
HINT:
The File Format

HINT: The File Format

Version 1.4

Reflowable

Output

for TEX

Für meine Mutter

MARTIN RUCKERT Munich University of Applied Sciences

Second edition

The author has taken care in the preparation of this book, but makes no

expressed or implied warranty of any kind and assumes no responsibility for

errors or omissions. No liability is assumed for incidental or consequential

damages in connection with or arising out of the use of the information or

programs contained herein.

Ruckert, Martin.

HINT: The File Format

Includes index.

ISBN 979-854992684-4

Internet page http://hint.userweb.mwn.de/hint/format.html may

contain current information about this book, downloadable software, and

news.

Copyright c© 2019, 2021 by Martin Ruckert

All rights reserved. Printed by Kindle Direct Publishing. This publication

is protected by copyright, and permission must be obtained prior to any

prohibited reproduction, storage in a retrieval system, or transmission in any

form or by any means, electronic, mechanical, photocopying, recording, or

likewise. To obtain permission to use material from this work, please submit

a written request to Martin Ruckert, Hochschule München, Fakultät für

Informatik und Mathematik, Lothstrasse 64, 80335 München, Germany.

ruckert@cs.hm.edu

ISBN-13: 979-854992684-4

First printing: August 2019

Second edition: August 2021

Last commit: Mon Jan 19 09:58:39 2026

v

Preface

Late in summer 2017, with my new C based cweb implementation of TEX[9] in
hand[20][17][18], I started to write the first prototype of the HINT viewer. I
basically made two copies of TEX: In the first copy, I replaced the build page
procedure by an output routine which used more or less the printing routines
already available in TEX. This was the beginning of the HINT file format. In the
second copy, I replaced TEX’s main loop by an input routine that would feed the
HINT file more or less directly to TEX’s build page procedure. And after replacing
TEX’s ship out procedure by a modified rendering routine of a dvi viewer that I
had written earlier for my experiments with TEX’s Computer Modern fonts[16], I
had my first running HINT viewer. My sabbatical during the following Fall term
gave me time for “rapid prototyping” various features that I considered necessary
for reflowable TEX output[19].

The textual output format derived from the original TEX debugging routines
proved to be insufficient when I implemented a “page up” button because it did
not support reading the page content “backwards”. As a consequence, I developed
a compact binary file format that could be parsed easily in both directions. The
HINT short file format was born. I stopped an initial attempt at eliminating the old
textual format because it was so much nicer when debugging. Instead, I converted
the long textual format into the short binary format as a preliminary step in the
viewer. This was not a long term solution. When opening a big file, as produced
from a 1000 pages TEX file, the parsing took several seconds before the first page
would appear on screen. This delay, observed on a fast desktop PC, is barley
tolerable, and the delay one would expect on a low-cost, low-power, mobile device
seemed prohibitive. The consequence is simple: The viewer will need an input file
in the short format; and to support debugging (or editing), separate programs are
needed to translate the short format into the long format and back again. But
for the moment, I did not bother to implement any of this but continued with
unrestricted experimentation.

With the beginning of the Spring term 2018, I stopped further experiments with
the HINT viewer and decided that I had to write down a clean design of the HINT
file format. Or of both file formats? Professors are supposed to do research,
and hence I tried an experiment: Instead of writing down a traditional language
specification, I decided to stick with the “literate programming” paradigm[10] and
write the present book. It describes and implements the stretch and shrink

programs translating one file format into the other. As a side effect, it contains
the underlying language specification. Whether this experiment is a success as a

vi Preface

language specification remains to be seen, and you should see for yourself. But the
only important measure for the value of a scientific experiment is how much you
can learn form it—and I learned a lot.

The whole project turned out to be much more difficult than I had expected.
Early on, I decided that I would use a recursive descent parser for the short format
and an LR(k) parser for the long format. Of course, I would use lex/flex and
yacc/bison to generate the LR(k) parser, and so I had to extend the cweb tools[11]
to support the corresponding source files.

About in mid May, after writing down about 100 pages, the first problems
emerged that could not be resolved with my current approach. I had started
to describe font definitions containing definitions of the interword glue and the
default hyphen, and the declarative style of my exposition started to conflict with
the sequential demands of writing an output file. So it was time for a first complete
redesign. Two more passes over the whole book were necessary to find the concepts
and the structure that would allow me to go forward and complete the book as you
see it now.

While rewriting was on its way, many “nice ideas” were pruned from the book.
For example, the initial idea of optimizing the HINT file while translating it was
first reduced to just gathering statistics and then disappeared completely. The
added code and complexity was just too distracting.

What you see before you is still a snapshot of the HINT file format because
its development is still under way. We will know what features are needed for a
reflowable TEX file format only after many people have started using the format.
To use the format, the end-user will need implementations, and the implementer
will need a language specification. The present book is the first step in an attempt
to solve this “chicken or egg” dilemma.

München
August 20, 2019 Martin Ruckert

vii

Contents

Preface v

Contents vii

1 Introduction 1
1.1 Glyphs . 1
1.2 Scanning the Long Format . 2
1.3 Parsing the Long Format . 3
1.4 Writing the Short Format . 4
1.5 Parsing the Short Format . 8
1.6 Writing the Long Format . 10

2 Data Types 13
2.1 Integers . 13
2.2 Strings . 14
2.3 Character Codes . 16
2.4 Floating Point Numbers . 20
2.5 Fixed Point Numbers . 26
2.6 Dimensions . 26
2.7 Extended Dimensions . 28
2.8 Stretch and Shrink . 31

3 Simple Nodes 35
3.1 Penalties . 35
3.2 Languages . 36
3.3 Rules . 37
3.4 Kerns . 40
3.5 Glue . 42

4 Lists 47
4.1 Plain Lists . 49
4.2 Texts . 52

5 Composite Nodes 61
5.1 Boxes . 61
5.2 Extended Boxes . 64
5.3 Leaders . 68
5.4 Baseline Skips . 70
5.5 Ligatures . 72
5.6 Discretionary breaks . 74

viii Contents

5.7 Paragraphs . 77
5.8 Mathematics . 79
5.9 Adjustments . 81
5.10 Tables . 81

6 Extensions 85
6.1 Images . 85
6.2 Positions, Outlines, Links, and Labels . 96
6.3 Colors . 110
6.4 Rotation . 116
6.5 Unknown Extensions . 116

7 Replacing TEX’s Page Building Process 121
7.1 Stream Definitions . 125
7.2 Stream Content . 128
7.3 Page Template Definitions . 129
7.4 Page Ranges . 130

8 File Structure 137
8.1 Banner . 137
8.2 Long Format Files . 139
8.3 Short Format Files . 140
8.4 Mapping a Short Format File to Memory . 142
8.5 Compression . 144
8.6 Reading Short Format Sections . 146
8.7 Writing Short Format Sections . 146

9 Directory Section 149
9.1 Directories in Long Format . 149
9.2 Directories in Short Format . 154

10 Definition Section 161
10.1 Maximum Values . 162
10.2 Definitions . 166
10.3 Parameter Lists . 170
10.4 Fonts . 172
10.5 References . 176

11 Defaults 179
11.1 Integers . 179
11.2 Dimensions . 181
11.3 Extended Dimensions . 181
11.4 Glue . 182
11.5 Baseline Skips . 183
11.6 Labels . 184
11.7 Streams . 184
11.8 Page Templates . 184
11.9 Page Ranges . 184
11.10 List, Texts, and Parameters . 185
11.11 Colors . 185

Contents ix

12 Content Section 187

13 Processing the Command Line 189

14 Error Handling and Debugging 195

Appendix 197

A Traversing Short Format Files 197
A.1 Lists . 199
A.2 Glyphs . 199
A.3 Penalties . 199
A.4 Kerns . 200
A.5 Extended Dimensions . 200
A.6 Language . 200
A.7 Rules . 201
A.8 Glue . 201
A.9 Boxes . 201
A.10 Extended Boxes . 202
A.11 Leaders . 203
A.12 Baseline Skips . 203
A.13 Ligatures . 203
A.14 Discretionary breaks . 204
A.15 Paragraphs . 204
A.16 Mathematics . 204
A.17 Adjustments . 204
A.18 Tables . 205
A.19 Images . 205
A.20 Links . 205
A.21 Streams . 206
A.22 Colors . 206

B Reading Short Format Files Backwards 207
B.1 Floating Point Numbers . 208
B.2 Extended Dimensions . 208
B.3 Stretch and Shrink . 209
B.4 Glyphs . 209
B.5 Penalties . 210
B.6 Kerns . 210
B.7 Language . 210
B.8 Rules . 210
B.9 Glue . 211
B.10 Boxes . 212
B.11 Extended Boxes . 213
B.12 Leaders . 214
B.13 Baseline Skips . 214
B.14 Ligatures . 215
B.15 Discretionary breaks . 215
B.16 Paragraphs . 216
B.17 Mathematics . 216

x Contents

B.18 Images . 216
B.19 Links and Labels . 217
B.20 Colors . 218
B.21 Plain Lists, Texts, and Parameter Lists . 218
B.22 Adjustments . 219
B.23 Tables . 219
B.24 Stream Nodes . 220
B.25 References . 220
B.26 Unknown nodes . 220

C Code and Header Files 223
C.1 basetypes.h . 223
C.2 format.h . 224
C.3 tables.c . 225
C.4 get.h . 226
C.5 get.c . 227
C.6 put.h . 227
C.7 put.c . 229
C.8 lexer.l . 229
C.9 parser.y . 230
C.10 shrink.c . 231
C.11 stretch.c . 232
C.12 skip.c . 234

D Format Definitions 237
D.1 Reading the Long Format . 237
D.2 Writing the Long Format . 238
D.3 Reading the Short Format . 239
D.4 Writing the Short Format . 240

Crossreference of Code 243

References 249

Index 251

1

1 Introduction
This book defines a file format for reflowable text. Actually it describes two file
formats: a long format that optimizes readability for human beings, and a short
format that optimizes readability for machines and the use of storage space. Both
formats use the concept of nodes and lists of nodes to describe the file content.
Programs that process these nodes will likely want to convert the compressed binary
representation of a node—the short format—or the lengthy textual representation
of a node—the long format—into a convenient internal representation. So most
of what follows is just a description of these nodes: their short format, their long
format and sometimes their internal representation. Where as the description of
the long and short external format is part of the file specification, the description of
the internal representation is just informational. Different internal representations
can be chosen based on the individual needs of the program.

While defining the format, I illustrate the processing of long and short format
files by implementing two utilities: shrink and stretch. shrink converts the long
format into the short format and stretch goes the other way.

There is also a prototype viewer for this file format and a special version of
TEX[8] to produce output in this format. Both are not described here; a survey
describing them can be found in [19].

1.1 Glyphs

Let’s start with a simple and very common kind of node: a node describing a
character. Because we describe a format that is used to display text, we are not so
much interested in the character itself but we are interested in the specific glyph.
In typography, a glyph is a unique mark to be placed on the page representing a
character. For example the glyph representing the character ‘a’ can have many
forms among them ‘a’, ‘a’, or ‘a’. Such glyphs come in collections, called fonts,
representing every character of the alphabet in a consistent way.

The long format of a node describing the glyph ‘a’ might look like this:“ <glyph

97 *1>”. Here “97” is the character code which happens to be the ASCII code of
the letter ‘a’ and “*1” is a font reference that stands for “Computer Modern Roman
10pt”. Reference numbers, as you can see, start with an asterisk reminiscent of
references in the C programming language. The asterisk enables us to distinguish
between ordinary numbers like “1” and references like “*1”.

To make this node more readable, we will see in section 2.3 that it is also possible
to write “ <glyph ’a’ *1 (cmr10)>”. The latter form uses a comment “(cmr10)”,
enclosed in parentheses, to give an indication of what kind of font happens to be
font 1, and it uses “’a’”, the character enclosed in single quotes to denote the

2 1 Introduction

ASCII code of ‘a’. But let’s keep things simple for now and stick with the decimal
notation of the character code.

The rest is common for all nodes: a keyword, here “glyph”, and a pair of pointed
brackets “<. . . >”.

Internally, we represent a glyph by the font number and the character number
or character code. To store the internal representation of a glyph node, we define
an appropriate structure type, named after the node with an uppercase first letter.

〈 hint types 1i 〉 ≡ (1)

typedef struct { uint32 t c; uint8 t f ; } Glyph;
Used in 551dli, 553dliii, and 560dlx.

Let us now look at the program shrink and see how it will convert the long
format description to the internal representation of the glyph and finally to a short
format description.

1.2 Scanning the Long Format

First, shrink reads the input file and extracts a sequence of tokens. This is called
“scanning”. We generate the procedure to do the scanning using the program
flex[12] which is the GNU version of the common UNIX tool lex[13].

The input to flex is a list of pattern/action rules where the pattern is a regular
expression and the action is a piece of C code. Most of the time, the C code is
very simple: it just returns the right token number to the parser which we consider
shortly.

The code that defines the tokens will be marked with a line ending in “−−− =⇒”.
This symbol stands for “Reading the long format”. These code sequences define
the syntactical elements of the long format and at the same time implement the
reading process. All sections where that happens are preceded by a similar heading
and for reference they are conveniently listed together starting on page 237.

Reading the Long Format : −− − =⇒

〈 symbols 2ii 〉 ≡ (2)

%token START "<"

%token END ">"

%token GLYPH "glyph"

%token < u > UNSIGNED

%token < u > REFERENCE

Used in 556dlvi.

You might notice that a small caps font is used for START, END or GLYPH. These
are “terminal symbols” or “tokens”. Next are the scanning rules which define the
connection between tokens and their textual representation.

〈 scanning rules 3iii 〉 ≡ (3)

"<" SCAN_START; return START;

">" SCAN_END; return END;

glyph return GLYPH;

1.3 Parsing the Long Format 3

0|[1−9][0−9]* SCAN_UDEC(yytext); return UNSIGNED;

(0|[1−9][0−9]) SCAN_UDEC(yytext + 1); return REFERENCE;

[[:space:]] ;

\([^()\n]*[)\n] ;

Used in 555dlv.

As we will see later, the macros starting with SCAN_. . . are scanning macros. Here
SCAN_UDEC is a macro that converts the decimal representation that did match the
given pattern to an unsigned integer value; it is explained in section 2.1. The
macros SCAN_START and SCAN_END are explained in section 4.2.

The action “;” is a “do nothing” action; here it causes spaces or comments to
be ignored. Comments start with an opening parenthesis and are terminated by a
closing parenthesis or the end of line character. The pattern “[^()\n]” is a negated
character class that matches all characters except parentheses and the newline
character. These are not allowed inside comments. For detailed information about
the patterns used in a flex program, see the flex user manual[12].

1.3 Parsing the Long Format
Next, the tokens produced by the scanner are assembled into larger entities. This
is called “parsing”. We generate the procedure to do the parsing using the program
bison[12] which is the GNU version of the common UNIX tool yacc[13].

The input to bison is a list of parsing rules, called a “grammar”. The rules
describe how to build larger entities from smaller entities. For a simple glyph node
like “ <glyph 97 *1>”, we need just these rules:

Reading the Long Format : −− − =⇒

〈 symbols 2ii 〉 +≡ (4)

%type < u > start
%type < c > glyph

〈 parsing rules 5v 〉 ≡ (5)

glyph: UNSIGNED REFERENCE

{ $$.c = $1; REF(font kind , $2); $$.f = $2; };
content node: start GLYPH glyph END { hput tags ($1, hput glyph (&($3))); };
start: START { HPUTNODE; $$ = (uint32 t)(hpos ++ − hstart); }

Used in 556dlvi.

You might notice that a slanted font is used for glyph, content node, or start.
These are “nonterminal symbols’ and occur on the left hand side of a rule. On the
right hand side of a rule you find nonterminal symbols, as well as terminal symbols
and C code enclosed in braces.

Within the C code, the expressions $1 and $2 refer to the variables on the
parse stack that are associated with the first and second symbol on the right hand
side of the rule. In the case of our glyph node, these will be the values 97 and
1, respectively, as produced by the macro SCAN_UDEC. $$ refers to the variable
associated with the left hand side of the rule. These variables contain the internal

4 1 Introduction

representation of the object in question. The type of the variable is specified by
a mandatory token or optional type clause when we define the symbol. In the
above type clause for start and glyph , the identifiers u and c refer to the union
declaration of the parser (see page 231) where we find uint32 t u and Glyph c.
The macro REF tests a reference number for its valid range.

Reading a node is usually split into the following sequence of steps:

• Reading the node specification, here a glyph consisting of an UNSIGNED value
and a REFERENCE value.

• Creating the internal representation in the variable $$ based on the values of
$1, $2, . . . Here the character code field c is initialized using the UNSIGNED

value stored in $1 and the font field f is initialized using $2 after checking the
reference number for the proper range.

• A content node rule explaining that start is followed by GLYPH, the keyword
that directs the parser to glyph, the node specification, and a final END.

• Parsing start, which is defined as the token START will assign to the correspond-
ing variable p on the parse stack the current position hpos in the output and
increments that position to make room for the start byte, which we will discuss
shortly.

• At the end of the content node rule, the shrink program calls a hput . . . func-
tion, here hput glyph , to write the short format of the node as given by its internal
representation to the output and return the correct tag value.

• Finally the hput tags function will add the tag as a start byte and end byte to
the output stream.

Now let’s see how writing the short format works in detail.

1.4 Writing the Short Format

A content node in short form begins with a start byte. It tells us what kind of
node it is. To describe the content of a short HINT file, 32 different kinds of nodes
are defined. Hence the kind of a node can be stored in 5 bits and the remaining
bits of the start byte can be used to contain a 3 bit “info” value.

We define an enumeration type to give symbolic names to the kind-values. The
exact numerical values are of no specific importance; we will see in section 4.2,
however, that the assignment chosen below, has certain advantages.

Because the usage of kind-values in content nodes is slightly different from the
usage in definition nodes, we define alternative names for some kind-values. To
display readable names instead of numerical values when debugging, we define two
arrays of strings as well. Keeping the definitions consistent is achieved by creating
all definitions from the same list of identifiers using different definitions of the
macro DEF_KIND.

〈 hint basic types 6vi 〉 ≡ (6)

#define DEF_KIND (C,D,N) C## kind = N
typedef enum { 〈 kinds 9ix 〉 , 〈 alternative kind names 10x 〉 } Kind;

#undef DEF_KIND

Used in 548dxlviii.

1.4 Writing the Short Format 5

〈 define content name and definition name 7vii 〉 ≡ (7)

#define DEF_KIND (C,D,N) #C
const char ∗content name [32] = { 〈 kinds 9ix 〉 } ;

#undef DEF_KIND

#define DEF_KIND (C,D,N) #D
const char ∗definition name [#20] = { 〈 kinds 9ix 〉 } ;

#undef DEF_KIND

Used in 549dxlix.

〈 print content name and definition name 8viii 〉 ≡ (8)

printf ("const char *content_name[32]={");
for (k = 0; k ≤ 31; k++) { printf ("\"%s\"", content name [k]);

if (k < 31) printf (", ");
}
printf ("};\n\n"); printf ("const char *definition_name[32]={");
for (k = 0; k ≤ 31; k++) { printf ("\"%s\"", definition name [k]);

if (k < 31) printf (", ");
}
printf ("};\n\n");

Used in 549dxlix.

〈 kinds 9ix 〉 ≡ (9)

DEF_KIND(list , list , 0),
DEF_KIND(param , param , 1),
DEF_KIND(range , range , 2),
DEF_KIND(xdimen , xdimen , 3),
DEF_KIND(adjust , adjust , 4),
DEF_KIND(glyph , font , 5),
DEF_KIND(kern , dimen , 6),
DEF_KIND(glue , glue , 7),
DEF_KIND(ligature , ligature , 8),
DEF_KIND(disc , disc , 9),
DEF_KIND(language , language , 10),
DEF_KIND(rule , rule , 11),
DEF_KIND(image , image , 12),
DEF_KIND(leaders , leaders , 13),
DEF_KIND(baseline , baseline , 14),
DEF_KIND(hbox , hbox , 15),
DEF_KIND(vbox , vbox , 16),
DEF_KIND(par , par , 17),
DEF_KIND(math ,math , 18),
DEF_KIND(table , table , 19),
DEF_KIND(item , item , 20),
DEF_KIND(hset , hset , 21),
DEF_KIND(vset , vset , 22),
DEF_KIND(hpack , hpack , 23),

6 1 Introduction

DEF_KIND(vpack , vpack , 24),
DEF_KIND(stream , stream , 25),
DEF_KIND(page , page , 26),
DEF_KIND(link , label , 27),
DEF_KIND(color , color , 28),
DEF_KIND(undefined1 , undefined1 , 29),
DEF_KIND(undefined2 , undefined2 , 30),
DEF_KIND(penalty , int , 31)

Used in 6vi and 7vii.

For a few kind-values we have alternative names; we will use them to express
different intentions when using them.

〈 alternative kind names 10x 〉 ≡ (10)

font kind = glyph kind , int kind = penalty kind , unknown kind = penalty kind ,
dimen kind = kern kind , label kind = link kind , outline kind = link kind

Used in 6vi.

The info values can be used to represent numbers in the range 0 to 7; for an
example see the hput glyph function later in this section. Mostly, however, the
individual bits are used as flags indicating the presence or absence of immediate
parameter values. If the info bit is set, it means the corresponding parameter is
present as an immediate value; if it is zero, it means that there is no immediate
parameter value present, and the node specification will reveal what value to use
instead. In some cases there is a common default value that can be used, in other
cases a one byte reference number is used to select a predefined value.

To make the binary representation of the info bits more readable, we define an
enumeration type.

〈 hint basic types 6vi 〉 +≡ (11)

typedef enum { b000 = 0, b001 = 1, b010 = 2, b011 = 3, b100 = 4, b101 = 5,
b110 = 6, b111 = 7 } Info;

After the start byte follows the node content and it is the purpose of the start
byte to reveal the exact syntax and semantics of the node content. Because we
want to be able to read the short form of a HINT file in forward direction and in
backward direction, the start byte is duplicated after the content as an end byte.

We store a kind and an info value in one byte and call this a tag.

〈 hint basic types 6vi 〉 +≡ (12)

typedef uint8 t Tag;

The following macros are used to assemble and disassemble tags:

〈 hint macros 13xiii 〉 ≡ (13)

#define KIND(T) (((T)� 3) & #1F)
#define NAME(T) content name [KIND(T)]
#define INFO(T) ((T) & #7)
#define TAG(K, I) (((K)� 3) | (I))

Used in 548dxlviii and 553dliii.

1.4 Writing the Short Format 7

Writing a short format HINT file is implemented by a collection of hput . . .
functions; they follow most of the time the same schema:

• First, we define a variable for info .

• Then follows the main part of the function body, where we decide on the output
format, do the actual output and set the info value accordingly.

• We combine the info value with the kind-value and return the correct tag.

• The tag value will be passed to hput tags which generates debugging information,
if requested, and stores the tag before and after the node content.

After these preparations, we turn our attention again to the hput glyph function.
The font number in a glyph node is between 0 and 255 and fits nicely in one
byte, but the character code is more difficult: we want to store the most common
character codes as a single byte and less frequent codes with two, three, or even
four byte. Naturally, we use the info bits to store the number of bytes needed for
the character code.

Writing the Short Format : =⇒ · · ·

〈 put functions 14xiv 〉 ≡ (14)

static uint8 t hput n (uint32 t n)
{ if (n ≤ #FF) { HPUT8(n); return 1; }

else if (n ≤ #FFFF) { HPUT16(n); return 2; }
else if (n ≤ #FFFFFF) { HPUT24(n); return 3; }
else { HPUT32(n); return 4; }

}
Tag hput glyph (Glyph ∗g)
{ Info info ;

info = hput n (g→c); HPUT8(g→f);
return TAG(glyph kind , info);

}
Used in 554dliv and 557dlvii.

The hput tags function is called after the node content has been written to the
stream. It gets a the position of the start byte and the tag. With this information
it writes the start byte at the given position and the end byte at the current stream
position.

〈 put functions 14xiv 〉 +≡ (15)

void hput tags (uint32 t pos ,Tag tag)
{ DBGTAG(tag , hstart + pos); DBGTAG(tag , hpos); HPUTX(1);
∗(hstart + pos) = ∗(hpos ++) = tag ; }

The variables hpos and hstart , the macros HPUT8, HPUT16, HPUT24, HPUT32, and
HPUTX are all defined in section 8.3; they put 8, 16, 24, or 32 bits into the output
stream and check for sufficient space in the output buffer. The macro DBGTAG

writes debugging output; its definition is found in section 14.

8 1 Introduction

Now that we have seen the general outline of the shrink program, starting with
a long format file and ending with a short format file, we will look at the program
stretch that reverses this transformation.

1.5 Parsing the Short Format

The inverse of writing the short format with a hput . . . function is reading the
short format with a hget . . . function.

The schema of hget . . . functions reverse the schema of hput . . . functions. Here
is the code for the initial and final part of a get function:

〈 read the start byte a 16xvi 〉 ≡ (16)

Tag a, z; /∗ the start and the end byte ∗/
uint32 t node pos = (uint32 t)(hpos − hstart);

if (hpos ≥ hend)
QUIT("Attempt to read a start byte at the end of the section");

HGETTAG(a);

Used in 18xviii, 94xciv, 121cxxi, 139cxxxix, 146cxlvi, 158clviii, 167clxvii, 202ccii, 313cccxiii, 369ccclxix, 390cccxc, 398cccxcviii, and 412cdxii.

〈 read and check the end byte z 17xvii 〉 ≡ (17)

HGETTAG(z); if (a 6= z)
QUIT("Tag mismatch [%s,%d]!=[%s,%d] at 0x%x to "SIZE_F"\n",

NAME(a), INFO(a), NAME(z), INFO(z),node pos , hpos − hstart − 1);

Used in 18xviii, 94xciv, 121cxxi, 139cxxxix, 146cxlvi, 158clviii, 167clxvii, 202ccii, 313cccxiii, 369ccclxix, 390cccxc, 398cccxcviii, and 412cdxii.

The central routine to parse the content section of a short format file is the
function hget content node which calls hget content to do most of the processing.

hget content node will read a content node in short format and write it out in
long format: It reads the start byte a, writes the START token using the function
hwrite start , and based on KIND(a), it writes the node’s keyword found in the
content name array. Then it calls hget content to read the node’s content and write
it out. Finally it reads the end byte, checks it against the start byte, and finishes
up the content node by writing the END token using the hwrite end function. The
function returns the tag byte so that the calling function might check that the
content node meets its requirements.

hget content uses the start byte a, passed as a parameter, to branch directly to
the reading routine for the given combination of kind and info value. The reading
routine will read the data and store its internal representation in a variable. All that
the stretch program needs to do with this internal representation is writing it in
the long format. As we will see, the call to the proper hwrite . . . function is included
as final part of the the reading routine (avoiding another switch statement).

1.5 Parsing the Short Format 9

Reading the Short Format : · · · =⇒

〈 get functions 18xviii 〉 ≡ (18)

static void hget content (Tag a);

Tag hget content node (void)
{ 〈 read the start byte a 16xvi 〉 hwrite start ();

if (content known [KIND(a)] & (1� INFO(a)))
hwritef ("%s", content name [KIND(a)]);

hget content (a);
〈 read and check the end byte z 17xvii 〉
hwrite end (); return a;

}
static void hget content (Tag a)
{ switch (a)
{ 〈 cases to get content 20xx 〉

default:
if (¬hget unknown (a)) TAGERR(a);
break;

}
}

Used in 558dlviii and 560dlx.

We implement the code to read a glyph node in two stages. First we define
a general reading macro HGET_GLYPH(I,G) that reads a glyph node with info
value I into a Glyph variable G; then we insert this macro in the above switch
statement for all cases where it applies. Knowing the function hput glyph , the
macro HGET_GLYPH should not be a surprise. It reverses hput glyph , storing the
glyph node in its internal representation. After that, the stretch program calls
hwrite glyph to produce the glyph node in long format.

Reading the Short Format : · · · =⇒

〈 get macros 19xix 〉 ≡ (19)

#define HGET_N(I,X)
if ((I) ≡ 1) (X) = HGET8;
else if ((I) ≡ 2) HGET16(X);
else if ((I) ≡ 3) HGET24(X);
else if ((I) ≡ 4) HGET32(X);

#define HGET_GLYPH(I,G) HGET_N (I, (G).c); (G).f = HGET8;
REF_RNG(font kind , (G).f);
hwrite glyph (&(G));

Used in 558dlviii and 560dlx.

Note that we allow a glyph to reference a font even before that font is defined.
This is necessary because fonts usually contain definitions—for example the fonts
hyphen character—that reference this or other fonts.

10 1 Introduction

〈 cases to get content 20xx 〉 ≡ (20)

case TAG(glyph kind , 1): { Glyph g; HGET_GLYPH(1, g); } break;
case TAG(glyph kind , 2): { Glyph g; HGET_GLYPH(2, g); } break;
case TAG(glyph kind , 3): { Glyph g; HGET_GLYPH(3, g); } break;
case TAG(glyph kind , 4): { Glyph g; HGET_GLYPH(4, g); } break;

Used in 18xviii.

If this two stage method seems strange to you, consider what the C compiler
will do with it. It will expand the HGET_GLYPH macro four times inside the switch
statement. The macro is, however, expanded with a constant I value, so the
expansion of the if statement in HGET_GLYPH(1, g), for example, will become “if
(1 ≡ 1) . . . else if (1 ≡ 2) . . . ” and the compiler will have no difficulties eliminating
the constant tests and the dead branches altogether. This is the most effective use
of the switch statement: a single jump takes you to a specialized code to handle
just the given combination of kind and info value.

Last not least, we implement the function hwrite glyph to write a glyph node in
long form—that is: in a form that is as readable as possible.

1.6 Writing the Long Format

The hwrite glyph function inverts the scanning and parsing process we have de-
scribed at the very beginning of this chapter. To implement the hwrite glyph
function, we use the function hwrite charcode to write the character code. Besides
writing the character code as a decimal number, this function can handle also other
representations of character codes as fully explained in section 2.3. We split off the
writing of the opening and the closing pointed bracket, because we will need this
function very often and because it will keep track of the nesting of nodes and indent
them accordingly. The hwrite range and hwrite label functions used in hwrite end
are discussed in section 7.4 and 6.2.

Writing the Long Format : =⇒ − −−

〈write functions 21xxi 〉 ≡ (21)

int nesting = 0;

void hwrite nesting (void)
{ int i;

hwritec(’\n’);
for (i = 0; i < nesting ; i++) hwritec(’ ’);
}
void hwrite start (void)
{ hwrite nesting (); hwritec(’<’); nesting ++;
}
void hwrite range (void);
void hwrite label (void);

void hwrite end (void)
{ nesting −−; hwritec(’>’);

if (section no ≡ 2) {

1.6 Writing the Long Format 11

if (nesting ≡ 0) hwrite range ();
hwrite label ();

}
}
void hwrite comment (char ∗str)
{ char c;

if (str ≡ NULL) return;
hwritef (" (");
while ((c = ∗str ++) 6= 0)

if (c ≡ ’(’ ∨ c ≡ ’)’) hwritec(’_’);
else if (c ≡ ’\n’) hwritef ("\n(");
else hwritec(c);

hwritec(’)’);
}
void hwrite charcode (uint32 t c);
void hwrite ref (int n);

void hwrite glyph (Glyph ∗g)
{ char ∗n = hfont name [g→f];

hwrite charcode (g→c); hwrite ref (g→f);
if (n 6= NULL) hwrite comment (n);
}

Used in 558dlviii and 560dlx.

The two primitive operations to write the long format file are defined as macros:

〈write macros 22xxii 〉 ≡ (22)

#define hwritec(c) (hout ? putc(c, hout) : 0)
#define hwritef (. . .) (hout ? fprintf (hout , __VA_ARGS__) : 0)

Used in 558dlviii and 560dlx.

Now that we have completed the round trip of shrinking and stretching glyph
nodes, we continue the description of the HINT file formats in a more systematic
way.

13

2 Data Types

2.1 Integers
We have already seen the pattern/action rule for unsigned decimal numbers. It
remains to define the macro SCAN_UDEC which converts a string containing an
unsigned decimal number into an unsigned integer. We use the C library function
strtoul :

Reading the long format : −− − =⇒

〈 scanning macros 23xxiii 〉 ≡ (23)

#define SCAN_UDEC(S) yylval .u = strtoul (S, NULL, 10)
Used in 555dlv.

Unsigned integers can be given in hexadecimal notation as well.

〈 scanning definitions 24xxiv 〉 ≡ (24)

HEX [0−9A−F]

Used in 555dlv.

〈 scanning rules 3iii 〉 +≡ (25)

0x{HEX}+ SCAN_HEX(yytext + 2); return UNSIGNED;

Note that the pattern above allows only upper case letters in the hexadecimal
notation for integers.

〈 scanning macros 23xxiii 〉 +≡ (26)

#define SCAN_HEX(S) yylval .u = strtoul (S, NULL, 16)

Last not least, we add rules for signed integers.

〈 symbols 2ii 〉 +≡ (27)

%token < i > SIGNED

%type < i > integer

〈 scanning rules 3iii 〉 +≡ (28)

[+−](0|[1−9][0−9]*) SCAN_DEC(yytext); return SIGNED;

〈 scanning macros 23xxiii 〉 +≡ (29)

#define SCAN_DEC(S) yylval .i = strtol (S, NULL, 10)

14 2 Data Types

〈 parsing rules 5v 〉 +≡ (30)

integer: SIGNED | UNSIGNED { RNG("number", $1, 0,#7FFFFFFF); };

To preserve the “signedness” of an integer also for positive signed integers in the
long format, we implement the function hwrite signed .

Writing the long format : =⇒ − −−

〈write functions 21xxi 〉 +≡ (31)

void hwrite signed (int32 t i)
{

if (i < 0) hwritef (" −%d",−i);
else hwritef (" +%d",+i);

}

Reading and writing integers in the short format is done directly with the HPUT

and HGET macros.

2.2 Strings
Strings are needed in the definition part of a HINT file to specify names of objects,
and in the long file format, we also use them for file names. In the long format,
strings are sequences of characters delimited by single quote characters; for exam-
ple: “’Hello’” or “’cmr10−600dpi.tfm’”; in the short format, strings are byte
sequences terminated by a zero byte. Because file names are system dependent, we
no not allow arbitrary characters in strings but only printable ASCII codes which
we can reasonably expect to be available on most operating systems. If your file
names in a long format HINT file are supposed to be portable, you should probably
be even more restrictive. For example you should avoid characters like “\” or “/”
which are used in different ways for directories.

The internal representation of a string is a simple zero terminated C string.
When scanning a string, we copy it to the str buffer keeping track of its length
in str length . When done, we make a copy for permanent storage and return the
pointer to the parser. To operate on the str buffer , we define a few macros. The
constant MAX_STR determines the maximum size of a string (including the zero
byte) to be 210 byte. This restriction is part of the HINT file format specification.

〈 scanning macros 23xxiii 〉 +≡ (32)

#define MAX_STR (1� 10) /∗ 210 Byte or 1kByte ∗/
static char str buffer [MAX_STR];
static int str length ;

#define STR_START (str length = 0)
#define STR_PUT(C) (str buffer [str length ++] = (C))
#define STR_ADD(C)
STR_PUT(C); RNG("String length", str length , 0, MAX_STR − 1)

#define STR_END str buffer [str length] = 0
#define SCAN_STR yylval .s = str buffer

To scan a string, we switch the scanner to STR mode when we find a quote
character, then we scan bytes in the range #20 to #7E, which is the range of

2.2 Strings 15

printable ASCII characters, until we find the closing single quote. Quote characters
inside the string are written as two consecutive single quote characters.

Reading the long format : −− − =⇒

〈 scanning definitions 24xxiv 〉 +≡ (33)

%x STR

〈 symbols 2ii 〉 +≡ (34)

%token < s > STRING

〈 scanning rules 3iii 〉 +≡ (35)

’ STR_START; BEGIN(STR);

< STR > {
’ STR_END; SCAN_STR; BEGIN(INITIAL); return STRING;

’’ STR_ADD(’\’’);

[\x20−\x7E] STR_ADD(yytext [0]);

. RNG("String character", yytext [0],#20,#7E);

\n QUIT("Unterminated String in line %d", yylineno);

}

The function hwrite string reverses this process; it must take care of the quote
symbols.

Writing the long format : =⇒ − −−

〈write functions 21xxi 〉 +≡ (36)

void hwrite string (char ∗str)
{ hwritec(’ ’);

if (str ≡ NULL) hwritef ("’’");
else
{ hwritec(’\’’);

while (∗str 6= 0)
{ if (∗str ≡ ’\’’) hwritec(’\’’);

hwritec(∗str);
str ++;

}
hwritec(’\’’);

}
}

In the short format, a string is just a byte sequence terminated by a zero byte. This
makes the function hput string , to write a string, and the macro HGET_STRING, to
read a string in short format, very simple. Note that after writing an unbounded
string to the output buffer, the macro HPUTNODE will make sure that there is enough
space left to write the remainder of the node.

16 2 Data Types

Writing the short format : =⇒ · · ·

〈 put functions 14xiv 〉 +≡ (37)

void hput string (char ∗str)
{ char ∗s = str ;

if (s 6= NULL) { do { HPUTX(1);
HPUT8(∗s);

} while (∗s++ 6= 0);
HPUTNODE;

}
else HPUT8(0);

}

Reading the short format : · · · =⇒

〈 shared get macros 38xxxviii 〉 ≡ (38)

#define HGET_STRING(S) S = (char ∗) hpos ;
while (hpos < hend ∧ ∗hpos 6= 0) {
RNG("String character", ∗hpos ,#20,#7E);
hpos ++;

}
hpos ++;

Used in 551dli and 560dlx.

2.3 Character Codes
We have already seen in the introduction that character codes can be written as
decimal numbers and section 2.1 adds the possibility to use hexadecimal numbers
as well.

It is, however, in most cases more readable if we represent character codes directly
using the characters themselves. Writing “a” is just so much better than writing
“97”. To distinguish the character “9” from the number “9”, we use the common
technique of enclosing characters within single quotes. So “’9’” is the character
code and “9” is the number. Therefore we will define CHARCODE tokens and
complement the parsing rules of section 1.3 with the following rule:

Reading the long format : −− − =⇒

〈 parsing rules 5v 〉 +≡ (39)

glyph: CHARCODE REFERENCE

{ $$.c = $1; REF(font kind , $2); $$.f = $2; };

If the character codes are small, we can represent them using ASCII character
codes. We do not offer a special notation for very small character codes that map
to the non-printable ASCII control codes; for them, the decimal or hexadecimal
notation will suffice. For larger character codes, we use the multibyte encoding
scheme known from UTF8 as follows. Given a character code c:

• Values in the range #00 to #7f are encoded as a single byte with a leading bit
of 0.

2.3 Character Codes 17

〈 scanning definitions 24xxiv 〉 +≡ (40)

UTF8_1 [\x00−\x7F]

〈 scanning macros 23xxiii 〉 +≡ (41)

#define SCAN_UTF8_1(S) yylval .u = ((S)[0] & #7F)

• Values in the range #80 to #7ff are encoded in two byte with the first byte
having three high bits 110, indicating a two byte sequence, and the lower five
bits equal to the five high bits of c. It is followed by a continuation byte having
two high bits 10 and the lower six bits equal to the lower six bits of c.

〈 scanning definitions 24xxiv 〉 +≡ (42)

UTF8_2 [\xC0−\xDF][\x80−\xBF]

〈 scanning macros 23xxiii 〉 +≡ (43)

#define SCAN_UTF8_2(S) yylval .u = (((S)[0] & #1F)� 6) + ((S)[1] & #3F)

• Values in the range #800 to #FFFF are encoded in three byte with the first
byte having the high bits 1110 indicating a three byte sequence followed by two
continuation bytes.

〈 scanning definitions 24xxiv 〉 +≡ (44)

UTF8_3 [\xE0−\xEF][\x80−\xBF][\x80−\xBF]

〈 scanning macros 23xxiii 〉 +≡ (45)

#define SCAN_UTF8_3(S)
yylval .u = (((S)[0] & #0F)� 12) + (((S)[1] & #3F)� 6) + ((S)[2] & #3F)

• Values in the range #1000 to #1FFFFF are encoded in four byte with the first
byte having the high bits 11110 indicating a four byte sequence followed by three
continuation bytes.

〈 scanning definitions 24xxiv 〉 +≡ (46)

UTF8_4 [\xF0−\xF7][\x80−\xBF][\x80−\xBF][\x80−\xBF]

〈 scanning macros 23xxiii 〉 +≡ (47)

#define SCAN_UTF8_4(S)
yylval .u = (((S)[0] & #07)� 18) + (((S)[1] & #3F)� 12) +

(((S)[2] & #3F)� 6) + ((S)[3] & #3F)

In the long format file, we enclose a character code in single quotes, just as we
do for strings. This is convenient but it has the downside that we must exercise
special care when giving the scanning rules in order not to confuse character codes
with strings. Further we must convert character codes back into strings in the rare
case where the parser expects a string and gets a character code because the string
was only a single character long.

Let’s start with the first problem: The scanner might confuse a string and a
character code if the first or second character of the string is a quote character
which is written as two consecutive quotes. For example ’a’’b’ is a string with
three characters, “a”, “’”, and “b”. Two character codes would need a space to
separate them like this: ’a’ ’b’.

18 2 Data Types

〈 symbols 2ii 〉 +≡ (48)

%token < u > CHARCODE

〈 scanning rules 3iii 〉 +≡ (49)

’’’ STR_START; STR_PUT(’\’’); BEGIN(STR);

’’’’ SCAN_UTF8_1(yytext + 1); return CHARCODE;

’[\x20−\x7E]’’ STR_START; STR_PUT(yytext [1]); STR_PUT(’\’’); BEGIN(STR);

’’’’’ STR_START; STR_PUT(’\’’); STR_PUT(’\’’); BEGIN(STR);

’{UTF8_1}’ SCAN_UTF8_1(yytext + 1); return CHARCODE;

’{UTF8_2}’ SCAN_UTF8_2(yytext + 1); return CHARCODE;

’{UTF8_3}’ SCAN_UTF8_3(yytext + 1); return CHARCODE;

’{UTF8_4}’ SCAN_UTF8_4(yytext + 1); return CHARCODE;

If needed, the parser can convert character codes back to single character strings.

〈 symbols 2ii 〉 +≡ (50)

%type < s > string

〈 parsing rules 5v 〉 +≡ (51)

string : STRING | CHARCODE { static char s[2];

RNG("String element", $1,#20,#7E); s[0] = $1; s[1] = 0; $$ = s; };

The function hwrite charcode will write a character code. While ASCII codes
are handled directly, larger character codes are passed to the function hwrite utf8 .
It returns the number of characters written.

Writing the long format : =⇒ − −−

〈write functions 21xxi 〉 +≡ (52)

int hwrite utf8 (uint32 t c)
{ if (c < #80) { hwritec(c); return 1; }

else if (c < #800)
{ hwritec(#C0 | (c� 6)); hwritec(#80 | (c& #3F)); return 2; }
else if (c < #10000)
{ hwritec(#E0 | (c� 12));

hwritec(#80 | ((c� 6) & #3F)); hwritec(#80 | (c& #3F));
return 3;

}
else if (c < #200000)
{ hwritec(#F0 | (c� 18)); hwritec(#80 | ((c� 12) & #3F));

hwritec(#80 | ((c� 6) & #3F)); hwritec(#80 | (c& #3F));
return 4;

}
else RNG("character code", c, 0,#1FFFFF);
return 0;

}

2.3 Character Codes 19

void hwrite charcode (uint32 t c)
{ if (c < #20) {

if (option hex) hwritef (" 0x%02X", c); /∗ non printable ASCII ∗/
else hwritef (" %u", c);

}
else if (c ≡ ’\’’) hwritef (" ’’’’");
else if (c ≤ #7E) hwritef (" \’%c\’", c); /∗ printable ASCII ∗/
else if (option utf8) { hwritef (" \’"); hwrite utf8 (c); hwritec(’\’’); }
else if (option hex) hwritef (" 0x%04X", c);
else hwritef (" %u", c);

}

Reading the short format : · · · =⇒

〈 shared get functions 53liii 〉 ≡ (53)

#define HGET_UTF8C(X) (X) = HGET8; if ((X & #C0) 6= #80)
QUIT("UTF8 continuation byte expected at "SIZE_F" got 0x%02X\n",

hpos − hstart − 1, X)
uint32 t hget utf8 (void)
{ uint8 t a;

a = HGET8;
if (a < #80) return a;
else {

if ((a& #E0) ≡ #C0)
{ uint8 t b; HGET_UTF8C(b);

return ((a&∼#E0)� 6) + (b&∼#C0);
}
else if ((a& #F0) ≡ #E0)
{ uint8 t b, c; HGET_UTF8C(b); HGET_UTF8C(c);

return ((a&∼#F0)� 12) + ((b&∼#C0)� 6) + (c&∼#C0);
}
else if ((a& #F8) ≡ #F0)
{ uint8 t b, c, d; HGET_UTF8C(b); HGET_UTF8C(c); HGET_UTF8C(d);

return ((a&∼#F8)� 18)
+ ((b&∼#C0)� 12) + ((c&∼#C0)� 6) + (d&∼#C0);

}
else QUIT("UTF8 byte sequence expected");

}
}

Used in 552dlii, 558dlviii, and 560dlx.

20 2 Data Types

Writing the short format : =⇒ · · ·

〈 put functions 14xiv 〉 +≡ (54)

void hput utf8 (uint32 t c)
{ HPUTX(4);

if (c < #80) HPUT8(c);
else if (c < #800) { HPUT8(#C0 | (c� 6)); HPUT8(#80 | (c& #3F)); }
else if (c < #10000)
{ HPUT8(#E0 | (c� 12));
HPUT8(#80 | ((c� 6) & #3F)); HPUT8(#80 | (c& #3F));

}
else if (c < #200000)
{ HPUT8(#F0 | (c� 18)); HPUT8(#80 | ((c� 12) & #3F));
HPUT8(#80 | ((c� 6) & #3F)); HPUT8(#80 | (c& #3F));
}
else RNG("character code", c, 0,#1FFFFF);

}

2.4 Floating Point Numbers

You know a floating point numbers when you see it because it features a radix
point. The optional exponent allows you to “float” the point.

Reading the long format : −− − =⇒

〈 symbols 2ii 〉 +≡ (55)

%token < f > FPNUM

%type < f > number

〈 scanning rules 3iii 〉 +≡ (56)

[+−]?[0−9]+\.[0−9]+(e[+−]?[0−9])? SCAN_DECFLOAT; return FPNUM;

The layout of floating point variables of type double or float typically follows
the IEEE754 standard[6][7]. We use the following definitions:

〈 hint basic types 6vi 〉 +≡ (57)

#define FLT_M_BITS 23
#define FLT_E_BITS 8
#define FLT_EXCESS 127
#define DBL_M_BITS 52
#define DBL_E_BITS 11
#define DBL_EXCESS 1023

〈 scanning macros 23xxiii 〉 +≡ (58)

#define SCAN_DECFLOAT yylval .f = atof (yytext)

When the parser expects a floating point number and gets an integer number, it
converts it. So whenever in the long format a floating point number is expected,
an integer number will do as well.

2.4 Floating Point Numbers 21

〈 parsing rules 5v 〉 +≡ (59)

number: UNSIGNED { $$ = (float64 t) $1; }
| SIGNED { $$ = (float64 t) $1; }
| FPNUM;

Unfortunately the decimal representation is not optimal for floating point num-
bers since even simple numbers in decimal notation like 0.1 do not have an exact
representation as a binary floating point number. So if we want a notation that
allows an exact representation of binary floating point numbers, we must use a
hexadecimal representation. Hexadecimal floating point numbers start with an
optional sign, then as usual the two characters “0x”, then follows a sequence of
hex digits, a radix point, more hex digits, and an optional exponent. The optional
exponent starts with the character “x”, followed by an optional sign, and some
more hex digits. The hexadecimal exponent is given as a base 16 number and it is
interpreted as an exponent with the base 16. As an example an exponent of “x10”,
would multiply the mantissa by 1616. In other words it would shift any mantissa
16 hexadecimal digits to the left. Here are the exact rules:

〈 scanning rules 3iii 〉 +≡ (60)

[+−]?0x{HEX}+\.{HEX}+(x[+−]?{HEX}+)? SCAN_HEXFLOAT; return FPNUM;

〈 scanning macros 23xxiii 〉 +≡ (61)

#define SCAN_HEXFLOAT yylval .f = xtof (yytext)

There is no function in the C library for hexadecimal floating point notation so
we have to write our own conversion routine. The function xtof converts a string
matching the above regular expression to its binary representation. Its outline is
very simple:

〈 scanning functions 62lxii 〉 ≡ (62)

float64 t xtof (char ∗x)
{ int sign , digits , exp ;

uint64 t mantissa = 0;

DBG(DBGFLOAT, "converting %s:\n", x);
〈 read the optional sign 63lxiii 〉
x = x+ 2; /∗ skip “0x” ∗/
〈 read the mantissa 64lxiv 〉
〈 normalize the mantissa 65lxv 〉
〈 read the optional exponent 66lxvi 〉
〈 return the binary representation 67lxvii 〉

}
Used in 555dlv.

Now the pieces:

〈 read the optional sign 63lxiii 〉 ≡ (63)

if (∗x ≡ ’−’) { sign = −1; x++; }
else if (∗x ≡ ’+’) { sign = +1; x++; }
else sign = +1;

22 2 Data Types

DBG(DBGFLOAT, "\tsign=%d\n", sign);
Used in 62lxii.

When we read the mantissa, we use the temporary variable mantissa , keep track
of the number of digits, and adjust the exponent while reading the fractional part.

〈 read the mantissa 64lxiv 〉 ≡ (64)

digits = 0;
while (∗x ≡ ’0’) x++; /∗ ignore leading zeros ∗/
while (∗x 6= ’.’)
{ mantissa = mantissa � 4;

if (∗x < ’A’) mantissa = mantissa + ∗x− ’0’;
else mantissa = mantissa + ∗x− ’A’ + 10;
x++;
digits ++;

}
x++; /∗ skip “.” ∗/
exp = 0;
while (∗x 6= 0 ∧ ∗x 6= ’x’)
{ mantissa = mantissa � 4;

exp = exp − 4;
if (∗x < ’A’) mantissa = mantissa + ∗x− ’0’;
else mantissa = mantissa + ∗x− ’A’ + 10;
x++;
digits ++;

}
DBG(DBGFLOAT, "\tdigits=%d mantissa=0x%"PRIx64 ", exp=%d\n",

digits ,mantissa , exp);
Used in 62lxii.

To normalize the mantissa, first we shift it to place exactly one nonzero hexadec-
imal digit to the left of the radix point. Then we shift it right bit-wise until there
is just a single 1 bit to the left of the radix point. To compensate for the shifting,
we adjust the exponent accordingly. Finally we remove the most significant bit
because it is not stored.

〈 normalize the mantissa 65lxv 〉 ≡ (65)

if (mantissa ≡ 0) return 0.0;
{ int s;

s = digits − DBL_M_BITS/4;
if (s > 1) mantissa = mantissa � (4 ∗ (s− 1));
else if (s < 1) mantissa = mantissa � (4 ∗ (1− s));
exp = exp + 4 ∗ (digits − 1);
DBG(DBGFLOAT, "\tdigits=%d mantissa=0x%"PRIx64 ", exp=%d\n",

digits ,mantissa , exp);
while ((mantissa � DBL_M_BITS) > 1)
{ mantissa = mantissa � 1; exp ++; }

2.4 Floating Point Numbers 23

DBG(DBGFLOAT, "\tdigits=%d mantissa=0x%"PRIx64 ", exp=%d\n",
digits ,mantissa , exp);

mantissa = mantissa &∼((uint64 t) 1� DBL_M_BITS);
DBG(DBGFLOAT, "\tdigits=%d mantissa=0x%"PRIx64 ", exp=%d\n",

digits ,mantissa , exp);
}

Used in 62lxii.

In the printed representation, the exponent is an exponent with base 16. For
example, an exponent of 2 shifts the hexadecimal mantissa two hexadecimal digits
to the left, which corresponds to a multiplication by 162.

〈 read the optional exponent 66lxvi 〉 ≡ (66)

if (∗x ≡ ’x’)
{ int s;

x++; /∗ skip the “x” ∗/
if (∗x ≡ ’−’) { s = −1; x++; }
else if (∗x ≡ ’+’) { s = +1; x++; }
else s = +1;
DBG(DBGFLOAT, "\texpsign=%d\n", s);
DBG(DBGFLOAT, "\texp=%d\n", exp);
while (∗x 6= 0) {

if (∗x < ’A’) exp = exp + 4 ∗ s ∗ (∗x− ’0’);
else exp = exp + 4 ∗ s ∗ (∗x− ’A’ + 10);
x++;
DBG(DBGFLOAT, "\texp=%d\n", exp);

}
}
RNG("Floating point exponent",

exp ,−DBL_EXCESS, DBL_EXCESS);
Used in 62lxii.

To assemble the binary representation, we use a union of a float64 t and
uint64 t.

〈 return the binary representation 67lxvii 〉 ≡ (67)

{ union { float64 t d; uint64 t bits ; } u;

if (sign < 0) sign = 1; else sign = 0; /∗ the sign bit ∗/
exp = exp + DBL_EXCESS; /∗ the exponent bits ∗/
u.bits = ((uint64 t) sign � 63)
| ((uint64 t) exp � DBL_M_BITS) | mantissa ;
DBG(DBGFLOAT, " return %f\n", u.d);
return u.d;

}
Used in 62lxii.

The inverse function is hwrite float64 . It strives to print floating point numbers
as readable as possible. So numbers without fractional part are written as integers.

24 2 Data Types

Numbers that can be represented exactly in decimal notation are represented in
decimal notation. All other values are written as hexadecimal floating point num-
bers. We avoid an exponent if it can be avoided by using up to MAX_HEX_DIGITS.
For the use with extended dimensions, floating point numbers should be printed as
a suffix: without a leading space and with a mandatory sign.

Writing the long format : =⇒ − −−

〈write functions 21xxi 〉 +≡ (68)

#define MAX_HEX_DIGITS 12
void hwrite float64 (float64 t d,bool suffix)
{ uint64 t bits , mantissa ;

int exp , digits ;

if (¬suffix) hwritec(’ ’);
else if (d ≥ 0) hwritec(’+’);
if (floor (d) ≡ d) { hwritef ("%d", (int) d); return; }
if (floor (10000.0 ∗ d) ≡ 10000.0 ∗ d) { hwritef ("%g", d); return; }
DBG(DBGFLOAT, "Writing hexadecimal float %f\n", d);
if (d < 0) { hwritec(’−’); d = −d; }
hwritef ("0x");
〈 extract mantissa and exponent 69lxix 〉
if (exp > MAX_HEX_DIGITS) 〈write large numbers 72lxxii 〉
else if (exp ≥ 0) 〈write medium numbers 73lxxiii 〉
else 〈write small numbers 74lxxiv 〉

}

The extraction just reverses the creation of the binary representation.

〈 extract mantissa and exponent 69lxix 〉 ≡ (69)

{ union { float64 t d; uint64 t bits ; } u;

u.d = d; bits = u.bits ;
}
mantissa = bits & (((uint64 t) 1� DBL_M_BITS)− 1);
mantissa = mantissa + ((uint64 t) 1� DBL_M_BITS);
exp = ((bits � DBL_M_BITS) & ((1� DBL_E_BITS)− 1))− DBL_EXCESS;
digits = DBL_M_BITS + 1;
DBG(DBGFLOAT, "\tdigits=%d mantissa=0x%"PRIx64 " binary exp=%d\n",

digits ,mantissa , exp);
Used in 68lxviii.

After we have obtained the binary exponent, we round it down, and convert it
to a hexadecimal exponent.

〈 extract mantissa and exponent 69lxix 〉 +≡ (70)

{ int r;

if (exp ≥ 0) { r = exp % 4;
if (r > 0) { mantissa = mantissa � r; exp = exp − r; digits = digits + r; }

}

2.4 Floating Point Numbers 25

else { r = (−exp) % 4;
if (r > 0) { mantissa = mantissa � r; exp = exp + r; digits = digits − r; }

}
}
exp = exp/4;
DBG(DBGFLOAT, "\tdigits=%d mantissa=0x%"PRIx64 " hex exp=%d\n",

digits ,mantissa , exp);

In preparation for writing, we shift the mantissa to the left so that the leftmost
hexadecimal digit of it will occupy the 4 leftmost bits of the variable bits .

〈 extract mantissa and exponent 69lxix 〉 +≡ (71)

mantissa = mantissa � (64− DBL_M_BITS − 4); /∗ move leading digit to
leftmost nibble ∗/

If the exponent is larger than MAX_HEX_DIGITS, we need to use an exponent even
if the mantissa uses only a few digits. When we use an exponent, we always write
exactly one digit preceding the radix point.

〈write large numbers 72lxxii 〉 ≡ (72)

{ DBG(DBGFLOAT, "writing large number\n");
hwritef ("%X.", (uint8 t)(mantissa � 60));
mantissa = mantissa � 4;
do { hwritef ("%X", (uint8 t)(mantissa � DBL_M_BITS) & #F);

mantissa = mantissa � 4;
} while (mantissa 6= 0);
hwritef ("x+%X", exp);

}
Used in 68lxviii.

If the exponent is small and non negative, we can write the number without an
exponent by writing the radix point at the appropriate place.

〈write medium numbers 73lxxiii 〉 ≡ (73)

{ DBG(DBGFLOAT, "writing medium number\n");
do { hwritef ("%X", (uint8 t)(mantissa � 60));

mantissa = mantissa � 4;
if (exp−− ≡ 0) hwritec(’.’);

} while (mantissa 6= 0 ∨ exp ≥ −1);
}

Used in 68lxviii.

Last non least, we write numbers that would require additional zeros after the radix
point with an exponent, because it keeps the mantissa shorter.

〈write small numbers 74lxxiv 〉 ≡ (74)

{ DBG(DBGFLOAT, "writing small number\n");
hwritef ("%X.", (uint8 t)(mantissa � 60));
mantissa = mantissa � 4;
do { hwritef ("%X", (uint8 t)(mantissa � 60));

mantissa = mantissa � 4;

26 2 Data Types

} while (mantissa 6= 0);
hwritef ("x−%X",−exp);

}
Used in 68lxviii.

Compared to the complications of long format floating point numbers, the short
format is very simple because we just use the binary representation. Since 32 bit
floating point numbers offer sufficient precision we use only the float32 t type.
It is however not possible to just write HPUT32(d) for a float32 t variable d or
HPUT32((uint32 t) d) because in the C language this would imply rounding the
floating point number to the nearest integer. But we have seen how to convert
floating point values to bit pattern before.

〈 put functions 14xiv 〉 +≡ (75)

void hput float32 (float32 t d)
{ union { float32 t d; uint32 t bits ; } u;

u.d = d; HPUT32(u.bits);
}

〈 shared get functions 53liii 〉 +≡ (76)

float32 t hget float32 (void)
{ union { float32 t d; uint32 t bits ; } u;

HGET32(u.bits);
return u.d;

}

2.5 Fixed Point Numbers

TEX internally represents most real numbers as fixed point numbers or “scaled
integers”. The type Scaled is defined as a signed 32 bit integer, but we consider it
as a fixed point number with the binary radix point just in the middle with sixteen
bits before and sixteen bits after it. To convert an integer into a scaled number,
we multiply it by ONE; to convert a floating point number into a scaled number, we
multiply it by ONE and ROUND the result to the nearest integer; to convert a scaled
number to a floating point number we divide it by (float64 t) ONE.

〈 hint basic types 6vi 〉 +≡ (77)

typedef int32 t Scaled;
#define ONE ((Scaled)(1� 16))

〈 hint macros 13xiii 〉 +≡ (78)

#define ROUND (X) ((int)((X) ≥ 0.0 ? floor ((X) + 0.5) : ceil ((X)− 0.5)))

Writing the long format : =⇒ − −−

〈write functions 21xxi 〉 +≡ (79)

void hwrite scaled (Scaled x)
{ hwrite float64 (x/(float64 t) ONE, false);
}

2.6 Dimensions 27

2.6 Dimensions

In the long format, the dimensions of characters, boxes, and other things can be
given in three units: pt, in, and mm.

Reading the long format : −− − =⇒

〈 symbols 2ii 〉 +≡ (80)

%token DIMEN "dimen"

%token PT "pt"

%token MM "mm"

%token INCH "in"

%type < d > dimension

〈 scanning rules 3iii 〉 +≡ (81)

dimen return DIMEN;

pt return PT;

mm return MM;

in return INCH;

The unit pt is a printers point. The unit “in” stands for inches and we have
1in = 72.27 pt. The unit “mm” stands for millimeter and we have 1in = 25.4 mm.

The definition of a printers point given above follows the definition used in TEX
which is slightly larger than the official definition of a printer’s point which was
defined to equal exactly 0.013837in by the American Typefounders Association
in 1886[8].

We follow the tradition of TEX and store dimensions as “scaled points” that is
a dimension of d points is stored as d · 216 rounded to the nearest integer. The
maximum absolute value of a dimension is (230 − 1) scaled points.

〈 hint basic types 6vi 〉 +≡ (82)

typedef Scaled Dimen;
#define MAX_DIMEN ((Dimen)(#3FFFFFFF))

〈 parsing rules 5v 〉 +≡ (83)

dimension: number PT

{ $$ = ROUND($1 ∗ ONE);
RNG("Dimension", $$,−MAX_DIMEN, MAX_DIMEN); }

| number INCH

{ $$ = ROUND($1 ∗ ONE ∗ 72.27);
RNG("Dimension", $$,−MAX_DIMEN, MAX_DIMEN); }

| number MM

{ $$ = ROUND($1 ∗ ONE ∗ (72.27/25.4));
RNG("Dimension", $$,−MAX_DIMEN, MAX_DIMEN); };

When stretch is writing dimensions in the long format, for simplicity it always
uses the unit “pt”.

28 2 Data Types

Writing the long format : =⇒ − −−

〈write functions 21xxi 〉 +≡ (84)

void hwrite dimension (Dimen x)
{ hwrite scaled (x);

hwritef ("pt");
}

In the short format, dimensions are stored as 32 bit scaled point values without
conversion.

Reading the short format : · · · =⇒

〈 get functions 18xviii 〉 +≡ (85)

void hget dimen (Tag a)
{

if (INFO(a) ≡ b000) { uint8 t r;

r = HGET8;
REF(dimen kind , r);
hwrite ref (r);

}
else { uint32 t d;

HGET32(d);
hwrite dimension (d);

}
}

Writing the short format : =⇒ · · ·

〈 put functions 14xiv 〉 +≡ (86)

Tag hput dimen (Dimen d)
{ HPUT32(d);

return TAG(dimen kind , b001);
}

2.7 Extended Dimensions

The dimension that is probably used most frequently in a TEX file is hsize: the ho-
rizontal size of a line of text. Common are also assignments like \hsize=0.5\hsize
\advance\hsize by −10pt, for example to get two columns with lines almost half
as wide as usual, leaving a small gap between left and right column. Similar
considerations apply to vsize.

Because we aim at a reflowable format for TEX output, we have to postpone such
computations until the values of hsize and vsize are known in the viewer. Until
then, we do symbolic computations on linear functions of hsize and vsize. We
call such a linear function w + h · hsize + v · vsize an extended dimension and
represent it by the three numbers w, h, and v.

2.7 Extended Dimensions 29

〈 hint basic types 6vi 〉 +≡ (87)

typedef struct { Dimen w; float32 t h, v; } Xdimen;

Since very often a component of an extended dimension is zero, we store in the
short format only the nonzero components and use the info bits to mark them:
b100 implies w 6= 0, b010 implies h 6= 0, and b001 implies v 6= 0.

Reading the long format : −− − =⇒

〈 symbols 2ii 〉 +≡ (88)

%token XDIMEN "xdimen"

%token H "h"

%token V "v"

%type < xd > xdimen

〈 scanning rules 3iii 〉 +≡ (89)

xdimen return XDIMEN;

h return H;

v return V;

〈 parsing rules 5v 〉 +≡ (90)

xdimen: dimension number H number V { $$.w = $1; $$.h = $2; $$.v = $4; }
| dimension number H { $$.w = $1; $$.h = $2; $$.v = 0.0; }
| dimension number V { $$.w = $1; $$.h = 0.0; $$.v = $2; }
| dimension { $$.w = $1; $$.h = 0.0; $$.v = 0.0; };

xdimen node: start XDIMEN xdimen END {
hput tags ($1, hput xdimen (&($3))); };

Writing the long format : =⇒ − −−

〈write functions 21xxi 〉 +≡ (91)

void hwrite xdimen (Xdimen ∗x)
{ hwrite dimension (x→w);

if (x→h 6= 0.0) { hwrite float64 (x→h, true); hwritec(’h’); }
if (x→v 6= 0.0) { hwrite float64 (x→v, true); hwritec(’v’); }

}
void hwrite xdimen node (Xdimen ∗x)
{ hwrite start ();

hwritef ("xdimen");
hwrite xdimen (x);
hwrite end ();

}

30 2 Data Types

Reading the short format : · · · =⇒

〈 get macros 19xix 〉 +≡ (92)

#define HGET_XDIMEN(I,X)
if ((I) & b100) HGET32((X).w); else (X).w = 0;
if ((I) & b010) (X).h = hget float32 (); else (X).h = 0.0;
if ((I) & b001) (X).v = hget float32 (); else (X).v = 0.0;

〈 get functions 18xviii 〉 +≡ (93)

void hget xdimen (Tag a,Xdimen ∗x)
{

switch (a) {
case TAG(xdimen kind , b001): HGET_XDIMEN(b001 , ∗x); break;
case TAG(xdimen kind , b010): HGET_XDIMEN(b010 , ∗x); break;
case TAG(xdimen kind , b011): HGET_XDIMEN(b011 , ∗x); break;
case TAG(xdimen kind , b100): HGET_XDIMEN(b100 , ∗x); break;
case TAG(xdimen kind , b101): HGET_XDIMEN(b101 , ∗x); break;
case TAG(xdimen kind , b110): HGET_XDIMEN(b110 , ∗x); break;
case TAG(xdimen kind , b111): HGET_XDIMEN(b111 , ∗x); break;
default: QUIT("Extent expected got [%s,%d]", NAME(a), INFO(a));
}

}

Note that the info value b000 , usually indicating a reference, is not supported
for extended dimensions. Most nodes that need an extended dimension offer the
opportunity to give a reference directly without the start and end byte. An
exception is the glue node, but glue nodes that need an extended width are rare.

〈 get functions 18xviii 〉 +≡ (94)

void hget xdimen node (Xdimen ∗x)
{ 〈 read the start byte a 16xvi 〉

if (KIND(a) ≡ xdimen kind) hget xdimen (a, x);
else QUIT("Extent expected at 0x%x got %s",node pos , NAME(a));
〈 read and check the end byte z 17xvii 〉

}

Writing the short format : =⇒ · · ·

〈 put functions 14xiv 〉 +≡ (95)

Tag hput xdimen (Xdimen ∗x)
{ Info info = b000 ;

if (x→w ≡ 0 ∧ x→h ≡ 0.0 ∧ x→v ≡ 0.0) { HPUT32(0); info |= b100 ; }
else {

if (x→w 6= 0) { HPUT32(x→w); info |= b100 ; }
if (x→h 6= 0.0) { hput float32 (x→h); info |= b010 ; }
if (x→v 6= 0.0) { hput float32 (x→v); info |= b001 ; }

}
return TAG(xdimen kind , info);

2.8 Stretch and Shrink 31

}
void hput xdimen node (Xdimen ∗x)
{ uint32 t p = hpos ++ − hstart ;

hput tags (p, hput xdimen (x));
}

2.8 Stretch and Shrink
In section 3.5, we will consider glue which is something that can stretch and
shrink. The stretchability and shrinkability of the glue can be given in “pt” like a
dimension, but there are three more units: fil, fill, and filll. A glue with a
stretchability of 1 fil will stretch infinitely more than a glue with a stretchability
of 1 pt. So if you stretch both glues together, the first glue will do all the stretching
and the latter will not stretch at all. The “fil” glue has simply a higher order
of infinity. You might guess that “fill” glue and “filll” glue have even higher
orders of infinite stretchability. The order of infinity is 0 for pt, 1 for fil, 2 for
fill, and 3 for filll.

The internal representation of a stretch is a variable of type Stretch. It stores
the floating point value and the order of infinity separate as a float64 t and a
uint8 t.

The short format tries to be space efficient and because it is not necessary to
give the stretchability with a precision exceeding about six decimal digits, we use
a single 32 bit floating point value. To write a float32 t value and an order value
as one 32 bit value, we round the two lowest bit of the float32 t variable to zero
using “round to even” and store the order of infinity in these bits. We define a
union type Stch to simplify conversion.

〈 hint basic types 6vi 〉 +≡ (96)

typedef enum { normal o = 0,fil o = 1,fill o = 2,filll o = 3 } Order;
typedef struct { float64 t f ; Order o; } Stretch;
typedef union { float32 t f ; uint32 t u; } Stch;

Writing the short format : =⇒ · · ·

〈 put functions 14xiv 〉 +≡ (97)

void hput stretch (Stretch ∗s)
{ uint32 t mantissa , lowbits , sign , exponent ;

Stch st ;

st .f = s→f ;
DBG(DBGFLOAT, "joining %f−>%f(0x%X),%d:", s→f, st .f , st .u, s→o);
mantissa = st .u& (((uint32 t) 1� FLT_M_BITS)− 1);
lowbits = mantissa & #7; /∗ lowest 3 bits ∗/
exponent = (st .u� FLT_M_BITS) & (((uint32 t) 1� FLT_E_BITS)− 1);
sign = st .u& ((uint32 t) 1� (FLT_E_BITS + FLT_M_BITS));
DBG(DBGFLOAT, "s=%d e=0x%x m=0x%x", sign , exponent ,mantissa);
switch (lowbits) /∗ round to even ∗/
{ case 0: break; /∗ no change ∗/

32 2 Data Types

case 1: mantissa = mantissa − 1; break; /∗ round down ∗/
case 2: mantissa = mantissa − 2; break; /∗ round down to even ∗/
case 3: mantissa = mantissa + 1; break; /∗ round up ∗/
case 4: break; /∗ no change ∗/
case 5: mantissa = mantissa − 1; break; /∗ round down ∗/
case 6: mantissa = mantissa + 1; /∗ round up to even, fall through ∗/
case 7: mantissa = mantissa + 1; /∗ round up to even ∗/

if (mantissa ≥ ((uint32 t) 1� FLT_M_BITS))
{ exponent ++; /∗ adjust exponent ∗/
RNG("Float32 exponent", exponent , 1, 2 ∗ FLT_EXCESS);
mantissa = mantissa � 1;

}
break;

}
DBG(DBGFLOAT, " round s=%d e=0x%x m=0x%x", sign , exponent ,mantissa);
st .u = sign | (exponent � FLT_M_BITS) | mantissa | s→o;
DBG(DBGFLOAT, "float %f hex 0x%x\n", st .f , st .u);
HPUT32(st .u);

}

Reading the short format : · · · =⇒

〈 get macros 19xix 〉 +≡ (98)

#define HGET_STRETCH(S)
{ Stch st ; HGET32(st .u); S.o = st .u& 3;

st .u &= ∼3;
S.f = st .f ; }

Reading the long format : −− − =⇒

〈 symbols 2ii 〉 +≡ (99)

%token FIL "fil"

%token FILL "fill"

%token FILLL "filll"

%type < st > stretch
%type < o > order

〈 scanning rules 3iii 〉 +≡ (100)

fil return FIL;

fill return FILL;

filll return FILLL;

〈 parsing rules 5v 〉 +≡ (101)

order: PT { $$ = normal o ; }
| FIL { $$ = fil o ; } | FILL { $$ = fill o ; } | FILLL { $$ = filll o ; };

stretch: number order { $$.f = $1; $$.o = $2; };

2.8 Stretch and Shrink 33

Writing the long format : =⇒ − −−

〈write functions 21xxi 〉 +≡ (102)

void hwrite order (Order o)
{

switch (o) {
case normal o : hwritef ("pt"); break;
case fil o : hwritef ("fil"); break;
case fill o : hwritef ("fill"); break;
case filll o : hwritef ("filll"); break;
default: QUIT("Illegal order %d", o); break;
}

}
void hwrite stretch (Stretch ∗s)
{ hwrite float64 (s→f, false);

hwrite order (s→o);
}

35

3 Simple Nodes

3.1 Penalties

Penalties are very simple nodes. They specify the cost of breaking a line or page
at the present position. For the internal representation we use an int32 t. The
full range of integers is, however, not used. Instead penalties must be between
-20000 and +20000. (TEX specifies a range of -10000 to +10000, but plain TEX
uses the value -20000 when it defines the supereject control sequence.) The more
general node is called an integer node; it shares the same kind-value int kind =
penalty kind but allows the full range of values. The info value of a penalty node

is 1 or 2 and indicates the number of bytes used to store the integer. The info value
3 can be used for general integers (see section 10.2) that need four byte of storage.

Reading the long format : −− − =⇒

〈 symbols 2ii 〉 +≡ (103)

%token PENALTY "penalty"

%token INTEGER "int"

%type < i > penalty

〈 scanning rules 3iii 〉 +≡ (104)

penalty return PENALTY;

int return INTEGER;

〈 parsing rules 5v 〉 +≡ (105)

penalty : integer { RNG("Penalty", $1,−20000,+20000); $$ = $1; };
content node: start PENALTY penalty END { hput tags ($1, hput int ($3)); };

36 3 Simple Nodes

Reading the short format : · · · =⇒

〈 cases to get content 20xx 〉 +≡ (106)

case TAG(penalty kind , 1): { int32 t p; HGET_PENALTY(1, p); } break;
case TAG(penalty kind , 2): { int32 t p; HGET_PENALTY(2, p); } break;
case TAG(penalty kind , 3): { int32 t p; HGET_PENALTY(3, p); } break;

〈 get macros 19xix 〉 +≡ (107)

#define HGET_PENALTY(I, P)
if (I ≡ 1) { int8 t n = HGET8; P = n; }
else if (I ≡ 2) { int16 t n; HGET16(n); RNG("Penalty", n,−20000,+20000);
P = n; }

else if (I ≡ 3) { int32 t n; HGET32(n); RNG("Penalty", n,−20000,+20000);
P = n; }

hwrite signed (P);

Writing the short format : =⇒ · · ·

〈 put functions 14xiv 〉 +≡ (108)

Tag hput int (int32 t n)
{ Info info ;

if (n ≥ 0)
{ if (n < #80) { HPUT8(n); info = 1; }

else if (n < #8000) { HPUT16(n); info = 2; }
else { HPUT32(n); info = 3; }

}
else
{ if (n ≥ −#80) { HPUT8(n); info = 1; }

else if (n ≥ −#8000) { HPUT16(n); info = 2; }
else { HPUT32(n); info = 3; }

}
return TAG(int kind , info);

}

3.2 Languages

To render a HINT file on screen, information about the language is not necessary.
Knowing the language is, however, very important for language translation and text
to speech conversion which makes texts accessible to the visually-impaired. For this
reason, HINT offers the opportunity to add this information and encourages authors
to supply this information.

Language information by itself is not sufficient to decode text. It must be
supplemented by information about the character encoding (see section 10.4).

To represent language information, the world wide web has set universally ac-
cepted standards. The Internet Engineering Task Force IETF has defined tags for
identifying languages[15]: short strings like “en” for English or “de” for Deutsch,
and longer ones like “sl-IT-nedis”, for the specific variant of the Nadiza dialect of

3.2 Languages 37

Slovenian that is spoken in Italy. We assume that any HINT file will contain only
a small number of different languages and all language nodes can be encoded using
a reference to a predefined node from the definition section (see section 10.5). In
the definition section, a language node will just contain the language tag as given
in [5] (see section 10.2).

Reading the long format : −− − =⇒

〈 symbols 2ii 〉 +≡ (109)

%token LANGUAGE "language"

〈 scanning rules 3iii 〉 +≡ (110)

language return LANGUAGE;

When encoding language nodes in the short format, we use the info value b000
for language nodes in the definition section and for language nodes in the content
section that contain just a one-byte reference (see section 10.5). We use the info
value 1 to 7 as a shorthand for the references *0 and *6 to the predefined language
nodes.

Reading the short format : · · · =⇒
Writing the long format : =⇒ − −−

〈 cases to get content 20xx 〉 +≡ (111)

case TAG(language kind , 1): REF(language kind , 0); hwrite ref (0); break;

case TAG(language kind , 2): REF(language kind , 1); hwrite ref (1); break;

case TAG(language kind , 3): REF(language kind , 2); hwrite ref (2); break;

case TAG(language kind , 4): REF(language kind , 3); hwrite ref (3); break;

case TAG(language kind , 5): REF(language kind , 4); hwrite ref (4); break;

case TAG(language kind , 6): REF(language kind , 5); hwrite ref (5); break;

case TAG(language kind , 7): REF(language kind , 6); hwrite ref (6); break;

Writing the short format : =⇒ · · ·

〈 put functions 14xiv 〉 +≡ (112)

Tag hput language (uint8 t n)

{
if (n < 7) return TAG(language kind , n+ 1);

HPUT8(n);

return TAG(language kind , 0);

}

38 3 Simple Nodes

3.3 Rules

Rules are simply black rectangles having a height, a depth, and a width. All of
these dimensions can also be negative but a rule will not be visible unless its width
is positive and its height plus depth is positive.

As a specialty, rules can have “running dimensions”. If any of the three dimen-
sions is a running dimension, its actual value will be determined by running the
rule up to the boundary of the innermost enclosing box. The width is never run-
ning in an horizontal list; the height and depth are never running in a vertical list.
In the long format, we use a vertical bar “|” or a horizontal bar “ ” (underscore
character) to indicate a running dimension. Of course the vertical bar is meant to
indicate a running height or depth while the horizontal bar stands for a running
width. The parser, however, makes no distinction between the two and you can
use either of them. In the short format, we follow TEX and implement a running
dimension by using the special value −230 = #C0000000.

〈 hint macros 13xiii 〉 +≡ (113)

#define RUNNING_DIMEN #C0000000

It could have been possible to allow extended dimensions in a rule node, but in
most circumstances, the mechanism of running dimensions is sufficient and simpler
to use. If a rule is needed that requires an extended dimension as its length, it is
always possible to put it inside a suitable box and use a running dimension.

To make the short format encoding more compact, the first info bit b100 will
be zero to indicate a running height, bit b010 will be zero to indicate a running
depth, and bit b001 will be zero to indicate a running width.

Because leaders (see section 5.3) may contain a rule node, we also provide
functions to read and write a complete rule node. While parsing the symbol “rule”
will just initialize a variable of type Rule (the writing is done with a separate
routine), parsing a rule node will always include writing it.

〈 hint types 1i 〉 +≡ (114)

typedef struct { Dimen h, d, w; } Rule;

Reading the long format : −− − =⇒

〈 symbols 2ii 〉 +≡ (115)

%token RULE "rule"

%token RUNNING "|"

%type < d > rule dimension
%type < r > rule

〈 scanning rules 3iii 〉 +≡ (116)

rule return RULE;

"|" return RUNNING;

"_" return RUNNING;

〈 parsing rules 5v 〉 +≡ (117)

rule dimension: dimension | RUNNING { $$ = RUNNING_DIMEN; };

3.3 Rules 39

rule: rule dimension rule dimension rule dimension

{ $$.h = $1; $$.d = $2; $$.w = $3;

if ($3 ≡ RUNNING_DIMEN ∧ ($1 ≡ RUNNING_DIMEN ∨ $2 ≡
RUNNING_DIMEN))

QUIT("Incompatible running dimensions 0x%x 0x%x 0x%x",
$1, $2, $3);

};
rule node: start RULE rule END { hput tags ($1, hput rule (&($3))); };
content node: rule node;

Writing the long format : =⇒ − −−

〈write functions 21xxi 〉 +≡ (118)

static void hwrite rule dimension (Dimen d, char c)

{ if (d ≡ RUNNING_DIMEN) hwritef (" %c", c);

else hwrite dimension (d);

}
void hwrite rule (Rule ∗r)
{ hwrite rule dimension (r→h, ’|’);

hwrite rule dimension (r→d, ’|’);

hwrite rule dimension (r→w, ’_’);

}

Reading the short format : · · · =⇒

〈 cases to get content 20xx 〉 +≡ (119)

case TAG(rule kind , b011):

{ Rule r; HGET_RULE(b011 , r); hwrite rule (&(r)); } break;

case TAG(rule kind , b101):

{ Rule r; HGET_RULE(b101 , r); hwrite rule (&(r)); } break;

case TAG(rule kind , b001):

{ Rule r; HGET_RULE(b001 , r); hwrite rule (&(r)); } break;

case TAG(rule kind , b110):

{ Rule r; HGET_RULE(b110 , r); hwrite rule (&(r)); } break;

case TAG(rule kind , b111):

{ Rule r; HGET_RULE(b111 , r); hwrite rule (&(r)); } break;

〈 get macros 19xix 〉 +≡ (120)

#define HGET_RULE(I,R)

if ((I) & b100) HGET32((R).h); else (R).h = RUNNING_DIMEN;

if ((I) & b010) HGET32((R).d); else (R).d = RUNNING_DIMEN;

if ((I) & b001) HGET32((R).w); else (R).w = RUNNING_DIMEN;

40 3 Simple Nodes

〈 get functions 18xviii 〉 +≡ (121)

void hget rule node (void)
{ 〈 read the start byte a 16xvi 〉

if (KIND(a) ≡ rule kind)
{ Rule r; HGET_RULE(INFO(a), r);

hwrite start (); hwritef ("rule"); hwrite rule (&r); hwrite end ();
}
else QUIT("Rule expected at 0x%x got %s",node pos , NAME(a));
〈 read and check the end byte z 17xvii 〉

}

Writing the short format : =⇒ · · ·

〈 put functions 14xiv 〉 +≡ (122)

Tag hput rule (Rule ∗r)
{ Info info = b000 ;

if (r→h 6= RUNNING_DIMEN) { HPUT32(r→h); info |= b100 ; }
if (r→d 6= RUNNING_DIMEN) { HPUT32(r→d); info |= b010 ; }
if (r→w 6= RUNNING_DIMEN) { HPUT32(r→w); info |= b001 ; }
return TAG(rule kind , info);

}

3.4 Kerns

A kern is a bit of white space with a certain length. If the kern is part of a horizontal
list, the length is measured in the horizontal direction, if it is part of a vertical list,
it is measured in the vertical direction. The length of a kern is mostly given as a
dimension but provisions are made to use extended dimensions as well.

The typical use of a kern is its insertion between two characters to make the nat-
ural distance between them a bit wider or smaller. In the latter case, the kern has
a negative length. The typographic optimization just described is called “kerning”
and has given the kern node its name. Kerns inserted from font information or
math mode calculations are normal kerns, while kerns inserted from TEX’s \kern

or \/ commands are explicit kerns. Kern nodes do not disappear at a line break
unless they are explicit.

In the long format, explicit kerns are marked with an “!” sign and in the short
format with the b100 info bit. The two low order info bits are: 0 for a reference
to a dimension, 1 for a reference to an extended dimension, 2 for an immediate
dimension, and 3 for an immediate extended dimension node. To distinguish in
the long format between a reference to a dimension and a reference to an extended
dimension, the latter is prefixed with the keyword “xdimen” (see section 10.5).

〈 hint types 1i 〉 +≡ (123)

typedef struct { bool x; Xdimen d; } Kern;

3.4 Kerns 41

Reading the long format : −− − =⇒

〈 symbols 2ii 〉 +≡ (124)

%token KERN "kern"

%token EXPLICIT "!"

%type < b > explicit
%type < kt > kern

〈 scanning rules 3iii 〉 +≡ (125)

kern return KERN;

! return EXPLICIT;

〈 parsing rules 5v 〉 +≡ (126)

explicit: { $$ = false ; } | EXPLICIT { $$ = true ; };
kern: explicit xdimen { $$.x = $1; $$.d = $2; };
content node: start KERN kern END { hput tags ($1, hput kern (&($3))); }

Writing the long format : =⇒ − −−

〈write functions 21xxi 〉 +≡ (127)

void hwrite explicit (bool x)
{ if (x) hwritef (" !"); }
void hwrite kern (Kern ∗k)
{ hwrite explicit (k→x);

if (k→d.h ≡ 0.0 ∧ k→d.v ≡ 0.0 ∧ k→d.w ≡ 0) hwrite ref (zero dimen no);
else hwrite xdimen (&(k→d));
}

Reading the short format : · · · =⇒

〈 cases to get content 20xx 〉 +≡ (128)

case TAG(kern kind , b010): { Kern k; HGET_KERN(b010 , k); } break;
case TAG(kern kind , b011): { Kern k; HGET_KERN(b011 , k); } break;
case TAG(kern kind , b110): { Kern k; HGET_KERN(b110 , k); } break;
case TAG(kern kind , b111): { Kern k; HGET_KERN(b111 , k); } break;

〈 get macros 19xix 〉 +≡ (129)

#define HGET_KERN(I,K) K.x = (I) & b100 ;
if (((I) & b011) ≡ 2) { HGET32(K.d.w); K.d.h = K.d.v = 0.0; }
else if (((I) & b011) ≡ 3) hget xdimen node (&(K.d));
hwrite kern (&k);

42 3 Simple Nodes

Writing the short format : =⇒ · · ·

〈 put functions 14xiv 〉 +≡ (130)

Tag hput kern (Kern ∗k)
{ Info info ;

if (k→x) info = b100 ; else info = b000 ;
if (k→d.h ≡ 0.0 ∧ k→d.v ≡ 0.0) {

if (k→d.w ≡ 0) HPUT8(zero dimen no);
else { HPUT32(k→d.w); info = info | 2; }

}
else { hput xdimen node (&(k→d)); info = info | 3; }
return TAG(kern kind , info);

}

3.5 Glue

We have seen in section 2.8 how to deal with stretchability and shrinkability and we
will need this now. Glue has a natural width—which in general can be an extended
dimension—and in addition it can stretch and shrink. It might have been possible
to allow an extended dimension also for the stretchability or shrinkability of a glue,
but this seems of little practical relevance and so simplicity won over generality.
Even with that restriction, it is an understatement to regard glue nodes as ”simple”
nodes.

To use the info bits in the short format wisely, I collected some statistical data
using the TEXbook as an example. It turns out that about 99% of all the 58937
glue nodes (not counting the interword glues used inside texts) could be covered
with only 43 predefined glues. So this is by far the most common case; we reserve
the info value b000 to cover it and postpone the description of such glue nodes
until we describe references in section 10.5.

We expect the remaining cases to contribute not too much to the file size, and
hence, simplicity is a more important aspect than efficiency when allocating the
remaining info values.

Looking at the glues in more detail, we find that the most common cases are
those where either one, two, or all three glue components are zero. We use the two
lowest bits to indicate the presence of a nonzero stretchability or shrinkability and
reserve the info values b001 , b010 , and b011 for those cases where the width of
the glue is zero. The zero glue, where all components are zero, is defined as a fixed,
predefined glue instead of reserving a special info value for it. The cost of one extra
byte when encoding it seems not too high a price to pay. After reserving the info
value b111 for the most general case of a glue, we have only three more info values
left: b100 , b101 , and b110 . Keeping things simple implies using the two lowest
info bits—as before—to indicate a nonzero stretchability or shrinkability. For the
width, three choices remain: using a reference to a dimension, using a reference to
an extended dimension, or using an immediate value. Since references to glues are
already supported, an immediate width seems best for glues that are not frequently
reused, avoiding the overhead of references.

3.5 Glue 43

Here is a summary of the info bits and the implied layout of glue nodes in the
short format:

• b000 : reference to a predefined glue

• b001 : zero width and nonzero shrinkability

• b010 : zero width and nonzero stretchability

• b011 : zero width and nonzero stretchability and shrinkability

• b100 : nonzero width

• b101 : nonzero width and nonzero shrinkability

• b110 : nonzero width and nonzero stretchability

• b111 : extended dimension and nonzero stretchability and shrinkability

〈 hint basic types 6vi 〉 +≡ (131)

typedef struct { Xdimen w; Stretch p, m; } Glue;

To test for a zero glue, we implement a macro:

〈 hint macros 13xiii 〉 +≡ (132)

#define ZERO_GLUE(G)
((G).w.w ≡ 0 ∧ (G).w.h ≡ 0.0 ∧ (G).w.v ≡ 0.0 ∧ (G).p.f ≡ 0.0 ∧ (G).m.f ≡ 0.0)

Because other nodes (leaders, baselines, and fonts) contain glue nodes as param-
eters, we provide functions to read and write a complete glue node in the same
way as we did for rule nodes. Further, such an internal glue node has the special
property that in the short format a node for the zero glue might be omitted entirely.

Reading the long format : −− − =⇒

〈 symbols 2ii 〉 +≡ (133)

%token GLUE "glue"

%token PLUS "plus"

%token MINUS "minus"

%type < g > glue
%type < b > glue node
%type < st > plus minus

〈 scanning rules 3iii 〉 +≡ (134)

glue return GLUE;

plus return PLUS;

minus return MINUS;

〈 parsing rules 5v 〉 +≡ (135)

plus: { $$.f = 0.0; $$.o = 0; }
| PLUS stretch { $$ = $2; };

minus: { $$.f = 0.0; $$.o = 0; }
| MINUS stretch { $$ = $2; };

glue: xdimen plus minus { $$.w = $1; $$.p = $2; $$.m = $3; };

44 3 Simple Nodes

content node: start GLUE glue END {
if (ZERO_GLUE($3)) { HPUT8(zero skip no);

hput tags ($1, TAG(glue kind , 0));
}
else hput tags ($1, hput glue (&($3)));
};

glue node: start GLUE glue END

{ if (ZERO_GLUE($3)) { hpos−−; $$ = false ; }
else { hput tags ($1, hput glue (&($3))); $$ = true ; } };

Writing the long format : =⇒ − −−

〈write functions 21xxi 〉 +≡ (136)

void hwrite plus (Stretch ∗p)
{ if (p→f 6= 0.0) { hwritef (" plus"); hwrite stretch (p); }
}
void hwrite minus (Stretch ∗m)
{ if (m→f 6= 0.0) { hwritef (" minus"); hwrite stretch (m); }
}
void hwrite glue (Glue ∗g)
{ hwrite xdimen (&(g→w)); hwrite plus (&g→p); hwrite minus (&g→m);
}
void hwrite ref node (Kind k,uint8 t n);

void hwrite glue node (Glue ∗g)
{ if (ZERO_GLUE(∗g)) hwrite ref node (glue kind , zero skip no);

else { hwrite start (); hwritef ("glue"); hwrite glue (g); hwrite end (); }
}

Reading the short format : · · · =⇒

〈 cases to get content 20xx 〉 +≡ (137)

case TAG(glue kind , b001):
{ Glue g; HGET_GLUE(b001 , g); hwrite glue (&g); } break;

case TAG(glue kind , b010):
{ Glue g; HGET_GLUE(b010 , g); hwrite glue (&g); } break;

case TAG(glue kind , b011):
{ Glue g; HGET_GLUE(b011 , g); hwrite glue (&g); } break;

case TAG(glue kind , b100):
{ Glue g; HGET_GLUE(b100 , g); hwrite glue (&g); } break;

case TAG(glue kind , b101):
{ Glue g; HGET_GLUE(b101 , g); hwrite glue (&g); } break;

case TAG(glue kind , b110):
{ Glue g; HGET_GLUE(b110 , g); hwrite glue (&g); } break;

case TAG(glue kind , b111):
{ Glue g; HGET_GLUE(b111 , g); hwrite glue (&g); } break;

3.5 Glue 45

〈 get macros 19xix 〉 +≡ (138)

#define HGET_GLUE(I,G){
if ((I) 6= b111) {

if ((I) & b100) HGET32((G).w.w); else (G).w.w = 0;
}
if ((I) & b010) HGET_STRETCH((G).p) else (G).p.f = 0.0, (G).p.o = 0;
if ((I) & b001) HGET_STRETCH((G).m) else (G).m.f = 0.0, (G).m.o = 0;
if ((I) ≡ b111) hget xdimen node (&((G).w));
else (G).w.h = (G).w.v = 0.0; }

The hget glue node can cope with a glue node that is omitted and will supply a
zero glue instead.

〈 get functions 18xviii 〉 +≡ (139)

void hget glue node (void)
{ 〈 read the start byte a 16xvi 〉

if (KIND(a) 6= glue kind) { hpos−−;
hwrite ref node (glue kind , zero skip no); return; }

if (INFO(a) ≡ b000) { uint8 t n = HGET8; REF(glue kind , n);
hwrite ref node (glue kind , n); }

else { Glue g; HGET_GLUE(INFO(a), g); hwrite glue node (&g); }
〈 read and check the end byte z 17xvii 〉

}

Writing the short format : =⇒ · · ·
〈 put functions 14xiv 〉 +≡ (140)

Tag hput glue (Glue ∗g)
{ Info info = b000 ;

if (ZERO_GLUE(∗g)) { HPUT8(zero skip no); info = b000 ;
}
else if ((g→w.w ≡ 0 ∧ g→w.h ≡ 0.0 ∧ g→w.v ≡ 0.0)) {

if (g→p.f 6= 0.0) { hput stretch (&g→p); info |= b010 ; }
if (g→m.f 6= 0.0) { hput stretch (&g→m); info |= b001 ; }

}
else if (g→w.h ≡ 0.0 ∧ g→w.v ≡ 0.0 ∧ (g→p.f ≡ 0.0 ∨ g→m.f ≡ 0.0)) {
HPUT32(g→w.w); info = b100 ;
if (g→p.f 6= 0.0) { hput stretch (&g→p); info |= b010 ; }
if (g→m.f 6= 0.0) { hput stretch (&g→m); info |= b001 ; }

}
else
{ hput stretch (&g→p); hput stretch (&g→m);

hput xdimen node (&(g→w));
info = b111 ;

}
return TAG(glue kind , info);

}

47

4 Lists

When a node contains multiple other nodes, we package these nodes into a list
node. It is important to note that list nodes never occur as individual nodes,
they only occur as parts of other nodes. In total, we have three different types
of lists: plain lists that use the kind-value list kind , text lists that use the kind-
value list kind together with the info bit b100 , and parameter lists that use the
kind-value param kind . A description of the first two types of lists follows here.
Parameter lists are described in section 10.3.

Because lists are of variable size, it is not possible in the short format to tell from
the kind and info bits of a tag byte the size of the list node. So advancing from the
beginning of a list node to the next node after the list is not as simple as usual.
To solve this problem, we store the size of the list immediately after the start byte
and before the end byte. Alternatively we could require programs to traverse the
entire list. The latter solution is more compact but inefficient for list with many
nodes; our solution will cost some extra bytes, but the amount of extra bytes will
only grow logarithmically with the size of the HINT file. It would be possible to
allow both methods so that a HINT file could balance size and time trade-offs by
making small lists—where the size can be determined easily by reading the entire
list—without size information and making large lists with size information so that
they can be skipped easily without reading them. But the added complexity seems
too high a price to pay.

Now consider the problem of reading a content stream starting at an arbitrary
position i in the middle of the stream. This situation occurs naturally when resyn-
chronizing a content stream after an error has been detected, but implementing
links poses a similar problem. We can inspect the byte at position i and see if it
is a valid tag. If yes, we are faced with the problem of verifying that this is not a
mere coincidence. So we determine the size s of the node. If the byte in question
is a start byte, we should find a matching byte s bytes later in the stream; if it
is an end byte, we should find the matching byte s bytes earlier in the stream;
if we find no matching byte, this was neither a start nor an end byte. If we find
exactly one matching byte, we can be quite confident (error probability 1/256 if
assuming equal probability of all byte values) that we have found a tag, and we
know whether it is the beginning or the end tag. If we find two matching byte, we
have most likely the start or the end of a node, but we do not know which of the
two. To find out which of the two possibilities is true or to reduce the probability
of an error, we can check the start and end byte of the node immediately preceding
a start byte or immediately following an end byte in a similar way. By testing

48 4 Lists

two more byte, this additional check will reduce the error probability further to
1/224 (under the same assumption as before). So checking more nodes is rarely
necessary. This whole schema would, however, not work if we happen to find a tag
byte that indicated either the begin or the end of a list without specifying the size
of the list. Sure, we can verify the bytes before and after it to find out whether
the byte following it is the begin of a node and the byte preceding it is the end of
a node, but we still don’t know if the byte itself starts a node list or ends a node
list. Even reading along in either direction until finding a matching tag will not
answer the question. The situation is better if we specify a size: we can read the
suspected size after or before the tag and check if we find a matching tag and size
at the position indicated.

In the short format, we use the two lower bits of the info value to indicate
the number of byte used to store the list size: A list with info & #3 = 1 uses 1
byte, with info & #3 = 2 uses 2 byte, and with info & #3 = 3 uses 4 byte. The
info & #3 value zero is reserved for references to predefined lists. An empty list
is always represented using zero as the reference number. General predefined lists
are currently implemented only for parameter lists.

Storing the list size immediately preceding the end tag creates a new problem: If
we try to recover from an error, we might not know the size of the list and searching
for the end of a list, we might be unable to tell the difference between the bytes
that encode the list size and the start tag of a possible next node. If we parse the
content backward, the problem is completely symmetric.

To solve the problem, we insert an additional byte immediately before the final
size and after the initial size marking the size boundary. We choose the byte values
#FF, #FE, and #FD which can not be confused with valid tag bytes and indicate that
the size is stored using 1, 2, or 4 byte respectively. Under regular circumstances,
these bytes are simply skipped. When searching for the list end (or start) these
bytes would correspond to TAG(penalty kind , i) with 7 ≥ i ≥ 5 and can not be
confused with valid penalty nodes which use only the info values 0, 1, and 2. An
empty list always uses the info value 0 and the reference value 0.

We are a bit lazy when it comes to the internal representation of a list. Since we
need the representation as a short format byte sequence anyway, it consists of the
position p of the start of the byte sequence combined with an integer s giving the
size of the byte sequence. If the list is empty, s is zero.

〈 hint types 1i 〉 +≡ (141)

typedef struct { Tag t; uint32 t p; uint32 t s; } List;

The major drawback of this choice of representation is that it ties together
the reading of the long format and the writing of the short format; these are
no longer independent. So starting with the present section, we have to take the
short format representation of a node into account already when we parse the long
format representation.

In the long format, we may start a list node with an estimate of the size needed
to store the list in the short format. We do not want to require the exact size
because this would make editing of long format HINT files almost impossible. Of
course this makes it also impossible to derive the exact s value of the internal

4.1 Plain Lists 49

representation from the long format representation. Therefore we start by parsing
the estimate of the list size and use it to reserve the necessary number of byte to
store the size. Then we parse the content list. As a side effect—and this is an
important point—this will write the list content in short format into the output
buffer. As mentioned above, whenever a node contains a list, we need to consider
this side effect when we give the parsing rules. We will see examples for this in
section 5.

The function hput list will be called after the short format of the list is written
to the output. Before we pass the internal representation of the list to the hput list
function, we update s and p. Further, we pass the position in the stream where the
list size and its boundary mark is supposed to be. Before hput list is called, space
for the tag, the size, and the boundary mark is allocated based on the estimate.
The function hsize bytes computes the number of byte required to store the list
size, and the function hput list size will later write the list size. If the estimate
turns out to be wrong, the list data can be moved to make room for a larger or
smaller size field.

If the long format does not specify a size estimate, a suitable default must be
chosen. A statistical analysis shows that most plain lists need only a single byte to
store the size; and even the total amount of data contained in these lists exceeds
the amount of data stored in longer lists by a factor of about 3. Hence if we do
not have an estimate, we reserve only a single byte to store the size of a list. The
statistics looks different for lists stored as a text: The number of texts that require
two byte for the size is slightly larger than the number of texts that need only one
byte, and the total amount of data stored in these texts is larger by a factor of 2
to 7 than the total amount of data found in all other texts. Hence as a default, we
reserve two byte to store the size for texts.

4.1 Plain Lists
Plain list nodes start and end with a tag of kind list kind . Not uncommon are
empty lists; these can be stored using info = 0 and a reference to the predefined
empty list.

Writing the long format uses the fact that the function hget content node , as
implemented in the stretch program, will output the node in the long format.

Reading the long format : −− − =⇒

〈 symbols 2ii 〉 +≡ (142)

%type < l > list
%type < u > position content list

〈 parsing rules 5v 〉 +≡ (143)

position: { $$ = hpos − hstart ; };
content list: position | content list content node;

estimate: { hpos += 2; } | UNSIGNED { hpos += hsize bytes ($1) + 1; };
list: start estimate content list END

{ $$.t = TAG(list kind , b010); $$.p = $3; $$.s = (hpos − hstart) − $3;
hput tags ($1, hput list ($1 + 1,&($$))); };

50 4 Lists

Writing the long format : =⇒ − −−

〈write functions 21xxi 〉 +≡ (144)

void hwrite list (List ∗l)
{ uint32 t h = hpos − hstart , e = hend − hstart ; /∗ save hpos and hend ∗/

hpos = l→p+ hstart ; hend = hpos + l→s;
if (KIND(l→t) ≡ list kind) {

if (INFO(l→t) & b100) 〈write a text 155clv 〉
else 〈write a list 145cxlv 〉

}
else QUIT("List expected got %s", content name [KIND(l→t)]);
hpos = hstart + h; hend = hstart + e; /∗ restore hpos and hend ∗/

}

〈write a list 145cxlv 〉 ≡ (145)

{ if (l→s ≡ 0) hwritef (" <>");
else
{ DBG(DBGNODE, "Write list at 0x%x size=%u\n", l→p, l→s);

hwrite start (); if (section no ≡ 2) hwrite label ();
if (l→s > #FF) hwritef ("%d", l→s);
while (hpos < hend) hget content node ();
hwrite end ();

}
}

Used in 144cxliv.

Reading the short format : · · · =⇒

〈 shared get functions 53liii 〉 +≡ (146)

void hget size boundary (Info info)
{ uint32 t n;

info = info & #3;
if (info ≡ 0) return;
n = HGET8;
if (n 6= #100− info) QUIT("Non matching boundary byte 0x%x with in\

fo value %d at 0x%x", n, info , (uint32 t)(hpos − hstart − 1));
}
uint32 t hget list size (Info info)
{ uint32 t n = 0;

info = info & #3;
if (info ≡ 0) return 0;
else if (info ≡ 1) n = HGET8;
else if (info ≡ 2) HGET16(n);
else if (info ≡ 3) HGET32(n);
else QUIT("List info %d must be 0, 1, 2, or 3", info);
return n;

4.1 Plain Lists 51

}
void hget list (List ∗l)
{ if (KIND(∗hpos) 6= list kind ∧ KIND(∗hpos) 6= param kind)

QUIT("List expected at 0x%x", (uint32 t)(hpos − hstart));
else { 〈 read the start byte a 16xvi 〉
l→t = a;
HGET_LIST(INFO(a), ∗l);
〈 read and check the end byte z 17xvii 〉
DBG(DBGNODE, "Get list at 0x%x size=%u\n", l→p, l→s);

}
}

If a list has the info value zero, the list is the empty list. Other list references
are currently not implemented.

〈 shared get macros 38xxxviii 〉 +≡ (147)

#define HGET_LIST(I, L)
if (((I) & #3) ≡ 0) { uint8 t n = HGET8; REF_RNG(KIND((L).t), n); (L).s = 0; }
else { (L).s = hget list size (I);

hget size boundary (I);
(L).p = hpos − hstart ;
hpos = hpos + (L).s;
hget size boundary (I);
{ uint32 t s = hget list size (I);

if (s 6= (L).s)
QUIT("List sizes at 0x%x and "SIZE_F" do not match 0x%x \

!= 0x%x",node pos + 1, hpos − hstart − I − 1, (L).s, s);
}

}

Writing the short format : =⇒ · · ·

〈 put functions 14xiv 〉 +≡ (148)

uint8 t hsize bytes (uint32 t n)
{ if (n ≡ 0) return 0;

else if (n < #100) return 1;
else if (n < #10000) return 2;
else return 4;

}
void hput list size (uint32 t n, int i)
{ if (i ≡ 0) return;

else if (i ≡ 1) HPUT8(n);
else if (i ≡ 2) HPUT16(n);
else HPUT32(n);

}

52 4 Lists

Tag hput list (uint32 t start pos ,List ∗l)
{ if (l→s ≡ 0) { hpos = hstart + start pos ; HPUT8(0);

return TAG(KIND(l→t), INFO(l→t) & b100); }
else
{ uint32 t list end = hpos − hstart ;

int i = l→p− start pos − 1; /∗ number of byte allocated for size ∗/
int j = hsize bytes (l→s); /∗ number of byte needed for size ∗/
Info k;

if (j ≡ 4) k = 3;
else k = j;
DBG(DBGNODE, "Put list at 0x%x size=%u\n", l→p, l→s);
if (i > j ∧ l→s > #100) j = i; /∗ avoid moving large lists ∗/
if (i 6= j)
{ int d = j − i;
DBG(DBGNODE, "Moving %u byte by %d\n", l→s, d);
if (d > 0) HPUTX(d);
memmove (hstart + l→p+ d, hstart + l→p, l→s);
〈 adjust label positions after moving a list 258cclviii 〉
l→p = l→p+ d; list end = list end + d;

}
hpos = hstart + start pos ; hput list size (l→s, j); HPUT8(#100− k);
hpos = hstart + list end ; HPUT8(#100− k); hput list size (l→s, j);
return TAG(KIND(l→t), k | (INFO(l→t) & b100));

}
}

4.2 Texts
A Text is a list of nodes with a representation optimized for character nodes. In
the long format, a sequence of characters like “Hello” is written “<glyph ’H’ *0>

<glyph ’e’ *0> <glyph ’l’ *0> <glyph ’l’ *0> <glyph ’o’ *0>”, and even in
the short format it requires 4 byte per character! As a text, the same sequence
is written “ "Hello" ” in the long format and the short format requires usually
just 1 byte per character. Indeed except the bytes with values from #00 to #20,
which are considered control codes, all bytes and all UTF-8 multibyte sequences
are simply considered character codes. They are equivalent to a glyph node in the
“current font”. The current font is font number 0 at the beginning of a text and
it can be changed using the control codes. We introduce the concept of a “current
font” because we do not expect the font to change too often, and it allows for a
more compact representation if we do not store the font with every character code.
It has an important disadvantage though: storing only font changes prevents us
from parsing a text backwards; we always have to start at the beginning of the
text, where the font is known to be font number 0.

Defining a second format for encoding lists of nodes adds another difficulty to the
problem we had discussed at the beginning of section 4. When we try to recover
from an error and start reading a content stream at an arbitrary position, the first

4.2 Texts 53

thing we need to find out is whether at this position we have the tag byte of an
ordinary node or whether we have a position inside a text.

Inside a text, character nodes start with a byte in the range #21–#F7. This
is a wide range and it overlaps considerably with the range of valid tag bytes.
It is however possible to choose the kind-values in such a way that the control
codes do not overlap with the valid tag bytes that start a node. For this reason,
the values list kind ≡ 0, param kind ≡ 1, range kind ≡ 2, xdimen kind ≡ 3,
and adjust kind ≡ 4 were chosen on page 5. Lists, parameter lists, and extended
dimensions occur only inside of content nodes, but are not content nodes in their
own right; page ranges occur only in the definition section; so the values #00 to
#1F are not used as tag bytes of content nodes. The value #20 would, as a tag byte,
indicate an adjust node (adjust kind ≡ 4) with info value zero. Because there are
no predefined adjustments, #20 is not used as a tag byte either. (An alternative
choice would be to use the kind value 4 for paragraph nodes because there are no
predefined paragraphs.)

The largest byte that starts an UTF8 code is #F7; hence, there are eight possible
control codes, from #F8 to #FF, available. The first three values #F8, #F9, and
#FA are actually used for penalty nodes with info values, 0, 1, and 2. The last three
#FD, #FE, and #FF are used as boundary marks for the text size and therefore we
can use only #FB and #FC as control codes.

In the long format, we do not provide a syntax for specifying a size estimate as
we did for plain lists, because we expect text to be quite short. We allocate two
byte for the size and hope that this will prove to be sufficient most of the time.
Further, we will disallow the use of non-printable ASCII codes, because these are—
by definition—not very readable, and we will give special meaning to some of the
printable ASCII codes because we will need a notation for the beginning and ending
of a text, for nodes inside a text, and the control codes.

Here are the details:

• In the long format, a text starts and ends with a double quote character “"”. In
the short format, texts are encoded similar to lists setting the info bit b100 .

• Arbitrary nodes can be embedded inside a text. In the long format, they are
enclosed in pointed brackets < . . . > as usual. In the short format, an arbitrary
node can follow the control code txt node = #1E. Because text may occur in
nodes, the scanner needs to be able to parse texts nested inside nodes nested
inside nodes nested inside texts . . . To accomplish this, we use the “stack”
option of flex and include the pushing and popping of the stack in the macros
SCAN_START and SCAN_END.

• The space character “ ” with ASCII value #20 stands in both formats for the
font specific interword glue node (control code txt glue).

• The hyphen character “−” in the long format and the control code txt hyphen =
#1F in the short format stand for the font specific discretionary hyphenation
node.

• In the long format, the backslash character “\” is used as an escape character.
It is used to introduce notations for control codes, as described below, and to
access the character codes of those ASCII characters that otherwise carry a

54 4 Lists

special meaning. For example “\"” denotes the character code of the double
quote character “"”; and similarly “\\”, “\<”, “\>”, “\ ”, and “\−” denote the
character codes of “\”, “<”, “>”, “ ”, and “−” respectively.

• In the long format, a TAB-character (ASCII code #09) is silently converted to a
space character (ASCII code #20); a NL-character (ASCII code #0A), together
with surrounding spaces, TAB-characters, and CR-characters (ASCII code #0D),
is silently converted to a single space character. All other ASCII characters in the
range #00 to #1F are not allowed inside a text. This rule avoids the problems
arising from “invisible” characters embedded in a text and it allows to break
texts into lines, even with indentation, at word boundaries.

To allow breaking a text into lines without inserting spaces, a NL-character
together with surrounding spaces, TAB-characters, and CR-characters is com-
pletely ignored if the whole group of spaces, TAB-characters, CR-characters, and
the NL-character is preceded by a backslash character.

For example, the text “"There is no more gas in the tank."”
can be written as

"There is

→ no more g\

→ as in the tank."

To break long lines when writing a long format file, we use the variable
txt length to keep track of the approximate length of the current line.

• The control codes txt font = #00, #01, #02, . . . , and #07 are used to change
the current font to font number 0, 1, 2, . . . , and 7. In the long format these
control codes are written \0, \1, \2, . . . , and \7.

• The control code txt global = #08 is followed by a second parameter byte. If
the value of the parameter byte is n, it will set the current font to font number
n. In the long format, the two byte sequence is written “\Fn\” where n is the
decimal representation of the font number.

• The control codes #09, #0A, #0B, #0C, #0D, #0E, #0F, and #10 are also
followed by a second parameter byte. They are used to reference the global
definitions of penalty, kern, ligature, disc, glue, language, rule, and image nodes.
The parameter byte contains the reference number. For example, the byte
sequence #09 #03 is equivalent to the node <penalty *3>. In the long format
these two-byte sequences are written, “\Pn\” (penalty), “\Kn\” (kern), “\Ln\”
(ligature), “\Dn\” (disc), “\Gn\” (glue), “\Sn\” (speak or German “Sprache”),
“\Rn\” (rule), and “\In\” (image), where n is the decimal representation of the
parameter value.

• The control codes from txt local = #11 to #1C are used to reference one of the
12 font specific parameters. In the long format they are written “\a”, “\b”,
“\c”, . . . , “\j”, “\k”,“\l”.

• The control code txt cc = #1D is used as a prefix for an arbitrary character code
represented as an UTF-8 multibyte sequence. Its main purpose is providing a
method for including character codes less or equal to #20 which otherwise would
be considered control codes. In the long format, the byte sequence is written
“\Cn\” where n is the decimal representation of the character code.

4.2 Texts 55

• The control code txt node = #1E is used as a prefix for an arbitrary node in
short format. In the long format, it is written “<” and is followed by the node
content in long format terminated by “>”.

• The control code txt hyphen = #1F is used to access the font specific discre-
tionary hyphen. In the long format it is simply written as “−”.

• The control code txt glue = #20 is the space character, it is used to access the
font specific interword glue. In the long format, we use the space character “ ”
as well.

• The control code txt ignore = #FB is ignored, its position can be used in a link
to specify a position between two characters. In the long format it is written as
“\@”.

• The control code #FC is currently unused.

For the control codes, we define an enumeration type and for references, a reference
type.

〈 hint types 1i 〉 +≡ (149)

typedef enum {
txt font = #00, txt global = #08, txt local = #11, txt cc = #1D,

txt node = #1E, txt hyphen = #1F, txt glue = #20, txt ignore = #FB

} Txt;

Reading the long format : −− − =⇒

〈 scanning definitions 24xxiv 〉 +≡ (150)

%x TXT

〈 symbols 2ii 〉 +≡ (151)

%token TXT START TXT END TXT IGNORE

%token TXT FONT GLUE TXT FONT HYPHEN

%token < u > TXT FONT TXT LOCAL

%token < rf > TXT GLOBAL

%token < u > TXT CC

%type < u > text

〈 scanning rules 3iii 〉 +≡ (152)

\" SCAN_TXT_START; return TXT START;

< TXT > {
\" SCAN_TXT_END; return TXT END;

"<" SCAN_START; return START;

">" QUIT("> not allowed in text mode");

\\\\ yylval .u = ’\\’; return TXT CC;

\\\" yylval .u = ’"’; return TXT CC;

\\"<" yylval .u = ’<’; return TXT CC;

\\">" yylval .u = ’>’; return TXT CC;

56 4 Lists

\\" " yylval .u = ’ ’; return TXT CC;

\\"−" yylval .u = ’−’; return TXT CC;

\\"@" return TXT IGNORE;

[\t\r]*(\n[\t\r]*)+ return TXT FONT GLUE;

\\[\t\r]*\n[\t\r]* ;

\\[0−7] yylval .u = yytext [1]− ’0’; return TXT FONT;

\\F[0−9]+\\ SCAN_REF(font kind); return TXT GLOBAL;

\\P[0−9]+\\ SCAN_REF(penalty kind); return TXT GLOBAL;

\\K[0−9]+\\ SCAN_REF(kern kind); return TXT GLOBAL;

\\L[0−9]+\\ SCAN_REF(ligature kind); return TXT GLOBAL;

\\D[0−9]+\\ SCAN_REF(disc kind); return TXT GLOBAL;

\\G[0−9]+\\ SCAN_REF(glue kind); return TXT GLOBAL;

\\S[0−9]+\\ SCAN_REF(language kind); return TXT GLOBAL;

\\R[0−9]+\\ SCAN_REF(rule kind); return TXT GLOBAL;

\\I[0−9]+\\ SCAN_REF(image kind); return TXT GLOBAL;

\\C[0−9]+\\ SCAN_UDEC(yytext + 2); return TXT CC;

\\[a−l] yylval .u = yytext [1]− ’a’; return TXT LOCAL;

" " return TXT FONT GLUE;

"−" return TXT FONT HYPHEN;

{UTF8_1} SCAN_UTF8_1(yytext); return TXT CC;

{UTF8_2} SCAN_UTF8_2(yytext); return TXT CC;

{UTF8_3} SCAN_UTF8_3(yytext); return TXT CC;

{UTF8_4} SCAN_UTF8_4(yytext); return TXT CC;

}

〈 scanning macros 23xxiii 〉 +≡ (153)

#define SCAN_REF(K) yylval .rf .k = K; yylval .rf .n = atoi (yytext + 2)
static int scan level = 0;

#define SCAN_START yy push state (INITIAL); if (1 ≡ scan level ++)
hpos0 = hpos ;

#define SCAN_END

if (scan level −−) yy pop state ();
elseQUIT("Too many ’>’ in line %d", yylineno)

#define SCAN_TXT_START BEGIN(TXT)
#define SCAN_TXT_END BEGIN(INITIAL)

〈 parsing rules 5v 〉 +≡ (154)

list: TXT START position
{ hpos += 4; /∗ start byte, two size byte, and boundary byte ∗/
} text TXT END

{ $$.t = TAG(list kind , b110); $$.p = $4; $$.s = (hpos − hstart)− $4;
hput tags ($2, hput list ($2 + 1,&($$))); };

4.2 Texts 57

text: position | text txt;

txt: TXT CC { hput txt cc($1); }
| TXT FONT { REF(font kind , $1); hput txt font ($1); }
| TXT GLOBAL { REF($1.k, $1.n); hput txt global (&($1)); }
| TXT LOCAL { RNG("Font parameter", $1, 0, 11); hput txt local ($1); }
| TXT FONT GLUE { HPUTX(1); HPUT8(txt glue); }
| TXT FONT HYPHEN { HPUTX(1); HPUT8(txt hyphen); }
| TXT IGNORE { HPUTX(1); HPUT8(txt ignore); }
| { HPUTX(1); HPUT8(txt node); } content node;

The following function keeps track of the position in the current line. If the line
gets too long it will break the text at the next space character. If no suitable space
character comes along, the line will be broken after any regular character.

Writing the long format : =⇒ − −−

〈write a text 155clv 〉 ≡ (155)

{ if (l→s ≡ 0) hwritef (" \"\"");
else
{ int pos = nesting + 20; /∗ estimate ∗/

hwritef (" \"");
while (hpos < hend)
{ int i = hget txt ();

if (i < 0) {
if (pos ++ < 70) hwritec(’ ’);
else hwrite nesting (), pos = nesting ;

}
else if (i ≡ 1 ∧ pos ≥ 100)
{ hwritec(’\\’); hwrite nesting (); pos = nesting ; }
else pos += i;

}
hwritec(’"’);

}
}

Used in 144cxliv.

The function returns the number of characters written because this information
is needed in hget txt below.

〈write functions 21xxi 〉 +≡ (156)

int hwrite txt cc(uint32 t c)
{ if (c < #20) return hwritef ("\\C%d\\", c);

else switch (c) {
case ’\\’: return hwritef ("\\\\");
case ’"’: return hwritef ("\\\"");
case ’<’: return hwritef ("\\<");
case ’>’: return hwritef ("\\>");

58 4 Lists

case ’ ’: return hwritef ("\\ ");
case ’−’: return hwritef ("\\−");
default: return option utf8 ? hwrite utf8 (c) : hwritef ("\\C%d\\", c);
}

}

Reading the short format : · · · =⇒

〈 get macros 19xix 〉 +≡ (157)

#define HGET_GREF(K,S)
{ uint8 t n = HGET8; REF(K,n); return hwritef ("\\"S"%d\\", n); }

The function hget txt reads a text element and writes it immediately. To enable
the insertion of line breaks when writing a text, we need to keep track of the
number of characters in the current line. For this purpose the function hget txt
returns the number of characters written. It returns −1 if a space character needs
to be written providing a good opportunity for a break.

〈 get functions 18xviii 〉 +≡ (158)

int hget txt (void)
{ if (∗hpos ≥ #80 ∧ ∗hpos ≤ #F7) {

if (option utf8) return hwrite utf8 (hget utf8 ());
else return hwritef ("\\C%d\\", hget utf8 ());

}
else
{ uint8 t a;

a = HGET8;
switch (a) {
case txt font + 0: return hwritef ("\\0");
case txt font + 1: return hwritef ("\\1");
case txt font + 2: return hwritef ("\\2");
case txt font + 3: return hwritef ("\\3");
case txt font + 4: return hwritef ("\\4");
case txt font + 5: return hwritef ("\\5");
case txt font + 6: return hwritef ("\\6");
case txt font + 7: return hwritef ("\\7");
case txt global + 0: HGET_GREF(font kind , "F");
case txt global + 1: HGET_GREF(penalty kind , "P");
case txt global + 2: HGET_GREF(kern kind , "K");
case txt global + 3: HGET_GREF(ligature kind , "L");
case txt global + 4: HGET_GREF(disc kind , "D");
case txt global + 5: HGET_GREF(glue kind , "G");
case txt global + 6: HGET_GREF(language kind , "S");
case txt global + 7: HGET_GREF(rule kind , "R");
case txt global + 8: HGET_GREF(image kind , "I");
case txt local + 0: return hwritef ("\\a");
case txt local + 1: return hwritef ("\\b");

4.2 Texts 59

case txt local + 2: return hwritef ("\\c");
case txt local + 3: return hwritef ("\\d");
case txt local + 4: return hwritef ("\\e");
case txt local + 5: return hwritef ("\\f");
case txt local + 6: return hwritef ("\\g");
case txt local + 7: return hwritef ("\\h");
case txt local + 8: return hwritef ("\\i");
case txt local + 9: return hwritef ("\\j");
case txt local + 10: return hwritef ("\\k");
case txt local + 11: return hwritef ("\\l");
case txt cc : return hwrite txt cc(hget utf8 ());
case txt node :
{ int i;

〈 read the start byte a 16xvi 〉
i = hwritef ("<");
i += hwritef ("%s", content name [KIND(a)]); hget content (a);
〈 read and check the end byte z 17xvii 〉
hwritec(’>’); return i+ 10; /∗ just an estimate ∗/

}
case txt hyphen : hwritec(’−’); return 1;
case txt glue : return −1;
case ’<’: return hwritef ("\\<");
case ’>’: return hwritef ("\\>");
case ’"’: return hwritef ("\\\"");
case ’−’: return hwritef ("\\−");
case txt ignore : return hwritef ("\\@");
default: hwritec(a); return 1;
}

}
}

Writing the short format : =⇒ · · ·

〈 put functions 14xiv 〉 +≡ (159)

void hput txt cc(uint32 t c)
{ if (c ≤ #20) { HPUTX(2);

HPUT8(txt cc); HPUT8(c); }
else hput utf8 (c);

}
void hput txt font (uint8 t f)
{ if (f < 8) HPUTX(1), HPUT8(txt font + f);

else QUIT("Use \\F%d\\ instead of \\%d for font %d in a text", f ,
f , f);

}

60 4 Lists

void hput txt global (Ref ∗ d)
{ HPUTX(2);

switch (d→k) {
case font kind : HPUT8(txt global + 0); break;
case penalty kind : HPUT8(txt global + 1); break;
case kern kind : HPUT8(txt global + 2); break;
case ligature kind : HPUT8(txt global + 3); break;
case disc kind : HPUT8(txt global + 4); break;
case glue kind : HPUT8(txt global + 5); break;
case language kind : HPUT8(txt global + 6); break;
case rule kind : HPUT8(txt global + 7); break;
case image kind : HPUT8(txt global + 8); break;
default:
QUIT("Kind %s not allowed as a global reference in a text",

NAME(d→k));
}
HPUT8(d→n);

}
void hput txt local (uint8 t n)
{ HPUTX(1);
HPUT8(txt local + n);
}

61

5 Composite Nodes

The nodes that we consider in this section can contain one or more list nodes.
When we implement the parsing routines for composite nodes in the long format,
we have to take into account that parsing such a list node will already write the
list node to the output. So we split the parsing of composite nodes into several
parts and store the parts immediately after parsing them. On the parse stack,
we will only keep track of the info value. This new strategy is not as transparent
as our previous strategy used for simple nodes where we had a clean separation
of reading and writing: reading would store the internal representation of a node
and writing the internal representation to output would start only after reading is
completed. The new strategy, however, makes it easier to reuse the grammar rules
for the component nodes.

Another rule applies to composite nodes: in the short format, the subnodes
will come at the end of the node, and especially a list node that contains content
nodes comes last. This helps when traversing the content section as we will see in
appendix A.

5.1 Boxes
The central structuring elements of TEX are boxes. Boxes have a height h, a depth
d, and a width w. The shift amount a shifts the contents of the box, the glue
ratio r is a factor applied to the glue inside the box, the glue order o is its order
of stretchability, and the glue sign s is −1 for shrinking, 0 for rigid, and +1 for
stretching. Most importantly, a box contains a list l of content nodes inside the
box.

〈 hint types 1i 〉 +≡ (160)

typedef struct
{ Dimen h, d, w, a; float32 t r; int8 t s, o; List l; } Box;

There are two types of boxes: horizontal boxes and vertical boxes. The difference
between the two is simple: a horizontal box aligns the reference points of its content
nodes horizontally, and a positive shift amount a shifts the box down; a vertical
box aligns the reference points vertically, and a positive shift amount a shifts the
box right.

Not all box parameters are used frequently. In the short format, we use the
info bits to indicated which of the parameters are used. Where as the width of a
horizontal box is most of the time (80%) nonzero, other parameters are most of the
time zero, like the shift amount (99%) or the glue settings (99.8%). The depth is

62 5 Composite Nodes

zero in about 77%, the height in about 53%, and both together are zero in about
47%. The results for vertical boxes, which constitute about 20% of all boxes, are
similar, except that the depth is zero in about 89%, but the height and width are
almost never zero. For this reason we use bit b001 to indicate a nonzero depth,
bit b010 for a nonzero shift amount, and b100 for nonzero glue settings. Glue sign
and glue order can be packed as two nibbles in a single byte.

Reading the long format : −− − =⇒
〈 symbols 2ii 〉 +≡ (161)

%token HBOX "hbox"

%token VBOX "vbox"

%token SHIFTED "shifted"

%type < info > box box dimen box shift box glue set

〈 scanning rules 3iii 〉 +≡ (162)

hbox return HBOX;

vbox return VBOX;

shifted return SHIFTED;

〈 parsing rules 5v 〉 +≡ (163)

box dimen: dimension dimension dimension
{ $$ = hput box dimen ($1, $2, $3); };

box shift: { $$ = b000 ; } | SHIFTED dimension { $$ = hput box shift ($2); };
box glue set: { $$ = b000 ; }
| PLUS stretch { $$ = hput box glue set (+1, $2.f , $2.o); }
| MINUS stretch { $$ = hput box glue set (−1, $2.f , $2.o); };

box: box dimen box shift box glue set list { $$ = $1 | $2 | $3; };
hbox node: start HBOX box END { hput tags ($1, TAG(hbox kind , $3)); };
vbox node: start VBOX box END { hput tags ($1, TAG(vbox kind , $3)); };
content node: hbox node | vbox node;

Writing the long format : =⇒ − −−
〈write functions 21xxi 〉 +≡ (164)

void hwrite box (Box ∗b)
{ hwrite dimension (b→h);

hwrite dimension (b→d);
hwrite dimension (b→w);
if (b→a 6= 0) { hwritef (" shifted"); hwrite dimension (b→a); }
if (b→r 6= 0.0 ∧ b→s 6= 0)
{ if (b→s > 0) hwritef (" plus"); else hwritef (" minus");

hwrite float64 (b→r, false); hwrite order (b→o);
}
hwrite list (&(b→l));

}

5.1 Boxes 63

Reading the short format : · · · =⇒

〈 cases to get content 20xx 〉 +≡ (165)

case TAG(hbox kind , b000):
{ Box b; HGET_BOX(b000 , b); hwrite box (&b); } break;

case TAG(hbox kind , b001):
{ Box b; HGET_BOX(b001 , b); hwrite box (&b); } break;

case TAG(hbox kind , b010):
{ Box b; HGET_BOX(b010 , b); hwrite box (&b); } break;

case TAG(hbox kind , b011):
{ Box b; HGET_BOX(b011 , b); hwrite box (&b); } break;

case TAG(hbox kind , b100):
{ Box b; HGET_BOX(b100 , b); hwrite box (&b); } break;

case TAG(hbox kind , b101):
{ Box b; HGET_BOX(b101 , b); hwrite box (&b); } break;

case TAG(hbox kind , b110):
{ Box b; HGET_BOX(b110 , b); hwrite box (&b); } break;

case TAG(hbox kind , b111):
{ Box b; HGET_BOX(b111 , b); hwrite box (&b); } break;

case TAG(vbox kind , b000):
{ Box b; HGET_BOX(b000 , b); hwrite box (&b); } break;

case TAG(vbox kind , b001):
{ Box b; HGET_BOX(b001 , b); hwrite box (&b); } break;

case TAG(vbox kind , b010):
{ Box b; HGET_BOX(b010 , b); hwrite box (&b); } break;

case TAG(vbox kind , b011):
{ Box b; HGET_BOX(b011 , b); hwrite box (&b); } break;

case TAG(vbox kind , b100):
{ Box b; HGET_BOX(b100 , b); hwrite box (&b); } break;

case TAG(vbox kind , b101):
{ Box b; HGET_BOX(b101 , b); hwrite box (&b); } break;

case TAG(vbox kind , b110):
{ Box b; HGET_BOX(b110 , b); hwrite box (&b); } break;

case TAG(vbox kind , b111):
{ Box b; HGET_BOX(b111 , b); hwrite box (&b); } break;

〈 get macros 19xix 〉 +≡ (166)

#define HGET_BOX(I,B) HGET32 (B.h);
if ((I) & b001) HGET32(B.d); else B.d = 0;
HGET32(B.w);
if ((I) & b010) HGET32(B.a); else B.a = 0;
if ((I) & b100)
{ B.r = hget float32 (); B.s = HGET8; B.o = B.s& #F; B.s = B.s� 4; }
else { B.r = 0.0; B.o = B.s = 0; }
hget list (&(B.l));

64 5 Composite Nodes

〈 get functions 18xviii 〉 +≡ (167)

void hget hbox node (void)
{ Box b;

〈 read the start byte a 16xvi 〉
if (KIND(a) 6= hbox kind)
QUIT("Hbox expected at 0x%x got %s",node pos , NAME(a));

HGET_BOX(INFO(a), b);
〈 read and check the end byte z 17xvii 〉
hwrite start (); hwritef ("hbox"); hwrite box (&b); hwrite end ();

}
void hget vbox node (void)
{ Box b;

〈 read the start byte a 16xvi 〉
if (KIND(a) 6= vbox kind)
QUIT("Vbox expected at 0x%x got %s",node pos , NAME(a));

HGET_BOX(INFO(a), b);
〈 read and check the end byte z 17xvii 〉
hwrite start (); hwritef ("vbox"); hwrite box (&b); hwrite end ();

}

Writing the short format : =⇒ · · ·

〈 put functions 14xiv 〉 +≡ (168)

Info hput box dimen (Dimen h,Dimen d,Dimen w)
{ Info i; HPUT32(h);

if (d 6= 0) { HPUT32(d); i = b001 ; } else i = b000 ;
HPUT32(w);
return i;

}
Info hput box shift (Dimen a)
{ if (a 6= 0) { HPUT32(a); return b010 ; } else return b000 ;
}
Info hput box glue set (int8 t s,float32 t r,Order o)
{ if (r 6= 0.0 ∧ s 6= 0) { hput float32 (r); HPUT8((s� 4) | o); return b100 ; }

else return b000 ;
}

5.2 Extended Boxes

HiTEX produces two kinds of extended horizontal boxes, hpack kind and hset kind ,
and the same for vertical boxes using vpack kind and vset kind . Let us focus on
horizontal boxes; the handling of vertical boxes is completely parallel.

The hpack procedure of HiTEX produces an extended box of hset kind either if
it is given an extended dimension as its width or if it discovers that the width of
its content is an extended dimension. After the final width of the box has been

5.2 Extended Boxes 65

computed in the viewer, it just remains to set the glue; a very simple operation
indeed.

If the hpack procedure of HiTEX can not determine the natural dimensions
of the box content because it contains paragraphs or other extended boxes, it
produces a box of hpack kind . Now the viewer needs to traverse the list of content
nodes to determine the natural dimensions. Even the amount of stretchability
and shrinkability has to be determined in the viewer. For example, the final
stretchability of a paragraph with some stretchability in the baseline skip will
depend on the number of lines which, in turn, depends on hsize. It is not
possible to merge these traversals of the box content with the traversal necessary
when displaying the box. The latter needs to convert glue nodes into positioning
instructions which requires a fixed glue ratio. The computation of the glue ratio,
however, requires a complete traversal of the content.

In the short format of a box node of type hset kind , vset kind , hpack kind , or
vpack kind , the info bit b100 indicates, if set, a complete extended dimension, and
if unset, a reference to a predefined extended dimension for the target size; the info
bit b010 indicates a nonzero shift amount. For a box of type hset kind or vset kind ,
the info bit b001 indicates, if set, a nonzero depth. For a box of type hpack kind
or vpack kind , the info bit b001 indicates, if set, an additional target size, and if
unset, an exact target size. For a box of type vpack kind also the maximum depth
is given. If in the long format the maximum depth is omitted, the value MAX_DIMEN
is used.

The reference point of a vertical box is usually the reference point of the last
box inside it and multiple vertical boxes are aligned along this common baseline.
Occasionaly, however, we want to align vertical boxes using the baselines of their
first box. We indicate this alternative setting of the reference point using the
keyword top in the long form. In the short form, we use the fact the the absolut
value of any dimension is less or equal to MAX_DIMEN which is equal to #3fffffff.
This means that the two most significant bits are always the same. So a vtop node
can be marked by toggling the second of these bits.

Reading the long format : −− − =⇒

〈 symbols 2ii 〉 +≡ (169)

%token HPACK "hpack"

%token HSET "hset"

%token VPACK "vpack"

%token VSET "vset"

%token DEPTH "depth"

%token ADD "add"

%token TO "to"

%type < info > box options box goal hpack vpack vbox dimen
%type < d > max depth

〈 scanning rules 3iii 〉 +≡ (170)

hpack return HPACK;

hset return HSET;

66 5 Composite Nodes

vpack return VPACK;

vset return VSET;

add return ADD;

to return TO;

depth return DEPTH;

〈 parsing rules 5v 〉 +≡ (171)

box flex: plus minus { hput stretch (&($1)); hput stretch (&($2)); };
box options: box shift box flex xdimen ref list { $$ = $1; }
| box shift box flex xdimen node list { $$ = $1 | b100 ; };

hxbox node: start HSET box dimen box options END {
hput tags ($1, TAG(hset kind , $3 | $4)); };

vbox dimen: box dimen

| TOP dimension dimension dimension

{ $$ = hput box dimen ($2, $3 ⊕ #40000000, $4); };
vxbox node: start VSET vbox dimen box options END {

hput tags ($1, TAG(vset kind , $3 | $4)); };
box goal: TO xdimen ref { $$ = b000 ; }
| ADD xdimen ref { $$ = b001 ; }
| TO xdimen node { $$ = b100 ; }
| ADD xdimen node { $$ = b101 ; };

hpack: box shift box goal list { $$ = $2; };
hxbox node: start HPACK hpack END { hput tags ($1, TAG(hpack kind , $3)); };
max depth: { $$ = MAX_DIMEN; }
| MAX DEPTH dimension { $$ = $3; };

vpack: max depth { HPUT32($1); } box shift box goal list { $$ = $3 | $4; }
| TOP max depth { HPUT32($2 ⊕ #40000000); }

box shift box goal list { $$ = $4 | $5; };
vxbox node: start VPACK vpack END { hput tags ($1, TAG(vpack kind , $3)); };
content node: vxbox node

| hxbox node;

5.2 Extended Boxes 67

Reading the short format : · · · =⇒

〈 cases to get content 20xx 〉 +≡ (172)

case TAG(hset kind , b000): HGET_SET(hset kind , b000); break;
case TAG(hset kind , b001): HGET_SET(hset kind , b001); break;
case TAG(hset kind , b010): HGET_SET(hset kind , b010); break;
case TAG(hset kind , b011): HGET_SET(hset kind , b011); break;
case TAG(hset kind , b100): HGET_SET(hset kind , b100); break;
case TAG(hset kind , b101): HGET_SET(hset kind , b101); break;
case TAG(hset kind , b110): HGET_SET(hset kind , b110); break;
case TAG(hset kind , b111): HGET_SET(hset kind , b111); break;

case TAG(vset kind , b000): HGET_SET(vset kind , b000); break;
case TAG(vset kind , b001): HGET_SET(vset kind , b001); break;
case TAG(vset kind , b010): HGET_SET(vset kind , b010); break;
case TAG(vset kind , b011): HGET_SET(vset kind , b011); break;
case TAG(vset kind , b100): HGET_SET(vset kind , b100); break;
case TAG(vset kind , b101): HGET_SET(vset kind , b101); break;
case TAG(vset kind , b110): HGET_SET(vset kind , b110); break;
case TAG(vset kind , b111): HGET_SET(vset kind , b111); break;

case TAG(hpack kind , b000): HGET_PACK(hpack kind , b000); break;
case TAG(hpack kind , b001): HGET_PACK(hpack kind , b001); break;
case TAG(hpack kind , b010): HGET_PACK(hpack kind , b010); break;
case TAG(hpack kind , b011): HGET_PACK(hpack kind , b011); break;
case TAG(hpack kind , b100): HGET_PACK(hpack kind , b100); break;
case TAG(hpack kind , b101): HGET_PACK(hpack kind , b101); break;
case TAG(hpack kind , b110): HGET_PACK(hpack kind , b110); break;
case TAG(hpack kind , b111): HGET_PACK(hpack kind , b111); break;

case TAG(vpack kind , b000): HGET_PACK(vpack kind , b000); break;
case TAG(vpack kind , b001): HGET_PACK(vpack kind , b001); break;
case TAG(vpack kind , b010): HGET_PACK(vpack kind , b010); break;
case TAG(vpack kind , b011): HGET_PACK(vpack kind , b011); break;
case TAG(vpack kind , b100): HGET_PACK(vpack kind , b100); break;
case TAG(vpack kind , b101): HGET_PACK(vpack kind , b101); break;
case TAG(vpack kind , b110): HGET_PACK(vpack kind , b110); break;
case TAG(vpack kind , b111): HGET_PACK(vpack kind , b111); break;

〈 get macros 19xix 〉 +≡ (173)

#define HGET_SET(K, I)
{ Dimen h, d; HGET32(h);

if ((I) & b001) HGET32(d); else d = 0;
if (K ≡ vset kind ∧ (d > MAX_DIMEN ∨ d < −MAX_DIMEN)) { hwritef (" top");
d ⊕= #40000000;

}
hwrite dimension (h);
hwrite dimension (d); }

68 5 Composite Nodes

{ Dimen w; HGET32(w); hwrite dimension (w); }
if ((I) & b010) { Dimen a; HGET32(a);

hwritef (" shifted"); hwrite dimension (a); }
{ Stretch p; HGET_STRETCH(p); hwrite plus (&p); }
{ Stretch m; HGET_STRETCH(m); hwrite minus (&m); }
if ((I) & b100) { Xdimen x; hget xdimen node (&x); hwrite xdimen node (&x);
}

else HGET_REF(xdimen kind);
{ List l; hget list (&l); hwrite list (&l); }

#define HGET_PACK(K, I)
if (K ≡ vpack kind) { Dimen d;

HGET32(d);
if (d > MAX_DIMEN ∨ d < −MAX_DIMEN) { hwritef (" top");
d ⊕= #40000000;

}
if (d 6= MAX_DIMEN) { hwritef (" max depth"); hwrite dimension (d);
}

}
if ((I) & b010) { Dimen s;

HGET32(s);
hwritef (" shifted"); hwrite dimension (s);

}
if ((I) & b001) hwritef (" add"); else hwritef (" to");
if ((I) & b100) { Xdimen x; hget xdimen node (&x); hwrite xdimen node (&x);
}

else HGET_REF(xdimen kind);
{ List l; hget list (&l); hwrite list (&l); }

5.3 Leaders
Leaders are a special type of glue that is best explained by a few examples. Where
as ordinary glue fills its designated space with whiteness,
leaders fill their designated space with either a rule or
some sort of repeated content.
In multiple leaders, the dots are usually aligned across lines,
as in the last three lines.
Unless you specify centered leaders
or you specify expanded leaders.
The former pack the repeated content tight and center the repeated content in
the available space, the latter distributes the extra space between all the repeated
instances.

In the short format, the two lowest info bits store the type of leaders: 1 for
aligned, 2 for centered, and 3 for expanded. The b100 info bit is usually set and
only zero in the unlikely case that the glue is zero and therefore not present.

5.3 Leaders 69

Reading the long format : −− − =⇒

〈 symbols 2ii 〉 +≡ (174)

%token LEADERS "leaders"

%token ALIGN "align"

%token CENTER "center"

%token EXPAND "expand"

%type < info > leaders

%type < info > ltype

〈 scanning rules 3iii 〉 +≡ (175)

leaders return LEADERS;

align return ALIGN;

center return CENTER;

expand return EXPAND;

〈 parsing rules 5v 〉 +≡ (176)

ltype: { $$ = 1; }
| ALIGN { $$ = 1; } | CENTER { $$ = 2; } | EXPAND { $$ = 3; };

leaders: glue node ltype rule node { if ($1) $$ = $2 | b100 ; else $$ = $2; }
| glue node ltype hbox node { if ($1) $$ = $2 | b100 ; else $$ = $2; }
| glue node ltype vbox node { if ($1) $$ = $2 | b100 ; else $$ = $2; };

content node: start LEADERS leaders END

{ hput tags ($1, TAG(leaders kind , $3)); }

Writing the long format : =⇒ − −−

〈write functions 21xxi 〉 +≡ (177)

void hwrite leaders type (int t)

{ if (t ≡ 2) hwritef (" center");

else if (t ≡ 3) hwritef (" expand");

}

Reading the short format : · · · =⇒

〈 cases to get content 20xx 〉 +≡ (178)

case TAG(leaders kind , 1): HGET_LEADERS(1); break;

case TAG(leaders kind , 2): HGET_LEADERS(2); break;

case TAG(leaders kind , 3): HGET_LEADERS(3); break;

case TAG(leaders kind , b100 | 1): HGET_LEADERS(b100 | 1); break;

case TAG(leaders kind , b100 | 2): HGET_LEADERS(b100 | 2); break;

case TAG(leaders kind , b100 | 3): HGET_LEADERS(b100 | 3); break;

70 5 Composite Nodes

〈 get macros 19xix 〉 +≡ (179)

#define HGET_LEADERS(I)
if ((I) & b100) hget glue node ();
hwrite leaders type ((I) & b011);
if (KIND(∗hpos) ≡ rule kind) hget rule node ();
else if (KIND(∗hpos) ≡ hbox kind) hget hbox node ();
else hget vbox node ();

5.4 Baseline Skips

Baseline skips are small amounts of glue inserted between two consecutive lines of
text. To get nice looking pages, the amount of glue inserted must take into account
the depth of the line above the glue and the height of the line below the glue to
achieve a constant distance of the baselines. For example, if we have the lines

“There is no
more gas
in the tank.”

TEX will insert 7.69446pt of baseline skip between the first and the second line and
3.11111pt of baseline skip between the second and the third line. This is due to the
fact that the first line has no descenders, its depth is zero, the second line has no
ascenders but the “g” descends below the baseline, and the third line has ascenders
(“t”, “h”,. . .) so it is higher than the second line. TEX’s choice of baseline skips
ensures that the baselines are exactly 12pt apart in both cases.

Things get more complicated if the text contains mathematical formulas because
then a line can get so high or deep that it is impossible to keep the distance between
baselines constant without two adjacent lines touching each other. In such cases,
TEX will insert a small minimum line skip glue.

For the whole computation, TEX uses three parameters: baselineskip, line-
skiplimit, and lineskip. baselineskip is a glue value; its size is the normal dis-
tance of two baselines. TEX adjusts the size of the baselineskip glue for the height
and the depth of the two lines and then checks the result against lineskiplimit.
If the result is smaller than lineskiplimit it will use the lineskip glue instead.

Because the depth and the height of lines depend on the outcome of the line
breaking routine, baseline computations must be done in the viewer. The situation
gets even more complicated because TEX can manipulate the insertion of baseline
skips in various ways. Therefore HINT requires the insertion of baseline nodes
wherever the viewer is supposed to perform a baseline skip computation.

In the short format of a baseline definition, we store only the nonzero components
and use the info bits to mark them: b100 implies bs 6= 0, b010 implies ls 6= 0,
and b001 implies lslimit 6= 0. If the baseline has only zero components, we put a
reference to baseline number 0 in the output.

〈 hint basic types 6vi 〉 +≡ (180)

typedef struct { Glue bs , ls ; Dimen lsl ; } Baseline;

5.4 Baseline Skips 71

Reading the long format : −− − =⇒

〈 symbols 2ii 〉 +≡ (181)

%token BASELINE "baseline"

%type < info > baseline

〈 scanning rules 3iii 〉 +≡ (182)

baseline return BASELINE;

〈 parsing rules 5v 〉 +≡ (183)

baseline: dimension {
if ($1 6= 0) HPUT32($1);
} glue node glue node

{ $$ = b000 ;
if ($1 6= 0) $$ |= b001 ;
if ($3) $$ |= b100 ;
if ($4) $$ |= b010 ; };

content node: start BASELINE baseline END

{ if ($3 ≡ b000) HPUT8(0); hput tags ($1, TAG(baseline kind , $3)); };

Reading the short format : · · · =⇒

〈 cases to get content 20xx 〉 +≡ (184)

case TAG(baseline kind , b001):
{ Baseline b; HGET_BASELINE(b001 , b); } break;

case TAG(baseline kind , b010):
{ Baseline b; HGET_BASELINE(b010 , b); } break;

case TAG(baseline kind , b011):
{ Baseline b; HGET_BASELINE(b011 , b); } break;

case TAG(baseline kind , b100):
{ Baseline b; HGET_BASELINE(b100 , b); } break;

case TAG(baseline kind , b101):
{ Baseline b; HGET_BASELINE(b101 , b); } break;

case TAG(baseline kind , b110):
{ Baseline b; HGET_BASELINE(b110 , b); } break;

case TAG(baseline kind , b111):
{ Baseline b; HGET_BASELINE(b111 , b); } break;

〈 get macros 19xix 〉 +≡ (185)

#define HGET_BASELINE(I,B)
if ((I) & b001) HGET32((B).lsl); else B.lsl = 0;
hwrite dimension (B.lsl);
if ((I) & b100) hget glue node ();
else { B.bs .p.o = B.bs .m.o = B.bs .w.w = 0;
B.bs .w.h = B.bs .w.v = B.bs .p.f = B.bs .m.f = 0.0;
hwrite glue node (&(B.bs)); }

if ((I) & b010) hget glue node ();

72 5 Composite Nodes

else { B.ls .p.o = B.ls .m.o = B.ls .w.w = 0;
B.ls .w.h = B.ls .w.v = B.ls .p.f = B.ls .m.f = 0.0;
hwrite glue node (&(B.ls)); }

Writing the short format : =⇒ · · ·

〈 put functions 14xiv 〉 +≡ (186)

Tag hput baseline (Baseline ∗b)
{ Info info = b000 ;

if (¬ZERO_GLUE(b→bs)) info |= b100 ;

if (¬ZERO_GLUE(b→ls)) info |= b010 ;

if (b→lsl 6= 0) { HPUT32(b→lsl); info |= b001 ; }
return TAG(baseline kind , info);

}

5.5 Ligatures

Ligatures occur only in horizontal lists. They specify characters that combine the
glyphs of several characters into one specialized glyph. For example in the word
“difficult” the three letters “ffi” are combined into the ligature “ffi”. Hence, a
ligature is very similar to a simple glyph node; the characters that got replaced
are, however, retained in the ligature because they might be needed for example to
support searching. Since ligatures are therefore only specialized list of characters
and since we have a very efficient way to store such lists of characters, namely as
a text, input and output of ligatures is quite simple.

The info value zero is reserved for references to a ligature. If the info value is
between 1 and 6, it gives the number of bytes used to encode the characters in
UTF8. Note that a ligature will always include a glyph byte, so the minimum
size is 1. A typical ligature like “fi” will need 3 byte: the ligature character “fi”,
and the replacement characters “f” and ”i”. More byte might be required if the
character codes exceed #7F since we use the UTF8 encoding scheme for larger
character codes. If the info value is 7, a full text node follows the font byte. In
the long format, we give the font, the character code, and then the replacement
characters represented as a text.

〈 hint types 1i 〉 +≡ (187)

typedef struct { uint8 t f ; List l; } Lig;

5.5 Ligatures 73

Reading the long format : −− − =⇒

〈 symbols 2ii 〉 +≡ (188)

%token LIGATURE "ligature"

%type < u > lig cc

%type < lg > ligature

%type < u > ref

〈 scanning rules 3iii 〉 +≡ (189)

ligature return LIGATURE;

〈 parsing rules 5v 〉 +≡ (190)

cc list: | cc list TXT CC { hput utf8 ($2); };
lig cc: UNSIGNED { RNG("UTF−8 code", $1, 0,#1FFFFF); $$ = hpos − hstart ;

hput utf8 ($1); };
lig cc: CHARCODE { $$ = hpos − hstart ; hput utf8 ($1); };
ref : REFERENCE { HPUT8($1); $$ = $1; };
ligature: ref { REF(font kind , $1); } lig cc TXT START cc list TXT END

{ $$.f = $1; $$.l.p = $3; $$.l.s = (hpos − hstart)− $3;
RNG("Ligature size", $$.l.s, 0, 255); };

content node: start LIGATURE ligature END {
hput tags ($1, hput ligature (&($3))); };

Writing the long format : =⇒ − −−

〈write functions 21xxi 〉 +≡ (191)

void hwrite ligature (Lig ∗l)
{ uint32 t pos = hpos − hstart ;

hwrite ref (l→f);

hpos = l→l.p+ hstart ;

hwrite charcode (hget utf8 ());

hwritef (" \"");

while (hpos < hstart + l→l.p+ l→l.s) hwrite txt cc(hget utf8 ());

hwritec(’"’);

hpos = hstart + pos ;

}

74 5 Composite Nodes

Reading the short format : · · · =⇒

〈 cases to get content 20xx 〉 +≡ (192)

case TAG(ligature kind , 1): { Lig l; HGET_LIG(1, l); } break;
case TAG(ligature kind , 2): { Lig l; HGET_LIG(2, l); } break;
case TAG(ligature kind , 3): { Lig l; HGET_LIG(3, l); } break;
case TAG(ligature kind , 4): { Lig l; HGET_LIG(4, l); } break;
case TAG(ligature kind , 5): { Lig l; HGET_LIG(5, l); } break;
case TAG(ligature kind , 6): { Lig l; HGET_LIG(6, l); } break;
case TAG(ligature kind , 7): { Lig l; HGET_LIG(7, l); } break;

〈 get macros 19xix 〉 +≡ (193)

#define HGET_LIG(I, L)
(L).f = HGET8;
REF(font kind , (L).f);
if ((I) ≡ 7) hget list (&((L).l));
else { (L).l.s = (I);

(L).l.p = hpos − hstart ; hpos += (L).l.s;
}
hwrite ligature (&(L));

Writing the short format : =⇒ · · ·

〈 put functions 14xiv 〉 +≡ (194)

Tag hput ligature (Lig ∗l)
{ if (l→l.s < 7) return TAG(ligature kind , l→l.s);

else
{ uint32 t pos = l→l.p;
l→l.t = TAG(list kind , b100);
hput tags (pos , hput list (pos + 1,&(l→l)));
return TAG(ligature kind , 7);

}
}

5.6 Discretionary breaks
HINT is capable to break lines into paragraphs. It does this primarily at interword
spaces but it might also break a line in the middle of a word if it finds a discretionary
line break there. These discretionary breaks are usually provided by an automatic
hyphenation algorithm but they might be also explicitly inserted by the author of
a document.

When a line break occurs at such a discretionary break, the line before the break
ends with a pre break list of nodes, the line after the break starts with a post break
list of nodes, and the next replace count nodes after the discretionary break will be
ignored. Both lists must consist entirely of glyphs, kerns, boxes, rules, or ligatures.
For example, an ordinary discretionary break will have a pre break list containing
“-”, an empty post break list, and a replace count of zero.

5.6 Discretionary breaks 75

The long format starts with an optional “!”, indicating an explicit discretionary
break, followed by the replace-count. Then comes the pre-break list followed by the
post-break list. The replace-count can be omitted if it is zero; an empty post-break
list may be omitted as well. Both list may be omitted only if both are empty.

In the short format, the three components of a disc node are stored in this order:
replace count, pre break list, and post break list. The b100 bit in the info value
indicates the presence of a replace-count, the b010 bit the presence of a pre break
list, and the b001 bit the presence of a post break list. Since the info value b000
is reserved for references, at least one of these must be specified; so we represent a
node with empty lists and a replace count of zero using the info value b100 and a
zero byte for the replace count.

Replace counts must be in the range 0 to 31; so the short format can set the
high bit of the replace count to indicate an explicit break.

〈 hint types 1i 〉 +≡ (195)

typedef struct { bool x; List p, q; uint8 t r; } Disc;

Reading the long format : −− − =⇒

〈 symbols 2ii 〉 +≡ (196)

%token DISC "disc"

%type < dc > disc

%type < u > replace count

〈 scanning rules 3iii 〉 +≡ (197)

disc return DISC;

〈 parsing rules 5v 〉 +≡ (198)

replace count: explicit { if ($1) { $$ = #80; HPUT8(#80); } else $$ = #00; }
| explicit UNSIGNED { RNG("Replace count", $2, 0, 31);

$$ = ($2) | (($1) ? #80 : #00); if ($$ 6= 0) HPUT8($$); };
disc: replace count list list { $$.r = $1; $$.p = $2; $$.q = $3;

if ($3.s ≡ 0) { hpos = hpos − 3; if ($2.s ≡ 0) hpos = hpos − 3; } }
| replace count list { $$.r = $1; $$.p = $2;

if ($2.s ≡ 0) hpos = hpos − 3; $$.q.s = 0; }
| replace count { $$.r = $1; $$.p.s = 0; $$.q.s = 0; };

disc node: start DISC disc END { hput tags ($1, hput disc(&($3))); };
content node: disc node;

76 5 Composite Nodes

Writing the long format : =⇒ − −−

〈write functions 21xxi 〉 +≡ (199)

void hwrite disc(Disc ∗h)
{ hwrite explicit (h→x);

if (h→r 6= 0) hwritef (" %d", h→r);
if (h→p.s 6= 0 ∨ h→q.s 6= 0) hwrite list (&(h→p));
if (h→q.s 6= 0) hwrite list (&(h→q));

}
void hwrite disc node (Disc ∗h)
{ hwrite start (); hwritef ("disc"); hwrite disc(h); hwrite end ();
}

Reading the short format : · · · =⇒

〈 cases to get content 20xx 〉 +≡ (200)

case TAG(disc kind , b001):
{ Disc h; HGET_DISC(b001 , h); hwrite disc(&h); } break;

case TAG(disc kind , b010):
{ Disc h; HGET_DISC(b010 , h); hwrite disc(&h); } break;

case TAG(disc kind , b011):
{ Disc h; HGET_DISC(b011 , h); hwrite disc(&h); } break;

case TAG(disc kind , b100):
{ Disc h; HGET_DISC(b100 , h); hwrite disc(&h); } break;

case TAG(disc kind , b101):
{ Disc h; HGET_DISC(b101 , h); hwrite disc(&h); } break;

case TAG(disc kind , b110):
{ Disc h; HGET_DISC(b110 , h); hwrite disc(&h); } break;

case TAG(disc kind , b111):
{ Disc h; HGET_DISC(b111 , h); hwrite disc(&h); } break;

〈 get macros 19xix 〉 +≡ (201)

#define HGET_DISC(I, Y)
if ((I) & b100) { uint8 t r = HGET8;

(Y).r = r& #7F; RNG("Replace count", (Y).r, 0, 31); (Y).x = (r& #80) 6= 0;
} else { (Y).r = 0; (Y).x = false ; }

if ((I) & b010) hget list (&((Y).p));
else { (Y).p.p = hpos − hstart ; (Y).p.s = 0; (Y).p.t = TAG(list kind , b000); }
if ((I) & b001) hget list (&((Y).q));
else { (Y).q.p = hpos − hstart ; (Y).q.s = 0; (Y).q.t = TAG(list kind , b000); }

〈 get functions 18xviii 〉 +≡ (202)

void hget disc node (Disc ∗h)
{ 〈 read the start byte a 16xvi 〉

if (KIND(a) 6= disc kind ∨ INFO(a) ≡ b000)
QUIT("Hyphen expected at 0x%x got %s,%d",node pos , NAME(a),

INFO(a));

5.7 Paragraphs 77

HGET_DISC(INFO(a), ∗h);
〈 read and check the end byte z 17xvii 〉

}

When hput disc is called, the node is already written to the output, but empty
lists might have been deleted, and the info value needs to be determined. Because
the info value b000 is reserved for references, a zero reference count is written to
avoid this case.

Writing the short format : =⇒ · · ·

〈 put functions 14xiv 〉 +≡ (203)

Tag hput disc(Disc ∗h)
{ Info info = b000 ;

if (h→r 6= 0) info |= b100 ;
if (h→q.s 6= 0) info |= b011 ;
else if (h→p.s 6= 0) info |= b010 ;
if (info ≡ b000) { info |= b100 ; HPUT8(0); }
return TAG(disc kind , info);

}

5.7 Paragraphs

The most important procedure that the HINT viewer inherits from TEX is the line
breaking routine. If the horizontal size of the paragraph is not known, breaking the
paragraph into lines must be postponed and this is done by creating a paragraph
node. The paragraph node must contain all information that TEX’s line breaking
algorithm needs to do its job.

Besides the horizontal list describing the content of the paragraph and the
extended dimension describing the horizontal size, this is the set of parameters
that guide the line breaking algorithm:

• Integer parameters:
pretolerance (badness tolerance before hyphenation),
tolerance (badness tolerance after hyphenation),
line penalty (added to the badness of every line, increase to get fewer lines),
hyphen penalty (penalty for break after hyphenation break),
ex hyphen penalty (penalty for break after explicit break),
double hyphen demerits (demerits for double hyphen break),
final hyphen demerits (demerits for final hyphen break),
adj demerits (demerits for adjacent incompatible lines),
looseness (make the paragraph that many lines longer than its optimal size),
inter line penalty (additional penalty between lines),
club penalty (penalty for creating a club line),
widow penalty (penalty for creating a widow line),
display widow penalty (ditto, just before a display),

78 5 Composite Nodes

broken penalty (penalty for breaking a page at a broken line),
hang after (start/end hanging indentation at this line).

• Dimension parameters:
line skip limit (threshold for line skip instead of baseline skip),
hang indent (amount of hanging indentation),
emergency stretch (stretchability added to every line in the final pass of line
breaking).

• Glue parameters:
baseline skip (desired glue between baselines),
line skip (interline glue if baseline skip is infeasible),
left skip (glue at left of justified lines),
right skip (glue at right of justified lines),
par fill skip (glue on last line of paragraph).

For a detailed explanation of these parameters and how they influence line break-
ing, you should consult the TEXbook[8]; TEX’s parshape feature is currently not
implemented. There are default values for all of these parameters (see section 11),
and therefore it might not be necessary to specify any of them. Any local adjust-
ments are contained in a list of parameters contained in the paragraph node.

A further complication arises from displayed formulas that interrupt a paragraph.
Such displays are described in the next section.

To summarize, a paragraph node in the long format specifies an extended di-
mension, a parameter list, and a node list. The extended dimension is given either
as an xdimen node (info bit b100) or as a reference; similarly the parameter list
can be embedded in the node (info bit b010) or again it is given by a reference.

Reading the long format : −− − =⇒

〈 symbols 2ii 〉 +≡ (204)

%token PAR "par"

%type < info > par

〈 scanning rules 3iii 〉 +≡ (205)

par return PAR;

The following parsing rules are slightly more complicated than I would like them
to be, but it seems more important to achieve a regular layout of the short format
nodes where all sub nodes are located at the end of a node. In this case, I want to
put a param ref before an xdimen node, but otherwise have the xdimen ref before
a param list. The par dimen rule is introduced only to avoid a reduce/reduce
conflict in the parser.

〈 parsing rules 5v 〉 +≡ (206)

par dimen: xdimen { hput xdimen node (&($1)); };
par: xdimen ref param ref list { $$ = b000 ; }
| xdimen ref param list list { $$ = b010 ; }
| xdimen param ref { hput xdimen node (&($1)); } list { $$ = b100 ; }
| par dimen param list list { $$ = b110 ; };

5.8 Mathematics 79

content node: start PAR par END { hput tags ($1, TAG(par kind , $3)); };

Reading the short format : · · · =⇒

〈 cases to get content 20xx 〉 +≡ (207)

case TAG(par kind , b000): HGET_PAR(b000); break;
case TAG(par kind , b010): HGET_PAR(b010); break;
case TAG(par kind , b100): HGET_PAR(b100); break;
case TAG(par kind , b110): HGET_PAR(b110); break;

〈 get macros 19xix 〉 +≡ (208)

#define HGET_PAR(I)
{ uint8 t n;

if ((I) ≡ b100) { n = HGET8; REF(param kind , n); }
if ((I) & b100) { Xdimen x; hget xdimen node (&x); hwrite xdimen (&x); }
else HGET_REF(xdimen kind);
if ((I) & b010) { List l; hget param list (&l); hwrite param list (&l); }
else if ((I) 6= b100) HGET_REF(param kind)
else hwrite ref (n);
{ List l; hget list (&l); hwrite list (&l); }

}

5.8 Mathematics

Being able to handle mathematics nicely is one of the primary features of TEX
and so you should expect the same from HINT. We start here with the more com-
plex case—displayed equations—and finish with the simpler case of mathematical
formulas that are part of the normal flow of text.

Displayed equations occur inside a paragraph node. They interrupt normal
processing of the paragraph and the paragraph processing is resumed after the
display. Positioning of the display depends on several parameters, the shape of the
paragraph, and the length of the last line preceding the display. Displayed formulas
often feature an equation number which can be placed either left or right of the
formula. Also the size of the equation number will influence the placement of the
formula.

In a HINT file, the parameter list is followed by a list of content nodes, represent-
ing the formula, and an optional horizontal box containing the equation number.

In the short format, we use the info bit b100 to indicate the presence of a
parameter list (which might be empty—so it’s actually the absence of a reference
to a parameter list); the info bit b010 to indicate the presence of a left equation
number; and the info bit b001 for a right equation number.

In the long format, we use “eqno” or “left eqno” to indicate presence and
placement of the equation number.

80 5 Composite Nodes

Reading the long format : −− − =⇒

〈 symbols 2ii 〉 +≡ (209)

%token MATH "math"

%type < info > math

〈 scanning rules 3iii 〉 +≡ (210)

math return MATH;

〈 parsing rules 5v 〉 +≡ (211)

math: param ref list { $$ = b000 ; }
| param ref list hbox node { $$ = b001 ; }
| param ref hbox node list { $$ = b010 ; }
| param list list { $$ = b100 ; }
| param list list hbox node { $$ = b101 ; }
| param list hbox node list { $$ = b110 ; };

content node: start MATH math END

{ hput tags ($1, TAG(math kind , $3)); };

Reading the short format : · · · =⇒

〈 cases to get content 20xx 〉 +≡ (212)

case TAG(math kind , b000): HGET_MATH(b000); break;
case TAG(math kind , b001): HGET_MATH(b001); break;
case TAG(math kind , b010): HGET_MATH(b010); break;
case TAG(math kind , b100): HGET_MATH(b100); break;
case TAG(math kind , b101): HGET_MATH(b101); break;
case TAG(math kind , b110): HGET_MATH(b110); break;

〈 get macros 19xix 〉 +≡ (213)

#define HGET_MATH(I)
if ((I) & b100) { List l; hget param list (&l); hwrite param list (&l); }
else HGET_REF(param kind);
if ((I) & b010) hget hbox node ();
{ List l; hget list (&l); hwrite list (&l); }
if ((I) & b001) hget hbox node ();

Things are much simpler if mathematical formulas are embedded in regular text.
Here it is just necessary to mark the beginning and the end of the formula because
glue inside a formula is not a possible point for a line break. To break the line
within a formula you can insert a penalty node.

In the long format, such a simple math node just consists of the keyword “on”
or “off”. In the short format, there are two info values still unassigned: we use
b011 for “off” and b111 for “on”.

5.9 Adjustments 81

Reading the long format : −− − =⇒

〈 symbols 2ii 〉 +≡ (214)

%token ON "on"

%token OFF "off"

%type < i > on off

〈 scanning rules 3iii 〉 +≡ (215)

on return ON;

off return OFF;

〈 parsing rules 5v 〉 +≡ (216)

on off : ON { $$ = 1; }
| OFF { $$ = 0; };

math: on off { $$ = b011 | ($1 � 2); };

Reading the short format : · · · =⇒

〈 cases to get content 20xx 〉 +≡ (217)

case TAG(math kind , b111): hwritef (" on"); break;
case TAG(math kind , b011): hwritef (" off"); break;

Note that TEX allows math nodes to specify a width using the current value of
mathsurround. If this width is nonzero, it is equivalent to inserting a kern node
before the math on node and after the math off node.

5.9 Adjustments
An adjustment occurs only in paragraphs. When the line breaking routine finds an
adjustment, it inserts the vertical material contained in the adjustment node right
after the current line. Adjustments simply contain a list node.

Reading the long format : −− − =⇒
Writing the short format : =⇒ · · ·

〈 symbols 2ii 〉 +≡ (218)

%token ADJUST "adjust"

〈 scanning rules 3iii 〉 +≡ (219)

adjust return ADJUST;

〈 parsing rules 5v 〉 +≡ (220)

content node: start ADJUST list END { hput tags ($1, TAG(adjust kind , 1)); };

Reading the short format : · · · =⇒
Writing the long format : =⇒ − −−

〈 cases to get content 20xx 〉 +≡ (221)

case TAG(adjust kind , 1): { List l; hget list (&l); hwrite list (&l); } break;

82 5 Composite Nodes

5.10 Tables

As long as a table contains no dependencies on hsize and vsize, HiTEX can
expand an alignment into a set of nested horizontal and vertical boxes and no
special processing is required. As long as only the size of the table itself but
neither the tabskip glues nor the table content depends on hsize or vsize, the
table just needs an outer node of type hset kind or vset kind . If there is non aligned
material inside the table that depends on hsize or vsize, a vpack or hpack node
is still sufficient.

While it is reasonable to restrict the tabskip glues to be ordinary glue values
without hsize or vsize dependencies, it might be desirable to have content in the
table that does depend on hsize or vsize. For the latter case, we need a special
kind of table node. Here is why:

As soon as the dimension of an item in the table is an extended dimension, it is
no longer possible to compute the maximum natural with of a column, because it is
not possible to compare extended dimensions without knowing hsize and vsize.
Hence the computation of maximum widths needs to be done in the viewer. After
knowing the width of the columns, the setting of tabskip glues is easy to compute.

To implement these extended tables, we will need a table node that specifies a
direction, either horizontal or vertical; a list of tabskip glues, with the provision that
the last tabskip glue in the list is repeated as long as necessary; and a list of table
content. The table’s content is stacked, either vertical or horizontal, orthogonal
to the alignment direction of the table. The table’s content consists of nonaligned
content, for example extra glue or rules, and aligned content. Each element of
aligned content is called an outer item and it consist of a list of inner items. For
example in a horizontal alignment, each row is an outer item and each table entry
in that row is an inner item. An inner item contains a box node (of kind hbox kind ,
vbox kind , hset kind , vset kind , hpack kind , or vpack kind) followed by an optional
span count.

The glue of the boxes in the inner items will be reset so that all boxes in the same
column reach the same maximum column with. The span counts will be replaced
by the appropriate amount of empty boxes and tabskip glues. Finally the glue in
the outer item will be set to obtain the desired size of the table.

The definitions below specify just a list for the list of tabskip glues and a list for
the outer table items. This is just for convenience; the first list must contain glue
nodes and the second list must contain nonaligned content and inner item nodes.

We reuse the H and V tokens, defined as part of the specification of extended
dimensions, to indicate the alignment direction of the table. To tell a reference
to an extended dimension from a reference to an ordinary dimension, we prefix
the former with an XDIMEN token; for the latter, the DIMEN token is optional.
The scanner will recognize not only “item” as an ITEM token but also “row” and
”column”. This allows a more readable notation, for example by marking the outer
items as rows and the inner items as columns.

In the short format, the b010 bit is used to mark a vertical table and the b101
bits indicate how the table size is specified; an outer item node has the info value
b000 , an inner item node with info value b111 contains an extra byte for the span

5.10 Tables 83

count, otherwise the info value is equal to the span count.

Reading the long format : −− − =⇒

〈 symbols 2ii 〉 +≡ (222)

%token TABLE "table"

%token ITEM "item"

%type < info > table span count

〈 scanning rules 3iii 〉 +≡ (223)

table return TABLE;

item return ITEM;

row return ITEM;

column return ITEM;

〈 parsing rules 5v 〉 +≡ (224)

span count: UNSIGNED { $$ = hput span count ($1); };
content node: start ITEM content node END {

hput tags ($1, TAG(item kind , 1)); };
content node: start ITEM span count content node END {

hput tags ($1, TAG(item kind , $3)); };
content node: start ITEM list END { hput tags ($1, TAG(item kind , b000)); };
table: H box goal list list { $$ = $2; };
table: V box goal list list { $$ = $2 | b010 ; };
content node: start TABLE table END { hput tags ($1, TAG(table kind , $3)); };

Reading the short format : · · · =⇒

〈 cases to get content 20xx 〉 +≡ (225)

case TAG(table kind , b000): HGET_TABLE(b000); break;
case TAG(table kind , b001): HGET_TABLE(b001); break;
case TAG(table kind , b010): HGET_TABLE(b010); break;
case TAG(table kind , b011): HGET_TABLE(b011); break;
case TAG(table kind , b100): HGET_TABLE(b100); break;
case TAG(table kind , b101): HGET_TABLE(b101); break;
case TAG(table kind , b110): HGET_TABLE(b110); break;
case TAG(table kind , b111): HGET_TABLE(b111); break;

case TAG(item kind , b000): { List l; hget list (&l); hwrite list (&l); } break;
case TAG(item kind , b001): hget content node (); break;
case TAG(item kind , b010): hwritef (" 2"); hget content node (); break;
case TAG(item kind , b011): hwritef (" 3"); hget content node (); break;
case TAG(item kind , b100): hwritef (" 4"); hget content node (); break;
case TAG(item kind , b101): hwritef (" 5"); hget content node (); break;
case TAG(item kind , b110): hwritef (" 6"); hget content node (); break;

84 5 Composite Nodes

case TAG(item kind , b111): hwritef (" %u", HGET8); hget content node ();
break;

〈 get macros 19xix 〉 +≡ (226)

#define HGET_TABLE(I)
if (I & b010) hwritef (" v"); else hwritef (" h");
if ((I) & b001) hwritef (" add"); else hwritef (" to");
if ((I) & b100) { Xdimen x;

hget xdimen node (&x); hwrite xdimen node (&x); }
else HGET_REF(xdimen kind)
{ List l; hget list (&l); hwrite list (&l); } /∗ tabskip ∗/
{ List l; hget list (&l); hwrite list (&l); } /∗ items ∗/

Writing the short format : =⇒ · · ·

〈 put functions 14xiv 〉 +≡ (227)

Info hput span count (uint32 t n)
{

if (n ≡ 0) QUIT("Span count in item must not be zero");
else if (n < 7) return n;
else if (n > #FF) QUIT("Span count %d must be less than 255", n);
else { HPUT8(n);

return 7;
}

}

85

6 Extensions

6.1 Images

In the first implementation attempt, images behaved pretty much like glue. They
could stretch (or shrink) together with the surrounding glue to fill a horizontal
or vertical box. While I thought this would be in line with TEX’s concepts, it
proved to be a bad decission because images, as opposed to glue, would stretch or
shrink horizontally and vertically at the same time. This would require a two pass
algorithm to pack boxes: first to determine the glue setting and a second pass to
determine the proper image dimensions. Otherwise incorrect width or height values
would propagate all the way through a sequence of nested boxes. Even worse so,
this two pass algorithm would be needed in the viewer if images were contained in
boxes that had extended dimensions.

The new design described below allows images with extended dimensions. This
covers the case of stretchable or shrinkable images inside of extended boxes. The
given extended dimensions are considered maximum values. The stretching or
shrinking of images will always preserve the aspect ratio = width/height.

For convenience, we allow missing values in the long format, for example the
aspect ratio, if they can be determined from the image data. In the short format,
the necessary information for a correct layout must be available without using the
image data.

In the long format, the only required parts of an image node are: the number
of the auxiliary section where the image data can be found and the descriptive
text which is there to make the document more accessible. The section number
is followed by the optional aspect ratio, width, and height of the image. If some
of these values are missing, it must be possible to determine them from the image
data. The node ends with the description.

The short format, starts with the section number of the image data and ends
with the description. Missing values for aspect ratio, width, and height are only
allowed if they can be recomputed from the image data. A missing width or height
is represented by a reference to the zero extended dimension. If the b100 bit is
set, the aspect ratio is present as a 32 bit floating point value followed by extended
dimensions for width and height. The info value b100 indicates a width reference
followed by a height reference; the value b111 indicates a width node followed by a
height node; the value b110 indicates a height reference followed by a width node;
and the value b101 indicates a width reference followed by a height node. The last

86 6 Extensions

two rules reflect the requirement that subnodes are always located at the end of a
node.

The remaining info values are used as follows: The value b000 is used for a
reference to an image. The value b011 indicates an immediate width and an
immediate height. The value b010 indicates an aspect ratio and an immediate
width. The value b001 indicates an aspect ratio and an immediate height.

The following data type stores image information. The width and height are
either given as extended dimensions either directly in w and h or as references in
wr and hr .

〈 hint types 1i 〉 +≡ (228)

typedef struct { uint16 t n; float32 t a; Xdimen w, h; uint8 t wr , hr ;
} Image;

Reading the long format : −− − =⇒

〈 symbols 2ii 〉 +≡ (229)

%token IMAGE "image"

%token WIDTH "width"

%token HEIGHT "height"

%type < xd > image width image height
%type < f > image aspect
%type < info > image spec image

〈 scanning rules 3iii 〉 +≡ (230)

image return IMAGE;

width return WIDTH;

height return HEIGHT;

〈 parsing rules 5v 〉 +≡ (231)

image aspect: number { $$ = $1; }
| { $$ = 0.0; };

image width: WIDTH xdimen { $$ = $2; }
| { $$ = xdimen defaults [zero xdimen no]; };

image height: HEIGHT xdimen { $$ = $2; }
| { $$ = xdimen defaults [zero xdimen no]; };

image spec: UNSIGNED image aspect image width image height {
$$ = hput image spec($1, $2, 0,&($3), 0,&($4)); }

| UNSIGNED image aspect WIDTH REFERENCE image height {
$$ = hput image spec($1, $2, $4, NULL, 0,&($5)); }

| UNSIGNED image aspect image width HEIGHT REFERENCE {
$$ = hput image spec($1, $2, 0,&($3), $5, NULL); }

| UNSIGNED image aspect WIDTH REFERENCE HEIGHT REFERENCE {
$$ = hput image spec($1, $2, $4, NULL, $6, NULL); };

image: image spec list { $$ = $1; };

6.1 Images 87

content node: start IMAGE image END { hput tags ($1, TAG(image kind , $3));
};

When a short format file is generated, the image width and height must be
determined if necessary from the image file. The following function will write
this information into the long format file. Editing the image file at a later time
and converting the short format file back to a long format file will preserve the
old information. This is not allways a desirable effect. It would be possible to
eliminate information about the image size when writing the long format if that
information can be derived from the image file. The latter solution might have
the disadvantage, that infomation about a desired image size might get lost when
editing an image file.

Writing the long format : =⇒ − −−

〈write functions 21xxi 〉 +≡ (232)

void hwrite image (Image ∗x)
{ RNG("Section number", x→n, 3,max section no);

hwritef (" %u", x→n);
if (x→a 6= 0.0) hwrite float64 (x→a, false);
if (x→wr 6= 0) hwritef (" width *%u", x→wr);
else if (x→w.w 6= 0 ∨ x→w.h 6= 0.0 ∨ x→w.v 6= 0.0) { hwritef (" width");

hwrite xdimen (&x→w);
}
if (x→hr 6= 0) hwritef (" height *%u", x→hr);
else if (x→h.w 6= 0 ∨ x→h.h 6= 0.0 ∨ x→h.v 6= 0.0) { hwritef (" height");

hwrite xdimen (&x→h);
}

}

Reading the short format : · · · =⇒

〈 cases to get content 20xx 〉 +≡ (233)

case TAG(image kind , b001): HGET_IMAGE(b001); break;
case TAG(image kind , b010): HGET_IMAGE(b010); break;
case TAG(image kind , b011): HGET_IMAGE(b011); break;
case TAG(image kind , b100): HGET_IMAGE(b100); break;
case TAG(image kind , b101): HGET_IMAGE(b101); break;
case TAG(image kind , b110): HGET_IMAGE(b110); break;
case TAG(image kind , b111): HGET_IMAGE(b111); break;

〈 get macros 19xix 〉 +≡ (234)

#define HGET_IMAGE(I)
{ Image x = {0};
HGET16(x.n);
if ((I) & b100) { x.a = hget float32 ();

if ((I) ≡ b111) { hget xdimen node (&x.w);

88 6 Extensions

hget xdimen node (&x.h);
}
else if ((I) ≡ b110) { x.hr = HGET8;

hget xdimen node (&x.w);
}
else if ((I) ≡ b101) { x.wr = HGET8;

hget xdimen node (&x.h);
}
else { x.wr = HGET8;
x.hr = HGET8;

}
}
else if ((I) ≡ b011) { HGET32(x.w.w);
HGET32(x.h.w);

}
else if ((I) ≡ b010) { x.a = hget float32 ();
HGET32(x.w.w);

}
else if ((I) ≡ b001) { x.a = hget float32 ();
HGET32(x.h.w);

}
hwrite image (&x);
{ List d;

hget list (&d);
hwrite list (&d);

}
}

Writing the short format : =⇒ · · ·

〈 put functions 14xiv 〉 +≡ (235)

〈 image functions 236ccxxxvi 〉
Info hput image spec(uint32 t n,float32 t a,uint32 t wr ,Xdimen

∗w,uint32 t hr ,Xdimen ∗h)
{ HPUT16(n);

if (w 6= NULL ∧ h 6= NULL) {
if (w→h ≡ 0.0 ∧ w→v ≡ 0.0 ∧ h→h ≡ 0.0 ∧ h→v ≡ 0.0) return

hput image dimens (n, a, w→w, h→w);
else { hput image aspect (n, a);

hput xdimen node (w);
hput xdimen node (h);
return b111 ;

}
}
else if (w 6= NULL ∧ h ≡ NULL) {

6.1 Images 89

if (w→h ≡ 0.0 ∧ w→v ≡ 0.0 ∧ hr ≡ zero xdimen no)
return hput image dimens (n, a, w→w, 0);

else { hput image aspect (n, a);
HPUT8(hr);
hput xdimen node (w);
return b110 ;

}
}
else if (w ≡ NULL ∧ h 6= NULL) {

if (wr ≡ zero xdimen no ∧ h→h ≡ 0.0 ∧ h→v ≡ 0.0)
return hput image dimens (n, a, 0, h→w);

else { hput image aspect (n, a);
HPUT8(wr);
hput xdimen node (h);
return b101 ;

}
}
else {

if (wr ≡ zero xdimen no ∧ hr ≡ zero xdimen no)
return hput image dimens (n, a, 0, 0);

else { hput image aspect (n, a);
HPUT8(wr);
HPUT8(hr);
return b100 ;

}
}

}

If extended dimensions are involved, the long format might very well spec-
ify different values than stored in the image. In this case the given dimensions
are interpreted as maximum dimensions. If the aspect ratio is missing, we use
hextract image dimens to extract it from the image file.

〈 image functions 236ccxxxvi 〉 ≡ (236)

static void hput image aspect (int n,double a)
{

if (a ≡ 0.0) { Dimen w, h;

hextract image dimens (n,&a,&w,&h);
}
if (a 6= 0.0) hput float32 (a);
else QUIT("Unable to determine aspect ratio of image %s",

dir [n].file name);
}

Used in 235ccxxxv.

If no extended dimensions are involved in an image specification, we use hput image dimen .
Because the long format can omit part of the image specification, we use hextract image dimens

90 6 Extensions

to extract information from the image file and merge this information with the data
supplied in the long format.

〈 image functions 236ccxxxvi 〉 +≡ (237)

〈 auxiliar image functions 239ccxxxix 〉
static Info hput image dimens (int n,float32 t a,Dimen w,Dimen h)
{ Dimen iw , ih ;

double ia ;

if (w > 0 ∧ h > 0) { HPUT32(w);
HPUT32(h);
return b011 ;

}
else if (a > 0 ∧ w > 0) { hput float32 ((float32 t) a);
HPUT32(w);
return b010 ;

}
else if (a > 0 ∧ h > 0) { hput float32 ((float32 t) a);
HPUT32(h);
return b001 ;

}
hextract image dimens (n,&ia ,&iw ,&ih);
〈merge stored image dimensions with dimensions given 238ccxxxviii 〉
if (iw > 0) { hput float32 ((float32 t) ia);
HPUT32(iw);
return b010 ;

}
else if (ih > 0) { hput float32 ((float32 t) ia);
HPUT32(ih);
return b001 ;

}
else { iw = −iw ;

ih = −h; /∗we accept the default resolution ∗/
HPUT32(iw);
HPUT32(ih);
return b011 ;

}
}
If the width, height or aspect ratio is stored in the image file, we can merge this

information with the information given in the long format. It is considered an error,
if the function hextract image dimens can not extract the aspect ratio. Absolute
width and height values, however, might be missing. If the aspect ratio is computed
from the number of horizontal and vertical pixels, hextract image dimens makes
the reasonable assumption that the intended resolution is 72dpi and converts the
image dimensions to scaled points. It negates these values to indicate that the
resolution is just a guess. This allows other programs to used different default
resolutions if desired.

6.1 Images 91

〈merge stored image dimensions with dimensions given 238ccxxxviii 〉 ≡ (238)

{
if (ia ≡ 0.0) {

if (a 6= 0.0) ia = a;

else if (w 6= 0 ∧ h 6= 0) ia = (double) w/(double) h;

else QUIT("Unable to determine aspect ratio of image %s",
dir [n].file name);

} /∗ here the aspect ratio ia is known ∗/
if (w ≡ 0 ∧ h ≡ 0) /∗neither width nor height specified ∗/
{

if (ih > 0) iw = round (ih ∗ ia);

else if (iw > 0) ih = round (iw /ia);

}
else if (h ≡ 0) /∗width specified ∗/
{ iw = w; ih = round (w/ia); }
else if (w ≡ 0) /∗ height specified ∗/
{ ih = h; iw = round (h ∗ ia); }
else /∗ both specified ∗/
{ ih = h; iw = w; }

}
Used in 237ccxxxvii.

Before we present the code to extract image dimensions from various types of
image files, we define a few macros and variables for the reading these image files.

〈 auxiliar image functions 239ccxxxix 〉 ≡ (239)

#define IMG_BUF_MAX 54

#define IMG_HEAD_MAX 2

static unsigned char img buf [IMG_BUF_MAX];

static size t img buf size ;

#define LittleEndian32 (X) (img buf [(X)] + (img buf [(X) + 1] �
8) + (img buf [(X) + 2]� 16) + (img buf [(X) + 3]� 24))

#define BigEndian16 (X) (img buf [(X) + 1] + (img buf [(X)]� 8))

#define BigEndian32 (X) (img buf [(X) + 3] + (img buf [(X) + 2] �
8) + (img buf [(X) + 1]� 16) + (img buf [(X)]� 24))

#define Match2 (X,A,B) ((img buf [(X)] ≡ (A)) ∧ (img buf [(X) + 1] ≡ (B)))

#define Match4 (X,A,B,C,D) (Match2 (X,A,B) ∧Match2 ((X) + 2, C,D))

#define GET_IMG_BUF(X)

if (img buf size < X) {
size t i = fread (img buf + img buf size , 1, (X)− img buf size , f);

if (i < 0) QUIT("Unable to read image %s", fn);

else if (i ≡ 0) QUIT("Unable to read image header %s", fn);

else img buf size += i;

}
Used in 237ccxxxvii.

92 6 Extensions

Considering the different image formats, we start with Windows Bitmaps. A
Windows bitmap file usually has the extension .bmp but the better way to check
for a Windows bitmap file ist to examine the first two byte of the file: the ASCII
codes for ‘B’ and ‘M’. Once we have verified the file type, we find the width and
height of the bitmap in pixels at offsets #12 and #16 stored as little-endian 32 bit
integers. At offsets #26 and #2A, we find the horizontal and vertical resolution in
pixel per meter stored in the same format. This is sufficient to compute the true
width and height of the image in scaled points.

The Windows Bitmap format is easy to process but not very efficient. So the
support for this format in the HINT format is deprecated and will disappear. You
should use one of the formats described next.

〈 auxiliar image functions 239ccxxxix 〉 +≡ (240)

static bool get BMP info(FILE ∗f, char ∗fn ,double ∗a,Dimen
∗w,Dimen ∗h)

{ double wpx , hpx ;
double xppm , yppm ;

GET_IMG_BUF(2);
if (¬Match2 (0, ’B’, ’M’)) return false ;
GET_IMG_BUF(#2E);
wpx = (double) LittleEndian32 (#12); /∗width in pixel ∗/
hpx = (double) LittleEndian32 (#16); /∗height in pixel ∗/
xppm = (double) LittleEndian32 (#26); /∗ horizontal pixel per meter ∗/
yppm = (double) LittleEndian32 (#2A); /∗ vertical pixel per meter ∗/
∗w = floor (0.5 + ONE ∗ (72.00 ∗ 1000.0/25.4) ∗ wpx /xppm);
∗h = floor (0.5 + ONE ∗ (72.00 ∗ 1000.0/25.4) ∗ hpx /yppm);
∗a = (wpx /xppm)/(hpx /yppm);
return true ;

}

Now we repeat this process for image files using the Portable Network Graphics
file format. This file format is well suited to simple graphics that do not use color
gradients. These images usually have the extension .png and start with an eight
byte signature: #89 followed by the ASCII Codes ‘P’, ‘N’, ‘G’, followd by a carriage
return (#0D and line feed (#0A), an DOS end-of-file character (#1A) and final line
feed (#0A). After the signature follows a list of chunks. The first chunk is the image
header chunk. Each chunk starts with the size of the chunk stored as big-endian
32 bit integer, followed by the chunk name stored as four ASCII codes followed by
the chunk data and a CRC. The size, as stored in the chunk, does not include the
size itself, nor the name, and neither the CRC. The first chunk is the IHDR chunk.
The chunk data of the IHDR chunk starts with the width and the height of the
image in pixels stored as 32 bit big-endian integers.

Finding the image resolution takes some more effort. The image resolution is
stored in an optional chunk named “pHYs” for the physical pixel dimensions. All
we know is that this chunk, if it exists, will appear after the IHDR chunk and
before the (required) IDAT chunk. The pHYs chunk contains two 32 bit big-
endian integers, giving the horizontal and vertical pixels per unit, and a one byte

6.1 Images 93

unit specifier, which is either 0 for an undefined unit or 1 for the meter as unit.
With an undefined unit, only the aspect ratio of the pixels and hence the aspect
ratio of the image can be determined. It is not uncommon, however, that the
resolution in such a case is given as dots per inch. So we decide to assume the
latter.

If there is resolution can not be determined, we assume a resolution of 72dpi and
negate width and height to inform the calling procedure of this arbitrary choice.

〈 auxiliar image functions 239ccxxxix 〉 +≡ (241)

static bool get PNG info(FILE ∗f, char ∗fn ,double ∗a,Dimen ∗w,Dimen
∗h)

{ int pos , size ;
double wpx , hpx ; /∗ width and height in pixel ∗/
double xppu , yppu ; /∗ pixel per unit in x and y direction ∗/
int unit ;

GET_IMG_BUF(24);
if (¬Match4 (0,#89, ’P’, ’N’, ’G’) ∨ ¬Match4 (4,#0D,#0A,#1A,#0A))

return false ;
size = BigEndian32 (8);
if (¬Match4 (12, ’I’, ’H’, ’D’, ’R’)) return false ;
wpx = (double) BigEndian32 (16);
hpx = (double) BigEndian32 (20);
pos = 20 + size ;
while (true) {

if (fseek (f, pos , SEEK_SET) 6= 0) return false ;
img buf size = 0;
GET_IMG_BUF(17);
size = BigEndian32 (0);
if (Match4 (4, ’p’, ’H’, ’Y’, ’s’)) /∗must occur before IDAT chunk ∗/
{ xppu = (double) BigEndian32 (8);

yppu = (double) BigEndian32 (12);
unit = img buf [16];
if (unit ≡ 0) /∗ assuming unit is inch ∗/
{ ∗w = floor (0.5 + ONE ∗ 72.27 ∗ wpx /xppu);
∗h = floor (0.5 + ONE ∗ 72.27 ∗ hpx /yppu);
∗a = (wpx /xppu)/(hpx /yppu);
return true ;

}
else if (unit ≡ 1) /∗ unit is meter ∗/
{ ∗w = floor (0.5 + ONE ∗ (72.27/0.0254) ∗ wpx /xppu);
∗h = floor (0.5 + ONE ∗ (72.27/0.0254) ∗ hpx /yppu);
∗a = (wpx /xppu)/(hpx /yppu);
return true ;

}
else break;

}

94 6 Extensions

else if (Match4 (4, ’I’, ’D’, ’A’, ’T’)) break;
else pos = pos + 12 + size ;

} /∗we assume 72dpi and negate the results ∗/
∗w = −floor (0.5 + ONE ∗ 72.27 ∗ wpx /72.0);
∗h = −floor (0.5 + ONE ∗ 72.27 ∗ hpx /72.0);
∗a = wpx /hpx ;
return true ;

}

For photographs, the JPEG File Interchange Format (JFIF) is more appropriate.
JPEG files come with all sorts of file extensions like .jpg, .jpeg, or .jfif. We
check the file siganture: it starts with the the SOI (Start of Image) marker #FF,
#D8.

Most likely it will be followed by the JIFI-Tag. The JIFI-Tag starts with the
segment marker APP0 (#FF, #E0) followed by the 2 byte segment size, followed by
the ASCII codes ‘J’, ‘F’, ‘I’, ‘F’ followed by a zero byte. Next is a two byte version
number which we do not read. Before the resolution proper there is a resolution
unit indicator byte (0 = no units, 1 = dots per inch, 2 = dots per cm) and then
comes the horizontal and vertical resolution both as 16 Bit big-endian integers.

Instead of the JIFI-Tag, there might as well be a Exif-Tag which starts with the
segment marker APP1 (#FF, #E1) followed by the 2 byte segment size. Currently
this tag is not decoded.

To find the actual width and height, we have to search for a start of frame marker
(#FF, #C0+n with 0 ≤ n ≤ 15). Which is followed by the 2 byte segment size, the
1 byte sample precission, the 2 byte height and the 2 byte width.

If the resolution was given explicitely in the JIFI-Tag, we use it. If there was no
such tag or the uint was undefined, we proceed as we did for the PNG file.

〈 auxiliar image functions 239ccxxxix 〉 +≡ (242)

static bool get JPG info(FILE ∗f, char ∗fn ,double ∗a,Dimen ∗w,Dimen
∗h)

{ int pos , size ;
double wpx , hpx ;
double xppu = 72.0, yppu = 72.0;
int unit ;

GET_IMG_BUF(18);
if (¬Match2 (0,#FF,#D8)) /∗ SOI Start of Image ∗/

return false ;
pos = 2;
while (true) {

if (fseek (f, pos , SEEK_SET) 6= 0) return false ;
img buf size = 0;
GET_IMG_BUF(16);
if (img buf [0] 6= #FF) return false ; /∗ Not the start of a segment ∗/
if (img buf [1] ≡ #E0 ∧Match4 (4, ’J’, ’F’, ’I’, ’F’)) /∗ APP0 JFIF Tag

∗/
{ unit = img buf [11];

6.1 Images 95

xppu = (double) BigEndian16 (12);
yppu = (double) BigEndian16 (14);
if (unit ≡ 1) ; /∗ allready in dpi ∗/
else if (unit ≡ 2) { xppu = xppu ∗ 2.54; /∗ convert dot per cm to dpi ∗/

yppu = yppu ∗ 2.54;
}
else { yppu = 72.0 ∗ yppu/xppu ; /∗ assume 72dpi ∗/

xppu = 72.0;
}

}
else if (img buf [1] ≡ #C0 ∨ img buf [1] ≡ #C2) /∗ SOF Start of Frame ∗/
{ hpx = (double) BigEndian16 (5);

wpx = (double) BigEndian16 (7);
∗w = floor (0.5 + ONE ∗ 72.27 ∗ wpx /xppu);
∗h = floor (0.5 + ONE ∗ 72.27 ∗ hpx /yppu);
∗a = (wpx /xppu)/(hpx /yppu);
return true ;

}
else if (img buf [1] ≡ #D9) /∗ EOI End of Image ∗/

return false ;
size = BigEndian16 (2);
pos = pos + 2 + size ;

}
return false ;

}

There is still one image format missing: scalable vector graphics. In the moment,
I tend not to include a further image format into the definition of the HINT file
format but instead use the PostScript subset that is used for Type 1 fonts to encode
vector graphics. Any HINT viewer must support Type 1 PostScript fonts and hence
it has already the necessary interpreter. So it seems reasonable to put the burden of
converting vector graphics into a Type 1 PostScript font on the generator of HINT
files and keep the HINT viewer as small and simple as possible. An alternative
which would impose only a slight burden on the HINT file viewer is the use of the
rsvg library.

After having considered the various types of image files, we now determine width,
height and aspect ratio based on such an image file.

We combine all the above functions into the hextract image dimens function.

〈 image functions 236ccxxxvi 〉 +≡ (243)

void hextract image dimens (int n,double ∗a,Dimen ∗w,Dimen ∗h)
{ char ∗fn ;

FILE ∗f ;

∗a = 0.0;
∗w = ∗h = 0;
fn = dir [n].file name ;
f = fopen (fn , "rb");

96 6 Extensions

if (f 6= NULL) { img buf size = 0;
if (¬get BMP info(f, fn , a, w,

h) ∧ ¬get PNG info(f, fn , a, w, h) ∧ ¬get JPG info(f, fn , a, w, h))
DBG(DBGDEF, "Unknown image type %s", fn);

fclose (f);
DBG(DBGDEF, "image %d: width= %fpt height= %fpt aspect=%f\n", n,

∗w/(double) ONE, ∗h/(double) ONE, ∗a);
}

}

6.2 Positions, Outlines, Links, and Labels
A viewer can usually not display the entire content section of a HINT file. Instead
it will display a page of content and will give its user various means to change the
page. This might be as simple as a “page down” or “page up” button (or gesture)
and as sophisticated as searching using regular expressions. More traditional ways
to navigate the content include the use of a table of content or an index of keywords.
All these methods of changing a page have in common that a part of the content
that fits nicely in the screen area provided by the output device must be rendered
given a position inside the content section.

Let’s assume that the viewer uses a HINT file in short format—after all that’s
the format designed for precisely this use. A position inside the content section
is then the position of the starting byte of a node. Such a position can be stored
as a 32 bit number. Because even the smallest node contains two tag bytes, the
position of any node is strictly smaller than the maximum 32 bit number which we
can conveniently use as a “non position”.

〈 hint macros 13xiii 〉 +≡ (244)

#define HINT_NO_POS #FFFFFFFF

To render a page starting at a given position is not difficult: We just read
content nodes, starting at the given position and feed them to TEX’s page builder
until the page is complete. To implement a “clickable” table of content this is
good enough. We store with every entry in the table of content the position of the
section header, and when the user clicks the entry, the viewer can display a new
page starting exactly with that section header.

Things are slightly more complex if we want to implement a “page down” button.
If we press this button, we want the next page to start exactly where the current
page has ended. This is typically in the middle of a paragraph node, and it might
even be in the middle of an hyphenated word in that paragraph. Fortunately,
paragraph and table nodes are the only nodes that can be broken across page
boundaries. But broken paragraph nodes are a common case non the less, and
unless we want to search for the enclosing node, we need to augment in this case
the primary 32 bit position inside the content section with a secondary position.
Most of the time, 16 bit will suffice for this secondary position if we give it relative
to the primary position. Further, if the list of nodes forming the paragraph is given
as a text, we need to know the current font at the secondary position. Of course,
the viewer can find it by scanning the initial part of the text, but when we think of

6.2 Positions, Outlines, Links, and Labels 97

a page down button, the viewer might already know it from rendering the previous
page.

Similar is the case of a “page up” button. Only here we need a page that ends
precisely where our current page starts. Possibly even with the initial part of
a hyphenated word. Here we need a reverse version of TEX’s page builder that
assembles a “good” page from the bottom up instead of from the top down. Sure
the viewer can cache the start position of the previous page (or the rendering of
the entire page) if the reader has reached the current page using the page down
button. But this is not possible in all cases. The reader might have reached the
current page using the table of content or even an index or a search form.

This is the most complex case to consider: a link from an index or a search
form to the position of a keyword in the main text. Let’s assume someone looks
up the word “München”. Should the viewer then generate a page that starts in
the middle of a sentence with the word “München”? Probably not! We want a
page that shows at least the whole sentence if not the whole paragraph. Of course
the program that generates the link could specify the position of the start of the
paragraph instead of the position of the word. But that will not solve the problem.
Just imagine reading the groundbreaking masterpiece of a German philosopher on
a small hand-held device: the paragraph will most likely be very long and perhaps
only part of the first sentence will fit on the small screen. So the desired keyword
might not be found on the page that starts with the beginning of the paragraph;
it might not even be on the next or next to next page. Only the viewer can decide
what is the best fragment of content to display around the position of the given
keyword.

To summarize, we need three different ways to render a page for a given position:

• A page that starts exactly at the given position.

• A page that ends exactly at the given position.

• The “best” page that contains the given position somewhere in the middle.

A possible way to find the “best” page for the latter case could be the following:

• If the position is inside a paragraph, break the paragraph into lines. One line
will contain the given position. Let’s call this the destination line.

• If the paragraph will not fit entirely on the page, start the page with the
beginning of the paragraph if that will place the destination line on the page,
otherwise start with a line in the paragraph that is about half a page before the
destination line.

• Else traverse the content list backward for about 2/3 of the page height and
forward for about 2/3 of the page height, searching for the smallest negative
penalty node. Use the penalty node found as either the beginning or ending of
the page.

• If there are several equally low negative penalty nodes. Prefer penalties preceding
the destination line over penalty nodes following it. A good page start is more
important than a good page end.

• If there are are still several equally low negative penalty nodes, choose the one
whose distance to the destination line is closest to 1/2 of the page height.

98 6 Extensions

• If no negative penalty nodes could be found, start the page with the paragraph
containing the destination line.

• Once the page start (or end) is found, use TEX’s page builder (or its reverse
variant) to complete the page.

We call content nodes that reference some position inside the content section
“link” nodes. The position that is referenced is called the destination of the link.
Link nodes occur always in pairs of an “start” link followed by a corresponding
“end” link that both reference the same position and no other link nodes between
them. The content between the two will constitute the visible part of the link.

To encode a position inside the content section that can be used as the destination
of a link node, an other kind of node is needed which we call a “label”.

Links are not the only way to navigate inside a large document. The user
interface can also present an “outline” of the document that can be used for
navigation. An outline node implements an association between a name displayed
by the user interface of the HINT viewer and the destination position in the HINT
document.

It is possible though that outline nodes, link nodes, and label nodes can share
the same kind-value and we have outline kind ≡ link kind ≡ label kind . To
distinguish an outline node from a label node—both occur in the short format
definition section—the b100 info bit is set in an outline node.

〈 get functions 18xviii 〉 +≡ (245)

void hget outline or label def (Info i,uint32 t node pos)

{ if (i& b100) 〈 get and write an outline node 277cclxxvii 〉
else 〈 get and store a label node 261cclxi 〉

}

The next thing we need to implement is a new maximum number for outline
nodes. We store this number in the variable max outline and limit it to a 16 bit
value.

In the short format, the value of max outline is stored with the other maximum
values using the kind value outline kind ≡ label kind and the info value b100 for
single byte and b101 for a two byte value.

Reading the Short Format : · · · =⇒

〈 cases of getting special maximum values 246ccxlvi 〉 ≡ (246)

case TAG(outline kind , b100): case TAG(outline kind , b101): max outline = n;

DBG(DBGDEF | DBGLABEL, "max(outline) = %d\n",max outline);

break;

Used in 390cccxc.

6.2 Positions, Outlines, Links, and Labels 99

Writing the Short Format : =⇒ · · ·

〈 cases of putting special maximum values 247ccxlvii 〉 ≡ (247)

if (max outline > −1) { uint32 t pos = hpos ++ − hstart ;

DBG(DBGDEF | DBGLABEL, "max(outline) = %d\n",max outline);
hput tags (pos , TAG(outline kind , b100 | (hput n (max outline)− 1)));

}
Used in 391cccxci.

Writing the Long Format : =⇒ − −−

〈 cases of writing special maximum values 248ccxlviii 〉 ≡ (248)

case label kind :
if (max ref [label kind] > −1)
{ hwrite start ();

hwritef ("label %d",max ref [label kind]);
hwrite end (); }

if (max outline > −1)
{ hwrite start ();

hwritef ("outline %d",max outline);
hwrite end (); }

break;
Used in 389ccclxxxix.

Reading the Long Format : −− − =⇒

〈 parsing rules 5v 〉 +≡ (249)

max value: OUTLINE UNSIGNED { max outline = $2;
RNG("max outline",max outline , 0,#FFFF); DBG(DBGDEF | DBGLABEL,

"Setting max outline to %d\n",max outline); };

After having seen the maximum values, we now explain labels, then links, and
finally outlines.

To store labels, we define a data type Label and an array labels indexed by the
labels reference number.

〈 hint basic types 6vi 〉 +≡ (250)

typedef struct { uint32 t pos ; /∗ position ∗/
uint32 t pos0 ; /∗ secondary position ∗/
uint8 t where ; /∗ where on the rendered page ∗/
bool used ; /∗ label used in a link or an outline ∗/
int next ; /∗ reference in a linked list ∗/
uint8 t f ; /∗ font, currently not used ∗/

} Label;

The where field indicates where the label position should be on the rendered
page: at the top, at the bottom, or somewhere in the middle. An undefined label
has where equal to zero.

100 6 Extensions

〈 hint macros 13xiii 〉 +≡ (251)

#define LABEL_UNDEF 0
#define LABEL_TOP 1
#define LABEL_BOT 2
#define LABEL_MID 3

〈 common variables 252cclii 〉 ≡ (252)

Label ∗labels = NULL;
int first label = −1;

Used in 552dlii, 554dliv, 557dlvii, 558dlviii, and 560dlx.

The variable first label will be used together with the next field of a label to
construct a linked list of labels.

〈 initialize definitions 253ccliii 〉 ≡ (253)

if (max ref [label kind] ≥ 0)
ALLOCATE(labels ,max ref [label kind] + 1,Label);

Used in 381ccclxxxi and 387ccclxxxvii.

The implementation of labels has to solve the problem of forward links: a link
node that references a label that is not yet defined. We solve this problem by
keeping all labels in the definition section. So for every label at least a definition
is available before we start with the content section and we can fill in the position
when the label is found. If we restrict labels to the definition section and do not
have an alternative representation, the number of possible references is a hard limit
on the number of labels in a document. Therefore label references are allowed to
use 16 bit reference numbers. In the short format, the b001 bit indicates a two
byte reference number if set, and a one byte reference number otherwise.

In the short format, the complete information about a label is in the definition
section. In the long format, this is not possible because we do not have node
positions. Therefore we will put label nodes at appropriate points in the content
section and compute the label position when writing the short format.

Reading the long format : −− − =⇒

〈 symbols 2ii 〉 +≡ (254)

%token LABEL "label"

%token BOT "bot"

%token MID "mid"

%type < i > placement

〈 scanning rules 3iii 〉 +≡ (255)

label return LABEL;

bot return BOT;

mid return MID;

A label node specifies the reference number and a placement.

6.2 Positions, Outlines, Links, and Labels 101

〈 parsing rules 5v 〉 +≡ (256)

placement: TOP { $$ = LABEL_TOP; }
| BOT { $$ = LABEL_BOT; }
| MID { $$ = LABEL_MID; }
| { $$ = LABEL_MID; };

content node: START LABEL REFERENCE placement END

{ hset label ($3, $4); };

After parsing a label, the function hset label is called.

〈 put functions 14xiv 〉 +≡ (257)

void hset label (int n, int w)
{ Label ∗t;
REF_RNG(label kind , n);
t = labels + n;
if (t→where 6= LABEL_UNDEF)
MESSAGE("Duplicate definition of label %d\n", n);

t→where = w;
t→pos = hpos − hstart ;
t→pos0 = hpos0 − hstart ;
t→next = first label ;
first label = n;

}

The above function will simply store the data obtained in the labels array. The
generation of the short format output is postponed until the entire content section
has been parsed and the positions of all labels are known.

One more complication needs to be considered: The hput list function is allowed
to move lists in the output stream and if positions inside the list were recorded
in a label, these labels need an adjustment. To find out quickly if any labels are
affected, the hset label function constructs a linked list of labels starting with the
reference number of the most recent label in first label and the reference number
of the label preceding label i in labels [i].next . Because labels are recorded with
increasing positions, the list will be sorted with positions decreasing.

〈 adjust label positions after moving a list 258cclviii 〉 ≡ (258)

{ int i;

for (i = first label ; i ≥ 0 ∧ labels [i].pos ≥ l→p; i = labels [i].next) {
DBG(DBGNODE | DBGLABEL, "Moving label *%d by %d\n", i, d);
labels [i].pos += d;
if (labels [i].pos0 ≥ l→p) labels [i].pos0 += d;

}
}

Used in 148cxlviii.

The hwrite label function is the reverse of the above parsing rule. Note that it
is different from the usual hwrite . . . functions. And we will see shortly why that
is so.

102 6 Extensions

Writing the long format : =⇒ − −−

〈write functions 21xxi 〉 +≡ (259)

void hwrite label (void) /∗ called in hwrite end and at the start of a list ∗/
{ while (first label ≥ 0 ∧ (uint32 t)(hpos − hstart) ≥ labels [first label].pos)
{ Label ∗t = labels + first label ;

DBG(DBGLABEL, "Inserting label *%d\n",first label);
hwrite start ();
hwritef ("label *%d",first label);
if (t→where ≡ LABEL_TOP) hwritef (" top");
else if (t→where ≡ LABEL_BOT) hwritef (" bot");
nesting −−;
hwritec(’>’); /∗ avoid a recursive call to hwrite end ∗/
first label = labels [first label].next ;

}
}

The short format specifies the label positions in the definition section. This is
not possible in the long format because there are no “positions” in the long format.
Therefore long format label nodes must be inserted in the content section just before
those nodes that should come after the label. The function hwrite label is called
in hwrite end . At that point hpos is the position of the next node and it can be
compared with the positions of the labels taken from the definition section. Because
hpos is strictly increasing while reading the content section, the comparison can be
made efficient by sorting the labels. The sorting uses the next field in the array of
labels to construct a linked list. After sorting, the value of first label is the index
of the label with the smallest position; and for each i, the value of labels [i].next is
the index of the label with the next bigger position. If labels [i].next is negative,
there is no next bigger position. Currently a simple insertion sort is used. The
insertion sort will work well if the labels are already mostly in ascending order. If
we expect lots of labels in random order, a more sophisticated sorting algorithm
might be appropriate.

〈write functions 21xxi 〉 +≡ (260)

void hsort labels (void)
{ int i;

if (max ref [label kind] < 0) { first label = −1;
return; } /∗ empty list ∗/

first label = max ref [label kind];
while (first label ≥ 0 ∧ labels [first label].where ≡ LABEL_UNDEF)

first label −−;
if (first label < 0) return; /∗ no defined labels ∗/
labels [first label].next = −1;
DBG(DBGLABEL, "Sorting %d labels\n",first label + 1);
for (i = first label − 1; i ≥ 0; i−−) /∗ insert label i ∗/

if (labels [i].where 6= LABEL_UNDEF)
{ uint32 t pos = labels [i].pos ;

6.2 Positions, Outlines, Links, and Labels 103

if (labels [first label].pos ≥ pos)

{ labels [i].next = first label ;

first label = i; } /∗ new smallest ∗/
else

{ int j;

for (j = first label ; labels [j].next ≥ 0∧labels [labels [j].next].pos < pos ;
j = labels [j].next) continue;

labels [i].next = labels [j].next ;

labels [j].next = i;

}
}

}

The following code is used to get label information from the definition section
and store it in the labels array. The b010 bit indicates the presence of a secondary
position for the label.

Reading the short format : · · · =⇒

〈 get and store a label node 261cclxi 〉 ≡ (261)

{ Label ∗t;
int n;

if (i& b001) HGET16(n); else n = HGET8;

REF_RNG(label kind , n);

t = labels + n;

if (t→where 6= LABEL_UNDEF) DBG(DBGLABEL,
"Duplicate definition of label %d at 0x%x\n", n,node pos);

HGET32(t→pos);

t→where = HGET8;

if (t→where ≡ LABEL_UNDEF ∨ t→where > LABEL_MID)
DBG(DBGLABEL, "Label %d where value invalid: %d at 0x%x\n", n,

t→where ,node pos);

if (i& b010) /∗ secondary position ∗/
{ HGET32(t→pos0);

t→f = HGET8; }
else t→pos0 = t→pos ;

DBG(DBGLABEL, "Defining label %d at 0x%x/0x%x\n", n, t→pos0 , t→pos);

}
Used in 245ccxlv.

The function hput label is simply the reverse of the above code.

104 6 Extensions

Writing the short format : =⇒ · · ·

〈 put functions 14xiv 〉 +≡ (262)

Tag hput label (int n,Label ∗l)
{ Info i = b000 ;

HPUTX(13);
if (n > #FF) { i |= b001 ;
HPUT16(n); } else HPUT8(n);

HPUT32(l→pos);
HPUT8(l→where);
if (l→pos 6= l→pos0) { i |= b010 ;
HPUT32(l→pos0);
HPUT8(l→f); }

DBG(DBGLABEL, "Defining label %d at 0x%x/0x%x\n", n, l→pos0 , l→pos);
return TAG(label kind , i);

}

hput label defs is called by the parser after the entire content section has been
processed; it appends the label definitions to the definition section. The outlines
are stored after the labels because they reference the labels.

〈 put functions 14xiv 〉 +≡ (263)

extern void hput definitions end (void);
extern Tag hput outline (Outline ∗ t);
void hput label defs (void)
{ int n;

section no = 1;
hstart = dir [1].buffer ;
hend = hstart + dir [1].bsize ;
hpos = hstart + dir [1].size ;
〈 output the label definitions 264cclxiv 〉
〈 output the outline definitions 284cclxxxiv 〉
hput definitions end ();

}

〈 output the label definitions 264cclxiv 〉 ≡ (264)

for (n = 0; n ≤ max ref [label kind]; n++)
{ Label ∗l = labels + n;

uint32 t pos ;

if (l→used)
{ pos = hpos ++ − hstart ;

hput tags (pos , hput label (n, l));
if (l→where ≡ LABEL_UNDEF)
MESSAGE("WARNING: Label *%d is used but not defined\n", n);

else DBG(DBGDEF | DBGLABEL, "Label *%d defined 0x%x\n", n, pos);
}
else {

6.2 Positions, Outlines, Links, and Labels 105

if (l→where 6= LABEL_UNDEF) { pos = hpos ++ − hstart ;
hput tags (pos , hput label (n, l));
DBG(DBGDEF | DBGLABEL, "Label *%d defined but not used 0x%x\n",

n, pos);
}

}
}

Used in 263cclxiii.

Links are simpler than labels. They are found only in the content section and
resemble pretty much what we have seen for other content nodes. Let’s look at
them next. When reading a short format link node, we use again the b001 info bit
to indicate a 16 bit reference number to a label.

To help a reader tell a link from ordinary text, links should be visualy different.
This is supported in the HINT file format by associating a different color scheme
to a link. In the short format, the b100 bit indicates that a color set reference (see
section 6.3) follows after the label reference. A color reference to 1 in the start
node and to #FF in the end node is the default and is omitted.

Because color changes are local to the enclosing box or paragraph, a link is local
as well. Without further mentioning, here and in the following, when we say “box”
it also mean “paragraph”. A link starts with a “start” link and ends with either
an “end” link or the end of the enclosing box. Links must not be nested. It is an
error to have two start links in the same box without an end link between them.
An application can choose to continue a link in the next box by inserting a copy
of the start link node at the begining of the new box. In short: “end” links are
mandatory when separating two links but optional if they just preceede the end of
the box. The b010 info bit indicates a “start” link; otherwise it is an “end” link.

Reading the short format : · · · =⇒

〈 get macros 19xix 〉 +≡ (265)

#define HGET_LINK(I)
{ int n, c;

if (I & b001) HGET16(n); else n = HGET8;
if (I & b100) c = HGET8;
else c = (I & b010) ? 1 : #FF;
hwrite link (n, c, I & b010); }

〈 cases to get content 20xx 〉 +≡ (266)

case TAG(link kind , b000): HGET_LINK(b000); break;
case TAG(link kind , b001): HGET_LINK(b001); break;
case TAG(link kind , b010): HGET_LINK(b010); break;
case TAG(link kind , b011): HGET_LINK(b011); break;
case TAG(link kind , b100): HGET_LINK(b100); break;
case TAG(link kind , b101): HGET_LINK(b101); break;
case TAG(link kind , b110): HGET_LINK(b110); break;
case TAG(link kind , b111): HGET_LINK(b111); break;

106 6 Extensions

The function hput link will insert the link in the output stream and return the
appropriate tag.

Writing the short format : =⇒ · · ·

〈 put functions 14xiv 〉 +≡ (267)

Tag hput link (int n, int c, int on)
{ Info i;

REF_RNG(label kind , n);
labels [n].used = true ;
if (on) i = b010 ; else i = b000 ;
if (n > #FF) { i |= b001 ;
HPUT16(n); } else HPUT8(n);

if ((on ∧ c 6= 1) ∨ (¬on ∧ c 6= #FF)) { i |= b100 ;
HPUT8(c);

}
return TAG(link kind , i);
}

Reading the long format : −− − =⇒

〈 symbols 2ii 〉 +≡ (268)

%token LINK "link"

〈 scanning rules 3iii 〉 +≡ (269)

link return LINK;

〈 parsing rules 5v 〉 +≡ (270)

content node: start LINK REFERENCE on off END {
hput tags ($1, hput link ($3, $4 ? 1 : #FF, $4)); };

content node: start LINK REFERENCE on off REFERENCE END {
hput tags ($1, hput link ($3, $5, $4)); };

Writing the long format : =⇒ − −−

〈write functions 21xxi 〉 +≡ (271)

void hwrite link (int n, int c,uint8 t on)
{ REF_RNG(label kind , n);

if (labels [n].where ≡ LABEL_UNDEF)
MESSAGE("WARNING: Link to an undefined label %d\n", n);

hwrite ref (n);
if (on) hwritef (" on");
else hwritef (" off");
if ((on ∧ c 6= 1) ∨ (¬on ∧ c 6= #FF)) { REF_RNG(color kind , c);

hwrite ref (c);
}

}

6.2 Positions, Outlines, Links, and Labels 107

Now we look at the outline nodes which are found only in the definition section.
Every outline node is associated with a label node, giving the position in the
document, and a unique title that should tell the user what to expect when
navigating to this position. For example an item with the title “Table of Content”
should navigate to the page that shows the table of content. The sequence of
outline nodes found in the definition section gets a tree structure by assigning to
each item a depth level.

〈 hint types 1i 〉 +≡ (272)

typedef struct { uint8 t ∗t; /∗ title ∗/
int s; /∗ title size ∗/
int d; /∗ depth ∗/
uint16 t r; /∗ reference to a label ∗/
} Outline;

〈 shared put variables 273cclxxiii 〉 ≡ (273)

Outline ∗outlines ;
Used in 554dliv, 557dlvii, 558dlviii, and 560dlx.

〈 initialize definitions 253ccliii 〉 +≡ (274)

if (max outline ≥ 0)
ALLOCATE(outlines ,max outline + 1,Outline);

Child items follow their parent item and have a bigger depth level. In the short
format, the first item must be a root item, with a depth level of 0. Further, if any
item has the depth d, then the item following it must have either the same depth
d in which case it is a sibling, or the depth d + 1 in which case it is a child, or a
depth d′ with 0 ≤ d′ < d in which case it is a sibling of the latest ancestor with
depth d′. Because the depth is stored in a single byte, the maximum depth is #FF.

In the long format, the depth assignments are more flexible. We allow any signed
integer, but insist that the depth assignments can be compressed to depth levels
for the short format using the following algorithm:

〈 compress long format depth levels 275cclxxv 〉 ≡ (275)

n = 0; while (n ≤ max outline) n = hcompress depth (n, 0);
Used in 284cclxxxiv.

Outline items must be listed in the order in which they should be displayed. The
function hcompress depth (n, c) will compress the subtree starting at n with root
level d to a new tree with the same structure and root level c. It returns the outline
number of the following subtree.

〈 put functions 14xiv 〉 +≡ (276)

int hcompress depth (int n, int c)
{ int d = outlines [n].d;

if (c > #FF)
QUIT("Outline %d, depth level %d to %d out of range", n, d, c);

while (n ≤ max outline)
if (outlines [n].d ≡ d) outlines [n++].d = c;

108 6 Extensions

else if (outlines [n].d > d) n = hcompress depth (n, c+ 1);

else break;

return n;

}

For an outline node, the b001 bit indicates a two byte reference to a label. There
is no reference number for an outline item itself: it is never referenced anywhere in
an HINT file.

Reading the short format : · · · =⇒
Writing the long format : =⇒ − −−

〈 get and write an outline node 277cclxxvii 〉 ≡ (277)

{ int r, d;

List l;

static int outline no = −1;

hwrite start (); hwritef ("outline");
++outline no ;

RNG("outline", outline no , 0,max outline);

if (i& b001) HGET16(r); else r = HGET8;

REF_RNG(link kind , r);

if (labels [r].where ≡ LABEL_UNDEF)

MESSAGE("WARNING: Outline with undefined label %d at 0x%x\n",
r,node pos);

hwritef (" *%d", r);

d = HGET8;

hwritef (" %d", d);

hget list (&l);

hwrite list (&l);

hwrite end ();

}
Used in 245ccxlv.

When parsing an outline definition in the long format, we parse the outline title
as a list which will write the representation of the list to the output stream. Writing
the outline definitions, however, must be postponed until the label have found their
way into the definition section. So we save the list’s representation in the outline
node for later use and remove it again from the output stream.

6.2 Positions, Outlines, Links, and Labels 109

Reading the long format : −− − =⇒

〈 symbols 2ii 〉 +≡ (278)

%token OUTLINE "outline"

〈 scanning rules 3iii 〉 +≡ (279)

outline return OUTLINE;

〈 parsing rules 5v 〉 +≡ (280)

def node: START OUTLINE REFERENCE integer position list END { static
int outline no = −1;

$$.k = outline kind ; $$.n = $3;
if ($6.s ≡ 0)
QUIT("Outline with empty title in line %d", yylineno);

outline no ++; hset outline (outline no , $3, $4, $5); };

〈 put functions 14xiv 〉 +≡ (281)

void hset outline (int m, int r, int d,uint32 t pos)
{ Outline ∗t;
RNG("Outline",m, 0,max outline);
t = outlines +m;
REF_RNG(label kind , r);
t→r = r;
t→d = d;
t→s = hpos − (hstart + pos);
hpos = (hstart + pos);
ALLOCATE(t→t, t→s,uint8 t);
memmove (t→t, hpos , t→s);
labels [r].used = true ;

}

To output the title, we need to move the list back to the output stream. Before
doing so, we allocate space (and make sure there is room left for the end tag of the
outline node), and after doing so, we release the memory used to save the title.

〈 output the title of outline ∗t 282cclxxxii 〉 ≡ (282)

memmove (hpos , t→t, t→s);
hpos = hpos + t→s;
free (t→t);

Used in 283cclxxxiii.

We output all outline definitions from 0 to max outline and check that every one
of them has a title. Thereby we make sure that in the short format max outline
matches the number of outline definitions.

110 6 Extensions

Writing the short format : =⇒ · · ·

〈 put functions 14xiv 〉 +≡ (283)

Tag hput outline (Outline ∗t)
{ Info i = b100 ;

HPUTX(t→s+ 4);
if (t→r > #FF) { i |= b001 ; HPUT16(t→r); } else HPUT8(t→r);
labels [t→r].used = true ;
HPUT8(t→d);
〈 output the title of outline ∗t 282cclxxxii 〉
return TAG(outline kind , i);

}

〈 output the outline definitions 284cclxxxiv 〉 ≡ (284)

〈 compress long format depth levels 275cclxxv 〉
for (n = 0; n ≤ max outline ; n++) { Outline ∗t = outlines + n;

uint32 t pos ;

pos = hpos ++ − hstart ;
if (t→s ≡ 0 ∨ t→t ≡ NULL)
QUIT("Definition of outline %d has an empty title", n);

DBG(DBGDEF | DBGLABEL, "Outline *%d defined\n", n);
hput tags (pos , hput outline (t));

}
Used in 263cclxiii.

6.3 Colors
This is the third draft of implementing color specifications in a HINT file.

According to the initial philosophy of a HINT file, a viewer must be capable
of rendering a page given just any valid position in the content section without
reading the entire file. This makes it impossible to use global information; only the
information that is localy available can be used. Given a file position, the viewer
will compute a representation of the page, insert it into a page template, and pass
it to the renderer. Color will not effect the position of glyphs or rules and so it is
sufficient to process the color information when rendering the page. The renderer
will, however, render the page always from the top down and from left to right. As
a consequence of the rendering order, it is very well possible to work with a color
state within the top level boxes.

A separate issue is the specification of color changes on the top level. While a
vertical list contains no character nodes, a color specification might still affect the
background color and the foreground color of rules. Because we still want to avoid
the search for color nodes on the top level, we restrict the scope of a color node on
the top level. It will extend only to the next possible page break and applications
like HiTEX must repeat a top level color node after every node that could be used
as a page break.

The nesting of boxes on a page together with the transparency of colors leads
to the problem of stacking several layers of color one on top of the other. Here

6.3 Colors 111

is an example: An outer box might specify blue as a background color and white
as a forground color while an inside box specifies a transparent grey background
and a transparent black foreground. Then we expect text in the outer box to have
white letters on blue background. Further we want to see the inner box casting a
grey shadown on the blue background, resulting in a mix of blue and gray, with
black letters on top of it that are not completely black but let the background shine
through.

To limit the complexity, the HINT file format will allow this stacking of colors only
when nesting boxes. But inside a box, there is at any position only one foreground
and one background color; a color change inside a box will simply replace the
current colors.

If an application like HiTEX wants to implement nesting colors inside a box, it
has to implement its own color stack and compute the necessary color mixtures.
There is only one exception to this concept: When a new box starts, the current
colors will be those of the enclosing box. These colors can be restored after a color
change by using the 〈 color off 〉 command.

The limited complexity is necessary to simplifies the spliting of boxes, for example
by the line breaking routine. Repeating the last color node before the split just
after the split is sufficient.

Inside a horizontal list, a background color will extend from top to bottom;
inside a vertical list a background color will extend from the left edge to the right
edge. If the document does not want to change the background color, a completely
transparent color should be used.

While the current implementation of searching does not use the background
color, a color set will still specify background and foreground for all colors. This is
simpler, easier to extend at a later time, and the overhead is small.

After these preliminaries let’s turn our attention to the design of a suitable color
concept.

Colors come in sets. A color set supports two modes: day and night mode. In
future extensions it might be possible for an author to invent color sets for winter
or summer, fall or spring, or any other resonable or unreasonable purpose. For each
mode a color set specifies three color styles: one for normal text, one for marked
text and one for in-focus text. The switching between different modes and different
styles is left to the user interface.

We store a color set as an array of 12 words. The first 6 words are for day mode
the next 6 byte are for night mode; For each mode we have three color pairs and
each pair consists of a forgraound and a backgraund color each stored as an RGBA
value.

〈 hint basic types 6vi 〉 +≡ (285)

typedef uint32 t ColorSet[2 ∗ 3 ∗ 2];

To extract the various sub-arrays, we have the following macros:

〈 hint macros 13xiii 〉 +≡ (286)

#define CURCOLOR (M,S,C) ((C) + 6 ∗ (M) + 2 ∗ (S))
#define DAY (C) CURCOLOR (0, 0, C)
#define NIGHT (C) CURCOLOR (1, 0, C)

112 6 Extensions

#define HIGH (C) CURCOLOR (0, 1, C)
#define FOCUS (C) CURCOLOR (0, 2, C)
#define FG (C) ((C)[0])
#define BG (C) ((C)[1])

We will allow up to 255 color sets that are stored in the definition section and
are referenced in the content section by a single byte. The definition of different
color sets and the switching between them is left to the document author.

The color set with reference number zero specifies the default colors. At the root
of a page template, the default color set is selected and the whole page is filled
with the background color for normal text. For links, by default the color set with
number one is used. Section 11.11 specifies default values for both color sets; the
default colors can be overwritten. The color sets with reference numbers zero and
one are not stored in the definition section of a short format file if they are the
same as the default values. This makes files not using colors compatible with older
versions of the HINT file format.

Now we are ready for the implementation.

Reading the long format : −− − =⇒
Writing the short format : =⇒ · · ·

〈 symbols 2ii 〉 +≡ (287)

%token COLOR "color"

〈 scanning rules 3iii 〉 +≡ (288)

color return COLOR;

Colors can be specified as a single number, preferably in hexadecimal notation,
giving the red, green, blue, and alpha value in a single number. For example
0xFF0000FF would be pure red, and 0x00FF0080 would be transparent green. Of
course even decimal values can be used. A good example is the value 0 which
is equivalent to but a bit shorter than 0x0 or 0x00000000 which describes a
completely transparent black. It is invisible because the alpha value is zero.

Alternatively, colors can be given as a list of three or four numbers enclosed in
pointed brackets < . . . >. If only three numbers are given, the color is opaque with
an alpha value equivalent to 0xFF. Using this format the same colors as before can
be written <0xFF 0 0> (pure red), <0 0xFF 0 0x80> (transparent green) and <0 0

0 0> (transparent black).
The parser will put the color definition into colors n using the index colors i . As

we will see later, the colors n array is initialized with the colors in colors 0 which
in turn is initialized from color defaults [0]. colors 0 can be changed but only if
that change occurs before any other color definition.

〈 common variables 252cclii 〉 +≡ (289)

ColorSet colors 0 , colors n ; /∗ default and current color set ∗/
int colors i ; /∗ current color ∗/

〈 initialize definitions 253ccliii 〉 +≡ (290)

{ int i;

6.3 Colors 113

for (i = 0; i < sizeof (ColorSet)/4; i++) colors 0 [i] = color defaults [0][i];
}

〈 parsing rules 5v 〉 +≡ (291)

color: START UNSIGNED UNSIGNED UNSIGNED UNSIGNED END

{ RNG("red", $2, 0,#FF); RNG("green", $3, 0,#FF);
RNG("blue", $4, 0,#FF); RNG("alpha", $5, 0,#FF);
colors n [colors i ++] = ($2 � 24) | ($3 � 16) | ($4 � 8) | $5; }

| START UNSIGNED UNSIGNED UNSIGNED END { RNG("red", $2, 0,#FF);
RNG("green", $3, 0,#FF); RNG("blue", $4, 0,#FF);
colors n [colors i ++] = ($2 � 24) | ($3 � 16) | ($4 � 8) | #FF; };

color: UNSIGNED { colors n [colors i ++] = $1; };

Colors are always specified in pairs: a foreground color folowed by background
color enclosed in pointed brackets < . . . > as usual. For convenience, the background
color can be omited; in this case a completely transparent background is assumed.

〈 parsing rules 5v 〉 +≡ (292)

color pair: START color color END

| START color END { colors n [colors i ++] = 0; };
color unset :
{ colors i += 2;
}
;

A complete color set consists of six color pairs organized in two color tripples:
the first three pairs for normal, mark, and focus text in day mode are followed by
the three pairs in night mode. The color tripple for night mode is optional; and
within a color tripple all color pairs except the first one are optional. An omited
color is replaced by the corresponding color from the color set zero. To make
the replacement process more predictable, the specification of color set zero—if
present—must come first. If the default color set itself is redefined, an unspecified
color will not change the default color.

To be open to future changes, color set definitions in the short format will contain
after the reference number the number of color pairs that follow. Currently this
value is always six.

〈 parsing rules 5v 〉 +≡ (293)

color tripple: START color pair color unset color unset END

| START color pair color pair color unset END

| START color pair color pair color pair END;

color set: color tripple color tripple;

color set: color tripple color unset color unset color unset ; def node: start
COLOR ref { HPUT8(6); color init (); } color set END {
DEF($$, color kind , $3); hput color def ($1, $3); };

114 6 Extensions

〈 put functions 14xiv 〉 +≡ (294)

void color init (void)

{ int i;

for (i = 0; i < sizeof (ColorSet)/4; i++) colors n [i] = colors 0 [i];

colors i = 0;

}
static Tag hput color set (int n)

{ static bool first color = true ;

int i;

if (n ≡ 0) {
if (first color)

for (i = 0; i < sizeof (ColorSet)/4; i++) colors 0 [i] = colors n [i];

else QUIT("Redefinition of color set 0 must be the\
 first color definition");

}
first color = false ;

HPUTX(sizeof (ColorSet) + 1);

for (i = 0; i < sizeof (ColorSet)/4; i++) HPUT32(colors n [i]);

return TAG(color kind , b000);

}

The hput color def checks if color sets zero or one need to be written. If not, the
function will reset hpos to undo the writing of the tag and the number of colors in
the set.

〈 put functions 14xiv 〉 +≡ (295)

static bool colors equal (ColorSet a,ColorSet b)

{ int i;

for (i = 0; i < sizeof (ColorSet)/4; i++)

if (a[i] 6= b[i]) return false ;

return true ;

}
void hput color def (uint32 t pos , int n)

{
if ((n ≡ 0 ∧ colors equal (color defaults [0],

colors n)) ∨ (n ≡ 1 ∧ colors equal (color defaults [1], colors n))) {
hpos = hstart + pos ;

return;

}
hput tags (pos , hput color set (n));

}

Compared to the definitions, the content nodes are pretty simple. The special
color number #FF is reserved to indicate an 〈 color off 〉 node in the short format.

6.3 Colors 115

〈 parsing rules 5v 〉 +≡ (296)

content node: start COLOR ref END { REF_RNG(color kind , $3);
hput tags ($1, TAG(color kind , b000)); };

content node: start COLOR OFF END { HPUT8(#FF);
hput tags ($1, TAG(color kind , b000)); };

Writing the long format : =⇒ − −−
Reading the short format : · · · =⇒

We contine with the color content nodes:

〈 cases to get content 20xx 〉 +≡ (297)

case TAG(color kind , b000):
{ uint8 t n = HGET8; if (n ≡ #FF) hwritef (" off");

else { REF(color kind , n); hwrite ref (n); }
}
break;

And now we turn to the color definitions:

〈 get functions 18xviii 〉 +≡ (298)

void hwrite color pair (uint32 t f,uint32 t b)
{ hwritec(’<’);

if (f ≡ 0) hwritec(’0’);
else hwritef ("0x%08X", f);
if (b 6= 0) hwritef (" 0x%08X", b);
hwritec(’>’);

}
void hget color set (uint32 t node pos ,ColorSet cs)
{ int i, m;

for (i = 0; i < sizeof (ColorSet)/4; i++) HGET32(cs [i]);
for (m = 0; m < 2; m++) { uint32 t ∗c, ∗d;

bool diff high , diff focus ;

if (m ≡ 0) { c = cs ;
d = color defaults [0];
}
else { c = NIGHT(cs);
d = NIGHT(color defaults [0]);
if (memcmp(c, d, sizeof (ColorSet)/2) ≡ 0) return;

}
hwrite start ();
diff high = FG(HIGH(c)) 6= FG(HIGH(d)) ∨ BG(HIGH(c)) 6= BG(HIGH(d));
diff focus = FG(FOCUS(c)) 6= FG(FOCUS(d))∨ BG(FOCUS(c)) 6= BG(FOCUS(d));
hwrite color pair (FG(c), BG(c));
if (diff high ∨ diff focus) { hwritec(’ ’);

hwrite color pair (FG(HIGH(c)), BG(HIGH(c)));
}

116 6 Extensions

if (diff focus) { hwritec(’ ’);

hwrite color pair (FG(FOCUS(c)), BG(FOCUS(c)));

}
hwrite end ();

}
}

〈 cases to get definitions for color kind 299ccxcix 〉 ≡ (299)

case b000 :

{ int k;

ColorSet c;

static bool first color = true ;

k = HGET8;

if (k < 6) QUIT("Definition %d of color set needs 6 colo\
r pairs only %d given\n", n, k);

hget color set (node pos , c);

if (n ≡ 0) {
if (¬first color)
QUIT("Definition of color set zero must be first");

memcpy (&color defaults [0],&c, sizeof (ColorSet));

}
first color = false ;

}
break;

Used in 398cccxcviii.

6.4 Rotation

When it comes to rotation, there is a big difference between printed books and
computer displays. For example, if a book contains a table that is rotated to fill a
page in landscape mode, the reader can rotate the book and read the table. If you
are looking at the same page displayed on a big computer monitor, you will most
likely not turn the whole monitor. Instead your viewing application will be able
to perform the rotation for you before displaying the page. A smart phone, on the
other hand, is easy to turn. But very likely, it will try to be smart and rerenders
the content on the display to keep the same orientation.

Occasionaly, however, rotation of text is a desirable feature. For example, if a
table has lots of tall columns with lenghty column headers. It might be usefull to
rotate the column headers in order to keep the column width within reasonable
limits.

A simple solution therefore would be optional parameters for boxes specifying
center and angle for rotating the box.

6.5 Unknown Extensions 117

6.5 Unknown Extensions

Starting with the inclusion in the TEX Live 2022 distribution, the HINT file format
became accessible to a wider audience which brought the constant rewrite and
upgrade cycle to a sudden halt. Except for bug fixes, pretty much nothing happened
for a about a year. When the TEX Live 2023 distribution started to appear on the
horizon, one extension that I had on my wish-list already for a long time—the
support of TEX’s vtop boxes—was definitely due for implementation. Adding new
tag bytes to the specification of the short file format will, however, invalidate
all HINT file viewers and requires everybody to upgrade the viewing application.
Because the HINT file format is still in its infancy, more such additions are to
be expected and the new version 2.0 file format needs a way to handle such yet
unknown extensions gracefuly. For this purpose the definition section now may
specify additional entries for the hnode size array. All HINT file viewers starting
with version 2.0 will use these entries to skip unknown nodes and display the
remaining content of HINT files.

Reading the long format : −− − =⇒
In the long format, unknown nodes, whether in the definition or the content

section, start with the keyword unknown .

〈 symbols 2ii 〉 +≡ (300)

%token UNKNOWN "unknown"

〈 scanning rules 3iii 〉 +≡ (301)

unknown return UNKNOWN;

In the definition section, the keyword is followed by the tag and the length of the
initial part of the node (not counting the start byte), after which follows optionaly
the number of trailing nodes embedded in the unknown node. There is no need
for a maximum value, because the information is stored directly in the hnode size
array.

〈 parsing rules 5v 〉 +≡ (302)

def node: start UNKNOWN UNSIGNED UNSIGNED END {
hput tags ($1, hput unknown def ($3, $4, 0)); }

| start UNKNOWN UNSIGNED UNSIGNED UNSIGNED END {
hput tags ($1, hput unknown def ($3, $4, $5)); };

In the content section, the keyword is followed by the tag value, the remaining
byte values belonging to the initial part and the nodes belonging to the trailing
part. The end byte, which is equal to the start byte, is omited from the long
format.

〈 symbols 2ii 〉 +≡ (303)

%type < u > unknown bytes

%type < u > unknown nodes

118 6 Extensions

〈 parsing rules 5v 〉 +≡ (304)

content node: start UNKNOWN UNSIGNED unknown bytes unknown nodes END

{ hput tags ($1, hput unknown ($1, $3, $4, $5)); }
unknown bytes :
{ $$ = 0;
}

| unknown bytes UNSIGNED { RNG("byte", $2, 0,#FF); HPUT8($2);
$$ = $1 + 1; };

unknown node : content node
| xdimen node
| list
| named param list;

unknown nodes :
{ $$ = 0;
}

| unknown nodes unknown node
{ RNG("unknown subnodes", $1, 0, 3);
$$ = $1 + 1;

}
;

Writing the short format : =⇒ · · ·
In the short format, definitions for unknown nodes are marked with TAG(unknown kind , b100).

This tag is not used elsewhere (see also page 53). We do not check for multiple
definitions of the same tag. But only the first of them is considered valid. After the
start byte follows the unknown tag and the corresponding entry in the hnode size
array.

〈 put functions 14xiv 〉 +≡ (305)

uint32 t hput unknown def (uint32 t t,uint32 t b,uint32 t n)
{

if (n ≡ 0) {
RNG("unknown tag", t, TAG(param kind , 7) + 1, TAG(int kind , 0)− 1);
RNG("unknown initial bytes", b, 0,#7F− 2);
HPUT8(t);
HPUT8(b+ 2); /∗ adding start and end byte ∗/
if (hnode size [t] ≡ 0) { hnode size [t] = NODE_SIZE(b, 0);
DBG(DBGTAGS,

"Defining unknown node size %d,%d for tag 0x%x\n", b, n, t);
}

}
else { int i;

RNG("unknown tag", t, TAG(param kind , 7) + 1, TAG(int kind , 0)− 1);
RNG("unknown initial bytes", b, 0,#1F− 1);
RNG("unknown trailing nodes", n, 1, 4);

6.5 Unknown Extensions 119

HPUT8(t);
i = NODE_SIZE(b, n);
HPUT8(i);
if (hnode size [t] ≡ 0) { hnode size [t] = i;
DBG(DBGTAGS,

"Defining unknown node size %d,%d for tag 0x%x\n", b, n, t);
}

}
return TAG(unknown kind , b100);

}

In the content section, the unknown nodes are of course marked with their
unknown tag.

〈 put functions 14xiv 〉 +≡ (306)

Tag hput unknown (uint32 t pos ,uint32 t t,uint32 t b,uint32 t n)
{ int s;

RNG("unknown tag", t, TAG(param kind , 7) + 1, TAG(int kind , 0)− 1);
if (n ≡ 0) { RNG("unknown initial bytes", b, 0,#7F− 2);
s = NODE_SIZE(b, 0);

}
else { RNG("unknown initial bytes", b, 0,#1F− 2);
RNG("unknown trailing nodes", n, 1, 4);
s = NODE_SIZE(b, n);

}
DBG(DBGTAGS, "Adding unknown node size %d,%d tag 0x%x at 0x%x\n",

b, n, t, pos);
if (hnode size [t] 6= s) QUIT("Size %d of unknown \

node [%s,%d] at "SIZE_F" does not match %d\n", s, NAME(t),
INFO(t), hpos − hstart , hnode size [t]);

return (Tag) t;
}

Reading the short format : · · · =⇒
Writing the long format : =⇒ − −−

〈 get functions 18xviii 〉 +≡ (307)

void hget unknown def (void)
{ Tag t;

signed char i, b = 0, n = 0;

t = HGET8;
i = HGET8;
if (i ≡ 0) QUIT("Zero not allowed for unknown node size at 0x%x\n",

(uint32 t)(hpos − hstart − 2));
hwrite start (); hwritef ("unknown");
b = NODE_HEAD(i);
n = NODE_TAIL(i);

120 6 Extensions

if (n ≡ 0) hwritef (" 0x%02X %d", t, b);
else hwritef (" 0x%02X %d %d", t, b, n);
if (hnode size [t] ≡ 0) { hnode size [t] = i;
DBG(DBGTAGS, "Defining node size %d,%d for tag 0x%x\n", b, n, t);

}
hwrite end ();

}

The hget unknown funktion tries to process a unknown node with the help of an
entry in the hnode size array. The definition section can be used to provide this
extra information. If successful the function returns 1 else 0.

〈 get functions 18xviii 〉 +≡ (308)

int hget unknown (Tag a)
{ int b, n;

int8 t s;

s = hnode size [a];
DBG(DBGTAGS, "Trying unknown tag 0x%x at 0x%x\n", a,

(uint32 t)(hpos − hstart − 1));
if (s ≡ 0) return 0;
b = NODE_HEAD(s);
n = NODE_TAIL(s);
DBG(DBGTAGS, "Trying unknown node size %d %d\n", b, n);
hwritef ("unknown 0x%02X", a);
while (b > 0) { a = HGET8;

hwritef (" 0x%02X", a);
b−−;

}
while (n > 0) { a = ∗hpos ;

if (KIND(a) ≡ xdimen kind) { Xdimen x;

hget xdimen node (&x); hwrite xdimen node (&x);
}
else if (KIND(a) ≡ param kind) { List l; hget param list (&l);

hwrite named param list (&l); }
else if (KIND(a) ≤ list kind) { List l; hget list (&l); hwrite list (&l); }
else hget content node ();
n−−;

}
return 1;

}

121

7 Replacing TEX’s Page Building Process

TEX uses an output routine to finalize the page. It uses the accumulated material
from the page builder, found in box255, attaches headers, footers, and floating
material like figures, tables, and footnotes. The latter material is specified by
insert nodes while headers and footers are often constructed using mark nodes.
Running an output routine requires the full power of the TEX engine and will not
be part of the HINT viewer. Therefore, HINT replaces output routines by page
templates. As TEX can use different output routines for different parts of a book—
for example the index might use a different output routine than the main body of
text—HINT will allow multiple page templates. To support different output media,
the page templates will be named and a suitable user interface may offer the user
a selection of possible page layouts. In this way, the page layout remains in the
hands of the book designer, and the user has still the opportunity to pick a layout
that best fits the display device.

TEX uses insertions to describe floating content that is not necessarily displayed
where it is specified. Three examples may illustrate this:

• Footnotes* are specified in the middle of the text but are displayed at the bottom
of the page. Several footnotes on the same page are collected and displayed
together. The page layout may specify a short rule to separate footnotes from
the main text, and if there are many short footnotes, it may use two columns to
display them. In extreme cases, the page layout may demand a long footnote to
be split and continued on the next page.

• Illustrations may be displayed exactly where specified if there is enough room
on the page, but may move to the top of the page, the bottom of the page, the
top of next page, or a separate page at the end of the chapter.

• Margin notes are displayed in the margin on the same page starting at the top
of the margin.

HINT uses page templates and content streams to achieve similar effects. But
before I describe the page building mechanisms of HINT, let me summarize TEX’s
page builder.

TEX’s page builder ignores leading glue, kern, and penalty nodes until the first
box or rule is encountered; whatsit nodes do not really contribute anything to a
page; mark nodes are recorded for later use. Once the first box, rule, or insert ar-
rives, TEX makes copies of all parameters that influence the page building process

* Like this one.

122 7 Replacing TEX’s Page Building Process

and uses these copies. These parameters are the page goal and the page max depth .
Further, the variables page total , page shrink , page stretch , page depth , and in-
sert penalties are initialized to zero. The top skip adjustment is made when the
first box or rule arrives—possibly after an insert.

Now the page builder accumulates material: normal material goes into box255

and will change page total , page shrink , page stretch , and page depth . The latter
is adjusted so that is does not exceed page max depth .

The handling of inserts is more complex. TEX creates an insert class using
newinsert. This reserves a number n and four registers: boxn for the inserted
material, countn for the magnification factor f , dimenn for the maximum size per
page d, and skipn for the extra space needed on a page if there are any insertions
of class n.

For example plain TEX allocates n = 254 for footnotes and sets count254 to 1000,
dimen254 to 8in, and skip254 to \bigskipamount.

An insertion node will specify the insertion class n, some vertical material, its
natural height plus depth x, a split top skip, a split max depth, and a floating pe-
nalty.

Now assume that an insert node with subtype 254 arrives at the page builder.
If this is the first such insert, TEX will decrease the page goal by the width of
skip254 and adds its stretchability and shrinkability to the total stretchability and
shrinkability of the page. Later, the output routine will add some space and the
footnote rule to fill just that much space and add just that much shrinkability and
stretchability to the page. Then TEX will normally add the vertical material in the
insert node to box254 and decrease the page goal by x× f/1000.

Special processing is required if TEX detects that there is not enough space on
the current page to accommodate the complete insertion. If already a previous
insert did not fit on the page, simply the floating penalty as given in the insert
node is added to the total insert penalties . Otherwise TEX will test that the total
natural height plus depth of box254 including x does not exceed the maximum size
d and that the page total + page depth + x× f/1000− page shrink ≤ page goal . If
one of these tests fails, the current insertion is split in such a way as to make the
size of the remaining insertions just pass the tests just stated.

Whenever a glue node, or penalty node, or a kern node that is followed by glue
arrives at the page builder, it rates the current position as a possible end of the
page based on the shrinkability of the page and the difference between page total
and page goal . As the page fills, the page breaks tend to become better and better
until the page starts to get overfull and the page breaks get worse and worse until
they reach the point where they become awful bad . At that point, the page builder
returns to the best page break found so far and fires up the output routine.

Let’s look next at the problems that show up when implementing a replacement
mechanism for HINT.

1. An insertion node can not always specify its height x because insertions may
contain paragraphs that need to be broken in lines and the height of a paragraph
depends in some non obvious way on its width.

2. Before the viewer can compute the height x, it needs to know the width of the

7 Replacing TEX’s Page Building Process 123

insertion. Just imagine displaying footnotes in two columns or setting notes in
the margin. Knowing the width, it can pack the vertical material and derive its
height and depth.

3. TEX’s plain format provides an insert macro that checks whether there is still
space on the current page, and if so, it creates a contribution to the main text
body, otherwise it creates a topinsert. Such a decision needs to be postponed to
the HINT viewer.

4. HINT has no output routines that would specify something like the space and
the rule preceding the footnote.

5. TEX’s output routines have the ability to inspect the content of the boxes, split
them, and distribute the content over the page. For example, the output routine
for an index set in two column format might expect a box containing index entries
up to a height of 2× vsize. It will split this box in the middle and display the
top part in the left column and the bottom part in the right column. With this
approach, the last page will show two partly filled columns of about equal size.

6. HINT has no mark nodes that could be used to create page headers or footers.
Marks, like output routines, contain token lists and need the full TEX interpreter
for processing them. Hence, HINT does not support mark nodes.

Here now is the solution I have chosen for HINT:
Instead of output routines, HINT will use page templates. Page templates are

basically vertical boxes with placeholders marking the positions where the content
of the box registers, filled by the page builder, should appear. To output the page,
the viewer traverses the page template, replaces the placeholders by the appropriate
box content, and sets the glue. Inside the page template, we can use insert nodes
to act as placeholders.

It is only natural to treat the page’s main body, the inserts, and the marks using
the same mechanism. We call this mechanism a content stream. Content streams
are identified by a stream number in the range 0 to 254; the number 255 is used to
indicate an invalid stream number. The stream number 0 is reserved for the main
content stream; it is always defined. Besides the main content stream, there are
three types of streams:

• normal streams correspond to TEX’s inserts and accumulate content on the page,

• first streams correspond to TEX’s first marks and will contain only the first
insertion of the page,

• last streams correspond to TEX’s bottom marks and will contain only the last
insertion of the page, and

• top streams correspond to TEX’s top marks. Top streams are not yet imple-
mented.

Nodes from the content section are considered contributions to stream 0 except
for insert nodes which will specify the stream number explicitly. If the stream is not
defined or is not used in the current page template, its content is simply ignored.

The page builder needs a mechanism to redirect contributions from one content
stream to another content stream based on the availability of space. Hence a HINT

124 7 Replacing TEX’s Page Building Process

content stream can optionally specify a preferred stream number, where content
should go if there is still space available, a next stream number, where content
should go if the present stream has no more space available, and a split ratio if the
content is to be split between these two streams before filling in the template.

Various stream parameters govern the treatment of contributions to the stream
and the page building process.

• The magnification factor f : Inserting a box of height h to this stream will
contribute h×f/1000 to the height of the page under construction. For example,
a stream that uses a two column format will have an f value of 500; a stream
that specifies notes that will be displayed in the page margin will have an f value
of zero.

• The height h: The extended dimension h gives the maximum height this stream
is allowed to occupy on the current page. To continue the previous example,
a stream that will be split into two columns will have h = 2 · vsize , and a
stream that specifies notes that will be displayed in the page margin will have
h = 1 · vsize. You can restrict the amount of space occupied by footnotes to
the bottom quarter by setting the corresponding h value to h = 0.25 · vsize.

• The depth d: The dimension d gives the maximum depth this stream is allowed
to have after formatting.

• The width w: The extended dimension w gives the width of this stream when
formatting its content. For example margin notes should have the width of the
margin less some surrounding space.

• The “before” list b: If there are any contributions to this stream on the current
page, the material in list b is inserted before the material from the stream itself.
For example, the short line that separates the footnotes from the main page will
go, together with some surrounding space, into the list b.

• The top skip glue g: This glue is inserted between the material from list b and
the first box of the stream, reduced by the height of the first box. Hence it
specifies the distance between the material in b and the first baseline of the
stream content.

• The “after” list a: The list a is treated like list b but its material is placed after
the material from the stream itself.

• The “preferred” stream number p: If p 6= 255, it is the number of the preferred
stream. If stream p has still enough room to accommodate the current contribu-
tion, move the contribution to stream p, otherwise keep it. For example, you can
move an illustration to the main content stream, provided there is still enough
space for it on the current page, by setting p = 0.

• The “next” stream number n: If n 6= 255, it is the number of the next stream. If
a contribution can not be accommodated in stream p nor in the current stream,
treat it as an insertion to stream n. For example, you can move contributions to
the next column after the first column is full, or move illustrations to a separate
page at the end of the chapter.

• The split ratio r: If r is positive, both p and n must be valid stream numbers
and contents is not immediately moved to stream p or n as described before.

7.1 Stream Definitions 125

Instead the content is kept in the stream itself until the current page is complete.
Then, before inserting the streams into the page template, the content of this
stream is formatted as a vertical box, the vertical box is split into a top fraction
and a bottom fraction in the ratio r/1000 for the top and (1000 − r)/1000 for
the bottom, and finally the top fraction is moved to stream p and the bottom
fraction to stream n. You can use this feature for example to implement footnotes
arranged in two columns of about equal size. By collecting all the footnotes in
one stream and then splitting the footnotes with r = 500 before placing them
on the page into a right and left column. Even three or more columns can be
implemented by cascades of streams using this mechanism.

7.1 Stream Definitions

There are four types of streams: normal streams that work like TEX’s inserts; and
first, last, and top streams that work like TEX’s marks. For the latter types, the
long format uses a matching keyword and the short format the two least significant
info bits. All stream definitions start with the stream number. In definitions of
normal streams after the number follows in this order

• the maximum insertion height,

• the magnification factor, and

• information about splitting the stream. It consists of: a preferred stream, a next
stream, and a split ratio. An asterisk indicates a missing stream reference, in
the short format the stream number 255 serves the same purpose.

All stream definitions finish with

• the “before” list,

• an extended dimension node specifying the width of the inserted material,

• the top skip glue,

• the “after” list,

• and the total height, stretchability, and shrinkability of the material in the
“before” and “after” list.

A special case is the stream definition for stream 0, the main content stream.
None of the above information is necessary for it so it is omitted. Stream definitions,
including the definition of stream 0, occur only inside page template definitions
where they occur twice in two different roles: In the stream definition list, they
define properties of the stream and in the template they mark the insertion point
(see section 7.3). In the latter case, stream nodes just contain the stream number.
Because a template looks like ordinary vertical material, we like to use the same
functions for parsing it. But stream definitions are very different from stream
content nodes. To solve the problem for the long format, the scanner will return
two different tokens when it sees the keyword “stream”. In the definition section,
it will return STREAMDEF and in the content section STREAM. The same problem
is solved in the short format by using the b100 bit to mark a definition.

126 7 Replacing TEX’s Page Building Process

Reading the long format : −− − =⇒
Writing the short format : =⇒ · · ·

〈 symbols 2ii 〉 +≡ (309)

%token STREAM "stream"

%token STREAMDEF "stream (definition)"

%token FIRST "first"

%token LAST "last"

%token TOP "top"

%token NOREFERENCE "*"

%type < info > stream type

%type < u > stream ref

%type < rf > stream def node

〈 scanning rules 3iii 〉 +≡ (310)

stream if (section no ≡ 1) return STREAMDEF;

else return STREAM;

first return FIRST;

last return LAST;

top return TOP;

* return NOREFERENCE;

〈 parsing rules 5v 〉 +≡ (311)

stream link: ref { REF_RNG(stream kind , $1); }
| NOREFERENCE { HPUT8(255); };

stream split: stream link stream link UNSIGNED

{ RNG("split ratio", $3, 0, 1000); HPUT16($3); };
stream info: xdimen node UNSIGNED

{ RNG("magnification factor", $2, 0, 1000); HPUT16($2); } stream split;

stream type: stream info { $$ = 0; }
| FIRST { $$ = 1; } | LAST { $$ = 2; } | TOP { $$ = 3; };

stream def node: start STREAMDEF ref stream type

list xdimen node glue node list glue node END

{ DEF($$, stream kind , $3); hput tags ($1, TAG(stream kind , $4 | b100)); };
stream ins node: start STREAMDEF ref END

{ RNG("Stream insertion", $3, 0,max ref [stream kind]);
hput tags ($1, TAG(stream kind , b100)); };

content node: stream def node | stream ins node;

7.1 Stream Definitions 127

Reading the short format : · · · =⇒
Writing the long format : =⇒ − −−

〈 get stream information for normal streams 312cccxii 〉 ≡ (312)

{ Xdimen x;
uint16 t f, r;
uint8 t n;

DBG(DBGDEF, "Defining normal stream %d at "SIZE_F"\n", ∗(hpos − 1),
hpos − hstart − 2);

hget xdimen node (&x); hwrite xdimen node (&x);
HGET16(f); RNG("magnification factor", f , 0, 1000); hwritef (" %d", f);
n = HGET8;
if (n ≡ 255) hwritef (" *");
else { REF_RNG(stream kind , n); hwrite ref (n); }
n = HGET8;
if (n ≡ 255) hwritef (" *");
else { REF_RNG(stream kind , n); hwrite ref (n); }
HGET16(r);
RNG("split ratio", r, 0, 1000);
hwritef (" %d", r);

}
Used in 313cccxiii.

〈 get functions 18xviii 〉 +≡ (313)

static bool hget stream def (void)
{ if (KIND(∗hpos) 6= stream kind ∨ ¬(INFO(∗hpos) & b100)) return false ;

else { Ref df ;
〈 read the start byte a 16xvi 〉
DBG(DBGDEF, "Defining stream %d at "SIZE_F"\n", ∗hpos ,

hpos − hstart − 1);
DEF(df , stream kind , HGET8);
hwrite start (); hwritef ("stream"); hwrite ref (df .n);
if (df .n > 0) { Xdimen x; List l;

if (INFO(a) ≡ b100) 〈 get stream information for normal streams
312cccxii 〉

else if (INFO(a) ≡ b101) hwritef (" first");
else if (INFO(a) ≡ b110) hwritef (" last");
else if (INFO(a) ≡ b111) hwritef (" top");
hget list (&l); hwrite list (&l);
hget xdimen node (&x); hwrite xdimen node (&x);
hget glue node (); hget list (&l); hwrite list (&l); hget glue node ();
}
〈 read and check the end byte z 17xvii 〉
hwrite end ();
return true ;

128 7 Replacing TEX’s Page Building Process

}
}

When stream definitions are part of the page template, we call them stream
insertion points. They contain only the stream reference and are parsed by the
usual content parsing functions.

〈 cases to get content 20xx 〉 +≡ (314)

case TAG(stream kind , b100):
{ uint8 t n = HGET8; REF_RNG(stream kind , n); hwrite ref (n); break; }

7.2 Stream Content

Stream nodes occur in the content section where they must not be inside other
nodes except toplevel paragraph nodes. A normal stream node contains in this
order: the stream reference number, the optional stream parameters, and the
stream content. The content is either a vertical box or an extended vertical box.
The stream parameters consists of the floating penalty , the split max depth , and
the split top skip . The parameterlist can be given explicitly or as a reference.

In the short format, the info bits b010 indicate a normal stream content node
with an explicit parameter list and the info bits b000 a normal stream with a
parameter list reference.

If the info bit b001 is set, we have a content node of type top, first, or last. In
this case, the short format has instead of the parameter list a single byte indicating
the type. These types are currently not yet implemented.

Reading the long format : −− − =⇒
Writing the short format : =⇒ · · ·

〈 symbols 2ii 〉 +≡ (315)

%type < info > stream

〈 parsing rules 5v 〉 +≡ (316)

stream: param list list { $$ = b010 ; }
| param ref list { $$ = b000 ; };

content node: start STREAM stream ref stream END

{ hput tags ($1, TAG(stream kind , $4)); };

Reading the short format : · · · =⇒
Writing the long format : =⇒ − −−

〈 cases to get content 20xx 〉 +≡ (317)

case TAG(stream kind , b000): HGET_STREAM(b000); break;
case TAG(stream kind , b010): HGET_STREAM(b010); break;

When we read stream numbers, we relax the define before use policy. We just
check, that the stream number is in the correct range.

7.3 Page Template Definitions 129

〈 get macros 19xix 〉 +≡ (318)

#define HGET_STREAM(I)

{ uint8 t n = HGET8; REF_RNG(stream kind , n); hwrite ref (n); }
if ((I) & b010) { List l; hget param list (&l); hwrite param list (&l); }
else HGET_REF(param kind);

{ List l; hget list (&l); hwrite list (&l); }

7.3 Page Template Definitions

A HINT file can define multiple page templates. Not only might an index demand a
different page layout than the main body of text, also the front page or the chapter
headings might use their own page templates. Further, the author of a HINT file
might define a two column format as an alternative to a single column format to
be used if the display area is wide enough.

To help in selecting the right page template, page template definitions start
with a name and an optional priority; the default priority is 1. The names might
appear in a menu from which the user can select a page layout that best fits her
taste. Without user interaction, the system can pick the template with the highest
priority. Of course, a user interface might provide means to alter priorities. Future
versions might include sophisticated feature-vectors that identify templates that
are good for large or small displays, landscape or portrait mode, etc . . .

After the priority follows a glue node to specify the topskip glue and the dimen-
sion of the maximum page depth, an extended dimension to specify the page height
and an extended dimension to specify the page width.

Then follows the main part of a page template definition: the template. The
template consists of a list of vertical material. To construct the page, this list
will be placed into a vertical box and the glue will be set. But of course before
doing so, the viewer will scan the list and replace all stream insertion points by the
appropriate content streams.

Let’s call the vertical box obtained this way “the page”. The page will fill
the entire display area top to bottom and left to right. It defines not only the
appearance of the main body of text but also the margins, the header, and the
footer. Because the vsize and hsize variables of TEX are used for the vertical and
horizontal dimension of the main body of text—they do not include the margins—
the page will usually be wider than hsize and taller than vsize. The dimensions of
the page are part of the page template. The viewer, knowing the actual dimensions
of the display area, can derive from them the actual values of hsize and vsize.

Stream definitions are listed after the template.

The page template with number 0 is always defined and has priority 0. It will
display just the main content stream. It puts a small margin of hsize/8 − 4.5pt
all around it. Given a letter size page, 8.5 inch wide, this formula yields a margin
of 1 inch, matching TEX’s plain format. The margin will be positive as long as the
page is wider than 1/2 inch. For narrower pages, there will be no margin at all.
In general, the HINT viewer will never set hsize larger than the width of the page
and vsize larger than its height.

130 7 Replacing TEX’s Page Building Process

Reading the long format : −− − =⇒
Writing the short format : =⇒ · · ·

〈 symbols 2ii 〉 +≡ (319)

%token PAGE "page"

〈 scanning rules 3iii 〉 +≡ (320)

page return PAGE;

〈 parsing rules 5v 〉 +≡ (321)

page priority : { HPUT8(1); }
| UNSIGNED { RNG("page priority", $1, 0, 255); HPUT8($1); };

stream def list:
| stream def list stream def node;

page: string { hput string ($1); } page priority glue node dimension {
HPUT32($5); } xdimen node xdimen node list stream def list;

Reading the short format : · · · =⇒
Writing the long format : =⇒ − −−

〈 get functions 18xviii 〉 +≡ (322)

void hget page (void)
{ char ∗n;

uint8 t p;
Xdimen x;
List l;

HGET_STRING(n); hwrite string (n);
p = HGET8; if (p 6= 1) hwritef (" %d", p);
hget glue node ();
hget dimen (TAG(dimen kind , b001));
hget xdimen node (&x); hwrite xdimen node (&x); /∗ page height ∗/
hget xdimen node (&x); hwrite xdimen node (&x); /∗ page width ∗/
hget list (&l); hwrite list (&l);
while (hget stream def ()) continue;

}

7.4 Page Ranges
Not every template is necessarily valid for the entire content section. A page range
specifies a start position a and an end position b in the content section and the page
template is valid if the start position p of the page is within that range: a ≤ p < b.
If paging backward this definition might cause problems because the start position
of the page is known only after the page has been build. In this case, the viewer
might choose a page template based on the position at the bottom of the page. If
it turns out that this “bottom template” is no longer valid when the page builder
has found the start of the page, the viewer might display the page anyway with the

7.4 Page Ranges 131

bottom template, it might just display the page with the new “top template”, or
rerun the whole page building process using this time the “top template”. Neither
of these alternatives is guaranteed to produce a perfect result because changing the
page template might change the amount of material that fits on the page. A good
page template design should take this into account.

The representation of page ranges differs significantly for the short format and the
long format. The short format will include a list of page ranges in the definition
section which consist of a page template number, a start position, and an end
position. In the long format, the start and end position of a page range is marked
with a page range node switching the availability of a page template on and off.
Such a page range node must be a top level node. It is an error, to switch a page
template off that was not switched on, or to switch a page template on that was
already switched on. It is permissible to omit switching off a page template at the
very end of the content section.

While we parse a long format HINT file, we store page ranges and generate the
short format after reaching the end of the content section. While we parse a short
format HINT file, we check at the end of each top level node whether we should
insert a page range node into the output. For the shrink program, it is best to store
the start and end positions of all page ranges in an array sorted by the position*.
To check the restrictions on the switching of page templates, we maintain for every
page template an index into the range array which identifies the position where the
template was switched on. A zero value instead of an index will identify templates
that are currently invalid. When switching a range off again, we link the two array
entries using this index. These links are useful when producing the range nodes in
short format.

A range node in short format contains the template number, the start position
and the end position. A zero start position is not stored, the info bit b100 indicates
a nonzero start position. An end position equal to HINT_NO_POS is not stored, the
info bit b010 indicates a smaller end position. The info bit b001 indicates that
positions are stored using 2 byte otherwise 4 byte are used for the positions.

〈 hint types 1i 〉 +≡ (323)

typedef struct { uint8 t pg ; uint32 t pos ; bool on ; int link ; } RangePos;

〈 common variables 252cclii 〉 +≡ (324)

RangePos ∗range pos ;

int next range = 1, max range ;

int ∗page on ;

〈 initialize definitions 253ccliii 〉 +≡ (325)

ALLOCATE(page on ,max ref [page kind] + 1, int);

ALLOCATE(range pos , 2 ∗ (max ref [range kind] + 1),RangePos);

* For a HINT viewer, a data structure which allows fast retrieval of all valid page
templates for a given position is needed.

132 7 Replacing TEX’s Page Building Process

〈 hint macros 13xiii 〉 +≡ (326)

#define ALLOCATE(R,S, T)

((R) = (T ∗) calloc((S), sizeof (T)),
(((R) ≡ NULL) ? QUIT("Out of memory for "#R) : (void) 0))

#define REALLOCATE(R,S, T)

((R) = (T ∗) realloc((R), (S) ∗ sizeof (T)),
(((R) ≡ NULL) ? QUIT("Out of memory for "#R) : (void) 0))

Reading the long format : −− − =⇒

〈 symbols 2ii 〉 +≡ (327)

%token RANGE "range"

〈 scanning rules 3iii 〉 +≡ (328)

range return RANGE;

〈 parsing rules 5v 〉 +≡ (329)

content node: START RANGE REFERENCE ON END

{ REF(page kind , $3); hput range ($3, true); }
| START RANGE REFERENCE OFF END

{ REF(page kind , $3); hput range ($3, false); };

Writing the long format : =⇒ − −−

〈write functions 21xxi 〉 +≡ (330)

void hwrite range (void) /∗ called in hwrite end ∗/
{ uint32 t p = hpos − hstart ;

DBG(DBGRANGE, "Range check at pos 0x%x next at 0x%x\n", p,
range pos [next range].pos);

while (next range < max range ∧ range pos [next range].pos ≤ p) {
hwrite start ();

hwritef ("range *%d ", range pos [next range].pg);

if (range pos [next range].on) hwritef ("on");

else hwritef ("off");

nesting −−; hwritec(’>’); /∗ avoid a recursive call to hwrite end ∗/
next range ++;

}
}

7.4 Page Ranges 133

Reading the short format : · · · =⇒

〈 get functions 18xviii 〉 +≡ (331)

void hget range (Info info ,uint8 t pg)
{ uint32 t from , to ;

REF(page kind , pg);
REF(range kind , (next range − 1)/2);
if (info & b100) { if (info & b001) HGET32(from); else HGET16(from); }
else from = 0;
if (info & b010) { if (info & b001) HGET32(to); else HGET16(to); }
else to = HINT_NO_POS;
range pos [next range].pg = pg ;
range pos [next range].on = true ;
range pos [next range].pos = from ;
DBG(DBGRANGE, "Range *%d from 0x%x\n", pg , from);
DBG(DBGRANGE, "Range *%d to 0x%x\n", pg , to);
next range ++;
if (to 6= HINT_NO_POS)
{ range pos [next range].pg = pg ;

range pos [next range].on = false ;
range pos [next range].pos = to ;
next range ++;

}
}

〈write functions 21xxi 〉 +≡ (332)

void hsort ranges (void) /∗ simple insert sort by position ∗/
{ int i;

DBG(DBGRANGE, "Range sorting %d positions\n",next range − 1);
for (i = 3; i < next range ; i++)
{ int j = i− 1;

if (range pos [i].pos < range pos [j].pos)
{ RangePos t;

t = range pos [i];
do { range pos [j + 1] = range pos [j];
j−−;

} while (range pos [i].pos < range pos [j].pos);
range pos [j + 1] = t;

}
}
max range = next range ; next range = 1; /∗ prepare for hwrite range ∗/

}

134 7 Replacing TEX’s Page Building Process

Writing the short format : =⇒ · · ·

〈 put functions 14xiv 〉 +≡ (333)

void hput range (uint8 t pg ,bool on)
{

if (((next range − 1)/2) > max ref [range kind])
QUIT("Page range %d > %d", (next range − 1)/2,max ref [range kind]);

if (on ∧ page on [pg] 6= 0)
QUIT("Template %d is switched on at 0x%x and "SIZE_F,

pg , range pos [page on [pg]].pos , hpos − hstart);
else if (¬on ∧ page on [pg] ≡ 0)
QUIT("Template %d is switched off at "SIZE_F" but was not on",

pg , hpos − hstart);
DBG(DBGRANGE, "Range *%d %s at "SIZE_F"\n", pg , on ? "on" : "off",

hpos − hstart);
range pos [next range].pg = pg ;
range pos [next range].pos = hpos − hstart ;
range pos [next range].on = on ;
if (on) page on [pg] = next range ;
else
{ range pos [next range].link = page on [pg];

range pos [page on [pg]].link = next range ;
page on [pg] = 0;
}
next range ++;
}
void hput range defs (void)
{ int i;

section no = 1;
hstart = dir [1].buffer ;
hend = hstart + dir [1].bsize ;
hpos = hstart + dir [1].size ;
for (i = 1; i < next range ; i++)

if (range pos [i].on)
{ Info info = b000 ;

uint32 t p = hpos ++ − hstart ;
uint32 t from , to ;

HPUT8(range pos [i].pg);
from = range pos [i].pos ;
if (range pos [i].link 6= 0) to = range pos [range pos [i].link].pos ;
else to = HINT_NO_POS;
if (from 6= 0)
{ info = info | b100 ; if (from > #FFFF) info = info | b001 ; }
if (to 6= HINT_NO_POS)
{ info = info | b010 ; if (to > #FFFF) info = info | b001 ; }

7.4 Page Ranges 135

if (info & b100)
{ if (info & b001) HPUT32(from); else HPUT16(from); }
if (info & b010)
{ if (info & b001) HPUT32(to); else HPUT16(to); }
DBG(DBGRANGE, "Range *%d from 0x%x to 0x%x\n",

range pos [i].pg , from , to);
hput tags (p, TAG(range kind , info));

}
hput definitions end ();

}

137

8 File Structure

All HINT files start with a banner as described below. After that, they contain
three mandatory sections: the directory section, the definition section, and the
content section. Usually, further optional sections follow. In short format files,
these contain auxiliary files (fonts, images, . . .) necessary for rendering the content.
In long format files, the directory section will simply list the file names of the
auxiliary files.

8.1 Banner

All HINT files start with a banner. The banner contains only printable ASCII
characters and spaces; its end is marked with a newline character. The first four
byte are the “magic” number by which you recognize a HINT file. It consists of
the four ASCII codes ‘H’, ‘I’, ‘N’, and ‘T’ in the long format and ‘h’, ‘i’, ‘n’, and
‘t’ in the short format. Then follows a space, then the version number, a dot,
the sub-version number, and another space. Both numbers are encoded as decimal
ASCII strings. The remainder of the banner is simply ignored but may be used to
contain other useful information about the file. The maximum size of the banner
is 256 byte.

〈 hint macros 13xiii 〉 +≡ (334)

#define MAX_BANNER 256

To check the banner, we have the function hcheck banner ; it returns true if
successful.

〈 common variables 252cclii 〉 +≡ (335)

char hbanner [MAX_BANNER + 1];
int hbanner size = 0;

〈 function to check the banner 336cccxxxvi 〉 ≡ (336)

bool hcheck banner (char ∗magic)
{ int v, s;

char ∗t;
t = hbanner ;
if (strncmp(magic , hbanner , 4) 6= 0) {
MESSAGE("This is not a %s file\n",magic);
return false ;

}
else t += 4;

138 8 File Structure

if (hbanner [hbanner size − 1] 6= ’\n’) {
MESSAGE("Banner exceeds maximum size=0x%x\n", MAX_BANNER);
return false ;

}
if (∗t 6= ’ ’) {
MESSAGE("Space expected in banner after %s\n",magic);
return false ;

}
else t++;
v = strtol (t,&t, 10);
if (∗t 6= ’.’) {
MESSAGE("Dot expected in banner after HINT version number\n");
return false ;

}
else t++;
s = strtol (t,&t, 10);
if (v 6= HINT_VERSION) {
MESSAGE("Wrong HINT version: got %d.%d, expected %d.%d\n", v, s,

HINT_VERSION, HINT_MINOR_VERSION);
return false ;

}
#if 0 /∗ minor versions should be downward compatible ∗/

if (s < HINT_MINOR_VERSION)
{ MESSAGE("Outdated HINT minor version: got %d.%d,\

 expected %d.%d\n", v, s, HINT_VERSION, HINT_MINOR_VERSION);
}
else

#endif
if (s > HINT_MINOR_VERSION)
{ MESSAGE("More recent HINT minor version: got %d.\

%d, expected %d.%d, update your application\n", v, s,
HINT_VERSION, HINT_MINOR_VERSION);

}
if (∗t 6= ’ ’ ∧ ∗t 6= ’\n’) {
MESSAGE("Space expected in banner after HINT minor version\n");
return false ;

}
LOG("%s file version "HINT_VERSION_STRING":%s",magic , t);
DBG(DBGDIR, "banner size=0x%x\n", hbanner size);
return true ;

}
Used in 552dlii, 557dlvii, 558dlviii, and 560dlx.

To read a short format file, we use the macro HGET8. It returns a single byte.
We read the banner knowing that it ends with a newline character and is at most
MAX_BANNER byte long. Because this is the first access to a yet unknown file, we

8.1 Banner 139

are very careful and make sure we do not read past the end of the file. Checking
the banner is a separate step.

Reading the short format : · · · =⇒

〈 get file functions 337cccxxxvii 〉 ≡ (337)

void hget banner (void)
{ hbanner size = 0;

while (hbanner size < MAX_BANNER ∧ hpos < hend) { uint8 t c = HGET8;

hbanner [hbanner size ++] = c;
if (c ≡ ’\n’) break;

}
hbanner [hbanner size] = 0;

}
Used in 552dlii, 558dlviii, and 560dlx.

To read a long format file, we use the function fgetc .

Reading the long format : −− − =⇒

〈 read the banner 338cccxxxviii 〉 ≡ (338)

{ hbanner size = 0;
while (hbanner size < MAX_BANNER) { int c = fgetc(hin);

if (c ≡ EOF) break;
hbanner [hbanner size ++] = c;
if (c ≡ ’\n’) break;

}
hbanner [hbanner size] = 0;

}
Used in 557dlvii.

Writing the banner to a short format file is accomplished by calling hput banner
with the “magic” string "hint" as a first argument and a (short) comment as the
second argument.

Writing the short format : =⇒ · · ·

〈 function to write the banner 339cccxxxix 〉 ≡ (339)

static size t hput banner (char ∗magic , char ∗str)
{ size t s = fprintf (hout , "%s "HINT_VERSION_STRING" %s\n",magic , str);

if (s > MAX_BANNER) QUIT("Banner too big");
return s;

}
Used in 554dliv, 557dlvii, and 558dlviii.

Writing the long format : =⇒ − −−
Writing the banner of a long format file is essentially the same as for a short

format file calling hput banner with "HINT" as a first argument.

140 8 File Structure

8.2 Long Format Files

After reading and checking the banner, reading a long format file is simply done
by calling yyparse . The following rule gives the big picture:

Reading the long format : −− − =⇒

〈 parsing rules 5v 〉 +≡ (340)

hint: directory section definition section content section;

8.3 Short Format Files

A short format file starts with the banner and continues with a list of sections.
Each section has a maximum size of 232 byte or 4GByte. This restriction ensures
that positions inside a section can be stored as 32 bit integers, a feature that we will
need only for the so called “content” section, but it is also nice for implementers to
know in advance what sizes to expect. The big picture is captured by the put hint
function:

〈 put functions 14xiv 〉 +≡ (341)

static size t hput root (void);
static size t hput section (uint16 t n);
static size t hput optional section (int i);

size t hput hint (char ∗str)
{ size t s;

int i;

DBG(DBGBASIC, "Writing hint output %s\n", str);
s = hput banner ("hint", str);
DBG(DBGDIR, "Root entry at "SIZE_F"\n", s);
s += hput root ();
DBG(DBGDIR, "Directory section at "SIZE_F"\n", s);
s += hput section (0);
DBG(DBGDIR, "Definition section at "SIZE_F"\n", s);
s += hput section (1);
DBG(DBGDIR, "Content section at "SIZE_F"\n", s);
s += hput section (2);
DBG(DBGDIR, "Auxiliary sections at "SIZE_F"\n", s);
for (i = 3; i ≤ max section no ; i++)
s += hput optional section (i);

DBG(DBGDIR, "Total number of bytes written "SIZE_F"\n", s);
return s;

}

When we work on a section, we will have the entire section in memory and use
three variables to access it: hstart points to the first byte of the section, hend
points to the byte after the last byte of the section, and hpos points to the current
position inside the section. The auxiliary variable hpos0 contains the hpos value
of the last content node on nesting level zero.

8.3 Short Format Files 141

〈 common variables 252cclii 〉 +≡ (342)

uint8 t ∗hpos = NULL, ∗hstart = NULL, ∗hend = NULL, ∗hpos0 = NULL;

There are two sets of macros that read or write binary data at the current
position and advance the stream position accordingly.

Reading the short format : · · · =⇒

〈 shared get macros 38xxxviii 〉 +≡ (343)

#define HGET_ERROR

QUIT ("HGET overrun in section %d at "SIZE_F"\n",
section no , hpos − hstart)

#define HEND ((hpos ≤ hend) ? 0 : (HGET_ERROR, 0))
#define HGET8 ((hpos < hend) ? ∗(hpos ++) : (HGET_ERROR, 0))
#define HGET16(X) ((X) = (hpos [0]� 8) + hpos [1], hpos += 2, HEND)
#define HGET24(X)

((X) = (hpos [0]� 16) + (hpos [1]� 8) + hpos [2], hpos += 3, HEND)
#define HGET32(X)

((X) = (hpos [0]� 24) + (hpos [1]� 16) + (hpos [2]� 8) + hpos [3], hpos += 4,
HEND)

#define HGETTAG(A) A = HGET8, DBGTAG(A, hpos − 1)

Writing the short format : =⇒ · · ·

〈 put functions 14xiv 〉 +≡ (344)

void hput error (void)
{ if (hpos < hend) return;
QUIT("HPUT overrun section %d pos="SIZE_F"\n",

section no , hpos − hstart);
}

〈 put macros 345cccxlv 〉 ≡ (345)

extern void hput error (void);
#define HPUT8(X) (hput error (), ∗(hpos ++) = (X))
#define HPUT16(X) (HPUT8(((X)� 8) & #FF), HPUT8((X) & #FF))
#define HPUT24(X)

(HPUT8(((X)� 16) & #FF), HPUT8(((X)� 8) & #FF), HPUT8((X) & #FF))
#define HPUT32(X) (HPUT8(((X)� 24) & #FF), HPUT8(((X)� 16) & #FF),

HPUT8(((X)� 8) & #FF), HPUT8((X) & #FF))
Used in 553dliii and 557dlvii.

The above macros test for buffer overruns; allocating sufficient buffer space is
done separately.

Before writing a node, we will insert a test and increase the buffer if necessary.

〈 put macros 345cccxlv 〉 +≡ (346)

void hput increase buffer (uint32 t n);
#define HPUTX(N) (((hend − hpos) < (N)) ? hput increase buffer (N) : (void) 0)
#define HPUTNODE HPUTX(MAX_TAG_DISTANCE)

142 8 File Structure

#define HPUTTAG(K, I)
(HPUTNODE, DBGTAG(TAG(K, I), hpos), HPUT8(TAG(K, I)))

Fortunately the only data types that have an unbounded size are strings and
texts. For these we insert specific tests. For all other cases a relatively small upper
bound on the maximum distance between two tags can be determined. Currently
the maximum distance between tags is 26 byte as can be determined from the
hnode size array described in appendix A. The definition below uses a slightly
larger value leaving some room for future changes in the design of the short file
format.

〈 hint macros 13xiii 〉 +≡ (347)

#define MAX_TAG_DISTANCE 32

8.4 Mapping a Short Format File to Memory

In the following, we implement two alternatives to map a file into memory. The
first implementation, opens the file, gets its size, allocates memory, and reads the
file. The second implementation uses a call to mmap .

Since modern computers with 64bit hardware have a huge address space, using
mmap to map the entire file into virtual memory is the most efficient way to access
a large file. “Mapping” is not the same as “reading” and it is not the same as
allocating precious memory, all that is done by the operating system when needed.
Mapping just reserves addresses. There is one disadvantage of mapping: it typically
locks the underlying file and will not allow a separate process to modify it. This
prevents using this method for previewing a HINT file while editing and recompiling
it. In this case, the first implementation, which has a copy of the file in memory, is
the better choice. To select the second implementation, define the macro USE_MMAP.

The following functions map and unmap a short format input file setting hin addr
to its address and hin size to its size. The value hin addr ≡ NULL indicates, that
no file is open. The variable hin time is set to the time when the file was last
modified. It can be used to detect modifications of the file and reload it.

〈 common variables 252cclii 〉 +≡ (348)

char ∗hin name = NULL;
uint64 t hin size = 0;
uint8 t ∗hin addr = NULL;
uint64 t hin time = 0;

〈map functions 349cccxlix 〉 ≡ (349)

#ifndef USE_MMAP

void hget unmap(void)
{ if (hin addr 6= NULL) free (hin addr);

hin addr = NULL;
hin size = 0;

}
bool hget map(void)
{ FILE ∗f ;

8.4 Mapping a Short Format File to Memory 143

struct stat st ;
size t s, t;
uint64 t u;

f = fopen (hin name , "rb");
if (f ≡ NULL)
{ MESSAGE("Unable to open file: %s\n", hin name); return false ; }
if (stat (hin name ,&st) < 0) {
MESSAGE("Unable to obtain file size: %s\n", hin name);
fclose (f);
return false ;

}
if (st .st size ≡ 0) { MESSAGE("File %s is empty\n", hin name);

fclose (f);
return false ;

}
u = st .st size ;
if (hin addr 6= NULL) hget unmap();
hin addr = malloc(u);
if (hin addr ≡ NULL) {
MESSAGE("Unable to allocate 0x%"PRIx64 " byte for File %s\n", u,

hin name);
fclose (f);
return 0;

}
t = 0;
do { s = fread (hin addr + t, 1, u, f);

if (s ≤ 0) { MESSAGE("Unable to read file %s\n", hin name);
fclose (f);
free (hin addr);
hin addr = NULL;
return false ;

}
t = t+ s; u = u− s;

} while (u > 0);
hin size = st .st size ;
hin time = st .st mtime ;
return true ;

}
#else
#include <sys/mman.h>

void hget unmap(void)
{ munmap(hin addr , hin size);

hin addr = NULL;
hin size = 0;

}

144 8 File Structure

bool hget map(void)

{ struct stat st ;

int fd ;

fd = open (hin name , O_RDONLY, 0);

if (fd < 0)

{ MESSAGE("Unable to open file %s\n", hin name); return false ; }
if (fstat (fd ,&st) < 0) { MESSAGE("Unable to get file size\n");

close (fd);

return false ;

}
if (st .st size ≡ 0) { MESSAGE("File %s is empty\n", hin name);

close (fd);

return false ;

}
if (hin addr 6= NULL) hget unmap();

hin size = st .st size ;

hin time = st .st mtime ;

hin addr = mmap(NULL, hin size , PROT_READ, MAP_PRIVATE, fd , 0);

if (hin addr ≡ MAP_FAILED) { close (fd);

hin addr = NULL;

hin size = 0;

MESSAGE("Unable to map file into memory\n");

return 0;

}
close (fd);

return hin size ;

}
#endif

Used in 552dlii, 558dlviii, and 560dlx.

8.5 Compression

The short file format offers the possibility to store sections in compressed form.
We use the zlib compression library[2][1] to deflate and inflate individual sections.
When one of the following functions is called, we can get the section buffer, the
buffer size and the size actually used from the directory entry. If a section needs
to be inflated, its size after decompression is found in the xsize field; if a section
needs to be deflated, its size after compression will be known after deflating it.

〈 get file functions 337cccxxxvii 〉 +≡ (350)

static void hdecompress (uint16 t n)

{ z stream z; /∗ decompression stream ∗/
uint8 t ∗buffer ;

int i;

8.5 Compression 145

DBG(DBGCOMPRESS,
"Decompressing section %d from 0x%x to 0x%x byte\n",
n, dir [n].size , dir [n].xsize);

z.zalloc = (alloc func)0; z.zfree = (free func)0; z.opaque = (voidpf)0;
z.next in = hstart ;
z.avail in = hend − hstart ;
if (inflateInit (&z) 6= Z_OK)
QUIT("Unable to initialize decompression: %s", z.msg);

ALLOCATE(buffer , dir [n].xsize + MAX_TAG_DISTANCE,uint8 t);
DBG(DBGBUFFER,

"Allocating output buffer size=0x%x, margin=0x%x\n",
dir [n].xsize , MAX_TAG_DISTANCE);

z.next out = buffer ;
z.avail out = dir [n].xsize + MAX_TAG_DISTANCE;
i = inflate (&z, Z_FINISH);
DBG(DBGCOMPRESS, "in: avail/total=0x%x/0x%lx "

"out: avail/total=0x%x/0x%lx, return %d;\n",
z.avail in , z.total in , z.avail out , z.total out , i);

if (i 6= Z_STREAM_END)
QUIT("Unable to complete decompression: %s", z.msg);

if (z.avail in 6= 0) QUIT("Decompression missed input data");
if (z.total out 6= dir [n].xsize)
QUIT("Decompression output size mismatch 0x%lx != 0x%x",

z.total out , dir [n].xsize);
if (inflateEnd (&z) 6= Z_OK)
QUIT("Unable to finalize decompression: %s", z.msg);

dir [n].buffer = buffer ;
dir [n].bsize = dir [n].xsize ;
hpos0 = hpos = hstart = buffer ;
hend = hstart + dir [n].xsize ;

}

〈 put functions 14xiv 〉 +≡ (351)

static void hcompress (uint16 t n)
{ z stream z; /∗ compression stream ∗/

uint8 t ∗buffer ;
int i;

if (dir [n].size ≡ 0) { dir [n].xsize = 0; return; }
DBG(DBGCOMPRESS, "Compressing section %d of size 0x%x\n", n,

dir [n].size);
z.zalloc = (alloc func)0; z.zfree = (free func)0; z.opaque = (voidpf)0;
if (deflateInit (&z, Z_DEFAULT_COMPRESSION) 6= Z_OK)
QUIT("Unable to initialize compression: %s", z.msg);

ALLOCATE(buffer , dir [n].size + MAX_TAG_DISTANCE,uint8 t);
z.next out = buffer ;
z.avail out = dir [n].size + MAX_TAG_DISTANCE;

146 8 File Structure

z.next in = dir [n].buffer ;

z.avail in = dir [n].size ;

i = deflate (&z, Z_FINISH);

DBG(DBGCOMPRESS, "deflate in: avail/total=0x%x/0x%lx out:\
 avail/total=0x%x/0x%lx, return %d;\n",
z.avail in , z.total in , z.avail out , z.total out , i);

if (z.avail in 6= 0) QUIT("Compression missed input data");

if (i 6= Z_STREAM_END) QUIT("Compression incomplete: %s", z.msg);

if (deflateEnd (&z) 6= Z_OK)
QUIT("Unable to finalize compression: %s", z.msg);

DBG(DBGCOMPRESS, "Compressed 0x%lx byte to 0x%lx byte\n",
z.total in , z.total out);

free (dir [n].buffer);

dir [n].buffer = buffer ;

dir [n].bsize = dir [n].size + MAX_TAG_DISTANCE;

dir [n].xsize = dir [n].size ;

dir [n].size = z.total out ;

}

8.6 Reading Short Format Sections

After mapping the file at address hin addr access to sections of the file is provided
by decompressing them if necessary and setting the three pointers hpos , hstart ,
and hend .

To read sections of a short format input file, we use the function hget section .

Reading the short format : · · · =⇒

〈 get file functions 337cccxxxvii 〉 +≡ (352)

void hget section (uint16 t n)

{ DBG(DBGDIR, "Reading section %d\n", n);

RNG("Section number", n, 0,max section no);

if (dir [n].buffer 6= NULL ∧ dir [n].xsize > 0) {
hpos0 = hpos = hstart = dir [n].buffer ;

hend = hstart + dir [n].xsize ;

}
else { hpos0 = hpos = hstart = hin addr + dir [n].pos ;

hend = hstart + dir [n].size ;

if (dir [n].xsize > 0) hdecompress (n);

}
}

8.7 Writing Short Format Sections 147

8.7 Writing Short Format Sections

To write a short format file, we allocate for each of the first three sections a suitable
buffer, then fill these buffers, and finally write them out in sequential order.

〈 put functions 14xiv 〉 +≡ (353)

#define BUFFER_SIZE #400

void new output buffers (void)
{ dir [0].bsize = dir [1].bsize = dir [2].bsize = BUFFER_SIZE;
DBG(DBGBUFFER,

"Allocating output buffer size=0x%x, margin=0x%x\n",
BUFFER_SIZE, MAX_TAG_DISTANCE);

ALLOCATE(dir [0].buffer , dir [0].bsize + MAX_TAG_DISTANCE,uint8 t);
ALLOCATE(dir [1].buffer , dir [1].bsize + MAX_TAG_DISTANCE,uint8 t);
ALLOCATE(dir [2].buffer , dir [2].bsize + MAX_TAG_DISTANCE,uint8 t);
}
void hput increase buffer (uint32 t n)
{ size t bsize ;

uint32 t pos , pos0 ;
const double buffer factor = 1.4142136; /∗

√
2 ∗/

pos = hpos − hstart ;
pos0 = hpos0 − hstart ;
bsize = dir [section no].bsize ∗ buffer factor + 0.5;
if (bsize < pos + n) bsize = pos + n;
if (bsize ≥ HINT_NO_POS) bsize = HINT_NO_POS;
if (bsize < pos + n)
QUIT("Unable to increase buffer size "SIZE_F" by 0x%x byte",

hpos − hstart , n);
DBG(DBGBUFFER, "Reallocating output buffer "

" for section %d from 0x%x to "SIZE_F" byte\n", section no ,
dir [section no].bsize , bsize);

REALLOCATE(dir [section no].buffer , bsize ,uint8 t);
dir [section no].bsize = (uint32 t) bsize ;
hstart = dir [section no].buffer ;
hend = hstart + bsize ;
hpos0 = hstart + pos0 ;
hpos = hstart + pos ;

}
static size t hput data (uint16 t n,uint8 t ∗buffer ,uint32 t size)
{ size t s;

s = fwrite (buffer , 1, size , hout);
if (s 6= size)
QUIT("short write "SIZE_F" < %d in section %d", s, size , n);

return s;
}

148 8 File Structure

static size t hput section (uint16 t n)
{ return hput data (n, dir [n].buffer , dir [n].size);
}

149

9 Directory Section

A HINT file is subdivided in sections and each section can be identified by its
section number. The first three sections, numbered 0, 1, and 2, are mandatory:
directory section, definition section, and content section. The directory section,
which we explain now, lists all sections that make up a HINT file.

A document will often contain not only plain text but also other media for
example illustrations. Illustrations are produced with specialized tools and stored
in specialized files. Because a HINT file in short format should be self contained,
these special files are embedded in the HINT file as optional sections. Because a
HINT file in long format should be readable, these special files are written to disk
and only the file names are retained in the directory. Writing special files to disk
has also the advantage that you can modify them individually before embedding
them in a short format file.

9.1 Directories in Long Format

The directory section of a long format HINT file starts with the “directory”
keyword; then follows the maximum section number used and a list of directory
entries, one for each optional section numbered 3 and above. Each entry consists
of the keyword “section” followed by the section number, followed by the file
name. The section numbers must be unique and fit into 16 bit. The directory
entries must be ordered with strictly increasing section numbers. Keeping section
numbers consecutive is recommended because it reduces the memory footprint if
directories are stored as arrays indexed by the section number as we will do below.

Reading the long format : −− − =⇒

〈 symbols 2ii 〉 +≡ (354)

%token DIRECTORY "directory"

%token SECTION "entry"

〈 scanning rules 3iii 〉 +≡ (355)

directory return DIRECTORY;

section return SECTION;

〈 parsing rules 5v 〉 +≡ (356)

directory section: START DIRECTORY UNSIGNED

{ new directory ($3 + 1); new output buffers (); } entry list END;

entry list: | entry list entry ;

150 9 Directory Section

entry : START SECTION UNSIGNED string END

{ RNG("Section number", $3, 3,max section no);
hset entry (&(dir [$3]), $3, 0, 0, $4); };

We use a dynamically allocated array of directory entries to store the directory.

〈 directory entry type 357ccclvii 〉 ≡ (357)

typedef struct {
uint64 t pos ;
uint32 t size , xsize ;
uint16 t section no ;
char ∗file name ;
uint8 t ∗buffer ;
uint32 t bsize ;

} Entry;
Used in 551dli, 553dliii, and 560dlx.

The function new directory allocates the directory.

〈 directory functions 358ccclviii 〉 ≡ (358)

Entry ∗dir = NULL;
uint16 t section no , max section no ;

void new directory (uint32 t entries)
{ DBG(DBGDIR, "Creating directory with %d entries\n", entries);
RNG("Directory entries", entries , 3,#10000);
max section no = entries − 1; ALLOCATE(dir , entries ,Entry);
dir [0].section no = 0; dir [1].section no = 1; dir [2].section no = 2;

}
Used in 552dlii, 554dliv, 557dlvii, 558dlviii, and 560dlx.

The function hset entry fills in the appropriate entry.

〈 directory functions 358ccclviii 〉 +≡ (359)

void hset entry (Entry ∗e,uint16 t i,uint32 t size ,uint32 t xsize ,
char ∗file name)

{ e→section no = i;
e→size = size ; e→xsize = xsize ;
if (file name ≡ NULL ∨ ∗file name ≡ 0) e→file name = NULL;
else e→file name = strdup(file name);
DBG(DBGDIR, "Creating entry %d: \"%s\" size=0x%x xsize=0x%x\n",

i,file name , size , xsize);
}

Writing the auxiliary files depends on the -a, -g and -f options.

〈without -f skip writing an existing file 360ccclx 〉 ≡ (360)

if (¬option force ∧ access (aux name , F_OK) ≡ 0) {
MESSAGE("File ’%s’ exists.\n"

"To rewrite the file use the −f option.\n", aux name);
continue;

9.1 Directories in Long Format 151

}
Used in 366ccclxvi.

The above code uses the access function, and we need to make sure it is defined:

〈make sure access is defined 361ccclxi 〉 ≡ (361)

#ifdef WIN32

#include <io.h>

#define access (N,M) access (N,M)
#define F_OK 0
#else
#include <unistd.h>

#endif
Used in 366ccclxvi.

With the -g option, filenames are considered global, and files are written to the
filesystem possibly overwriting the existing files. For example a font embedded
in a HINT file might replace a font of the same name in some operating systems
font folder. If the HINT file is shrinked on one system and stretched on another
system, this is usually not the desired behavior. Without the -g option, the files
will be written in two local directories. The names of these directories are derived
from the output file name, replacing the extension “.hint” with “.abs” if the
original filename contained an absolute path, and replacing it with “.rel” if the
original filename contained a relative path. Inside these directories, the path as
given in the filename is retained. When shrinking a HINT file without the -g

option, the original filenames can be reconstructed.

〈 compute a local aux name 362ccclxii 〉 ≡ (362)

{ char ∗path = dir [i].file name ;
int path length = (int) strlen (path);

〈 determine whether path is absolute or relative 363ccclxiii 〉
〈 replace links to the parent directory 364ccclxiv 〉
DBG(DBGDIR, "Replacing auxiliary file name:\n\t%s\n−>\t%s\n", path ,

aux name);
}

Used in 366ccclxvi and 372ccclxxii.

〈 determine whether path is absolute or relative 363ccclxiii 〉 ≡ (363)

int aux length ;
enum {

absolute = 0, relative = 1
} name type ;
char ∗aux ext [2] = {".abs/", ".rel/"};
int ext length = 5;

aux length = stem length + ext length + path length ;
ALLOCATE(aux name , aux length + 1, char);
strcpy (aux name , stem name);
if (path [0] ≡ ’/’) { name type = absolute ;

152 9 Directory Section

strcpy (aux name + stem length , aux ext [name type]);
strcpy (aux name + stem length + ext length , path + 1);

}
else if (path length > 3 ∧ isalpha (path [0]) ∧ path [1] ≡ ’:’ ∧ path [2] ≡ ’/’) {

name type = absolute ;
strcpy (aux name + stem length , aux ext [name type]);
strcpy (aux name + stem length + ext length , path);
aux name [stem length + ext length + 1] = ’_’;

}
else name type = relative ;

Used in 362ccclxii.

When the -g is not given, auxiliar files are written into special subdirectories.
To prevent them from escaping into the global file system, we replace links to the
parent direcory “../” by “ /”.

〈 replace links to the parent directory 364ccclxiv 〉 ≡ (364)

{ int k;

for (k = stem length + ext length ; k < aux length − 3; k++)
if (aux name [k] ≡ ’.’ ∧ aux name [k + 1] ≡ ’.’ ∧ aux name [k + 2] ≡ ’/’)
{ aux name [k] = aux name [k + 1] = ’_’;
k = k + 2;

}
}

Used in 362ccclxii.

It remains to create the directories along the path we might have constructed.

〈make sure the path in aux name exists 365ccclxv 〉 ≡ (365)

{ char ∗path end ;

path end = aux name + 1;
while (∗path end 6= 0) {

if (∗path end ≡ ’/’) { struct stat s;

∗path end = 0;
if (stat (aux name ,&s) ≡ −1) {

#ifdef WIN32

if (mkdir (aux name) 6= 0)
#else

if (mkdir (aux name , ◦777) 6= 0)
#endif

QUIT("Unable to create directory %s", aux name);
DBG(DBGDIR, "Creating directory %s\n", aux name);

}
else if (¬(S_IFDIR & (s.st mode)))
QUIT("Unable to create directory %s, file exists", aux name);
∗path end = ’/’;

}

9.1 Directories in Long Format 153

path end ++;
}

}
Used in 366ccclxvi and 456cdlvi.

Writing the long format : =⇒ − −−

〈write functions 21xxi 〉 +≡ (366)

〈make sure access is defined 361ccclxi 〉
extern char ∗stem name ;
extern int stem length ;
void hget section (uint16 t n);

void hwrite aux files (void)
{ int i;

if (¬option aux) return;
DBG(DBGBASIC | DBGDIR, "Writing %d aux files\n",max section no − 2);
for (i = 3; i ≤ max section no ; i++) { FILE ∗f ;

char ∗aux name = NULL;

if (option global) aux name = strdup(dir [i].file name);
else 〈 compute a local aux name 362ccclxii 〉
〈without -f skip writing an existing file 360ccclx 〉
〈make sure the path in aux name exists 365ccclxv 〉
f = fopen (aux name , "wb");
if (f ≡ NULL)
QUIT("Unable to open file ’%s’ for writing", aux name);

else { size t s;

hget section (i);
DBG(DBGDIR, "Writing file %s\n", aux name);
s = fwrite (hstart , 1, dir [i].size , f);
if (s 6= dir [i].size) QUIT("writing file %s", aux name);
fclose (f);

}
free (aux name);

}
}

We write the directory, and the directory entries in long format using the follow-
ing functions.

〈write functions 21xxi 〉 +≡ (367)

static void hwrite entry (int i)
{ hwrite start ();

hwritef ("section %u", dir [i].section no); hwrite string (dir [i].file name);
hwrite end ();

}

154 9 Directory Section

void hwrite directory (void)
{ int i;

if (dir ≡ NULL) QUIT("Directory not allocated");
section no = 0;
hwritef ("<directory %u",max section no);
for (i = 3; i ≤ max section no ; i++) hwrite entry (i);
hwritef ("\n>\n");

}

9.2 Directories in Short Format

The directory section of a short format file contains entries for all sections in-
cluding the directory section itself. After reading the directory section, enough
information—position and size—is available to access any section directly. As
usual, a directory entry starts and ends with a tag byte. The kind part of an en-
try’s tag is not used; it is always zero. The value s of the two least significant bits
of the info part indicate that sizes are stored using s+1 byte. The most significant
bit of the info part is 1 if the section is stored in compressed form. In this case
the size of the section is followed by the size of the section after decompressing
it. After the tag byte follows the section number. In the short format file, section
numbers must be strictly increasing and consecutive. This is redundant but helps
with checking. Then follows the size—or the sizes—of the section. After the size
follows the file name terminated by a zero byte. The file name might be an empty
string in which case there is just the zero byte. After the zero byte follows a copy
of the tag byte.

Here is the macro and function to read a directory entry:

Reading the short format : · · · =⇒

〈 shared get macros 38xxxviii 〉 +≡ (368)

#define HGET_SIZE(I)
if ((I) & b100) {

if (((I) & b011) ≡ 0) s = HGET8, xs = HGET8;
else if (((I) & b011) ≡ 1) HGET16(s), HGET16(xs);
else if (((I) & b011) ≡ 2) HGET24(s), HGET24(xs);
else if (((I) & b011) ≡ 3) HGET32(s), HGET32(xs);

}
else {

if (((I) & b011) ≡ 0) s = HGET8;
else if (((I) & b011) ≡ 1) HGET16(s);
else if (((I) & b011) ≡ 2) HGET24(s);
else if (((I) & b011) ≡ 3) HGET32(s);

}
#define HGET_ENTRY(I, E)
{ uint16 t i;

uint32 t s = 0, xs = 0;
char ∗file name ;

9.2 Directories in Short Format 155

HGET16(i); HGET_SIZE(I); HGET_STRING(file name);

hset entry (&(E), i, s, xs ,file name);

}

〈 get file functions 337cccxxxvii 〉 +≡ (369)

void hget entry (Entry ∗e)
{ 〈 read the start byte a 16xvi 〉
DBG(DBGDIR, "Reading directory entry\n");

switch (a) {
case TAG(0, b000 + 0): HGET_ENTRY(b000 + 0, ∗e); break;

case TAG(0, b000 + 1): HGET_ENTRY(b000 + 1, ∗e); break;

case TAG(0, b000 + 2): HGET_ENTRY(b000 + 2, ∗e); break;

case TAG(0, b000 + 3): HGET_ENTRY(b000 + 3, ∗e); break;

case TAG(0, b100 + 0): HGET_ENTRY(b100 + 0, ∗e); break;

case TAG(0, b100 + 1): HGET_ENTRY(b100 + 1, ∗e); break;

case TAG(0, b100 + 2): HGET_ENTRY(b100 + 2, ∗e); break;

case TAG(0, b100 + 3): HGET_ENTRY(b100 + 3, ∗e); break;

default: TAGERR(a); break;

}
〈 read and check the end byte z 17xvii 〉

}

Because the first entry in the directory section describes the directory section
itself, we can not check its info bits in advance to determine whether it is compressed
or not. Therefore the directory section starts with a root entry, which is always
uncompressed. It describes the remainder of the directory which follows. There
are two differences between the root entry and a normal entry: it starts with the
maximum section number instead of the section number zero, and we set its position
to the position of the entry for section 1 (which might already be compressed). The
name of the directory section must be the empty string.

Reading the short format : · · · =⇒

〈 get file functions 337cccxxxvii 〉 +≡ (370)

static void hget root (Entry ∗root)

{ DBG(DBGDIR, "Root entry at "SIZE_F"\n", hpos − hstart);

hget entry (root);

root→pos = hpos − hstart ;

max section no = root→section no ;

root→section no = 0;

if (max section no < 2) QUIT("Sections 0, 1, and 2 are mandatory");

}
void hget directory (void)

{ int i;

Entry root = {0};

156 9 Directory Section

hget root (&root);
DBG(DBGDIR, "Directory\n");
new directory (max section no + 1);
dir [0] = root ;
DBG(DBGDIR, "Directory entry 1 at 0x%"PRIx64 "\n", dir [0].pos);
hget section (0);
for (i = 1; i ≤ max section no ; i++)
{ hget entry (&(dir [i])); dir [i].pos = dir [i− 1].pos + dir [i− 1].size ;
DBG(DBGDIR, "Section %d at 0x%"PRIx64 "\n", i, dir [i].pos);

}
}
void hclear dir (void)
{ int i;

if (dir ≡ NULL) return;
for (i = 0; i < 3; i++) /∗ currently the only compressed sections ∗/

if (dir [i].xsize > 0 ∧ dir [i].buffer 6= NULL) free (dir [i].buffer);
free (dir);
dir = NULL;

}

Armed with these preparations, we can put the directory into the HINT file.

Writing the short format : =⇒ · · ·

〈 put functions 14xiv 〉 +≡ (371)

static void hput entry (Entry ∗e)
{ Info b;

if (e→size < #100 ∧ e→xsize < #100) b = b000 ;
else if (e→size < #10000 ∧ e→xsize < #10000) b = b001 ;
else if (e→size < #1000000 ∧ e→xsize < #1000000) b = b010 ;
else b = b011 ;
if (e→xsize 6= 0) b = b | b100 ;
DBG(DBGTAGS, "Directory entry no=%d size=0x%x xsize=0x%x\n",

e→section no , e→size , e→xsize);
HPUTTAG(0, b);
HPUT16(e→section no);
switch (b) {
case b000 : HPUT8(e→size); break;
case b001 : HPUT16(e→size); break;
case b010 : HPUT24(e→size); break;
case b011 : HPUT32(e→size); break;
case b100 : HPUT8(e→size); HPUT8(e→xsize); break;
case b101 : HPUT16(e→size); HPUT16(e→xsize); break;
case b110 : HPUT24(e→size); HPUT24(e→xsize); break;
case b111 : HPUT32(e→size); HPUT32(e→xsize); break;
default: QUIT("Can’t happen"); break;

9.2 Directories in Short Format 157

}
hput string (e→file name);
DBGTAG(TAG(0, b), hpos); HPUT8(TAG(0, b));

}
static void hput directory start (void)
{ DBG(DBGDIR, "Directory Section\n");

section no = 0;
hpos = hstart = dir [0].buffer ;
hend = hstart + dir [0].bsize ;

}
static void hput directory end (void)
{ dir [0].size = hpos − hstart ;
DBG(DBGDIR, "End Directory Section size=0x%x\n", dir [0].size);

}
static size t hput root (void)
{ uint8 t buffer [MAX_TAG_DISTANCE];

size t s;

hpos = hstart = buffer ;
hend = hstart + MAX_TAG_DISTANCE;
dir [0].section no = max section no ;
hput entry (&dir [0]);
s = hput data (0, hstart , hpos − hstart);
DBG(DBGDIR, "Writing root size="SIZE_F"\n", s);
return s;

}
extern int option compress ;
static char ∗∗aux names ;

void hput directory (void)
{ int i;

〈 update the file sizes of optional sections 372ccclxxii 〉
if (option compress) { hcompress (1); hcompress (2); }
hput directory start ();
for (i = 1; i ≤ max section no ; i++) {

dir [i].pos = dir [i− 1].pos + dir [i− 1].size ;
DBG(DBGDIR, "writing entry %u at 0x%"PRIx64 "\n", i, dir [i].pos);
hput entry (&dir [i]);

}
hput directory end ();
if (option compress) hcompress (0);

}

Now let us look at the optional sections described in the directory entries 3 and
above. Where these files are found depends on the -g and -a options.

With the -g option given, only the file names as given in the directory entries
are used. With the -a option given, the file names are translated to filenames in

158 9 Directory Section

the hin name.abs and hin name.rel directories, as described in section 9.1. If
neither the -a nor the -g option is given, shrink first tries the translated filename
and then the global filename before it gives up.

When the shrink program writes the directory section in the short format, it
needs to know the sizes of all the sections—including the optional sections. These
sizes are not provided in the long format because it is safer and more convenient
to let the machine figure out the file sizes. But before we can determine the size,
we need to determine the file.

〈 update the file sizes of optional sections 372ccclxxii 〉 ≡ (372)

{ int i;

ALLOCATE(aux names ,max section no + 1, char ∗);
for (i = 3; i ≤ max section no ; i++)

if (dir [i].size ≡ 0) { struct stat s;

if (¬option global) { char ∗aux name = NULL;

〈 compute a local aux name 362ccclxii 〉
if (stat (aux name ,&s) ≡ 0) aux names [i] = aux name ;
else {

if (option aux) QUIT("Unable to find file ’%s’", aux name);
free (aux name);
aux name = NULL;
}

}
if ((aux names [i] ≡ NULL ∧ ¬option aux) ∨ option global) {

if (stat (dir [i].file name ,&s) 6= 0)
QUIT("Unable to find file ’%s’", dir [i].file name);

}
dir [i].size = s.st size ;
dir [i].xsize = 0;
DBG(DBGDIR, "section %i: found file %s size %u\n", i,

aux names [i] ? aux names [i] : dir [i].file name , dir [i].size);
}

}
Used in 371ccclxxi.

〈 rewrite the file names of optional sections 373ccclxxiii 〉 ≡ (373)

{ int i;

for (i = 3; i ≤ max section no ; i++)
if (aux names [i] 6= NULL) { free (dir [i].file name);

dir [i].file name = aux names [i];
aux names [i] = NULL;

}
}

Used in 557dlvii.

The computation of the sizes of the mandatory sections will be explained later.

9.2 Directories in Short Format 159

To conclude this section, here is the function that adds the files that are described
in the directory entries 3 and above to a HINT file in short format.

Writing the short format : =⇒ · · ·

〈 put functions 14xiv 〉 +≡ (374)

static size t hput optional section (int i)
{ size t fsize ;

if (dir [i].xsize 6= 0)
DBG(DBGDIR,

"Compressing of auxiliary files currently not supported");
if (dir [i].buffer ≡ NULL) 〈 append section i from file 375ccclxxv 〉
else 〈 append section i from buffer 376ccclxxvi 〉
if (fsize 6= dir [i].size)
QUIT("Size written "SIZE_F" does not match sec\

tion %d size %u",
fsize , i, dir [i].size);

return fsize ;
}

If the content of the auxiliar section i was not loaded into dir [i].buffer earlier,
the file i loaded from disk and appended to the output.

〈 append section i from file 375ccclxxv 〉 ≡ (375)

{ FILE ∗f ;
char ∗file name = dir [i].file name ;

DBG(DBGDIR, "Adding file %d: %s\n", dir [i].section no ,file name);
f = fopen (file name , "rb");
if (f ≡ NULL) QUIT("Unable to read section %d, file %s",

dir [i].section no ,file name);
fsize = 0;
while (¬feof (f))
{ size t s, t;

char buffer [1� 13]; /∗ 8kByte ∗/
s = fread (buffer , 1, 1� 13, f);
t = fwrite (buffer , 1, s, hout);
if (s 6= t) QUIT("Unable to write file %s",file name);
fsize = fsize + t;

}
fclose (f);

}
Used in 374ccclxxiv.

In the simpler case, that the file was loaded already into the buffer., the buffer
is appended to the output.

〈 append section i from buffer 376ccclxxvi 〉 ≡ (376)

{ fsize = fwrite (dir [i].buffer , 1, dir [i].size , hout);

160 9 Directory Section

}
Used in 374ccclxxiv.

161

10 Definition Section

In a typical HINT file, there are many things that are used over and over again.
For example the interword glue of a specific font or the indentation of the first
line of a paragraph. The definition section contains this information so that it can
be referenced in the content section by a simple reference number. In addition
there are a few parameters that guide the routines of TEX. An example is the
“above display skip”, which controls the amount of white space inserted above a
displayed equation, or the “hyphen penalty” that tells TEX the “æsthetic cost” of
ending a line with a hyphenated word. These parameters also get their values in
the definition section as explained in section 11.

The most simple way to store these definitions is to store them in an array
indexed by the reference numbers. To simplify the dynamic allocation of these
arrays, the list of definitions will always start with the list of maximum values: a
list that contains for each node type the maximum reference number used.

In the long format, the definition section starts with the keyword definitions,
followed by the list of maximum values, followed by the definitions proper.

When writing the short format, we start by positioning the output stream at
the beginning of the definition buffer and we end with recording the size of the
definition section in the directory.

Reading the long format : −− − =⇒

〈 symbols 2ii 〉 +≡ (377)

%token DEFINITIONS "definitions"

〈 scanning rules 3iii 〉 +≡ (378)

definitions return DEFINITIONS;

〈 parsing rules 5v 〉 +≡ (379)

definition section: START DEFINITIONS { hput definitions start (); }
max definitions definition list
END { hput definitions end (); };

definition list: | definition list def node;

162 10 Definition Section

Writing the long format : =⇒ − −−

〈write functions 21xxi 〉 +≡ (380)

void hwrite definitions start (void)

{ section no = 1; hwritef ("<definitions");

}

void hwrite definitions end (void)

{ hwritef ("\n>\n");

}

〈 get functions 18xviii 〉 +≡ (381)

void hget definition section (void)

{ DBG(DBGBASIC | DBGDEF, "Definitions\n");

hget section (1);

hwrite definitions start ();

DBG(DBGDEF, "List of maximum values\n");

hget max definitions ();

〈 initialize definitions 253ccliii 〉
hwrite max definitions ();

DBG(DBGDEF, "List of definitions\n");

while (hpos < hend) hget def node ();

hwrite definitions end ();

}

Writing the short format : =⇒ · · ·

〈 put functions 14xiv 〉 +≡ (382)

void hput definitions start (void)

{ DBG(DBGDEF, "Definition Section\n");

section no = 1;

hpos = hstart = dir [1].buffer ;

hend = hstart + dir [1].bsize ;

}

void hput definitions end (void)

{ dir [1].size = hpos − hstart ;

DBG(DBGDEF, "End Definition Section size=0x%x\n", dir [1].size);

}

10.1 Maximum Values 163

10.1 Maximum Values

To help implementations allocating the right amount of memory for the definitions,
the definition section starts with a list of maximum values. For each kind of
node, we store the maximum valid reference number in the array max ref which
is indexed by the kind-values. For a reference number n and kind-value k we have
0 ≤ n ≤ max ref [k]. To make sure that a hint file without any definitions will work,
some definitions have default values. The initialization of default and maximum
values is described in section 11. The maximum reference number that has a
default value is stored in the array max default . We have −1 ≤ max default [k] ≤
max ref [k] < 216, and for most k even max ref [k] < 28. Specifying maximum

values that are lower than the default values is not allowed in the short format;
in the long format, lower values are silently ignored. Some default values are
permanently fixed; for example the zero glue with reference number zero skip no
must never change. The array max fixed stores the maximum reference number
that has a fixed value for a given kind. Definitions with reference numbers less
or equal than the corresponding max fixed [k] number are disallowed. Usually we
have −1 ≤ max fixed [k] ≤ max default [k], but if for a kind-value k no definitions,
and hence no maximum values are allowed, we set max fixed [k] = #10000 >
max default [k].

We use the max ref array whenever we find a reference number in the input to
check if it is within the proper range.

〈 debug macros 383ccclxxxiii 〉 ≡ (383)

#define REF_RNG(K,N) if ((int)(N) > max ref [K])
QUIT("Reference %d to %s out of range [0 − %d]", (N),
definition name [K],max ref [K])

Used in 548dxlviii.

In the long format file, the list of maximum values starts with “<max ”, then
follow pairs of keywords and numbers like “<glue 57>”, and it ends with “>”. In
the short format, we start the list of maximums with a list kind tag and end it with
a list kind tag. Each maximum value is preceded and followed by a tag byte with
the appropriate kind-value. The info value has its b001 bit cleared if the maximum
value is in the range 0 to #FF and fits into a single byte; the info value hast its
b001 bit set if it fits into two byte. Currently only the label kind may need to use
two byte.

〈 debug macros 383ccclxxxiii 〉 +≡ (384)

#define MAX_REF (K) ((K) ≡ label kind ? #FFFF : #FF)

Other info values are reserved for future extensions. After reading the maximum
values, we initialize the data structures for the definitions.

164 10 Definition Section

Reading the long format : −− − =⇒

〈 symbols 2ii 〉 +≡ (385)

%token MAX "max"

〈 scanning rules 3iii 〉 +≡ (386)

max return MAX;

〈 parsing rules 5v 〉 +≡ (387)

max definitions: START MAX max list END

{ 〈 initialize definitions 253ccliii 〉 hput max definitions (); };
max list: | max list START max value END;

max value: FONT UNSIGNED { hset max (font kind , $2); }
| INTEGER UNSIGNED { hset max (int kind , $2); }
| DIMEN UNSIGNED { hset max (dimen kind , $2); }
| LIGATURE UNSIGNED { hset max (ligature kind , $2); }
| DISC UNSIGNED { hset max (disc kind , $2); }
| GLUE UNSIGNED { hset max (glue kind , $2); }
| LANGUAGE UNSIGNED { hset max (language kind , $2); }
| RULE UNSIGNED { hset max (rule kind , $2); }
| IMAGE UNSIGNED { hset max (image kind , $2); }
| LEADERS UNSIGNED { hset max (leaders kind , $2); }
| BASELINE UNSIGNED { hset max (baseline kind , $2); }
| XDIMEN UNSIGNED { hset max (xdimen kind , $2); }
| PARAM UNSIGNED { hset max (param kind , $2); }
| STREAMDEF UNSIGNED { hset max (stream kind , $2); }
| PAGE UNSIGNED { hset max (page kind , $2); }
| RANGE UNSIGNED { hset max (range kind , $2); }
| LABEL UNSIGNED { hset max (label kind , $2); }
| COLOR UNSIGNED { hset max (color kind , $2); };

〈 parsing functions 388ccclxxxviii 〉 ≡ (388)

void hset max (Kind k, int n)

{ DBG(DBGDEF, "Setting max %s to %d\n", definition name [k], n);

RNG("Maximum", n,max fixed [k] + 1, MAX_REF(k));

if (n > max ref [k]) max ref [k] = n;

}
Used in 556dlvi.

10.1 Maximum Values 165

Writing the long format : =⇒ − −−

〈write functions 21xxi 〉 +≡ (389)

void hwrite max definitions (void)
{ Kind k;

hwrite start (); hwritef ("max");
for (k = 0; k < 32; k++)

if (max ref [k] > max default [k])
{ switch (k) { 〈 cases of writing special maximum values 248ccxlviii 〉

default: hwrite start ();
hwritef ("%s %d", definition name [k],max ref [k]);
hwrite end ();
break;

}
}

hwrite end ();
}

Reading the short format : · · · =⇒

〈 get file functions 337cccxxxvii 〉 +≡ (390)

void hget max definitions (void)
{ Kind k;

〈 read the start byte a 16xvi 〉
if (a 6= TAG(list kind , 0)) QUIT("Start of maximum list expected");
for (k = 0; k < 32; k++) max ref [k] = max default [k];
max outline = −1;
while (true)
{ int n;

if (hpos ≥ hend) QUIT("Unexpected end of maximum list");
node pos = hpos − hstart ;
HGETTAG(a); k = KIND(a); if (k ≡ list kind) break;
if (INFO(a) & b001) HGET16(n); else n = HGET8;
switch (a) { 〈 cases of getting special maximum values 246ccxlvi 〉
default:

if (max fixed [k] > max default [k])
MESSAGE("Maximum value for kind %s not supported\n",

definition name [k]);
else { RNG("Maximum number", n,max default [k], MAX_REF(k));

max ref [k] = n;
DBG(DBGDEF, "max(%s) = %d\n", definition name [k],max ref [k]);

}
break;

}
〈 read and check the end byte z 17xvii 〉

}

166 10 Definition Section

if (INFO(a) 6= 0) QUIT("End of maximum list with info %d", INFO(a));
DBG(DBGDEF, "Getting Max Definitions END\n");

}

Writing the short format : =⇒ · · ·

〈 put functions 14xiv 〉 +≡ (391)

void hput max definitions (void)
{ Kind k;

DBG(DBGDEF, "Writing Max Definitions\n");
HPUTTAG(list kind , 0);
for (k = 0; k < 32; k++)

if (max ref [k] > max default [k]) { uint32 t pos = hpos ++ − hstart ;

DBG(DBGDEF, "max(%s) = %d\n", definition name [k],max ref [k]);
hput tags (pos , TAG(k, hput n (max ref [k])− 1));

}
〈 cases of putting special maximum values 247ccxlvii 〉
HPUTTAG(list kind , 0);
DBG(DBGDEF, "Writing Max Definitions End\n");

}

10.2 Definitions
A definition associates a reference number with a content node. Here is an example:
A glue definition associates a glue number, for example 71, with a glue specification.
In the long format this might look like “<glue *71 4pt plus 5pt minus 0.5pt>”
which makes glue number 71 refer to a 4pt glue with a stretchability of 5pt and a
shrinkability of 0.5pt. Such a glue definition differs from a normal glue node just
by an extra byte value immediately following the keyword respectively start byte.

Whenever we need this glue in the content section, we can say “<glue *71>”.
Because we restrict the number of glue definitions to at most 256, a single byte is
sufficient to store the reference number. The shrink and stretch programs will,
however, not bother to store glue definitions. Instead they will write them in the
new format immediately to the output.

The parser will handle definitions in any order, but the order is relevant if a
definition references another definition, and of course, it never does any harm to
present definitions in a systematic way.

As a rule, the definition of a reference must always precede the use of that
reference. While this is always the case for references in the content section, it
restricts the use of references inside the definition section.

The definitions for integers, dimensions, extended dimensions, languages, rules,
ligatures, and images are “simple”. They never contain references and so it is
always possible to list them first. The definition of glues may contain extended di-
mensions, the definitions of baselines may reference glue nodes, and the definitions
of parameter lists contain definitions of integers, dimensions, and glues. So these
definitions should follow in this order.

10.2 Definitions 167

The definitions of leaders and discretionary breaks allow boxes. While these
boxes are usually quite simple, they may contain arbitrary references—including
again references to leaders and discretionary breaks. So, at least in principle, they
might impose complex (or even unsatisfiable) restrictions on the order of those
definitions.

The definitions of fonts contain not only “simple” definitions but also the defini-
tions of interword glues and hyphens introducing additional ordering restrictions.
The definition of hyphens regularly contain glyphs which in turn reference a font—
typically the font that just gets defined. Therefore we relax the define before use
policy for glyphs: Glyphs may reference a font before the font is defined.

The definitions of page templates contain lists of arbitrary content nodes, and
while the boxes inside leaders or discretionary breaks tend to be simple, the content
of page templates is often quite complex. Page templates are probably the source
of most ordering restrictions. Placing page templates towards the end of the list
of definitions might be a good idea. A special case are stream definitions. These
occur only as part of the corresponding page template definition and are listed at
its end. So references to them will occur in the page template always before their
definition. Finally, the definitions of page ranges always reference a page template
and they should come after the page template definitions. For technical reasons
explained in section 6.2, definitions of labels and outlines come last.

To avoid complex dependencies, an application can always choose not to use
references in the definition section. There are only three types of nodes where
references can not be avoided: fonts are referenced in glyph nodes, labels are
referenced in outlines, and languages are referenced in boxes or page templates.
Possible ordering restrictions can be satisfied if languages are defined early. To
check the define before use policy, we use an array of bitvectors, but we limit
checking to the first 256 references. We have for every reference number N < 256
and every kind K a single bit which is set if and only if the corresponding reference
is defined.

〈 definition checks 392cccxcii 〉 ≡ (392)

uint32 t definition bits [#100/32][32] = {{0}};
#define SET_DBIT(N,K)

((N) > #FF ? 1 : (definition bits [N/32][K] |= (1� ((N) & (32− 1)))))
#define GET_DBIT(N,K)

((N) > #FF ? 1 : ((definition bits [N/32][K]� ((N) & (32− 1))) & 1))
#define DEF(D,K,N) (D).k = K; (D).n = (N); SET_DBIT((D).n, (D).k);
DBG(DBGDEF, "Defining %s %d\n", definition name [(D).k], (D).n);
RNG("Definition", (D).n,max fixed [(D).k] + 1,max ref [(D).k]);

#define REF(K,N) REF_RNG (K,N); if (¬GET_DBIT(N,K))
QUIT("Reference %d to %s before definition", (N),
definition name [K])

Used in 556dlvi, 558dlviii, and 560dlx.

〈 initialize definitions 253ccliii 〉 +≡ (393)

definition bits [0][list kind] = (1� (MAX_LIST_DEFAULT + 1))− 1;
definition bits [0][param kind] = (1� (MAX_LIST_DEFAULT + 1))− 1;

168 10 Definition Section

definition bits [0][int kind] = (1� (MAX_INT_DEFAULT + 1))− 1;
definition bits [0][dimen kind] = (1� (MAX_DIMEN_DEFAULT + 1))− 1;
definition bits [0][xdimen kind] = (1� (MAX_XDIMEN_DEFAULT + 1))− 1;
definition bits [0][glue kind] = (1� (MAX_GLUE_DEFAULT + 1))− 1;
definition bits [0][baseline kind] = (1� (MAX_BASELINE_DEFAULT + 1))− 1;
definition bits [0][page kind] = (1� (MAX_PAGE_DEFAULT + 1))− 1;
definition bits [0][stream kind] = (1� (MAX_STREAM_DEFAULT + 1))− 1;
definition bits [0][range kind] = (1� (MAX_RANGE_DEFAULT + 1))− 1;
definition bits [0][color kind] = (1� (MAX_COLOR_DEFAULT + 1))− 1;

Reading the long format : −− − =⇒
Writing the short format : =⇒ · · ·

〈 symbols 2ii 〉 +≡ (394)

%type < rf > def node

〈 parsing rules 5v 〉 +≡ (395)

def node: start FONT ref font END

{ DEF($$, font kind , $3); hput tags ($1, $4); }
| start INTEGER ref integer END

{ DEF($$, int kind , $3); hput tags ($1, hput int ($4)); }
| start DIMEN ref dimension END

{ DEF($$, dimen kind , $3); hput tags ($1, hput dimen ($4)); }
| start LANGUAGE ref string END

{ DEF($$, language kind , $3); hput string ($4);
hput tags ($1, TAG(language kind , 0)); }

| start GLUE ref glue END

{ DEF($$, glue kind , $3); hput tags ($1, hput glue (&($4))); }
| start XDIMEN ref xdimen END

{ DEF($$, xdimen kind , $3); hput tags ($1, hput xdimen (&($4))); }
| start RULE ref rule END

{ DEF($$, rule kind , $3); hput tags ($1, hput rule (&($4))); }
| start LEADERS ref leaders END

{ DEF($$, leaders kind , $3); hput tags ($1, TAG(leaders kind , $4)); }
| start BASELINE ref baseline END

{ DEF($$, baseline kind , $3); hput tags ($1, TAG(baseline kind , $4)); }
| start LIGATURE ref ligature END

{ DEF($$, ligature kind , $3); hput tags ($1, hput ligature (&($4))); }
| start DISC ref disc END

{ DEF($$, disc kind , $3); hput tags ($1, hput disc(&($4))); }
| start IMAGE ref image END

{ DEF($$, image kind , $3); hput tags ($1, TAG(image kind , $4)); }
| start PARAM ref parameters END

{ DEF($$, param kind , $3); hput tags ($1, hput list ($1 + 2,&($4))); }
| start PAGE ref page END

{ DEF($$, page kind , $3); hput tags ($1, TAG(page kind , 0)); };

10.2 Definitions 169

There are a few cases where one wants to define a reference by a reference. For
example, a HINT file may want to set the parfillskip glue to zero. While there
are multiple ways to define the zero glue, the canonical way is a reference using the
zero glue no . All these cases have in common that the reference to be defined is
one of the default references and the defining reference is one of the fixed references.
We add a few parsing rules and a testing macro for those cases where the number
of default definitions is greater than the number of fixed definitions.

〈 definition checks 392cccxcii 〉 +≡ (396)

#define DEF_REF(D,K,M,N) DEF (D,K,M);
if ((int)(M) > max default [K])
QUIT("Defining non default reference %d for %s",M,

definition name [K]);
if ((int)(N) > max fixed [K])
QUIT("Defining reference %d for %s by non fixed reference %d",M,

definition name [K], N);

〈 parsing rules 5v 〉 +≡ (397)

def node: start INTEGER ref ref END

{ DEF_REF($$, int kind , $3, $4); hput tags ($1, TAG(int kind , 0)); }
| start DIMEN ref ref END

{ DEF_REF($$, dimen kind , $3, $4); hput tags ($1, TAG(dimen kind , 0)); }
| start GLUE ref ref END

{ DEF_REF($$, glue kind , $3, $4); hput tags ($1, TAG(glue kind , 0)); };

Reading the short format : · · · =⇒
Writing the long format : =⇒ − −−

〈 get functions 18xviii 〉 +≡ (398)

void hget definition (int n,Tag a,uint32 t node pos)
{ switch (KIND(a)) {

case font kind : hget font def (INFO(a), n); break;
case param kind :
{ List l;

l.t = a; HGET_LIST(INFO(a), l); hwrite parameters (&l); break; }
case page kind : hget page (); break;
case dimen kind : hget dimen (a); break;
case xdimen kind :
{ Xdimen x; hget xdimen (a,&x); hwrite xdimen (&x); break; }

case language kind :
if (INFO(a) 6= b000)
QUIT("Info value of language definition must be zero");

else { char ∗n;

HGET_STRING(n); hwrite string (n);
}
break;

170 10 Definition Section

case color kind :
switch (INFO(a)) { 〈 cases to get definitions for color kind 299ccxcix 〉
default:
QUIT("Undefined tag %d for color_kind definition at 0x%x",

INFO(a),node pos);
}
break;

default: hget content (a); break;
}

}
void hget def node ()
{ Kind k;

〈 read the start byte a 16xvi 〉
k = KIND(a);
if (k ≡ unknown kind ∧ INFO(a) ≡ b100) hget unknown def ();
else if (k ≡ label kind) hget outline or label def (INFO(a),node pos);
else { int n;

n = HGET8;
if (k 6= range kind) REF_RNG(k, n);
SET_DBIT(n, k);
if (k ≡ range kind) hget range (INFO(a), n);
else { hwrite start (); hwritef ("%s *%d", definition name [k], n);

hget definition (n, a,node pos);
hwrite end ();

}
if (n > max ref [k] ∨ n ≤ max fixed [k])
QUIT("Definition %d for %s out of range [%d − %d]",

n, definition name [k],max fixed [k] + 1,max ref [k]);
if (max fixed [k] > max default [k])
QUIT("Definitions for kind %s not supported",

definition name [k]);
}
〈 read and check the end byte z 17xvii 〉

}

10.3 Parameter Lists
Because the content section is a “stateless” list of nodes, the definitions we see in
the definition section can never change. It is however necessary to make occasion-
ally local modifications of some of these definitions, because some definitions are
parameters of the algorithms borrowed from TEX. Nodes that need such modifi-
cations, for example the paragraph nodes that are passed to TEX’s line breaking
algorithm, contain a list of local definitions called parameters. Typically sets of
related parameters are needed. To facilitate a simple reference to such a set of
parameters, we allow predefined parameter lists that can be referenced by a single
number. The parameters of TEX’s routines are quite basic—integers, dimensions,

10.3 Parameter Lists 171

and glues—and all of them have default values. Therefore we restrict the definitions
in parameter lists to such basic definitions.

〈 parsing functions 388ccclxxxviii 〉 +≡ (399)

void check param def (Ref ∗ df)
{

if (df→k 6= int kind ∧ df→k 6= dimen kind ∧
df→k 6= glue kind)

QUIT("Kind %s not allowed in parameter list",
definition name [df→k]);

if (df→n ≤ max fixed [df→k] ∨max default [df→k] < df→n)
QUIT("Parameter %d for %s not allowed in parameter list", df→n,

definition name [df→k]);
}

The definitions below repeat the definitions we have seen for lists in section 4.1
with small modifications. For example we use the kind-value param kind . An
empty parameter list is omitted in the long format as well as in the short format.

Reading the long format : −− − =⇒
Writing the short format : =⇒ · · ·

〈 symbols 2ii 〉 +≡ (400)

%token PARAM "param"

%type < u > def list
%type < l > parameters

〈 scanning rules 3iii 〉 +≡ (401)

param return PARAM;

〈 parsing rules 5v 〉 +≡ (402)

def list: position | def list def node { check param def (&($2)); };
parameters: estimate def list { $$.p = $2; $$.t = TAG(param kind , b001);

$$.s = (hpos − hstart)− $2; };

Using a parsing rule like “param list: start PARAM parameters END”, an empty
parameter list will be written as “<param>”. This looks ugly and seems like
unnecessary syntax because the parser knows anyway that a parameter list will
come next. Therefore the keyword can be omited except in definitions and in
unknown nodes.

〈 parsing rules 5v 〉 +≡ (403)

named param list: start PARAM parameters END

{ hput tags ($1, hput list ($1 + 1,&($3))); };
param list: named param list
| start parameters END

{ hput tags ($1, hput list ($1 + 1,&($2))); };

172 10 Definition Section

Writing the long format : =⇒ − −−

〈write functions 21xxi 〉 +≡ (404)

void hwrite parameters (List ∗l)
{ uint32 t h = hpos − hstart , e = hend − hstart ; /∗ save hpos and hend ∗/

hpos = l→p+ hstart ; hend = hpos + l→s;
if (l→s > #FF) hwritef (" %d", l→s);
while (hpos < hend) hget def node ();
hpos = hstart + h; hend = hstart + e; /∗ restore hpos and hend ∗/

}
void hwrite param list (List ∗l)
{ hwrite start (); hwrite parameters (l);

hwrite end ();
}
void hwrite named param list (List ∗l)
{ hwrite start (); hwritef ("param");

hwrite parameters (l);
hwrite end ();

}

Reading the short format : · · · =⇒

〈 get functions 18xviii 〉 +≡ (405)

void hget param list (List ∗l)
{ if (KIND(∗hpos) 6= param kind)

QUIT("Parameter list expected at 0x%x", (uint32 t)(hpos − hstart));
else hget list (l);

}

10.4 Fonts
Another definition that has no corresponding content node is the font definition.
Fonts by themselves do not constitute content, instead they are used in glyph
nodes. Further, fonts are never directly embedded in a content node; in a content
node, a font is always specified by its font number. This limits the number of fonts
that can be used in a HINT file to at most 256.

A long format font definition starts with the keyword “font” and is followed by
the font number, as usual prefixed by an asterisk. Then comes the font specification
with the font name, the font size, the section number of the TEX font metric file,
and the section number of the file containing the glyphs for the font. The HINT
format supports .pk files, the traditional font format for TEX, and the more modern
PostScript Type 1 fonts, TrueType fonts, and OpenType fonts.

Starting with version 2.2, there is new support for TrueType and OpenType fonts
while .pk fonts are considered deprecated. The previously mandatory .tfm file is
no longer required for TrueType and OpenType fonts. Instead, the hint viewer is
required to extract the necessary font metrics directly from the font files.

10.4 Fonts 173

In a HINT file, text is represented as a sequence of numbers called character
codes. HINT files use the UTF-8 character encoding scheme (CES) to map these
numbers to their representation as byte sequences. For example the number “#E4”
is encoded as the byte sequence “#C3 #A4”. The same number #E4 now can
represent different characters depending on the coded character set (CCS). For
example in the common ISO-8859-1 (Latin 1) encoding the number #E4 is the
umlaut “ä” where as in the ISO-8859-7 (Latin/Greek) it is the Greek letter “δ”
and in the EBCDIC encoding, used on IBM mainframes, it is the upper case letter
“U”.

The character encoding is irrelevant for rendering a HINT file as long as the
character codes in the glyph nodes are consistent with the character codes used in
the font file, but the character encoding is necessary for all programs that need to
“understand” the content of the HINT file. For example programs that want to
translate a HINT document to a different language, or for text-to-speech conversion.

For FreeType and OpenType fonts, the HINT viewer is required to support only
two character encodings: FT_ENCODING_ADOBE_CUSTOM, used for the traditional
TEX encoding schema of fonts; and FT_ENCODING_UNICODE used for TrueType and
OpenType fonts that do not have a .tfm file along with them. To be precise:
a font that has no .tfm file along with it must be encoded in Unicode. That
is a glyph node will specify the unicode value of the desired character, which is
then translated to the glyph number using FT_ENCODING_UNICODE. For ligature
nodes, the node will speciy the glyph number directly without a need to translate
it further, but the replacement list of the ligature will contain the unicode values
of the replacement characters.

In the short format we use the info value b000 for a font with .tfm file and the
info value b001 for a font without .tfm file.

The Internet Engineering Task Force IETF has established a character set reg-
istry[14] that defines an enumeration of all registered coded character sets[3]. The
coded character set numbers are in the range 1–2999. This encoding number, as
given in [4], might be one possibility for specifying the font encoding as part of a
font definition. But none such addition is planed at the moment.

Currently, it is only required that a font specifies an interword glue and a default
discretionary break. After that comes a list of up to 12 font specific parameters.

The font size specifies the desired “at size” which might be different from the
“design size” of the font as stored in the .tfm file.

In the short format, the font specification is given in the same order as in the
long format.

Our internal representation of a font just stores the font name because in the
long format we add the font name as a comment to glyph nodes.

〈 common variables 252cclii 〉 +≡ (406)

char ∗∗hfont name ; /∗ dynamically allocated array of font names ∗/

〈 hint basic types 6vi 〉 +≡ (407)

#define MAX_FONT_PARAMS 11

〈 initialize definitions 253ccliii 〉 +≡ (408)

174 10 Definition Section

ALLOCATE(hfont name ,max ref [font kind] + 1, char ∗);

Reading the long format : −− − =⇒

〈 symbols 2ii 〉 +≡ (409)

%token FONT "font"

%type < info > font font head

〈 scanning rules 3iii 〉 +≡ (410)

font return FONT;

Note that we set the definition bit early because the definition of font f might
involve glyphs that reference font f (or other fonts).

〈 parsing rules 5v 〉 +≡ (411)

font: font head font param list;

font head: string dimension UNSIGNED UNSIGNED

{ uint8 t f = $ < u > 0;

SET_DBIT(f, font kind); hfont name [f] = strdup($1);
$$ = hput font head (f, hfont name [f], $2, $3, $4); };

font head: string dimension UNSIGNED

{ uint8 t f = $ < u > 0;

SET_DBIT(f, font kind); hfont name [f] = strdup($1);
$$ = hput font head (f, hfont name [f], $2,−1, $3); };

font param list: glue node disc node | font param list font param;

font param:
start PENALTY fref penalty END { hput tags ($1, hput int ($4)); }

| start KERN fref kern END { hput tags ($1, hput kern (&($4))); }
| start LIGATURE fref ligature END { hput tags ($1, hput ligature (&($4))); }
| start DISC fref disc END { hput tags ($1, hput disc(&($4))); }
| start GLUE fref glue END { hput tags ($1, hput glue (&($4))); }
| start LANGUAGE fref string END { hput string ($4);

hput tags ($1, TAG(language kind , 0)); }
| start RULE fref rule END { hput tags ($1, hput rule (&($4))); }
| start IMAGE fref image END { hput tags ($1, TAG(image kind , $4)); };

fref : ref
{ RNG("Font parameter", $1, 0, MAX_FONT_PARAMS); };

Reading the short format : · · · =⇒
Writing the long format : =⇒ − −−

〈 get functions 18xviii 〉 +≡ (412)

static void hget font params (void)
{ Disc h;

10.4 Fonts 175

hget glue node ();

hget disc node (&(h)); hwrite disc node (&h);

DBG(DBGDEF, "Start font parameters\n");

while (KIND(∗hpos) 6= font kind)

{ Ref df ;

〈 read the start byte a 16xvi 〉
df .k = KIND(a);

df .n = HGET8;

DBG(DBGDEF, "Reading font parameter %d: %s\n", df .n,
definition name [df .k]);

if (df .k 6= penalty kind ∧ df .k 6= kern kind ∧ df .k 6= ligature kind ∧
df .k 6= disc kind ∧ df .k 6= glue kind ∧ df .k 6= language kind ∧
df .k 6= rule kind ∧ df .k 6= image kind)

QUIT("Font parameter %d has invalid type %s", df .n,
content name [df .n]);

RNG("Font parameter", df .n, 0, MAX_FONT_PARAMS);

hwrite start (); hwritef ("%s *%d", content name [KIND(a)], df .n);

hget definition (df .n, a,node pos);

hwrite end ();

〈 read and check the end byte z 17xvii 〉
}
DBG(DBGDEF, "End font parameters\n");

}
void hget font def (Info i,uint8 t f)

{ char ∗n; Dimen s = 0; uint16 t m = 0, y;

HGET_STRING(n); hwrite string (n); hfont name [f] = strdup(n);

HGET32(s); hwrite dimension (s);

DBG(DBGDEF, "Font %s size 0x%x\n", n, s);

if (i ≡ b000) { HGET16(m); RNG("Font metrics",m, 3,max section no);

}
HGET16(y); RNG("Font glyphs", y, 3,max section no);

if (i ≡ b000) hwritef (" %d",m);

hwritef (" %d", y);

hget font params ();

DBG(DBGDEF, "End font definition\n");

}

176 10 Definition Section

Writing the short format : =⇒ · · ·

〈 put functions 14xiv 〉 +≡ (413)

Tag hput font head (uint8 t f, char ∗n,Dimen s,
int m,uint16 t y)

{ Info i;

DBG(DBGDEF, "Defining font %d (%s) size 0x%x\n", f , n, s);
hput string (n);
HPUT32(s); if (m ≥ 0) { i = b000 ;
HPUT16(m);

}
else i = b001 ;
HPUT16(y);
return TAG(font kind , i);

}

10.5 References
We have seen how to make definitions, now let’s see how to reference them. In the
long form, we can simply write the reference number, after the keyword like this:
“<glue *17>”. The asterisk is necessary to keep apart, for example, a penalty
with value 50, written “<penalty 50>”, from a penalty referencing the integer
definition number 50, written “<penalty *50>”.

〈 hint types 1i 〉 +≡ (414)

typedef struct { Kind k; int n; } Ref ;

Reading the long format : −− − =⇒
Writing the short format : =⇒ · · ·

〈 parsing rules 5v 〉 +≡ (415)

xdimen ref : ref { REF(xdimen kind , $1); };
param ref : ref { REF(param kind , $1); };
stream ref : ref { REF_RNG(stream kind , $1); };
content node: start PENALTY ref END

{ REF(penalty kind , $3); hput tags ($1, TAG(penalty kind , 0)); }
| start KERN explicit ref END

{ REF(dimen kind , $4); hput tags ($1, TAG(kern kind , ($3) ? b100 : b000));
}

| start KERN explicit XDIMEN ref END

{ REF(xdimen kind , $5);
hput tags ($1, TAG(kern kind , ($3) ? b101 : b001)); }

| start GLUE ref END

{ REF(glue kind , $3); hput tags ($1, TAG(glue kind , 0)); }
| start LIGATURE ref END

{ REF(ligature kind , $3); hput tags ($1, TAG(ligature kind , 0)); }
| start DISC ref END

10.5 References 177

{ REF(disc kind , $3); hput tags ($1, TAG(disc kind , 0)); }
| start RULE ref END

{ REF(rule kind , $3); hput tags ($1, TAG(rule kind , 0)); }
| start IMAGE ref END

{ REF(image kind , $3); hput tags ($1, TAG(image kind , 0)); }
| start LEADERS ref END

{ REF(leaders kind , $3); hput tags ($1, TAG(leaders kind , 0)); }
| start BASELINE ref END

{ REF(baseline kind , $3); hput tags ($1, TAG(baseline kind , 0)); }
| start LANGUAGE REFERENCE END

{ REF(language kind , $3); hput tags ($1, hput language ($3)); };
glue node: start GLUE ref END

{ REF(glue kind , $3);

if ($3 ≡ zero skip no) { hpos = hpos − 2; $$ = false ; }
else { hput tags ($1, TAG(glue kind , 0)); $$ = true ; }

};

Reading the short format : · · · =⇒

〈 cases to get content 20xx 〉 +≡ (416)

case TAG(penalty kind , 0): HGET_REF(penalty kind); break;

case TAG(kern kind , b000): HGET_REF(dimen kind); break;

case TAG(kern kind , b100): hwritef (" !"); HGET_REF(dimen kind); break;

case TAG(kern kind , b001):
hwritef (" xdimen"); HGET_REF(xdimen kind); break;

case TAG(kern kind , b101):
hwritef (" ! xdimen"); HGET_REF(xdimen kind); break;

case TAG(ligature kind , 0): HGET_REF(ligature kind); break;

case TAG(disc kind , 0): HGET_REF(disc kind); break;

case TAG(glue kind , 0): HGET_REF(glue kind); break;

case TAG(language kind , b000): HGET_REF(language kind); break;

case TAG(rule kind , 0): HGET_REF(rule kind); break;

case TAG(image kind , 0): HGET_REF(image kind); break;

case TAG(leaders kind , 0): HGET_REF(leaders kind); break;

case TAG(baseline kind , 0): HGET_REF(baseline kind); break;

〈 get macros 19xix 〉 +≡ (417)

#define HGET_REF(K)

{ uint8 t n = HGET8; REF(K,n); hwrite ref (n); }

178 10 Definition Section

Writing the long format : =⇒ − −−

〈write functions 21xxi 〉 +≡ (418)

void hwrite ref (int n)
{ hwritef (" *%d", n); }
void hwrite ref node (Kind k,uint8 t n)
{ hwrite start (); hwritef ("%s", content name [k]); hwrite ref (n); hwrite end ();
}

179

11 Defaults
Several of the predefined values found in the definition section are used as param-
eters for the routines borrowed from TEX to display the content of a HINT file.
These values must be defined, but it is inconvenient if the same standard defini-
tions need to be placed in each and every HINT file. Therefore we specify in this
chapter reasonable default values. As a consequence, even a HINT file without any
definitions should produce sensible results when displayed.

The definitions that have default values are integers, dimensions, extended di-
mensions, glues, baselines, labels, page templates, streams, and page ranges. Each
of these defaults has its own subsection below. Actually the defaults for extended
dimensions, baselines, and labels are not needed by TEX’s routines, but it is nice
to have default values for the extended dimensions that represent hsize, vsize, a
zero baseline skip, and a label for the table of content.

The array max default contains for each kind-value the maximum number of the
default values. The function hset max is used to initialize them.

The programs shrink and stretch actually do not use the defaults, but it
would be possible to suppress definitions if the defined value is the same as the
default value. We start by setting max default [k] ≡ −1, meaning no defaults,
and max fixed [k] ≡ #10000, meaning no definitions. The following subsections
will then overwrite these values for all kinds of definitions that have defaults. It
remains to reset max fixed to −1 for all those kinds that have no defaults but allow
definitions.

〈 take care of variables without defaults 419cdxix 〉 ≡ (419)

for (k = 0; k < 32; k++) max default [k] = −1,max fixed [k] = #10000;

max fixed [font kind] = max fixed [ligature kind] = max fixed [disc kind]
= max fixed [language kind] = max fixed [rule kind] = max fixed [image kind]
= max fixed [leaders kind] = max fixed [param kind] = max fixed [label kind]
= −1;

Used in 549dxlix.

11.1 Integers

Integers are very simple objects, and it might be tempting not to use predefined
integers at all. But the TEX typesetting engine, which is used by HINT, uses many
integer parameters to fine tune its operations. As we will see, all these integer
parameters have a predefined integer number that refers to an integer definition.

180 11 Defaults

Integers and penalties share the same kind-value. So a penalty node that ref-
erences one of the predefined penalties, simply contains the integer number as a
reference number.

The following integer numbers are predefined. The zero integer is fixed with
integer number zero. The default values are taken from plain.tex.

〈 default names 420cdxx 〉 ≡ (420)

typedef enum {
zero int no = 0, pretolerance no = 1, tolerance no = 2, line penalty no = 3,
hyphen penalty no = 4, ex hyphen penalty no = 5, club penalty no = 6,
widow penalty no = 7, display widow penalty no = 8, broken penalty no = 9,
pre display penalty no = 10, post display penalty no = 11,
inter line penalty no = 12, double hyphen demerits no = 13,
final hyphen demerits no = 14, adj demerits no = 15, looseness no = 16,
time no = 17, day no = 18,month no = 19, year no = 20,
hang after no = 21,floating penalty no = 22

} Int no;
#define MAX_INT_DEFAULT floating penalty no

Used in 548dxlviii.

〈 define int defaults 421cdxxi 〉 ≡ (421)

max default [int kind] = MAX_INT_DEFAULT;
max fixed [int kind] = zero int no ;
int defaults [zero int no] = 0;
int defaults [pretolerance no] = 100;
int defaults [tolerance no] = 200;
int defaults [line penalty no] = 10;
int defaults [hyphen penalty no] = 50;
int defaults [ex hyphen penalty no] = 50;
int defaults [club penalty no] = 150;
int defaults [widow penalty no] = 150;
int defaults [display widow penalty no] = 50;
int defaults [broken penalty no] = 100;
int defaults [pre display penalty no] = 10000;
int defaults [post display penalty no] = 0;
int defaults [inter line penalty no] = 0;
int defaults [double hyphen demerits no] = 10000;
int defaults [final hyphen demerits no] = 5000;
int defaults [adj demerits no] = 10000;
int defaults [looseness no] = 0;
int defaults [time no] = 720;
int defaults [day no] = 4;
int defaults [month no] = 7;
int defaults [year no] = 1776;
int defaults [hang after no] = 1;
int defaults [floating penalty no] = 20000;

11.2 Dimensions 181

printf ("int32_t int_defaults[MAX_INT_DEFAULT+1]={");

for (i = 0; i ≤ max default [int kind]; i++)

{ printf ("%d", int defaults [i]); if (i < max default [int kind]) printf (", "); }
printf ("};\n\n");

Used in 549dxlix.

11.2 Dimensions

Notice that there are default values for the two dimensions hsize and vsize.
These are the “design sizes” for the hint file. While it might not be possible to
display the HINT file using these values of hsize and vsize, these are the author’s
recommendation for the best “viewing experience”.

〈 default names 420cdxx 〉 +≡ (422)

typedef enum {
zero dimen no = 0, hsize dimen no = 1, vsize dimen no = 2,
line skip limit no = 3,max depth no = 4, split max depth no = 5,
hang indent no = 6, emergency stretch no = 7, quad no = 8,
math quad no = 9

} Dimen no;

#define MAX_DIMEN_DEFAULT math quad no

〈 define dimen defaults 423cdxxiii 〉 ≡ (423)

max default [dimen kind] = MAX_DIMEN_DEFAULT;

max fixed [dimen kind] = zero dimen no ;

dimen defaults [zero dimen no] = 0;

dimen defaults [hsize dimen no] = (Dimen)(6.5 ∗ 72.27 ∗ ONE);

dimen defaults [vsize dimen no] = (Dimen)(8.9 ∗ 72.27 ∗ ONE);

dimen defaults [line skip limit no] = 0;

dimen defaults [split max depth no] = (Dimen)(3.5 ∗ ONE);

dimen defaults [hang indent no] = 0;

dimen defaults [emergency stretch no] = 0;

dimen defaults [quad no] = 10 ∗ ONE;

dimen defaults [math quad no] = 10 ∗ ONE;

printf ("Dimen dimen_defaults[MAX_DIMEN_DEFAULT+1]={");

for (i = 0; i ≤ max default [dimen kind]; i++) {
printf ("0x%x", dimen defaults [i]);

if (i < max default [dimen kind]) printf (", ");

}
printf ("};\n\n");

Used in 549dxlix.

182 11 Defaults

11.3 Extended Dimensions

Extended dimensions can be used in a variety of nodes for example kern and box
nodes. We define three fixed extended dimensions: zero, hsize, and vsize. In
contrast to the hsize and vsize dimensions defined in the previous section, the
extended dimensions defined here are linear functions that always evaluate to the
current horizontal and vertical size in the viewer.

〈 default names 420cdxx 〉 +≡ (424)

typedef enum {
zero xdimen no = 0, hsize xdimen no = 1, vsize xdimen no = 2
} Xdimen no;

#define MAX_XDIMEN_DEFAULT vsize xdimen no

〈 define xdimen defaults 425cdxxv 〉 ≡ (425)

max default [xdimen kind] = MAX_XDIMEN_DEFAULT;
max fixed [xdimen kind] = vsize xdimen no ;

printf ("Xdimen xdimen_defaults[MAX_XDIMEN_DEFAULT+1]={"
"{0x0, 0.0, 0.0}, {0x0, 1.0, 0.0}, {0x0, 0.0, 1.0}"

"};\n\n");
Used in 549dxlix.

11.4 Glue

There are predefined glue numbers that correspond to the skip parameters of TEX.
The default values are taken from plain.tex.

〈 default names 420cdxx 〉 +≡ (426)

typedef enum {
zero skip no = 0,fil skip no = 1,fill skip no = 2, line skip no = 3,
baseline skip no = 4, above display skip no = 5, below display skip no = 6,
above display short skip no = 7, below display short skip no = 8,
left skip no = 9, right skip no = 10, top skip no = 11, split top skip no = 12,
tab skip no = 13, par fill skip no = 14

} Glue no;
#define MAX_GLUE_DEFAULT par fill skip no

〈 define glue defaults 427cdxxvii 〉 ≡ (427)

max default [glue kind] = MAX_GLUE_DEFAULT;
max fixed [glue kind] = fill skip no ;
glue defaults [fil skip no].p.f = 1.0;
glue defaults [fil skip no].p.o = fil o ;
glue defaults [fill skip no].p.f = 1.0;
glue defaults [fill skip no].p.o = fill o ;

glue defaults [line skip no].w.w = 1 ∗ ONE;
glue defaults [baseline skip no].w.w = 12 ∗ ONE;
glue defaults [above display skip no].w.w = 12 ∗ ONE;
glue defaults [above display skip no].p.f = 3.0;
glue defaults [above display skip no].p.o = normal o ;

11.5 Baseline Skips 183

glue defaults [above display skip no].m.f = 9.0;
glue defaults [above display skip no].m.o = normal o ;
glue defaults [below display skip no].w.w = 12 ∗ ONE;
glue defaults [below display skip no].p.f = 3.0;
glue defaults [below display skip no].p.o = normal o ;
glue defaults [below display skip no].m.f = 9.0;
glue defaults [below display skip no].m.o = normal o ;
glue defaults [above display short skip no].p.f = 3.0;
glue defaults [above display short skip no].p.o = normal o ;
glue defaults [below display short skip no].w.w = 7 ∗ ONE;
glue defaults [below display short skip no].p.f = 3.0;
glue defaults [below display short skip no].p.o = normal o ;
glue defaults [below display short skip no].m.f = 4.0;
glue defaults [below display short skip no].m.o = normal o ;
glue defaults [top skip no].w.w = 10 ∗ ONE;
glue defaults [split top skip no].w.w = (Dimen) 8.5 ∗ ONE;
glue defaults [par fill skip no].p.f = 1.0;
glue defaults [par fill skip no].p.o = fil o ;

#define PRINT_GLUE(G) printf ("{{0x%x, %f, %f},{%f, %d},{%f, %d}}",
G.w.w,G.w.h,G.w.v,G.p.f ,G.p.o,G.m.f,G.m.o)

printf ("Glue glue_defaults[MAX_GLUE_DEFAULT+1]={\n");
for (i = 0; i ≤ max default [glue kind]; i++)
{ PRINT_GLUE(glue defaults [i]); if (i < max default [int kind]) printf (",\n");
}
printf ("};\n\n");

Used in 549dxlix.

We fix the glue definition with number zero to be the “zero glue”: a glue with
width zero and zero stretchability and shrinkability. Here is the reason: In the
short format, the info bits of a glue node indicate which components of a glue are
nonzero. Therefore the zero glue should have an info value of zero—which on the
other hand is reserved for a reference to a glue definition. Hence, the best way to
represent a zero glue is as a predefined glue.

11.5 Baseline Skips

The zero baseline which inserts no baseline skip is predefined.

〈 default names 420cdxx 〉 +≡ (428)

typedef enum { zero baseline no = 0 } Baseline no;
#define MAX_BASELINE_DEFAULT zero baseline no

〈 define baseline defaults 429cdxxix 〉 ≡ (429)

max default [baseline kind] = MAX_BASELINE_DEFAULT;
max fixed [baseline kind] = zero baseline no ;

{ Baseline z = {{{0}}};

184 11 Defaults

printf ("Baseline baseline_defaults[MAX_BASELINE_DEFAULT+1]={{");
PRINT_GLUE(z.bs); printf (", "); PRINT_GLUE(z.ls);
printf (", 0x%x}};\n\n", z.lsl);

}
Used in 549dxlix.

11.6 Labels

The zero label is predefined. It should point to the “home” position of the document
which should be the position where a user can start reading or navigating the
document. For a short document this is usually the start of the document, and
hence, the default is the first position of the content section. For a larger document,
the home position could point to the table of content where a reader will find links
to other parts of the document.

〈 default names 420cdxx 〉 +≡ (430)

typedef enum { zero label no = 0 } Label no;
#define MAX_LABEL_DEFAULT zero label no

〈 define label defaults 431cdxxxi 〉 ≡ (431)

max default [label kind] = MAX_LABEL_DEFAULT;
printf ("Label label_defaults[MAX_LABEL_DEFAULT+1]="

"{{0,0,LABEL_TOP,true,0,0}};\n\n");
Used in 549dxlix.

11.7 Streams

The zero stream is predefined for the main content.

〈 default names 420cdxx 〉 +≡ (432)

typedef enum { zero stream no = 0 } Stream no;
#define MAX_STREAM_DEFAULT zero stream no

〈 define stream defaults 433cdxxxiii 〉 ≡ (433)

max default [stream kind] = MAX_STREAM_DEFAULT;
max fixed [stream kind] = zero stream no ;

Used in 549dxlix.

11.8 Page Templates

The zero page template is a predefined, built-in page template.

〈 default names 420cdxx 〉 +≡ (434)

typedef enum { zero page no = 0 } Page no;
#define MAX_PAGE_DEFAULT zero page no

〈 define page defaults 435cdxxxv 〉 ≡ (435)

max default [page kind] = MAX_PAGE_DEFAULT;
max fixed [page kind] = zero page no ;

Used in 549dxlix.

11.11 Colors 185

11.9 Page Ranges

The page range for the zero page template is the entire content section.

〈 default names 420cdxx 〉 +≡ (436)

typedef enum { zero range no = 0 } Range no;
#define MAX_RANGE_DEFAULT zero range no

〈 define range defaults 437cdxxxvii 〉 ≡ (437)

max default [range kind] = MAX_RANGE_DEFAULT;
max fixed [range kind] = zero range no ;

Used in 549dxlix.

11.10 List, Texts, and Parameters

〈 default names 420cdxx 〉 +≡ (438)

typedef enum { empty list no = 0 } List no;
#define MAX_LIST_DEFAULT empty list no

〈 define range defaults 437cdxxxvii 〉 +≡ (439)

max default [list kind] = MAX_LIST_DEFAULT;
max fixed [list kind] = empty list no ;
max default [param kind] = MAX_LIST_DEFAULT;
max fixed [param kind] = empty list no ;

11.11 Colors

〈 default names 420cdxx 〉 +≡ (440)

typedef enum { zero color no = 0, link color no = 1 } Color no;
#define MAX_COLOR_DEFAULT link color no

The default colors for day mode are black on white, red on white, and green
on white; the links in day mode are blue. In night mode the background becomes
black, the normal text white and the other colors become slightly lighter.

We store the default color set using an byte array in RGBA format for colors; we
combine a pair of colors for foreground and background in an array; we combine
three pairs for normal, mark, and focus text in an array; and we define a color set
as two such pairs, one for day and one for night mode to define the default colors.

〈 define color defaults 441cdxli 〉 ≡ (441)

max default [color kind] = MAX_COLOR_DEFAULT;
max fixed [color kind] = −1;
printf ("ColorSet color_defaults[MAX_COLOR_DEFAULT+1]=\n"

"{{0x000000FF, 0xFFFFFF00,\n" /∗ black on white ∗/
" 0xEE0000FF, 0xFFFFFF00,\n" /∗ dark red ∗/
" 0x00EE00FF, 0xFFFFFF00,\n" /∗ dark green ∗/
" 0xFFFFFFFF, 0x00000000," /∗ white on black ∗/
" 0xFF1111FF, 0x00000000,\n" /∗ light red ∗/
" 0x11FF11FF, 0x00000000},\n" /∗ light green ∗/
" {0x0000EEFF, 0xFFFFFF00,\n" /∗ dark blue on white ∗/

186 11 Defaults

" 0xEE0000FF, 0xFFFFFF00,\n" /∗ dark red on white ∗/
" 0x00EE00FF, 0xFFFFFF00,\n" /∗ dark green on white ∗/
" 0x1111FFFF, 0x00000000,\n" /∗ light blue on black ∗/
" 0xFF1111FF, 0x00000000,\n" /∗ light red on black ∗/
" 0x11FF11FF, 0x00000000\n" /∗ light green on black ∗/
"}};\n\n");

Used in 549dxlix.

187

12 Content Section

The content section is just a list of nodes. Within the shrink program, reading a
node in long format will trigger writing the node in short format. Similarly within
the stretch program, reading a node in short form will cause writing it in long
format. As a consequence, the main task of writing the content section in long
format is accomplished by calling get content and writing it in the short format is
accomplished by parsing the content list.

Reading the Long Format : −− − =⇒

〈 symbols 2ii 〉 +≡ (442)

%token CONTENT "content"

〈 scanning rules 3iii 〉 +≡ (443)

content return CONTENT;

〈 parsing rules 5v 〉 +≡ (444)

content section: START CONTENT { hput content start (); }
content list END

{ hput content end (); hput range defs (); hput label defs (); };

Writing the Long Format : =⇒ − −−

〈write functions 21xxi 〉 +≡ (445)

void hwrite content section (void)
{ section no = 2;

hwritef ("<content");
hsort ranges ();
hsort labels ();
hget content section ();
hwritef ("\n>\n");

}

188 12 Content Section

Reading the Short Format : · · · =⇒

〈 get functions 18xviii 〉 +≡ (446)

void hget content section ()
{ DBG(DBGBASIC | DBGDIR, "Content\n");

hget section (2);
hwrite range ();
hwrite label ();
while (hpos < hend) hget content node ();

}

Writing the Short Format : =⇒ · · ·

〈 put functions 14xiv 〉 +≡ (447)

void hput content start (void)
{ DBG(DBGDIR, "Content Section\n");

section no = 2;
hpos0 = hpos = hstart = dir [2].buffer ;
hend = hstart + dir [2].bsize ;

}
void hput content end (void)
{ dir [2].size = hpos − hstart ; /∗ Updating the directory entry ∗/
DBG(DBGDIR, "End Content Section, size=0x%x\n", dir [2].size);

}

189

13 Processing the Command Line

The following code explains the command line parameters and options. It tells us
what to expect in the rest of this section.

〈 explain usage 448cdxlviii 〉 ≡ (448)

fprintf (stdout , "Usage: %s [OPTION]... FILENAME%s\n", prog name , in ext);
fprintf (stdout , DESCRIPTION);
fprintf (stdout , "\nOptions:\n"
"\t −−help \t display this message\n"

"\t −−version\t display the HINT version\n"

"\t −l \t redirect stderr to a log file\n"

#if defined (STRETCH) ∨ defined (SHRINK)
"\t −o FILE\t specify an output file name\n"

#endif
#if defined (STRETCH)
"\t −a \t write auxiliary files\n"

"\t −g \t do not use localized names (implies −a)\n"

"\t −f \t force overwriting existing auxiliary files\n"

"\t −u \t enable writing utf8 character codes\n"

"\t −x \t enable writing hexadecimal character codes\n"

#elif defined (SHRINK)
"\t −a \t use only localized names\n"

"\t −g \t do not use localized names\n"

"\t −c \t enable compression\n"

#endif
);

#ifdef DEBUG

fprintf (stdout , "\t −d XXXX \t set debug flag to hexadec\

imal value XXXX.\n""\t\t\t OR together these values:\n");
fprintf (stdout , "\t\t\t XX=%03X basic debugging\n", DBGBASIC);
fprintf (stdout , "\t\t\t XX=%03X tag debugging\n", DBGTAGS);
fprintf (stdout , "\t\t\t XX=%03X node debugging\n", DBGNODE);
fprintf (stdout , "\t\t\t XX=%03X definition debugging\n", DBGDEF);
fprintf (stdout , "\t\t\t XX=%03X directory debugging\n", DBGDIR);
fprintf (stdout , "\t\t\t XX=%03X range debugging\n", DBGRANGE);
fprintf (stdout , "\t\t\t XX=%03X float debugging\n", DBGFLOAT);
fprintf (stdout , "\t\t\t XX=%03X compression debugging\n",

DBGCOMPRESS);

190 13 Processing the Command Line

fprintf (stdout , "\t\t\t XX=%03X buffer debugging\n", DBGBUFFER);
fprintf (stdout , "\t\t\t XX=%03X flex debugging\n", DBGFLEX);
fprintf (stdout , "\t\t\t XX=%03X bison debugging\n", DBGBISON);
fprintf (stdout , "\t\t\t XX=%03X TeX debugging\n", DBGTEX);
fprintf (stdout , "\t\t\t XX=%03X Page debugging\n", DBGPAGE);
fprintf (stdout , "\t\t\t XX=%03X Font debugging\n", DBGFONT);
fprintf (stdout , "\t\t\t XX=%03X Render debugging\n", DBGRENDER);
fprintf (stdout , "\t\t\t XX=%03X Label debugging\n", DBGLABEL);

#endif
Used in 452cdlii.

We define constants for different debug flags.

〈 debug constants 449cdxlix 〉 ≡ (449)

#define DBGNONE #0

#define DBGBASIC #1

#define DBGTAGS #2

#define DBGNODE #4

#define DBGDEF #8

#define DBGDIR #10

#define DBGRANGE #20

#define DBGFLOAT #40

#define DBGCOMPRESS #80

#define DBGBUFFER #100

#define DBGFLEX #200

#define DBGBISON #400

#define DBGTEX #800

#define DBGPAGE #1000

#define DBGFONT #2000

#define DBGRENDER #4000

#define DBGLABEL #8000

Used in 548dxlviii.

Next we define common variables that are needed in all three programs defined
here.

〈 common variables 252cclii 〉 +≡ (450)

unsigned int debugflags = DBGNONE;
int option utf8 = false ;
int option hex = false ;
int option force = false ;
int option global = false ;
int option aux = false ;
int option compress = false ;
char ∗stem name = NULL;
int stem length = 0;

The variable stem name contains the name of the input file not including the
extension. The space allocated for it is large enough to append an extension with

13 Processing the Command Line 191

up to five characters. It can be used with the extension .log for the log file, with
.hint or .hnt for the output file, and with .abs or .rel when writing or reading
the auxiliary sections. The stretch program will overwrite the stem name using
the name of the output file if it is set with the -o option.

Next are the variables that are local in the main program.

〈 local variables in main 451cdli 〉 ≡ (451)

char ∗prog name ;
char ∗in ext ;
char ∗out ext ;
int option log = false ;

#ifndef SKIP

char ∗file name = NULL;
int file name length = 0;

#endif
Used in 557dlvii, 558dlviii, and 560dlx.

Processing the command line looks for options and then sets the input file name.
For compatibility with GNU standards, the long options --help and --version

are supported in addition to the short options.

〈 process the command line 452cdlii 〉 ≡ (452)

debugflags = DBGBASIC;
prog name = argv [0];
if (argc < 2)
{ fprintf (stderr , "%s: no input file given\n""Try ’%s −−help’ for\

 more information\n", prog name , prog name);
exit (1);

}
argv ++; /∗ skip the program name ∗/
while (∗argv 6= NULL) {

if ((∗argv)[0] ≡ ’−’) { char option = (∗argv)[1];

switch (option) {
case ’−’:

if (strcmp(∗argv , "−−version") ≡ 0) { fprintf (stderr ,
"%s version "HINT_VERSION_STRING"\n", prog name);

exit (0);
}
else if (strcmp(∗argv , "−−help") ≡ 0) { 〈 explain usage 448cdxlviii 〉

fprintf (stdout , "\nFor further information and reporting\
 bugs see https://hint.userweb.mwn.de/\n");

exit (0);
}

case ’l’: option log = true ; break;
#if defined (STRETCH) ∨ defined (SHRINK)

case ’o’: argv ++;
file name length = (int) strlen (∗argv);

192 13 Processing the Command Line

ALLOCATE(file name ,file name length + 6, char); /∗plus extension ∗/
strcpy (file name , ∗argv); break;

case ’g’: option global = option aux = true ; break;

case ’a’: option aux = true ; break;

#endif

#if defined (STRETCH)

case ’u’: option utf8 = true ; break;

case ’x’: option hex = true ; break;

case ’f’: option force = true ; break;

#elif defined (SHRINK)

case ’c’: option compress = true ; break;

#endif

case ’d’:

argv ++;

if (∗argv ≡ NULL) { fprintf (stderr , "%s: option −d expec\
ts an argument\n""Try ’%s −−help’ for\

 more information\n", prog name , prog name);

exit (1);

}
debugflags = strtol (∗argv , NULL, 16);

break;

default:

{ fprintf (stderr ,
"%s: unrecognized option ’%s’\n""Try ’%s −−help’ for\

 more information\n", prog name , ∗argv , prog name);

exit (1);

}
}

}
else /∗ the input file name ∗/
{ int path length = (int) strlen (∗argv);

int ext length = (int) strlen (in ext);

ALLOCATE(hin name , path length + ext length + 1, char);

strcpy (hin name , ∗argv);

if (path length < ext length ∨ strncmp(hin name +path length −ext length ,
in ext , ext length) 6= 0) { strcat (hin name , in ext);

path length += ext length ;

}
stem length = path length − ext length ;

ALLOCATE(stem name , stem length + 6, char);

strncpy (stem name , hin name , stem length);

stem name [stem length] = 0;

if (∗(argv + 1) 6= NULL)
{ fprintf (stderr , "%s: extra argument after input file nam\

13 Processing the Command Line 193

e: ’%s’\n""Try ’%s −−help’ for more information\n",
prog name , ∗(argv + 1), prog name);

exit (1);
}

}
argv ++;

}
if (hin name ≡ NULL) { fprintf (stderr , "%s: missing input f\

ile name\n""Try ’%s −−help’ for more information\n",
prog name , prog name);

exit (1);
}

Used in 557dlvii, 558dlviii, and 560dlx.

After the command line has been processed, three file streams need to be opened:
The input file hin and the output file hout . Further we need a log file hlog if
debugging is enabled. For technical reasons, the scanner generated by flex needs
an input file yyin which is set to hin and an output file yyout (which is not used).

〈 common variables 252cclii 〉 +≡ (453)

FILE ∗hin = NULL, ∗hout = NULL, ∗hlog = NULL;

The log file is opened first because this is the place where error messages should
go while the other files are opened. It inherits its name from the input file name.

〈 open the log file 454cdliv 〉 ≡ (454)

if (option log) { strcat (stem name , ".log");
hlog = freopen (stem name , "w", stderr);
if (hlog ≡ NULL) {

fprintf (stderr , "Unable to open logfile %s", stem name);
hlog = stderr ;

}
stem name [stem length] = 0;

}
else hlog = stderr ;

Used in 557dlvii, 558dlviii, and 560dlx.

Once we have established logging, we can try to open the other files.

〈 open the input file 455cdlv 〉 ≡ (455)

hin = fopen (hin name , "rb");
if (hin ≡ NULL) QUIT("Unable to open input file %s", hin name);

Used in 557dlvii.

〈 open the output file 456cdlvi 〉 ≡ (456)

if (file name 6= NULL) { int ext length = (int) strlen (out ext);

if (file name length ≤ ext length ∨ strncmp(file name + file name length −
ext length , out ext , ext length) 6= 0) { strcat (file name , out ext);

file name length += ext length ;
}

194 13 Processing the Command Line

}
else { file name length = stem length + (int) strlen (out ext);
ALLOCATE(file name ,file name length + 1, char);
strcpy (file name , stem name); strcpy (file name + stem length , out ext);

}
{ char ∗aux name = file name ;

〈make sure the path in aux name exists 365ccclxv 〉
aux name = NULL;

}
hout = fopen (file name , "wb");
if (hout ≡ NULL) QUIT("Unable to open output file %s",file name);

Used in 557dlvii and 558dlviii.

The stretch program will replace the stem name using the stem of the output
file.

〈 determine the stem name from the output file name 457cdlvii 〉 ≡ (457)

stem length = file name length − (int) strlen (out ext);
ALLOCATE(stem name , stem length + 6, char);
strncpy (stem name ,file name , stem length);
stem name [stem length] = 0;

Used in 558dlviii.

At the very end, we will close the files again.

〈 close the input file 458cdlviii 〉 ≡ (458)

if (hin name 6= NULL) free (hin name);
if (hin 6= NULL) fclose (hin);

Used in 557dlvii.

〈 close the output file 459cdlix 〉 ≡ (459)

if (file name 6= NULL) free (file name);
if (hout 6= NULL) fclose (hout);

Used in 557dlvii and 558dlviii.

〈 close the log file 460cdlx 〉 ≡ (460)

if (hlog 6= NULL) fclose (hlog);
if (stem name 6= NULL) free (stem name);

Used in 557dlvii, 558dlviii, and 560dlx.

195

14 Error Handling and Debugging
There is no good program without good error handling. To print messages or
indicate errors, I define the following macros:

〈 error.h 461cdlxi 〉 ≡ (461)

#ifndef _ERROR_H

#define _ERROR_H

#include <stdlib.h>

#include <stdio.h>

extern FILE ∗hlog ;
extern uint8 t ∗hpos , ∗hstart ;

#ifndef LOG_PREFIX

#define LOG_PREFIX "HINT "

#endif
#define LOG(. . .) (fprintf (hlog , LOG_PREFIX__VA_ARGS__),fflush (hlog))
#define MESSAGE(. . .) (fprintf (hlog , LOG_PREFIX__VA_ARGS__),fflush (hlog))
#define QUIT(. . .)

(MESSAGE("ERROR: "__VA_ARGS__), fprintf (hlog , "\n"), exit (1))
#endif

The amount of debugging depends on the debugging flags. For portability, we
first define the output specifier for expressions of type size t.

〈 debug macros 383ccclxxxiii 〉 +≡ (462)

#ifdef WIN32

#define SIZE_F "0x%tx"

#else
#define SIZE_F "0x%tx"

#endif
#ifdef DEBUG

#define DBG(FLAGS, . . .) ((debugflags & (FLAGS)) ? LOG(__VA_ARGS__) : 0)
#else
#define DBG(FLAGS, . . .)(void) 0
#endif
#define DBGTAG(A,P) DBG(DBGTAGS, "tag [%s,%d] at "SIZE_F"\n",

NAME(A), INFO(A), (P)− hstart)
#define RNG(S,N,A,Z)

if ((int)(N) < (int)(A) ∨ (int)(N) > (int)(Z))
QUIT(S " %d out of range [%d − %d]", N,A,Z)

196 14 Error Handling and Debugging

#define TAGERR(A) QUIT("Unknown tag [%s,%d] at "SIZE_F"\n", NAME(A),
INFO(A), hpos − hstart)

The bison generated parser will need a function yyerror for error reporting. We
can define it now:

〈 parsing functions 388ccclxxxviii 〉 +≡ (463)

extern int yylineno ;

int yyerror (const char ∗msg)
{ QUIT(" in line %d %s", yylineno ,msg);

return 0;
}

To enable the generation of debugging code bison needs also the following:

〈 enable bison debugging 464cdlxiv 〉 ≡ (464)

#ifdef DEBUG

#define YYDEBUG 1
extern int yydebug ;

#else
#define YYDEBUG 0
#endif

Used in 555dlv, 556dlvi, and 557dlvii.

197

Appendix

A Traversing Short Format Files
For applications like searching or repositioning a file after reloading a possibly
changed version of a file, it is useful to have a fast way of getting from one content
node to the next. For quite some nodes, it is possible to know the size of the node
from the tag. So the fastest way to get to the next node is looking up the node
size in a table.

Other important nodes, for example hbox, vbox, or par nodes, end with a list
node and it is possible to know the size of the node up to the final list. With that
knowledge it is possible to skip the initial part of the node, then skip the list, and
finally skip the tag byte. The size of the initial part can be stored in the same
node size table using negated values. What works for lists, of course, will work
for other kinds of nodes as well. So we use the lowest two bits of the values in
the size table to store the number of embedded nodes that follow after the initial
part. To combine the number of leading bytes and the number of trailing nodes
into a single number that encodes both values according to this formula we use the
macro NODE_SIZE. We can get back both values using the macros NODE_HEAD and
NODE_TAIL.

〈 hint macros 13xiii 〉 +≡ (465)

#define NODE_SIZE (H , T) ((T) ≡ 0 ? (H) + 2 : −4 ∗ ((H) + 1) + ((T)− 1))
#define NODE_HEAD(N) ((N) > 0 ? (N)− 2 : −((N)� 2)− 1)
#define NODE_TAIL(N) ((N) < 0 ? ((N) & #3) + 1 : 0)

For list nodes neither of these methods works and these nodes can be marked
with a zero entry in the node size table.

This leads to the following code for a “fast forward” function for hpos :

〈 shared skip functions 466cdlxvi 〉 ≡ (466)

uint32 t hff list pos = 0, hff list size = 0;
Tag hff tag ;

198 A Traversing Short Format Files

void hff hpos (void)
{ signed char i, b, n;

hff tag = ∗hpos ; DBGTAG(hff tag , hpos);
i = hnode size [hff tag];
if (i > 0) { hpos = hpos + NODE_HEAD(i) + 2; return; }
else if (i < 0) { n = NODE_TAIL(i); b = NODE_HEAD(i);

hpos = hpos + 1 + b; /∗ skip initial part ∗/
while (n > 0) { hff hpos (); n−−; } /∗ skip trailing nodes ∗/
hpos ++; /∗ skip end byte ∗/
return;

}
else if (hff tag ≤ TAG(param kind , 7)) 〈 advance hpos over a list 469cdlxix 〉
TAGERR(hff tag);

}
Used in 552dlii and 560dlx.

We will put the hnode size variable into the tables.c file using the following
function. We add some comments and split negative values into their components,
to make the result more readable.

〈 print the hnode size variable 467cdlxvii 〉 ≡ (467)

printf ("signed char hnode_size[0x100]= {\n");
for (i = 0; i ≤ #ff; i++)
{ signed char s = hnode size [i];

if (s ≥ 0) printf ("%d", s);
else printf ("−4*%d+%d",−(s� 2), s& 3);
if (i < #ff) printf (",");
else printf ("};");
if ((i& #7) ≡ #7) printf (" /* %s */\n", content name [KIND(i)]);

}
printf ("\n\n");

Used in 549dxlix.

When dealing with unknown content nodes, it is convenient to know which nodes
are known and which are not. For this purpose the content known array contains
one byte for each kind value and each such bytes will indicate using the seven least
significant bits for which info values the corresponding nodes are known.

〈 print the content known variable 468cdlxviii 〉 ≡ (468)

for (k = 0; k < 32; k++)
for (i = 0; i < 8; i++)

if (hnode size [TAG(k, i)] 6= 0) content known [k] |= (1� i);
printf ("uint8_t content_known[32]= {\n");
for (k = 0; k < 32; k++)
{ printf ("0x%02X", content known [k]);

if (k < 31) printf (",");
else printf ("};");
printf (" /* %s */\n", content name [k]);

A.2 Glyphs 199

}
printf ("\n");

Used in 549dxlix.

A.1 Lists

List don’t follow the usual schema of nodes. They have a variable size that is stored
in the node. We keep position and size in global variables so that the list that ends
a node can be conveniently located.

〈 advance hpos over a list 469cdlxix 〉 ≡ (469)

switch (INFO(hff tag) & #3) {
case 0: hff list pos = hpos − hstart + 1;

hff list size = 0;

hpos = hpos + 3; return;

case 1: hpos ++; hff list size = HGET8; hff list pos = hpos − hstart + 1;

hpos = hpos + 1 + hff list size + 1 + 1 + 1; return;

case 2: hpos ++; HGET16(hff list size); hff list pos = hpos − hstart + 1;

hpos = hpos + 1 + hff list size + 1 + 2 + 1; return;

case 3: hpos ++; HGET32(hff list size); hff list pos = hpos − hstart + 1;

hpos = hpos + 1 + hff list size + 1 + 4 + 1; return;

default: QUIT("List with unknown info [%s,%d] at "SIZE_F"\n",
NAME(hff tag), INFO(hff tag), hpos − hstart);

}
Used in 466cdlxvi.

Actually list nodes never occur as content nodes in their own right but only as
subnodes of content nodes.

Now let’s consider the different kinds of nodes.

A.2 Glyphs

We start with the glyph nodes. All glyph nodes have a start and an end tag, one
byte for the font, and depending on the info from 1 to 4 bytes for the character
code.

〈 initialize the hnode size array 470cdlxx 〉 ≡ (470)

hnode size [TAG(glyph kind , 1)] = NODE_SIZE(1 + 1, 0);

hnode size [TAG(glyph kind , 2)] = NODE_SIZE(1 + 2, 0);

hnode size [TAG(glyph kind , 3)] = NODE_SIZE(1 + 3, 0);

hnode size [TAG(glyph kind , 4)] = NODE_SIZE(1 + 4, 0);

Used in 549dxlix.

200 A Traversing Short Format Files

A.3 Penalties

Penalty nodes either contain a one byte reference, a one byte number, or a two
byte number.

〈 initialize the hnode size array 470cdlxx 〉 +≡ (471)

hnode size [TAG(penalty kind , 0)] = NODE_SIZE(1, 0);
hnode size [TAG(penalty kind , 1)] = NODE_SIZE(1, 0);
hnode size [TAG(penalty kind , 2)] = NODE_SIZE(2, 0);
hnode size [TAG(penalty kind , 3)] = NODE_SIZE(4, 0);

A.4 Kerns

Kern nodes can contain a reference (either to a dimension or an extended dimen-
sion) followed by either a dimension or an extended dimension node.

〈 initialize the hnode size array 470cdlxx 〉 +≡ (472)

hnode size [TAG(kern kind , b000)] = NODE_SIZE(1, 0);
hnode size [TAG(kern kind , b001)] = NODE_SIZE(1, 0);
hnode size [TAG(kern kind , b010)] = NODE_SIZE(4, 0);
hnode size [TAG(kern kind , b011)] = NODE_SIZE(0, 1);
hnode size [TAG(kern kind , b100)] = NODE_SIZE(1, 0);
hnode size [TAG(kern kind , b101)] = NODE_SIZE(1, 0);
hnode size [TAG(kern kind , b110)] = NODE_SIZE(4, 0);
hnode size [TAG(kern kind , b111)] = NODE_SIZE(0, 1);

A.5 Extended Dimensions

Extended dimensions contain either one two or three 4 byte values depending on
the info bits.

〈 initialize the hnode size array 470cdlxx 〉 +≡ (473)

hnode size [TAG(xdimen kind , b100)] = NODE_SIZE(4, 0);
hnode size [TAG(xdimen kind , b010)] = NODE_SIZE(4, 0);
hnode size [TAG(xdimen kind , b001)] = NODE_SIZE(4, 0);
hnode size [TAG(xdimen kind , b110)] = NODE_SIZE(4 + 4, 0);
hnode size [TAG(xdimen kind , b101)] = NODE_SIZE(4 + 4, 0);
hnode size [TAG(xdimen kind , b011)] = NODE_SIZE(4 + 4, 0);
hnode size [TAG(xdimen kind , b111)] = NODE_SIZE(4 + 4 + 4, 0);

A.6 Language

Language nodes either code the language in the info value or they contain a
reference byte.

〈 initialize the hnode size array 470cdlxx 〉 +≡ (474)

hnode size [TAG(language kind , b000)] = NODE_SIZE(1, 0);
hnode size [TAG(language kind , 1)] = NODE_SIZE(0, 0);
hnode size [TAG(language kind , 2)] = NODE_SIZE(0, 0);
hnode size [TAG(language kind , 3)] = NODE_SIZE(0, 0);
hnode size [TAG(language kind , 4)] = NODE_SIZE(0, 0);

A.9 Boxes 201

hnode size [TAG(language kind , 5)] = NODE_SIZE(0, 0);
hnode size [TAG(language kind , 6)] = NODE_SIZE(0, 0);
hnode size [TAG(language kind , 7)] = NODE_SIZE(0, 0);

A.7 Rules

Rules usually contain a reference, otherwise they contain either one, two, or three
4 byte values depending on the info bits.

〈 initialize the hnode size array 470cdlxx 〉 +≡ (475)

hnode size [TAG(rule kind , b000)] = NODE_SIZE(1, 0);
hnode size [TAG(rule kind , b100)] = NODE_SIZE(4, 0);
hnode size [TAG(rule kind , b010)] = NODE_SIZE(4, 0);
hnode size [TAG(rule kind , b001)] = NODE_SIZE(4, 0);
hnode size [TAG(rule kind , b110)] = NODE_SIZE(4 + 4, 0);
hnode size [TAG(rule kind , b101)] = NODE_SIZE(4 + 4, 0);
hnode size [TAG(rule kind , b011)] = NODE_SIZE(4 + 4, 0);
hnode size [TAG(rule kind , b111)] = NODE_SIZE(4 + 4 + 4, 0);

A.8 Glue

Glues usually contain a reference or they contain either one two or three 4 byte
values depending on the info bits, and possibly even an extended dimension node
followed by two 4 byte values.

〈 initialize the hnode size array 470cdlxx 〉 +≡ (476)

hnode size [TAG(glue kind , b000)] = NODE_SIZE(1, 0);
hnode size [TAG(glue kind , b100)] = NODE_SIZE(4, 0);
hnode size [TAG(glue kind , b010)] = NODE_SIZE(4, 0);
hnode size [TAG(glue kind , b001)] = NODE_SIZE(4, 0);
hnode size [TAG(glue kind , b110)] = NODE_SIZE(4 + 4, 0);
hnode size [TAG(glue kind , b101)] = NODE_SIZE(4 + 4, 0);
hnode size [TAG(glue kind , b011)] = NODE_SIZE(4 + 4, 0);
hnode size [TAG(glue kind , b111)] = NODE_SIZE(4 + 4, 1);

A.9 Boxes

The layout of boxes is quite complex and explained in section 5.1. All boxes contain
height and width, some contain a depth, some a shift amount, and some a glue
setting together with glue sign and glue order. The last item in a box is a node
list.

〈 initialize the hnode size array 470cdlxx 〉 +≡ (477)

hnode size [TAG(hbox kind , b000)] = NODE_SIZE(4 + 4, 1); /∗ tag, height,
width ∗/

hnode size [TAG(hbox kind , b001)] = NODE_SIZE(4 + 4 + 4, 1); /∗ and depth ∗/
hnode size [TAG(hbox kind , b010)] = NODE_SIZE(4 + 4 + 4, 1); /∗ or shift ∗/
hnode size [TAG(hbox kind , b011)] = NODE_SIZE(4 + 4 + 4 + 4, 1); /∗ or both ∗/
hnode size [TAG(hbox kind , b100)] = NODE_SIZE(4 + 4 + 5, 1); /∗ and glue

setting ∗/

202 A Traversing Short Format Files

hnode size [TAG(hbox kind , b101)] = NODE_SIZE(4 + 4 + 4 + 5, 1); /∗ and depth
∗/

hnode size [TAG(hbox kind , b110)] = NODE_SIZE(4 + 4 + 4 + 5, 1); /∗ or shift ∗/
hnode size [TAG(hbox kind , b111)] = NODE_SIZE(4 + 4 + 4 + 4 + 5, 1); /∗ or both

∗/
hnode size [TAG(vbox kind , b000)] = NODE_SIZE(4 + 4, 1); /∗ same for vbox ∗/
hnode size [TAG(vbox kind , b001)] = NODE_SIZE(4 + 4 + 4, 1);
hnode size [TAG(vbox kind , b010)] = NODE_SIZE(4 + 4 + 4, 1);
hnode size [TAG(vbox kind , b011)] = NODE_SIZE(4 + 4 + 4 + 4, 1);
hnode size [TAG(vbox kind , b100)] = NODE_SIZE(4 + 4 + 5, 1);
hnode size [TAG(vbox kind , b101)] = NODE_SIZE(4 + 4 + 4 + 5, 1);
hnode size [TAG(vbox kind , b110)] = NODE_SIZE(4 + 4 + 4 + 5, 1);
hnode size [TAG(vbox kind , b111)] = NODE_SIZE(4 + 4 + 4 + 4 + 5, 1);

A.10 Extended Boxes

Extended boxes start with height, width, depth, stretch, or shrink components.
Then follows an extended dimension either as a reference or a node. The node
ends with a list.

〈 initialize the hnode size array 470cdlxx 〉 +≡ (478)

hnode size [TAG(hset kind , b000)] = NODE_SIZE(4 + 4 + 4 + 4 + 1, 1);
hnode size [TAG(hset kind , b001)] = NODE_SIZE(4 + 4 + 4 + 4 + 4 + 1, 1);
hnode size [TAG(hset kind , b010)] = NODE_SIZE(4 + 4 + 4 + 4 + 4 + 1, 1);
hnode size [TAG(hset kind , b011)] = NODE_SIZE(4 + 4 + 4 + 4 + 4 + 4 + 1, 1);
hnode size [TAG(vset kind , b000)] = NODE_SIZE(4 + 4 + 4 + 4 + 1, 1);
hnode size [TAG(vset kind , b001)] = NODE_SIZE(4 + 4 + 4 + 4 + 4 + 1, 1);
hnode size [TAG(vset kind , b010)] = NODE_SIZE(4 + 4 + 4 + 4 + 4 + 1, 1);
hnode size [TAG(vset kind , b011)] = NODE_SIZE(4 + 4 + 4 + 4 + 4 + 4 + 1, 1);
hnode size [TAG(hset kind , b100)] = NODE_SIZE(4 + 4 + 4 + 4, 2);
hnode size [TAG(hset kind , b101)] = NODE_SIZE(4 + 4 + 4 + 4 + 4, 2);
hnode size [TAG(hset kind , b110)] = NODE_SIZE(4 + 4 + 4 + 4 + 4, 2);
hnode size [TAG(hset kind , b111)] = NODE_SIZE(4 + 4 + 4 + 4 + 4 + 4, 2);
hnode size [TAG(vset kind , b100)] = NODE_SIZE(4 + 4 + 4 + 4, 2);
hnode size [TAG(vset kind , b101)] = NODE_SIZE(4 + 4 + 4 + 4 + 4, 2);
hnode size [TAG(vset kind , b110)] = NODE_SIZE(4 + 4 + 4 + 4 + 4, 2);
hnode size [TAG(vset kind , b111)] = NODE_SIZE(4 + 4 + 4 + 4 + 4 + 4, 2);

The hpack and vpack nodes start with a shift amount and in case of vpack a
depth. Then again an extended dimension and a list.

〈 initialize the hnode size array 470cdlxx 〉 +≡ (479)

hnode size [TAG(hpack kind , b000)] = NODE_SIZE(1, 1);
hnode size [TAG(hpack kind , b001)] = NODE_SIZE(1, 1);
hnode size [TAG(hpack kind , b010)] = NODE_SIZE(4 + 1, 1);
hnode size [TAG(hpack kind , b011)] = NODE_SIZE(4 + 1, 1);
hnode size [TAG(vpack kind , b000)] = NODE_SIZE(4 + 1, 1);
hnode size [TAG(vpack kind , b001)] = NODE_SIZE(4 + 1, 1);

A.13 Ligatures 203

hnode size [TAG(vpack kind , b010)] = NODE_SIZE(4 + 4 + 1, 1);
hnode size [TAG(vpack kind , b011)] = NODE_SIZE(4 + 4 + 1, 1);
hnode size [TAG(hpack kind , b100)] = NODE_SIZE(0, 2);
hnode size [TAG(hpack kind , b101)] = NODE_SIZE(0, 2);
hnode size [TAG(hpack kind , b110)] = NODE_SIZE(4, 2);
hnode size [TAG(hpack kind , b111)] = NODE_SIZE(4, 2);
hnode size [TAG(vpack kind , b100)] = NODE_SIZE(4, 2);
hnode size [TAG(vpack kind , b101)] = NODE_SIZE(4, 2);
hnode size [TAG(vpack kind , b110)] = NODE_SIZE(4 + 4, 2);
hnode size [TAG(vpack kind , b111)] = NODE_SIZE(4 + 4, 2);

A.11 Leaders

Most leader nodes will use a reference. Otherwise they contain a glue node followed
by a box or rule node.

〈 initialize the hnode size array 470cdlxx 〉 +≡ (480)

hnode size [TAG(leaders kind , b000)] = NODE_SIZE(1, 0);
hnode size [TAG(leaders kind , 1)] = NODE_SIZE(0, 1);
hnode size [TAG(leaders kind , 2)] = NODE_SIZE(0, 1);
hnode size [TAG(leaders kind , 3)] = NODE_SIZE(0, 1);
hnode size [TAG(leaders kind , b100 | 1)] = NODE_SIZE(0, 2);
hnode size [TAG(leaders kind , b100 | 2)] = NODE_SIZE(0, 2);
hnode size [TAG(leaders kind , b100 | 3)] = NODE_SIZE(0, 2);

A.12 Baseline Skips

Here we expect either a reference or two optional glue nodes followed by an optional
dimension.

〈 initialize the hnode size array 470cdlxx 〉 +≡ (481)

hnode size [TAG(baseline kind , b000)] = NODE_SIZE(1, 0);
hnode size [TAG(baseline kind , b001)] = NODE_SIZE(4, 0);
hnode size [TAG(baseline kind , b010)] = NODE_SIZE(0, 1);
hnode size [TAG(baseline kind , b100)] = NODE_SIZE(0, 1);
hnode size [TAG(baseline kind , b110)] = NODE_SIZE(0, 2);
hnode size [TAG(baseline kind , b011)] = NODE_SIZE(4, 1);
hnode size [TAG(baseline kind , b101)] = NODE_SIZE(4, 1);
hnode size [TAG(baseline kind , b111)] = NODE_SIZE(4, 2);

A.13 Ligatures

As usual a reference is possible, otherwise the font is followed by character bytes
as given by the info. Only if the info value is 7, the number of character bytes is
stored separately.

〈 initialize the hnode size array 470cdlxx 〉 +≡ (482)

hnode size [TAG(ligature kind , b000)] = NODE_SIZE(1, 0);
hnode size [TAG(ligature kind , 1)] = NODE_SIZE(1 + 1, 0);

204 A Traversing Short Format Files

hnode size [TAG(ligature kind , 2)] = NODE_SIZE(1 + 2, 0);
hnode size [TAG(ligature kind , 3)] = NODE_SIZE(1 + 3, 0);
hnode size [TAG(ligature kind , 4)] = NODE_SIZE(1 + 4, 0);
hnode size [TAG(ligature kind , 5)] = NODE_SIZE(1 + 5, 0);
hnode size [TAG(ligature kind , 6)] = NODE_SIZE(1 + 6, 0);
hnode size [TAG(ligature kind , 7)] = NODE_SIZE(1, 1);

A.14 Discretionary breaks

The simple cases here are references, discretionary breaks with empty pre- and
post-list, or with a zero line skip limit Otherwise one or two lists are followed by
an optional replace count.

〈 initialize the hnode size array 470cdlxx 〉 +≡ (483)

hnode size [TAG(disc kind , b000)] = NODE_SIZE(1, 0);
hnode size [TAG(disc kind , b010)] = NODE_SIZE(0, 1);
hnode size [TAG(disc kind , b011)] = NODE_SIZE(0, 2);
hnode size [TAG(disc kind , b100)] = NODE_SIZE(1, 0);
hnode size [TAG(disc kind , b110)] = NODE_SIZE(1, 1);
hnode size [TAG(disc kind , b111)] = NODE_SIZE(1, 2);

A.15 Paragraphs

Paragraph nodes contain an extended dimension, an parameter list and a list. The
first two can be given as a reference.

〈 initialize the hnode size array 470cdlxx 〉 +≡ (484)

hnode size [TAG(par kind , b000)] = NODE_SIZE(1 + 1, 1);
hnode size [TAG(par kind , b010)] = NODE_SIZE(1, 2);
hnode size [TAG(par kind , b110)] = NODE_SIZE(0, 3);
hnode size [TAG(par kind , b100)] = NODE_SIZE(1, 2);

A.16 Mathematics

Displayed math needs a parameter list, either as list or as reference followed by an
optional left or right equation number and a list. Text math is simpler: the only
information is in the info value.

〈 initialize the hnode size array 470cdlxx 〉 +≡ (485)

hnode size [TAG(math kind , b000)] = NODE_SIZE(1, 1);
hnode size [TAG(math kind , b001)] = NODE_SIZE(1, 2);
hnode size [TAG(math kind , b010)] = NODE_SIZE(1, 2);
hnode size [TAG(math kind , b100)] = NODE_SIZE(0, 2);
hnode size [TAG(math kind , b101)] = NODE_SIZE(0, 3);
hnode size [TAG(math kind , b110)] = NODE_SIZE(0, 3);
hnode size [TAG(math kind , b111)] = NODE_SIZE(0, 0);
hnode size [TAG(math kind , b011)] = NODE_SIZE(0, 0);

A.19 Images 205

A.17 Adjustments

〈 initialize the hnode size array 470cdlxx 〉 +≡ (486)

hnode size [TAG(adjust kind , 1)] = NODE_SIZE(0, 1);

A.18 Tables

Tables have an extended dimension either as a node or as a reference followed by
two lists.

〈 initialize the hnode size array 470cdlxx 〉 +≡ (487)

hnode size [TAG(table kind , b000)] = NODE_SIZE(1, 2);
hnode size [TAG(table kind , b001)] = NODE_SIZE(1, 2);
hnode size [TAG(table kind , b010)] = NODE_SIZE(1, 2);
hnode size [TAG(table kind , b011)] = NODE_SIZE(1, 2);
hnode size [TAG(table kind , b100)] = NODE_SIZE(0, 3);
hnode size [TAG(table kind , b101)] = NODE_SIZE(0, 3);
hnode size [TAG(table kind , b110)] = NODE_SIZE(0, 3);
hnode size [TAG(table kind , b111)] = NODE_SIZE(0, 3);

Outer item nodes are lists of inner item nodes, inner item nodes are box nodes
followed by an optional span count.

〈 initialize the hnode size array 470cdlxx 〉 +≡ (488)

hnode size [TAG(item kind , b000)] = NODE_SIZE(0, 1); /∗ outer ∗/
hnode size [TAG(item kind , 1)] = NODE_SIZE(0, 1); /∗ inner ∗/
hnode size [TAG(item kind , 2)] = NODE_SIZE(0, 1);
hnode size [TAG(item kind , 3)] = NODE_SIZE(0, 1);
hnode size [TAG(item kind , 4)] = NODE_SIZE(0, 1);
hnode size [TAG(item kind , 5)] = NODE_SIZE(0, 1);
hnode size [TAG(item kind , 6)] = NODE_SIZE(0, 1);
hnode size [TAG(item kind , 7)] = NODE_SIZE(1, 1);

A.19 Images

If not given by a reference, images contain a section reference and optional dimen-
sions and a descriptive list.

〈 initialize the hnode size array 470cdlxx 〉 +≡ (489)

hnode size [TAG(image kind , b000)] = NODE_SIZE(1, 0);
hnode size [TAG(image kind , b001)] = NODE_SIZE(2 + 4 + 4, 1);
hnode size [TAG(image kind , b010)] = NODE_SIZE(2 + 4 + 4, 1);
hnode size [TAG(image kind , b011)] = NODE_SIZE(2 + 4 + 4, 1);
hnode size [TAG(image kind , b100)] = NODE_SIZE(2 + 4 + 1 + 1, 1);
hnode size [TAG(image kind , b101)] = NODE_SIZE(2 + 4 + 1, 2);
hnode size [TAG(image kind , b110)] = NODE_SIZE(2 + 4 + 1, 2);
hnode size [TAG(image kind , b111)] = NODE_SIZE(2 + 4, 3);

206 A Traversing Short Format Files

A.20 Links

Links contain either a 2 byte or a 1 byte reference and possibly a color reference.

〈 initialize the hnode size array 470cdlxx 〉 +≡ (490)

hnode size [TAG(link kind , b000)] = NODE_SIZE(1, 0);
hnode size [TAG(link kind , b001)] = NODE_SIZE(2, 0);
hnode size [TAG(link kind , b010)] = NODE_SIZE(1, 0);
hnode size [TAG(link kind , b011)] = NODE_SIZE(2, 0);
hnode size [TAG(link kind , b100)] = NODE_SIZE(2, 0);
hnode size [TAG(link kind , b101)] = NODE_SIZE(3, 0);
hnode size [TAG(link kind , b110)] = NODE_SIZE(2, 0);
hnode size [TAG(link kind , b111)] = NODE_SIZE(3, 0);

A.21 Streams

After the stream reference follows a parameter list, either as reference or as a list,
and then a content list.

〈 initialize the hnode size array 470cdlxx 〉 +≡ (491)

hnode size [TAG(stream kind , b000)] = NODE_SIZE(1 + 1, 1);
hnode size [TAG(stream kind , b010)] = NODE_SIZE(1, 2);
hnode size [TAG(stream kind , b100)] = NODE_SIZE(1, 0);

A.22 Colors

〈 initialize the hnode size array 470cdlxx 〉 +≡ (492)

hnode size [TAG(color kind , b000)] = NODE_SIZE(1, 0);

207

B Reading Short Format Files Backwards

This section is not really part of the file format definition, but it illustrates an
important property of the content section in short format files: it can be read
in both directions. This is important because we want to be able to start at an
arbitrary point in the content and from there move pagewise backward.

The program skip described in this section does just that. As wee see in
appendix C.12, its main program is almost the same as the main program of
the program stretch in appendix C.11. The major difference is the removal of an
output file and the replacement of the call to hwrite content section by a call to
hteg content section .

〈 skip functions 493cdxciii 〉 ≡ (493)

static void hteg content section (void)
{ hget section (2);

hpos = hend ;
while (hpos > hstart) hteg content node ();

}
Used in 560dlx.

The functions hteg content section and hteg content node above are reverse ver-
sions of the functions hget content section and hget content node . Many such “re-
verse functions” will follow now and we will consistently use the same naming
scheme: replacing “get“ by “teg” or “GET” by “TEG”. The skip program does not
do much input checking; it will just extract enough information from a content
node to skip a node and “advance” or better “retreat” to the previous node.

〈 skip functions 493cdxciii 〉 +≡ (494)

static void hteg content node (void)
{ 〈 skip the end byte z 495cdxcv 〉

hteg content (z);
〈 skip and check the start byte a 496cdxcvi 〉

}
static void hteg content (Tag z)
{ switch (z)
{ 〈 cases to skip content 503diii 〉

default:
if (¬hteg unknown (z)) TAGERR(z);
break;

}

208 B Reading Short Format Files Backwards

}

The code to skip the end byte z and to check the start byte a is used repeatedly.

〈 skip the end byte z 495cdxcv 〉 ≡ (495)

Tag a, z; /∗ the start and the end byte ∗/
uint32 t node pos = hpos − hstart ;

if (hpos ≤ hstart) return;

HTEGTAG(z);

Used in 494cdxciv, 500d, 511dxi, 514dxiv, 517dxvii, and 538dxxxviii.

〈 skip and check the start byte a 496cdxcvi 〉 ≡ (496)

HTEGTAG(a);

if (a 6= z)
QUIT("Tag mismatch [%s,%d]!=[%s,%d] at "SIZE_F" to 0x%x\n",

NAME(a), INFO(a), NAME(z), INFO(z),
hpos − hstart ,node pos − 1);

Used in 494cdxciv, 500d, 511dxi, 514dxiv, 517dxvii, and 538dxxxviii.

We replace the “GET” macros by the following “TEG” macros:

〈 shared get macros 38xxxviii 〉 +≡ (497)

#define HBACK(X)
((hpos − (X) < hstart) ? (QUIT("HTEG underflow\n"), NULL) : (hpos −= (X)))

#define HTEG8 (HBACK(1), hpos [0])

#define HTEG16(X) (HBACK(2), (X) = (hpos [0]� 8) + hpos [1])

#define HTEG24(X) (HBACK(3), (X) = (hpos [0]� 16) + (hpos [1]� 8) + hpos [2])

#define HTEG32(X)
(HBACK(4), (X) = (hpos [0]� 24) + (hpos [1]� 16) + (hpos [2]� 8) + hpos [3])

#define HTEGTAG(X) X = HTEG8, DBGTAG(X, hpos)

Now we review step by step the different kinds of nodes.

B.1 Floating Point Numbers

〈 shared skip functions 466cdlxvi 〉 +≡ (498)

float32 t hteg float32 (void)

{ union { float32 t d; uint32 t bits ; } u;

HTEG32(u.bits);

return u.d;

}

B.4 Glyphs 209

B.2 Extended Dimensions

〈 skip macros 499cdxcix 〉 ≡ (499)

#define HTEG_XDIMEN(I,X)
if ((I) & b001) HTEG32((X).v);
if ((I) & b010) HTEG32((X).h);
if ((I) & b100) HTEG32((X).w);

Used in 549dxlix and 560dlx.

〈 skip functions 493cdxciii 〉 +≡ (500)

static void hteg xdimen node (Xdimen ∗x)
{ 〈 skip the end byte z 495cdxcv 〉

switch (z) {
#if 0 /∗ currently the info value 0 is not supported ∗/

case TAG(xdimen kind , b000): /∗ see section 10.5 ∗/
{ uint8 t n; n = HTEG8;
} break;

#endif
case TAG(xdimen kind , b001): HTEG_XDIMEN(b001 , ∗x); break;
case TAG(xdimen kind , b010): HTEG_XDIMEN(b010 , ∗x); break;
case TAG(xdimen kind , b011): HTEG_XDIMEN(b011 , ∗x); break;
case TAG(xdimen kind , b100): HTEG_XDIMEN(b100 , ∗x); break;
case TAG(xdimen kind , b101): HTEG_XDIMEN(b101 , ∗x); break;
case TAG(xdimen kind , b110): HTEG_XDIMEN(b110 , ∗x); break;
case TAG(xdimen kind , b111): HTEG_XDIMEN(b111 , ∗x); break;
default: QUIT("Extent expected at 0x%x got %s",node pos , NAME(z));

break;
}
〈 skip and check the start byte a 496cdxcvi 〉

}

B.3 Stretch and Shrink

〈 skip macros 499cdxcix 〉 +≡ (501)

#define HTEG_STRETCH(S)
{ Stch st ; HTEG32(st .u); S.o = st .u& 3; st .u &= ∼3; S.f = st .f ; }

B.4 Glyphs

〈 skip macros 499cdxcix 〉 +≡ (502)

#define HTEG_GLYPH (I,G) (G).f = HTEG8;
if (I ≡ 1) (G).c = HTEG8;
else if (I ≡ 2) HTEG16((G).c);
else if (I ≡ 3) HTEG24((G).c);
else if (I ≡ 4) HTEG32((G).c);

210 B Reading Short Format Files Backwards

〈 cases to skip content 503diii 〉 ≡ (503)

case TAG(glyph kind , 1): { Glyph g; HTEG_GLYPH(1, g); } break;

case TAG(glyph kind , 2): { Glyph g; HTEG_GLYPH(2, g); } break;

case TAG(glyph kind , 3): { Glyph g; HTEG_GLYPH(3, g); } break;

case TAG(glyph kind , 4): { Glyph g; HTEG_GLYPH(4, g); } break;

Used in 494cdxciv.

B.5 Penalties

〈 skip macros 499cdxcix 〉 +≡ (504)

#define HTEG_PENALTY(I, P)

if (I ≡ 1) { int8 t n; n = HTEG8; P = n; }
else if (I ≡ 2) { int16 t n; HTEG16(n); P = n; }
else if (I ≡ 3) { int32 t n; HTEG32(n); P = n; }

〈 cases to skip content 503diii 〉 +≡ (505)

case TAG(penalty kind , 1): { int32 t p; HTEG_PENALTY(1, p); } break;

case TAG(penalty kind , 2): { int32 t p; HTEG_PENALTY(2, p); } break;

case TAG(penalty kind , 3): { int32 t p; HTEG_PENALTY(2, p); } break;

B.6 Kerns

〈 skip macros 499cdxcix 〉 +≡ (506)

#define HTEG_KERN(I,X)

if (((I) & b011) ≡ 2) HTEG32(X.w);

else if (((I) & b011) ≡ 3)hteg xdimen node (&(X))

〈 cases to skip content 503diii 〉 +≡ (507)

case TAG(kern kind , b010): { Xdimen x; HTEG_KERN(b010 , x); } break;

case TAG(kern kind , b011): { Xdimen x; HTEG_KERN(b011 , x); } break;

case TAG(kern kind , b110): { Xdimen x; HTEG_KERN(b110 , x); } break;

case TAG(kern kind , b111): { Xdimen x; HTEG_KERN(b111 , x); } break;

B.7 Language

〈 cases to skip content 503diii 〉 +≡ (508)

case TAG(language kind , 1): case TAG(language kind , 2):
case TAG(language kind , 3): case TAG(language kind , 4):
case TAG(language kind , 5): case TAG(language kind , 6):
case TAG(language kind , 7): break;

B.9 Glue 211

B.8 Rules

〈 skip macros 499cdxcix 〉 +≡ (509)

#define HTEG_RULE(I,R)
if ((I) & b001) HTEG32((R).w); else (R).w = RUNNING_DIMEN;
if ((I) & b010) HTEG32((R).d); else (R).d = RUNNING_DIMEN;
if ((I) & b100) HTEG32((R).h); else (R).h = RUNNING_DIMEN;

〈 cases to skip content 503diii 〉 +≡ (510)

case TAG(rule kind , b011): { Rule r; HTEG_RULE(b011 , r); } break;
case TAG(rule kind , b101): { Rule r; HTEG_RULE(b101 , r); } break;
case TAG(rule kind , b001): { Rule r; HTEG_RULE(b001 , r); } break;
case TAG(rule kind , b110): { Rule r; HTEG_RULE(b110 , r); } break;
case TAG(rule kind , b111): { Rule r; HTEG_RULE(b111 , r); } break;

〈 skip functions 493cdxciii 〉 +≡ (511)

static void hteg rule node (void)
{ 〈 skip the end byte z 495cdxcv 〉

if (KIND(z) ≡ rule kind) { Rule r; HTEG_RULE(INFO(z), r); }
else QUIT("Rule expected at 0x%x got %s",node pos , NAME(z));
〈 skip and check the start byte a 496cdxcvi 〉

}

B.9 Glue

〈 skip macros 499cdxcix 〉 +≡ (512)

#define HTEG_GLUE(I,G)
if (I ≡ b111) hteg xdimen node (&((G).w));
else (G).w.h = (G).w.v = 0.0;
if ((I) & b001) HTEG_STRETCH((G).m) else (G).m.f = 0.0, (G).m.o = 0;
if ((I) & b010) HTEG_STRETCH((G).p) else (G).p.f = 0.0, (G).p.o = 0;
if ((I) 6= b111) { if ((I) & b100) HTEG32((G).w.w); else (G).w.w = 0; }

〈 cases to skip content 503diii 〉 +≡ (513)

case TAG(glue kind , b001): { Glue g; HTEG_GLUE(b001 , g); } break;
case TAG(glue kind , b010): { Glue g; HTEG_GLUE(b010 , g); } break;
case TAG(glue kind , b011): { Glue g; HTEG_GLUE(b011 , g); } break;
case TAG(glue kind , b100): { Glue g; HTEG_GLUE(b100 , g); } break;
case TAG(glue kind , b101): { Glue g; HTEG_GLUE(b101 , g); } break;
case TAG(glue kind , b110): { Glue g; HTEG_GLUE(b110 , g); } break;
case TAG(glue kind , b111): { Glue g; HTEG_GLUE(b111 , g); } break;

〈 skip functions 493cdxciii 〉 +≡ (514)

static void hteg glue node (void)
{ 〈 skip the end byte z 495cdxcv 〉

if (INFO(z) ≡ b000) HTEG_REF(glue kind);
else { Glue g; HTEG_GLUE(INFO(z), g); }

212 B Reading Short Format Files Backwards

〈 skip and check the start byte a 496cdxcvi 〉
}

B.10 Boxes

〈 skip macros 499cdxcix 〉 +≡ (515)

#define HTEG_BOX(I,B) hteg list (&(B.l));
if ((I) & b100)
{ B.s = HTEG8; B.r = hteg float32 (); B.o = B.s& #F; B.s = B.s� 4; }
else { B.r = 0.0; B.o = B.s = 0; }
if ((I) & b010) HTEG32(B.a); else B.a = 0;
HTEG32(B.w);
if ((I) & b001) HTEG32(B.d); else B.d = 0;
HTEG32(B.h);

〈 cases to skip content 503diii 〉 +≡ (516)

case TAG(hbox kind , b000): { Box b; HTEG_BOX(b000 , b); } break;
case TAG(hbox kind , b001): { Box b; HTEG_BOX(b001 , b); } break;
case TAG(hbox kind , b010): { Box b; HTEG_BOX(b010 , b); } break;
case TAG(hbox kind , b011): { Box b; HTEG_BOX(b011 , b); } break;
case TAG(hbox kind , b100): { Box b; HTEG_BOX(b100 , b); } break;
case TAG(hbox kind , b101): { Box b; HTEG_BOX(b101 , b); } break;
case TAG(hbox kind , b110): { Box b; HTEG_BOX(b110 , b); } break;
case TAG(hbox kind , b111): { Box b; HTEG_BOX(b111 , b); } break;
case TAG(vbox kind , b000): { Box b; HTEG_BOX(b000 , b); } break;
case TAG(vbox kind , b001): { Box b; HTEG_BOX(b001 , b); } break;
case TAG(vbox kind , b010): { Box b; HTEG_BOX(b010 , b); } break;
case TAG(vbox kind , b011): { Box b; HTEG_BOX(b011 , b); } break;
case TAG(vbox kind , b100): { Box b; HTEG_BOX(b100 , b); } break;
case TAG(vbox kind , b101): { Box b; HTEG_BOX(b101 , b); } break;
case TAG(vbox kind , b110): { Box b; HTEG_BOX(b110 , b); } break;
case TAG(vbox kind , b111): { Box b; HTEG_BOX(b111 , b); } break;

〈 skip functions 493cdxciii 〉 +≡ (517)

static void hteg hbox node (void)
{ Box b;

〈 skip the end byte z 495cdxcv 〉
if (KIND(z) 6= hbox kind)
QUIT("Hbox expected at 0x%x got %s",node pos , NAME(z));

HTEG_BOX(INFO(z), b);
〈 skip and check the start byte a 496cdxcvi 〉

}
static void hteg vbox node (void)
{ Box b;

B.11 Extended Boxes 213

〈 skip the end byte z 495cdxcv 〉
if (KIND(z) 6= vbox kind)
QUIT("Vbox expected at 0x%x got %s",node pos , NAME(z));

HTEG_BOX(INFO(z), b);
〈 skip and check the start byte a 496cdxcvi 〉

}

B.11 Extended Boxes

〈 skip macros 499cdxcix 〉 +≡ (518)

#define HTEG_SET(I)
{ List l; hteg list (&l); }
if ((I) & b100) { Xdimen x; hteg xdimen node (&x); }
else HTEG_REF(xdimen kind);
{ Stretch m; HTEG_STRETCH(m); }
{ Stretch p; HTEG_STRETCH(p); }
if ((I) & b010) { Dimen a; HTEG32(a); }
{ Dimen w; HTEG32(w); }
{ Dimen d; if ((I) & b001) HTEG32(d); else d = 0; }
{ Dimen h; HTEG32(h); }

#define HTEG_PACK(K, I)
{ List l; hteg list (&l); }
if ((I) & b100) { Xdimen x;

hteg xdimen node (&x); } else HTEG_REF(xdimen kind);
if ((I) & b010) { Dimen d; HTEG32(d); }
if (K ≡ vpack kind) { Dimen d; HTEG32(d); }

〈 cases to skip content 503diii 〉 +≡ (519)

case TAG(hset kind , b000): HTEG_SET(b000); break;
case TAG(hset kind , b001): HTEG_SET(b001); break;
case TAG(hset kind , b010): HTEG_SET(b010); break;
case TAG(hset kind , b011): HTEG_SET(b011); break;
case TAG(hset kind , b100): HTEG_SET(b100); break;
case TAG(hset kind , b101): HTEG_SET(b101); break;
case TAG(hset kind , b110): HTEG_SET(b110); break;
case TAG(hset kind , b111): HTEG_SET(b111); break;

case TAG(vset kind , b000): HTEG_SET(b000); break;
case TAG(vset kind , b001): HTEG_SET(b001); break;
case TAG(vset kind , b010): HTEG_SET(b010); break;
case TAG(vset kind , b011): HTEG_SET(b011); break;
case TAG(vset kind , b100): HTEG_SET(b100); break;
case TAG(vset kind , b101): HTEG_SET(b101); break;
case TAG(vset kind , b110): HTEG_SET(b110); break;
case TAG(vset kind , b111): HTEG_SET(b111); break;

214 B Reading Short Format Files Backwards

case TAG(hpack kind , b000): HTEG_PACK(hpack kind , b000); break;
case TAG(hpack kind , b001): HTEG_PACK(hpack kind , b001); break;
case TAG(hpack kind , b010): HTEG_PACK(hpack kind , b010); break;
case TAG(hpack kind , b011): HTEG_PACK(hpack kind , b011); break;
case TAG(hpack kind , b100): HTEG_PACK(hpack kind , b100); break;
case TAG(hpack kind , b101): HTEG_PACK(hpack kind , b101); break;
case TAG(hpack kind , b110): HTEG_PACK(hpack kind , b110); break;
case TAG(hpack kind , b111): HTEG_PACK(hpack kind , b111); break;

case TAG(vpack kind , b000): HTEG_PACK(vpack kind , b000); break;
case TAG(vpack kind , b001): HTEG_PACK(vpack kind , b001); break;
case TAG(vpack kind , b010): HTEG_PACK(vpack kind , b010); break;
case TAG(vpack kind , b011): HTEG_PACK(vpack kind , b011); break;
case TAG(vpack kind , b100): HTEG_PACK(vpack kind , b100); break;
case TAG(vpack kind , b101): HTEG_PACK(vpack kind , b101); break;
case TAG(vpack kind , b110): HTEG_PACK(vpack kind , b110); break;
case TAG(vpack kind , b111): HTEG_PACK(vpack kind , b111); break;

B.12 Leaders

〈 skip macros 499cdxcix 〉 +≡ (520)

#define HTEG_LEADERS(I)
if (KIND(hpos [−1]) ≡ rule kind) hteg rule node ();
else if (KIND(hpos [−1]) ≡ hbox kind) hteg hbox node ();
else hteg vbox node ();
if ((I) & b100) hteg glue node ();

〈 cases to skip content 503diii 〉 +≡ (521)

case TAG(leaders kind , 1): HTEG_LEADERS(1); break;
case TAG(leaders kind , 2): HTEG_LEADERS(2); break;
case TAG(leaders kind , 3): HTEG_LEADERS(3); break;
case TAG(leaders kind , b100 | 1): HTEG_LEADERS(b100 | 1); break;
case TAG(leaders kind , b100 | 2): HTEG_LEADERS(b100 | 2); break;
case TAG(leaders kind , b100 | 3): HTEG_LEADERS(b100 | 3); break;

B.13 Baseline Skips

〈 skip macros 499cdxcix 〉 +≡ (522)

#define HTEG_BASELINE(I,B)
if ((I) & b010) hteg glue node ();
else { B.ls .p.o = B.ls .m.o = B.ls .w.w = 0;
B.ls .w.h = B.ls .w.v = B.ls .p.f = B.ls .m.f = 0.0; }

if ((I) & b100) hteg glue node ();
else { B.bs .p.o = B.bs .m.o = B.bs .w.w = 0;
B.bs .w.h = B.bs .w.v = B.bs .p.f = B.bs .m.f = 0.0; }

if ((I) & b001) HTEG32((B).lsl); else B.lsl = 0;

B.15 Discretionary breaks 215

〈 cases to skip content 503diii 〉 +≡ (523)

case TAG(baseline kind , b001): { Baseline b; HTEG_BASELINE(b001 , b); }
break;

case TAG(baseline kind , b010): { Baseline b; HTEG_BASELINE(b010 , b); }
break;

case TAG(baseline kind , b011): { Baseline b; HTEG_BASELINE(b011 , b); }
break;

case TAG(baseline kind , b100): { Baseline b; HTEG_BASELINE(b100 , b); }
break;

case TAG(baseline kind , b101): { Baseline b; HTEG_BASELINE(b101 , b); }
break;

case TAG(baseline kind , b110): { Baseline b; HTEG_BASELINE(b110 , b); }
break;

case TAG(baseline kind , b111): { Baseline b; HTEG_BASELINE(b111 , b); }
break;

B.14 Ligatures

〈 skip macros 499cdxcix 〉 +≡ (524)

#define HTEG_LIG(I, L)

if ((I) ≡ 7) hteg list (&((L).l));

else { (L).l.s = (I); hpos −= (L).l.s; (L).l.p = hpos − hstart ; }
(L).f = HTEG8;

〈 cases to skip content 503diii 〉 +≡ (525)

case TAG(ligature kind , 1): { Lig l; HTEG_LIG(1, l); } break;

case TAG(ligature kind , 2): { Lig l; HTEG_LIG(2, l); } break;

case TAG(ligature kind , 3): { Lig l; HTEG_LIG(3, l); } break;

case TAG(ligature kind , 4): { Lig l; HTEG_LIG(4, l); } break;

case TAG(ligature kind , 5): { Lig l; HTEG_LIG(5, l); } break;

case TAG(ligature kind , 6): { Lig l; HTEG_LIG(6, l); } break;

case TAG(ligature kind , 7): { Lig l; HTEG_LIG(7, l); } break;

B.15 Discretionary breaks

〈 skip macros 499cdxcix 〉 +≡ (526)

#define HTEG_DISC(I,H)

if ((I) & b001) hteg list (&((H).q));

else { (H).q.p = hpos − hstart ; (H).q.s = 0; (H).q.t = TAG(list kind , b000); }
if ((I) & b010) hteg list (&((H).p));

else { (H).p.p = hpos − hstart ; (H).p.s = 0; (H).p.t = TAG(list kind , b000); }
if ((I) & b100) (H).r = HTEG8; else (H).r = 0;

216 B Reading Short Format Files Backwards

〈 cases to skip content 503diii 〉 +≡ (527)

case TAG(disc kind , b001): { Disc h; HTEG_DISC(b001 , h); } break;
case TAG(disc kind , b010): { Disc h; HTEG_DISC(b010 , h); } break;
case TAG(disc kind , b011): { Disc h; HTEG_DISC(b011 , h); } break;
case TAG(disc kind , b100): { Disc h; HTEG_DISC(b100 , h); } break;
case TAG(disc kind , b101): { Disc h; HTEG_DISC(b101 , h); } break;
case TAG(disc kind , b110): { Disc h; HTEG_DISC(b110 , h); } break;
case TAG(disc kind , b111): { Disc h; HTEG_DISC(b111 , h); } break;

B.16 Paragraphs

〈 skip macros 499cdxcix 〉 +≡ (528)

#define HTEG_PAR(I)
{ List l; hteg list (&l); }
if ((I) & b010) { List l; hteg param list (&l); }
else if ((I) 6= b100) HTEG_REF(param kind);
if ((I) & b100) { Xdimen x; hteg xdimen node (&x); }
else HTEG_REF(xdimen kind);
if ((I) ≡ b100) HTEG_REF(param kind);

〈 cases to skip content 503diii 〉 +≡ (529)

case TAG(par kind , b000): HTEG_PAR(b000); break;
case TAG(par kind , b010): HTEG_PAR(b010); break;
case TAG(par kind , b100): HTEG_PAR(b100); break;
case TAG(par kind , b110): HTEG_PAR(b110); break;

B.17 Mathematics

〈 skip macros 499cdxcix 〉 +≡ (530)

#define HTEG_MATH(I)
if ((I) & b001) hteg hbox node ();
{ List l; hteg list (&l); }
if ((I) & b010) hteg hbox node ();
if ((I) & b100) { List l; hteg param list (&l); } else HTEG_REF(param kind);

〈 cases to skip content 503diii 〉 +≡ (531)

case TAG(math kind , b000): HTEG_MATH(b000); break;
case TAG(math kind , b001): HTEG_MATH(b001); break;
case TAG(math kind , b010): HTEG_MATH(b010); break;
case TAG(math kind , b100): HTEG_MATH(b100); break;
case TAG(math kind , b101): HTEG_MATH(b101); break;
case TAG(math kind , b110): HTEG_MATH(b110); break;
case TAG(math kind , b011): case TAG(math kind , b111): break;

B.18 Images 217

B.18 Images

〈 skip macros 499cdxcix 〉 +≡ (532)

#define HTEG_IMAGE(I)
{ Image x = {0};

List d;

hteg list (&d);
if ((I) & b100) {

if ((I) ≡ b111) { hteg xdimen node (&x.h);
hteg xdimen node (&x.w);

}
else if ((I) ≡ b110) { hteg xdimen node (&x.w);
x.hr = HTEG8;

}
else if ((I) ≡ b101) { hteg xdimen node (&x.h);
x.wr = HTEG8;

}
else { x.hr = HTEG8;
x.wr = HTEG8;

}
x.a = hteg float32 ();

}
else if ((I) ≡ b011) { HTEG32(x.h.w);
HTEG32(x.w.w);

}
else if ((I) ≡ b010) { HTEG32(x.w.w);
x.a = hteg float32 ();

}
else if ((I) ≡ b001) { HTEG32(x.h.w);
x.a = hteg float32 ();

}
HTEG16(x.n);

}

〈 cases to skip content 503diii 〉 +≡ (533)

case TAG(image kind , b001): HTEG_IMAGE(b001); break;
case TAG(image kind , b010): HTEG_IMAGE(b010); break;
case TAG(image kind , b011): HTEG_IMAGE(b011); break;
case TAG(image kind , b100): HTEG_IMAGE(b100); break;
case TAG(image kind , b101): HTEG_IMAGE(b101); break;
case TAG(image kind , b110): HTEG_IMAGE(b110); break;
case TAG(image kind , b111): HTEG_IMAGE(b111); break;

218 B Reading Short Format Files Backwards

B.19 Links and Labels

〈 skip macros 499cdxcix 〉 +≡ (534)

#define HTEG_LINK(I)
{ uint16 t n;

if (I & b100) n = HTEG8;
if (I & b001) HTEG16(n); else n = HTEG8; }

〈 cases to skip content 503diii 〉 +≡ (535)

case TAG(link kind , b000): HTEG_LINK(b000); break;
case TAG(link kind , b001): HTEG_LINK(b001); break;
case TAG(link kind , b010): HTEG_LINK(b010); break;
case TAG(link kind , b011): HTEG_LINK(b011); break;
case TAG(link kind , b100): HTEG_LINK(b100); break;
case TAG(link kind , b101): HTEG_LINK(b101); break;
case TAG(link kind , b110): HTEG_LINK(b110); break;
case TAG(link kind , b111): HTEG_LINK(b111); break;

B.20 Colors

〈 cases to skip content 503diii 〉 +≡ (536)

case TAG(color kind , b000): (void) HTEG8; break;

B.21 Plain Lists, Texts, and Parameter Lists

〈 shared skip functions 466cdlxvi 〉 +≡ (537)

uint32 t hteg list size (Info info)
{ uint32 t n = 0;

info = info & #3;
if (info ≡ 0) return 0;
else if (info ≡ 1) n = HTEG8;
else if (info ≡ 2) HTEG16(n);
else if (info ≡ 3) HTEG32(n);
else QUIT("List info %d must be 0, 1, 2, or 3", info);
return n;

}

〈 skip functions 493cdxciii 〉 +≡ (538)

static void hteg size boundary (Info info)
{ uint32 t n;

info = info & #3;
if (info ≡ 0) return;
n = HTEG8;
if (n 6= #100− info) QUIT("List size boundary byte 0x%x does not m\

atch info value %d at "SIZE_F, n, info , hpos − hstart);
}

B.23 Tables 219

static void hteg list (List ∗l){ 〈 skip the end byte z 495cdxcv 〉
if (KIND(z) 6= list kind ∧ KIND(z) 6= param kind)
QUIT("List expected at 0x%x", (uint32 t)(hpos − hstart));

else if ((INFO(z) & #3) ≡ 0) { HBACK(1);
l→s = 0; }

else { uint32 t s;

l→t = z;
l→s = hteg list size (INFO(z));
hteg size boundary (INFO(z));
hpos = hpos − l→s;
l→p = hpos − hstart ;
hteg size boundary (INFO(z));
s = hteg list size (INFO(z));
if (s 6= l→s) QUIT("List sizes at "SIZE_F" and 0x%x do not ma\

tch 0x%x != 0x%x", hpos − hstart ,node pos − 1, s, l→s);
}
〈 skip and check the start byte a 496cdxcvi 〉
}
static void hteg param list (List ∗l)
{ if (KIND(∗(hpos − 1)) 6= param kind) return;

hteg list (l);
}

B.22 Adjustments

〈 cases to skip content 503diii 〉 +≡ (539)

case TAG(adjust kind , b001): { List l; hteg list (&l); } break;

B.23 Tables

〈 skip macros 499cdxcix 〉 +≡ (540)

#define HTEG_TABLE(I)
{ List l; hteg list (&l); }
{ List l; hteg list (&l); }
if ((I) & b100) { Xdimen x; hteg xdimen node (&x); }
else HTEG_REF(xdimen kind)

〈 cases to skip content 503diii 〉 +≡ (541)

case TAG(table kind , b000): HTEG_TABLE(b000); break;
case TAG(table kind , b001): HTEG_TABLE(b001); break;
case TAG(table kind , b010): HTEG_TABLE(b010); break;
case TAG(table kind , b011): HTEG_TABLE(b011); break;
case TAG(table kind , b100): HTEG_TABLE(b100); break;
case TAG(table kind , b101): HTEG_TABLE(b101); break;
case TAG(table kind , b110): HTEG_TABLE(b110); break;
case TAG(table kind , b111): HTEG_TABLE(b111); break;

220 B Reading Short Format Files Backwards

case TAG(item kind , b000): { List l; hteg list (&l); } break;

case TAG(item kind , b001): hteg content node (); break;

case TAG(item kind , b010): hteg content node (); break;

case TAG(item kind , b011): hteg content node (); break;

case TAG(item kind , b100): hteg content node (); break;

case TAG(item kind , b101): hteg content node (); break;

case TAG(item kind , b110): hteg content node (); break;

case TAG(item kind , b111): hteg content node (); { uint8 t n; n = HTEG8; }
break;

B.24 Stream Nodes

〈 skip macros 499cdxcix 〉 +≡ (542)

#define HTEG_STREAM(I)

{ List l; hteg list (&l); }
if ((I) & b010) { List l; hteg param list (&l); } else HTEG_REF(param kind);

HTEG_REF(stream kind);

〈 cases to skip content 503diii 〉 +≡ (543)

case TAG(stream kind , b000): HTEG_STREAM(b000); break;

case TAG(stream kind , b010): HTEG_STREAM(b010); break;

B.25 References

〈 skip macros 499cdxcix 〉 +≡ (544)

#define HTEG_REF(K) do { uint8 t n; n = HTEG8; } while (false)

〈 cases to skip content 503diii 〉 +≡ (545)

case TAG(penalty kind , 0): HTEG_REF(penalty kind); break;

case TAG(kern kind , b000): HTEG_REF(dimen kind); break;

case TAG(kern kind , b100): HTEG_REF(dimen kind); break;

case TAG(kern kind , b001): HTEG_REF(xdimen kind); break;

case TAG(kern kind , b101): HTEG_REF(xdimen kind); break;

case TAG(ligature kind , 0): HTEG_REF(ligature kind); break;

case TAG(disc kind , 0): HTEG_REF(disc kind); break;

case TAG(glue kind , 0): HTEG_REF(glue kind); break;

case TAG(language kind , 0): HTEG_REF(language kind); break;

case TAG(rule kind , 0): HTEG_REF(rule kind); break;

case TAG(image kind , 0): HTEG_REF(image kind); break;

case TAG(leaders kind , 0): HTEG_REF(leaders kind); break;

case TAG(baseline kind , 0): HTEG_REF(baseline kind); break;

B.26 Unknown nodes 221

B.26 Unknown nodes

〈 skip functions 493cdxciii 〉 +≡ (546)

static int hteg unknown (Tag z)
{ int b, n;

int8 t s;

s = hnode size [z];
DBG(DBGTAGS, "Trying unknown tag 0x%x at 0x%x\n", z,

(uint32 t)(hpos − hstart − 1));
if (s ≡ 0) return 0;
b = NODE_HEAD(s);
n = NODE_TAIL(s);
DBG(DBGTAGS, "Trying unknown node size %d %d\n", b, n);
while (n > 0) { z = ∗(hpos − 1);

if (KIND(z) ≡ xdimen kind) { Xdimen x;

hteg xdimen node (&x);
}
else if (KIND(z) ≡ param kind) { List l; hteg param list (&l); }
else if (KIND(z) ≤ list kind) { List l; hteg list (&l); }
else hteg content node ();
n−−;

}
while (b > 0) { z = HTEG8;
b−−;

}
return 1;

}

223

C Code and Header Files

C.1 basetypes.h

To define basic types in a portable way, we create an include file. The macro
_MSC_VER (Microsoft Visual C Version) is defined only if using the respective
compiler.

〈 basetypes.h 547dxlvii 〉 ≡ (547)

#ifndef __BASETYPES_H__

#define __BASETYPES_H__

#include <stdlib.h>

#include <stdio.h>

#ifndef _STDLIB_H

#define _STDLIB_H

#endif
#ifdef _MSC_VER

#include <windows.h>

#define uint8 t UINT8

#define uint16 t UINT16

#define uint32 t UINT32

#define uint64 t UINT64

#define int8 t INT8

#define int16 t INT16

#define int32 t INT32

#define bool BOOL
#define true (0 ≡ 0)
#define false (¬true)
#define __SIZEOF_FLOAT__ 4
#define __SIZEOF_DOUBLE__ 8
#define PRIx64 "I64x"

#pragma warning (disable :4244 4996 4127)
#else
#include <stdint.h>

#include <stdbool.h>

#include <inttypes.h>

#include <unistd.h>

#ifdef WIN32

224 C Code and Header Files

#include <io.h>

#endif
#endif

typedef float float32 t;
typedef double float64 t;

#if __SIZEOF_FLOAT__ 6= 4
#error float32 type must have size 4

#endif
#if __SIZEOF_DOUBLE__ 6= 8
#error float64 type must have size 8

#endif
#define HINT_VERSION 2
#define HINT_MINOR_VERSION 2
#define AS_STR (X)#X
#define VERSION_AS_STR (X,Y) AS_STR (X) "." AS_STR (Y)
#define HINT_VERSION_STRING VERSION_AS_STR

(HINT_VERSION, HINT_MINOR_VERSION)
#endif

C.2 format.h

The format.h file contains definitions of types, macros, variables and functions
that are needed in other compilation units.

〈 format.h 548dxlviii 〉 ≡ (548)

#ifndef _HFORMAT_H_

#define _HFORMAT_H_

〈 debug macros 383ccclxxxiii 〉
〈 debug constants 449cdxlix 〉
〈 hint macros 13xiii 〉
〈 hint basic types 6vi 〉
〈 default names 420cdxx 〉
extern const char ∗content name [32];
extern const char ∗definition name [32];
extern unsigned int debugflags ;
extern FILE ∗hlog ;
extern int max fixed [32], max default [32], max ref [32], max outline ;
extern int32 t int defaults [MAX_INT_DEFAULT + 1];
extern Dimen dimen defaults [MAX_DIMEN_DEFAULT + 1];
extern Xdimen xdimen defaults [MAX_XDIMEN_DEFAULT + 1];
extern Glue glue defaults [MAX_GLUE_DEFAULT + 1];
extern Baseline baseline defaults [MAX_BASELINE_DEFAULT + 1];
extern Label label defaults [MAX_LABEL_DEFAULT + 1];
extern ColorSet color defaults [MAX_COLOR_DEFAULT + 1];
extern signed char hnode size [#100];
extern uint8 t content known [32];

#endif

C.3 tables.c 225

C.3 tables.c

For maximum flexibility and efficiency, the file tables.c is generated by a C

program. Here is the main program of mktables:

〈 mktables.c 549dxlix 〉 ≡ (549)

#include "basetypes.h"

#include "format.h"

〈 skip macros 499cdxcix 〉
int max fixed [32], max default [32];
int32 t int defaults [MAX_INT_DEFAULT + 1] = {0};
Dimen dimen defaults [MAX_DIMEN_DEFAULT + 1] = {0};
Xdimen xdimen defaults [MAX_XDIMEN_DEFAULT + 1] = {{0}};
Glue glue defaults [MAX_GLUE_DEFAULT + 1] = {{{0}}};
Baseline baseline defaults [MAX_BASELINE_DEFAULT + 1] = {{{{0}}}};
signed char hnode size [#100] = {0};
uint8 t content known [32] = {0};
〈 define content name and definition name 7vii 〉
int main (void)
{ Kind k;

int i;

printf ("#include \"basetypes.h\"\n"
"#include \"format.h\"\n\n");
〈 print content name and definition name 8viii 〉
printf ("int max_outline=−1;\n\n");
〈 take care of variables without defaults 419cdxix 〉
〈 define int defaults 421cdxxi 〉
〈 define dimen defaults 423cdxxiii 〉
〈 define glue defaults 427cdxxvii 〉
〈 define xdimen defaults 425cdxxv 〉
〈 define baseline defaults 429cdxxix 〉
〈 define page defaults 435cdxxxv 〉
〈 define stream defaults 433cdxxxiii 〉
〈 define range defaults 437cdxxxvii 〉
〈 define label defaults 431cdxxxi 〉
〈 define color defaults 441cdxli 〉
〈 print defaults 550dl 〉
〈 initialize the hnode size array 470cdlxx 〉
〈 print the hnode size variable 467cdlxvii 〉
〈 print the content known variable 468cdlxviii 〉
return 0;

}

The following code prints the arrays containing the default values.

226 C Code and Header Files

〈 print defaults 550dl 〉 ≡ (550)

printf ("int max_fixed[32]= {");
for (k = 0; k < 32; k++)
{ printf ("%d",max fixed [k]); if (k < 31) printf (", "); }
printf ("};\n\n");

printf ("int max_default[32]= {");
for (k = 0; k < 32; k++)
{ printf ("%d",max default [k]); if (k < 31) printf (", "); }
printf ("};\n\n");
printf ("int max_ref[32]= {");
for (k = 0; k < 32; k++)
{ printf ("%d",max default [k]); if (k < 31) printf (", "); }
printf ("};\n\n");

Used in 549dxlix.

C.4 get.h

The get.h file contains function prototypes for all the functions that read the short
format.

〈 get.h 551dli 〉 ≡ (551)

〈 hint types 1i 〉
〈 directory entry type 357ccclvii 〉
〈 shared get macros 38xxxviii 〉
extern Entry ∗dir ;
extern uint16 t section no , max section no ;
extern uint8 t ∗hpos , ∗hstart , ∗hend , ∗hpos0 ;
extern uint64 t hin size , hin time ;
extern uint8 t ∗hin addr ;
extern Label ∗labels ;
extern char ∗hin name ;
extern bool hget map(void);
extern void hget unmap(void);
extern void new directory (uint32 t entries);
extern void hset entry (Entry ∗e,uint16 t i,

uint32 t size ,uint32 t xsize , char ∗file name);
extern void hget banner (void);
extern void hget section (uint16 t n);
extern void hget entry (Entry ∗e);
extern void hget directory (void);
extern void hclear dir (void);
extern bool hcheck banner (char ∗magic);
extern int max range ;
extern void hget max definitions (void);
extern uint32 t hget utf8 (void);
extern void hget size boundary (Info info);

C.6 put.h 227

extern uint32 t hget list size (Info info);

extern void hget list (List ∗l);
extern float32 t hget float32 (void);

extern void hff hpos (void);

extern uint32 t hff list pos , hff list size ;

extern Tag hff tag ;

extern float32 t hteg float32 (void);

extern uint32 t hteg list size (Info info); /∗ seems like these are declared
static ∗/

#if 0

extern void hteg list (List ∗l);
extern void hteg size boundary (Info info);

#endif

C.5 get.c

〈 get.c 552dlii 〉 ≡ (552)

#include "basetypes.h"

#include <string.h>

#include <math.h>

#include <zlib.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include "error.h"

#include "format.h"

#include "get.h"

〈 common variables 252cclii 〉
〈map functions 349cccxlix 〉
〈 function to check the banner 336cccxxxvi 〉
〈 directory functions 358ccclviii 〉
〈 get file functions 337cccxxxvii 〉
〈 shared get functions 53liii 〉
〈 shared skip functions 466cdlxvi 〉

C.6 put.h

The put.h file contains function prototypes for all the functions that write the
short format.

〈 put.h 553dliii 〉 ≡ (553)

〈 put macros 345cccxlv 〉
〈 hint macros 13xiii 〉
〈 hint types 1i 〉
〈 directory entry type 357ccclvii 〉

228 C Code and Header Files

extern Entry ∗dir ;
extern uint16 t section no , max section no ;
extern uint8 t ∗hpos , ∗hstart , ∗hend , ∗hpos0 ;
extern int next range ;
extern RangePos ∗range pos ;
extern int next range , max range ;
extern int ∗page on ;
extern Label ∗labels ;
extern int first label ;
extern int max outline ;
extern Outline ∗outlines ;
extern FILE ∗hout ;
extern void new directory (uint32 t entries);
extern void new output buffers (void); /∗ declarations for the parser ∗/
extern void hput definitions start (void);
extern void hput definitions end (void);
extern void hput content start (void);
extern void hput content end (void);
extern void hset label (int n, int w);
extern Tag hput link (int n, int c, int on);
extern void hset outline (int m, int r, int d,uint32 t p);
extern void hput label defs (void);
extern void hput tags (uint32 t pos ,Tag tag);
extern Tag hput glyph (Glyph ∗g);
extern Tag hput xdimen (Xdimen ∗x);
extern Tag hput int (int32 t p);
extern Tag hput language (uint8 t n);
extern Tag hput rule (Rule ∗r);
extern Tag hput glue (Glue ∗g);
extern Tag hput list (uint32 t size pos ,List ∗y);
extern uint8 t hsize bytes (uint32 t n);
extern void hput txt cc(uint32 t c);
extern void hput txt font (uint8 t f);
extern void hput txt global (Ref ∗d);
extern void hput txt local (uint8 t n);
extern Info hput box dimen (Dimen h,Dimen d,Dimen w);
extern Info hput box shift (Dimen a);
extern Info hput box glue set (int8 t s,float32 t r,Order o);
extern void hput stretch (Stretch ∗s);
extern Tag hput kern (Kern ∗k);
extern void hput utf8 (uint32 t c);
extern Tag hput ligature (Lig ∗l);
extern Tag hput disc(Disc ∗h);
extern Info hput span count (uint32 t n);
extern void hextract image dimens (int n,double ∗a,Dimen ∗w,Dimen

∗h);

C.7 put.c 229

extern Info hput image spec(uint32 t n,float32 t a,uint32 t wr ,Xdimen
∗w,uint32 t hr ,Xdimen ∗h);

extern int colors i ;

extern ColorSet colors 0 , colors n ;

extern void color init (void);

extern void hput color def (uint32 t pos , int n);

extern void hput string (char ∗str);

extern void hput range (uint8 t pg ,bool on);

extern void hput max definitions (void);

extern Tag hput dimen (Dimen d);

extern Tag hput font head (uint8 t f, char ∗n,Dimen s,
int m,uint16 t y);

extern void hput range defs (void);

extern void hput xdimen node (Xdimen ∗x);

extern void hput directory (void);

extern size t hput hint (char ∗str);

extern void hput list size (uint32 t n, int i);

extern uint32 t hput unknown def (uint32 t t,uint32 t b,uint32 t n);

extern Tag hput unknown (uint32 t pos ,uint32 t t,uint32 t b,uint32 t
n);

extern int hcompress depth (int n, int c);

C.7 put.c

〈 put.c 554dliv 〉 ≡ (554)

#include "basetypes.h"

#include <string.h>

#include <ctype.h>

#include <math.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <zlib.h>

#include "error.h"

#include "format.h"

#include "put.h"

〈 common variables 252cclii 〉
〈 shared put variables 273cclxxiii 〉
〈 directory functions 358ccclviii 〉
〈 function to write the banner 339cccxxxix 〉
〈 put functions 14xiv 〉

230 C Code and Header Files

C.8 lexer.l

The definitions for lex are collected in the file lexer.l

〈 lexer.l 555dlv 〉 ≡ (555)

% {
#include "basetypes.h"

#include "error.h"

#include "format.h"

#include "put.h"

〈 enable bison debugging 464cdlxiv 〉
#include "parser.h"

〈 scanning macros 23xxiii 〉 〈 scanning functions 62lxii 〉
int yywrap(void) { return 1; }

#ifdef _MSC_VER

#pragma warning (disable : 4267)
#endif
% }
%option yylineno stack batch never − interactive
%option debug
%option nounistd nounput noinput noyy top state
〈 scanning definitions 24xxiv 〉

%%
〈 scanning rules 3iii 〉

[a−z]+ QUIT("Unexpected keyword ’%s’ in line %d",
yytext , yylineno);

. QUIT("Unexpected character ’%c’ (0x%02X) in line %d",
yytext [0] > ’ ’ ? yytext [0] : ’ ’, yytext [0], yylineno);

%%

C.9 parser.y

The grammar rules for bison are collected in the file parser.y.

〈 parser.y 556dlvi 〉 ≡ (556)

% {
#include "basetypes.h"

#include <string.h>

#include <math.h>

#include "error.h"

#include "format.h"

#include "put.h"

extern char ∗∗hfont name ; /∗ in common variables ∗/
〈 definition checks 392cccxcii 〉
extern void hset entry (Entry ∗e,uint16 t i,

uint32 t size ,uint32 t xsize , char ∗file name);

〈 enable bison debugging 464cdlxiv 〉

C.10 shrink.c 231

extern int yylex (void);

〈 parsing functions 388ccclxxxviii 〉
% }

%union { uint32 t u; int32 t i; char ∗s; float64 t f ; Glyph c; Dimen d;
Stretch st ; Xdimen xd ; Kern kt ; Rule r; Glue g; Image x; List l; Box

h; Disc dc ; Lig lg ; Ref rf ; Info info ; Order o;
bool b; }

%define parse .error verbose
%start hint
〈 symbols 2ii 〉

%%
〈 parsing rules 5v 〉

%%

C.10 shrink.c

shrink is a C program translating a HINT file in long format into a HINT file in
short format.

〈 shrink.c 557dlvii 〉 ≡ (557)

#include "basetypes.h"

#include <math.h>

#include <string.h>

#include <ctype.h>

#include <sys/types.h>

#include <sys/stat.h>

#ifdef WIN32

#include <direct.h>

#endif
#include <zlib.h>

#include "error.h"

#include "format.h"

#include "put.h"

〈 enable bison debugging 464cdlxiv 〉
#include "parser.h"

extern void yyset debug (int lex debug);
extern int yylineno ;
extern FILE ∗yyin , ∗yyout ;
extern int yyparse (void);

〈 put macros 345cccxlv 〉
〈 common variables 252cclii 〉
〈 shared put variables 273cclxxiii 〉
〈 function to check the banner 336cccxxxvi 〉
〈 directory functions 358ccclviii 〉
〈 function to write the banner 339cccxxxix 〉

232 C Code and Header Files

〈 put functions 14xiv 〉
#define SHRINK

#define DESCRIPTION "\nConvert a ‘long’ ASCII HINT file into\

 a ‘short’ binary HINT file.\n"

int main (int argc , char ∗argv [])
{ 〈 local variables in main 451cdli 〉

in ext = ".hint";
out ext = ".hnt";
〈 process the command line 452cdlii 〉
if (debugflags & DBGFLEX) yyset debug (1);
else yyset debug (0);

#if YYDEBUG

if (debugflags & DBGBISON) yydebug = 1;
else yydebug = 0;

#endif
〈 open the log file 454cdliv 〉
〈 open the input file 455cdlv 〉
〈 open the output file 456cdlvi 〉
yyin = hin ;
yyout = hlog ;
〈 read the banner 338cccxxxviii 〉
if (¬hcheck banner ("HINT")) QUIT("Invalid banner");
yylineno ++;
DBG(DBGBISON | DBGFLEX, "Parsing Input\n");
yyparse ();
hput directory ();
〈 rewrite the file names of optional sections 373ccclxxiii 〉
hput hint ("created by shrink");
〈 close the output file 459cdlix 〉
〈 close the input file 458cdlviii 〉
〈 close the log file 460cdlx 〉
return 0;

}

C.11 stretch.c

stretch is a C program translating a HINT file in short format into a HINT file in
long format.

〈 stretch.c 558dlviii 〉 ≡ (558)

#include "basetypes.h"

#include <math.h>

#include <string.h>

#include <ctype.h>

#include <zlib.h>

#include <sys/types.h>

#include <sys/stat.h>

C.11 stretch.c 233

#ifdef WIN32

#include <direct.h>

#endif
#include <fcntl.h>

#include "error.h"

#include "format.h"

#include "get.h"

〈 get macros 19xix 〉
〈write macros 22xxii 〉
〈 common variables 252cclii 〉
〈 shared put variables 273cclxxiii 〉
〈map functions 349cccxlix 〉
〈 function to check the banner 336cccxxxvi 〉
〈 function to write the banner 339cccxxxix 〉
〈 directory functions 358ccclviii 〉
〈 definition checks 392cccxcii 〉
〈 get function declarations 559dlix 〉
〈write functions 21xxi 〉
〈 get file functions 337cccxxxvii 〉
〈 shared get functions 53liii 〉
〈 get functions 18xviii 〉

#define STRETCH

#define DESCRIPTION "\nConvert a ‘short’ binary HINT file in\

to a ‘long’ ASCII HINT file.\n"

int main (int argc , char ∗argv [])
{ 〈 local variables in main 451cdli 〉

in ext = ".hnt";
out ext = ".hint";
〈 process the command line 452cdlii 〉
〈 open the log file 454cdliv 〉
〈 open the output file 456cdlvi 〉
〈 determine the stem name from the output file name 457cdlvii 〉
if (¬hget map()) QUIT("Unable to map the input file");
hpos = hstart = hin addr ;
hend = hstart + hin size ;
hget banner ();
if (¬hcheck banner ("hint")) QUIT("Invalid banner");
hput banner ("HINT", "created by stretch");
hget directory ();
hwrite directory ();
hget definition section ();
hwrite content section ();
hwrite aux files ();
hget unmap();
〈 close the output file 459cdlix 〉

234 C Code and Header Files

DBG(DBGBASIC, "End of Program\n");
〈 close the log file 460cdlx 〉
return 0;

}

In the above program, the get functions call the write functions and the write
functions call some get functions. This requires function declarations to satisfy the
define before use requirement of C. Some of the necessary function declarations
are already contained in get.h. The remaining declarations are these:

〈 get function declarations 559dlix 〉 ≡ (559)

extern void hget xdimen node (Xdimen ∗x);
extern void hget def node (void);
extern void hget font def (Info i,uint8 t f);
extern void hget content section (void);
extern Tag hget content node (void);
extern void hget glue node (void);
extern void hget rule node (void);
extern void hget hbox node (void);
extern void hget vbox node (void);
extern void hget param list (List ∗l);
extern int hget txt (void);
extern int hget unknown (Tag a);

Used in 558dlviii and 560dlx.

C.12 skip.c

skip is a C program reading the content section of a HINT file in short format
backwards.

〈 skip.c 560dlx 〉 ≡ (560)

#include "basetypes.h"

#include <math.h>

#include <string.h>

#include <ctype.h>

#include <zlib.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include "error.h"

#include "format.h"

#if 1
#include "get.h"

#else
〈 hint types 1i 〉
〈 directory entry type 357ccclvii 〉
〈 shared get macros 38xxxviii 〉

#endif

C.12 skip.c 235

〈 get macros 19xix 〉
〈write macros 22xxii 〉
〈 common variables 252cclii 〉
〈 shared put variables 273cclxxiii 〉
〈map functions 349cccxlix 〉
〈 function to check the banner 336cccxxxvi 〉
〈 directory functions 358ccclviii 〉
〈 shared get macros 38xxxviii 〉
〈 get file functions 337cccxxxvii 〉
〈 skip macros 499cdxcix 〉
〈 skip function declarations 561dlxi 〉
〈 shared skip functions 466cdlxvi 〉
〈 skip functions 493cdxciii 〉
〈 definition checks 392cccxcii 〉
〈 get function declarations 559dlix 〉
〈write functions 21xxi 〉
〈 shared get functions 53liii 〉
〈 get functions 18xviii 〉

#define SKIP

#define DESCRIPTION "\n This program tests parsing a binary \

HINT file in reverse direction.\n"

int main (int argc , char ∗argv [])
{ 〈 local variables in main 451cdli 〉

in ext = ".hnt";
out ext = ".bak";
〈 process the command line 452cdlii 〉
〈 open the log file 454cdliv 〉
hout = NULL;
if (¬hget map()) QUIT("Unable to map the input file");
hpos = hstart = hin addr ;
hend = hstart + hin size ;
hget banner ();
if (¬hcheck banner ("hint")) QUIT("Invalid banner");
hget directory ();
hget definition section ();
DBG(DBGBASIC, "Skipping Content Section\n");
hteg content section ();
DBG(DBGBASIC, "Fast forward Content Section\n");
hpos = hstart ;
while (hpos < hend) { hff hpos ();

if (KIND(∗(hpos−1)) ≡ par kind ∧KIND(hff tag) ≡ list kind ∧hff list size >
0 ∧ ¬(INFO(hff tag) & b100)) { uint8 t ∗p = hpos , ∗q;

DBG(DBGTAGS, "Fast forward list at 0x%x, size %d\n", hff list pos ,
hff list size);

hpos = hstart + hff list pos ;

236 C Code and Header Files

q = hpos + hff list size ;
while (hpos < q) hff hpos ();
DBG(DBGTAGS, "Fast forward list end at 0x%x\n",

(uint32 t)(hpos − hstart));
hpos = p;
DBG(DBGTAGS, "Continue at 0x%x\n", (uint32 t)(hpos − hstart − 1));

}
}
hget unmap();
〈 close the log file 460cdlx 〉
return 0;

}

As we have seen already in the stretch program, a few function declarations
are necessary to satisfy the define before use requirement of C.

〈 skip function declarations 561dlxi 〉 ≡ (561)

static void hteg content node (void);
static void hteg content (Tag z);
static void hteg xdimen node (Xdimen ∗x);
static void hteg list (List ∗l);
static void hteg param list (List ∗l);
static void hteg rule node (void);
static void hteg hbox node (void);
static void hteg vbox node (void);
static void hteg glue node (void);
static int hteg unknown (Tag z);

Used in 560dlx.

237

D Format Definitions

D.1 Reading the Long Format

Data Types
Integers . 13
Strings . 15
Character Codes . 16
Floating Point Numbers . 20
Dimensions . 27
Extended Dimensions . 29
Stretch and Shrink . 32

Simple Nodes
Glyphs . 2
Penalties . 35
Languages . 37
Rules . 38
Kerns . 41
Glue . 43

Lists
Plain Lists . 49
Texts . 55

Composite Nodes
Boxes . 62
Extended Boxes . 65
Leaders . 69
Baseline Skips . 71
Ligatures . 73
Discretionary breaks . 75
Paragraphs . 78
Displayed Math . 80
Adjustments . 81
Text Math . 81
Tables . 83

238 D Format Definitions

Extensions
Images . 86
Labels . 100
Links . 106
Outlines . 109
Colors . 112
Unknown Extensions . 117
Stream Definitions . 126
Stream Content . 128
Page Template Definitions . 130
Page Ranges . 132

File Structure
Banner . 139
Banner . 140
Directory Section . 149
Definition Section . 161
Content Section . 187

Definitions
Special Maximum Values . 99
Maximum Values . 164
Definitions . 168
Parameter Lists . 171
Fonts . 174
References . 176

D.2 Writing the Long Format

Data Types
Integers . 14
Strings . 15
Character Codes . 18
Floating Point Numbers . 24
Fixed Point Numbers . 26
Dimensions . 28
Extended Dimensions . 29
Stretch and Shrink . 33

Simple Nodes
Glyphs . 10
Languages . 37
Rules . 39
Kerns . 41
Glue . 44

Lists
Plain Lists . 50
Texts . 57

D.3 Reading the Short Format 239

Composite Nodes
Boxes . 62
Leaders . 69
Ligatures . 73
Discretionary breaks . 76
Adjustments . 81

Extensions
Images . 87
Labels . 102
Links . 106
Outlines . 108
Colors . 115
Unknown Extensions . 119
Stream Definitions . 127
Stream Content . 128
Page Template Definitions . 130
Page Ranges . 132

File Structure
Banner . 139
Directory Section . 153
Definition Section . 162
Content Section . 187

Definitions
Special Maximum Values . 99
Maximum Values . 165
Definitions . 169
Parameter Lists . 172
Fonts . 174
References . 178

D.3 Reading the Short Format

Data Types
Strings . 16
Character Codes . 19
Dimensions . 28
Extended Dimensions . 30
Stretch and Shrink . 32

Simple Nodes
Content Nodes . 9
Glyphs . 9
Penalties . 36
Languages . 37
Rules . 39
Kerns . 41
Glue . 44

240 D Format Definitions

Lists

Plain Lists . 50

Texts . 58

Composite Nodes

Boxes . 63

Extended Boxes . 67

Leaders . 69

Baseline Skips . 71

Ligatures . 74

Discretionary breaks . 76

Paragraphs . 79

Displayed Math . 80

Adjustments . 81

Text Math . 81

Tables . 83

Extensions

Images . 87

Labels . 103

Links . 105

Outlines . 108

Colors . 115

Unknown Extensions . 119

Stream Definitions . 127

Stream Content . 128

Page Template Definitions . 130

Page Ranges . 133

File Structure

Banner . 139

Primitives . 141

Sections . 146

Directory Entries . 154

Directory Section . 155

Content Section . 188

Definitions

Special Maximum Values . 98

Maximum Values . 165

Definitions . 169

Parameter Lists . 172

Fonts . 174

References . 177

D.4 Writing the Short Format 241

D.4 Writing the Short Format

Data Types
Strings . 16
Character Codes . 20
Dimensions . 28
Extended Dimensions . 30
Stretch and Shrink . 31

Simple Nodes
Glyphs . 7
Penalties . 36
Languages . 37
Rules . 40
Kerns . 42
Glue . 45

Lists
Plain Lists . 51
Texts . 59

Composite Nodes
Boxes . 64
Baseline Skips . 72
Ligatures . 74
Discretionary breaks . 77
Adjustments . 81
Tables . 84

Extensions
Images . 88
Labels . 104
Links . 106
Outlines . 110
Colors . 112
Unknown Extensions . 118
Stream Definitions . 126
Stream Content . 128
Page Template Definitions . 130
Page Ranges . 134

File Structure
Banner . 139
Primitives . 141
Directory Section . 156
Optional Sections . 159
Definition Section . 162
Content Section . 188

242 D Format Definitions

Definitions
Special Maximum Values . 99
Maximum Values . 166
Definitions . 168
Parameter Lists . 171
Fonts . 176
References . 176

243

Crossreference of Code

〈 adjust label positions after moving a list 〉 Defined in 258cclviii Used in 148cxlviii

〈 advance hpos over a list 〉 Defined in 469cdlxix Used in 466cdlxvi

〈 alternative kind names 〉 Defined in 10x Used in 6vi

〈 append section i from file 〉 Defined in 375ccclxxv Used in 374ccclxxiv

〈 append section i from buffer 〉 Defined in 376ccclxxvi Used in 374ccclxxiv

〈 auxiliar image functions 〉 Defined in 239ccxxxix, 240ccxl, 241ccxli, and 242ccxlii

Used in 237ccxxxvii

〈 basetypes.h 〉 Defined in 547dxlvii

〈 cases of getting special maximum values 〉 Defined in 246ccxlvi Used in 390cccxc

〈 cases of putting special maximum values 〉 Defined in 247ccxlvii Used in 391cccxci

〈 cases of writing special maximum values 〉 Defined in 248ccxlviii

Used in 389ccclxxxix

〈 cases to get content 〉 Defined in 20xx, 106cvi, 111cxi, 119cxix, 128cxxviii, 137cxxxvii,

165clxv, 172clxxii, 178clxxviii, 184clxxxiv, 192cxcii, 200cc, 207ccvii, 212ccxii, 217ccxvii,

221ccxxi, 225ccxxv, 233ccxxxiii, 266cclxvi, 297ccxcvii, 314cccxiv, 317cccxvii, and 416cdxvi

Used in 18xviii

〈 cases to get definitions for color kind 〉 Defined in 299ccxcix Used in 398cccxcviii

〈 cases to skip content 〉 Defined in 503diii, 505dv, 507dvii, 508dviii, 510dx, 513dxiii,

516dxvi, 519dxix, 521dxxi, 523dxxiii, 525dxxv, 527dxxvii, 529dxxix, 531dxxxi,

533dxxxiii, 535dxxxv, 536dxxxvi, 539dxxxix, 541dxli, 543dxliii, and 545dxlv

Used in 494cdxciv

〈 close the input file 〉 Defined in 458cdlviii Used in 557dlvii

〈 close the log file 〉 Defined in 460cdlx Used in 557dlvii, 558dlviii, and 560dlx

〈 close the output file 〉 Defined in 459cdlix Used in 557dlvii and 558dlviii

〈 common variables 〉 Defined in 252cclii, 289cclxxxix, 324cccxxiv, 335cccxxxv, 342cccxlii,

348cccxlviii, 406cdvi, 450cdl, and 453cdliii

Used in 552dlii, 554dliv, 557dlvii, 558dlviii, and 560dlx

〈 compress long format depth levels 〉 Defined in 275cclxxv Used in 284cclxxxiv

〈 compute a local aux name 〉 Defined in 362ccclxii Used in 366ccclxvi and 372ccclxxii

〈 debug constants 〉 Defined in 449cdxlix Used in 548dxlviii

〈 debug macros 〉 Defined in 383ccclxxxiii, 384ccclxxxiv, and 462cdlxii

Used in 548dxlviii

〈 default names 〉 Defined in 420cdxx, 422cdxxii, 424cdxxiv, 426cdxxvi, 428cdxxviii,

430cdxxx, 432cdxxxii, 434cdxxxiv, 436cdxxxvi, 438cdxxxviii, and 440cdxl

Used in 548dxlviii

〈 define page defaults 〉 Defined in 435cdxxxv Used in 549dxlix

244 Crossreference of Code

〈 define range defaults 〉 Defined in 437cdxxxvii and 439cdxxxix Used in 549dxlix

〈 define stream defaults 〉 Defined in 433cdxxxiii Used in 549dxlix

〈 define baseline defaults 〉 Defined in 429cdxxix Used in 549dxlix

〈 define color defaults 〉 Defined in 441cdxli Used in 549dxlix

〈 define content name and definition name 〉 Defined in 7vii Used in 549dxlix

〈 define dimen defaults 〉 Defined in 423cdxxiii Used in 549dxlix

〈 define glue defaults 〉 Defined in 427cdxxvii Used in 549dxlix

〈 define int defaults 〉 Defined in 421cdxxi Used in 549dxlix

〈 define label defaults 〉 Defined in 431cdxxxi Used in 549dxlix

〈 define xdimen defaults 〉 Defined in 425cdxxv Used in 549dxlix

〈 definition checks 〉 Defined in 392cccxcii and 396cccxcvi

Used in 556dlvi, 558dlviii, and 560dlx

〈 determine the stem name from the output file name 〉 Defined in 457cdlvii

Used in 558dlviii

〈 determine whether path is absolute or relative 〉 Defined in 363ccclxiii

Used in 362ccclxii

〈 directory entry type 〉 Defined in 357ccclvii Used in 551dli, 553dliii, and 560dlx

〈 directory functions 〉 Defined in 358ccclviii and 359ccclix

Used in 552dlii, 554dliv, 557dlvii, 558dlviii, and 560dlx

〈 enable bison debugging 〉 Defined in 464cdlxiv Used in 555dlv, 556dlvi, and 557dlvii

〈 error.h 〉 Defined in 461cdlxi

〈 explain usage 〉 Defined in 448cdxlviii Used in 452cdlii

〈 extract mantissa and exponent 〉 Defined in 69lxix, 70lxx, and 71lxxi

Used in 68lxviii

〈 format.h 〉 Defined in 548dxlviii

〈 function to check the banner 〉 Defined in 336cccxxxvi

Used in 552dlii, 557dlvii, 558dlviii, and 560dlx

〈 function to write the banner 〉 Defined in 339cccxxxix

Used in 554dliv, 557dlvii, and 558dlviii

〈 get and store a label node 〉 Defined in 261cclxi Used in 245ccxlv

〈 get and write an outline node 〉 Defined in 277cclxxvii Used in 245ccxlv

〈 get file functions 〉 Defined in 337cccxxxvii, 350cccl, 352ccclii, 369ccclxix, 370ccclxx,

and 390cccxc Used in 552dlii, 558dlviii, and 560dlx

〈 get function declarations 〉 Defined in 559dlix Used in 558dlviii and 560dlx

〈 get functions 〉 Defined in 18xviii, 85lxxxv, 93xciii, 94xciv, 121cxxi, 139cxxxix, 158clviii,

167clxvii, 202ccii, 245ccxlv, 298ccxcviii, 307cccvii, 308cccviii, 313cccxiii, 322cccxxii,

331cccxxxi, 381ccclxxxi, 398cccxcviii, 405cdv, 412cdxii, and 446cdxlvi

Used in 558dlviii and 560dlx

〈 get macros 〉 Defined in 19xix, 92xcii, 98xcviii, 107cvii, 120cxx, 129cxxix, 138cxxxviii,

157clvii, 166clxvi, 173clxxiii, 179clxxix, 185clxxxv, 193cxciii, 201cci, 208ccviii, 213ccxiii,

226ccxxvi, 234ccxxxiv, 265cclxv, 318cccxviii, and 417cdxvii

Used in 558dlviii and 560dlx

〈 get stream information for normal streams 〉 Defined in 312cccxii

Used in 313cccxiii

〈 get.c 〉 Defined in 552dlii

〈 get.h 〉 Defined in 551dli

Crossreference of Code 245

〈 hint basic types 〉 Defined in 6vi, 11xi, 12xii, 57lvii, 77lxxvii, 82lxxxii, 87lxxxvii,

96xcvi, 131cxxxi, 180clxxx, 250ccl, 285cclxxxv, and 407cdvii Used in 548dxlviii

〈 hint macros 〉 Defined in 13xiii, 78lxxviii, 113cxiii, 132cxxxii, 244ccxliv, 251ccli,

286cclxxxvi, 326cccxxvi, 334cccxxxiv, 347cccxlvii, and 465cdlxv Used in 548dxlviii

and 553dliii

〈 hint types 〉 Defined in 1i, 114cxiv, 123cxxiii, 141cxli, 149cxlix, 160clx, 187clxxxvii,

195cxcv, 228ccxxviii, 272cclxxii, 323cccxxiii, and 414cdxiv

Used in 551dli, 553dliii, and 560dlx

〈 image functions 〉 Defined in 236ccxxxvi, 237ccxxxvii, and 243ccxliii

Used in 235ccxxxv

〈 initialize definitions 〉 Defined in 253ccliii, 274cclxxiv, 290ccxc, 325cccxxv, 393cccxciii,

and 408cdviii Used in 381ccclxxxi and 387ccclxxxvii

〈 initialize the hnode size array 〉 Defined in 470cdlxx, 471cdlxxi, 472cdlxxii, 473cdlxxiii,

474cdlxxiv, 475cdlxxv, 476cdlxxvi, 477cdlxxvii, 478cdlxxviii, 479cdlxxix, 480cdlxxx,

481cdlxxxi, 482cdlxxxii, 483cdlxxxiii, 484cdlxxxiv, 485cdlxxxv, 486cdlxxxvi, 487cdlxxxvii,

488cdlxxxviii, 489cdlxxxix, 490cdxc, 491cdxci, and 492cdxcii Used in 549dxlix

〈 kinds 〉 Defined in 9ix Used in 6vi and 7vii

〈 lexer.l 〉 Defined in 555dlv

〈 local variables in main 〉 Defined in 451cdli Used in 557dlvii, 558dlviii, and 560dlx

〈make sure the path in aux name exists 〉 Defined in 365ccclxv

Used in 366ccclxvi and 456cdlvi

〈make sure access is defined 〉 Defined in 361ccclxi Used in 366ccclxvi

〈map functions 〉 Defined in 349cccxlix Used in 552dlii, 558dlviii, and 560dlx

〈merge stored image dimensions with dimensions given 〉 Defined in 238ccxxxviii

Used in 237ccxxxvii

〈 mktables.c 〉 Defined in 549dxlix

〈 normalize the mantissa 〉 Defined in 65lxv Used in 62lxii

〈 open the input file 〉 Defined in 455cdlv Used in 557dlvii

〈 open the log file 〉 Defined in 454cdliv Used in 557dlvii, 558dlviii, and 560dlx

〈 open the output file 〉 Defined in 456cdlvi Used in 557dlvii and 558dlviii

〈 output the label definitions 〉 Defined in 264cclxiv Used in 263cclxiii

〈 output the outline definitions 〉 Defined in 284cclxxxiv Used in 263cclxiii

〈 output the title of outline ∗t 〉 Defined in 282cclxxxii Used in 283cclxxxiii

〈 parser.y 〉 Defined in 556dlvi

〈 parsing functions 〉 Defined in 388ccclxxxviii, 399cccxcix, and 463cdlxiii

Used in 556dlvi

〈 parsing rules 〉 Defined in 5v, 30xxx, 39xxxix, 51li, 59lix, 83lxxxiii, 90xc, 101ci,

105cv, 117cxvii, 126cxxvi, 135cxxxv, 143cxliii, 154cliv, 163clxiii, 171clxxi, 176clxxvi,

183clxxxiii, 190cxc, 198cxcviii, 206ccvi, 211ccxi, 216ccxvi, 220ccxx, 224ccxxiv,

231ccxxxi, 249ccxlix, 256cclvi, 270cclxx, 280cclxxx, 291ccxci, 292ccxcii, 293ccxciii,

296ccxcvi, 302cccii, 304ccciv, 311cccxi, 316cccxvi, 321cccxxi, 329cccxxix, 340cccxl,

356ccclvi, 379ccclxxix, 387ccclxxxvii, 395cccxcv, 397cccxcvii, 402cdii, 403cdiii, 411cdxi,

415cdxv, and 444cdxliv Used in 556dlvi

〈 print defaults 〉 Defined in 550dl Used in 549dxlix

〈 print the content known variable 〉 Defined in 468cdlxviii Used in 549dxlix

〈 print the hnode size variable 〉 Defined in 467cdlxvii Used in 549dxlix

246 Crossreference of Code

〈 print content name and definition name 〉 Defined in 8viii Used in 549dxlix

〈 process the command line 〉 Defined in 452cdlii

Used in 557dlvii, 558dlviii, and 560dlx

〈 put functions 〉 Defined in 14xiv, 15xv, 37xxxvii, 54liv, 75lxxv, 86lxxxvi, 95xcv,

97xcvii, 108cviii, 112cxii, 122cxxii, 130cxxx, 140cxl, 148cxlviii, 159clix, 168clxviii,

186clxxxvi, 194cxciv, 203cciii, 227ccxxvii, 235ccxxxv, 257cclvii, 262cclxii, 263cclxiii,

267cclxvii, 276cclxxvi, 281cclxxxi, 283cclxxxiii, 294ccxciv, 295ccxcv, 305cccv, 306cccvi,

333cccxxxiii, 341cccxli, 344cccxliv, 351cccli, 353cccliii, 371ccclxxi, 374ccclxxiv, 382ccclxxxii,

391cccxci, 413cdxiii, and 447cdxlvii Used in 554dliv and 557dlvii

〈 put macros 〉 Defined in 345cccxlv and 346cccxlvi Used in 553dliii and 557dlvii

〈 put.c 〉 Defined in 554dliv

〈 put.h 〉 Defined in 553dliii

〈 read and check the end byte z 〉 Defined in 17xvii

Used in 18xviii, 94xciv, 121cxxi, 139cxxxix, 146cxlvi, 158clviii, 167clxvii, 202ccii,

313cccxiii, 369ccclxix, 390cccxc, 398cccxcviii, and 412cdxii

〈 read the banner 〉 Defined in 338cccxxxviii Used in 557dlvii

〈 read the mantissa 〉 Defined in 64lxiv Used in 62lxii

〈 read the optional exponent 〉 Defined in 66lxvi Used in 62lxii

〈 read the optional sign 〉 Defined in 63lxiii Used in 62lxii

〈 read the start byte a 〉 Defined in 16xvi Used in 18xviii, 94xciv, 121cxxi, 139cxxxix,

146cxlvi, 158clviii, 167clxvii, 202ccii, 313cccxiii, 369ccclxix, 390cccxc, 398cccxcviii,

and 412cdxii

〈 replace links to the parent directory 〉 Defined in 364ccclxiv Used in 362ccclxii

〈 return the binary representation 〉 Defined in 67lxvii Used in 62lxii

〈 rewrite the file names of optional sections 〉 Defined in 373ccclxxiii Used in 557dlvii

〈 scanning definitions 〉 Defined in 24xxiv, 33xxxiii, 40xl, 42xlii, 44xliv, 46xlvi, and 150cl

Used in 555dlv

〈 scanning functions 〉 Defined in 62lxii Used in 555dlv

〈 scanning macros 〉 Defined in 23xxiii, 26xxvi, 29xxix, 32xxxii, 41xli, 43xliii, 45xlv,

47xlvii, 58lviii, 61lxi, and 153cliii Used in 555dlv

〈 scanning rules 〉 Defined in 3iii, 25xxv, 28xxviii, 35xxxv, 49xlix, 56lvi, 60lx, 81lxxxi,

89lxxxix, 100c, 104civ, 110cx, 116cxvi, 125cxxv, 134cxxxiv, 152clii, 162clxii,

170clxx, 175clxxv, 182clxxxii, 189clxxxix, 197cxcvii, 205ccv, 210ccx, 215ccxv,

219ccxix, 223ccxxiii, 230ccxxx, 255cclv, 269cclxix, 279cclxxix, 288cclxxxviii, 301ccci,

310cccx, 320cccxx, 328cccxxviii, 355ccclv, 378ccclxxviii, 386ccclxxxvi, 401cdi, 410cdx,

and 443cdxliii Used in 555dlv

〈 shared get functions 〉 Defined in 53liii, 76lxxvi, and 146cxlvi

Used in 552dlii, 558dlviii, and 560dlx

〈 shared get macros 〉 Defined in 38xxxviii, 147cxlvii, 343cccxliii, 368ccclxviii, and 497cdxcvii

Used in 551dli and 560dlx

〈 shared put variables 〉 Defined in 273cclxxiii

Used in 554dliv, 557dlvii, 558dlviii, and 560dlx

〈 shared skip functions 〉 Defined in 466cdlxvi, 498cdxcviii, and 537dxxxvii

Used in 552dlii and 560dlx

〈 shrink.c 〉 Defined in 557dlvii

Crossreference of Code 247

〈 skip and check the start byte a 〉 Defined in 496cdxcvi

Used in 494cdxciv, 500d, 511dxi, 514dxiv, 517dxvii, and 538dxxxviii

〈 skip function declarations 〉 Defined in 561dlxi Used in 560dlx

〈 skip functions 〉 Defined in 493cdxciii, 494cdxciv, 500d, 511dxi, 514dxiv, 517dxvii,

538dxxxviii, and 546dxlvi Used in 560dlx

〈 skip macros 〉 Defined in 499cdxcix, 501di, 502dii, 504div, 506dvi, 509dix, 512dxii,

515dxv, 518dxviii, 520dxx, 522dxxii, 524dxxiv, 526dxxvi, 528dxxviii, 530dxxx,

532dxxxii, 534dxxxiv, 540dxl, 542dxlii, and 544dxliv Used in 549dxlix and 560dlx

〈 skip the end byte z 〉 Defined in 495cdxcv

Used in 494cdxciv, 500d, 511dxi, 514dxiv, 517dxvii, and 538dxxxviii

〈 skip.c 〉 Defined in 560dlx

〈 stretch.c 〉 Defined in 558dlviii

〈 symbols 〉 Defined in 2ii, 4iv, 27xxvii, 34xxxiv, 48xlviii, 50l, 55lv, 80lxxx, 88lxxxviii,

99xcix, 103ciii, 109cix, 115cxv, 124cxxiv, 133cxxxiii, 142cxlii, 151cli, 161clxi, 169clxix,

174clxxiv, 181clxxxi, 188clxxxviii, 196cxcvi, 204cciv, 209ccix, 214ccxiv, 218ccxviii,

222ccxxii, 229ccxxix, 254ccliv, 268cclxviii, 278cclxxviii, 287cclxxxvii, 300ccc, 303ccciii,

309cccix, 315cccxv, 319cccxix, 327cccxxvii, 354cccliv, 377ccclxxvii, 385ccclxxxv,

394cccxciv, 400cd, 409cdix, and 442cdxlii Used in 556dlvi

〈 take care of variables without defaults 〉 Defined in 419cdxix Used in 549dxlix

〈 update the file sizes of optional sections 〉 Defined in 372ccclxxii Used in 371ccclxxi

〈without -f skip writing an existing file 〉 Defined in 360ccclx Used in 366ccclxvi

〈write a list 〉 Defined in 145cxlv Used in 144cxliv

〈write a text 〉 Defined in 155clv Used in 144cxliv

〈write functions 〉 Defined in 21xxi, 31xxxi, 36xxxvi, 52lii, 68lxviii, 79lxxix, 84lxxxiv,

91xci, 102cii, 118cxviii, 127cxxvii, 136cxxxvi, 144cxliv, 156clvi, 164clxiv, 177clxxvii,

191cxci, 199cxcix, 232ccxxxii, 259cclix, 260cclx, 271cclxxi, 330cccxxx, 332cccxxxii,

366ccclxvi, 367ccclxvii, 380ccclxxx, 389ccclxxxix, 404cdiv, 418cdxviii, and 445cdxlv

Used in 558dlviii and 560dlx

〈write large numbers 〉 Defined in 72lxxii Used in 68lxviii

〈write macros 〉 Defined in 22xxii Used in 558dlviii and 560dlx

〈write medium numbers 〉 Defined in 73lxxiii Used in 68lxviii

〈write small numbers 〉 Defined in 74lxxiv Used in 68lxviii

249

References

[1] Peter Deutsch and Jaen-Loup Gailly. RFC1950, ZLIB Compressed Data Format
Specification Version 3.3. RFC Editor, United States, 1996.

[2] Jaen-loup Gailly and Mark Adler. zlib.
http://zlib.net/.

[3] IANA Internet Assigned Numbers Authority, Los Angeles, CA. IANA Charset
MIB, May 2014.

[4] IANA Internet Assigned Numbers Authority, Los Angeles, CA. Character Sets
Registry, December 2018.

[5] IANA Internet Assigned Numbers Authority, Los Angeles, CA. Language Tags,
April 2020.

[6] IEEE Computer Society Standards Committee. Working group of the Micro-
processor Standards Subcommittee and American National Standards Insti-
tute. IEEE standard for binary floating-point arithmetic. IEEE Computer Society
Press, 1985.

[7] IEEE Computer Society Standards Committee. Working group of the Micro-
processor Standards Subcommittee and American National Standards Insti-
tute. IEEE Standard 754-2008. Technical report, August 2008.

[8] Donald E. Knuth. The TEX book. Computers & Typesetting, Volume A.
Addison-Wesley Publishing Company, 1984.

[9] Donald E. Knuth. TEX: The Program. Computers & Typesetting, Volume B.
Addison-Wesley, 1986.

[10] Donald E. Knuth. Literate Programming. CSLI Lecture Notes Number 27.
Center for the Study of Language and Information, Stanford, CA, 1992.

[11] Donald E. Knuth and Silvio Levy. The CWEB System of Structured Documenta-
tion. Addison Wesley, 1994. https://ctan.org/pkg/cweb.

[12] John R. Levine. flex & bison. O’Reilly Media, 2009. ISBN 978-0-596-15597-1.

[13] John R. Levine, Tony Mason, and Doug Brown. lex & yacc. O’Reilly Media,
2012.

[14] Ira McDonald. IANA Charset MIB. IETF Internet Engineering Task Force, rfc
3808 edition, June 2004.

250 References

[15] Addison Phillips and Mark Davis. Tags for Identifying Languages. RFC 5646,
September 2009.

[16] Martin Ruckert. Computer Modern Roman fonts for ebooks. TUGboat,
37(3):277–280, 2016.

[17] Martin Ruckert. Converting TEX from WEB to cweb. TUGboat, 38(3):353–358,
2017.

[18] Martin Ruckert. web2w package on CTAN.
https://ctan.org/pkg/web2w, August 2017.

[19] Martin Ruckert. HINT: Reflowing TEX output. TUGboat, 39(3):217–223, 2018.

[20] Martin Ruckert. WEB to cweb. 2 edition, 2021. ISBN 979-8-54989510-2.
https://www.amazon.de/dp/B09BY85KG9.

251

Index

Symbols

’ 17
’9’ 16
’a’ 1
− 53–55
/ 14
< 54
<max 163
> 54, 163
 53–55
\ 14, 53
\− 54
\< 54
\> 54
\@ 55
\ 54
\\ 54
\a 54
\b 54
\c 54
\j 54
\k 54
\l 54

__BASETYPES_H__ 221
__SIZEOF_DOUBLE__ 221
__SIZEOF_FLOAT__ 221
_access 151
_HFORMAT_H_ 222
_MSC_VER 221, 228

A

above_display_short_skip_no 182
above_display_skip_no 182
absolute 151
access 150
ADD 65
adj_demerits_no 180

ADJUST 81
adjust_kind 5, 53, 81, 205, 219
adjustment 81, 205, 219
ALIGN 69
alignment 61, 68, 82, 205
alloc_func 145
ALLOCATE 100, 107, 109, 131, 145, 147,

150, 158, 174, 192, 194
argc 191, 230, 233
argv 191–193, 230, 233
AS_STR 222
asterisk 176
atof 20
atoi 56
aux_ext 151
aux_length 151
aux_name 150–153, 158, 194
aux_names 157
auxiliary file 137
avail_in 145
avail_out 145
awful_bad 122

B

b000 6
b001 6
b010 6
b011 6
b100 6
b101 6
b110 6
b111 6
backslash 53
banner 137
BASELINE 71, 164, 168, 177
baseline 71, 168
baseline_defaults 222
baseline_kind 5, 71, 164, 168, 177, 183,

203, 214, 220

252 Index

baseline skip 65, 70, 183, 203, 214
baseline_skip_no 182
below_display_short_skip_no 182
below_display_skip_no 182
BG 112, 115
BigEndian16 91, 95
BigEndian32 91, 93
bison 3
bits 23–26, 208
BOOL 221
bool 221
BOT 100
box 61, 74, 121, 182, 201, 211
box 62
box 255 122
box_dimen 62, 66
box_flex 66
box_glue_set 62
box_goal 65, 83
box_options 65
box_shift 62, 66
broken_penalty_no 180
bsize 104, 134, 145–147, 150, 157, 162,

188
buffer 147
buffer 104, 134, 144–148, 150, 156, 159,

162, 188
buffer_factor 147
buffer overrun 141
BUFFER_SIZE 147
build_page v

C

calloc 132
carriage return character 54
cc_list 73
ceil 26
CENTER 69
centered 68
character code 16, 52
CHARCODE 16, 18, 73
check_param_def 171
close 144
club_penalty_no 180
code file 221
COLOR 112, 115, 164
color 110, 206
color 113
color_defaults 112–116, 222

color_init 113, 227
color_kind 106, 113–115, 164, 168, 170,

185, 206, 217
color_pair 113
color_set 113
color_tripple 113
color_unset 113
colors_0 112–114, 227
colors_equal 114
colors_i 112–114, 227
colors_n 112–114, 227
command line 189
comment 3
compression 144, 154
CONTENT 187
content_known 9, 198, 222
content_list 49, 187
content_name 5, 8, 50, 59, 175, 178,

198, 222
content_node 3, 35, 39, 41, 44, 49, 57,

62, 66, 69, 71, 73, 75, 79–81,
83, 87, 101, 106, 115, 118, 126,
128, 132, 176

content section 137, 187
content_section 140, 187
control code 52
cs 115
CURCOLOR 111
current font 52

D

DAY 111
day_no 180
DBG 195
DBGBASIC 140, 153, 162, 188–191, 232
DBGBISON 190, 230
DBGBUFFER 145, 147, 190
DBGCOMPRESS 145, 189
DBGDEF 96, 98, 104, 110, 127, 162, 164–

167, 175, 189
DBGDIR 138, 140, 146, 150–153, 155–

159, 188–190
DBGFLEX 190, 230
DBGFLOAT 21–25, 31, 189
DBGFONT 190
DBGLABEL 98, 101–105, 110, 190
DBGNODE 50–52, 101, 189
DBGNONE 190
DBGPAGE 190

Index 253

DBGRANGE 132–135, 189
DBGRENDER 190
DBGTAG 195
DBGTAGS 118–120, 156, 189, 195, 220,

233
DBGTEX 190
DBL_E_BITS 20, 24
DBL_EXCESS 20, 23
DBL_M_BITS 20, 22–25
dc 75, 229
DEBUG 189, 195
debug 228
debugflags 190–192, 195, 222, 230
debugging 189, 195
decimal number 13
DEF 113, 126, 167–169
DEF_KIND 4–6
def_list 171
def_node 109, 113, 117, 161, 168, 171
DEF_REF 169
default value 163, 179
definition_bits 167
definition_list 161
definition_name 5, 163–167, 169–171,

175, 222
definition section 137, 161, 166
definition_section 140, 161
DEFINITIONS 161
deflate 144
deflate 146
deflateEnd 146
deflateInit 145
DEPTH 65
DESCRIPTION 189, 230, 233
df 127, 171, 175
diff_focus 115
diff_high 115
digits 21–25
DIMEN 27, 82, 164, 168
dimen_defaults 181, 222
dimen_kind 5, 28, 130, 164, 168, 171,

176, 181, 220
dimension 27, 170
dimension 27, 29, 38, 62, 66, 71, 130,

168, 174
dir 89, 91, 95, 104, 134, 145–148, 150,

153, 156–159, 162, 188, 224, 226
DIRECTORY 149
directory entry 154
directory section 137, 149, 154

directory_section 140, 149
disable 221, 228
DISC 75, 164, 168, 174, 176
disc 75, 168, 174
disc_kind 5, 58, 60, 76, 164, 168, 175,

177, 179, 204, 215, 220
disc_node 75, 174
discretionary break 74, 204
discretionary breaks 215
discretionary hyphen 54
display_widow_penalty_no 180
displayed formula 78, 204, 216
double 20
double_hyphen_demerits_no 180
double quote 53

E

emergency_stretch_no 181
empty list 49
empty_list_no 185
END 2–4, 8, 29, 35, 39, 41, 44, 49, 62,

66, 69, 71, 73, 75, 79–81, 83,
87, 101, 106, 109, 113, 115, 117,
126, 128, 132, 149, 161, 164,
168, 171, 174, 176, 187

end byte 6, 8, 208
entries 150, 224, 226
entry 149
entry_list 149
EOF 139
equation number 79
error message 193, 195
estimate 48, 53
estimate 49, 171
ex_hyphen_penalty_no 180
exit 191–193, 195
exp 21–26
EXPAND 69
expanded 68
EXPLICIT 41
explicit 74, 77
explicit kern 40
exponent 20
ext_length 151, 192
extended box 64, 202, 212
extended dimension 28, 64, 182, 200, 208

254 Index

F

F_OK 150
false 221
fclose 96, 143, 153, 159, 194
fd 144
feof 159
fflush 195
FG 112, 115
fgetc 139
FIL 32
fil_o 31–33, 182
fil_skip_no 182
file 137
file name 14, 191
file_name 89, 91, 95, 150, 153–155, 157–

159, 191–194, 224, 228
file_name_length 191–194
file size 158
FILL 32
fill_o 31–33, 182
fill_skip_no 182
FILLL 32
filll_o 31–33
final_hyphen_demerits_no 180
FIRST 126
first_color 114, 116
first_label 100–103, 226
first stream 123
fixed point number 26
FLAGS 195
flex 2
float 20
float32 t 20
float32 t 31
float64 t 20
float64 t 26, 31
floating_penalty 122, 128
floating_penalty_no 180
floating point number 20, 208
floor 24, 26, 92–95
FLT_E_BITS 20, 31
FLT_EXCESS 20, 32
FLT_M_BITS 20, 31
fn 91–96
FOCUS 112, 115
FONT 164, 168, 174
font 52, 137, 172
font 172
font 168, 174

font at size 173
font design size 173
font_head 174
font_kind 3, 5, 9, 16, 57, 60, 73, 164,

168, 174–176, 179
font_param 174
font_param_list 174
font parameter 54
footnote 121
fopen 95, 143, 153, 159, 193
format.h 222
FPNUM 20
fprintf 11, 139, 189–193, 195
fread 91, 143, 159
free 109, 142, 146, 153, 156, 158, 194
free_func 145
fref 174
freopen 193
from 133–135
fseek 93
fsize 159
fstat 144
FT_ENCODING_ADOBE_CUSTOM 173
FT_ENCODING_UNICODE 173
fwrite 147, 153, 159

G

get_BMP_info 92, 96
get_content 187
GET_DBIT 167
GET_IMG_BUF 91–94
get_JPG_info 94, 96
get_PNG_info 93, 96
get.c 225
get.h 224
GLUE 43, 164, 168, 174, 176
glue 31, 42, 54, 70, 85, 121, 171, 182,

201, 211
glue 43, 168, 174
glue_defaults 182, 222
glue_kind 5, 44, 58, 60, 164, 168, 171,

175–177, 182, 201, 211, 220
glue_node 43, 69, 71, 126, 130, 174, 177
glue ratio 61, 65
GLYPH 2–4
glyph 1, 74, 172, 199, 209
glyph 2
glyph 3, 16
glyph_kind 5–7, 10, 199, 209

Index 255

grammar 3, 61

H

hang_after_no 180
hang_indent_no 181
HBACK 208, 218
hbanner 137–139
hbanner_size 137–139
HBOX 62
hbox_kind 5, 62–64, 70, 82, 201, 212, 214
hbox_node 62, 69, 80
hcheck_banner 137, 224, 230, 233
hclear_dir 156, 224
hcompress 145, 157
hcompress_depth 107, 227
hdecompress 144, 146
header file 221
HEIGHT 86
HEND 141
hend 8, 16, 50, 57, 104, 134, 139–141,

145–147, 157, 162, 165, 172,
188, 207, 224, 226, 231, 233

hexadecimal 13, 21
hextract_image_dimens 89, 95, 226
hff_hpos 198, 225, 233
hff_list_pos 197, 199, 225, 233
hff_list_size 197, 199, 225, 233
hff_tag 197–199, 225, 233
hfont_name 11, 173–175, 228
hget_banner 139, 224, 231, 233
HGET_BASELINE 71
HGET_BOX 63
hget_color_set 115
hget_content 8, 59, 170
hget_content_node 8, 49, 83, 120, 188,

207, 232
hget_content_section 187, 207, 232
hget_def_node 162, 170, 172, 232
hget_definition 169, 175
hget_definition_section 162, 231, 233
hget_dimen 28, 130, 169
hget_directory 155, 224, 231, 233
HGET_DISC 76
hget_disc_node 76, 175
HGET_ENTRY 154
hget_entry 155, 224
HGET_ERROR 141
hget_float32 26, 30, 63, 87, 225
hget_font_def 169, 175, 232

hget_font_params 175

HGET_GLUE 44

hget_glue_node 45, 70, 127, 130, 175, 232

HGET_GLYPH 9

HGET_GREF 58

hget_hbox_node 64, 70, 80, 232

HGET_IMAGE 87

HGET_KERN 41

HGET_LEADERS 69

HGET_LIG 74

HGET_LINK 105

HGET_LIST 51, 169

hget_list 51, 63, 68, 74, 76, 79–81, 83,
88, 108, 120, 127, 129, 172, 225

hget_list_size 50, 225

hget_map 142, 144, 224, 231, 233

HGET_MATH 80

hget_max_definitions 162, 165, 224

HGET_N 9

hget_outline_or_label_def 98, 170

HGET_PACK 67

hget_page 130, 169

HGET_PAR 79

hget_param_list 79, 120, 129, 172, 232

HGET_PENALTY 36

hget_range 133, 170

HGET_REF 68, 79, 84, 129, 177

hget_root 155

HGET_RULE 39

hget_rule_node 40, 70, 232

hget_section 146, 153, 156, 162, 188,
207, 224

HGET_SET 67

HGET_SIZE 154

hget_size_boundary 50, 224

HGET_STREAM 128

hget_stream_def 127, 130

HGET_STRETCH 32, 45, 68

HGET_STRING 15, 130, 155, 169, 175

HGET_TABLE 83

hget_txt 57, 232

hget_unknown 9, 120, 232

hget_unknown_def 119, 170

hget_unmap 142–144, 224, 231, 234

hget_utf8 19, 58, 73, 224

HGET_UTF8C 19

hget_vbox_node 64, 70, 232

HGET_XDIMEN 30

hget_xdimen 30, 169

256 Index

hget_xdimen_node 30, 41, 45, 68, 79, 84,
87, 120, 127, 130, 232

HGETTAG 8, 141, 165
HIGH 112, 115
hin 139, 193, 230
hin_addr 142–144, 146, 224, 231, 233
hin_name 142–144, 158, 192–194, 224
hin_size 142–144, 224, 231, 233
hin_time 142–144, 224
hint 140, 229
HINT_MINOR_VERSION 138, 222
HINT_NO_POS 96, 131, 133, 147
HINT_VERSION 138, 222
HINT_VERSION_STRING 138, 191, 222
hlog 193–195, 222, 230
hnode_size 117–120, 142, 198–206, 220,

222
horizontal box 61
horizontal list 38
hout 11, 139, 147, 159, 193, 226, 233
HPACK 65
hpack 64
hpack 65
hpack_kind 5, 64–67, 82, 202, 213
hpos0 56, 101, 140, 145–147, 188, 224,

226
hput_banner 139, 231
hput_baseline 72
hput_box_dimen 62, 64, 66, 226
hput_box_glue_set 62, 64, 226
hput_box_shift 62, 64, 226
hput_color_def 113, 227
hput_color_set 114
hput_content_end 187, 226
hput_content_start 187, 226
hput_data 147, 157
hput_definitions_end 104, 135, 161, 226
hput_definitions_start 161, 226
hput_dimen 28, 168, 227
hput_directory 157, 227, 230
hput_directory_end 157
hput_directory_start 157
hput_disc 75, 77, 168, 174, 226
hput_entry 156
hput_error 141
hput_float32 26, 30, 64, 89
hput_font_head 174, 176, 227
hput_glue 44, 168, 174, 226
hput_glyph 3, 6, 9, 226
hput_hint 140, 227, 230

hput_image_aspect 88
hput_image_dimen 89
hput_image_dimens 88–90
hput_image_spec 86, 88, 227
hput_increase_buffer 141, 147
hput_int 35, 168, 174, 226
hput_kern 41, 174, 226
hput_label 103–105
hput_label_defs 104, 187, 226
hput_language 37, 177, 226
hput_ligature 73, 168, 174, 226
hput_link 106, 226
hput_list 49, 52, 56, 74, 101, 168, 171,

226
hput_list_size 49, 51, 227
hput_max_definitions 164, 166, 227
hput_n 7, 99, 166
hput_optional_section 140, 159
hput_outline 104, 110
hput_range 132, 134, 227
hput_range_defs 134, 187, 227
hput_root 140, 157
hput_rule 39, 168, 174, 226
hput_section 140, 148
hput_span_count 83, 226
hput_stretch 31, 45, 66, 226
hput_string 15, 130, 157, 168, 174, 176,

227
hput_txt_cc 57, 59, 226
hput_txt_font 57, 59, 226
hput_txt_global 57, 60, 226
hput_txt_local 57, 60, 226
hput_unknown 118, 227
hput_unknown_def 117, 227
hput_utf8 20, 59, 73, 226
hput_xdimen 29–31, 168, 226
hput_xdimen_node 31, 42, 45, 78, 88, 227
HPUTNODE 3, 15, 141
HPUTTAG 142, 156, 166
HPUTX 7, 16, 20, 52, 57, 59, 104, 110,

114, 141
hpx 92–95
hr 86–89, 216, 227
HSET 65
hset_entry 150, 155, 224, 228
hset_kind 5, 64–67, 82, 202, 213
hset_label 101, 226
hset_max 164, 179
hset_outline 109, 226
hsize 28

Index 257

hsize_bytes 49, 51, 226
hsize_dimen_no 181
hsize_xdimen_no 182
hsort_labels 102, 187
hsort_ranges 133, 187
hstart 3, 7, 19, 31, 49–52, 56, 73, 76,

99, 101, 104, 109, 114, 119, 127,
132, 134, 140, 145–147, 153,
155, 157, 162, 165, 171, 188,
195, 199, 207, 215, 218, 220,
224, 226, 231, 233

HTEG_BASELINE 214
HTEG_BOX 211
hteg_content 207, 234
hteg_content_node 207, 219, 234
hteg_content_section 207, 233
HTEG_DISC 215
hteg_float32 208, 211, 216, 225
HTEG_GLUE 211
hteg_glue_node 211, 214, 234
HTEG_GLYPH 209
hteg_hbox_node 212, 214, 216, 234
HTEG_IMAGE 216
HTEG_KERN 210
HTEG_LEADERS 214
HTEG_LIG 215
HTEG_LINK 217
hteg_list 211–213, 215, 218–220, 225, 234
hteg_list_size 218, 225
HTEG_MATH 216
HTEG_PACK 213
HTEG_PAR 215
hteg_param_list 215, 218–220, 234
HTEG_PENALTY 210
HTEG_REF 211–213, 215, 219
HTEG_RULE 210
hteg_rule_node 211, 214, 234
HTEG_SET 212
hteg_size_boundary 218, 225
HTEG_STREAM 219
HTEG_STRETCH 209, 211
HTEG_TABLE 219
hteg_unknown 207, 220, 234
hteg_vbox_node 212, 214, 234
HTEG_XDIMEN 208
hteg_xdimen_node 209–213, 215, 219,

234
HTEG16 208–210, 217
HTEG24 208
HTEG32 208–211, 213, 217

HTEG8 208–211, 215–220

HTEGTAG 208

hwrite_ 101

hwrite_aux_files 153, 231

hwrite_box 62–64

hwrite_charcode 10, 18, 73

hwrite_color_pair 115

hwrite_comment 11

hwrite_content_section 187, 207, 231

hwrite_definitions_end 162

hwrite_definitions_start 162

hwrite_dimension 28, 39, 62, 67, 71, 175

hwrite_directory 154, 231

hwrite_disc 76

hwrite_disc_node 76, 175

hwrite_end 8–10, 29, 40, 44, 50, 64, 76,
99, 102, 108, 116, 120, 127, 153,
165, 170, 172, 175, 178

hwrite_entry 153

hwrite_explicit 41, 76

hwrite_float64 23, 26, 29, 33, 62, 87

hwrite_glue 44

hwrite_glue_node 44, 71

hwrite_glyph 9–11

hwrite_image 87

hwrite_kern 41

hwrite_label 10, 50, 101, 188

hwrite_leaders_type 69

hwrite_ligature 73

hwrite_link 105

hwrite_list 50, 62, 68, 76, 79–81, 83, 88,
108, 120, 127, 129

hwrite_max_definitions 162, 165

hwrite_minus 44, 68

hwrite_named_param_list 120, 172

hwrite_nesting 10, 57

hwrite_order 33, 62

hwrite_param_list 79, 129, 172

hwrite_parameters 169, 172

hwrite_plus 44, 68

hwrite_range 10, 132, 188

hwrite_ref 11, 28, 37, 41, 73, 79, 106,
115, 127–129, 177

hwrite_ref_node 44, 178

hwrite_rule 39

hwrite_rule_dimension 39

hwrite_scaled 26, 28

hwrite_signed 14, 36

258 Index

hwrite_start 8–10, 29, 40, 44, 50, 64, 76,
99, 102, 108, 115, 119, 127, 132,
153, 165, 170, 172, 175, 178

hwrite_stretch 33, 44
hwrite_string 15, 130, 153, 169, 175
hwrite_txt_cc 57, 59, 73
hwrite_utf8 18, 58
hwrite_xdimen 29, 41, 44, 79, 87, 169
hwrite_xdimen_node 29, 68, 84, 120,

127, 130
hwritec 10, 15, 18, 24, 29, 57, 59, 73,

102, 115, 132
hxbox_node 66
hyphen 55
hyphen character 53
hyphen_penalty_no 180

I

ia 90
IEEE754 20
ih 90
illustration 121
IMAGE 86, 164, 168, 174, 177
image 54, 137, 205, 216
image 86, 168, 174
image_aspect 86
image_height 86
image_kind 5, 58, 60, 87, 164, 168, 174,

177, 179, 205, 217, 220
image_spec 86
image_width 86
img_buf 91, 93–95
IMG_BUF_MAX 91
img_buf_size 91, 93, 96
IMG_HEAD_MAX 91
in 27
in 27
in_ext 189, 191, 230, 233
INCH 27
inch 27
indentation 54
inflate 144
inflate 145
inflateEnd 145
inflateInit 145
INFO 7–9, 28, 30, 40, 45, 50–52, 64, 76,

119, 127, 165, 169, 195, 199,
208, 211, 218, 233

info 4

info value 6
INITIAL 56
input file 193
insert node 121
insert_penalties 122
int_defaults 180, 222
int_kind 5, 35, 118, 164, 168, 171, 180,

183
INT16 221
INT32 221
int32 t 35
INT8 221
INTEGER 35, 164, 168
integer 13, 170, 179
integer 13, 35, 109, 168
inter_line_penalty_no 180
interactive 228
interword glue 55
isalpha 152
ITEM 82
item_kind 5, 83, 205, 219
iw 90

K

KERN 41, 174, 176
kern 40, 54, 74, 121, 182, 200, 210
kern 41, 174
kern_kind 5, 41, 58, 60, 175–177, 200,

210, 220
kind 4
kt 41, 229

L

LABEL 100, 164
Label 99
label 96, 184
LABEL_BOT 100–102
label_defaults 222
label_kind 6, 98–104, 106, 109, 163, 170,

179, 184
LABEL_MID 100, 103
LABEL_TOP 100–102
LABEL_UNDEF 100–106, 108
labels 99–104, 106, 108–110, 224, 226
LANGUAGE 37, 164, 168, 174, 177
language 54, 200, 210
language_kind 5, 37, 58, 60, 164, 168,

174, 177, 179, 200, 210, 220
LAST 126

Index 259

last stream 123
LEADERS 69, 164, 168, 177
leaders 38, 68, 203, 214
leaders 69, 168
leaders_kind 69, 164, 168, 177, 179, 203,

214, 220
left_skip_no 182
lex 2
lex_debug 229
lexer.l 228
lg 73, 229
lig_cc 73
LIGATURE 73, 164, 168, 174, 176
ligature 54, 72, 74, 203, 215
ligature 73, 168, 174
ligature_kind 5, 58, 60, 74, 164, 168,

175–177, 179, 203, 215, 220
line breaking 70, 77, 81
line_penalty_no 180
line skip glue 70
line skip limit 70
line_skip_limit_no 181
line_skip_no 182
linear function 28
LINK 106
link 96, 206
link 131, 134
link_color_no 185
link_kind 6, 98, 105, 108, 206, 217
list 47, 199, 218
list 49, 56, 62, 66, 75, 78–83, 86, 108,

118, 126, 128, 130
list_end 52
list_kind 5, 47, 49–51, 53, 56, 74, 76,

120, 163, 165–167, 185, 215,
218, 220, 233

LittleEndian32 91
LOG 138, 195
log file 193
LOG_PREFIX 195
looseness_no 180
lslimit 70
ltype 69

M

magic 137–139, 224
main 191, 207, 223, 230, 233
malloc 143
MAP_FAILED 144

MAP_PRIVATE 144
margin note 121
mark node 121
Match2 91, 94
Match4 91, 93
MATH 80
math 80
math_kind 5, 80, 204, 216
math_quad_no 181
Mathematics 79
mathematics 79, 204, 216
MAX 66, 164
MAX_BANNER 137–139
MAX_BASELINE_DEFAULT 168, 183, 222
MAX_COLOR_DEFAULT 168, 185, 222
max_default 163, 165, 169–171, 179–

185, 222–224
max_definitions 161, 164
max_depth 65
max_depth_no 181
MAX_DIMEN 27, 65–68
MAX_DIMEN_DEFAULT 168, 181, 222
max_fixed 163–165, 167, 169–171, 179–

185, 222–224
MAX_FONT_PARAMS 173–175
MAX_GLUE_DEFAULT 168, 182, 222
MAX_HEX_DIGITS 24
MAX_INT_DEFAULT 168, 180, 222
MAX_LABEL_DEFAULT 184, 222
max_list 164
MAX_LIST_DEFAULT 167, 185
max_outline 98, 107–110, 165, 222, 226
MAX_PAGE_DEFAULT 168, 184
max_range 131–133, 224, 226
MAX_RANGE_DEFAULT 168, 185
MAX_REF 163–165
max_ref 99, 102, 104, 126, 131, 134,

163–167, 170, 174, 222
max_section_no 87, 140, 146, 150, 153–

158, 175, 224, 226
MAX_STR 14
MAX_STREAM_DEFAULT 168, 184
MAX_TAG_DISTANCE 141, 145–147, 157
max_value 99, 164
MAX_XDIMEN_DEFAULT 168, 182, 222
maximum values 161, 163
memcmp 115
memcpy 116
memmove 52, 109
MESSAGE 195

260 Index

message 195

Microsoft Visual C 221

MID 100

millimeter 27

MINUS 43, 62

minus 43, 66

mkdir 152

mktables.c 223

MM 27

mm 27

mmap 142, 144

month_no 180

munmap 143

N

NAME 6, 8, 30, 40, 60, 64, 76, 119, 195,
199, 208, 211

name_type 151

named_param_list 118, 171

natural dimension 65

nesting 10, 57, 102, 132

never 228

new_directory 149, 156, 224, 226

new_output_buffers 147, 149, 226

newline character 54, 137

next 99–103

next_in 145

next_out 145

next_range 131–134, 226

NIGHT 111, 115

NODE_HEAD 119, 197, 220

node_pos 8, 30, 40, 51, 64, 76, 98, 103,
108, 115, 165, 169, 175, 208,
211, 218

NODE_SIZE 118, 197, 199–206

NODE_TAIL 119, 197, 220

noinput 228

NOREFERENCE 126

normal_o 31–33, 182

nounistd 228

nounput 228

noyy_top_state 228

number 20, 27, 29, 32, 86

O

O_RDONLY 144
OFF 81, 115, 132
ON 81, 132
on 106, 131–134, 226
on_off 81, 106
ONE 26, 92–96, 181–183
opaque 145
open 144
option 189
option 191
option_aux 153, 158, 190, 192
option_compress 157, 190, 192
option_force 150, 190, 192
option_global 153, 158, 190, 192
option_hex 19, 190, 192
option_log 191, 193
option_utf8 19, 58, 190, 192
optional section 137
order 32
out_ext 191, 193, 230, 233
OUTLINE 99, 109
Outline 104
outline 96
outline_kind 6, 98, 109
outline_no 108
outlines 107–110, 226
output file 193
output routine 121

P

PAGE 130, 164, 168
page 130, 168
page building 121
page_depth 122
page_goal 122
page_kind 5, 131–133, 164, 168, 184
page_max_depth 122
page_on 131, 134, 226
page_priority 130
page range 130, 185
page_shrink 122
page_stretch 122
page_total 122
PAR 78
par 78
par_dimen 78
par_fill_skip_no 182
par_kind 5, 79, 204, 216, 233

Index 261

paragraph 65, 77, 79, 81, 128, 204, 215
PARAM 164, 168, 171
param_kind 5, 47, 51, 53, 79, 118–120,

129, 164, 167–169, 171, 176,
179, 185, 198, 215, 218–220

param_list 78–80, 128, 171
param_ref 78, 80, 128, 176
parameter 47
parameter list 170
parameters 199
parameters 168, 171
parse 229
parser.y 228
parsing 3, 8, 61, 228
path 151
path_end 152
path_length 151, 192
PENALTY 35, 174, 176
penalty 35, 54, 121, 180, 200, 210
penalty 35, 174
penalty_kind 5, 35, 48, 58, 60, 175–177,

200, 210, 220
pg 131–135, 227
placement 100
PLUS 43, 62
plus 43, 66
point 27
pos0 99, 101, 103, 147
position 96, 140
position 49, 56, 109, 171
post_break 74
post_display_penalty_no 180
pre_break 74
pre_display_penalty_no 180
pretolerance_no 180
PRINT_GLUE 183
printers point 27
printf 5, 181–185, 198, 223
priority 129
PRIx64 22–25, 143, 156, 221
prog_name 189, 191–193
PROT_READ 144
PT 27, 32
pt 27
put_hint 140
put.c 227
put.h 225
putc 11

Q

quad_no 181

QUIT 195

R

radix point 20

RANGE 132, 164

range_kind 5, 53, 131, 133–135, 164,
168, 170, 185

range_pos 131–135, 226

realloc 132

REALLOCATE 132, 147

REF 3, 16, 28, 37, 45, 57, 73, 79, 115,
132, 167, 176

Ref 60, 127, 171, 175

ref 73, 113, 115, 126, 168, 174, 176

REF_RNG 9, 51, 101, 103, 106, 108, 115,
126–129, 163, 167, 170, 176

REFERENCE 2–4, 16, 73, 86, 101, 106,
109, 132, 177

reference 176, 220

reference point 61

relative 151

replace count 75

replace_count 74

resynchronization 47

rf 55, 126, 168, 229

right_skip_no 182

RNG 195

root 155

ROUND 26

round 91

RULE 38, 164, 168, 174, 177

Rule 38

rule 38, 54, 74, 121, 201, 210

rule 38, 168, 174

rule_dimension 38

rule_kind 5, 39, 58, 60, 70, 164, 168,
175, 177, 179, 201, 210, 214, 220

rule_node 39, 69

RUNNING 38

RUNNING_DIMEN 38–40, 210

running dimension 38

262 Index

S

S_IFDIR 152
scaled integer 26
scaled point 27
SCAN_ 3
SCAN_DEC 13
SCAN_DECFLOAT 20
SCAN_END 2, 53, 56
SCAN_HEX 13
SCAN_HEXFLOAT 21
scan_level 56
SCAN_REF 56
SCAN_START 2, 53, 56
SCAN_STR 14
SCAN_TXT_END 56
SCAN_TXT_START 55
SCAN_UDEC 3, 13
SCAN_UTF8_1 17
SCAN_UTF8_2 17
SCAN_UTF8_3 17
SCAN_UTF8_4 17
scanning 2, 193, 228
SECTION 149
section 137
section_no 10, 50, 104, 126, 134, 141,

147, 150, 153–157, 159, 162,
187, 224, 226

SEEK_SET 93
SET_DBIT 167, 170, 174
shift amount 61
SHIFTED 62
ship_out v
short format 140
SHRINK 189, 191, 230
shrink.c 229
shrinkability 31, 42, 61, 65, 209
SIGNED 13, 21
signed integer 13
single quote 14–17
size 93–95, 104, 134, 145–148, 150, 153,

156–159, 162, 188, 224, 228
SIZE_F 195
size_pos 226
size t 195
SKIP 191, 233
skip 207
skip.c 232
space character 53–55
span_count 83

split_max_depth 128
split_max_depth_no 181
split ratio 124
split_top_skip 128
split_top_skip_no 182
st 31, 43, 143, 209, 229
st_mode 152
st_mtime 143
st_size 143, 158
stack 228
START 2–4, 8, 101, 109, 113, 132, 149,

161, 164, 187
start byte 4, 8, 208
start_pos 52
stat 143, 152, 158
Stch 31
stderr 191–193
stdout 189–191
stem_length 151–153, 190, 192–194
stem_name 151, 153, 190–194
STR 14, 18
str 11, 15, 139, 227
STR_ADD 14
str_buffer 14
STR_END 14
str_length 14
STR_PUT 14, 18
STR_START 14, 18
strcat 192
strcmp 191
strcpy 151, 192, 194
strdup 150, 153, 174
STREAM 125, 128
stream 123, 125, 128, 184, 206, 219
stream 128
stream_def_list 130
stream_def_node 126, 130
stream_info 126
stream_ins_node 126
stream_kind 5, 126–129, 164, 168, 176,

184, 206, 219
stream_link 126
stream_ref 126, 128, 176
stream_split 126
stream_type 126
STREAMDEF 125, 164
STRETCH 189, 191, 231
Stretch 31
stretch v, 1, 8, 27, 49, 166, 179, 187,

230

Index 263

stretch 32, 43, 62
stretch.c 230
stretchability 31, 42, 61, 65, 209
STRING 15, 18
string 14, 17, 142
string 18, 130, 150, 168, 174
strlen 151, 191–194
strncmp 137, 192
strncpy 192, 194
strtol 13, 138, 192
strtoul 13
suffix 24
symbol 2

T

tab character 54
tab_skip_no 182
TABLE 83
table 219
table 83
table_kind 5, 83, 205, 219
tables.c 223
TAG 6
tag 7, 226
TAGERR 195
template 121, 125, 129, 184
terminal symbol 3
text 47, 52, 142, 199
text 55–57, 72
time_no 180
TO 65
to 133–135
token 2
tolerance_no 180
TOP 66, 101, 126
top skip 122
top_skip_no 182
top stream 123
total_in 145
total_out 145
true 221
TXT 55
txt 57
TXT_CC 55, 57, 73
txt_cc 54, 59
TXT_END 55, 73
TXT_FONT 55, 57
txt_font 54, 58
TXT_FONT_GLUE 55, 57

TXT_FONT_HYPHEN 55, 57
TXT_GLOBAL 55, 57
txt_global 54, 58, 60
txt_glue 53, 55, 57, 59
txt_hyphen 53, 55, 57, 59
TXT_IGNORE 55, 57
txt_ignore 55, 57, 59
txt_length 54
TXT_LOCAL 55, 57
txt_local 54, 58–60
txt_node 53, 55, 57, 59
TXT_START 55, 73

U

UINT16 221
UINT32 221
UINT64 221
UINT8 221
uint8 t 31
union 229
unit 93–95
UNKNOWN 117
unknown_bytes 117
unknown_kind 6, 118, 170
unknown_node 118
unknown_nodes 117
UNSIGNED 2–4, 13, 21, 49, 73, 75, 83,

86, 99, 113, 117, 126, 130, 149,
164, 174

unsigned 13
USE_MMAP 142
used 99, 104, 106, 109
UTF8 16, 52

V

VBOX 62
vbox_dimen 65
vbox_kind 5, 62–64, 82, 202, 212
vbox_node 62, 69
verbose 229
VERSION_AS_STR 222
vertical box 61
vertical list 38
voidpf 145
VPACK 65
vpack 65
vpack_kind 5, 64–68, 82, 202, 213
VSET 65
vset_kind 5, 64–67, 82, 202, 213

264 Index

vsize 28
vsize_dimen_no 181
vsize_xdimen_no 182
vxbox_node 66

W

warning 221, 228
whatsit node 121
where 99, 101–106, 108
widow_penalty_no 180
WIDTH 86
WIN32 151, 195, 221, 229, 231
wpx 92–95
wr 86–89, 216, 227

X

xd 29, 86, 229
XDIMEN 29, 82, 164, 168, 176
xdimen 29, 41, 43, 78, 86, 168
xdimen_defaults 86, 222
xdimen_kind 5, 30, 53, 68, 79, 84, 120,

164, 168, 176, 182, 200, 209,
212, 215, 219

xdimen_node 29, 66, 118, 126, 130
xdimen_ref 66, 78, 176
xppm 92
xppu 93–95
xs 154
xsize 144–146, 150, 156, 158, 224, 228
xtof 21

Y

yacc 3
year_no 180
yppm 92
yppu 93–95
yy_pop_state 56
yy_push_state 56
YYDEBUG 196, 230
yydebug 196, 230
yyerror 196
yyin 193, 229
yylex 229
yylineno 56, 109, 196, 228–230
yylval 13, 17, 20, 56
yyout 193, 229
yyparse 140, 229
yyset_debug 229
yytext 3, 13, 18, 20, 56, 228

yywrap 228

Z

Z_DEFAULT_COMPRESSION 145
Z_FINISH 145
Z_OK 145
Z_STREAM_END 145
zalloc 145
zero_baseline_no 183
zero_color_no 185
zero_dimen_no 41, 181
ZERO_GLUE 43–45, 72
zero_glue_no 169
zero_int_no 180
zero_label_no 184
zero_page_no 184
zero_range_no 185
zero_skip_no 44, 163, 177, 182
zero_stream_no 184
zero_xdimen_no 86, 89, 182
zfree 145

zlib 144

265

	Preface
	Contents
	Introduction
	Data Types
	Simple Nodes
	Lists
	Composite Nodes
	Extensions
	Replacing Tkern -.1667emlower .5exhbox {E}kern -.125emX's Page Building Process
	File Structure
	Directory Section
	Definition Section
	Defaults
	Content Section
	Processing the Command Line
	Error Handling and Debugging
	Appendix
	Traversing Short Format Files
	Reading Short Format Files Backwards
	Code and Header Files
	Format Definitions
	Crossreference of Code
	References
	Index

