class "NuggetKM", this would have been inherited from
the class "km”. The dedicated method is expected to run faster. A comparison can be made by
coercing a NuggetKM object to a km object with as . km before calling update.

Value

The updated NuggetKM object.

Author(s)

Yann Richet <yann.richet@asnr.fr>

See Also

as. km to coerce a NuggetKM object to the class "km".

Examples

f <= function(x) 1 -1/ 2 % (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x*5 + 0.7)

plot(f)
set.seed(123)

X <- as.matrix(runif(5))

y <= f(X) + 0.01*rnorm(nrow(X))

points(X, y, col = "blue")

KMobj <- NuggetKM(design = X, response = y,covtype = "gauss")
x <- seq(from = @, to = 1, length.out = 101)

update.Kriging 85

p_x <- predict(KMobj, x)

lines(x, p_x$mean, col = "blue")
lines(x, p_x$lower95, col = "blue")
lines(x, p_x$upper95, col = "blue")

newX <- as.matrix(runif(3))

newy <- f(newX) + 0.01*rnorm(nrow(newX))
points(newX, newy, col = "red")

replace the object by its udated version
KMobj <- update(KMobj, newX=newX, newy=newy)

x <- seq(from = @, to =1,
p2_x <- predict(KMobj, x)
lines(x, p2_x$mean, col = "red")

lines(x, p2_x$lower95, col = "red")
lines(x, p2_x$upper95, col = "red")

length.out = 101)

update.Kriging Update a Kriging model object with new points

Description

Update a Kriging model object with new points

Usage
S3 method for class 'Kriging'
update(object, y_u, X_u, refit = TRUE, ...)
Arguments
object S3 Kriging object.
y_u Numeric vector of new responses (output).
X_u Numeric matrix of new input points.
refit Logical. If TRUE the model is refitted (default is FALSE).
Ignored.
Value

No return value. Kriging object argument is modified.

Caution

The method does not return the updated object, but instead changes the content of object. This
behaviour is quite unusual in R and differs from the behaviour of the methods update. km in DiceK-
riging and update,KM-method.

86 update.NoiseKriging

Author(s)

Yann Richet <yann.richet@asnr.fr>

Examples

f <= function(x) 1- 1/ 2 x (sin(12 *x x) / (1 + x) + 2 * cos(7 * x)*x*5 + 0.7)
plot(f)

set.seed(123)

X <- as.matrix(runif(10))

y <= f(X)

points(X, y, col = "blue")

k <- Kriging(y, X, "matern3_2")

x <- seq(from = @, to = 1, length.out = 101)

p <- predict(k, x)

lines(x, p$mean, col = "blue”)

polygon(c(x, rev(x)), c(p$mean - 2 * p$stdev, rev(p$mean + 2 * p$stdev)),
border = NA, col = rgb(o, 0, 1, 0.2))

X_u <- as.matrix(runif(3))
y_u <= f(X_u)
points(X_u, y_u, col = "red")

change the content of the object 'k'
update(k, y_u, X_u)

include design points to see interpolation

x <- sort(c(X,X_u,seq(from = @, to = 1, length.out = 101)))

p2 <- predict(k, x)

lines(x, p2$mean, col = "red")

polygon(c(x, rev(x)), c(p2$mean - 2 x p2$stdev, rev(p2$mean + 2 * p2%$stdev)),
border = NA, col = rgh(1, 0, 0, 0.2))

update.NoiseKriging Update a NoiseKriging model object with new points

Description

Update a NoiseKriging model object with new points

Usage

S3 method for class 'NoiseKriging'
update(object, y_u, noise_u, X_u, refit = TRUE, ...)

update.NoiseKriging 87

Arguments
object S3 NoiseKriging object.
y_u Numeric vector of new responses (output).
noise_u Numeric vector of new noise variances (output).
X_u Numeric matrix of new input points.
refit Logical. If TRUE the model is refitted (default is FALSE).
Ignored.
Value

No return value. NoiseKriging object argument is modified.

Caution

The method does not return the updated object, but instead changes the content of object. This
behaviour is quite unusual in R and differs from the behaviour of the methods update . km in DiceK-
riging and update,KM-method.

Author(s)

Yann Richet <yann.richet@asnr.fr>

Examples

f <= function(x) 1- 1 / 2 x (sin(12 * x) / (1 + x) + 2 * cos(7 * x)*x*5 + 0.7)
plot(f)

set.seed(123)

X <- as.matrix(runif(10))

y <= f(X) + X/10 * rnorm(nrow(X))

points(X, y, col = "blue")

k <- NoiseKriging(y, (X/10)*2, X, "matern3_2")

x <- seq(from = @, to = 1, length.out = 101)

p <- predict(k, x)

lines(x, p$mean, col = "blue”)

polygon(c(x, rev(x)), c(p$mean - 2 * p$stdev, rev(p$mean + 2 * p$stdev)),
border = NA, col = rgbh(e, 0, 1, 0.2))

X_u <- as.matrix(runif(3))
y_u <= f(X_u) + 0.1 * rnorm(nrow(X_u))
points(X_u, y_u, col = "red")

change the content of the object 'k'
update(k, y_u, rep(0.1%2,3), X_u)

include design points to see interpolation
x <- sort(c(X,X_u,seq(from = @, to = 1, length.out = 101)))
p2 <- predict(k, x)

88 update.NuggetKriging

lines(x, p2%$mean, col = "red")
polygon(c(x, rev(x)), c(p2$mean - 2 x p2$stdev, rev(p2$mean + 2 x p2$stdev)),
border = NA, col = rgh(1, 0, 0, 0.2))

update.NuggetKriging Update a NuggetKriging model object with new points

Description

Update a NuggetKriging model object with new points

Usage
S3 method for class 'NuggetKriging'
update(object, y_u, X_u, refit = TRUE, ...)
Arguments
object S3 NuggetKriging object.
y_u Numeric vector of new responses (output).
X_u Numeric matrix of new input points.
refit Logical. If TRUE the model is refitted (default is FALSE).
Ignored.
Value

No return value. NuggetKriging object argument is modified.

Caution

The method does not return the updated object, but instead changes the content of object. This
behaviour is quite unusual in R and differs from the behaviour of the methods update. km in DiceK-
riging and update,KM-method.

Author(s)

Yann Richet <yann.richet@asnr.fr>

Examples

f <= function(x) 1- 1 / 2 x (sin(12 *x x) / (1 + x) + 2 * cos(7 * x)*x*5 + 0.7)
plot(f)

set.seed(123)

X <- as.matrix(runif(10))

y <= f(X) + 0.1 * rnorm(nrow(X))

points(X, y, col = "blue")

k <- NuggetKriging(y, X, "matern3_2")

update_simulate

include design points to see interpolation

x <= sort(c(X,seq(from = @, to = 1, length.out = 101)))

p <- predict(k, x)

lines(x, p$mean, col = "blue”)

polygon(c(x, rev(x)), c(p$mean - 2 * p$stdev, rev(p$mean + 2 * p$stdev)),
border = NA, col = rgb(e, 0, 1, 0.2))

X_u <- as.matrix(runif(3))
y_u <= f(X_u) + 0.1 * rnorm(nrow(X_u))
points(X_u, y_u, col = "red")

change the content of the object 'k'
update(k, y_u, X_u)

include design points to see interpolation

x <- sort(c(X,X_u,seq(from = @, to = 1, length.out = 101)))

p2 <- predict(k, x)

lines(x, p2%$mean, col = "red")

polygon(c(x, rev(x)), c(p2$mean - 2 x p2$stdev, rev(p2$mean + 2 x p2$stdev)),
border = NA, col = rgh(1, 0, 0, 0.2))

89

update_simulate Update simulation of model on data.

Description

Update previous simulate of a model given in object.

Usage
update_simulate(object, ...)
Arguments
object An object representing a fitted model.
Further arguments of function
Value

Updated simulation of model output.

90 update_simulate.Kriging

update_simulate.Kriging
Update previous simulation of a Kriging model object.

Description

This method draws paths of the stochastic process conditional on the values at the input points used
in the fit, plus the new input points and their values given as argument (knonw as ’update’ points).

Usage
S3 method for class 'Kriging'
update_simulate(object, y_u, X_u, ...)

Arguments
object S3 Kriging object.
y_u Numeric vector of new responses (output).
X_u Numeric matrix of new input points.

Ignored.
Value

a matrix with nrow(x) rows and nsim columns containing the simulated paths at the inputs points
given in Xx.

Author(s)

Yann Richet <yann.richet@asnr.fr>

Examples

f <= function(x) 1 - 1/ 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x5 + 0.7)
plot(f)

set.seed(123)

X <- as.matrix(runif(10))

y <= f(X)

points(X, y, col = "blue")

k <- Kriging(y, X, kernel = "matern3_2")

x <- seq(from = @, to = 1, length.out = 101)
s <- k$simulate(nsim = 3, x = x, will_update = TRUE)

lines(x, s[, 11, col = "blue")
lines(x, s[, 21, col = "blue")
lines(x, s[, 31, col = "blue")

update_simulate.NoiseKriging 91

X_u <- as.matrix(runif(3))
y_u <- f(X_u)
points(X_u, y_u, col = "red")

su <- k$update_simulate(y_u, X_u)
lines(x, sul , 1], col = "blue”, 1lty=2)

lines(x, sul , 2], col "blue", 1ty=2)
lines(x, sul , 31, col = "blue”, 1lty=2)

update_simulate.NoiseKriging
Update previous simulation of a NoiseKriging model object.

Description

This method draws paths of the stochastic process conditional on the values at the input points used
in the fit, plus the new input points and their values given as argument (knonw as ’update’ points).

Usage
S3 method for class 'NoiseKriging'
update_simulate(object, y_u, noise_u, X_u, ...)
Arguments
object S3 NoiseKriging object.
y_u Numeric vector of new responses (output).
noise_u Numeric vector of new noise variances (output).
X_u Numeric matrix of new input points.
Ignored.
Value

a matrix with nrow(x) rows and nsim columns containing the simulated paths at the inputs points
given in X.

Author(s)

Yann Richet <yann.richet@asnr.fr>

92 update_simulate. NuggetKriging

Examples

f <= function(x) 1 -1/ 2 % (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x5 + 0.7)
plot(f)

set.seed(123)

X <- as.matrix(runif(10))

y <= f(X) + X/10 * rnorm(nrow(X))

points(X, y, col = "blue")

k <- NoiseKriging(y, (X/10)*2, X, "matern3_2")

x <- seq(from = @, to = 1, length.out = 101)
s <- k$simulate(nsim = 3, x = x, will_update = TRUE)

lines(x, s[, 11, col = "blue")
lines(x, s[, 2], col = "blue")
lines(x, s[, 31, col = "blue")

X_u <- as.matrix(runif(3))
y_u <= f(X_u) + 0.1 * rnorm(nrow(X_u))
points(X_u, y_u, col = "red")

su <- k$update_simulate(y_u, rep(@.1%2,3), X_u)
lines(x, sul , 1], col = "blue”, 1lty=2)

lines(x, sul , 2], col = "blue”, 1lty=2)
lines(x, sul , 3], col = "blue”, 1lty=2)

update_simulate.NuggetKriging
Update previous simulation of a NuggetKriging model object.

Description

This method draws paths of the stochastic process conditional on the values at the input points used
in the fit, plus the new input points and their values given as argument (knonw as ’update’ points).

Usage
S3 method for class 'NuggetKriging'
update_simulate(object, y_u, X_u, ...)

Arguments
object S3 NuggetKriging object.
y_u Numeric vector of new responses (output).
X_u Numeric matrix of new input points.

Ignored.

update_simulate.NuggetKriging 93

Value

a matrix with nrow(x) rows and nsim columns containing the simulated paths at the inputs points
given in Xx.

Author(s)

Yann Richet <yann.richet@asnr.fr>

Examples

f <= function(x) 1 -1/ 2 % (sin(12 * x) / (1 + x) + 2 * cos(7 *x x) * x*5 + 0.7)
plot(f)

set.seed(123)

X <- as.matrix(runif(10))

y <= f(X) + 0.1 * rnorm(nrow(X))

points(X, y, col = "blue")

k <- NuggetKriging(y, X, "matern3_2")

x <- seq(from = @, to = 1, length.out = 101)
s <- k$simulate(nsim = 3, x = x, will_update = TRUE)

lines(x, s[, 11, col = "blue")
lines(x, s[, 2], col "blue")
lines(x, s[, 31, col = "blue")

X_u <- as.matrix(runif(3))
y_u <= f(X_u) + 0.1 * rnorm(nrow(X_u))
points(X_u, y_u, col = "red")

su <- k$update_simulate(y_u, X_u)
lines(x, sul , 1], col = "blue”, 1lty=2)

lines(x, sul , 2], col = "blue”, 1lty=2)
lines(x, sul , 3], col = "blue”, 1lty=2)

Index

as.km, 4,57,59,61,71,73, 74, 80, 82, 84
as.km,Kriging,Kriging-method
(as.km.Kriging), 4
as.km,NoiseKriging,NoiseKriging-method
(as.km.NoiseKriging), 5
as.km.Kriging, 4
as.km.NoiseKriging, 5
as.km.NuggetKriging, 6
as.list,Kriging,Kriging-method
(as.list.Kriging), 7
as.list,NoiseKriging,NoiseKriging-method
(as.list.NoiseKriging), 8

as.list,NuggetKriging,NuggetKriging-method

(as.list.NuggetKriging), 9
as.list.Kriging, 7
as.list.NoiseKriging, 8
as.list.NuggetKriging, 9

classKriging, 10

classNoiseKriging, 10

classNuggetKriging, 11

copy, 11

copy,Kriging,Kriging-method
(copy.Kriging), 12

copy,NoiseKriging,NoiseKriging-method
(copy.NoiseKriging), 12

copy,NuggetKriging,NuggetKriging-method
(copy.NuggetKriging), 13

copy.Kriging, 12

copy.NoiseKriging, 12

copy.NuggetKriging, 13

covMat, 14

covMat,Kriging,Kriging-method
(covMat.Kriging), 15

covMat,NoiseKriging,NoiseKriging-method
(covMat.NoiseKriging), 16

covMat,NuggetKriging,NuggetKriging-method

(covMat.NuggetKriging), 17
covMat.Kriging, 15
covMat.NoiseKriging, 16

covMat.NuggetKriging, 17

fit, 18
fit.Kriging, 18
fit.NoiseKriging, 20
fit.NuggetKriging, 21

KM, 23, 25

km, 24, 50, 54
KM-class, 25
Kriging, 26

leaveOneOut, 27
leaveOneOut,Kriging,Kriging-method
(leaveOneOQut.Kriging), 28
leaveOneOut.Kriging, 28
leaveOneOutFun, 28
leaveOneOutFun,Kriging,Kriging-method
(leaveOneOutFun.Kriging), 29
leaveOneOutFun.Kriging, 29
leaveOneOutVec, 30
leaveOneOutVec,Kriging,Kriging-method
(leaveOneOQutVec.Kriging), 30
leaveOneOutVec.Kriging, 30
load, 32
load.Kriging, 33
load.NoiseKriging, 34
load.NuggetKriging, 35
loglLikelihood, 36
loglikelihood,Kriging,Kriging-method
(logLikelihood.Kriging), 36

loglikelihood,NoiseKriging,NoiseKriging-method

(loglLikelihood.NoiseKriging),
37

loglikelihood,NuggetKriging,NuggetKriging-method

(logLikelihood.NuggetKriging),
38
loglLikelihood.Kriging, 36
loglikelihood.NoiseKriging, 37
loglikelihood.NuggetKriging, 38

INDEX 95

loglLikelihoodFun, 39 save,NoiseKriging,NoiseKriging-method
loglikelihoodFun,Kriging,Kriging-method (save.NoiseKriging), 69
(logLikelihoodFun.Kriging), 39 save,NuggetKriging,NuggetKriging-method
loglLikelihoodFun,NoiseKriging,NoiseKriging-method (save.NuggetKriging), 70
(logLikelihoodFun.NoiseKriging), save.Kriging, 68
40 save.NoiseKriging, 69
loglikelihoodFun,NuggetKriging,NuggetKriging-sevboduggetKriging, 70
(loglLikelihoodFun.NuggetKriging), simulate,KM-method, 71
42 simulate,NoiseKM-method, 72
loglLikelihoodFun.Kriging, 39 simulate,NuggetKM-method, 74
loglLikelihoodFun.NoiseKriging, 40 simulate.Kriging, 75
loglikelihoodFun.NuggetKriging, 42 simulate.NoiseKriging, 76
logMargPost, 43 simulate.NuggetKriging, 78
logMargPost,Kriging,Kriging-method
(logMargPost .Kriging), 43 update,KM-method, 79
logMargPost,NuggetKriging,NuggetKriging-methodpdate,NoiseKM-method, 81
(logMargPost .NuggetKriging), 44 update,NuggetkM-method, 83
logMargPost .Kriging, 43 update.km, 85, 87, 88
logMargPost.NuggetKriging, 44 update.Kriging, 85
logMargPostFun, 45 update.NoiseKriging, 86
logMargPostFun,Kriging,Kriging-method update.NuggetKriging, 88
(logMargPostFun.Kriging), 45 update_simulate, 89
logMargPostFun,NuggetKriging,NuggetKriging-metpdate_simulate.Kriging, 90
(logMargPostFun.NuggetKriging), update_simulate.NoiseKriging, 91
47 update_simulate.NuggetKriging, 92

logMargPostFun.Kriging, 45
logMargPostFun.NuggetKriging, 47

NoiseKM, 48, 51
NoiseKM-class, 50
NoiseKriging, 51
NuggetkM, 52, 55
NuggetKM-class, 54
NuggetKriging, 55

predict,KM-method, 57
predict,NoiseKM-method, 58
predict,NuggetkKM-method, 60
predict.Kriging, 61
predict.NoiseKriging, 63
predict.NuggetKriging, 64
print.Kriging, 65
print.NoiseKriging, 66
print.NuggetKriging, 67

rgasp, 46, 47

save, 68
save,Kriging,Kriging-method
(save.Kriging), 68

	as.km
	as.km.Kriging
	as.km.NoiseKriging
	as.km.NuggetKriging
	as.list.Kriging
	as.list.NoiseKriging
	as.list.NuggetKriging
	classKriging
	classNoiseKriging
	classNuggetKriging
	copy
	copy.Kriging
	copy.NoiseKriging
	copy.NuggetKriging
	covMat
	covMat.Kriging
	covMat.NoiseKriging
	covMat.NuggetKriging
	fit
	fit.Kriging
	fit.NoiseKriging
	fit.NuggetKriging
	KM
	KM-class
	Kriging
	leaveOneOut
	leaveOneOut.Kriging
	leaveOneOutFun
	leaveOneOutFun.Kriging
	leaveOneOutVec
	leaveOneOutVec.Kriging
	load
	load.Kriging
	load.NoiseKriging
	load.NuggetKriging
	logLikelihood
	logLikelihood.Kriging
	logLikelihood.NoiseKriging
	logLikelihood.NuggetKriging
	logLikelihoodFun
	logLikelihoodFun.Kriging
	logLikelihoodFun.NoiseKriging
	logLikelihoodFun.NuggetKriging
	logMargPost
	logMargPost.Kriging
	logMargPost.NuggetKriging
	logMargPostFun
	logMargPostFun.Kriging
	logMargPostFun.NuggetKriging
	NoiseKM
	NoiseKM-class
	NoiseKriging
	NuggetKM
	NuggetKM-class
	NuggetKriging
	predict,KM-method
	predict,NoiseKM-method
	predict,NuggetKM-method
	predict.Kriging
	predict.NoiseKriging
	predict.NuggetKriging
	print.Kriging
	print.NoiseKriging
	print.NuggetKriging
	save
	save.Kriging
	save.NoiseKriging
	save.NuggetKriging
	simulate,KM-method
	simulate,NoiseKM-method
	simulate,NuggetKM-method
	simulate.Kriging
	simulate.NoiseKriging
	simulate.NuggetKriging
	update,KM-method
	update,NoiseKM-method
	update,NuggetKM-method
	update.Kriging
	update.NoiseKriging
	update.NuggetKriging
	update_simulate
	update_simulate.Kriging
	update_simulate.NoiseKriging
	update_simulate.NuggetKriging
	Index

