
Ghostscript 9.0 Color Management

Michael J. Vrhel, Ph.D.

Artifex Software

7 Mt. Lassen Drive, A-134

San Rafael, CA 94903, USA

www.artifex.com

Abstract

This document provides information about Ghostscript 9.0’s color architecture.
The document is suitable for users who wish to obtain accurate color with their output
device as well as for developers who wish to customize Ghostscript to achieve a higher
level of control and/or interface with a different color management module.

Revision 1.0

Artifex Software Inc. www.artifex.com 1

1 Introduction

As of release 9.0, the color architecture of Ghostscript has been significantly updated to be
primarily based upon the ICC[1] format. Prior to this release, Ghostscript’s color architecture
was based heavily upon PostScript[2] Color Management (PCM). This is due to the fact that
Ghostscript was designed prior to the ICC format and likely even before there was much
thought about digital color management. At that point in time, color management was very
much an art with someone adjusting controls to achieve the proper output color.

Today, almost all print color management is performed using ICC profiles as opposed
to PCM. This fact along with the desire to create a faster, more flexible design was the
motivation for the color architectural changes in release 9.0. Features of this new architecture
include:

• Easy interface of different CMMs (Color Management Modules) with Ghostscript.

• Defining of all color spaces in terms of ICC profiles.

• Caching of linked transformations and internally generated profiles.

• Easily accessed manager for ICC profiles.

• Command line option for setting default profiles for Gray, RGB and CMYK source
profiles.

• Command line option for setting device profile.

• Command line option for overriding input and output rendering intent.

• Command line option for specifying DeviceN profiles, named color structures, link
profiles and proofing profiles.

• Command line option to override embedded profiles.

• Passing of object type along to CMM for creation of transforms that account for image,
graphic or text.

• Efficient operation in multithreaded banded (c-list or display list) rendering.

The document is organized to first provide a higher level overview of the new ICC flow as
well as how to make use of the new architecture. This is followed by details of the various
functions and structures, which include the information necessary to interface other color
management modules to Ghostscript as well as how to interface specialized color handling
operations.

Artifex Software Inc. www.artifex.com 2

2 Overall Architecture and Typical Flow

Figure 1 provides a graphical overview of the various components that make up the archi-
tecture. The primary components are:

• The ICC Manager, which maintains the various default profiles.

• The Link Cache, which stores recently used linked transforms.

• The Profile Cache, which stores internally generated ICC profiles created from PostScript
CIE based color spaces and CalRGB, CalGray PDF color spaces.

• The profiles contained in the root folder iccprofiles, which are used as default color
spaces for the output device and for undefined source colors in the document.

• The color management module (CMM), which is the external engine that provides and
performs the transformations (e.g. littleCMS).

In the typical flow, when a thread is ready to transform a buffer of data, it will request a
linked transform from the Link Cache. When requesting a link, it is necessary to provide
information to the CMM, which consists of a source color space, a destination color space, an
object state (e.g. text, graphic, or image) and a rendering type (e.g. perceptual, saturation,
colorimetric). The linked transform provides a mapping directly from the source color space
to the destination color space. If a linked transform for these settings does not already exist
in the Link Cache, a linked transform from the CMM will be obtained (assuming there is
sufficient memory – if there is not sufficient memory then the requesting thread will need
to wait). Depending upon the CMM, it is possible that the CMM may create a lazy linked
object (i.e. create the real thing when it is asked to transform data). At some point, a linked
transform will be returned to the requesting thread. The thread can then use this mapping
to transform buffers of data through calls through an interface to the external CMM. Once
the thread has completed its use of the link transform, it will notify the Link Cache. The
Link Cache will then be able to release the link when it needs additional cache space due to
other link requests.

3 PDL Color Definitions and ICC Profiles

To help reduce confusion, it is worthwhile to clarify terminology. In particular, the use of the
terms process color and device color need to be defined in the context of ICC profiles. Both
PDF[3] and PostScript (PS) have a distinction between process colors and device colors. In
both PDF and PS, there is a conversion (e.g. via UCR/BG) from device colors to process
colors. In an ICC work flow, the colors are transformed directly from an input color space

Artifex Software Inc. www.artifex.com 3

gsicc_init_buffer

gsicc_get_link

gsicc_release_link

gsicc_set_icc_directory

gsicc_set_profile

gsicc_init_device_profile

gsicc_set_gscs_profile

gsicc_get_gscs_profile

gsicc_profile_new

gsicc_get_profile_handle_buffer

Each thread could

have access to a
common ICC cache

or create its own

Graphics

Library
&

Interpreter

CMM

DeviceProfile.icc

NamedColor.icc

gscms_create
gscms_destroy
gscms_get_profile_handle_mem
gscms_release_profile
gscms_get_channel_count
gscms_get_link
gscms_get_link_proof
gscms_release_link
gscms_transform_color_buffer

gscms_transform_color

gscms_get_name2device_link

gscms_transform_named_color

gs_get_device_profile
gs_get_device_named_color_profile

gs_set_device_profile

default_gray.icc

default_rgb.icc

default_cmyk.icc

iccprofiles

User profile directory

gsicc_set_icc_directory

gsicc_set_profile

gsicc_init_device_profile

ICC Manager

Link Cache

Device Profile

Named Color Profile

DeviceN Profiles []

DefaultGray Profile

DefaultRGB Profile

DefaultCMYK Profile

Proofing Profile Device

Profile Cache

gs_set_device_named_color_profile

lab.icc

ICC Manager and caches

are member variables of

graphics library imager

state.

sRGB.icc

s-gray.icc

DeviceLinkProfile.icc

ps_gray.icc

ps_rgb.icc

ps_cmyk.icc

SoftMask Profiles

Figure 1: Graphical Overview of ICC Architecture

Artifex Software Inc. www.artifex.com 4

(often called the source space) to an output color space (often called the destination space).
The output color space defined by the device’s ICC profile is a mapping to what PDF and
PS define as the process color space of the device. In other words, the “device color space”
as defined by the device’s ICC profile IS the process color space of PDF and PS. The ICC
profile of the device is a mapping from a CIE color space to the process color space AND
from the process color space to a CIE color space.

To understand this better, it may help to understand the method by which a print based
ICC profile is created. To create an ICC profile for a device, a chart is printed using its process
colors (e.g. CMYK). This chart is measured using a colorimeter or a spectrophotometer. This
provides the forward mapping from process colors to CIELAB values. The inverse mapping
(from CIELAB to process colors) is obtained by inverting this table usually through a brute
force search and extrapolation method. These mappings are both packed into an ICC format,
thereby defining mappings between the device “process colors” and the CIE color space.

4 Usage

The ICC branch introduces several new command line options that can be used for complete
color management control. To define source colors that are not already colorimetrically de-
fined in the source document, the following command line options can be invoked:

-sDefaultGrayProfile = my gray profile.icc

-sDefaultRGBProfile = my rgb profile.icc

-sDefaultCMYKProfile = my cmyk profile.icc

In this case, for example, any source gray colors will be interpreted as being defined by the
ICC profile my gray profile.icc. If these profiles are not set, default ICC profiles will be used
to define undefined colors. These default profiles are contained in the gs folder directory
iccprofiles and are named default gray.icc, default rgb.icc and default cmyk.icc. The profile
default gray.icc is defined to provide output along the neutral axis with an sRGB lineariza-
tion. The profile default rgb.icc is the V2 sRGB ICC profile and the profile default cmyk.icc
is a SWOP CMYK ICC profile.

In addition to being able to define undefined colors, it is possible to define the ICC profile
for the output device using

-sOutputICCProfile = my device profile.icc

Care should be taken to make sure that the number of components associated with the

Artifex Software Inc. www.artifex.com 5

output device is the same as the number of components for the output device ICC profile
(i.e. use an RGB profile for an RGB device). If the destination device is CMYK + SPOT
colorants, then it is possible to specify either a CMYK ICC profile or an N-Color ICC profile
for the device. If a CMYK profile is specified, then only the CMYK colorants will be color
managed. If an output profile is not specified, then the default CMYK profile is used as the
output profile.

A directory can be defined, which will be searched to find the above defined ICC profiles.
This makes it easier for users who have their profiles contained in a single directory and do
not wish to append the full path name in the above command line options. The directory is
set using

-sICCProfilesDir = c:/my icc profiles

Note that if the build of gs or other PDL languages is performed with COMPILE INITS=1,
then the profiles contained in gs/iccprofiles will be placed in the ROM file system. If a
directory is specified on the command line using -sICCProfilesDir=, that directory is searched
before the iccprofiles/ directory of the ROM file system is searched.

Named color support for separation color spaces is specified through the command line
option

-sNamedProfile = c:/my namedcolor stucture

While the ICC does define a named color format, the above structure can in practice be much
more general for those who have more complex handling requirements of separation color
spaces. For example, some developers wish to use their own proprietary-based format for
spot color management. This command option is for developer use when an implementation
for named color management is designed for the function gsicc transform named color
located in gsicc cache.c . An example implementation is currently contained in the code [see
comments above gsicc transform named color in gsicc cache.c]. For the general user,
this command option should really not be used.

The above option deals with the handling of single spot colors. It is possible to specify
ICC profiles or other structures for managing DeviceN source colors. This is done using the
command line option

-sDeviceNProfile = c:/my devicen profile.icc

Note that neither PS nor PDF provide in-document ICC profile definitions for DeviceN color
spaces. With this interface it is possible to provide this definition. The colorants tag order in
the ICC profile defines the lay-down order of the inks associated with the profile. A windows-
based tool for creating these source profiles is contained in gs/toolbin/color/icc creator. If

Artifex Software Inc. www.artifex.com 6

non-ICC based color management of DeviceN source colors is desired by a developer, it is
possible to use the same methods used for the handling of individual spot colors. In that
case, a single proprietary structure could be used, which contains information about how to
blend multiple colorants for accurate DeviceN color proofing.

The command line option

-sProofProfile = my proof profile.icc

enables the specification of a proofing profile, which will make the color management system
link multiple profiles together to emulate the device defined by the proofing profile. This is
currently under development and should be in-place before the official release of Ghostscript
9.0

The command line option

-sDeviceLinkProfile = my link profile.icc

makes it possible to include a device link profile in the color transformations. This is useful
for devices that output raster content in a standard color space such as SWOP or Fogra
CMYK, but it is desired to redirect this output to other CMYK devices. While it is possible
to handle the color transformations in other manners (e.g. using a proofing profile) the use
of device link profiles is not uncommon. The final linking profile is applied at the device
level following rasterization to the destination color space as specified by the device profile.
Ghostscript’s rendering of the page description language PCL, which requires rendering into
sRGB buffers, will make use of this device link profile to provide final conversion from sRGB
to device CMYK prior to halftoning.

In some cases, it is desired to override any internal profiles that may exist within a doc-
ument. The command line option

-dOverrideInternalProfiles = true

achieves this by replacing any document embedded ICC profiles with the Gray, RGB or
CMYK default profile depending upon the channel count. Note that embedded CIELAB
source profiles are obviously not overridden.

The following command specifies the rendering intent to use for the specified output pro-
file.

-sOutputRenderingIntent = Perceptual

The default value is Perceptual. Other valid values include Saturation, Colorimetric and
AbsoluteColorimetric.

Artifex Software Inc. www.artifex.com 7

Similarly, the desired rendering intents to use with Gray, RGB and CMYK input sources
can be specified with the following commands.

-sInputGrayRenderIntent = Perceptual

-sInputRGBRenderIntent = Perceptual

-sInputCMYKRenderIntent = Perceptual

These will override any internal specification for rendering intents.

5 Overview of objects and methods

At this point, let us go into further detail of the architecture. Following this, we will dis-
cuss the requirements for interfacing another CMM to Ghostscript as well as where to
interface in the new architecture for those who had made use of the now removed CUS-
TOM COLOR CALLBACK option in previous versions of Ghostscript.

5.1 ICC Manager

The ICC Manager is a reference counted member variable of Ghostscript’s imager state. Its
functions are to:

• Store the required profile information to use for Gray, RGB, and CMYK source colors
that are NOT colorimetrically defined in the source document. These entries must
always be set in the manager and are set to default values unless defined by the
command line interface.

• Store the required profile information for the output device.

• Store the optional profile/structure information related to named colors and DeviceN
colors.

• Store the proofing profile.

• Store the CIELAB source profile.

• Store the directory be used to search for ICC profiles specified for the above objects.

• Store settings for profile override, output rendering intent (i.e. perceptual, colorimetric,
saturation or absolute colorimetric) and source color rendering intents.

Artifex Software Inc. www.artifex.com 8

• Store the profiles that are used for softmask rendering if soft masks are contained in
the document.

The manager is created when the imaging state object is created for the graphics library. It
is reference counted and allocated in garbage collected (GC) memory that is not stable with
graphic state restores. The default gray, RGB and CMYK ICC color spaces as well as the de-
vice ICC color space are defined immediately during the initialization of the graphics library.
If no ICC profiles are specified externally, then the ICC profiles that are contained in the
root folder iccprofiles will be used. The ICC Manager is defined by the structure given below.

typedef struct gsicc manager s {
cmm profile t *device named; /* The named color profile for the device */
cmm profile t *default gray; /* Default gray profile for device gray */
cmm profile t *default rgb; /* Default RGB profile for device RGB */
cmm profile t *default cmyk; /* Default CMYK profile for device CMKY */
cmm profile t *proof profile; /* Proofing profile */
cmm profile t *output link; /* Output device Link profile */
cmm profile t *device profile; /* The actual profile for the device */
cmm profile t *lab profile; /* Colorspace type ICC profile from LAB to LAB */
gsicc devicen t *device n; /* A linked list of profiles used for DeviceN support */
gsicc smask t *smask profiles; /* Profiles used when we are in a softmask group */
char *profiledir; /* Directory used in searching for ICC profiles */
uint namelen;
gs memory t *memory;
rc header rc;

} gsicc manager t;

Operators that relate to the ICC Manager are contained in the file gsicc manage.c/h and
include the following:

int gsicc init device profile(gs state * pgs, gx device * dev);

This initializes the device profile member variable based upon the properties of the
device. The device may have a profile defined in its dev→color info.icc profile member
variable. If it does not, then a default profile will be assigned to the device.

int gsicc set profile(gsicc manager t *icc manager, const char *pname, int namelen,
gsicc profile t defaulttype);

Artifex Software Inc. www.artifex.com 9

This is used to set all the other profile related member variables in the ICC Manager.
The member variable to set is specified by defaulttype.

void gsicc set icc directory(const gs imager state *pis, const char* pname, int namelen);

This is used to set the directory for finding the ICC profiles specified by
gsicc set profile.

gsicc manager t* gsicc manager new(gs memory t *memory);

Creator for the ICC Manager.

cmm profile t* gsicc profile new(stream *s, gs memory t *memory, const char* pname,
int namelen);

Returns an ICC object given a stream pointer to the ICC content. The variables
pname and namelen provide the filename and name length of the stream if it is to be
created from a file. If the data is from the source stream, pname should be NULL
and namelen should be zero.

int gsicc set gscs profile(gs color space *pcs, cmm profile t *icc profile,
gs memory t * mem);

Sets the member variable cmm icc profile data of the gs color space object (pointed
to by pcs) to icc profile.

cmm profile t* gsicc get gscs profile(gs color space *gs colorspace, gsicc manager t *icc manager);

Returns the cmm icc profile data member variable of the gs color space object.

gcmmhprofile t gsicc get profile handle buffer(unsigned char *buffer, int profile size);

Returns the CMS handle to the ICC profile contained in the buffer.

int gsicc init iccmanager(gs state * pgs);

Artifex Software Inc. www.artifex.com 10

Initializes the ICC Manager with all the required default profiles.

void gsicc profile serialize(gsicc serialized profile t *profile data, cmm profile t *iccpro-
file);

A function used to serialize the icc profile information for embedding into the c-list.

cmm profile t* gsicc get profile handle file(const char* pname, int namelen, gs memory t
*mem);

Given a profile file name, obtain a handle from the CMM.

void gsicc init profile info(cmm profile t *profile);

With a profile handle already obtained from the CMM set up some of the member
variables in the structure cmm profile t.

void gsicc init hash cs(cmm profile t *picc profile, gs imager state *pis);

Get the hash code for a profile.

gcmmhprofile t gsicc get profile handle clist(cmm profile t *picc profile, gs memory t *mem-
ory);

For a profile that is embedded inside the c-list, obtain a handle from the CMM.

gcmmhprofile t gsicc get profile handle buffer(unsigned char *buffer, int profile size);

For a profile that is contained in a memory buffer, obtain a handle from the CMM.

gsicc smask t* gsicc new iccsmask(gs memory t *memory);

Allocate space for the icc soft mask structure. Only invoked when softmask groups
are used in rendering.

int gsicc initialize iccsmask(gsicc manager t *icc manager);

Initialize the icc soft mask structure. Only invoked when softmask groups are used
in rendering.

unsigned int gsicc getprofilesize(unsigned char *buffer);

Artifex Software Inc. www.artifex.com 11

Get the size of a profile, as given by the profile information.

cmm profile t* gsicc read serial icc(gx device * dev, int64 t icc hashcode);

Read out the serialized icc data contained in the clist for a given hash code.

cmm profile t* gsicc finddevicen(const gs color space *pcs, gsicc manager t *icc manager);

Search the DeviceN profile array for a profile that has the same colorants as the
DeviceN color space in the PDF or PS document.

gs color space index gsicc get default type(cmm profile t *profile data);

Detect profiles that were set as part of the default settings. These are needed to
differentiate between embedded document icc profiles and ones that were supplied to
undefined device source colors (e.g. DeviceRGB). During high level device writing
(e.g. pdfwrite), these default profiles are usually NOT written out.

void gsicc profile reference(cmm profile t *icc profile, int delta);

Enable other language interpreters (e.g. gxps) to adjust the reference count of a
profile.

int gsicc getsrc channel count(cmm profile t *icc profile);

Returns the number of device channels for a profile.

5.2 Link Cache

The Link Cache is a reference counted member variable of Ghostscript’s imager state. Its
function is to maintain a cache of recently used links that had been provided by the CMM.
The Link Cache is designed with semaphore calls to allow multi-threaded c-list (display list)
rendering to share a common cache.

The Link Cache is allocated in stable GC memory. Operators that relate to the Link
Cache are contained in the file gsicc cache.c/h and include the following:

gsicc link cache t* gsicc cache new(gs memory t *memory);

Creator for the Link Cache.

Artifex Software Inc. www.artifex.com 12

void gsicc init buffer(gsicc bufferdesc t *buffer desc, unsigned char num chan, unsigned
char bytes per chan, bool has alpha, bool alpha first, bool is planar, int plane stride, int
row stride, int num rows, int pixels per row);

This is used to initialize a gsicc bufferdesc t object. Two of these objects are used to
describe the format of the buffers that are used in transforming color data.

gsicc link t* gsicc get link(gs imager state * pis, gs color space *input colorspace, gs color space
*output colorspace, gsicc rendering param t *rendering params, gs memory t *memory, bool
include softproof);

This returns the link given the input color space, the output color space, and the
rendering intent. When the requester of the link is finished using the link, it should
release the link. When a link request is made, the Link Cache will use the parameters
to compute a hash code. This hash code is used to determine if there is already a
link transform that meets the needs of the request. If there is not a link present,
the Link Cache will obtain a new one from the CMM (assuming there is sufficient
memory), updating the cache.

The linked hash code is a unique code that identifies the link for an input color
space, an object type, a rendering intent and an output color space. The operation
that does the merging of these four pieces of information can easily be altered to
ignore object type and/or rendering intent if so desired.

Note, that the output color space can be different than the device space. This occurs
for example, when we have a transparency blending color space that is different than
the device color space.

gsicc link t* gsicc get link profile(gs imager state *pis, cmm profile t *gs input profile,
cmm profile t *gs output profile, gsicc rendering param t *rendering params, gs memory t
*memory, bool include softproof);

This is similar to the above operation gsicc get link but will obtain the link with
profiles that are not member variables of the gs color space object.

void gsicc get icc buff hash(unsigned char *buffer, int64 t *hash, unsigned int buff size);

This computes the hash code for the buffer that contains the ICC profile.

Artifex Software Inc. www.artifex.com 13

int gsicc transform named color(float tint value, byte *color name, uint name size, gx color value
device values[], const gs imager state *pis, cmm profile t *gs output profile, gsicc rendering param t
*rendering params, bool include softproof);

This performs a transformation on the named color given a particular tint value return
device values.

void gsicc release link(gsicc link t *icclink);

This is called to notify the cache that the requester for the link no longer needs it.
The link is reference counted, so that the cache knows when it is able to destroy the
link. The link is released through a call to the CMM.

5.3 Interface of Ghostscript to CMM

Ghostscript interfaces to the CMM through a single file. The file gsicc littlecms.c/h is a
reference interface between littleCMS and Ghostscript. If a new library is used (for example,
if littleCMS is replaced with Windows ICM on a Windows platform (giving Windows color
system (WCS) access on Vista or System 7)), the interface of these functions will remain the
same, but internally they will need to be changed. Specifically, the functions are as follows:

void gscms create(void **contextptr);

This operation performs any initializations required for the CMM.

void gscms destroy(void **contextptr);

This operation performs any cleanup required for the CMM.

gcmmhprofile t gscms get profile handle mem(unsigned char *buffer, unsigned int in-
put size);

This returns a profile handle for the profile contained in the specified buffer.

Artifex Software Inc. www.artifex.com 14

void gscms release profile(void *profile);

When a color space is removed or we are ending, this is used to have the CMM release
a profile handle it has created.

int gscms get input channel count(gcmmhprofile t profile);

Provides the number of colorants associated with the ICC profile. Note that if this
is a device link profile this is the number of input channels for the profile.

int gscms get output channel count(gcmmhprofile t profile);

If this is a device link profile, then the function returns the number of output channels
for the profile. If it is a profile with a PCS, then the function should return a value
of three.

gcmmhlink t gscms get link(gcmmhprofile t lcms srchandle, gcmmhprofile t lcms deshandle,
gsicc rendering param t *rendering params);

This is the function that obtains the linkhandle from the CMM. The call
gscms get link is usually called from the Link Cache. In the graphics library, calls
are made to obtain links using gsicc get link, since the link may already be available.
However, it is possible to use gscms get link to obtain linked transforms outside the
graphics library. For example, this is the case with the XPS interpreter, where minor
color management needs to occur to properly handle gradient stops.

gcmmhlink t gscms get link proof(gcmmhprofile t lcms srchandle, gcmmhprofile t lcms deshandle,
gcmmhprofile t lcms proofhandle, gsicc rendering param t *rendering params);

This function is similar to the above function but includes a proofing ICC profile. If
the proofing profile is defined, then the output should appear as if it were printed on
the device defined by the proofing profile.

void gscms release link(gsicc link t *icclink);

When a link is removed from the cache or we are ending, this is used to have the
CMM release the link handles it has created.

void gscms transform color buffer(gsicc link t *icclink, gsicc bufferdesc t *input buff desc,
gsicc bufferdesc t *output buff desc, void *inputbuffer, void *outputbuffer);

Artifex Software Inc. www.artifex.com 15

This is the function through which all color transformations will occur if they are to
go through the CMM. This function will be called in the code anytime that we are
transforming color from the current graphic state color to the Output Device color
space or to the Blending Color Space, or out of the Blending color space to the Color
Space of the parent layer in the transparency stack. Note that if the source hash code
and the destination hash code are the same, the transformation will not occur as the
source and destination color spaces are identical. This feature can be used to enable
“device colors” to pass unmolested through the color processing.

void gscms transform color(gsicc link t *icclink, void *inputcolor, void *outputcolor, int
num bytes, void **contextptr);

This is a special case where we desire to transform a single color. While it would
be possible to use gscms transform color buffer for this operation, single color
transformations are frequently required and it is possible that the CMM may have
special optimized code for this operation.

int gscms transform named color(gsicc link t *icclink, float tint value, const char*
ColorName, gx color value device values[]);

Get a device value for the named color. While there exist named color ICC profiles
and littleCMS supports them, the code in gsicc littlecms.c is not designed to use that
format. The named color object need not be an ICC named color profile but can be
a proprietary type table. This is discussed further where -sNamedProfile is defined
in the Usage section.

void gscms get name2device link(gsicc link t *icclink, gcmmhprofile t lcms srchandle,
gcmmhprofile t lcms deshandle, gcmmhprofile t lcms proofhandle, gsicc rendering param t
*rendering params, gsicc manager t *icc manager);

This is the companion operator to gscms transform named color in that it
provides the link transform that should be used when transforming named col-
ors when named color ICC profiles are used for named color management. Since
gscms transform named color currently is set up to use a non-ICC table format,
this function is not used.

gcmmhprofile t gscms get profile handle file(const char *filename);

Obtain a profile handle given a file name.

Artifex Software Inc. www.artifex.com 16

char* gscms get clrtname(gcmmhprofile t profile, int k);

Obtain the kth colorant name in a profile. Used for DeviceN color management with
ICC profiles.

int gscms get numberclrtnames(gcmmhprofile t profile);

Return the number of colorant names that are contained within the profile. Used for
DeviceN color management with ICC profiles.

gsicc colorbuffer t gscms get profile data space(gcmmhprofile t profile);

Get the color space type associated with the profile.

6 PDF and PS CIE color space handling

If a color space is a PDF or PostScript (PS) CIE color space type (other than ICC), these
color spaces are converted to appropriate ICC objects. The profiles are created by the
functions in gsicc create.c. Since this file is only needed by the PS and PDF interpreter, it
is contained in the psi subdirectory of Ghostscript’s folder tree and is not needed for PCL
or XPS builds.

Performing this conversion, enables the ICC based CMM full control over all color man-
agement. To avoid frequent conversions due to frequent color space changes, these color
spaces are cached in the profile cache and indexed using a value related to their resource
IDs. This is the profile cache object that is indicated in Figure 1. In PDF, it is possible
to define CIELAB color values directly. The ICC profile lab.icc contained in iccprofiles of
Figure 1 is used as the source ICC profile for color defined in this manner.

Currently PostScript color rendering dictionaries (CRDs) are ignored if defined in the
current code. Instead, a device ICC profile should be used to define the color for the output
device. An upcoming change will be to convert CRDs to equivalent ICC profiles, which will
then work with the existing workflow.

Note that if littleCMS is replaced, gsicc create.c still requires icc34.h, since it uses the
type definitions in that file in creating the ICC profiles from the PS and PDF CIE color
spaces.

Artifex Software Inc. www.artifex.com 17

7 Device Interaction

From Figure 1, it is clear that the device can communicate to the graphics library its ICC
profiles. Depending upon the settings of the device (e.g. paper type, ink, driver settings)
it may provide a different profile as well as indicate a desired rendering intent. Unless
overridden by command line arguments, this information will be used to populate the ICC
manager’s Device Profile. Currently, this interaction is under development and should be in
place with the official release of Ghostscript 9.0.

8 DeviceN and Separation colors

DeviceN and Separation colors are handled differently depending upon the source PDL
that is being processed. In Microsoft’s XPS format, all input DeviceN or Separation type
colors are required to have an associated ICC profile. If one is not provided, then per the
XPS specification[4] a SWOP CMYK profile is assumed for the first four colorants and the
remaining colorants are ignored. With PDF DeviceN or Separation colors, the document
defines a tint transform and an alternate color space, which could be any of the CIE (e.g.
CalGray, CalRGB, Lab, ICC) or device (e.g. Gray, RGB, CMYK) color spaces. If the input
source document is PDF or PS and the output device does not understand the colorants
defined in the DeviceN color space, then the colors will be transformed to the alternate color
space and color managed from there.

For cases when the device does understand the spot colorants of the DeviceN color space,
the preferred handling of DeviceN varies. Many prefer to color manage the CMYK compo-
nents with a defined CMYK profile, while the other spot colorants pass through unmolested.
This will be the default manner by which Ghostscript will handle DeviceN input colors. In
other words, if the device profile is set to a particular CMYK profile, and the output device
is a separation device, which can handle all spot colors, then the CMYK process colorants
will be color managed, but the other colorants will not be managed. If it is desired that the
CMYK colorants not be altered also, it will be possible to achieve this by having the source
and destination ICC profiles the same. This will result in an identity transform, which will
not be used when processing the CMYK colorants.

It should be noted that an ICC profile can define color spaces with up to 15 colorants.
For a device that has 15 or fewer colorants, it is possible to provide an ICC profile for such
a device. In this case, all the colorants will be color managed through the ICC profile. For
cases beyond 15, the device will be doing direct printing of the DeviceN colors outside of the
15 colorants.

Artifex Software Inc. www.artifex.com 18

9 PCL and XPS Support

PCL[5] makes use of the new color management architecture primarily in its output devices.
Source colors are specified to be in the sRGB color space. If the commands in the PCL file
require rendering into an RGB buffer due to blending of transparency operations, then these
buffers will be converted to the appropriate CMYK color space using the CMM, when the
drawing commands have completed in that region. If the commands do not require rendering
into a continuous tone RGB buffer, then the conversion from RGB to CMYK will occur prior
to rendering into a halftone CMYK buffer.

Full ICC support for XPS[4] is now contained in ghostxps. This includes the handling of
profiles for DeviceN color spaces, Named colors and for profiles embedded within images.

10 CUSTOM COLOR CALLBACK developers

In earlier versions of Ghostscript, there existed a compile define named CUSTOM COLOR CALLBACK,
which provided developers with a method to intercept color conversions and provide cus-
tomized processing in particular for Separation and DeviceN input color spaces. Using
specialized mixing models in place of the standard tint transforms, accurate proofing of the
spot colorants was obtainable. An interface for custom handling of separation colors is now
performed by customization of the function gsicc transform named color. An example, im-
plementation is currently in place, which uses a look-up-table based upon the colorant name.
The look-up-table is stored in the device named object of the icc manager. The structure
can be stored in the location using -sNamedProfile = c:/my namedcolor stucture.

DeviceN color handling is defined by an object stored in the device n entry of the
icc manager. Currently, the example implementation is to use an array of ICC profiles
that describe the mixing of the DeviceN colors of interest. This array of profiles is contained
in the device n entry of the icc manager. In this case, a multi-dimensional look-up-table is
essentially used to map the overlayed DeviceN colors to the output device colorants.

If a mathematical mixing model is to be used for the DeviceN colors instead of an
ICC-based approach, it will be necessary to store the data required for mixing either in
the device n entry or, if the same data is used for separation colors, the data in the
named color location can be used. In either case, a single line change will be required
in gx install DeviceN where a call is currently made to gsicc finddevicen to locate a
matching DeviceN ICC profile for DeviceN color management. In place of this call, it will
be necessary to make a call to a function that will prepare an object that can map colors in
this DeviceN space to the real device values. A pointer to this object is then returned by the
function. If the colorants cannot be handled, the function should return NULL. If the func-
tion can handle the colorants, then when the link request is made between this color space
and the output device profile with the function gsicc get link it will be necessary to detect

Artifex Software Inc. www.artifex.com 19

that the source object is not a standard ICC profile but a special customized object. This
may require the addition of a special flag in the cmm profile t structure. This flag would then
be checked to determine if a call should be made to the CMM or to a custom color manage-
ment function that makes use of the pointer previously obtained from gsicc finddevicen.
When the call is made to apply the transformation using gscms transform color buffer
or gscms transform color, the appropriate operation should be applied to the incoming
data in place of the standard call to the CMM. Artifex will be able to assist those devel-
opers who need help in the transition from the previous CUSTOM COLOR CALLBACK
architecture to the new design.

References

[1] Specification ICC.1:2004-10 (Profile version 4.2.0.0) Image technology
colour management - Architecture, profile format, and data structure.
(http://www.color.org/ICC1v42 2006-05.pdf), Oct. 2004.

[2] PostScript R© Language Reference Third Edition, Adobe Systems Incorporated,
Addison-Wesley Publishing, (http://partners.adobe.com/public/developer/ps/index specs.html)
Reading Massachusetts, 1999.

[3] PDF Reference Sixth Edition Ver. 1.7, Adobe Systems Incorporated,
(http://www.adobe.com/devnet/pdf/pdf reference.html), November 2006.

[4] XML Paper Specification Ver. 1.0, Microsoft Corporation,
(http://www.microsoft.com/whdc/xps/xpsspec.mspx), 2006.

[5] PCL5 Printer Language Technical Reference Manual, Hewlett Packard,
(http://h20000.www2.hp.com/bc/docs/support/SupportManual/bpl13210/bpl13210.pdf),
October 1992.

Copyright (c) 2010, Artifex Software Inc. All rights reserved.

