GNU Octave

A high-level interactive language for numerical computations
Edition 3 for Octave version 3.4.0
February 2011

Free Your Numbers

John W. Eaton
David Bateman
Sgren Hauberg

Copyright © 1996, 1997, 1999, 2000, 2001, 2002, 2005, 2006, 2007, 2011 John W. Eaton.

This is the third edition of the Octave documentation, and is consistent with version 3.4.0
of Octave.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the same conditions as for modified versions.

Portions of this document have been adapted from the gawk, readline, gcc, and C library
manuals, published by the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301-1307, USA.

Table of Contents

Preface 1
Acknowledgements 1
How You Can Contribute to Octaveo i, 4
Distribution. 4

1 A Brief Introduction to Octave................ 5
1.1 Running Octave.o 5
1.2 Simple Examples. ... 5

1.2.1 Elementary Calculations.............., 5)
1.2.2 Creating a Matrix ... 6
1.2.3 Matrix Arithmetic........ ... i 6
1.2.4 Solving Systems of Linear Equations....................... 6
1.2.5 Integrating Differential Equations.......................... 7
1.2.6 Producing Graphical Output 8
1.2.7 Editing What You Have Typed............. 8
1.2.8 Help and Documentation.................................. 8
1.3 Conventions.t 9
1.3.1 Fonts ..o e 9
1.3.2 Evaluation Notation............. ... i .. 9
1.3.3 Printing Notation i i i 9
1.3.4 Error MesSages.ouuuutiint i 10
1.3.5 Format of Descriptions, 10
1.3.5.1 A Sample Function Description...................... 10
1.3.5.2 A Sample Command Description 11
1.3.5.3 A Sample Variable Description 11

2 Getting Started............... ...l 13

2.1 Invoking Octave from the Command Line 13
2.1.1 Command Line Options............ooiiiiiiiiiin.. 13
2.1.2 Startup Files.o 16

2.2 Quitting Octave. ..o 17

2.3 Commands for Getting Help........... 17

2.4 Command Line Editing o i 20
2.4.1 Cursor Motiono 20
2.4.2 Killing and Yanking.............ooiiiiiiiiiiiii... 21
2.4.3 Commands For Changing Text 21
2.4.4 Letting Readline Type For You........................ ... 22
2.4.5 Commands For Manipulating The History 22
2.4.6 Customizing readlineccoviuiieeiiiieeannnnn.. 25
2.4.7 Customizing the Prompt 25
2.4.8 Diary and Echo Commands 27

2.5 How Octave Reports Errors...................... 28

ii

2.6 Executable Octave Programs................. ..., 29
2.7 Comments in Octave Programs............. 30
2.7.1 Single Line Comments.coouiiiiiiiiiiin .. 30
2.7.2 Block Comments..........c.oouuiiiiiiiiiiiiiiiiiiean 30
2.7.3 Comments and the Help System.......................... 31
Data Types ... 33
3.1 Built-in Data Types..... .o 33
3.1.1 Numeric Objectsouiiii 35
3.1.2 Missing Data. ... 36
3.1.3 String Objects ...t 36
3.1.4 Data Structure Objects........ ..., 36
3.1.5 Cell Array ObJectso 36
3.2 User-defined Data Types........cooiiiiiiiiiiiiiiiii .. 37
3.3 ODbjJect SIzZes ...ttt 37
Numeric Data Types.......................... 39
A1 MabTiCeS . oo 40
4.1.1 Empty Matrices. ... 43
4.2 RANEES ..ot 43
4.3 Single Precision Data Types.........ccoiiiiiiiiii i 44
4.4 Integer Data Types ... 45
4.4.1 Integer Arithmetic i 47
4.5 Bit Manipulations........... ... 48
4.6 Logical Values 50
4.7 Promotion and Demotion of Data Types....................... 51
4.8 Predicates for Numeric Objects......... ...t 52
Strings. ... 55
5.1 Escape Sequences in String Constants......................... 55
5.2 Character ATTAYS ... o.vttn et 56
5.3 Creating Strings ..o 57
5.3.1 Concatenating Strings............ccooiiiiiiiiiiiiiia... 57
5.3.2 Conversion of Numerical Data to Strings.................. 60
5.4 Comparing SETringsouueiitn e 62
5.5 Manipulating Strings. ... 64
5.6 String CONVErSIONSttt 72

5.7 Character Class Functions., 76

GNU Octave

6 Data Containers............................... 79
6.1 Data Structures.o 79
6.1.1 Basic Usage and Examples, 79
6.1.2 Structure ATTaysouueiiiii 82
6.1.3 Creating Structures, 84
6.1.4 Manipulating Structures........... i 86
6.1.5 Processing Data in Structures 88
6.2 Cell ATTays ..ottt 90
6.2.1 Basic Usage of Cell Arrayst 90
6.2.2 Creating Cell Arraycooiiiiiiiiiiiii ... 92
6.2.3 Indexing Cell Arraysc.ciiiiiiiiiiiiiiii.. 94
6.2.4 Cell Arrays of Strings ..., 96
6.2.5 Processing Data in Cell Arrays..................c.oo.... 97
6.3 Comma Separated Lists................ .. i 99
6.3.1 Comma Separated Lists Generated from Cell Arrays..... 100
6.3.2 Comma Separated Lists Generated from Structure Arrays
... 101
Variables............ 103
7.1 Global Variables i i 105
7.2 Persistent Variables.......... ... 106
7.3 Status of Variables......... 108
Expressions................ 113
8.1 Index EXPressions...........oueeiiiiiiniiiiiiiannn.. 113
8.2 Calling Functions oo i 115
8.2.1 Callby Value ... 116
8.2.2 Recursion......... ... 117
8.3 Arithmetic Operators...... ..., 117
8.4 Comparison Operatorsc.oouuiiiiiiiieniiieennn.. 120
8.5 Boolean Expressionso 122
8.5.1 Element-by-element Boolean Operators.................. 122
8.5.2 Short-circuit Boolean Operators......................... 123
8.6 Assignment Expressions.............. i 124
8.7 Increment Operators.............cooiiiiiiiiiiiiiiiiennn.. 127
8.8 Operator Precedence............ ... i i, 127
Evaluation 129
9.1 Calling a Function by its Name 129

9.2 Evaluation in a Different Context 130

iii

iv

10 Statements, 133
10.1 The if Statement i 133
10.2 The switch Statement.............c.oooiiiiiiiiiiiiii .. 135

10.2.1 Notes for the C Programmer 136
10.3 The while Statement oiiiiiiiiiieeiiiea . 137
10.4 The do-until Statementt .. 138
10.5 The for Statemento 138

10.5.1 Looping Over Structure Elements 139
10.6 The break Statement........... ..., 140
10.7 The continue Statementt .. 141
10.8 The unwind_protect Statement 142
10.9 The try Statement 142
10.10 Continuation Lines i i 143

11 Functions and Scripts 145
11.1 Defining Functions.o, 145
11.2 Multiple Return Values, 147
11.3 Variable-length Argument Lists........... 150
11.4 TIgnoring Arguments.ottt i, 151
11.5 Variable-length Return Listso ... 151
11.6 Returning from a Function.............. 152
11.7 Default Arguments ... 153
11.8 Function Fileso 154

11.8.1 Manipulating the Load Path 156

11.8.2 Subfunctions......... o i 159

11.8.3 Private Functions......... i 159

11.8.4 Overloading and Autoloading 159

11.8.5 Function Locking 160

11.8.6 Function Precedenceo L. 161
11.9 Script Files . ..o 162
11.10 Function Handles, Inline Functions, and Anonymous Functions

.. 163

11.10.1 Function Handles oot 163

11.10.2 Anonymous Functions, 164

11.10.3 Inline Functions o i, 165
1111 Commands . ..ottt 166
11.12 Organization of Functions Distributed with Octave......... 166

12 Errors and Warnings 169

12.1 Handling Errors ... 169
12.1.1 Raising Errors ... 169
12.1.2 Catching Errors....... ... 172

12.2 Handling Warnings 174
12.2.1 Issuing Warnings.cooeeeuiiiiiiiineeeeen... 174

12.2.2 Enabling and Disabling Warnings 175

GNU Octave

13 Debugging............ccoiiiiiiiii 179
13.1 Entering Debug Mode 179
13.2 Leaving Debug Mode ... 179
13.3 Breakpoints ... e 180
13.4 Debug Mode. 181
13.5 Call Stack . ..o 182

14 Input and Output........................... 183
14.1 Basic Input and Output i i 183

14.1.1 Terminal Outpub....... ..o 183
14.1.1.1 Paging Screen OUutput.........c.ooviuienneenne ... 186
14.1.2 Terminal Input 187
14.1.3 Simple File I/O ... o 188
14.1.3.1 Saving Data on Unexpected Exits 195
14.2 C-Style I/O Functions, 196
14.2.1 Opening and Closing Files 196
14.2.2 Simple Output 198
14.2.3 Line-Oriented Input......... 198
14.2.4 Formatted Output ..., 199
14.2.5 Output Conversion for Matrices........................ 200
14.2.6 Output Conversion Syntax..............cooeiiieino.... 201
14.2.7 Table of Output Conversions................c.coooee.... 202
14.2.8 Integer Conversionsooueeeiiieeeniieennnn.. 203
14.2.9 Floating-Point Conversions.....................ooou... 203
14.2.10 Other Output Conversionsccovvviiinn.. 204
14.2.11 Formatted Input ... 204
14.2.12 Input Conversion Syntax............cooveeiueenneenn.. 206
14.2.13 Table of Input Conversions................c..ooven... 206
14.2.14 Numeric Input Conversionsoooo.. 207
14.2.15 String Input Conversions................coovieeino ... 207
14.2.16 Binary I/O ... 208
14.2.17 Temporary Files...... o i 210
14.2.18 End of File and Errors.......... oL 211
14.2.19 File Positioning......... ..o o i 212

15 Plotting.................................... 215
15.1 Introduction to Plotting o i il 215
15.2 High-Level Plotting o i, 215

15.2.1 Two-Dimensional Plots, 215
15.2.1.1 Two-dimensional Function Plotting................ 235
15.2.2 Three-Dimensional Plotting.............. 237
15.2.2.1 Three-dimensional Function Plotting 244
15.2.2.2 Three-dimensional Geometric Shapes.............. 247
15.2.3 Plot Annotations 248
15.2.4 Multiple Plots on One Page................., 251
15.2.5 Multiple Plot Windows ..., 252

15.2.6 Use of axis, line, and patch functions 252

vi

15.2.7 Manipulation of plot windows.......................... 253
15.2.8 Use of the interpreter Property 256
15.2.9 Printing and Saving Plots.......... oL 258
15.2.10 Interacting with Plots......... 262
15.2.11 Test Plotting Functionso ... 262
15.3 Graphics Data Structures............cooviiiiiii ... 263
15.3.1 Introduction to Graphics Structures.................... 263
15.3.2 Graphics Objects ..o 265
15.3.2.1 Handle Functions i, 265
15.3.3 Graphics Object Propertiesl 267
15.3.3.1 Root Figure Properties.................... 268
15.3.3.2 Figure Properties i 269
15.3.3.3 Axes Properties.............ooiiiiiiiiiiii 271
15.3.3.4 Line Properties i, 276
15.3.3.5 Text Propertiest 277
15.3.3.6 Image Properties............ ... it 279
15.3.3.7 Patch Properties............... oot 279
15.3.3.8 Surface Properties........... il 281
15.3.4 Searching Properties..............coiiiiiiii i, 283
15.3.5 Managing Default Properties...................... ... 284
15.4 Advanced Plotting....... ... 285
15.4.1 ColOrS o oot 285
15.4.2 Line Styles. ..o 285
15.4.3 Marker Styles. ... 286
15.4.4 Callbackso 286
15.4.5 Object GroupsSovuuii e 287
15.4.5.1 Data Sources in Object Groups.................... 291
15.4.5.2 Area Series..........ouiiiiiiii 291
15.4.5.3 Bar Series...... ... 292
15.4.5.4 Contour Groups.........ovvrrieemireeennnnnann.. 292
15.4.5.5 Error Bar Series. ... 294
15.4.5.6 Line Series.........oouiuiiiiiiii e 294
15.4.5.7 Quiver Groupcvviutit it 295
15.4.5.8 Scatter Group...........oviiiiiiiiiiiiiiiiea.. 296
15.4.5.9 Stair Group.......c.vveiiiiie i 296
15.4.5.10 Stem Seriesc.ouiiiiniiiii 297
15.4.5.11 Surface Groupooeiiiiiii .. 298
15.4.6 Graphics Toolkits......... ..o i 298
15.4.6.1 Customizing Toolkit Behavior..................... 299

16 Matrix Manipulation....................... 301
16.1 Finding Elements and Checking Conditions 301
16.2 Rearranging Matrices........ ... i 304
16.3 Applying a Function to an Array.............ccooiiiiin.. 311
16.4 Special Utility Matrices. ... 314

16.5 Famous MatriCes.ot e 321

GNU Octave

vii

17 Arithmetic................................... 325
17.1 Exponents and Logarithms..............., 325
17.2 Complex Arithmetic.......... ... i, 327
17.3 Trigonometry 328
17.4 Sums and Products......... ... i 331
17.5 Utility Functions. o i 333
17.6 Special Functions.......... .. i 340
17.7 Rational Approximationscciiiiiiiii. ... 344
17.8 Coordinate Transformations......................ooii... 345
17.9 Mathematical Constants.......... ..., 346

18 Linear Algebra........................... ... 351
18.1 Techniques Used for Linear Algebra............. 351
18.2 Basic Matrix Functions oo i 351
18.3 Matrix Factorizations............ ... i i 357
18.4 Functions of a Matrix...........cooiiiiiii i 366
18.5 Specialized Solvers........ ... 367

19 Nonlinear Equations........................ 369

20 Diagonal and Permutation Matrices....... 373
20.1 Creating and Manipulating Diagonal and Permutation Matrices

.. 373
20.1.1 Creating Diagonal Matrices, 373
20.1.2 Creating Permutation Matrices......................... 374
20.1.3 Explicit and Implicit Conversions 375

20.2 Linear Algebra with Diagonal and Permutation Matrices 375
20.2.1 Expressions Involving Diagonal Matrices 375
20.2.2 Expressions Involving Permutation Matrices............ 377
20.3 Functions That Are Aware of These Matrices................ 377
20.3.1 Diagonal Matrix Functions................. 377
20.3.2 Permutation Matrix Functions 377
20.4 Some Examples of Usage. ..., 378
20.5 The Differences in Treatment of Zero Elements.............. 378

21 Sparse Matrices............................. 381

21.1 The Creation and Manipulation of Sparse Matrices.......... 381
21.1.1 Storage of Sparse Matricesoooiiiiiii 381
21.1.2 Creating Sparse Matrices........... ...t 382
21.1.3 Finding out Information about Sparse Matrices......... 387
21.1.4 Basic Operators and Functions on Sparse Matrices 391

21.1.4.1 Sparse Functions...............ooiiiiiiii .. 391
21.1.4.2 The Return Types of Operators and Functions. 392
21.1.4.3 Mathematical Considerations...................... 393
21.2 Linear Algebra on Sparse Matrices.......... ..., 401
21.3 Tterative Techniques applied to sparse matrices.............. 409

21.4 Real Life Example of the use of Sparse Matrices............. 414

viii

22 Numerical Integration...................... 419
22.1 Functions of One Variable......... 419
22.2 Orthogonal Collocationooiiiiiiiiiinn.. 424
22.3 Functions of Multiple Variables 424

23 Differential Equations 427
23.1 Ordinary Differential Equations............................. 427
23.2 Differential-Algebraic Equations............................. 429

24 Optimization................................ 439
24.1 Linear Programming...............uuuiiiinneeeeninnnnnn.. 439
24.2 Quadratic Programming, 445
24.3 Nonlinear Programming............. ..., 447
24.4 Linear Least Squares.............cooiiuiiiiiiieeennnnniiinn. 449

25 StatistiCS.......... o 451
25.1 Descriptive Statistics. ... 451
25.2 Basic Statistical Functions.......... 455
25.3 Statistical Plots.o 457
25.4 Correlation and Regression Analysis.............. 458
25.5 DIStributionsooii i 460
25,60 TestS .o 468
25.7 Random Number Generation..............coouiiiuneiinnn... 475

26 Sets ... 481
26.1 Set OperationsS.uttieeee et 481

27 Polynomial Manipulations 485
27.1 Evaluating Polynomials.......... L. 485
27.2 Finding Roots ... 486
27.3 Products of Polynomials........... 487
27.4 Derivatives / Integrals / Transforms......................... 490
27.5 Polynomial Interpolation...................... i 490
27.6 Miscellaneous Functions. 493

28 Interpolation............................. ... 495
28.1 One-dimensional Interpolation 495
28.2 Multi-dimensional Interpolation............................. 500

29 Geometry............... 505
29.1 Delaunay Triangulation............o .. 505

29.1.1 Plotting the Triangulation 507
29.1.2 Identifying Points in Triangulation 508
29.2 Voronoi Diagrams............c.oiiiiiiiiiiii .. 510
29.3 Convex Hullo 513

29.4 Interpolation on Scattered Data............................. 515

GNU Octave

30 Signal Processing 517
31 Image Processing........................... 529
31.1 Loading and Saving Images, 529
31.2 Displaying Images ... 532
31.3 Representing Images ..., 533
31.4 Plotting on top of Images................ i 538
31.5 Color Conversionouuuiiiiiuitiniiie e, 538
32 Audio Processing 539
33 Object Oriented Programming 541
33.1 Creating a Class. ... 541
33.2 Manipulating Classesooiiiiiiiiiii .. 543
33.3 Indexing Objects ..o 546
33.3.1 Defining Indexing And Indexed Assignment 547
33.3.2 Indexed Assignment Optimization...................... 550

33.4 Overloading Objectsot 551
33.4.1 Function Overloading i 551
33.4.2 Operator Overloading............ ..., 553
33.4.3 Precedence of Objects...... ...t 554

33.5 Inheritance and Aggregation 555
34 System Utilities............................. 561
34.1 Timing Utilities.ot 561
34.2 Filesystem Utilities ... 570
34.3 File Archiving Utilities....... ...t 578
34.4 Networking Utilities 579
34.4.1 FTP ODbJectS. .. oot 579
34.4.2 URL Manipulation.............ooiiiiiiiiiiin.. 580

34.5 Controlling Subprocesses.o.vieiiieiiiieenninn.n. 581
34.6 Process, Group, and User IDs.........., 588
34.7 Environment Variables............. i 588
34.8 Current Working Directory ...t 588
34.9 Password Database Functions.............. 589
34.10 Group Database Functions................ ..., 590
34.11 System Information......... o i 591
34.12 Hashing Functions.......... ... o i, 594
35 Packages..................... L, 597
35.1 Installing and Removing Packages........................... 597
35.2 Using Packages ... 600
35.3 Administrating Packages.............. . i, 600
35.4 Creating Packages ... 601
35.4.1 The DESCRIPTION File ..., 602
3542 The INDEX File.......ooiiiii i 604

35.4.3 PKG_ADD and PKG_DEL Directives.................. 605

ix

X GNU Octave

Appendix A Dynamically Linked Functions

... 607
AT Oct-Files. ... 607
A.1.1 Getting Started with Oct-Files................... 607
A.1.2 Matrices and Arrays in Oct-Files 610
A.1.3 Character Strings in Oct-Files 613
A.1.4 Cell Arrays in Oct-Files ..., 614
A.1.5 Structures in Oct-Files........... 615
A.1.6 Sparse Matrices in Oct-Files............... 617
A.1.6.1 The Differences between the Array and Sparse Classes
.. 617
A.1.6.2 Creating Sparse Matrices in Oct-Files.............. 618
A.1.6.3 Using Sparse Matrices in Oct-Files................. 621
A.1.7 Accessing Global Variables in Oct-Files................. 622
A.1.8 Calling Octave Functions from Oct-Files................ 623
A.1.9 Calling External Code from Oct-Files................... 624
A.1.10 Allocating Local Memory in Oct-Files 626
A.1.11 Input Parameter Checking in Oct-Files 627
A.1.12 Exception and Error Handling in Oct-Files............. 628
A.1.13 Documentation and Test of Oct-Files 629
A2 Mex-Files ... 630
A.2.1 Getting Started with Mex-Files......................... 631
A.2.2 Working with Matrices and Arrays in Mex-Files......... 632
A.2.3 Character Strings in Mex-Files............. 634
A.2.4 Cell Arrays with Mex-Files 635
A.2.5 Structures with Mex-Files 636
A.2.6 Sparse Matrices with Mex-Files......................... 638
A.2.7 Calling Other Functions in Mex-Files 641
A.3 Standalone Programs........... i i 642
Appendix B Test and Demo Functions 647
Bl Test Functions ... 647
B.2 Demonstration Functions.............. ... oL 651
Appendix C Tips and Standards 655
C.1 Writing Clean Octave Programsc.ooooiiia... 655
C.2 Tips for Making Code Run Faster............................ 655
C.3 Tips on Writing Commentscooviiiiiiiiiennnn... 658
C.4 Conventional Headers for Octave Functions 658
C.5 Tips for Documentation Strings.............................. 660
Appendix D Contributing Guidelines........ 665
D.1 How to Contributeo 665
D.2 General Guidelines 666
D.3 Octave Sources (m-files) ..., 667
D4 CAad SOUrCES. « vttt 668

D.5 Other SOUTCESot e 669

Appendix E Obsolete Functions.............. 671
Appendix F Known Causes of Trouble....... 673
F.1 Actual Bugs We Haven’t Fixed Yet 673
F.2 Reporting Bugs........couiiiiiiiiiiii i 673
F.2.1 Have You Found a Bug? 673

F.2.2 Where to Report Bugs............ L 674

F.2.3 How to Report Bugs...........ooooiiiiiiiiiit, 674

F.2.4 Sending Patches for Octave, 675

F.3 How To Get Help with Octave............. 676
Appendix G Installing Octave................ 677
G.1 Compiling Octave with 64-bit Indexing 681
G.2 Installation Problems............ i 684
Appendix H Emacs Octave Support 687
H.1 Installing EOS ... oo 687
H.2 Using Octave Mode ... 687
H.3 Running Octave from Within Emacs......................... 691
H.4 Using the Emacs Info Reader for Octave..................... 692

Appendix I 2 GNU GENERAL PUBLIC

LICENSE. 695
Concept Index.............. i, 707
Function Index 713

Operator Index................................... 725

xi

Preface 1

Preface

Octave was originally intended to be companion software for an undergraduate-level text-
book on chemical reactor design being written by James B. Rawlings of the University of
Wisconsin-Madison and John G. Ekerdt of the University of Texas.

Clearly, Octave is now much more than just another ‘courseware’ package with limited
utility beyond the classroom. Although our initial goals were somewhat vague, we knew
that we wanted to create something that would enable students to solve realistic problems,
and that they could use for many things other than chemical reactor design problems.

There are those who would say that we should be teaching the students Fortran instead,
because that is the computer language of engineering, but every time we have tried that, the
students have spent far too much time trying to figure out why their Fortran code crashes
and not enough time learning about chemical engineering. With Octave, most students pick
up the basics quickly, and are using it confidently in just a few hours.

Although it was originally intended to be used to teach reactor design, it has been used in
several other undergraduate and graduate courses in the Chemical Engineering Department
at the University of Texas, and the math department at the University of Texas has been
using it for teaching differential equations and linear algebra as well. If you find it useful,
please let us know. We are always interested to find out how Octave is being used in other
places.

Virtually everyone thinks that the name Octave has something to do with music, but it
is actually the name of a former professor of mine who wrote a famous textbook on chemical
reaction engineering, and who was also well known for his ability to do quick ‘back of the
envelope’ calculations. We hope that this software will make it possible for many people to
do more ambitious computations just as easily.

Everyone is encouraged to share this software with others under the terms of the GNU
General Public License (see Appendix I [Copying], page 695). You are also encouraged to
help make Octave more useful by writing and contributing additional functions for it, and
by reporting any problems you may have.

Acknowledgements

Many people have contributed to Octave’s development. The following people have helped
code parts of Octave or aided in various other ways (listed alphabetically).

Ben Abbott Andy Adler Joel Andersson
Muthiah Annamalai Shai Ayal Roger Banks

Ben Barrowes Alexander Barth David Bateman
Heinz Bauschke Karl Berry David Billinghurst

Don Bindner

Richard Bovey

Marco Caliari
Jean-Francois Cardoso
David Castelow
Albert Chin-A-Young
Martin Costabel
Martin Dalecki

Jakub Bogusz

Marcus Brinkmann
Daniel Calvelo

Joao Cardoso

Vincent Cautaerts
Carsten Clark
Michael Creel

Jorge Barros de Abreu

Moritz Borgmann
Remy Bruno
John C. Campbell
Larrie Carr
Clinton Chee

J. D. Cole

Jeff Cunningham
Carlo de Falco

Thomas D. Dean

Christos Dimitrakakis

John W. Eaton
Stephen Eglen
Gunnar Farnebck
Torsten Finke
Castor Fu

Klaus Gebhardt
Michael D. Godfrey
Tomislav Goles
Steffen Groot
Peter Gustafson
Jaroslav Hajek
Sren Hauberg
Martin Helm
Yozo Hida

A. Scottedward Hodel

David Hoover
Cyril Humbert
Geofl Jacobsen
Steven G. Johnson
Jarkko Kaleva
Fotios Kasolis
Mumit Khan

Arno J. Klaassen
Ken Kouno

Piotr Krzyzanowski
Miroslaw Kwasniak
Claude Lacoursiere
Dirk Laurie

Timo Lindfors
David Livings
Emil Lucretiu
Jens-Uwe Mager
Makoto Matsumoto
G. D. McBain
Thorsten Meyer
Antoine Moreau
Carmen Navarrete
Rick Niles

Eric Norum

Peter O’Gorman
Luis F. Ortiz
Sylvain Pelissier
Jim Peterson
Robert Platt

Orion Poplawski

Philippe Defert
David M. Doolin
Dirk Eddelbuettel
Peter Ekberg
Stephen Fegan

Jose Daniel Munoz Frias
Eduardo Gallestey
Driss Ghaddab
Michael Goflioul
Keith Goodman
Etienne Grossmann
Kai Habel
Benjamin Hall

Dave Hawthorne
Stefan Hepp

Ryan Hinton
Richard Allan Holcombe
Kurt Hornik

Teemu Ikonen

Mats Jansson
Heikki Junes
Mohamed Kamoun
Thomas Kasper
Paul Kienzle
Geoffrey Knauth
Kacper Kowalik
Volker Kuhlmann
Rafael Laboissiere
Walter Landry
Maurice LeBrun
Benjamin Lindner
Erik de Castro Lopo
Hoxide Ma

Ricardo Marranita
Tatsuro Matsuoka
Alexander Mamonov
Petr Mikulik

Kai P. Mueller
Todd Neal

Takuji Nishimura
Krzesimir Nowak
Thorsten Ohl

Scott Pakin

Per Persson

Danilo Piazzalunga
Hans Ekkehard Plesser
Ondrej Popp

GNU Octave

Bill Denney

Pascal A. Dupuis
Paul Eggert

Rolf Fabian

Ramon Garcia Fernandez
Brad Froehle
Walter Gautschi
Nicolo Giorgetti
Glenn Golden
Brian Gough

David Grundberg
William P. Y. Hadisoeseno
Kim Hansen

Daniel Heiserer
Jordi Gutirrez Hermoso
Roman Hodek

Tom Holroyd
Christopher Hulbert
Alan W. Irwin

Cai Jianming
Atsushi Kajita

Lute Kamstra

Joel Keay

Aaron A. King
Heine Kolltveit
Oyvind Kristiansen
Tetsuro Kurita

Kai Labusch

Bill Lash

Friedrich Leisch
Ross Lippert
Massimo Lorenzin
James Macnicol
Orestes Mas
Laurent Mazet
Christoph Mayer
Stefan Monnier
Victor Munoz

Al Niessner

Kai Noda

Michael O’Brien
Arno Onken
Gabriele Pannocchia
Primozz Peterlin
Nicholas Piper

Tom Poage

Jef Poskanzer

Preface

Francesco Potorti
Eric S. Raymond
Jason Riedy
Andrew Ross
Kristian Rumberg
Toni Saarela

Ben Sapp

Michel D. Schmid
Sebastian Schubert
Daniel J. Sebald
Joseph P. Skudlarek
Shan G. Smith
Christoph Spiel
Doug Stewart
Thomas Stuart
Daisuke Takago
Duncan Temple Lang
Christophe Tournery
Utkarsh Upadhyay
James R. Van Zandt
Thomas Walter

Rik Wehbring
Michael Weitzel
Federico Zenith

Konstantinos Poulios
Balint Reczey

Petter Risholm
Mark van Rossum
Ryan Rusaw

Juhani Saastamoinen
Aleksej Saushev
Julian Schnidder
Ludwig Schwardt
Dmitri A. Sergatskov
John Smith

Joerg Specht
Richard Stallman
Jonathan Stickel
Ivan Sutoris

Ariel Tankus

Kris Thielemans
Thomas Treichl
Stefan van der Walt
Gregory Vanuxem
Olaf Weber

Bob Weigel

Fook Fah Yap

Alex Zvoleff

James B. Rawlings
Michael Reifenberger
Matthew W. Roberts
Kevin Ruland

Olli Saarela

Radek Salac

Alois Schloegl

Nicol N. Schraudolph
Thomas L. Scofield
Baylis Shanks

Julius Smith
Quentin H. Spencer
Russell Standish
Judd Storrs

John Swensen

Georg Thimm

Olaf Till

Frederick Umminger
Peter Van Wieren
Ivana Varekova
Thomas Weber
Andreas Weingessel
Michael Zeising

Special thanks to the following people and organizations for supporting the development

of Octave:

The United States Department of Energy, through grant number DE-FG02-04ER25635.

Ashok Krishnamurthy, David Hudak, Juan Carlos Chaves, and Stanley C. Ahalt of the
Ohio Supercomputer Center.

The National Science Foundation, through grant numbers CTS-0105360, CTS-9708497,
CTS-9311420, CTS-8957123, and CNS-0540147.

The industrial members of the Texas-Wisconsin Modeling and Control Consortium
(TWMCC).

The Paul A. Elfers Endowed Chair in Chemical Engineering at the University of
Wisconsin-Madison.

Digital Equipment Corporation, for an equipment grant as part of their External Re-
search Program.

Sun Microsystems, Inc., for an Academic Equipment grant.

International Business Machines, Inc., for providing equipment as part of a grant to
the University of Texas College of Engineering.

Texaco Chemical Company, for providing funding to continue the development of this
software.

The University of Texas College of Engineering, for providing a Challenge for Excellence
Research Supplement, and for providing an Academic Development Funds grant.

http://www.che.utexas.edu/twmcc

4 GNU Octave

e The State of Texas, for providing funding through the Texas Advanced Technology
Program under Grant No. 003658-078.

e Noel Bell, Senior Engineer, Texaco Chemical Company, Austin Texas.

e John A. Turner, Group Leader, Continuum Dynamics (CCS-2), Los Alamos National
Laboratory, for registering the octave.org domain name.

e James B. Rawlings, Professor, University of Wisconsin-Madison, Department of Chem-
ical and Biological Engineering.

e Richard Stallman, for writing GNU.

This project would not have been possible without the GNU software used in and to
produce Octave.

How You Can Contribute to Octave

There are a number of ways that you can contribute to help make Octave a better system.
Perhaps the most important way to contribute is to write high-quality code for solving
new problems, and to make your code freely available for others to use. See Appendix D
[Contributing Guidelines], page 665, for detailed information on contributing new code.

If you find Octave useful, consider providing additional funding to continue its develop-
ment. Even a modest amount of additional funding could make a significant difference in
the amount of time that is available for development and support.

If you cannot provide funding or contribute code, you can still help make Octave better
and more reliable by reporting any bugs you find and by offering suggestions for ways to
improve Octave. See Appendix F [Trouble], page 673, for tips on how to write useful bug
reports.

Distribution

Octave is free software. This means that everyone is free to use it and free to redistribute
it on certain conditions. Octave is not, however, in the public domain. It is copyrighted
and there are restrictions on its distribution, but the restrictions are designed to ensure
that others will have the same freedom to use and redistribute Octave that you have. The
precise conditions can be found in the GNU General Public License that comes with Octave
and that also appears in Appendix I [Copying], page 695.

Octave is available on CD-ROM, with various collections of other free software, from the
Free Software Foundation. Ordering a copy of Octave from the Free Software Foundation
helps to fund the development of more free software. For more information, write to

Free Software Foundation

51 Franklin Street, Fifth Floor
Boston, MA 02110-1301-1307
USA

Octave can also be downloaded from http://www.octave.org, where additional infor-
mation is available.

octave.org
http://www.octave.org

Chapter 1: A Brief Introduction to Octave 5)

1 A Brief Introduction to Octave

GNU Octave is a high-level language, primarily intended for numerical computations. It
provides a convenient interactive command line interface for solving linear and nonlinear
problems numerically, and for performing other numerical experiments. It may also be used
as a batch-oriented language for data processing.

GNU Octave is freely redistributable software. You may redistribute it and/or modify
it under the terms of the GNU General Public License as published by the Free Software
Foundation. The GPL is included in this manual in Appendix I [Copying], page 695.

This manual provides comprehensive documentation on how to install, run, use, and
extend GNU Octave. Additional chapters describe how to report bugs and help contribute
code.

This document corresponds to Octave version 3.4.0.

1.1 Running Octave

On most systems, Octave is started with the shell command ‘octave’. Octave displays an
initial message and then a prompt indicating it is ready to accept input. You can begin
typing Octave commands immediately afterward.

If you get into trouble, you can usually interrupt Octave by typing Control-C (written
C-c for short). C-c gets its name from the fact that you type it by holding down CTRL
and then pressing C. Doing this will normally return you to Octave’s prompt.

To exit Octave, type quit, or exit at the Octave prompt.

On systems that support job control, you can suspend Octave by sending it a SIGTSTP
signal, usually by typing C-z.

1.2 Simple Examples
The following chapters describe all of Octave’s features in detail, but before doing that, it
might be helpful to give a sampling of some of its capabilities.

If you are new to Octave, I recommend that you try these examples to begin learning
Octave by using it. Lines marked like so, ‘octave:13>’, are lines you type, ending each
with a carriage return. Octave will respond with an answer, or by displaying a graph.

1.2.1 Elementary Calculations

Octave can easily be used for basic numerical calculations. Octave knows about arithmetic
operations (+,-,%,/), exponentiation (~), natural logarithms/exponents (log, exp), and the
trigonometric functions (sin, cos, ...). Moreover, Octave calculations work on real or
imaginary numbers (i,j). In addition, some mathematical constants such as the base of
the natural logarithm (e) and the ratio of a circle’s circumference to its diameter (pi) are
pre-defined.

For example, to verify Euler’s Identity,

eZ7T — _1

type the following which will evaluate to -1 within the tolerance of the calculation.

octave:1> exp(i*pi)

6 GNU Octave

1.2.2 Creating a Matrix

Vectors and matrices are the basic building blocks for numerical analysis. To create a new
matrix and store it in a variable so that you can refer to it later, type the command

octave:1> A =[1, 1, 2; 3, 5, 8; 13, 21, 34]

Octave will respond by printing the matrix in neatly aligned columns. Octave uses a comma
or space to separate entries in a row, and a semicolon or carriage return to separate one row
from the next. Ending a command with a semicolon tells Octave not to print the result of
the command. For example,

octave:2> B = rand (3, 2);

will create a 3 row, 2 column matrix with each element set to a random value between zero
and one.

To display the value of a variable, simply type the name of the variable at the prompt.
For example, to display the value stored in the matrix B, type the command

octave:3> B

1.2.3 Matrix Arithmetic

Octave has a convenient operator notation for performing matrix arithmetic. For example,
to multiply the matrix A by a scalar value, type the command

octave:4> 2 x A

To multiply the two matrices A and B, type the command
octave:5> A * B

and to form the matrix product ATA, type the command

octave:6> A’ * A

1.2.4 Solving Systems of Linear Equations

Systems of linear equations are ubiquitous in numerical analysis. To solve the set of linear
equations Ax = b, use the left division operator, ‘\’:

x=A\Db

This is conceptually equivalent to A~'b, but avoids computing the inverse of a matrix
directly.

If the coefficient matrix is singular, Octave will print a warning message and compute a
minimum norm solution.

A simple example comes from chemistry and the need to obtain balanced chemical
equations. Consider the burning of hydrogen and oxygen to produce water.

H2 + Og — HQO
The equation above is not accurate. The Law of Conservation of Mass requires that the num-

ber of molecules of each type balance on the left- and right-hand sides of the equation. Writ-
ing the variable overall reaction with individual equations for hydrogen and oxygen one finds:

Chapter 1: A Brief Introduction to Octave 7

l‘ng + 33202 — HQO
H: 2x,40x, — 2
O: 0x1+2x,—1

The solution in Octave is found in just three steps.

octave:1> A = [2, 0; 0, 2 1;
octave:2> b = [2; 1 1;
octave:3> x = A\ b

1.2.5 Integrating Differential Equations

Octave has built-in functions for solving nonlinear differential equations of the form

%:f(x,t), x(t=ty) = xo

For Octave to integrate equations of this form, you must first provide a definition of the
function f(x,t). This is straightforward, and may be accomplished by entering the function
body directly on the command line. For example, the following commands define the right-
hand side function for an interesting pair of nonlinear differential equations. Note that
while you are entering a function, Octave responds with a different prompt, to indicate that
it is waiting for you to complete your input.

octave:1> function xdot = f (x, t)

>

> r = 0.25;

> k =1.4;

> a 1.5;

> b 0.16;

> ¢ =0.9;

> d = 0.8;

>

> xdot(1l) = r*x(1)*(1 - x(1)/k) - a*xx(1)*x(2)/(1 + b*x(1));
> xdot(2) = cxa*x(1)*x(2)/(1 + b*x(1)) - d*xx(2);
>

> endfunction

Given the initial condition
octave:2> x0 = [1; 2];

and the set of output times as a column vector (note that the first output time corresponds
to the initial condition given above)

octave:3> t = linspace (0, 50, 200)’;
it is easy to integrate the set of differential equations:
octave:4> x = lsode ("f", x0, t);

The function 1sode uses the Livermore Solver for Ordinary Differential Equations, described
in A. C. Hindmarsh, ODEPACK, a Systematized Collection of ODE Solvers, in: Scientific
Computing, R. S. Stepleman et al. (Eds.), North-Holland, Amsterdam, 1983, pages 55-64.

8 GNU Octave

1.2.6 Producing Graphical Output
To display the solution of the previous example graphically, use the command
octave:1> plot (t, x)

If you are using a graphical user interface, Octave will automatically create a separate
window to display the plot.

To save a plot once it has been displayed on the screen, use the print command. For
example,

print -deps foo.eps
will create a file called ‘foo.eps’ that contains a rendering of the current plot in Encapsu-
lated PostScript format. The command

help print

explains more options for the print command and provides a list of additional output file
formats.

1.2.7 Editing What You Have Typed

At the Octave prompt, you can recall, edit, and reissue previous commands using Emacs-
or vi-style editing commands. The default keybindings use Emacs-style commands. For
example, to recall the previous command, press Control-p (written C-p for short). Doing
this will normally bring back the previous line of input. C-n will bring up the next line of
input, C-b will move the cursor backward on the line, C-f will move the cursor forward on
the line, etc.

A complete description of the command line editing capability is given in this manual
in Section 2.4 [Command Line Editing], page 20.

1.2.8 Help and Documentation

Octave has an extensive help facility. The same documentation that is available in printed
form is also available from the Octave prompt, because both forms of the documentation
are created from the same input file.

In order to get good help you first need to know the name of the command that you
want to use. This name of the function may not always be obvious, but a good place to
start is to just type help --1ist. This will show you all the operators, keywords, built-in
functions, and loadable functions available in the current session of Octave. An alternative
is to search the documentation using the lookfor function. This function is described in
Section 2.3 [Getting Help], page 17.

Once you know the name of the function you wish to use, you can get more help on the
function by simply including the name as an argument to help. For example,

help plot
will display the help text for the plot function.

Octave sends output that is too long to fit on one screen through a pager like less or
more. Type a RET to advance one line, a SPC to advance one page, and Q to exit the
pager.

The part of Octave’s help facility that allows you to read the complete text of the printed
manual from within Octave normally uses a separate program called Info. When you invoke

Chapter 1: A Brief Introduction to Octave 9

Info you will be put into a menu driven program that contains the entire Octave manual.
Help for using Info is provided in this manual in Section 2.3 [Getting Help|, page 17.

1.3 Conventions

This section explains the notational conventions that are used in this manual. You may
want to skip this section and refer back to it later.

1.3.1 Fonts

Examples of Octave code appear in this font or form: svd (a). Names that represent
variables or function arguments appear in this font or form: first-number. Commands
that you type at the shell prompt appear in this font or form: ‘octave —--no-init-file’.
Commands that you type at the Octave prompt sometimes appear in this font or form: foo
--bar --baz. Specific keys on your keyboard appear in this font or form: ANY.

1.3.2 Evaluation Notation

In the examples in this manual, results from expressions that you evaluate are indicated
with ‘=". For example:
sqrt (2)
= 1.4142

You can read this as “sqrt (2) evaluates to 1.4142”.
In some cases, matrix values that are returned by expressions are displayed like this
(1, 2; 3, 4] == [1, 3; 2, 4]
= [1, 0; 0, 1]
and in other cases, they are displayed like this
eye (3)

in order to clearly show the structure of the result.

Sometimes to help describe one expression, another expression is shown that produces
identical results. The exact equivalence of expressions is indicated with ‘=’. For example:

rot90 ([1, 2; 3, 4], -1)

rot90 ([1, 2; 3, 4], 3)

rot90 ([1, 2; 3, 4], 7)
1.3.3 Printing Notation

Many of the examples in this manual print text when they are evaluated. In this manual
the printed text resulting from an example is indicated by ‘¢ 4’. The value that is returned
by evaluating the expression is displayed with ‘=’ (1 in the next example) and follows on
a separate line.

printf ("foo %s\n", "bar")
- foo bar
=1

10 GNU Octave

1.3.4 Error Messages

Some examples signal errors. This normally displays an error message on your terminal.
Error messages are shown on a line beginning with error:.

fieldnames ([1, 2; 3, 4])
error: fieldnames: wrong type argument ‘matrix’

1.3.5 Format of Descriptions

Functions, commands, and variables are described in this manual in a uniform format. The
first line of a description contains the name of the item followed by its arguments, if any.
The category—function, variable, or whatever—is printed next to the right margin. The
description follows on succeeding lines, sometimes with examples.

1.3.5.1 A Sample Function Description

In a function description, the name of the function being described appears first. It is
followed on the same line by a list of parameters. The names used for the parameters are
also used in the body of the description.

Here is a description of an imaginary function foo:

foo (x,y,...) [Function]
The function foo subtracts x from y, then adds the remaining arguments to the result.
If y is not supplied, then the number 19 is used by default.

foo (1, [3, 5], 3, 9)
= [14, 16 1]
foo (5)
= 14

More generally,
foo (w, %X, y, ...)

X - w+y+ ...

Any parameter whose name contains the name of a type (e.g., integer or matrix) is
expected to be of that type. Parameters named object may be of any type. Parameters
with other sorts of names (e.g., new_file) are discussed specifically in the description of
the function. In some sections, features common to parameters of several functions are
described at the beginning.

Functions in Octave may be defined in several different ways. The category name for
functions may include another name that indicates the way that the function is defined.
These additional tags include

Function File
The function described is defined using Octave commands stored in a text file.
See Section 11.8 [Function Files], page 154.

Built-in Function
The function described is written in a language like C++, C, or Fortran, and is
part of the compiled Octave binary.

Chapter 1: A Brief Introduction to Octave 11

Loadable Function
The function described is written in a language like C++, C, or Fortran. On
systems that support dynamic linking of user-supplied functions, it may be
automatically linked while Octave is running, but only if it is needed. See
Appendix A [Dynamically Linked Functions]|, page 607.

Mapping Function
The function described works element-by-element for matrix and vector argu-
ments.

1.3.5.2 A Sample Command Description

Command descriptions have a format similar to function descriptions, except that the word
‘Function’ is replaced by ‘Command’. Commands are functions that may be called with-
out surrounding their arguments in parentheses. For example, here is the description for
Octave’s cd command:

cd dir [Command]

chdir dir [Command]|
Change the current working directory to dir. For example, cd ~/octave changes the
current working directory to ‘“/octave’. If the directory does not exist, an error
message is printed and the working directory is not changed.

1.3.5.3 A Sample Variable Description

A variable is a name that can hold a value. Although any variable can be set by the
user, built-in variables typically exist specifically so that users can change them to alter the
way Octave behaves (built-in variables are also sometimes called user options). Ordinary
variables and built-in variables are described using a format like that for functions except
that there are no arguments.

Here is a description of the imaginary variable do_what_i_mean_not_what_i_say.

do_what_i_mean_not_what_i_say [Built-in Variable]
If the value of this variable is nonzero, Octave will do what you actually wanted, even
if you have typed a completely different and meaningless list of commands.

Other variable descriptions have the same format, but ‘Built-in Variable’ is replaced by
‘Variable’, for ordinary variables, or ‘Constant’ for symbolic constants whose values cannot
be changed.

Chapter 2: Getting Started 13

2 Getting Started

This chapter explains some of Octave’s basic features, including how to start an Octave ses-
sion, get help at the command prompt, edit the command line, and write Octave programs
that can be executed as commands from your shell.

2.1 Invoking Octave from the Command Line

Normally, Octave is used interactively by running the program ‘octave’ without any ar-
guments. Once started, Octave reads commands from the terminal until you tell it to
exit.

You can also specify the name of a file on the command line, and Octave will read and
execute the commands from the named file and then exit when it is finished.

You can further control how Octave starts by using the command-line options described
in the next section, and Octave itself can remind you of the options available. Type ‘octave
--help’ to display all available options and briefly describe their use (‘octave -h’is a shorter
equivalent).

2.1.1 Command Line Options
Here is a complete list of the command line options that Octave accepts.

--debug

-d Enter parser debugging mode. Using this option will cause Octave’s parser to
print a lot of information about the commands it reads, and is probably only
useful if you are actually trying to debug the parser.

--doc-cache-file filename
Specify the name of the doc cache file to use. The value of filename specified
on the command line will override any value of 0CTAVE_DOC_CACHE_FILE found
in the environment, but not any commands in the system or user startup files
that use the doc_cache_file function.

—--echo-commands
-X Echo commands as they are executed.

--eval code
Evaluate code and exit when finished unless ‘--persist’ is also specified.

--exec-path path
Specify the path to search for programs to run. The value of path specified on
the command line will override any value of OCTAVE_EXEC_PATH found in the
environment, but not any commands in the system or user startup files that set
the built-in variable EXEC_PATH.

--help

-h

-7 Print short help message and exit.

--image-path path
Add path to the head of the search path for images. The value of path specified
on the command line will override any value of OCTAVE_IMAGE_PATH found in

14 GNU Octave

the environment, but not any commands in the system or user startup files that
set the built-in variable IMAGE_PATH.

-—info-file filename
Specify the name of the info file to use. The value of filename specified on
the command line will override any value of OCTAVE_INFO_FILE found in the
environment, but not any commands in the system or user startup files that
use the info_file function.

--info-program program
Specify the name of the info program to use. The value of program specified
on the command line will override any value of OCTAVE_INFO_PROGRAM found
in the environment, but not any commands in the system or user startup files
that use the info_program function.

-—interactive

-i Force interactive behavior. This can be useful for running Octave via a remote
shell command or inside an Emacs shell buffer. For another way to run Octave
within Emacs, see Appendix H [Emacs Octave Support], page 687.

--line-editing
Force readline use for command-line editing.
--no-history
-H Disable recording of command-line history.
--no-init-file
Don’t read the initialization files ‘*/.octaverc’ and ‘.octaverc’.
--no-init-path
Don’t initialize the search path for function files to include default locations.
--no-line-editing
Disable command-line editing.
-—-no-site-file
Don’t read the site-wide ‘octaverc’ initialization files.

--norc
-f Don’t read any of the system or user initialization files at startup. This is equiv-

alent to using both of the options ‘-—-no-init-file’ and ‘--no-site-file’.
--path path

-p path Add path to the head of the search path for function files. The value of path
specified on the command line will override any value of OCTAVE_PATH found
in the environment, but not any commands in the system or user startup files
that set the internal load path through one of the path functions.

--persist
Go to interactive mode after ‘--eval’ or reading from a file named on the
command line.

-—-silent

--quiet

-q Don’t print the usual greeting and version message at startup.

Chapter 2: Getting Started 15

-—traditional

--braindead
For compatibility with MATLAB, set initial values for user preferences to the
following values

PS1 = ">> "

pPs2 = "
allow_noninteger_range_as_index = true
beep_on_error = true
confirm_recursive_rmdir = false
crash_dumps_octave_core = false
default_save_options = "-mat-binary"
fixed_point_format = true
history_timestamp_format_string = "%%-— %D %I:%M %p —=%h"
page_screen_output = false
print_empty_dimensions = false

and disable the following warnings

Octave:abbreviated-property-match
Octave:fopen-file-in-path
Octave:function-name-clash
Octave:load-file-in-path

--verbose
-V Turn on verbose output.

--version
-v Print the program version number and exit.

file Execute commands from file. Exit when done unless ‘--persist’ is also speci-
fied.

Octave also includes several functions which return information about the command line,
including the number of arguments and all of the options.

argv () [Built-in Function]
Return the command line arguments passed to Octave. For example, if you invoked
Octave using the command
octave --no-line-editing --silent
argv would return a cell array of strings with the elements ‘~-no-line-editing’ and

‘——silent’.

If you write an executable Octave script, argv will return the list of arguments passed
to the script. See Section 2.6 [Executable Octave Programs|, page 29, for an example
of how to create an executable Octave script.

program_name () [Built-in Function]
Return the last component of the value returned by program_invocation_name.

See also: [program_invocation_name|, page 16.

16 GNU Octave

program_invocation_name () [Built-in Function]
Return the name that was typed at the shell prompt to run Octave.

If executing a script from the command line (e.g., octave foo.m) or using an ex-
ecutable Octave script, the program name is set to the name of the script. See
Section 2.6 [Executable Octave Programs|, page 29, for an example of how to create
an executable Octave script.

See also: [program_name|, page 15.

Here is an example of using these functions to reproduce the command line which invoked
Octave.

printf ("%s", program_name ());

arg_list = argv O;

for i = l:nargin

printf (" %s", arg_list{i});

endfor

printf ("\n");
See Section 6.2.3 [Indexing Cell Arrays|, page 94, for an explanation of how to retrieve
objects from cell arrays, and Section 11.1 [Defining Functions|, page 145, for information
about the variable nargin.

2.1.2 Startup Files

When Octave starts, it looks for commands to execute from the files in the following list.
These files may contain any valid Octave commands, including function definitions.

octave-home/share/octave/site/m/startup/octaverc
where octave-home is the directory in which Octave is installed (the default
is ‘/usr/local’). This file is provided so that changes to the default Octave
environment can be made globally for all users at your site for all versions of
Octave you have installed. Care should be taken when making changes to this
file since all users of Octave at your site will be affected. The default file may
be overridden by the environment variable OCTAVE_SITE_INITFILE.

octave-home /share/octave/version/m/startup/octaverc

where octave-home is the directory in which Octave is installed (the default is
‘/usr/local’), and version is the version number of Octave. This file is pro-
vided so that changes to the default Octave environment can be made glob-
ally for all users of a particular version of Octave. Care should be taken
when making changes to this file since all users of Octave at your site will
be affected. The default file may be overridden by the environment variable
OCTAVE_VERSION_INITFILE.

~/.octaverc
This file is used to make personal changes to the default Octave environment.

.octaverc
This file can be used to make changes to the default Octave environment for
a particular project. Octave searches for this file in the current directory after
it reads ‘7/.octaverc’. Any use of the cd command in the ‘“/.octaverc’ file
will affect the directory where Octave searches for ‘.octaverc’.

Chapter 2: Getting Started 17

If you start Octave in your home directory, commands from the file
‘~/.octaverc’ will only be executed once.

A message will be displayed as each of the startup files is read if you invoke Octave with
the ‘--verbose’ option but without the ‘--silent’ option.

2.2 Quitting Octave

exit (status) [Built-in Function]
quit (status) [Built-in Function]
Exit the current Octave session. If the optional integer value status is supplied, pass
that value to the operating system as the Octave’s exit status. The default value is

Z€ro.
atexit (fcn) [Built-in Function]
atexit (fcn, flag) [Built-in Function]

Register a function to be called when Octave exits. For example,

function last_words ()
disp ("Bye bye");

endfunction

atexit ("last_words");

will print the message "Bye bye" when Octave exits.

The additional argument flag will register or unregister fcn from the list of functions
to be called when Octave exits. If flag is true, the function is registered, and if flag
is false, it is unregistered. For example, after registering the function last_words
above,

atexit ("last_words", false);

will remove the function from the list and Octave will not call 1last_words when it
exits.

Note that atexit only removes the first occurrence of a function from the list, so if a
function was placed in the list multiple times with atexit, it must also be removed
from the list multiple times.

2.3 Commands for Getting Help

The entire text of this manual is available from the Octave prompt via the command doc.
In addition, the documentation for individual user-written functions and variables is also
available via the help command. This section describes the commands used for reading
the manual and the documentation strings for user-supplied functions and variables. See
Section 11.8 [Function Files|, page 154, for more information about how to document the
functions you write.

help name [Command]

help --list [Command]|
Display the help text for name. For example, the command help help prints a short
message describing the help command.

18 GNU Octave

Given the single argument --1list, list all operators, keywords, built-in functions,
and loadable functions available in the current session of Octave.

If invoked without any arguments, help display instructions on how to access help
from the command line.

The help command can give you information about operators, but not the comma
and semicolons that are used as command separators. To get help for those, you must
type help comma or help semicolon.

See also: [doc], page 18, [lookfor], page 18, [which], page 112.

doc function_name [Command]
Display documentation for the function function_name directly from an on-line ver-
sion of the printed manual, using the GNU Info browser. If invoked without any
arguments, the manual is shown from the beginning.

For example, the command doc rand starts the GNU Info browser at the rand node
in the on-line version of the manual.

Once the GNU Info browser is running, help for using it is available using the com-
mand C-h.

See also: [help], page 17.

lookfor str [Command]
lookfor -all str [Command]|
[func, helpstring] = lookfor (str) [Function File]

]

[func, helpstring] lookfor (™-all’, str) [Function File
Search for the string str in all functions found in the current function search path.
By default, lookfor searches for str in the first sentence of the help string of each
function found. The entire help text of each function can be searched if the ’-all’
argument is supplied. All searches are case insensitive.

Called with no output arguments, lookfor prints the list of matching functions to the
terminal. Otherwise, the output arguments func and helpstring define the matching
functions and the first sentence of each of their help strings.

The ability of lookfor to correctly identify the first sentence of the help text is depen-
dent on the format of the function’s help. All Octave core functions are correctly for-
matted, but the same can not be guaranteed for external packages and user-supplied
functions. Therefore, the use of the ’-all’ argument may be necessary to find related
functions that are not a part of Octave.

See also: [help], page 17, [doc], page 18, [which], page 112.
To see what is new in the current release of Octave, use the news function.

news () [Function File]
Display the current NEWS file for Octave.

info () [Function File]
Display contact information for the GNU Octave community.

warranty () [Built-in Function]
Describe the conditions for copying and distributing Octave.

Chapter 2: Getting Started 19

The following functions can be used to change which programs are used for displaying
the documentation, and where the documentation can be found.

val = info_file () [Built-in Function]
old_val = info_file (new_val) [Built-in Function]
Query or set the internal variable that specifies the name of the Octave info file. The
default value is ‘octave-home/info/octave.info’, in which octave-home is the root
directory of the Octave installation. The default value may be overridden by the en-
vironment variable OCTAVE_INFO_FILE, or the command line argument ‘--info-file

NAME’.
See also: [info_program]|, page 19, [doc], page 18, [help], page 17, [makeinfo_program]|,
page 19.
val = info_program () [Built-in Function]
old_val = info_program (new_val) [Built-in Function]

Query or set the internal variable that specifies the name of the info program to run.
The default value is ‘octave-home/libexec/octave/version/exec/arch/info’
in which octave-home is the root directory of the Octave installation, version
is the Octave version number, and arch is the system type (for example,
i686-pc-linux-gnu). The default value may be overridden by the environment
variable OCTAVE_INFO_PROGRAM, or the command line argument ‘--info-program

NAME’.
See also: [info_file|, page 19, [doc|, page 18, [help], page 17, [makeinfo_program],
page 19.
val = makeinfo_program () [Built-in Function]
old_val = makeinfo_program (new_val) [Built-in Function]

Query or set the internal variable that specifies the name of the program that Octave
runs to format help text containing Texinfo markup commands. The default value is

makeinfo.

See also: [info_file], page 19, [info_program]|, page 19, [doc], page 18, [help], page 17.

val = doc_cache_file () [Built-in Function]

old_val = doc_cache_file (new_val) [Built-in Function]
Query or set the internal variable that specifies the name of the Octave documentation
cache file. A cache file significantly improves the performance of the lookfor com-
mand. The default value is ‘octave-home /share/octave/version/etc/doc-cache’,
in which octave-home is the root directory of the Octave installation, and version is the
Octave version number. The default value may be overridden by the environment vari-
able OCTAVE_DOC_CACHE_FILE, or the command line argument ‘--doc-cache-file
NAME’.

See also: [lookfor], page 18, [info_program], page 19, [doc], page 18, [help], page 17,
[makeinfo_program], page 19.

20 GNU Octave

val = suppress_verbose_help_message () [Built-in Function]

old_val = suppress_verbose_help_message (new_val) [Built-in Function)]
Query or set the internal variable that controls whether Octave will add additional
help information to the end of the output from the help command and usage messages
for built-in commands.

2.4 Command Line Editing

Octave uses the GNU Readline library to provide an extensive set of command-line editing
and history features. Only the most common features are described in this manual. In
addition, all of the editing functions can be bound to different key strokes at the user’s
discretion. This manual assumes no changes from the default Emacs bindings. See the
GNU Readline Library manual for more information on customizing Readline and for a
complete feature list.

To insert printing characters (letters, digits, symbols, etc.), simply type the character.
Octave will insert the character at the cursor and advance the cursor forward.

Many of the command-line editing functions operate using control characters. For ex-
ample, the character Control-a moves the cursor to the beginning of the line. To type C-a,
hold down CTRL and then press A. In the following sections, control characters such as
Control-a are written as C-a.

Another set of command-line editing functions use Meta characters. To type M-u, hold
down the META key and press U. Depending on the keyboard, the META key may be
labeled ALT or even WINDOWS. If your terminal does not have a META key, you can
still type Meta characters using two-character sequences starting with ESC. Thus, to enter
M-u, you would type ESC U. The ESC character sequences are also allowed on terminals
with real Meta keys. In the following sections, Meta characters such as Meta-u are written
as M-u.

2.4.1 Cursor Motion

The following commands allow you to position the cursor.

C-b Move back one character.
Cc-f Move forward one character.
BACKSPACE

Delete the character to the left of the cursor.
DEL Delete the character underneath the cursor.
c-d Delete the character underneath the cursor.
M-f Move forward a word.
M-b Move backward a word.
C-a Move to the start of the line.
C-e Move to the end of the line.

Cc-1 Clear the screen, reprinting the current line at the top.

Chapter 2: Getting Started 21

C—_
c-/ Undo the last action. You can undo all the way back to an empty line.
M-r Undo all changes made to this line. This is like typing the ‘undo’ command

enough times to get back to the beginning.

The above table describes the most basic possible keystrokes that you need in order to
do editing of the input line. On most terminals, you can also use the left and right arrow
keys in place of C-f and C-b to move forward and backward.

Notice how C-f moves forward a character, while M-f moves forward a word. It is a loose
convention that control keystrokes operate on characters while meta keystrokes operate on
words.

The function clc will allow you to clear the screen from within Octave programs.

clc () [Built-in Function]
home () [Built-in Function]
Clear the terminal screen and move the cursor to the upper left corner.

2.4.2 Killing and Yanking

Killing text means to delete the text from the line, but to save it away for later use, usually
by yanking it back into the line. If the description for a command says that it ‘kills’ text,
then you can be sure that you can get the text back in a different (or the same) place later.

Here is the list of commands for killing text.
C-k Kill the text from the current cursor position to the end of the line.

M-d Kill from the cursor to the end of the current word, or if between words, to the
end of the next word.

M-DEL Kill from the cursor to the start of the previous word, or if between words, to
the start of the previous word.

C-w Kill from the cursor to the previous whitespace. This is different than M-DEL
because the word boundaries differ.

And, here is how to yank the text back into the line. Yanking means to copy the
most-recently-killed text from the kill buffer.

C-y Yank the most recently killed text back into the buffer at the cursor.

M-y Rotate the kill-ring, and yank the new top. You can only do this if the prior
command is C-y or M-y.

When you use a kill command, the text is saved in a kill-ring. Any number of consecutive
kills save all of the killed text together, so that when you yank it back, you get it in one
clean sweep. The kill ring is not line specific; the text that you killed on a previously typed
line is available to be yanked back later, when you are typing another line.

2.4.3 Commands For Changing Text

The following commands can be used for entering characters that would otherwise have a
special meaning (e.g., TAB, C-q, etc.), or for quickly correcting typing mistakes.

22 GNU Octave

C—q

C-v Add the next character that you type to the line verbatim. This is how to insert
things like C-q for example.

M-TAB Insert a tab character.

C-t Drag the character before the cursor forward over the character at the cursor,
also moving the cursor forward. If the cursor is at the end of the line, then
transpose the two characters before it.

M-t Drag the word behind the cursor past the word in front of the cursor moving
the cursor over that word as well.

M-u Uppercase the characters following the cursor to the end of the current (or
following) word, moving the cursor to the end of the word.

M-1 Lowercase the characters following the cursor to the end of the current (or
following) word, moving the cursor to the end of the word.

M-c Uppercase the character following the cursor (or the beginning of the next word

if the cursor is between words), moving the cursor to the end of the word.

2.4.4 Letting Readline Type For You
The following commands allow Octave to complete command and variable names for you.

TAB Attempt to do completion on the text before the cursor. Octave can complete
the names of commands and variables.

M-7 List the possible completions of the text before the cursor.

val = completion_append_char () [Built-in Function]

old_val = completion_append_char (new_val) [Built-in Function]
Query or set the internal character variable that is appended to successful command-
line completion attempts. The default value is " " (a single space).

completion_matches (hint) [Built-in Function]

Generate possible completions given hint.

This function is provided for the benefit of programs like Emacs which might be
controlling Octave and handling user input. The current command number is not
incremented when this function is called. This is a feature, not a bug.

2.4.5 Commands For Manipulating The History

Octave normally keeps track of the commands you type so that you can recall previous
commands to edit or execute them again. When you exit Octave, the most recent commands
you have typed, up to the number specified by the variable history_size, are saved in a
file. When Octave starts, it loads an initial list of commands from the file named by the
variable history_file.

Here are the commands for simple browsing and searching the history list.
LFD
RET Accept the current line regardless of where the cursor is. If the line is non-

empty, add it to the history list. If the line was a history line, then restore the
history line to its original state.

Chapter 2: Getting Started 23

C-p
C-n
M-<
M->

C-r

C-s

Move ‘up’ through the history list.

Move ‘down’ through the history list.

Move to the first line in the history.

Move to the end of the input history, i.e., the line you are entering!

Search backward starting at the current line and moving ‘up’ through the his-
tory as necessary. This is an incremental search.

Search forward starting at the current line and moving ‘down’ through the
history as necessary.

On most terminals, you can also use the up and down arrow keys in place of C-p and
C-n to move through the history list.

In addition to the keyboard commands for moving through the history list, Octave
provides three functions for viewing, editing, and re-running chunks of commands from the
history list.

history options [Command]|

If invoked with no arguments, history displays a list of commands that you have
executed. Valid options are:

-w file Write the current history to the file file. If the name is omitted, use the
default history file (normally ‘/.octave_hist’).

-r file Read the file file, appending its contents to the current history list. If the
name is omitted, use the default history file (normally ‘~/.octave_hist’).

n Display only the most recent n lines of history.

-q Don’t number the displayed lines of history. This is useful for cutting and
pasting commands using the X Window System.

For example, to display the five most recent commands that you have typed without
displaying line numbers, use the command history -q 5.

edit_history [first] [last] [Command]

If invoked with no arguments, edit_history allows you to edit the history list using
the editor named by the variable EDITOR. The commands to be edited are first copied
to a temporary file. When you exit the editor, Octave executes the commands that
remain in the file. It is often more convenient to use edit_history to define functions
rather than attempting to enter them directly on the command line. By default, the
block of commands is executed as soon as you exit the editor. To avoid executing any
commands, simply delete all the lines from the buffer before exiting the editor.

The edit_history command takes two optional arguments specifying the history
numbers of first and last commands to edit. For example, the command

edit_history 13

extracts all the commands from the 13th through the last in the history list. The
command

24 GNU Octave

edit_history 13 169

only extracts commands 13 through 169. Specifying a larger number for the first
command than the last command reverses the list of commands before placing them
in the buffer to be edited. If both arguments are omitted, the previous command in
the history list is used.

See also: [run_history], page 24.

run_history [first] [last] [Command|
Similar to edit_history, except that the editor is not invoked, and the commands
are simply executed as they appear in the history list.

See also: [edit_history], page 23.
Octave also allows you customize the details of when, where, and how history is saved.

val = saving_history () [Built-in Function]

old_val = saving_history (new_val) [Built-in Function]
Query or set the internal variable that controls whether commands entered on the
command line are saved in the history file.

See also: [history_control], page 24, [history_file], page 24, [history_size|, page 25,
[history_timestamp_format_string], page 25.

val = history_control () [Built-in Function]

old_val = history_control (new_val) [Built-in Function]
Query or set the internal variable that specifies how commands are saved to the
history list. The default value is an empty character string, but may be overridden
by the environment variable OCTAVE_HISTCONTROL.

The value of history_control is a colon-separated list of values controlling how
commands are saved on the history list. If the list of values includes ignorespace,
lines which begin with a space character are not saved in the history list. A value of
ignoredups causes lines matching the previous history entry to not be saved. A value
of ignoreboth is shorthand for ignorespace and ignoredups. A value of erasedups
causes all previous lines matching the current line to be removed from the history list
before that line is saved. Any value not in the above list is ignored. If history_
control is the empty string, all commands are saved on the history list, subject to
the value of saving_history.

See also: |history_file], page 24, [history_size|, page 25, [history_timestamp_format_string],Jj
page 25, [saving_history], page 24.

val = history_file () [Built-in Function]

old_val = history_file (new_val) [Built-in Function]
Query or set the internal variable that specifies the name of the file used to store
command history. The default value is ‘**/.octave_hist’, but may be overridden by
the environment variable OCTAVE_HISTFILE.

See also: [history_size|, page 25, [saving_history], page 24, [history_timestamp_format_string],Jj
page 25.

Chapter 2: Getting Started 25

val = history_size () [Built-in Function]

old_val = history_size (new_val) [Built-in Function]
Query or set the internal variable that specifies how many entries to store in the
history file. The default value is 1024, but may be overridden by the environment
variable OCTAVE_HISTSIZE.

See also: [history_file], page 24, [history_timestamp_format_string|, page 25,
[saving_history], page 24.

val = history_timestamp_format_string () [Built-in Function]

old_val = history_timestamp_format_string (new_val) [Built-in Function]
Query or set the internal variable that specifies the format string for the comment
line that is written to the history file when Octave exits. The format string is passed
to strftime. The default value is

"# Octave VERSION, %a %b %d %H:%M:%S %Y %Z <USERQHOST>"

See also: [strftime], page 563, [history_file], page 24, |history_size|, page 25,
[saving_history], page 24.

val = EDITOR () [Built-in Function]

old_val = EDITOR (new_val) [Built-in Function]
Query or set the internal variable that specifies the editor to use with the edit_
history command. The default value is taken from the environment variable EDITOR
when Octave starts. If the environment variable is not initialized, EDITOR will be set
to "emacs".

See also: [edit_history], page 23.

2.4.6 Customizing readline

Octave uses the GNU Readline library for command-line editing and history features. Read-
line is very flexible and can be modified through a configuration file of commands (See the
GNU Readline library for the exact command syntax). The default configuration file is
normally ‘7/.inputrc’.

Octave provides two commands for initializing Readline and thereby changing the com-
mand line behavior.

read_readline_init_file (file) [Built-in Function]
Read the readline library initialization file file. If file is omitted, read the default
initialization file (normally ‘~/.inputrc’).

See Section “Readline Init File” in GNU Readline Library, for details.

re_read_readline_init_file () [Built-in Function]
Re-read the last readline library initialization file that was read. See Section “Readline
Init File” in GNU Readline Library, for details.

2.4.7 Customizing the Prompt

The following variables are available for customizing the appearance of the command-line
prompts. Octave allows the prompt to be customized by inserting a number of backslash-
escaped special characters that are decoded as follows:

26 GNU Octave
At The time.
Ad’ The date.
“\n’ Begins a new line by printing the equivalent of a carriage return followed by a
line feed.
‘\s’ The name of the program (usually just ‘octave’).
\w’ The current working directory.
AW The basename of the current working directory.
“Au’ The username of the current user.
‘\h’ The hostname, up to the first <.’.
\H’ The hostname.
\# The command number of this command, counting from when Octave starts.
A\ The history number of this command. This differs from ‘\#’ by the number of
commands in the history list when Octave starts.
\$’ If the effective UID is 0, a ‘#’, otherwise a ‘$’.
‘\nnn’ The character whose character code in octal is nnn.
AN A backslash.
val = PS1 () [Built-in Function]
old_val = PS1 (new_val) [Built-in Function]
Query or set the primary prompt string. When executing interactively, Octave dis-
plays the primary prompt when it is ready to read a command.
The default value of the primary prompt string is "\s:\#> ". To change it, use a
command like
PS1 ("\\u@\\H> ")
which will result in the prompt ‘boris@kremvax> ’ for the user ‘boris’ logged in
on the host ‘kremvax.kgb.su’. Note that two backslashes are required to enter a
backslash into a double-quoted character string. See Chapter 5 [Strings|, page 55.
You can also use ANSI escape sequences if your terminal supports them. This can be
useful for coloring the prompt. For example,
PS1 ("\\[\\033[01;31m\\1\\s:\\#> \\[\\033[0Om\]")
will give the default Octave prompt a red coloring.
See also: [PS2], page 26, [PS4], page 27.
val = PS2 () [Built-in Function]
old_val = PS2 (new_val) [Built-in Function]

Query or set the secondary prompt string. The secondary prompt is printed when
Octave is expecting additional input to complete a command. For example, if you are
typing a for loop that spans several lines, Octave will print the secondary prompt at
the beginning of each line after the first. The default value of the secondary prompt
string is "> ".

See also: [PS1], page 26, [PS4], page 27.

Chapter 2: Getting Started 27

val = PS4 () [Built-in Function]

old_val = PS4 (new_val) [Built-in Function]
Query or set the character string used to prefix output produced when echoing com-
mands is enabled. The default value is "+ ". See Section 2.4.8 [Diary and Echo
Commands|, page 27, for a description of echoing commands.

See also: [echo|, page 27, [echo_executing_commands], page 27, [PS1], page 26, [PS2],
page 26.

2.4.8 Diary and Echo Commands

Octave’s diary feature allows you to keep a log of all or part of an interactive session by

recording the input you type and the output that Octave produces in a separate file.

diary options [Command]
Record a list of all commands and the output they produce, mixed together just as
you see them on your terminal. Valid options are:

on Start recording your session in a file called ‘diary’ in your current working
directory.

of f Stop recording your session in the diary file.

file Record your session in the file named file.

With no arguments, diary toggles the current diary state.

Sometimes it is useful to see the commands in a function or script as they are being
evaluated. This can be especially helpful for debugging some kinds of problems.

echo options [Command]
Control whether commands are displayed as they are executed. Valid options are:

on Enable echoing of commands as they are executed in script files.

of f Disable echoing of commands as they are executed in script files.

on all Enable echoing of commands as they are executed in script files and
functions.

off all Disable echoing of commands as they are executed in script files and
functions.

With no arguments, echo toggles the current echo state.

val = echo_executing_commands () [Built-in Function]

old_val = echo_executing_commands (new_val) [Built-in Function]
Query or set the internal variable that controls the echo state. It may be the sum of
the following values:

1 Echo commands read from script files.
2 Echo commands from functions.

4 Echo commands read from command line.

28 GNU Octave

More than one state can be active at once. For example, a value of 3 is equivalent to
the command echo on all.

The value of echo_executing_commands may be set by the echo command or the
command line option ‘--echo-commands’.

2.5 How Octave Reports Errors

Octave reports two kinds of errors for invalid programs.
A parse error occurs if Octave cannot understand something you have typed. For exam-
ple, if you misspell a keyword,
octave:13> function y = f (x) y = x***2; endfunction
Octave will respond immediately with a message like this:

parse error:
syntax error

>>> function y = f (x) y = x***2; endfunction
For most parse errors, Octave uses a caret (‘*’) to mark the point on the line where it was
unable to make sense of your input. In this case, Octave generated an error message because
the keyword for exponentiation (**) was misspelled. It marked the error at the third ‘*’
because the code leading up to this was correct but the final ‘*’ was not understood.

Another class of error message occurs at evaluation time. These errors are called run-time
errors, or sometimes evaluation errors, because they occur when your program is being run,
or evaluated. For example, if after correcting the mistake in the previous function definition,
you type

octave:13> £ ()
Octave will respond with

error: ‘x’ undefined near line 1 column 24
error: called from:
error: f at line 1, column 22

This error message has several parts, and gives quite a bit of information to help you locate
the source of the error. The messages are generated from the point of the innermost error,
and provide a traceback of enclosing expressions and function calls.

In the example above, the first line indicates that a variable named ‘x’ was found to be
undefined near line 1 and column 24 of some function or expression. For errors occurring
within functions, lines are counted from the beginning of the file containing the function
definition. For errors occurring outside of an enclosing function, the line number indicates
the input line number, which is usually displayed in the primary prompt string.

The second and third lines of the error message indicate that the error occurred within
the function f. If the function £ had been called from within another function, for example,
g, the list of errors would have ended with one more line:

error: g at line 1, column 17

These lists of function calls make it fairly easy to trace the path your program took

before the error occurred, and to correct the error before trying again.

Chapter 2: Getting Started 29

2.6 Executable Octave Programs

Once you have learned Octave, you may want to write self-contained Octave scripts, using
the ‘“#!” script mechanism. You can do this on GNU systems and on many Unix systems?.

Self-contained Octave scripts are useful when you want to write a program which users
can invoke without knowing that the program is written in the Octave language. Octave
scripts are also used for batch processing of data files. Once an algorithm has been developed
and tested in the interactive portion of Octave, it can be committed to an executable script
and used again and again on new data files.

As a trivial example of an executable Octave script, you might create a text file named
‘hello’, containing the following lines:

#! octave-interpreter—-name -qf

a sample Octave program

printf ("Hello, world!\n");
(where octave-interpreter-name should be replaced with the full path and name of your
Octave binary). Note that this will only work if ‘#!’ appears at the very beginning of the
file. After making the file executable (with the chmod command on Unix systems), you can
simply type:

hello
at the shell, and the system will arrange to run Octave as if you had typed:

octave hello

The line beginning with ‘#!’ lists the full path and filename of an interpreter to be run,
and an optional initial command line argument to pass to that interpreter. The operating
system then runs the interpreter with the given argument and the full argument list of
the executed program. The first argument in the list is the full file name of the Octave
executable. The rest of the argument list will either be options to Octave, or data files, or
both. The ‘-qf’ options are usually specified in stand-alone Octave programs to prevent
them from printing the normal startup message, and to keep them from behaving differently
depending on the contents of a particular user’s ‘~/.octaverc’ file. See Section 2.1 [Invoking
Octave from the Command Line], page 13.

Note that some operating systems may place a limit on the number of characters that
are recognized after ‘#!’. Also, the arguments appearing in a ‘#!’ line are parsed differently
by various shells/systems. The majority of them group all the arguments together in one
string and pass it to the interpreter as a single argument. In this case, the following script:

#! octave-interpreter-name -q -f # comment
is equivalent to typing at the command line:
octave "-q -f # comment"
which will produce an error message. Unfortunately, it is not possible for Octave to deter-

mine whether it has been called from the command line or from a ‘#!’ script, so some care
is needed when using the ‘#!” mechanism.

Note that when Octave is started from an executable script, the built-in function argv
returns a cell array containing the command line arguments passed to the executable Octave

1 The ‘#!” mechanism works on Unix systems derived from Berkeley Unix, System V Release 4, and some
System V Release 3 systems.

30 GNU Octave

script, not the arguments passed to the Octave interpreter on the ‘#!’ line of the script. For
example, the following program will reproduce the command line that was used to execute
the script, not ‘-qf’.

#! /bin/octave -qf
printf ("%s", program_name ());
arg_list = argv O;
for i = l:nargin

printf (" %s", arg_list{il});
endfor
printf ("\n");

2.7 Comments in Octave Programs

A comment is some text that is included in a program for the sake of human readers, and
which is NOT an executable part of the program. Comments can explain what the program
does, and how it works. Nearly all programming languages have provisions for comments,
because programs are typically hard to understand without them.

2.7.1 Single Line Comments

In the Octave language, a comment starts with either the sharp sign character, ‘#’, or the
percent symbol ‘%’ and continues to the end of the line. Any text following the sharp sign
or percent symbol is ignored by the Octave interpreter and not executed. The following
example shows whole line and partial line comments.

function countdown
Count down for main rocket engines
disp(3);
disp(2);
disp(1);
disp("Blast Off!"); # Rocket leaves pad
endfunction

2.7.2 Block Comments

Entire blocks of code can be commented by enclosing the code between matching ‘#{’ and
‘#} or ‘%{ and ‘%} markers. For example,

function quick_countdown
Count down for main rocket engines
disp(3);
#{
disp(2);
disp(1);
#3}
disp("Blast Off!"); # Rocket leaves pad
endfunction

will produce a very quick countdown from '3’ to ’Blast Off’ as the lines "disp(2);" and
"disp(1);" won’t be executed.

Chapter 2: Getting Started 31

2.7.3 Comments and the Help System

The help command (see Section 2.3 [Getting Help], page 17) is able to find the first block
of comments in a function and return those as a documentation string. This means that the
same commands used to get help on built-in functions are available for properly formatted
user-defined functions. For example, after defining the function f below,

function xdot = f (x, t)

usage: f (x, t)

#

This function defines the right-hand
side functions for a set of nonlinear
differential equations.

r = 0.25;

endfunction
the command help f produces the output
usage: f (x, t)

This function defines the right-hand
side functions for a set of nonlinear
differential equations.

Although it is possible to put comment lines into keyboard-composed, throw-away Oc-
tave programs, it usually isn’t very useful because the purpose of a comment is to help you
or another person understand the program at a later time.

The help parser currently only recognizes single line comments (see Section 2.7.1 [Single
Line Comments], page 30) and not block comments for the initial help text.

Chapter 3: Data Types 33

3 Data Types

All versions of Octave include a number of built-in data types, including real and complex
scalars and matrices, character strings, a data structure type, and an array that can contain
all data types.

It is also possible to define new specialized data types by writing a small amount of C++
code. On some systems, new data types can be loaded dynamically while Octave is running,
S0 it is not necessary to recompile all of Octave just to add a new type. See Appendix A
[Dynamically Linked Functions], page 607, for more information about Octave’s dynamic
linking capabilities. Section 3.2 [User-defined Data Types], page 37 describes what you
must do to define a new data type for Octave.

typeinfo (expr) [Built-in Function]
Return the type of the expression expr, as a string. If expr is omitted, return an
array of strings containing all the currently installed data types.

3.1 Built-in Data Types

The standard built-in data types are real and complex scalars and matrices, ranges, char-
acter strings, a data structure type, and cell arrays. Additional built-in data types may
be added in future versions. If you need a specialized data type that is not currently pro-
vided as a built-in type, you are encouraged to write your own user-defined data type and
contribute it for distribution in a future release of Octave.

The data type of a variable can be determined and changed through the use of the
following functions.

class (expr) [Built-in Function]
class (s, id) [Built-in Function]
class (s, id, p, ...) [Built-in Function]

Return the class of the expression expr or create a class with fields from structure s
and name (string) id. Additional arguments name a list of parent classes from which
the new class is derived.

isa (obj, class) [Function File]
Return true if obj is an object from the class class.

See also: [class|, page 33, [typeinfo], page 33.

cast (val, type) [Function File]
Convert val to data type type.

See also: [int8], page 45, [uint8], page 45, [int16], page 46, [uint16], page 46, [int32],
page 46, [uint32], page 46, [int64], page 46, [uint64], page 46, [double], page 39.

typecast (x, class) [Loadable Function]
Return a new array y resulting from interpreting the data of x in memory as data
of the numeric class class. Both the class of x and class must be one of the built-in
numeric classes:

34 GNU Octave

"logical"

""char"

"int8"

"int16"

"int32"

"int64"

"uint8"

"uintie"
"uint32"
"uint64"
"double"
"single"

"double complex"
"single complex"

the last two are reserved for class; they indicate that a complex-valued result is
requested. Complex arrays are stored in memory as consecutive pairs of real numbers.
The sizes of integer types are given by their bit counts. Both logical and char are
typically one byte wide; however, this is not guaranteed by C++. If your system is
IEEE conformant, single and double should be 4 bytes and 8 bytes wide, respectively.
"logical" is not allowed for class. If the input is a row vector, the return value is a
row vector, otherwise it is a column vector. If the bit length of x is not divisible by
that of class, an error occurs.

An example of the use of typecast on a little-endian machine is
x = uint16 ([1, 65535]);

typecast (x, ’uint8’)
= [0, 1, 255, 255]

See also: [cast], page 33, [bitunpack], page 35, [bitpack], page 34, [swapbytes|, page 34.

swapbytes (x) [Function File]
Swaps the byte order on values, converting from little endian to big endian and vice
versa. For example:

swapbytes (uint16 (1:4))
= [256 512 768 1024]

See also: [typecast], page 33, [cast], page 33.
y = bitpack (x, class) [Loadable Function]

Return a new array y resulting from interpreting an array x as raw bit patterns for
data of the numeric class class. class must be one of the built-in numeric classes:

Chapter 3: Data Types 35

"char"

"int8"

"int16"

"int32"

"int64"

"uint8"

"uint16"

"uint32"

"uint64"

"double"

"single"
The number of elements of x should be divisible by the bit length of class. If it is
not, excess bits are discarded. Bits come in increasing order of significance, i.e., x(1)
is bit 0, x(2) is bit 1, etc. The result is a row vector if x is a row vector, otherwise
it is a column vector.

See also: [bitunpack], page 35, [typecast], page 33.

y = bitpack (x) [Loadable Function]
Return an array y corresponding to the raw bit patterns of x. x must belong to one
of the built-in numeric classes:

"char"
"int8ll
"int16"
"int32"
"int64"
"uint8"
"uint16"
"uint32"
"uint64"
"double"
"single"
The result is a row vector if x is a row vector; otherwise, it is a column vector.

See also: [bitpack]|, page 34, [typecast|, page 33.

3.1.1 Numeric Objects

Octave’s built-in numeric objects include real, complex, and integer scalars and matrices.
All built-in floating point numeric data is currently stored as double precision numbers.
On systems that use the IEEE floating point format, values in the range of approximately
2.2251 x 1073% t0 1.7977 x 103%® can be stored, and the relative precision is approximately
2.2204 x 1076, The exact values are given by the variables realmin, realmax, and eps,
respectively.

Matrix objects can be of any size, and can be dynamically reshaped and resized. It is
easy to extract individual rows, columns, or submatrices using a variety of powerful indexing
features. See Section 8.1 [Index Expressions|, page 113.

See Chapter 4 [Numeric Data Types]|, page 39, for more information.

36 GNU Octave

3.1.2 Missing Data

It is possible to represent missing data explicitly in Octave using NA (short for “Not Avail-
able”). Missing data can only be represented when data is represented as floating point
numbers. In this case missing data is represented as a special case of the representation of
NaN.

NA [Built-in Function]
NA (n) [Built-in Function]
NA (n, m) [Built-in Function]
NA (n,m k, ...) [Built-in Function]
NA (..., class) [Built-in Function]

Return a scalar, matrix, or N-dimensional array whose elements are all equal to the
special constant used to designate missing values.

Note that NA always compares not equal to NA (NA != NA). To find NA values, use
the isna function.

When called with no arguments, return a scalar with the value ‘NA’. When called
with a single argument, return a square matrix with the dimension specified. When
called with more than one scalar argument the first two arguments are taken as the
number of rows and columns and any further arguments specify additional matrix
dimensions. The optional argument class specifies the return type and may be either
"double" or "single".

See also: [isnal, page 36.

isna (x) [Mapping Function]
Return a logical array which is true where the elements of x are NA (missing) values
and false where they are not. For example:
isna ([13, Inf, NA, NaNJ])
= [0, 0,1, 0]

See also: [isnan], page 302, [isinf], page 302, [isfinite], page 302.
3.1.3 String Objects

A character string in Octave consists of a sequence of characters enclosed in either double-
quote or single-quote marks. Internally, Octave currently stores strings as matrices of
characters. All the indexing operations that work for matrix objects also work for strings.

See Chapter 5 [Strings], page 55, for more information.

3.1.4 Data Structure Objects

Octave’s data structure type can help you to organize related objects of different types.
The current implementation uses an associative array with indices limited to strings, but
the syntax is more like C-style structures.

See Section 6.1 [Data Structures|, page 79, for more information.

3.1.5 Cell Array Objects
A Cell Array in Octave is general array that can hold any number of different data types.

See Section 6.2 [Cell Arrays]|, page 90, for more information.

Chapter 3: Data Types 37

3.2 User-defined Data Types

Someday I hope to expand this to include a complete description of Octave’s mechanism
for managing user-defined data types. Until this feature is documented here, you will have
to make do by reading the code in the ‘ov.h’, ‘ops.h’, and related files from Octave’s ‘src’
directory.

3.3 Object Sizes

The following functions allow you to determine the size of a variable or expression. These
functions are defined for all objects. They return —1 when the operation doesn’t make
sense. For example, Octave’s data structure type doesn’t have rows or columns, so the
rows and columns functions return —1 for structure arguments.

ndims (a) [Built-in Function]
Return the number of dimensions of a. For any array, the result will always be larger
than or equal to 2. Trailing singleton dimensions are not counted.

ndims (ones (4, 1, 2, 1)
= 3

columns (a) [Built-in Function]
Return the number of columns of a.

See also: [rows|, page 37, [size], page 37, [length], page 37, [numel|, page 37, [isscalar],
page 53, [isvector], page 52, [ismatrix|, page 52.

rows (a) [Built-in Function]
Return the number of rows of a.

See also: [columns]|, page 37, [size], page 37, [length], page 37, [numel], page 37,
[isscalar|, page 53, [isvector], page 52, [ismatrix], page 52.

numel (a) [Built-in Function]

numel (a, idx1, idx2, ...) [Built-in Function]
Return the number of elements in the object a. Optionally, if indices idx1, idx2, . . .
are supplied, return the number of elements that would result from the indexing

a(idx1, idx2, ...)

This method is also called when an object appears as lvalue with cs-list indexing, i.e.,
object{...} or object(...).field.

See also: [size], page 37.

length (a) [Built-in Function]
Return the "length" of the object a. For matrix objects, the length is the number
of rows or columns, whichever is greater (this odd definition is used for compatibility
with MATLAB).

size (a) [Built-in Function]
size (a, dim) [Built-in Function]
Return the number rows and columns of a.

38 GNU Octave

With one input argument and one output argument, the result is returned in a row
vector. If there are multiple output arguments, the number of rows is assigned to the
first, and the number of columns to the second, etc. For example:
size ([1, 2; 3, 4; 5, 6])
= [3, 2]

[nr, nc] = size ([1, 2; 3, 4; 5, 6])
= nr = 3
= nc = 2
If given a second argument, size will return the size of the corresponding dimension.
For example,
size ([1, 2; 3, 4; 5, 6], 2)
= 2

returns the number of columns in the given matrix.

See also: [numel], page 37.

isempty (a) [Built-in Function]
Return true if a is an empty matrix (any one of its dimensions is zero). Otherwise,
return false.

See also: [isnull], page 38.

isnull (x) [Built-in Function]
Return true if x is a special null matrix, string, or single quoted string. Indexed
assignment with such a value on the right-hand side should delete array elements.
This function should be used when overloading indexed assignment for user-defined
classes instead of isempty, to distinguish the cases:

A(I) = [1 This should delete elements if I is nonempty.
X=1[]; A(I) =X
This should give an error if I is nonempty.
See also: [isempty], page 38, [isindex], page 115.
sizeof (val) [Built-in Function]
Return the size of val in bytes.
See also: [whos|, page 108.
size_equal (a, b, ...) [Built-in Function]

Return true if the dimensions of all arguments agree. Trailing singleton dimensions
are ignored. Called with a single or no argument, size_equal returns true.

See also: [size], page 37, [numel|, page 37.

squeeze (x) [Built-in Function]
Remove singleton dimensions from x and return the result. Note that for compatibility
with MATLAB, all objects have a minimum of two dimensions and row vectors are left
unchanged.

Chapter 4: Numeric Data Types 39

4 Numeric Data Types

A numeric constant may be a scalar, a vector, or a matrix, and it may contain complex
values.

The simplest form of a numeric constant, a scalar, is a single number that can be an
integer, a decimal fraction, a number in scientific (exponential) notation, or a complex
number. Note that by default numeric constants are represented within Octave in double-
precision floating point format (complex constants are stored as pairs of double-precision
floating point values). It is however possible to represent real integers as described in
Section 4.4 [Integer Data Types|, page 45. Here are some examples of real-valued numeric
constants, which all have the same value:

105

1.05e+2

1050e-1

To specify complex constants, you can write an expression of the form

3+ 4i

3.0 + 4.01

0.3el + 40e-11i
all of which are equivalent. The letter ‘i’ in the previous example stands for the pure
imaginary constant, defined as v/—1.

For Octave to recognize a value as the imaginary part of a complex constant, a space
must not appear between the number and the ‘i’. If it does, Octave will print an error
message, like this:

octave:13> 3 + 4 i

parse error:
syntax error

>>> 3 + 4 i

You may also use ‘j’, ‘I’, or ‘J’ in place of the ‘i’ above. All four forms are equivalent.

double (x) [Built-in Function]
Convert x to double precision type.

See also: [single|, page 44.

complex (x) [Built-in Function]
complex (re, im) [Built-in Function]
Return a complex result from real arguments. With 1 real argument x, return the
complex result x + 0i. With 2 real arguments, return the complex result re + im.
complex can often be more convenient than expressions such as a + i*b. For example:
complex ([1, 2], [3, 41)
=
1+ 31 2 + 41

See also: [real], page 327, [imag], page 327, [iscomplex], page 52.

40 GNU Octave

4.1 Matrices

It is easy to define a matrix of values in Octave. The size of the matrix is determined
automatically, so it is not necessary to explicitly state the dimensions. The expression

a=[1, 2; 3, 4]
12
13 4

results in the matrix
Elements of a matrix may be arbitrary expressions, provided that the dimensions all
make sense when combining the various pieces. For example, given the above matrix, the
expression
[a, al

produces the matrix

ans =
1 2 1 2
3 4 3 4
but the expression
[a, 1]

produces the error
error: number of rows must match (1 !'= 2) near line 13, column 6
(assuming that this expression was entered as the first thing on line 13, of course).

Inside the square brackets that delimit a matrix expression, Octave looks at the sur-
rounding context to determine whether spaces and newline characters should be converted
into element and row separators, or simply ignored, so an expression like

a=1[12
3 4]
will work. However, some possible sources of confusion remain. For example, in the expres-
sion
[1-11]
the ‘-’ is treated as a binary operator and the result is the scalar 0, but in the expression
[1-1]
the ‘-’ is treated as a unary operator and the result is the vector [1, -1 1. Similarly, the
expression
[sin (pi) 1]
will be parsed as
[sin, (pi)]
and will result in an error since the sin function will be called with no arguments. To get

around this, you must omit the space between sin and the opening parenthesis, or enclose
the expression in a set of parentheses:

[(sin (pi))]

Whitespace surrounding the single quote character (‘’’, used as a transpose operator
and for delimiting character strings) can also cause confusion. Given a = 1, the expression

Chapter 4: Numeric Data Types 41

[1a]
results in the single quote character being treated as a transpose operator and the result is
the vector [1, 1], but the expression

[1a’]
produces the error message

parse error:
syntax error

>> [1 a]

because not doing so would cause trouble when parsing the valid expression
[a ’foo’]

For clarity, it is probably best to always use commas and semicolons to separate matrix
elements and rows.

The maximum number of elements in a matrix is fixed when Octave is compiled. The
allowable number can be queried with the function sizemax. Note that other factors, such as
the amount of memory available on your machine, may limit the maximum size of matrices
to something smaller.

sizemax () [Built-in Function]
Return the largest value allowed for the size of an array. If Octave is compiled with
64-bit indexing, the result is of class int64, otherwise it is of class int32. The maximum
array size is slightly smaller than the maximum value allowable for the relevant class
as reported by intmax.

See also: [intmax], page 46.

When you type a matrix or the name of a variable whose value is a matrix, Octave
responds by printing the matrix in with neatly aligned rows and columns. If the rows of
the matrix are too large to fit on the screen, Octave splits the matrix and displays a header
before each section to indicate which columns are being displayed. You can use the following
variables to control the format of the output.

val = output_max_field_width () [Built-in Function]

old_val = output_max_field_width (new_val) [Built-in Function]
Query or set the internal variable that specifies the maximum width of a numeric
output field.

See also: [format], page 183, [fixed_point_format|, page 42, [output_precision],

page 41.
val = output_precision () [Built-in Function]
old_val = output_precision (new_val) [Built-in Function]

Query or set the internal variable that specifies the minimum number of significant
figures to display for numeric output.

See also: [format], page 183, [fixed_point_format], page 42, [output_max_field_width],
page 41.

42 GNU Octave

It is possible to achieve a wide range of output styles by using different values of output_
precision and output_max_field_width. Reasonable combinations can be set using the
format function. See Section 14.1 [Basic Input and Output], page 183.

val = split_long_rows () [Built-in Function]

old_val = split_long_rows (new_val) [Built-in Function]
Query or set the internal variable that controls whether rows of a matrix may be
split when displayed to a terminal window. If the rows are split, Octave will display
the matrix in a series of smaller pieces, each of which can fit within the limits of
your terminal width and each set of rows is labeled so that you can easily see which
columns are currently being displayed. For example:

octave:13> rand (2,10)
ans =

Columns 1 through 6:

0.75883 0.93290 0.40064 0.43818 0.94958 0.16467
0.75697 0.51942 0.40031 0.61784 0.92309 0.40201

Columns 7 through 10:

0.90174 0.11854 0.72313 0.73326
0.44672 0.94303 0.56564 0.82150

See also: [format]|, page 183.

Octave automatically switches to scientific notation when values become very large or
very small. This guarantees that you will see several significant figures for every value in
a matrix. If you would prefer to see all values in a matrix printed in a fixed point format,
you can set the built-in variable fixed_point_format to a nonzero value. But doing so is
not recommended, because it can produce output that can easily be misinterpreted.

val = fixed_point_format () [Built-in Function]

old_val = fixed_point_format (new_val) [Built-in Function]
Query or set the internal variable that controls whether Octave will use a scaled
format to print matrix values such that the largest element may be written with a
single leading digit with the scaling factor is printed on the first line of output. For
example:

octave:1> logspace (1, 7, 5)’
ans =

1.0e+07 *

.00000
.00003
.00100
.03162
.00000

= O O O O

Chapter 4: Numeric Data Types 43

Notice that first value appears to be zero when it is actually 1. For this reason, you
should be careful when setting fixed_point_format to a nonzero value.

See also: [format], page 183, [output_-max_field_width], page 41, [output_precision],
page 41.

4.1.1 Empty Matrices

A matrix may have one or both dimensions zero, and operations on empty matrices are
handled as described by Carl de Boor in An Empty Exercise, SIGNUM, Volume 25, pages
2-6, 1990 and C. N. Nett and W. M. Haddad, in A System-Theoretic Appropriate Realiza-
tion of the Empty Matrix Concept, IEEE Transactions on Automatic Control, Volume 38,
Number 5, May 1993. Briefly, given a scalar s, an m x n matrix M,,«,, and an m X n empty
matrix [|,,x, (with either one or both dimensions equal to zero), the following are true:

$* [Jmxn = [Jmxn = 8 = [Jmxn
Hm><n + men = Han
HOXm : men - []Oxn
Mo [Jnxo = [lmxo
[LnXO'[bXn/::Oan

By default, dimensions of the empty matrix are printed along with the empty matrix
symbol, ‘[]’. The built-in variable print_empty_dimensions controls this behavior.

val = print_empty_dimensions () [Built-in Function]

old_val = print_empty_dimensions (new_val) [Built-in Function]
Query or set the internal variable that controls whether the dimensions of empty
matrices are printed along with the empty matrix symbol, ‘[1’. For example, the
expression

zeros (3, 0)
will print
ans = [](3x0)
See also: [format], page 183.

Empty matrices may also be used in assignment statements as a convenient way to delete
rows or columns of matrices. See Section 8.6 [Assignment Expressions], page 124.

When Octave parses a matrix expression, it examines the elements of the list to determine
whether they are all constants. If they are, it replaces the list with a single matrix constant.

4.2 Ranges

A range is a convenient way to write a row vector with evenly spaced elements. A range
expression is defined by the value of the first element in the range, an optional value for the
increment between elements, and a maximum value which the elements of the range will
not exceed. The base, increment, and limit are separated by colons (the ‘:’ character) and
may contain any arithmetic expressions and function calls. If the increment is omitted, it
is assumed to be 1. For example, the range

44 GNU Octave

1:5
defines the set of values ‘[1, 2, 3, 4, 51]’, and the range
1:3:5

defines the set of values ‘[1, 4 71°.

Although a range constant specifies a row vector, Octave does not convert range con-
stants to vectors unless it is necessary to do so. This allows you to write a constant like ‘1
: 10000’ without using 80,000 bytes of storage on a typical 32-bit workstation.

A common example of when it does become necessary to convert ranges into vectors
occurs when they appear within a vector (i.e., inside square brackets). For instance, whereas

x=0:0.1:1;

defines x to be a variable of type range and occupies 24 bytes of memory, the expression
y=[00:0.1:1];

defines y to be of type matrix and occupies 88 bytes of memory.

Note that the upper (or lower, if the increment is negative) bound on the range is not
always included in the set of values, and that ranges defined by floating point values can
produce surprising results because Octave uses floating point arithmetic to compute the
values in the range. If it is important to include the endpoints of a range and the number of
elements is known, you should use the linspace function instead (see Section 16.4 [Special
Utility Matrices|, page 314).

When adding a scalar to a range, subtracting a scalar from it (or subtracting a range
from a scalar) and multiplying by scalar, Octave will attempt to avoid unpacking the range
and keep the result as a range, too, if it can determine that it is safe to do so. For instance,
doing

a = 2x(1:1e7) - 1;
will produce the same result as ‘1:2:2e7-1’, but without ever forming a vector with ten
million elements.

Using zero as an increment in the colon notation, as ‘1:0:1’ is not allowed, because a
division by zero would occur in determining the number of range elements. However, ranges
with zero increment (i.e., all elements equal) are useful, especially in indexing, and Octave
allows them to be constructed using the built-in function ones. Note that because a range
must be a row vector, ‘ones (1, 10)’ produces a range, while ‘ones (10, 1)’ does not.

When Octave parses a range expression, it examines the elements of the expression to
determine whether they are all constants. If they are, it replaces the range expression with
a single range constant.

4.3 Single Precision Data Types

Octave includes support for single precision data types, and most of the functions in Octave
accept single precision values and return single precision answers. A single precision variable
is created with the single function.

single (x) [Built-in Function]
Convert x to single precision type.

See also: [double], page 39.

Chapter 4: Numeric Data Types 45

for example:

sngl = single (rand (2, 2))
= sngl =
0.37569 0.92982
0.11962 0.50876
class (sngl)
= single
Many functions can also return single precision values directly. For example

ones (2, 2, "single")
zeros (2, 2, "single")
eye (2, 2, "single")
rand (2, 2, "single")
NaN (2, 2, "single")
NA (2, 2, "single")
Inf (2, 2, "single")

will all return single precision matrices.

4.4 Integer Data Types

Octave supports integer matrices as an alternative to using double precision. It is possible
to use both signed and unsigned integers represented by 8, 16, 32, or 64 bits. It should be
noted that most computations require floating point data, meaning that integers will often
change type when involved in numeric computations. For this reason integers are most
often used to store data, and not for calculations.

In general most integer matrices are created by casting existing matrices to integers.
The following example shows how to cast a matrix into 32 bit integers.

float = rand (2, 2)
= float = 0.37569 0.92982
0.11962 0.50876
integer = int32 (float)
= integer = 0 1
0 1

As can be seen, floating point values are rounded to the nearest integer when converted.

isinteger (x) [Built-in Function]
Return true if x is an integer object (int8, uint8, intl6, etc.). Note that
isinteger (14) is false because numeric constants in Octave are double precision
floating point values.

See also: [isfloat], page 52, [ischar]|, page 56, [islogical], page 53, [isnumeric], page 52,
[isa], page 33.

int8 (x) [Built-in Function]
Convert x to 8-bit integer type.

uint8 (x) [Built-in Function]
Convert x to unsigned 8-bit integer type.

46 GNU Octave

int16 (x) [Built-in Function]
Convert x to 16-bit integer type.

uint16 (x) [Built-in Function]
Convert x to unsigned 16-bit integer type.

int32 (x) [Built-in Function]
Convert x to 32-bit integer type.

uint32 (x) [Built-in Function]
Convert x to unsigned 32-bit integer type.

int64 (x) [Built-in Function]
Convert x to 64-bit integer type.

uint64 (x) [Built-in Function]
Convert x to unsigned 64-bit integer type.

intmax (type) [Built-in Function]
Return the largest integer that can be represented in an integer type. The variable
type can be
int8 signed 8-bit integer.
int16 signed 16-bit integer.
int32 signed 32-bit integer.
int64 signed 64-bit integer.
uint8 unsigned 8-bit integer.

uinti16 unsigned 16-bit integer.

uint32 unsigned 32-bit integer.

uint64 unsigned 64-bit integer.

The default for type is uint32.

See also: [intmin]|, page 46, [bitmax], page 48.

intmin (type) [Built-in Function]
Return the smallest integer that can be represented in an integer type. The variable
type can be
int8 signed 8-bit integer.
int16 signed 16-bit integer.
int32 signed 32-bit integer.
int64 signed 64-bit integer.
uint8 unsigned 8-bit integer.

uint16 unsigned 16-bit integer.

uint32 unsigned 32-bit integer.

Chapter 4: Numeric Data Types 47

uint64 unsigned 64-bit integer.
The default for type is uint32.
See also: [intmax]|, page 46, [bitmax], page 48.

4.4.1 Integer Arithmetic

While many numerical computations can’t be carried out in integers, Octave does support
basic operations like addition and multiplication on integers. The operators +, -, .*, and
./ work on integers of the same type. So, it is possible to add two 32 bit integers, but not
to add a 32 bit integer and a 16 bit integer.

When doing integer arithmetic one should consider the possibility of underflow and
overflow. This happens when the result of the computation can’t be represented using the
chosen integer type. As an example it is not possible to represent the result of 10 — 20
when using unsigned integers. Octave makes sure that the result of integer computations is
the integer that is closest to the true result. So, the result of 10 — 20 when using unsigned
integers is zero.

When doing integer division Octave will round the result to the nearest integer. This is
different from most programming languages, where the result is often floored to the nearest
integer. So, the result of int32(5) ./ int32(8) is 1.

idivide (x, y, op) [Function File]
Integer division with different rounding rules.
The standard behavior of integer division such as a ./ b is to round the result to
the nearest integer. This is not always the desired behavior and idivide permits
integer element-by-element division to be performed with different treatment for the
fractional part of the division as determined by the op flag. op is a string with one
of the values:

"fix" Calculate a ./ b with the fractional part rounded towards zero.

"round" Calculate a ./ b with the fractional part rounded towards the nearest
integer.

"Hoor" Calculate a ./ b with the fractional part rounded towards negative in-
finity.

"ceil" Calculate a ./ b with the fractional part rounded towards positive infin-
ity.

If op is not given it defaults to "fix". An example demonstrating these rounding

rules is

idivide (int8 ([-3, 3]), int8 (4), "fix")

= int8 ([0, 0])

idivide (int8 ([-3, 3]), int8 (4), "round")
= int8 ([-1, 11)

idivide (int8 ([-3, 3]), int8 (4), "floor")
= int8 ([-1, 01)

idivide (int8 ([-3, 3]), int8 (4), "ceil")
= int8 ([0, 1])

See also: [ldivide], page 119, [rdivide], page 120.

43 GNU Octave

4.5 Bit Manipulations

Octave provides a number of functions for the manipulation of numeric values on a bit by
bit basis. The basic functions to set and obtain the values of individual bits are bitset
and bitget.

C = bitset (4, n) [Function File]

C = bitset (4, n, val) [Function File]
Set or reset bit(s) n of unsigned integers in A. val = 0 resets and val = 1 sets the
bits. The lowest significant bit is: n = 1

dec2bin (bitset (10, 1))
= 1011

See also: [bitand], page 48, [bitor|, page 49, [bitxor|, page 49, [bitget], page 48,
[bitcmp], page 49, [bitshift], page 49, [bitmax]|, page 48.

c = bitget (4, n) [Function File]
Return the status of bit(s) n of unsigned integers in A the lowest significant bit is n
= 1.

bitget (100, 8:-1:1)
=01 1 0 0 1 0 O

See also: [|bitand], page 48, [bitor], page 49, [bitxor|, page 49, [bitset], page 48,
[bitcmp], page 49, [bitshift], page 49, [bitmax], page 48.

The arguments to all of Octave’s bitwise operations can be scalar or arrays, except for
bitcmp, whose k argument must a scalar. In the case where more than one argument is an
array, then all arguments must have the same shape, and the bitwise operator is applied to
each of the elements of the argument individually. If at least one argument is a scalar and
one an array, then the scalar argument is duplicated. Therefore

bitget (100, 8:-1:1)
is the same as
bitget (100 * omnes (1, 8), 8:-1:1)
It should be noted that all values passed to the bit manipulation functions of Octave
are treated as integers. Therefore, even though the example for bitset above passes the

floating point value 10, it is treated as the bits [1, 0, 1, 0] rather than the bits of the
native floating point format representation of 10.

As the maximum value that can be represented by a number is important for bit ma-
nipulation, particularly when forming masks, Octave supplies the function bitmax.

bitmax () [Built-in Function]
bitmax ("double") [Built-in Function]
bitmax ("single") [Built-in Function]

Return the largest integer that can be represented within a floating point value. The
default class is "double", but "single" is a valid option. On IEEE-754 compatible
systems, bitmax is 2°% — 1.

This is the double precision version of the functions intmax, previously discussed.

Octave also includes the basic bitwise ’and’, ’or’ and ’exclusive or’ operators.

Chapter 4: Numeric Data Types 49

bitand (x, y) [Built-in Function]
Return the bitwise AND of non-negative integers. x, y must be in the range [0,bitmax]

See also: [bitor], page 49, [bitxor|, page 49, [bitset], page 48, [bitget], page 48,
[bitcmp], page 49, [bitshift], page 49, [bitmax], page 48.

bitor (x, y) [Built-in Function]
Return the bitwise OR of non-negative integers. x, y must be in the range [0,bitmax]

See also: [bitor], page 49, [bitxor], page 49, [bitset], page 48, [bitget], page 48,
[bitcmp], page 49, [bitshift], page 49, [bitmax], page 48.

bitxor (x, y) [Built-in Function]
Return the bitwise XOR of non-negative integers. x, y must be in the range [0,bitmax]

See also: [bitand]|, page 48, [bitor], page 49, [bitset], page 48, [bitget], page 48,
[bitcmp], page 49, [bitshift], page 49, [bitmax], page 48.

The bitwise 'not’ operator is a unary operator that performs a logical negation of each
of the bits of the value. For this to make sense, the mask against which the value is negated
must be defined. Octave’s bitwise 'not’ operator is bitcmp.

bitcmp (4, k) [Function File]

Return the k-bit complement of integers in A. If k is omitted k = log2 (bitmax) + 1
is assumed.

bitcmp(7,4)

= 8

dec2bin(11)

= 1011

dec2bin(bitcmp (11, 6))

= 110100

See also: [bitand], page 48, [bitor], page 49, [bitxor|, page 49, [bitset]|, page 48, [bitget],
page 48, [bitcmp], page 49, [bitshift], page 49, [bitmax], page 48.

Octave also includes the ability to left-shift and right-shift values bitwise.

bitshift (a, k) [Built-in Function]

bitshift (a, k, n) [Built-in Function]
Return a k bit shift of n-digit unsigned integers in a. A positive k leads to a left
shift. A negative value to a right shift. If n is omitted it defaults to log2(bitmax)+1.
n must be in the range [1,log2(bitmax)+1] usually [1,33]

bitshift (eye (3), 1)

OOI\JU
O N O
N O O

bitshift (10, [-2, -1, 0, 1, 2])
=2 5 10 20 40

See also: [bitand], page 48, [bitor], page 49, [bitxor], page 49, [bitset], page 48, [bitget],
page 48, [bitcmp]|, page 49, [bitmax], page 48.

20 GNU Octave

Bits that are shifted out of either end of the value are lost. Octave also uses arithmetic
shifts, where the sign bit of the value is kept during a right shift. For example:

bitshift (-10, -1)

— -5
bitshift (int8 (-1), -1)
= -1

Note that bitshift (int8 (-1), -1) is -1 since the bit representation of -1 in the int8
data typeis [1, 1,1, 1, 1, 1, 1, 1].

4.6 Logical Values

Octave has built-in support for logical values, i.e., variables that are either true or false.
When comparing two variables, the result will be a logical value whose value depends on
whether or not the comparison is true.

The basic logical operations are &, |, and !, which correspond to “Logical And”, “Logical
Or”, and “Logical Negation”. These operations all follow the usual rules of logic.

It is also possible to use logical values as part of standard numerical calculations. In
this case true is converted to 1, and false to 0, both represented using double precision
floating point numbers. So, the result of true*22 - false/6 is 22.

Logical values can also be used to index matrices and cell arrays. When indexing with
a logical array the result will be a vector containing the values corresponding to true parts
of the logical array. The following example illustrates this.
data = [1, 2; 3, 4 1;
idx = (data <= 2);
data(idx)
= ans = [1; 2]
Instead of creating the idx array it is possible to replace data(idx) with data(data <=2)
in the above code.

Logical values can also be constructed by casting numeric objects to logical values, or
by using the true or false functions.
logical (x) [Built-in Function]
Convert x to logical type.

See also: [double], page 39, [single], page 44, [char|, page 59.

true (x) [Built-in Function]
true (n, m) [Built-in Function]
true (n, m k, ...) [Built-in Function]

Return a matrix or N-dimensional array whose elements are all logical 1. If invoked
with a single scalar integer argument, return a square matrix of the specified size.
If invoked with two or more scalar integer arguments, or a vector of integer values,
return an array with given dimensions.

See also: [false], page 50.

false (x) [Built-in Function]
false (n, m) [Built-in Function]

Chapter 4: Numeric Data Types 51

false (n, m k, ...) [Built-in Function]
Return a matrix or N-dimensional array whose elements are all logical 0. If invoked
with a single scalar integer argument, return a square matrix of the specified size.
If invoked with two or more scalar integer arguments, or a vector of integer values,
return an array with given dimensions.

See also: [true], page 50.

4.7 Promotion and Demotion of Data Types

Many operators and functions can work with mixed data types. For example,
uint8 (1) + 1
= 2
where the above operator works with an 8-bit integer and a double precision value and
returns an 8-bit integer value. Note that the type is demoted to an 8-bit integer, rather
than promoted to a double precision value as might be expected. The reason is that if
Octave promoted values in expressions like the above with all numerical constants would
need to be explicitly cast to the appropriate data type like
uint8 (1) + uint8 (1)
= 2
which becomes difficult for the user to apply uniformly and might allow hard to find bugs
to be introduced. The same applies to single precision values where a mixed operation such
as
single (1) + 1
= 2
returns a single precision value. The mixed operations that are valid and their returned
data types are

Mixed Operation Result
double OP single single
double OP integer integer
double OP char double
double OP logical double
single OP integer integer
single OP char single
single OP logical single

The same logic applies to functions with mixed arguments such as
min (single (1), 0)
= 0
where the returned value is single precision.
In the case of mixed type indexed assignments, the type is not changed. For example,

x = ones (2, 2);
x (1, 1) = single (2)

= x =2 1

1 1

where x remains of the double precision type.

92 GNU Octave

4.8 Predicates for Numeric Objects

Since the type of a variable may change during the execution of a program, it can be
necessary to do type checking at run-time. Doing this also allows you to change the behavior
of a function depending on the type of the input. As an example, this naive implementation
of abs returns the absolute value of the input if it is a real number, and the length of the
input if it is a complex number.

function a = abs (x)
if (isreal (x))
a = sign (x) .* x;
elseif (iscomplex (x))
a = sqrt (real(x).”2 + imag(x)."2);
endif
endfunction

The following functions are available for determining the type of a variable.

isnumeric (x) [Built-in Function]
Return true if x is a numeric object, i.e., an integer, real, or complex array. Logical
and character arrays are not considered to be numeric.

See also: [isinteger], page 45, [isfloat], page 52, [isreal], page 52, [iscomplex], page 52,
[islogical], page 53, [ischar|, page 56, [iscell], page 92, [isstruct], page 85.

isreal (x) [Built-in Function]
Return true if x is a non-complex matrix or scalar. For compatibility with MATLAB,
this includes logical and character matrices.

See also: [iscomplex]|, page 52, [isnumeric], page 52.

isfloat (x) [Built-in Function]
Return true if x is a floating-point numeric object. Objects of class double or single
are floating-point objects.

See also: [isinteger], page 45, [ischar], page 56, [islogical], page 53, [isnumeric], page 52,
[isa], page 33.

iscomplex (x) [Built-in Function]
Return true if x is a complex-valued numeric object.

See also: [isreal], page 52, [isnumeric|, page 52.

ismatrix (a) [Built-in Function]
Return true if a is a numeric, logical, or character matrix. Scalars (1x1 matrices) and
vectors (1xN or Nx1 matrices) are subsets of the more general N-dimensional matrix
and ismatrix will return true for these objects as well.

See also: [isscalar|, page 53, [isvector|, page 52, [iscell], page 92, [isstruct], page 85,
[issparse], page 387.

isvector (x) [Function File]
Return true if x is a vector. A vector is a 2-D array where one of the dimensions is
equal to 1. As a consequence a 1x1 array, or scalar, is also a vector.

Chapter 4: Numeric Data Types 53

See also: [isscalar], page 53, [ismatrix], page 52, [size], page 37, [rows|, page 37,
[columns], page 37, [length], page 37.

isscalar (x) [Function File]
Return true if x is a scalar.

See also: [isvector]|, page 52, [ismatrix|, page 52.

issquare (x) [Function File]
Return true if x is a square matrix.

See also: [isscalar|, page 53, [isvector], page 52, [ismatrix|, page 52, [size|, page 37.

issymmetric (x) [Function File]

issymmetric (x, tol) [Function File]
Return true if x is a symmetric matrix within the tolerance specified by tol. The
default tolerance is zero (uses faster code). Matrix x is considered symmetric if norm
(x - x.”, Inf) / norm (x, Inf) < tol.

See also: [ishermitian], page 53, [isdefinite], page 53.

ishermitian (x) [Function File]

ishermitian (x, tol) [Function File]
Return true if x is Hermitian within the tolerance specified by tol. The default
tolerance is zero (uses faster code). Matrix x is considered symmetric if norm (x -
x?, Inf) / norm (x, Inf) < tol.

See also: [issymmetric], page 53, [isdefinite], page 53.

isdefinite (x) [Function File]

isdefinite (x, tol) [Function File]
Return 1 if x is symmetric positive definite within the tolerance specified by tol or 0
if x is symmetric positive semidefinite. Otherwise, return -1. If tol is omitted, use a
tolerance of 100 * eps * norm (x, "fro")

See also: [issymmetric], page 53, [ishermitian], page 53.

islogical (x) [Built-in Function]
isbool (x) [Built-in Function]
Return true if x is a logical object.

See also: [isfloat], page 52, [isinteger], page 45, [ischar], page 56, [isnumeric|, page 52,
[isa], page 33.

isprime (x) [Function File]

Return a logical array which is true where the elements of x are prime numbers and
false where they are not.

If the maximum value in x is very large, then you should be using special purpose
factorization code.

isprime (1:6)
= [0, 1, 1, 0, 1, O]

See also: [primes|, page 339, [factor], page 335, [ged], page 335, [lem], page 337.

Chapter 5: Strings 55

5 Strings

A string constant consists of a sequence of characters enclosed in either double-quote or
single-quote marks. For example, both of the following expressions

"parrot"
’parrot’

represent the string whose contents are ‘parrot’. Strings in Octave can be of any length.

Since the single-quote mark is also used for the transpose operator (see Section 8.3
[Arithmetic Ops], page 117) but double-quote marks have no other purpose in Octave, it is
best to use double-quote marks to denote strings.

Strings can be concatenated using the notation for defining matrices. For example, the
expression

["foo" , "bar" , "baz"]

produces the string whose contents are ‘foobarbaz’. See Chapter 4 [Numeric Data Types],
page 39, for more information about creating matrices.

5.1 Escape Sequences in String Constants

In double-quoted strings, the backslash character is used to introduce escape sequences that
represent other characters. For example, ‘\n’ embeds a newline character in a double-quoted
string and ‘\"’ embeds a double quote character. In single-quoted strings, backslash is not
a special character. Here is an example showing the difference:
toascii ("\n")
= 10
toascii (’\n’)
= [92 110]
Here is a table of all the escape sequences used in Octave (within double quoted strings).
They are the same as those used in the C programming language.

\\ Represents a literal backslash, ‘\’.

\" Represents a literal double-quote character, ‘"’.

\’ Represents a literal single-quote character, ‘*’.

\O Represents the “nul” character, control-@, ASCII code 0.
\a Represents the “alert” character, control-g, ASCII code 7.
\b Represents a backspace, control-h, ASCII code 8.

\f Represents a formfeed, control-1, ASCII code 12.

\n Represents a newline, control-j, ASCII code 10.

\r Represents a carriage return, control-m, ASCII code 13.
\t Represents a horizontal tab, control-i, ASCII code 9.

\v Represents a vertical tab, control-k, ASCII code 11.

In a single-quoted string there is only one escape sequence: you may insert a single quote
character using two single quote characters in succession. For example,

26 GNU Octave

’I can’’t escape’
= I can’t escape

5.2 Character Arrays

The string representation used by Octave is an array of characters, so internally the string
"dddddddddd" is actually a row vector of length 10 containing the value 100 in all places
(100 is the ASCII code of "d"). This lends itself to the obvious generalization to character
matrices. Using a matrix of characters, it is possible to represent a collection of same-length
strings in one variable. The convention used in Octave is that each row in a character matrix
is a separate string, but letting each column represent a string is equally possible.

The easiest way to create a character matrix is to put several strings together into a
matrix.

collection = ["String #1"; "String #2"];
This creates a 2-by-9 character matrix.

The function ischar can be used to test if an object is a character matrix.

ischar (x) [Built-in Function]
Return true if x is a character array.

See also: [isfloat], page 52, [isinteger], page 45, [islogical], page 53, [isnumeric|, page 52,
[iscellstr], page 97, [isa], page 33.

To test if an object is a string (i.e., a character vector and not a character matrix) you
can use the ischar function in combination with the isvector function as in the following
example:

ischar(collection)
= ans =1

ischar(collection) && isvector(collection)
= ans = 0

ischar("my string") && isvector("my string")
= ans = 1

One relevant question is, what happens when a character matrix is created from strings
of different length. The answer is that Octave puts blank characters at the end of strings
shorter than the longest string. It is possible to use a different character than the blank
character using the string_f£ill_char function.

val = string_fill_char () [Built-in Function]
old_val = string_fill_char (new_val) [Built-in Function]
Query or set the internal variable used to pad all rows of a character matrix to the
same length. It must be a single character. The default value is " " (a single space).

For example:

Chapter 5: Strings 57

string_fill_char ("X");

["these"; "are"; "strings" 1]
= "theseXX"
"areXXXX"
"strings"

This shows a problem with character matrices. It simply isn’t possible to represent
strings of different lengths. The solution is to use a cell array of strings, which is described
in Section 6.2.4 [Cell Arrays of Strings|, page 96.

5.3 Creating Strings

The easiest way to create a string is, as illustrated in the introduction, to enclose a text
in double-quotes or single-quotes. It is however possible to create a string without actually
writing a text. The function blanks creates a string of a given length consisting only of
blank characters (ASCII code 32).

blanks (n) [Function File]
Return a string of n blanks, for example:
blanks (10);
whos ans;
=
Attr Name Size Bytes Class
ans 1x10 10 char

See also: [repmat|, page 315.

5.3.1 Concatenating Strings

It has been shown above that strings can be concatenated using matrix notation (see
Chapter 5 [Strings|, page 55, Section 5.2 [Character Arrays|, page 56). Apart from that,
there are several functions to concatenate string objects: char, strvcat, strcat and
cstrcat. In addition, the general purpose concatenation functions can be used: see [cat],
page 305, [horzcat], page 306 and [vertcat], page 306.

e All string concatenation functions except cstrcat convert numerical input into char-
acter data by taking the corresponding ASCII character for each element, as in the
following example:

char([98, 97, 110, 97, 110, 97])
= ans =
banana

e char and strvcat concatenate vertically, while strcat and cstrcat concatenate hor-
izontally. For example:

char("an apple", "two pears")
= ans =
an apple
two pears

58

GNU Octave

strcat("oc", "tave", " is", " good", " for you")
= ans =

octave is good for you

e char generates an empty row in the output for each empty string in the input. strvcat,
on the other hand, eliminates empty strings.

char(“orange", "green“, nn “red")
= ans =
orange

green
red

strvcat ("orange", "green", "", "red")
= ans =

orange

green

red

e All string concatenation functions except cstrcat also accept cell array data (see
Section 6.2 [Cell Arrays|, page 90). char and strvcat convert cell arrays into character
arrays, while strcat concatenates within the cells of the cell arrays:

char({“red", ugreenn’ nn

“blue"})
= ans =

red
green

blue

strcat({"abc"; "ghi"}, {"def"; "jkl"})

= ans =
{
[1,1] = abcdef
[2,1] = ghijkl
}

e strcat removes trailing white space in the arguments (except within cell arrays), while
cstrcat leaves white space untouched. Both kinds of behavior can be useful as can be
seen in the examples:

strcat(["dirl";"directory2"], ["/";"/"], ["filel";"file2"])
= ans =

diri/filel
directory2/file?2

cstrcat(["thirteen apples"; "a banana"], [" 5$";" 1$"]1)
= ans =

thirteen apples 5%
a banana 1%

Chapter 5: Strings 59

Note that in the above example for cstrcat, the white space originates from the inter-
nal representation of the strings in a string array (see Section 5.2 [Character Arrays],
page 56).

char (x) [Built-in Function]
char (x,...) [Built-in Function]
char (s1,s2, ...) [Built-in Function]
char (cell_array) [Built-in Function]

Create a string array from one or more numeric matrices, character matrices, or cell
arrays. Arguments are concatenated vertically. The returned values are padded with
blanks as needed to make each row of the string array have the same length. Empty
input strings are significant and will concatenated in the output.

For numerical input, each element is converted to the corresponding ASCII character.
A range error results if an input is outside the ASCII range (0-255).

For cell arrays, each element is concatenated separately. Cell arrays converted through
char can mostly be converted back with cellstr. For example:

char ([97, 98, 991, "", {"98", "99", 100}, "stri", ["ha", "1f"])
= ["abc "
ll98 n
ll99 n
lld n
"stri "
"half "]

See also: [strvcat], page 59, [cellstr], page 97.

strvcat (x) [Built-in Function]

strvcat (x, ...) [Built-in Function]

strvcat (si,s2,...) [Built-in Function]

strvcat (cell_array) [Built-in Function]
Create a character array from one or more numeric matrices, character matrices, or
cell arrays. Arguments are concatenated vertically. The returned values are padded
with blanks as needed to make each row of the string array have the same length.
Unlike char, empty strings are removed and will not appear in the output.

For numerical input, each element is converted to the corresponding ASCII character.
A range error results if an input is outside the ASCII range (0-255).

For cell arrays, each element is concatenated separately. Cell arrays converted through
strvcat can mostly be converted back with cellstr. For example:

strvcat ([97, 98, 99], ", {"98", "99",6 100}, "stri", ["ha", "1f"])
= ["abc "
ll98 n
ll99 n
Ild n
"stri "
"half "]

See also: [char|, page 59, [strcat], page 60, [cstrcat], page 60.

60 GNU Octave

strcat (s1, s2,...) [Function File]
Return a string containing all the arguments concatenated horizontally. If the argu-
ments are cells strings, strcat returns a cell string with the individual cells concate-
nated. For numerical input, each element is converted to the corresponding ASCII
character. Trailing white space is eliminated. For example:
s = ["ab"; "cde" 1;
strcat (s, s, s)
= ans =
"ab ab ab "
"cdecdecde"
s = { "ab"; "cde" };
strcat (s, s, s)
= ans =
{
[1,1] = ababab
[2,1] cdecdecde

}
See also: [cstrcat], page 60, [char|, page 59, [strvcat], page 59.

cstrcat (si,s2,...) [Function File]
Return a string containing all the arguments concatenated horizontally. Trailing white
space is preserved. For example:
cstrcat ("ab "oed")
= "ab cd"
s = [llab"; IICde"] ;
cstrcat (s, s, s)
= ans =
"ab ab ab "
"cdecdecde"

See also: [strcat], page 60, [char], page 59, [strvcat], page 59.

5.3.2 Conversion of Numerical Data to Strings

Apart from the string concatenation functions (see Section 5.3.1 [Concatenating Strings],
page 57) which cast numerical data to the corresponding ASCII characters, there are several
functions that format numerical data as strings. mat2str and num2str convert real or
complex matrices, while int2str converts integer matrices. int2str takes the real part
of complex values and round fractional values to integer. A more flexible way to format
numerical data as strings is the sprintf function (see Section 14.2.4 [Formatted Output],
page 199, [doc-sprintf], page 200).

= mat2str (x, n) [Function File]

= mat2str (..., 'class’) [Function File]
Format real/complex numerical matrices as strings. This function returns values that
are suitable for the use of the eval function.

S
S

The precision of the values is given by n. If n is a scalar then both real and imaginary
parts of the matrix are printed to the same precision. Otherwise n (1) defines the

Chapter 5: Strings 61

precision of the real part and n (2) defines the precision of the imaginary part. The
default for n is 17.

If the argument ’class’ is given, then the class of x is included in the string in such a
way that the eval will result in the construction of a matrix of the same class.

mat2str ([-1/3 + i/7; 1/3 - i/7 1, [4 2])
= "[-0.3333+0.14i;0.3333-0.14i]"

mat2str ([-1/3 +i/7; 1/3 -i/7 1, [4 2])
= "[-0.3333+01,0+0.14i;0.3333+01,-0-0.141i]"

mat2str (int16([1 -1]), ’class’)
= "int16([1,-1])"

See also: [sprintf], page 200, [num2str|, page 61, [int2str], page 62.

num2str (x) [Function File]
num2str (x, precision) [Function File]
num2str (x, format) [Function File]

Convert a number (or array) to a string (or a character array). The optional second
argument may either give the number of significant digits (precision) to be used in
the output or a format template string (format) as in sprintf (see Section 14.2.4
[Formatted Output], page 199). num2str can also handle complex numbers. For
example:

num2str (123.456)
= "123.46"

num2str (123.456, 4)
= "123.5"

s = num2str ([1, 1.34; 3, 3.56], "%5.1f")

= s =
1.0 1.3
3.0 3.6
whos s
=
Attr Name Size Bytes Class
s 2x8 16 char

num2str (1.234 + 27.31)
= "1.234+27.3i"

The num2str function is not very flexible. For better control over the results, use
sprintf (see Section 14.2.4 [Formatted Output], page 199). Note that for complex x,
the format string may only contain one output conversion specification and nothing
else. Otherwise, you will get unpredictable results.

See also: [sprintf], page 200, [int2str]|, page 62, [mat2str], page 60.

62 GNU Octave

int2str (n) [Function File]
Convert an integer (or array of integers) to a string (or a character array).

int2str (123)
= "123"

s = int2str ([1, 2, 3; 4, 5, 61)

= s =
1 2 3
4 5 6
whos s
= s =
Attr Name Size Bytes Class
s 2x7 14 char

This function is not very flexible. For better control over the results, use sprintf
(see Section 14.2.4 [Formatted Output], page 199).

See also: [sprintf], page 200, [num2str], page 61, [mat2str], page 60.

5.4 Comparing Strings

Since a string is a character array, comparisons between strings work element by element
as the following example shows:

GNU = "GNU’s Not UNIX";
spaces = (GNU == " ")
= spaces =
0o o o o0 O 1 0O 0 O 1 0o o0 o0 ©

To determine if two strings are identical it is necessary to use the strcmp function. It com-
pares complete strings and is case sensitive. strncmp compares only the first N characters
(with N given as a parameter). strcmpi and strncmpi are the corresponding functions for
case-insensitive comparison.

strcmp (s1, s2) [Built-in Function]
Return 1 if the character strings s1 and s2 are the same, and 0 otherwise.

If either s1 or s2 is a cell array of strings, then an array of the same size is returned,
containing the values described above for every member of the cell array. The other
argument may also be a cell array of strings (of the same size or with only one
element), char matrix or character string.

Caution: For compatibility with MATLAB, Octave’s strcmp function returns 1 if the
character strings are equal, and 0 otherwise. This is just the opposite of the corre-
sponding C library function.

See also: [strcmpi], page 63, [strncmp]|, page 62, [strncmpi], page 63.

strncmp (s1, s2, n) [Built-in Function]
Return 1 if the first n characters of strings sI and s2 are the same, and 0 otherwise.

Chapter 5: Strings 63

strncmp ("abce", "abcd", 3)
=1

If either s1 or s2 is a cell array of strings, then an array of the same size is returned,
containing the values described above for every member of the cell array. The other
argument may also be a cell array of strings (of the same size or with only one
element), char matrix or character string.

strncmp ("abce", {"abcd", "bca", "abc"}, 3)
= [1, 0, 1]
Caution: For compatibility with MATLAB, Octave’s strncmp function returns 1 if
the character strings are equal, and 0 otherwise. This is just the opposite of the
corresponding C library function.

See also: [strncmpi], page 63, [stremp]|, page 62, [strempi], page 63.

strcmpi (si, s2) [Built-in Function]
Return 1 if the character strings sl and s2 are the same, disregarding case of alpha-
betic characters, and 0 otherwise.

If either s1 or s2 is a cell array of strings, then an array of the same size is returned,
containing the values described above for every member of the cell array. The other
argument may also be a cell array of strings (of the same size or with only one
element), char matrix or character string.

Caution: For compatibility with MATLAB, Octave’s strcmp function returns 1 if the
character strings are equal, and 0 otherwise. This is just the opposite of the corre-
sponding C library function.

Caution: National alphabets are not supported.

See also: [strcmp]|, page 62, [strncmp|, page 62, [strncmpi], page 63.

strncmpi (s1, s2, n) [Built-in Function]
Return 1 if the first n character of sl and s2 are the same, disregarding case of
alphabetic characters, and 0 otherwise.
If either s1 or s2 is a cell array of strings, then an array of the same size is returned,
containing the values described above for every member of the cell array. The other
argument may also be a cell array of strings (of the same size or with only one
element), char matrix or character string.
Caution: For compatibility with MATLAB, Octave’s strncmpi function returns 1 if
the character strings are equal, and 0 otherwise. This is just the opposite of the
corresponding C library function.

Caution: National alphabets are not supported.

See also: [strncmp], page 62, [stremp]|, page 62, [strempi], page 63.

validstr = validatestring (str, strarray) [Function File]

validstr = validatestring (str, strarray, funcname) [Function File]

validstr = validatestring (str, strarray, funcname, [Function File]
varname)

validstr = validatestring (..., position) [Function File]

Verify that str is a string or substring of an element of strarray.

64 GNU Octave

str is a character string to be tested, and strarray is a cellstr of valid values. validstr
will be the validated form of str where validation is defined as str being a member or
substring of validstr. If str is a substring of validstr and there are multiple matches,
the shortest match will be returned if all matches are substrings of each other, and
an error will be raised if the matches are not substrings of each other.

All comparisons are case insensitive.

See also: [strcmp], page 62, [strempi], page 63.

5.5 Manipulating Strings

Octave supports a wide range of functions for manipulating strings. Since a string is just a
matrix, simple manipulations can be accomplished using standard operators. The following
example shows how to replace all blank characters with underscores.

quote = ...

"First things first, but not necessarily in that order";
quote(quote == " n) = "_II
= quote =

First_things_first,_but_not_necessarily_in_that_order

For more complex manipulations, such as searching, replacing, and general regular ex-
pressions, the following functions come with Octave.

deblank (s) [Function File]
Remove trailing blanks and nulls from s. If s is a matrix, deblank trims each row to
the length of longest string. If s is a cell array, operate recursively on each element
of the cell array.

strtrim (s) [Function File]
Remove leading and trailing blanks and nulls from s. If s is a matrix, strtrim trims
each row to the length of longest string. If s is a cell array, operate recursively on
each element of the cell array. For example:

strtrim (" abc ")
= "abc"
strtrim ([" abc e def ")
:> [llabc n ; n def "]
strtrunc (s, n) [Function File]

Truncate the character string s to length n. If s is a char matrix, then the number of
columns is adjusted.

If s is a cell array of strings, then the operation is performed on its members and the
new cell array is returned.

findstr (s, t, overlap) [Function File]
Return the vector of all positions in the longer of the two strings s and t where
an occurrence of the shorter of the two starts. If the optional argument overlap is
nonzero, the returned vector can include overlapping positions (this is the default).
For example:

Chapter 5: Strings 65

idx
idx
idx

findstr ("ababab", "a")

= [1, 3, 5]
findstr ("abababa", "aba", 0)
= [1, 5]

See also: [strfind], page 65, [strmatch], page 66, [strcmp], page 62, [strncmp], page 62,
[strempi], page 63, [strncmpi], page 63, [find], page 302.

= strchr (str, chars) [Function File]
= strchr (str, chars, n) [Function File]
= strchr (str, chars, n, direction) [Function File]

Search for the string str for occurrences of characters from the set chars. The return
value, as well as the n and direction arguments behave identically as in find.

This will be faster than using regexp in most cases.

See also: [find], page 302.

index (s, t) [Function File]
index (s, t, direction) [Function File]

Return the position of the first occurrence of the string t in the string s, or 0 if no
occurrence is found. For example:

index ("Teststring", "t")
= 4

If direction is ‘"first"’, return the first element found. If direction is ‘"last"’, return
the last element found. The rindex function is equivalent to index with direction
set to ‘"last"’.

Caution: This function does not work for arrays of character strings.

See also: [find], page 302, [rindex], page 65.

rindex (s, t) [Function File]

idx
idx

Return the position of the last occurrence of the character string t in the character
string s, or 0 if no occurrence is found. For example:

rindex ("Teststring", "t")
= 6

Caution: This function does not work for arrays of character strings.

See also: [find], page 302, [index], page 65.

strfind (str, pattern) [Loadable Function]
strfind (cellstr, pattern) [Loadable Function]
Search for pattern in the string str and return the starting index of every such oc-
currence in the vector idx. If there is no such occurrence, or if pattern is longer than
str, then idx is the empty array [J.

If a cell array of strings cellstr is specified then idx is a cell array of vectors, as
specified above. Examples:

66 GNU Octave

strfind ("abababa", "aba'")
= [1, 3, 5]

strfind ({"abababa", "bebebe", "ab"}, "aba")
= ans =

{
[1,1] =

1 3 b5

[1,2] = [1(1x0)
[1,3] = [1(1x0)
}

See also: [findstr|, page 64, [strmatch], page 66, [regexp|, page 68, [regexpi|, page 71,
[find], page 302.

strmatch (s, 4, "exact") [Function File]
Return indices of entries of A that match the string s. The second argument A may

be a string matrix or a cell array of strings. If the third argument "exact" is not
given, then s only needs to match A up to the length of s. Trailing whitespace is
ignored. Results are returned as a column vector. For example:

strmatch ("apple", "apple juice")
=1

strmatch ("apple", ["apple pie"; "apple juice"; "an apple"])
= [1; 2]

strmatch ("apple", {"apple pie"; "apple juice"; "tomato"l})
= [1; 2]

See also: [strfind], page 65, [findstr|, page 64, [strcmp], page 62, [strncmp|, page 62,
[strempi], page 63, [strncmpi], page 63, [find], page 302.

[tok, rem] = strtok (str, delim) [Function File]
Find all characters up to but not including the first character which is in the string
delim. If rem is requested, it contains the remainder of the string, starting at the first
delimiter. Leading delimiters are ignored. If delim is not specified, space is assumed.

For example:

strtok ("this is the life")
= "this"

[tok, rem] = strtok ("14%27+31", "+-x/")
=
tok = 14
rem *27+31

See also: [index|, page 65, [strsplit], page 67.

Chapter 5: Strings 67

[s]

[a,
[a,
[a,

= strsplit (p, sep, strip_empty) [Function File]
Split a single string using one or more delimiters and return a cell array of strings.
Consecutive delimiters and delimiters at boundaries result in empty strings, unless
strip_empty is true. The default value of strip_empty is false.

See also: [strtok], page 66.

..] = strread (str) [Function File]
.] = strread (str, format) [Function File]
.] = strread (str, format, propl, valuel, ...) [Function File]

Read data from a string.

The string str is split into words that are repeatedly matched to the specifiers in
format. The first word is matched to the first specifier, the second to the second
specifier and so forth. If there are more words than specifiers, the process is repeated
until all words have been processed.

The string format describes how the words in str should be parsed. It may contain
any combination of the following specifiers:

hs The word is parsed as a string.
%d

pA The word is parsed as a number.
h* The word is skipped.

Parsed word corresponding to the first specifier are returned in the first output argu-
ment and likewise for the rest of the specifiers.

By default, format is "%£", meaning that numbers are read from str.
For example, the string

str = "\

Bunny Bugs 5.5\n\

Duck Daffy -7.5e-5\n\

Penguin Tux 6"
can be read using

[a, b, c] = strread (str, "Vs %s %f");
The behavior of strread can be changed via property-value pairs. The following
properties are recognized:

"commentstyle"
Parts of str are considered comments and will be skipped. value is the
comment style and can be any of the following.
e "shell" Everything from # characters to the nearest end-line is
skipped.
e "c" Everything between /* and */ is skipped.
e "c++" Everything from // characters to the nearest end-line is
skipped.
e "matlab" Everything from % characters to the nearest end-line is
skipped.

63 GNU Octave

"delimiter"
Any character in value will be used to split str into words.

"emptyvalue"
Parts of the output where no word is available is filled with value.

See also: [textread|, page 194, [load], page 190, [dlmread], page 193, [fscanf], page 204.

strrep (s, ptn, rep) [Loadable Function]

strrep (s, ptn, rep, "overlaps", o) [Loadable Function]
Replace all occurrences of the substring ptn in the string s with the string rep and
return the result. For example:

strrep ("This is a test string", "is", "&%$")
= "Th&%$ &%$ a test string"

s may also be a cell array of strings, in which case the replacement is done for each
element and a cell array is returned.

See also: [regexprep|, page 71, [strfind], page 65, [findstr], page 64.

substr (s, offset, len) [Function File]
Return the substring of s which starts at character number offset and is len characters
long.

If offset is negative, extraction starts that far from the end of the string. If len is
omitted, the substring extends to the end of S.

For example:

substr ("This is a test string", 6, 9)
= "is a test"

This function is patterned after AWK. You can get the same result by s (offset :
(offset + len - 1)).

[s, e, te, m, t, nm] = regexp (str, pat) [Loadable Function]

[...] = regexp (str, pat, "optl", ...) [Loadable Function]
Regular expression string matching. Search for pat in str and return the positions
and substrings of any matches, or empty values if there are none. Note, some features
and extended options are only available when Octave is compiled with support for
Perl Compatible Regular Expressions (PCRE).

The matched pattern pat can include any of the standard regex operators, including:
Match any character

* + 7 {} Repetition operators, representing

* Match zero or more times
+ Match one or more times
? Match zero or one times
{n} Match exactly n times

{n,} Match n or more times

Chapter 5: Strings 69

O

"8

P R

{m,n} Match between m and n times

-]

List operators. The pattern will match any character listed between "["
and "]". If the first character is """ then the pattern is inverted and any
character except those listed between brackets will match.

With PCRE support, escape sequences defined below can be used inside
list operators. For example, a template for a floating point number might
be [-+.\d]+. POSIX regular expressions do not use escape sequences
and any backslash ‘\” will be interpreted literally as one of the list of
characters to match.

Grouping operator

Alternation operator. Match one of a choice of regular expressions. The
alternatives must be delimited by the grouping operator () above.

Anchoring operators. Requires pattern to occur at the start (*) or end
($) of the string.

In addition, the following escaped characters have special meaning. Note, it is recom-
mended to quote pat in single quotes, rather than double quotes, to avoid the escape
sequences being interpreted by Octave before being passed to regexp.

\b
\B
\w
\W
\<
\>
\s
\S
\d

\D

Match a word boundary

Match within a word

Match any word character

Match any non-word character
Match the beginning of a word
Match the end of a word

Match any whitespace character
Match any non-whitespace character

Match any digit

This sequence is only available with PCRE support. For POSIX regular
expressions use the following list operator [0-9].

Match any non-digit

This sequence is only available with PCRE support. For POSIX regular
expressions use the following list operator [~0-9].

The outputs of regexp default to the order given below

S
e
te

m

The start indices of each matching substring
The end indices of each matching substring
The extents of each matched token surrounded by (...) in pat

A cell array of the text of each match

70 GNU Octave

t A cell array of the text of each token matched

nm A structure containing the text of each matched named token, with
the name being used as the fieldname. A named token is denoted by
(?<name>...) and is only available with PCRE support.

Particular output arguments, or the order of the output arguments, can be selected
by additional opt arguments. These are strings and the correspondence between the
output arguments and the optional argument are

‘start’ s
‘end’

'tokenExtents’ te
‘'match’ m
"tokens’ t
‘names’ nm

Additional arguments are summarized below.
‘once’ Return only the first occurrence of the pattern.
‘matchcase’
Make the matching case sensitive. (default)
Alternatively, use (7-1) in the pattern when PCRE is available.
‘ignorecase’
Ignore case when matching the pattern to the string.
Alternatively, use (7i) in the pattern when PCRE is available.
‘stringanchors’

Match the anchor characters at the beginning and end of the string.
(default)

Alternatively, use (?-m) in the pattern when PCRE is available.
‘lineanchors’

Match the anchor characters at the beginning and end of the line. Only
available when Octave is compiled with PCRE.

Alternatively, use (?m) in the pattern when PCRE is available.
‘dotall’ The pattern . matches all characters including the newline character.
(default)
Alternatively, use (7s) in the pattern when PCRE is available.
‘dotexceptnewline’

The pattern . matches all characters except the newline character. Only
available when Octave is compiled with PCRE.

Alternatively, use (?-s) in the pattern when PCRE is available.
‘literalspacing’

All characters in the pattern, including whitespace, are significant and

are used in pattern matching. (default)

Alternatively, use (7-x) in the pattern when PCRE is available.

Chapter 5: Strings 71

‘freespacing’
The pattern may include arbitrary whitespace and also comments begin-
ning with the character ‘#’. Only available when Octave is compiled with
PCRE.

Alternatively, use (?x) in the pattern when PCRE is available.
See also: [regexpi], page 71, [strfind], page 65, [regexprep], page 71.

[s, e, te, m, t, nm] = regexpi (str, pat) [Loadable Function]

[...] = regexpi (str, pat, "opt1", ...) [Loadable Function]
Case insensitive regular expression string matching. Search for pat in str and return
the positions and substrings of any matches, or empty values if there are none. See
[regexp], page 68, for details on the syntax of the search pattern.

See also: [regexp]|, page 68.

outstr = regexprep (string, pat, repstr) [Loadable Function]
outstr = regexprep (string, pat, repstr, "optl", ...) [Loadable Function]
Replace occurrences of pattern pat in string with repstr.

The pattern is a regular expression as documented for regexp. See [regexp|, page 68.

The replacement string may contain $i, which substitutes for the ith set of parentheses
in the match string. For example,

regexprep("Bill Dunn",’ (\w+) (\w+)’,’$2, $1°)
returns "Dunn, Bill"

Options in addition to those of regexp are
‘once’ Replace only the first occurrence of pat in the result.
‘warnings’

This option is present for compatibility but is ignored.

See also: [regexp]|, page 68, [regexpi|, page 71, [strrep], page 68.

regexptranslate (op, s) [Function File]
Translate a string for use in a regular expression. This might include either wildcard
replacement or special character escaping. The behavior can be controlled by the op
that can have the values

"wildcard"
The wildcard characters ., * and 7 are replaced with wildcards that are
appropriate for a regular expression. For example:
regexptranslate ("wildcard", "*.m")
= ".x\.m"
"escape" The characters $.7[], that have special meaning for regular expressions

are escaped so that they are treated literally. For example:

regexptranslate ("escape", "12.5")
= "12\.5"

See also: [regexp|, page 68, [regexpi], page 71, [regexprep], page 71.

72 GNU Octave

untabify (t) [Function File]
untabify (t, tw) [Function File]
untabify (t, tw, deblank) [Function File]

Replace TAB characters in t, with spaces. The tab width is specified by tw, or defaults
to eight. The input, t, may be either a 2-D character array, or a cell array of character
strings. The output is the same class as the input.

If the optional argument deblank is true, then the spaces will be removed from the
end of the character data.

The following example reads a file and writes an untabified version of the same file
with trailing spaces stripped.

fid = fopen ("tabbed_script.m");

text = char (fread (fid, "uchar")’);

fclose (fid);

fid = fopen ("untabified_script.m", "w");

text = untabify (strsplit (text, "\n"), 8, true);

fprintf (f£fid, "%s\n", text{:});

fclose (fid);

See also: [strjust], page 75, [strsplit], page 67, [deblank|, page 64.

5.6 String Conversions

Octave supports various kinds of conversions between strings and numbers. As an example,
it is possible to convert a string containing a hexadecimal number to a floating point number.
hex2dec ("FF")
= ans = 255

bin2dec (s) [Function File]
Return the decimal number corresponding to the binary number represented by the
string s. For example:

bin2dec ("1110")
= 14

If s is a string matrix, return a column vector of converted numbers, one per row of
s. Invalid rows evaluate to NaN.

See also: [dec2bin|, page 72, [base2dec|, page 73, [hex2dec], page 73.

dec2bin (d, len) [Function File]
Return a binary number corresponding to the non-negative integer d, as a string of
ones and zeros. For example:
dec2bin (14)
= "1110"

If d is a vector, returns a string matrix, one row per value, padded with leading zeros
to the width of the largest value.

The optional second argument, len, specifies the minimum number of digits in the
result.

See also: [bin2dec|, page 72, [dec2base], page 73, [dec2hex], page 73.

Chapter 5: Strings 73

dec2hex (d, len) [Function File]
Return the hexadecimal string corresponding to the non-negative integer d. For
example:
dec2hex (2748)
:> IIABCII

If d is a vector, return a string matrix, one row per value, padded with leading zeros
to the width of the largest value.

The optional second argument, len, specifies the minimum number of digits in the
result.

See also: [hex2dec|, page 73, [dec2base], page 73, [dec2bin], page 72.

hex2dec (s) [Function File]
Return the integer corresponding to the hexadecimal number represented by the string
s. For example:
hex2dec ("12B")
= 299
hex2dec ("12b")
= 299
If s is a string matrix, returns a column vector of converted numbers, one per row of
s. Invalid rows evaluate to NaN.

See also: [dec2hex]|, page 73, [base2dec|, page 73, [bin2dec]|, page 72.

dec2base (d, base) [Function File]
dec2base (d, base, len) [Function File]
Return a string of symbols in base base corresponding to the non-negative integer d.
dec2base (123, 3)
= "11120"

If d is a vector, return a string matrix with one row per value, padded with leading
zeros to the width of the largest value.

If base is a string then the characters of base are used as the symbols for the digits
of d. Space (’’) may not be used as a symbol.

dec2base (123, "aei")
= '"eeeia"

The optional third argument, len, specifies the minimum number of digits in the
result.

See also: [base2dec], page 73, [dec2bin|, page 72, [dec2hex], page 73.

base2dec (s, base) [Function File]
Convert s from a string of digits in base base to a decimal integer (base 10).

base2dec ("11120", 3)
= 123

If s is a matrix, returns a column vector with one value per row of s. If a row contains
invalid symbols then the corresponding value will be NaN. Rows are right-justified
before converting so that trailing spaces are ignored.

74 GNU Octave

If base is a string, the characters of base are used as the symbols for the digits of s.
Space (’) may not be used as a symbol.
base2dec ("yyyzx", "xyz")
= 123

See also: [dec2base], page 73, [bin2dec|, page 72, [hex2dec], page 73.

s = num2hex (n) [Loadable Function]
Typecast a double precision number or vector to a 16 character hexadecimal string
of the IEEE 754 representation of the number. For example:

num2hex ([-1, 1, e, Inf, NaN, NA]);

= "bf£0000000000000
3££0000000000000
4005b£0a8b145769
7££0000000000000
£££8000000000000
7££00000000007a2"

See also: [hex2num)], page 74, [hex2dec], page 73, [dec2hex]|, page 73.

n = hex2num (s) [Loadable Function]
Typecast the 16 character hexadecimal character string to an IEEE 754 double preci-
sion number. If fewer than 16 characters are given the strings are right padded with
0’ characters.

Given a string matrix, hex2num treats each row as a separate number.
hex2num (["4005bf0a8b145769" ;"4024000000000000"])
= [2.7183; 10.000]

See also: [num2hex], page 74, [hex2dec], page 73, [dec2hex]|, page 73.

str2double (s) [Built-in Function]
Convert a string to a real or complex number.

The string must be in one of the following formats where a and b are real numbers
and the complex unit is i’ or ’j’:

e a+hi

e a+ b*i

e a+i*b

e bi+a

e b*i+a

o i*b+a
If present, a and/or b are of the form [+-]d[,.]d[[eE][+-]d] where the brackets indicate

optional arguments and ’d’ indicates zero or more digits. The special input values
Inf, NaN, and NA are also accepted.

s may also be a character matrix, in which case the conversion is repeated for each
row. Or s may be a cell array of strings, in which case each element is converted and
an array of the same dimensions is returned.

str2double can replace str2num, and it avoids the use of eval on unknown data.

See also: [str2num], page 75.

Chapter 5: Strings 75

strjust (s, pos) [Function File]
Return the text, s, justified according to pos, which may be ‘"left"’, ‘"center"’, or
‘"right"’. If pos is omitted, ‘"right"’ is assumed.

Null characters are replaced by spaces. All other character data are treated as non-
white space.

Example:

strjust (["a"; "ab"; "abc"; "abcd"])
= ans =
a
ab
abc
abcd

See also: [deblank]|, page 64, [strrep], page 68, [strtrim], page 64, [untabify], page 72.

str2num (s) [Function File]
Convert the string (or character array) s to a number (or an array). Examples:

str2num("3.141596")
= 3.141596

str2num(["1, 2, 3"; "4, 5, 6"]);

= ans =
1 2 3
4 5 6

Caution: As str2num uses the eval function to do the conversion, str2num will
execute any code contained in the string s. Use str2double instead if you want to
avoid the use of eval.

See also: [str2double], page 74, [eval], page 129.

toascii (s) [Mapping Function]
Return ASCII representation of s in a matrix. For example:

toascii ("ASCII")
= [65, 83, 67, 73, 73]

See also: [char], page 59.

tolower (s) [Mapping Function]

lower (s) [Mapping Function]
Return a copy of the string or cell string s, with each upper-case character replaced
by the corresponding lower-case one; non-alphabetic characters are left unchanged.
For example:

tolower ("MiXeD cAsE 123")
= "mixed case 123"

See also: [toupper|, page 76.

76 GNU Octave

toupper (s) [Built-in Function]

upper (s) [Built-in Function]
Return a copy of the string or cell string s, with each lower-case character replaced
by the corresponding upper-case one; non-alphabetic characters are left unchanged.
For example:

toupper ("MiXeD cAsE 123")
= "MIXED CASE 123"

See also: [tolower]|, page 75.

do_string_escapes (string) [Built-in Function]
Convert special characters in string to their escaped forms.

undo_string_escapes (s) [Built-in Function]
Convert special characters in strings back to their escaped forms. For example, the
expression
bell = "\a";

assigns the value of the alert character (control-g, ASCII code 7) to the string variable
bell. If this string is printed, the system will ring the terminal bell (if it is possible).
This is normally the desired outcome. However, sometimes it is useful to be able to
print the original representation of the string, with the special characters replaced by
their escape sequences. For example,

octave:13> undo_string_escapes (bell)
ans = \a

replaces the unprintable alert character with its printable representation.

5.7 Character Class Functions

Octave also provides the following character class test functions patterned after the functions
in the standard C library. They all operate on string arrays and return matrices of zeros and
ones. Elements that are nonzero indicate that the condition was true for the corresponding
character in the string array. For example:

isalpha ("!QO@WERT"Y&")
= [0,1,0,1,1,1, 1,0, 1, 0]

isalnum (s) [Mapping Function]
Return a logical array which is true where the elements of s are letters or digits and
false where they are not. This is equivalent to (isalpha (s) | isdigit (s)).

See also: [isalphal, page 76, [isdigit], page 77, [ispunct], page 77, [isspace], page 77,
[iscntrl], page 77.

isalpha (s) [Mapping Function]
Return a logical array which is true where the elements of s are letters and false where
they are not. This is equivalent to (islower (s) | isupper (s)).

See also: [isdigit], page 77, [ispunct], page 77, [isspace], page 77, [iscntrl], page 77,
[isalnum], page 76, [islower]|, page 77, [isupper|, page 78.

Chapter 5: Strings 7

isascii (s) [Mapping Function]
Return a logical array which is true where the elements of s are ASCII characters (in
the range 0 to 127 decimal) and false where they are not.

iscntrl (s) [Mapping Function]
Return a logical array which is true where the elements of s are control characters
and false where they are not.

See also: [ispunct], page 77, [isspace|, page 77, [isalpha], page 76, [isdigit], page 77.

isdigit (s) [Mapping Function]
Return a logical array which is true where the elements of s are decimal digits (0-9)
and false where they are not.

See also: [isxdigit]|, page 78, [isalpha], page 76, [isletter], page 77, [ispunct]|, page 77,
[isspace], page 77, [iscntrl], page 77.

isgraph (s) [Mapping Function]
Return a logical array which is true where the elements of s are printable characters
(but not the space character) and false where they are not.

See also: [isprint], page 77.

isletter (s) [Function File]
Return a logical array which is true where the elements of s are letters and false where
they are not. This is an alias for the isalpha function.

See also: [isalphal, page 76, [isdigit], page 77, [ispunct], page 77, [isspace], page 77,
[iscntrl], page 77, [isalnum]|, page 76.

islower (s) [Mapping Function]
Return a logical array which is true where the elements of s are lower case letters and
false where they are not.

See also: [isupper]|, page 78, [isalpha], page 76, [isletter], page 77, [isalnum], page 76.
isprint (s) [Mapping Function]

Return a logical array which is true where the elements of s are printable characters
(including the space character) and false where they are not.

See also: [isgraph|, page 77.
ispunct (s) [Mapping Function]

Return a logical array which is true where the elements of s are punctuation characters
and false where they are not.

See also: [isalpha], page 76, [isdigit], page 77, [isspace], page 77, [iscntrl], page 77.
isspace (s) [Mapping Function]
Return a logical array which is true where the elements of s are whitespace characters

(space, formfeed, newline, carriage return, tab, and vertical tab) and false where they
are not.

See also: [iscntrl], page 77, [ispunct|, page 77, [isalpha], page 76, [isdigit], page 77.

78 GNU Octave

isupper (s) [Mapping Function]
Return a logical array which is true where the elements of s are upper case letters
and false where they are not.

See also: [islower], page 77, [isalphal, page 76, [isletter], page 77, [isalnum], page 76.

isxdigit (s) [Mapping Function]
Return a logical array which is true where the elements of s are hexadecimal digits
(0-9 and a-fA-F).
See also: [isdigit], page 77.

isstrprop (str, prop) [Function File]
Test character string properties. For example:

isstrprop ("abc123", "alpha")
= [1, 1, 1, 0, 0, O]

If str is a cell array, isstrpop is applied recursively to each element of the cell array.
Numeric arrays are converted to character strings.

The second argument prop must be one of

"alpha" True for characters that are alphabetic (letters).

"alnum"
"alphanum"
True for characters that are alphabetic or digits.
"lower" True for lower-case letters.
"upper" True for upper-case letters.
"digit" True for decimal digits (0-9).

"xdigit" True for hexadecimal digits (a-fA-F0-9).

llspacell
"wspace" True for whitespace characters (space, formfeed, newline, carriage return,
tab, vertical tab).

"punct" True for punctuation characters (printing characters except space or letter
or digit).

"cntr]" True for control characters.

llgraphll

"graphic" True for printing characters except space.

"print" True for printing characters including space.

"ascii" True for characters that are in the range of ASCII encoding.

See also: [isalphal, page 76, [isalnum], page 76, [islower|, page 77, [isupper]|, page 78,
[isdigit], page 77, [isxdigit], page 78, [isspace], page 77, [ispunct], page 77, [iscntrl],
page 77, [isgraph], page 77, [isprint], page 77, [isascii], page 77.

Chapter 6: Data Containers 79

6 Data Containers

Octave includes support for two different mechanisms to contain arbitrary data types in
the same variable. Structures, which are C-like, and are indexed with named fields, and
cell arrays, where each element of the array can have a different data type and or shape.
Multiple input arguments and return values of functions are organized as another data
container, the comma separated list.

6.1 Data Structures

Octave includes support for organizing data in structures. The current implementation
uses an associative array with indices limited to strings, but the syntax is more like C-style
structures.

6.1.1 Basic Usage and Examples

Here are some examples of using data structures in Octave.

Elements of structures can be of any value type. For example, the three expressions

x.a =1;
x.b = [1, 2; 3, 4];
x.c = "string";

create a structure with three elements. The ‘.’ character separates the structure name from
the field name and indicates to Octave that this variable is a structure. To print the value
of the structure you can type its name, just as for any other variable:

X
= X =
{
a=1
b=
1 2
4
c = string
}

Note that Octave may print the elements in any order.

Structures may be copied just like any other variable:

80 GNU Octave

y =X
=y =
{
a=1
b=
1 2
4
c = string

Since structures are themselves values, structure elements may reference other structures.
The following statements change the value of the element b of the structure x to be a data
structure containing the single element d, which has a value of 3.

x.b
= ans =

¢ = string

Note that when Octave prints the value of a structure that contains other structures,
only a few levels are displayed. For example:

Chapter 6: Data Containers 81

a.b.c.d.e = 1;
a
= a =
{
b =
{
c =
{
1x1 struct array containing the fields:
d: 1x1 struct
b
X
b

This prevents long and confusing output from large deeply nested structures. The number
of levels to print for nested structures may be set with the function struct_levels_to_
print, and the function print_struct_array_contents may be used to enable printing
of the contents of structure arrays.

val = struct_levels_to_print () [Built-in Function]

old_val = struct_levels_to_print (new_val) [Built-in Function]
Query or set the internal variable that specifies the number of structure levels to
display.

val = print_struct_array_contents () [Built-in Function]

old_val = print_struct_array_contents (new_val) [Built-in Function]

Query or set the internal variable that specifies whether to print struct array contents.
If true, values of struct array elements are printed. This variable does not affect scalar
structures. Their elements are always printed. In both cases, however, printing will
be limited to the number of levels specified by struct_levels_to_print.

Functions can return structures. For example, the following function separates the real
and complex parts of a matrix and stores them in two elements of the same structure
variable.

function y = £ (x)
y.re = real (x);
y.im = imag (x);

endfunction

When called with a complex-valued argument, f returns the data structure containing
the real and imaginary parts of the original function argument.

82 GNU Octave

f (rand (2) + rand (2) * I)
= ans =
{

im

0.26475 0.14828
0.18436 0.83669

re

0.040239 0.242160
0.238081 0.402523

}

Function return lists can include structure elements, and they may be indexed like any
other variable. For example:

[x.u, x.8(2:3,2:3), x.v] =svd ([1, 2; 3, 4]);

X
= x =
{
u=
-0.40455 -0.91451
-0.91451 0.40455
S=
0.00000 0.00000 0.00000
0.00000 5.46499 0.00000
0.00000 0.00000 0.36597
V:
-0.57605 0.81742
-0.81742 -0.57605
}

It is also possible to cycle through all the elements of a structure in a loop, using a
special form of the for statement (see Section 10.5.1 [Looping Over Structure Elements],
page 139).

6.1.2 Structure Arrays

A structure array is a particular instance of a structure, where each of the fields of the
structure is represented by a cell array. Each of these cell arrays has the same dimensions.
Conceptually, a structure array can also be seen as an array of structures with identical
fields. An example of the creation of a structure array is

Chapter 6: Data Containers 83

x(1).a = "stringl";
x(2).a = "string2";
x(1).b = 1;
x(2).b = 2;

which creates a 2-by-1 structure array with two fields. Another way to create a structure
array is with the struct function (see Section 6.1.3 [Creating Structures|, page 84). As
previously, to print the value of the structure array, you can type its name:

X
= X =
{
1x2 struct array containing the fields:
a
b
b

Individual elements of the structure array can be returned by indexing the variable like
x (1), which returns a structure with two fields:

x(1)
= ans =
{
a = stringl
b= 1
+

Furthermore, the structure array can return a comma separated list of field values (see
Section 6.3 [Comma Separated Lists|, page 99), if indexed by one of its own field names.
For example:

X.a
=
ans
ans

stringl
string?2

Here is another example, using this comma separated list on the left-hand side of an
assignment:

[x.a] = deal("new stringl", "new string2");
x(1).a

= ans = new stringl
x(2).a

= ans = new string2

Just as for numerical arrays, it is possible to use vectors as indices (see Section 8.1 [Index
Expressions], page 113):

84 GNU Octave

x(3:4) = x(1:2);
[x([1,3]).a] = deal("other stringl", "other string2");
x.a
=

ans = other stringl

ans = new string2

ans = other string2

ans = new string?2

The function size will return the size of the structure. For the example above
size(x)
= ans =
1 4

Elements can be deleted from a structure array in a similar manner to a numerical array,
by assigning the elements to an empty matrix. For example

in = struct ("calll", {x, Inf, "last"},
"call2", {x, Inf, "first"})

= in =
{
1x3 struct array containing the fields:
calll
call2
b
in(1) = [I;
in.calll
=
ans = Inf
ans = last

6.1.3 Creating Structures

As well as indexing a structure with ".", Octave can create a structure with the struct
command. struct takes pairs of arguments, where the first argument in the pair is the
fieldname to include in the structure and the second is a scalar or cell array, representing
the values to include in the structure or structure array. For example:

struct ("fieldl", 1, "field2", 2)
= ans =
{
fieldl =
field2
}

If the values passed to struct are a mix of scalar and cell arrays, then the scalar argu-
ments are expanded to create a structure array with a consistent dimension. For example:

o
N =

Chapter 6: Data Containers 85

s = struct ("field1", {1, "one"}, "field2", {2, "two"},
"field3", 3);
s.fieldl
=
ans = 1
ans = one

s.field2
=
ans = 2
ans = two
s.field3
=
ans = 3
ans = 3

If you want to create a struct which contains a cell array as an individual field, you have
to put it into another cell array like in the following example:

struct ("fieldl", {{1, "one"}}, "field2", 2)

= ans =

{
fieldl =

{
[1,1] = 1
[1,2] = one

}
field2 = 2

}

struct ("field", value, "field", value, ...) [Built-in Function]

Create a structure and initialize its value.

If the values are cell arrays, create a structure array and initialize its values. The
dimensions of each cell array of values must match. Singleton cells and non-cell values
are repeated so that they fill the entire array. If the cells are empty, create an empty
structure array with the specified field names.

If the argument is an object, return the underlying struct.

The function isstruct can be used to test if an object is a structure or a structure
array.

isstruct (x) [Built-in Function]
Return true if x is a structure or a structure array.

See also: [ismatrix], page 52, [iscell], page 92, [isa], page 33.

86 GNU Octave

6.1.4 Manipulating Structures

Other functions that can manipulate the fields of a structure are given below.

nfields (s) [Built-in Function]
Return the number of fields of the structure s.

fieldnames (struct) [Built-in Function]
Return a cell array of strings naming the elements of the structure struct. It is an
error to call fieldnames with an argument that is not a structure.

isfield (x, name) [Built-in Function]
Return true if the x is a structure and it includes an element named name. If name
is a cell array of strings then a logical array of equal dimension is returned.

[vi, ...] = getfield (s, key, ...) [Function File]
Extract a field from a structure (or a nested structure). For example:
ss(1,2).£fd(3).b = 5;
getfield (ss, {1,2}, "fd", {3}, "b")
= ans = 5
Note that the function call in the previous example is equivalent to the expression
i1l = {1,2}; i2 = "fd"; i3 = {3}; i4= "b";
ss(i1{:}).(12) (13{:}) . (i4)
= ans = 5

See also: [setfield], page 86, [rmfield], page 86, [isfield], page 86, [isstruct], page 85,
[fieldnames|, page 86, [struct], page 85.

[k1, ..., v1] = setfield (s, k1, v1,...) [Function File]
Set a field member in a (nested) structure array. For example:
oo(1,1).f0 = 1;
oo = setfield (oo, {1,2}, "fd", {3}, "b", 6);
00(1,2).£fd(3).b ==
= ans =1
Note that the same result as in the above example could be achieved by:
il = {1,2}; i2 = "fd4d"; i3 = {3}; i4 = "b";
oo(i1{:}).(i2) (i3{:}).(i4) ==
= ans =1

See also: [getfield], page 86, [rmfield], page 86, [isfield], page 86, [isstruct], page 85,
[fieldnames|, page 86, [struct], page 85.

rmfield (s, f) [Built-in Function]
Return a copy of the structure (array) s with the field f removed. If f is a cell array
of strings or a character array, remove the named fields.

See also: [cellstr], page 97, [iscellstr], page 97, [setfield], page 86.

Chapter 6: Data Containers 87

[t, p] = orderfields (s1) [Function File]
[t, p] = orderfields (s1, s2) [Function File]
Return a copy of sI with fields arranged alphabetically or as specified by s2.

Given one struct, arrange field names in sl alphabetically.

If the second argument is a struct, arrange field names in sI as they appear in s2.
The second argument may also specify the order in a permutation vector or a cell
array of strings containing the fieldnames of sI in the desired order.

The optional second output argument p is assigned the permutation vector which
converts the original name order into the new name order.

Examples:

s = struct(“d“, 4, "b", 2, uau, 1’ “C", 3);
t1 = orderfields(s)

= tl =
{
a= 1
b= 2
c= 3
d= 4
}

t = struct("d“, {}, "C", {}’ "b", uau, {});
t2 = orderfields(s, t)

= t2 =
{
d= 4
c= 3
b= 2
a= 1
}
t3 = orderfields(s, [3, 2, 4, 1]);
= t3 =
{
a= 1
b= 2
c= 3
d= 4

88 GNU Octave

[t4, p] = orderfields(s, {"d", "c", "b", "a"})

= t4 = {
d= 4
c= 3
b= 2
a= 1
}
p =
1
4
2
3

See also: [getfield], page 86, [rmfield], page 86, [isfield], page 86, [isstruct], page 85,
[fieldnames|, page 86, [struct], page 85.

substruct (type, subs, ...) [Function File]

Create a subscript structure for use with subsref or subsasgn. For example:

idx = substruct("(Q", {3, ":"})

=
idx =

{
type
subs

{

O

(1,11 =
[1,2] =

|
w

}
}
x=1[1, 2, 3; 4, 5, 6; 7, 8, 9];
subsref (x, idx)
= ans =
7 8 9

See also: [subsref], page 547, [subsasgn|, page 548.

6.1.5 Processing Data in Structures

The simplest way to process data in a structure is within a for loop (see Section 10.5.1
[Looping Over Structure Elements|, page 139). A similar effect can be achieved with the
structfun function, where a user defined function is applied to each field of the structure.

structfun (func, S) [Function File]
[A, ...] = structfun (...) [Function File]
structfun (..., "ErrorHandler", errfunc) [Function File]
structfun (..., " UniformOutput", val) [Function File]
Evaluate the function named name on the fields of the structure S. The fields of S
are passed to the function func individually.
structfun accepts an arbitrary function func in the form of an inline function, func-
tion handle, or the name of a function (in a character string). In the case of a

Chapter 6: Data Containers 89

character string argument, the function must accept a single argument named x, and
it must return a string value. If the function returns more than one argument, they
are returned as separate output variables.

If the parameter "UniformOutput" is set to true (the default), then the function
must return a single element which will be concatenated into the return value. If
"UniformOutput" is false, the outputs are placed into a structure with the same
fieldnames as the input structure.

s.namel "John Smith";

S.name2 "Jill Jones";

structfun (Q@(x) regexp (x, ’>(\w+)$’, "matches"){1}, s,
"UniformQutput", false)

=
{
namel = Smith
name2 = Jones
}

Given the parameter "ErrorHandler", errfunc defines a function to call in case func
generates an error. The form of the function is

function [...] = errfunc (se, ...)

where there is an additional input argument to errfunc relative to func, given by
se. This is a structure with the elements "identifier", "message" and "index", giving
respectively the error identifier, the error message, and the index into the input argu-
ments of the element that caused the error. For an example on how to use an error
handler, see [doc-cellfun|, page 97.

See also: [cellfun], page 97, [arrayfun|, page 311, [spfun], page 384.

Alternatively, to process the data in a structure, the structure might be converted to
another type of container before being treated.

struct2cell (S) [Built-in Function]
Create a new cell array from the objects stored in the struct object. If f is the
number of fields in the structure, the resulting cell array will have a dimension vector
corresponding to [F size(S)]. For example:

90 GNU Octave

s = struct(’name’, {’Peter’, ’Hannah’, ’Robert’},
’age’, {23, 16, 3});
c = struct2cell(s)
= ¢ = {1x1x3 Cell Array}
c(1,1,:)(:)
= ans =
{
[1,1] = Peter
[2,1] = Hannah
[3,1] = Robert
}
c(2,1,:)(:)
= ans =
{
[1,1] = 23
[2,1] = 16
[3,1] = 3
}

See also: [cell2struct], page 99, [fieldnames|, page 86.

6.2 Cell Arrays

It can be both necessary and convenient to store several variables of different size or type
in one variable. A cell array is a container class able to do just that. In general cell arrays
work just like N-dimensional arrays with the exception of the use of ‘{’ and ‘}’ as allocation
and indexing operators.

6.2.1 Basic Usage of Cell Arrays

As an example, the following code creates a cell array containing a string and a 2-by-2
random matrix

¢ = {"a string", rand(2, 2)1};

To access the elements of a cell array, it can be indexed with the { and } operators. Thus,
the variable created in the previous example can be indexed like this:

c{1}

= ans = a string

As with numerical arrays several elements of a cell array can be extracted by indexing with
a vector of indexes

Chapter 6: Data Containers 91

c{1:2}
= ans =
G
[1] = a string
[2] =
0.593993 0.627732
0.377037 0.033643
»)

The indexing operators can also be used to insert or overwrite elements of a cell array.
The following code inserts the scalar 3 on the third place of the previously created cell array

c{3} =3
= c =
{
[1,1] = a string
[1,2] =
0.593993 0.627732
0.377037 0.033643
[1,3] = 3
}

Details on indexing cell arrays are explained in Section 6.2.3 [Indexing Cell Arrays],
page 94.

In general nested cell arrays are displayed hierarchically as in the previous example.
In some circumstances it makes sense to reference them by their index, and this can be
performed by the celldisp function.

celldisp (c, name) [Function File]
Recursively display the contents of a cell array. By default the values are displayed
with the name of the variable c. However, this name can be replaced with the variable
name. For example:

c =41, 2, {31, 32}};
celldisp(c, "b")
=
b{1}
1
b{2}
2
b{3}{1}
31
b{3}{2}
32

92 GNU Octave

See also: [disp|, page 183.

To test if an object is a cell array, use the iscell function. For example:

iscell(c)
= ans =1
iscell(3)
= ans = 0
iscell (x) [Built-in Function)]

Return true if x is a cell array object.

See also: [ismatrix]|, page 52, [isstruct], page 85, [iscellstr], page 97, [isa], page 33.

6.2.2 Creating Cell Array

The introductory example (see Section 6.2.1 [Basic Usage of Cell Arrays|, page 90) showed
how to create a cell array containing currently available variables. In many situations,
however, it is useful to create a cell array and then fill it with data.

The cell function returns a cell array of a given size, containing empty matrices. This
function is similar to the zeros function for creating new numerical arrays. The following
example creates a 2-by-2 cell array containing empty matrices

c = cell(2,2)

= Cc =
{
(1,11 = [1(0x0)
[2,1] = [1(0x0)
[1,2] = [1(0x0)
[2,2] = [1(0x0)
}

Just like numerical arrays, cell arrays can be multi-dimensional. The cell function
accepts any number of positive integers to describe the size of the returned cell array. It is
also possible to set the size of the cell array through a vector of positive integers. In the
following example two cell arrays of equal size are created, and the size of the first one is
displayed

cl = cell(3, 4, 5);

c2 = cell([3, 4, 5]);
size(cl)
= ans =
3 4 5

As can be seen, the [doc-size], page 37 function also works for cell arrays. As do other
functions describing the size of an object, such as [doc-length|, page 37, [doc-numel], page 37,
[doc-rows], page 37, and [doc-columns]|, page 37.

Chapter 6: Data Containers 93

cell (x) [Built-in Function]

cell (n, m) [Built-in Function]
Create a new cell array object. If invoked with a single scalar argument, cell returns
a square cell array with the dimension specified. If you supply two scalar arguments,
cell takes them to be the number of rows and columns. If given a vector with two
elements, cell uses the values of the elements as the number of rows and columns,
respectively.

As an alternative to creating empty cell arrays, and then filling them, it is possible to
convert numerical arrays into cell arrays using the num2cell, mat2cell and cellslices
functions.

C = num2cell (4) [Loadable Function]
C = num2cell (4, dim) [Loadable Function]
Convert the numeric matrix A to a cell array. If dim is defined, the value C is of
dimension 1 in this dimension and the elements of A are placed into C in slices. For

example:
num2cell([1,2;3,4])
= ans =
{
(1,11 = 1
[2,1] = 3
[1,2] = 2
[2,2] = 4
}
num2cell([1,2;3,4],1)
= ans =
{
[1,1] =
1
3
[1,2] =
2
4
}
See also: [mat2cell], page 93.
C = mat2cell (4, m n) [Loadable Function]
C = mat2cell (4,d1,d2, ...) [Loadable Function]
C = mat2cell (4, r) [Loadable Function]
Convert the matrix A to a cell array. If A is 2-D, then it is required that sum (m)
== gize (4, 1) and sum (n) == size (4, 2). Similarly, if A is multi-dimensional
and the number of dimensional arguments is equal to the dimensions of A, then it is
required that sum (di) == size (4, i).

Given a single dimensional argument r, the other dimensional arguments are assumed
to equal size (4,1).

An example of the use of mat2cell is

94 GNU Octave

mat2cell (reshape(1:16,4,4),[3,1],[3,1])
= {
[1,1] =

[1,2] =
13
14
15

[2,2]

16

See also: [num2cell], page 93, [cell2mat], page 99.

sl = cellslices (x, 1b, ub, dim) [Loadable Function]
Given an array x, this function produces a cell array of slices from the array deter-
mined by the index vectors Ib, ub, for lower and upper bounds, respectively. In other
words, it is equivalent to the following code:

n = length (1b);
sl = cell (1, n);
for i = 1:length (1b)
s1{i} = x(:,...,1b(1):ub(d),...,:);
endfor

The position of the index is determined by dim. If not specified, slicing is done along
the first non-singleton dimension.

6.2.3 Indexing Cell Arrays

As shown in see Section 6.2.1 [Basic Usage of Cell Arrays|, page 90 elements can be extracted
from cell arrays using the ‘{’ and ‘}’ operators. If you want to extract or access subarrays
which are still cell arrays, you need to use the ‘(’ and ‘)’ operators. The following example
illustrates the difference:

Chapter 6: Data Containers 95

c = {lllll "2" ll3". ||all Hbll IIC". ||4ll |15|| IIGH}.

c{2,3}
= ans = ¢
c(2,3)
= ans =
{
[1,1]1 = ¢
}

So with ‘{}’ you access elements of a cell array, while with ‘()’ you access a sub array of a
cell array.

Using the ‘(’ and ‘)’ operators, indexing works for cell arrays like for multi-dimensional
arrays. As an example, all the rows of the first and third column of a cell array can be set
to 0 with the following command:

c(:, [1, 31) = {0}
= =
{

[1,1] =

[2,1] =

[3,1] =

[1,2] =

[2,2] = 10

[3,2] = 20

[1,3] =

[2,3] =

[3,3] =0

N O O O

o O

}
Note, that the above can also be achieved like this:
cC:y, [1, 3]) = 0;

Here, the scalar ‘0’ is automatically promoted to cell array ‘{0}’ and then assigned to the
subarray of c.

To give another example for indexing cell arrays with ‘()’, you can exchange the first
and the second row of a cell array as in the following command:

c =41, 2, 3; 4, 5, 6};
c(l1, 2], :) = c([2, 11, o)
= =
{
[1,1] =
[2,1] =
[1,2] =
[2,2] =
[1,3] =
[2,3] =

W o N O s

96 GNU Octave

Accessing multiple elements of a cell array with the ‘{” and ‘}’ operators will result in
a comma-separated list of all the requested elements (see Section 6.3 [Comma Separated
Lists], page 99). Using the ‘{’ and ‘}’ operators the first two rows in the above example can
be swapped back like this:

[c{[1,2], :}] = deal(c{[2, 11, :})
= =

{
[1,1] =
[2,1] =
[1,2] =
[2,2] =
[1,3] =
[2,3] =

D WO N -

}

As for struct arrays and numerical arrays, the empty matrix ‘[]’ can be used to delete
elements from a cell array:

X = {Illll, ||2||; ll3|l, ||4ll};

x(1,) =[]
= x =
{
[1,1] = 3
[1,2] = 4
}

The following example shows how to just remove the contents of cell array elements but
not delete the space for them:

x = {"1", "2"; u3n’ ||4||};

x{1, 3 = 1[I
= x =
{
[1,1] = [1(0x0)
[2,1] = 3
[1,2] = [](0x0)
[2,2] = 4
}

6.2.4 Cell Arrays of Strings

One common use of cell arrays is to store multiple strings in the same variable. It is also
possible to store multiple strings in a character matrix by letting each row be a string. This,
however, introduces the problem that all strings must be of equal length. Therefore, it is
recommended to use cell arrays to store multiple strings. For cases, where the character
matrix representation is required for an operation, there are several functions that convert
a cell array of strings to a character array and back. char and strvcat convert cell arrays
to a character array (see Section 5.3.1 [Concatenating Strings|, page 57), while the function
cellstr converts a character array to a cell array of strings:

Chapter 6: Data Containers 97

a = ["hello"; "world"];
c = cellstr (a)

= ¢ =
{
[1,1] = hello
[2,1] = world
}
cellstr (string) [Built-in Function]

Create a new cell array object from the elements of the string array string.

One further advantage of using cell arrays to store multiple strings is that most functions
for string manipulations included with Octave support this representation. As an example,
it is possible to compare one string with many others using the strcmp function. If one
of the arguments to this function is a string and the other is a cell array of strings, each
element of the cell array will be compared to the string argument:

¢ = {"hello", "world"};
strcmp ("hello", c)
= ans =
1 0
The following string functions support cell arrays of strings: char, strvcat, strcat (see
Section 5.3.1 [Concatenating Strings|, page 57), strcmp, strncmp, strempi, strocmpi (see
Section 5.4 [Comparing Strings|, page 62), str2double, deblank, strtrim, strtrunc,
strfind, strmatch, , regexp, regexpi (see Section 5.5 [Manipulating Strings|, page 64)
and str2double (see Section 5.6 [String Conversions|, page 72).

The function iscellstr can be used to test if an object is a cell array of strings.

iscellstr (cell) [Built-in Function]
Return true if every element of the cell array cell is a character string.

See also: [ischar]|, page 56.

6.2.5 Processing Data in Cell Arrays

Data that is stored in a cell array can be processed in several ways depending on the actual
data. The simplest way to process that data is to iterate through it using one or more
for loops. The same idea can be implemented more easily through the use of the cellfun
function that calls a user-specified function on all elements of a cell array.

Loadable Function
Loadable Function
Loadable Function

cellfun (name, C) [

cellfun ("size", C, k) [

cellfun ("isclass", C, class) [

nc, C) [Loadable Function
[
[
[

]
]
]
cellfun (fu]
cellfun (func, C, D) Loadable Function]
[a, ...] = cellfun (...) Loadable Function]
cellfun (..., 'ErrorHandler’, errfunc) Loadable Function]
cellfun (..., 'UniformOutput’, val) [Loadable Function]

Evaluate the function named name on the elements of the cell array C. Elements in
C are passed on to the named function individually. The function name can be one
of the functions

98

GNU Octave

isempty Return 1 for empty elements.

islogical

Return 1 for logical elements.
isreal Return 1 for real elements.
length Return a vector of the lengths of cell elements.
ndims Return the number of dimensions of each element.
prodofsize

Return the product of dimensions of each element.
size Return the size along the k-th dimension.

isclass Return 1 for elements of class.

Additionally, cellfun accepts an arbitrary function func in the form of an inline
function, function handle, or the name of a function (in a character string). In the
case of a character string argument, the function must accept a single argument named
x, and it must return a string value. The function can take one or more arguments,
with the inputs arguments given by C, D, etc. Equally the function can return one
or more output arguments. For example:
cellfun (@atan2, {1, 0}, {0, 1})
=ans = [1.57080 0.00000]

The number of output arguments of cellfun matches the number of output argu-
ments of the function. The outputs of the function will be collected into the output
arguments of cellfun like this:

function [a, b] = twoouts (x)

a = x;
b = x*x;
endfunction
[aa, bb] = cellfun(@twoouts, {1, 2, 3})
=
aa =
123
bb =
1409

Note that per default the output argument(s) are arrays of the same size as the input
arguments. Input arguments that are singleton (1x1) cells will be automatically
expanded to the size of the other arguments.
If the parameter 'UniformOutput’ is set to true (the default), then the function must
return scalars which will be concatenated into the return array(s). If "UniformOutput’
is false, the outputs are concatenated into a cell array (or cell arrays). For example:
cellfun ("tolower(x)", {"Foo", "Bar", "FooBar"},
"UniformOutput",false)
= ans = {"foo", "bar", "foobar"}
Given the parameter 'ErrorHandler’, then errfunc defines a function to call in case
func generates an error. The form of the function is

Chapter 6: Data Containers 99

function [...] = errfunc (s, ...)

where there is an additional input argument to errfunc relative to func, given by s.
This is a structure with the elements 'identifier’, 'message’ and ’index’, giving respec-
tively the error identifier, the error message, and the index into the input arguments
of the element that caused the error. For example:

function y = foo (s, x), y = NaN; endfunction
cellfun (@factorial, {-1,2},’ErrorHandler’,@foo)
= ans = [NaN 2]

See also: [arrayfun], page 311, [structfun], page 88, [spfun], page 384.

An alternative is to convert the data to a different container, such as a matrix or a data
structure. Depending on the data this is possible using the cell2mat and cell2struct
functions.

m = cell2mat (c) [Function File]
Convert the cell array ¢ into a matrix by concatenating all elements of ¢ into a
hyperrectangle. Elements of ¢ must be numeric, logical or char matrices, or cell
arrays, and cat must be able to concatenate them together.

See also: [mat2cell], page 93, [num2cell], page 93.

cell2struct (cell, fields, dim) [Built-in Function]
Convert cell to a structure. The number of fields in fields must match the number of
elements in cell along dimension dim, that is numel (fields) == size (cell, dim).

A = cell2struct ({’Peter’, ’Hannah’, ’Robert’;
185, 170, 1687},
{’Name’,’Height’}, 1);

ACD
= ans =
{
Name = Peter
Height = 185
}

6.3 Comma Separated Lists

Comma separated lists® are the basic argument type to all Octave functions - both for input
and return arguments. In the example

max (a, b)
‘a, b’ is a comma separated list. Comma separated lists can appear on both the right and
left hand side of an assignment. For example

x=[1010011; 000000 T7];
(i, j] = find (x, 2, "last");

1 Comma-separated lists are also sometimes informally referred to as cs-lists.

100 GNU Octave

Here, ‘x, 2, "last"’ is a comma separated list constituting the input arguments of find.
find returns a comma separated list of output arguments which is assigned element by
element to the comma separated list ‘i, j’ .

Another example of where comma separated lists are used is in the creation of a new
array with [] (see Section 4.1 [Matrices|, page 40) or the creation of a cell array with {2
(see Section 6.2.1 [Basic Usage of Cell Arrays], page 90). In the expressions

a = [1’ 29 3’ 4];
c =14, 5, 6, 7};

both ‘1, 2, 3, 4’ and ‘4, 5, 6, 7’ are comma separated lists.

Comma separated lists cannot be directly manipulated by the user. However, both
structure arrays and cell arrays can be converted into comma separated lists, and thus used
in place of explicitly written comma separated lists. This feature is useful in many ways,
as will be shown in the following subsections.

6.3.1 Comma Separated Lists Generated from Cell Arrays

As has been mentioned above (see Section 6.2.3 [Indexing Cell Arrays|, page 94), elements
of a cell array can be extracted into a comma separated list with the { and } operators. By
surrounding this list with [and], it can be concatenated into an array. For example:

a = {1, [2, 3], 4; 5’ 6};
b = [a{1:4}]
= b =

1 2 3 4

Similarly, it is possible to create a new cell array containing cell elements selected with
{}. By surrounding the list with ‘{’ and ‘}’ a new cell array will be created, as the following
example illustrates:

a = {1, rand(2, 2), "three"};
b={a{ 1, 31 }}
= b =
{

1
three

[1,1]
[1,2]

}

Furthermore, cell elements (accessed by {}) can be passed directly to a function. The
list of elements from the cell array will be passed as an argument list to a given function
as if it is called with the elements as individual arguments. The two calls to printf in the
following example are identical but the latter is simpler and can handle cell arrays of an
arbitrary size:

c = {"GNU", "Octave", "is", "Free", "Software"};
printf ("%s ", c{1}, c{2}, c{3}, c{4}, c{5});

- GNU Octave is Free Software
printf ("J%s ", c{:});

- GNU Octave is Free Software

If used on the left-hand side of an assignment, a comma separated list generated with
{} can be assigned to. An example is

Chapter 6: Data Containers 101

in{1} = [10, 20, 30, 40, 50, 60, 70, 80, 90];
in{2} = inf;
in{3} = "last";
in{4} = "first";
out = cell (4, 1);
[out{1:3}] = find (in{1 : 3});
[out{4:6}] = find (in{[1, 2, 4]1})
= out =
{
[1,1] = 1
[2,1] =9
[3,1] = 90
[4,1] = 1
[3,1] = 1
[4,1] = 10
}

6.3.2 Comma Separated Lists Generated from Structure Arrays

Structure arrays can equally be used to create comma separated lists. This is done by
addressing one of the fields of a structure array. For example:

x = ceil (randn (10, 1));
in = struct ("calll", {x, 3, "last"},
"call2", {x, inf, "first"});
out = struct ("calll", cell (2, 1), "call2", cell (2, 1));
[out.calll] = find (in.calll);
[out.call?2] = find (in.call2);

Chapter 7: Variables 103

7 Variables

Variables let you give names to values and refer to them later. You have already seen
variables in many of the examples. The name of a variable must be a sequence of letters,
digits and underscores, but it may not begin with a digit. Octave does not enforce a limit
on the length of variable names, but it is seldom useful to have variables with names longer
than about 30 characters. The following are all valid variable names

X
x15

__foo_bar_baz__
fucnrdthsucngtagdjb

However, names like __foo_bar_baz__ that begin and end with two underscores are under-
stood to be reserved for internal use by Octave. You should not use them in code you write,
except to access Octave’s documented internal variables and built-in symbolic constants.

Case is significant in variable names. The symbols a and A are distinct variables.

A variable name is a valid expression by itself. It represents the variable’s current value.
Variables are given new values with assignment operators and increment operators. See
Section 8.6 [Assignment Expressions|, page 124.

There is one built-in variable with a special meaning. The ans variable always contains
the result of the last computation, where the output wasn’t assigned to any variable. The
code a = cos (pi) will assign the value -1 to the variable a, but will not change the value
of ans. However, the code cos (pi) will set the value of ans to -1.

Variables in Octave do not have fixed types, so it is possible to first store a numeric
value in a variable and then to later use the same name to hold a string value in the same
program. Variables may not be used before they have been given a value. Doing so results
in an error.

ans [Automatic Variable]
The most recently computed result that was not explicitly assigned to a variable. For
example, after the expression
372 + 472
is evaluated, the value returned by ans is 25.

isvarname (name) [Built-in Function]
Return true if name is a valid variable name.

See also: [exist], page 110, [who|, page 108.

varname = genvarname (str) [Function File]
varname = genvarname (sStr, exclusions) [Function File]
Create unique variable(s) from str. If exclusions is given, then the variable(s) will be
unique to each other and to exclusions (exclusions may be either a string or a cellstr).
If str is a cellstr, then a unique variable is created for each cell in str.
x = 3.141;
genvarname ("x", who ())
= x1

If wanted is a cell array, genvarname will make sure the returned strings are distinct:

104 GNU Octave

genvarname ({"foo", "foo"})
=
{
[1,1] = foo
[1,2] = fool
}

Note that the result is a char array/cell array of strings, not the variables themselves.
To define a variable, eval () can be used. The following trivial example sets x to 42.

name = genvarname ("x");
eval([name " = 42"]);
= x = 42

Also, this can be useful for creating unique struct field names.

x = struct ();

for i = 1:3
x. (genvarname ("a", fieldnames (x))) = ij;
endfor
=
x =
{
a= 1
al = 2
a2 = 3
}

Since variable names may only contain letters, digits and underscores, genvarname
replaces any sequence of disallowed characters with an underscore. Also, variables
may not begin with a digit; in this case an underscore is added before the variable
name.

Variable names beginning and ending with two underscores "__" are valid but they
are used internally by octave and should generally be avoided, therefore genvarname
will not generate such names.

genvarname will also make sure that returned names do not clash with keywords such
as "for" and "if". A number will be appended if necessary. Note, however, that this
does not include function names, such as "sin". Such names should be included in
avoid if necessary.

See also: [isvarname], page 103, [exist], page 110, [tmpnam]|, page 211, [eval], page 129.

namelengthmax () [Function File]
Returns the MATLAB compatible maximum variable name length. Octave is capable
of storing strings up to 23! — 1 in length. However for MATLAB compatibility all
variable, function and structure field names should be shorter than the length supplied
by namelengthmax. In particular variables stored to a MATLAB file format will have
their names truncated to this length.

Chapter 7: Variables 105

7.1 Global Variables

A variable that has been declared global may be accessed from within a function body
without having to pass it as a formal parameter.

A variable may be declared global using a global declaration statement. The following
statements are all global declarations.

global a

global a b

global c = 2

global d = 3 e f =5

A global variable may only be initialized once in a global statement. For example, after
executing the following code

1
2

the value of the global variable gvar is 1, not 2. Issuing a ‘clear gvar’ command does not
change the above behavior, but ‘clear all’ does.

global gvar
global gvar

It is necessary declare a variable as global within a function body in order to access it.
For example,
global x
function £ ()
x = 1;
endfunction

f 0

does not set the value of the global variable x to 1. In order to change the value of the
global variable x, you must also declare it to be global within the function body, like this

function £ O
global x;
x = 1;
endfunction
Passing a global variable in a function parameter list will make a local copy and not
modify the global value. For example, given the function

function f (x)
x =0
endfunction

and the definition of x as a global variable at the top level,
global x = 13

the expression
f (x)

will display the value of x from inside the function as 0, but the value of x at the top level
remains unchanged, because the function works with a copy of its argument.

isglobal (name) [Built-in Function]
Return true if name is a globally visible variable. For example:

106 GNU Octave

global x
isglobal ("x")
=1

See also: [isvarname], page 103, [exist], page 110.

7.2 Persistent Variables

A variable that has been declared persistent within a function will retain its contents in
memory between subsequent calls to the same function. The difference between persistent
variables and global variables is that persistent variables are local in scope to a particular
function and are not visible elsewhere.

The following example uses a persistent variable to create a function that prints the
number of times it has been called.

function count_calls ()
persistent calls = O;
printf ("’count_calls’ has been called %d times\n",
++calls);
endfunction

for i = 1:3
count_calls ();
endfor

- ’count_calls’ has been called 1 times
- ’count_calls’ has been called 2 times
- ’count_calls’ has been called 3 times

As the example shows, a variable may be declared persistent using a persistent decla-
ration statement. The following statements are all persistent declarations.

persistent a

persistent a b
persistent c = 2
persistent d = 3 e £ =5

The behavior of persistent variables is equivalent to the behavior of static variables in
C. The command static in Octave is also recognized and is equivalent to persistent.

Like global variables, a persistent variable may only be initialized once. For example,
after executing the following code

persistent pvar = 1
persistent pvar = 2

the value of the persistent variable pvar is 1, not 2.

If a persistent variable is declared but not initialized to a specific value, it will contain an
empty matrix. So, it is also possible to initialize a persistent variable by checking whether
it is empty, as the following example illustrates.

Chapter 7: Variables 107

function count_calls ()
persistent calls;
if (isempty (calls))
calls = 0;
endif
printf ("’count_calls’ has been called %d times\n",
++calls);
endfunction

This implementation behaves in exactly the same way as the previous implementation of
count_calls.

The value of a persistent variable is kept in memory until it is explicitly cleared. As-
suming that the implementation of count_calls is saved on disk, we get the following
behavior.

for i = 1:2
count_calls ();
endfor

- ’count_calls’ has been called 1 times
- ’count_calls’ has been called 2 times

clear

for i = 1:2
count_calls();

endfor

- ’count_calls’ has been called 3 times
- ’count_calls’ has been called 4 times

clear all
for i = 1:2
count_calls();
endfor
-4 ’count_calls’ has been called 1 times
- ’count_calls’ has been called 2 times

clear count_calls

for i = 1:2
count_calls();
endfor

- ’count_calls’ has been called 1 times
- ’count_calls’ has been called 2 times

That is, the persistent variable is only removed from memory when the function containing
the variable is removed. Note that if the function definition is typed directly into the Octave
prompt, the persistent variable will be cleared by a simple clear command as the entire
function definition will be removed from memory. If you do not want a persistent variable to
be removed from memory even if the function is cleared, you should use the mlock function
as described in See Section 11.8.5 [Function Locking], page 160.

108 GNU Octave

7.3 Status of Variables

When creating simple one-shot programs it can be very convenient to see which variables
are available at the prompt. The function who and its siblings whos and whos_line_format
will show different information about what is in memory, as the following shows.

str = "A random string";
who -variables
- **x* local user variables:

_|

- __nargin__ str
who [Command|
who pattern . . . [Command]|
who option pattern . . . [Command|
C = who ("pattern", ...) [Command]|

List currently defined variables matching the given patterns. Valid pattern syntax
is the same as described for the clear command. If no patterns are supplied, all
variables are listed. By default, only variables visible in the local scope are displayed.

The following are valid options but may not be combined.
global List variables in the global scope rather than the current scope.

-regexp The patterns are considered to be regular expressions when matching the
variables to display. The same pattern syntax accepted by the regexp
function is used.

-file The next argument is treated as a filename. All variables found within the
specified file are listed. No patterns are accepted when reading variables
from a file.

If called as a function, return a cell array of defined variable names matching the
given patterns.

See also: [whos]|, page 108, [regexp], page 68.

whos [Command]|
whos pattern . . . [Command|
whos option pattern . .. [Command]|
S = whos ("pattern", ...) [Command]

Provide detailed information on currently defined variables matching the given pat-
terns. Options and pattern syntax are the same as for the who command. Extended
information about each variable is summarized in a table with the following default

entries.
Attr Attributes of the listed variable. Possible attributes are:
blank Variable in local scope
a Automatic variable. An automatic variable is one created by

the interpreter, for example argn.

f Formal parameter (function argument).

Chapter 7: Variables 109

val

g Variable with global scope.
P Persistent variable.
Name The name of the variable.
Size The logical size of the variable. A scalar is 1x1, a vector is 1xN or Nx1,

a 2-D matrix is MxN.
Bytes The amount of memory currently used to store the variable.

Class The class of the variable. Examples include double, single, char, uint16,
cell, and struct.

The table can be customized to display more or less information through the function
whos_line_format.

If whos is called as a function, return a struct array of defined variable names matching
the given patterns. Fields in the structure describing each variable are: name, size,
bytes, class, global, sparse, complex, nesting, persistent.

See also: [who|, page 108, [whos_line_format], page 109.

= whos_line_format () [Built-in Function]

old_val = whos_line_format (new_val) [Built-in Function]

Query or set the format string used by the command whos.

A full format string is:
% [modifier]<command>[:width[:left-min[:balancell];

The following command sequences are available:

%ha Prints attributes of variables (g=global, p=persistent, f=formal parame-
ter, a=automatic variable).

%o Prints number of bytes occupied by variables.
he Prints class names of variables.

he Prints elements held by variables.

Jn Prints variable names.

%s Prints dimensions of variables.

Wt Prints type names of variables.

Every command may also have an alignment modifier:

1 Left alignment.
T Right alignment (default).
c Column-aligned (only applicable to command %s).

The width parameter is a positive integer specifying the minimum number of columns
used for printing. No maximum is needed as the field will auto-expand as required.

The parameters left-min and balance are only available when the column-aligned
modifier is used with the command ‘%s’. balance specifies the column number within
the field width which will be aligned between entries. Numbering starts from 0 which

110 GNU Octave

indicates the leftmost column. left-min specifies the minimum field width to the
left of the specified balance column.

The default format is " %a:4; %1n:6; %cs:16:6:1; %rb:12; %lc:-1;\n".
See also: [whos], page 108.

Instead of displaying which variables are in memory, it is possible to determine if a given
variable is available. That way it is possible to alter the behavior of a program depending
on the existence of a variable. The following example illustrates this.

if (! exist ("meaning", "var"))
disp ("The program has no ’meaning’");
endif

exist (name, type) [Built-in Function]
Return 1 if the name exists as a variable, 2 if the name is an absolute file name, an
ordinary file in Octave’s path, or (after appending ‘.m’) a function file in Octave’s
path, 3 if the name is a ‘.oct’ or ‘.mex’ file in Octave’s path, 5 if the name is a
built-in function, 7 if the name is a directory, or 103 if the name is a function not
associated with a file (entered on the command line).

Otherwise, return 0.

This function also returns 2 if a regular file called name exists in Octave’s search path.
If you want information about other types of files, you should use some combination
of the functions file_in_path and stat instead.

If the optional argument type is supplied, check only for symbols of the specified type.
Valid types are

"var" Check only for variables.
"builtin" Check only for built-in functions.
"file" Check only for files.

"dir" Check only for directories.

Usually Octave will manage the memory, but sometimes it can be practical to remove
variables from memory manually. This is usually needed when working with large variables
that fill a substantial part of the memory. On a computer that uses the IEEE floating point
format, the following program allocates a matrix that requires around 128 MB memory.

large_matrix = zeros (4000, 4000);
Since having this variable in memory might slow down other computations, it can be nec-

essary to remove it manually from memory. The clear function allows this.

clear [options| pattern . .. [Command]
Delete the names matching the given patterns from the symbol table. The pattern
may contain the following special characters:

? Match any single character.

* Match zero or more characters.

Chapter 7: Variables 111

[1ist] Match the list of characters specified by list. If the first character is !
or ~, match all characters except those specified by list. For example,
the pattern ‘[a-zA-Z]’ will match all lower and upper case alphabetic
characters.

For example, the command
clear foo b*r

clears the name foo and all names that begin with the letter b and end with the letter
r.

If clear is called without any arguments, all user-defined variables (local and global)
are cleared from the symbol table. If clear is called with at least one argument, only
the visible names matching the arguments are cleared. For example, suppose you
have defined a function foo, and then hidden it by performing the assignment foo
= 2. Executing the command clear foo once will clear the variable definition and
restore the definition of foo as a function. Executing clear foo a second time will
clear the function definition.

The following options are available in both long and short form

-all, -a Clears all local and global user-defined variables and all functions from
the symbol table.

—exclusive, -x
Clears the variables that don’t match the following pattern.

—-functions, -f
Clears the function names and the built-in symbols names.

-global, -g
Clears the global symbol names.

—-variables, -v
Clears the local variable names.

-classes, -c
Clears the class structure table and clears all objects.

-regexp, -r
The arguments are treated as regular expressions as any variables that
match will be cleared.

With the exception of exclusive, all long options can be used without the dash as
well.

Information about a function or variable such as its location in the file system can also be
acquired from within Octave. This is usually only useful during development of programs,
and not within a program.

type name ... [Command]
type -q name ... [Command]|
dfns = type ("name", ...) [Function File]

Display the definition of each name that refers to a function.

112 GNU Octave

Normally also displays whether each name is user-defined or built-in; the ‘-q’ option
suppresses this behavior.

If an output argument is requested nothing is displayed. Instead, a cell array of
strings is returned, where each element corresponds to the definition of each requested
function.

which name ... [Command]
Display the type of each name. If name is defined from a function file, the full name
of the file is also displayed.

See also: [help], page 17, [lookfor], page 18.

what [Command]
what dir [Command]
w = what (dir) [Function File]

List the Octave specific files in a directory. If the variable dir is given then check that
directory rather than the current directory. If a return argument is requested, the
files found are returned in the structure w.

See also: [which], page 112.

Chapter 8: Expressions 113

8 Expressions

FExpressions are the basic building block of statements in Octave. An expression evaluates
to a value, which you can print, test, store in a variable, pass to a function, or assign a new
value to a variable with an assignment operator.

An expression can serve as a statement on its own. Most other kinds of statements
contain one or more expressions which specify data to be operated on. As in other languages,
expressions in Octave include variables, array references, constants, and function calls, as
well as combinations of these with various operators.

8.1 Index Expressions

An index expression allows you to reference or extract selected elements of a matrix or
vector.

(S

Indices may be scalars, vectors, ranges, or the special operator ‘:’, which may be used

to select entire rows or columns.

Vectors are indexed using a single index expression. Matrices may be indexed using one
or two indices. When using a single index expression, the elements of the matrix are taken
in column-first order; the dimensions of the output match those of the index expression.
For example,

a (2) # a scalar
a (1:2) # a row vector
a ([1; 2]) # a column vector

As a special case, when a colon is used as a single index, the output is a column vector
containing all the elements of the vector or matrix. For example:

a () # a column vector
Given the matrix
a= [1, 2; 3, 4]
all of the following expressions are equivalent
a (1, [1, 2D
a (1, 1:2)
a (1, @)
and select the first row of the matrix.

In general, an array with ‘n’ dimensions can be indexed using ‘m’ indices. If n ==m,
each index corresponds to its respective dimension. The set of index tuples determining
the result is formed by the Cartesian product of the index vectors (or ranges or scalars). If
n < m, then the array is padded by trailing singleton dimensions. If n > m, the last n-m+1
dimensions are folded into a single dimension with extent equal to product of extents of the
original dimensions.

Indexing a scalar with a vector of ones can be used to create a vector the same size as
the index vector, with each element equal to the value of the original scalar. For example,
the following statements

a = 13;
a (ones (1, 4))

114 GNU Octave

produce a vector whose four elements are all equal to 13.

Similarly, indexing a scalar with two vectors of ones can be used to create a matrix. For
example the following statements
a = 13;
a (ones (1, 2), ones (1, 3))

create a 2 by 3 matrix with all elements equal to 13.
The last example could also be written as
13 (ones (2, 3))

It should be, noted that ones (1, n) (a row vector of ones) results in a range (with zero
increment), and is therefore more efficient when used in index expression than other forms
of ones. In particular, when ‘r’ is a row vector, the expressions

r(ones (1, n), :)
r(ones (n, 1), :)

will produce identical results, but the first one will be significantly faster, at least for ‘r’
and ‘n’ large enough. The reason is that in the first case the index is kept in a compressed
form, which allows Octave to choose a more efficient algorithm to handle the expression.

In general, for an user unaware of these subtleties, it is best to use the function repmat
for spreading arrays into bigger ones.

It is also possible to create a matrix with different values. The following example creates

a 10 dimensional row vector a containing the values a; = /i.

for i = 1:10

a(i) = sqrt (i);

endfor
Note that it is quite inefficient to create a vector using a loop like the one shown in the
example above. In this particular case, it would have been much more efficient to use the
expression

a = sqrt (1:10);
thus avoiding the loop entirely. In cases where a loop is still required, or a number of values
must be combined to form a larger matrix, it is generally much faster to set the size of

the matrix first, and then insert elements using indexing commands. For example, given a
matrix a,

[nr, nc] = size (a);

x = zeros (nr, n * nc);

for i = 1:n
x(:,(i-1)*nc+1:i*nc) = a;

endfor

is considerably faster than

X = a;

for i = 1:n-1
x = [x, al;

endfor

particularly for large matrices because Octave does not have to repeatedly resize the result.

Chapter 8: Expressions 115

ind = sub2ind (dims, i, j) [Function File]
ind = sub2ind (dims, s1, s2, ..., sN) [Function File]
Convert subscripts to a linear index.
The following example shows how to convert the two-dimensional index (2,3) of a
3-by-3 matrix to a linear index. The matrix is linearly indexed moving from one
column to next, filling up all rows in each column.

linear_index = sub2ind ([3, 3], 2, 3)
- 8

See also: [ind2sub|, page 115.

[s1, s2, ..., sN] = ind2sub (dims, ind) [Function File]
Convert a linear index to subscripts.
The following example shows how to convert the linear index 8 in a 3-by-3 matrix
into a subscript. The matrix is linearly indexed moving from one column to next,
filling up all rows in each column.
[r, c] = ind2sub ([3, 3], 8)
= r = 2
c= 3

See also: [sub2ind], page 114.

isindex (ind [Built-in Function]

isindex (ind, n) [Built-in Function]
Return true if ind is a valid index. Valid indices are either positive integers (although
possibly of real data type), or logical arrays. If present, n specifies the maximum
extent of the dimension to be indexed. When possible the internal result is cached so
that subsequent indexing using ind will not perform the check again.

8.2 Calling Functions

A function is a name for a particular calculation. Because it has a name, you can ask for it
by name at any point in the program. For example, the function sqrt computes the square
root of a number.

A fixed set of functions are built-in, which means they are available in every Octave
program. The sqrt function is one of these. In addition, you can define your own functions.
See Chapter 11 [Functions and Scripts], page 145, for information about how to do this.

The way to use a function is with a function call expression, which consists of the function
name followed by a list of arguments in parentheses. The arguments are expressions which
give the raw materials for the calculation that the function will do. When there is more
than one argument, they are separated by commas. If there are no arguments, you can
omit the parentheses, but it is a good idea to include them anyway, to clearly indicate that
a function call was intended. Here are some examples:

sqrt (x"2 + y~2) # One argument
ones (n, m) # Two arguments
rand () # No arguments

Each function expects a particular number of arguments. For example, the sqrt function
must be called with a single argument, the number to take the square root of:

116 GNU Octave

sqrt (argument)

Some of the built-in functions take a variable number of arguments, depending on the
particular usage, and their behavior is different depending on the number of arguments
supplied.

Like every other expression, the function call has a value, which is computed by the
function based on the arguments you give it. In this example, the value of sqrt (argument)
is the square root of the argument. A function can also have side effects, such as assigning
the values of certain variables or doing input or output operations.

Unlike most languages, functions in Octave may return multiple values. For example,
the following statement

[u, s, v] = svd (a)

computes the singular value decomposition of the matrix a and assigns the three result
matrices to u, s, and v.

The left side of a multiple assignment expression is itself a list of expressions, and is
allowed to be a list of variable names or index expressions. See also Section 8.1 [Index
Expressions], page 113, and Section 8.6 [Assignment Ops], page 124.

8.2.1 Call by Value

In Octave, unlike Fortran, function arguments are passed by value, which means that each
argument in a function call is evaluated and assigned to a temporary location in memory
before being passed to the function. There is currently no way to specify that a function
parameter should be passed by reference instead of by value. This means that it is impossible
to directly alter the value of a function parameter in the calling function. It can only change
the local copy within the function body. For example, the function

function f (x, n)
while (n—— > 0)
disp (x);
endwhile
endfunction

displays the value of the first argument n times. In this function, the variable n is used as a
temporary variable without having to worry that its value might also change in the calling
function. Call by value is also useful because it is always possible to pass constants for any
function parameter without first having to determine that the function will not attempt to
modify the parameter.

The caller may use a variable as the expression for the argument, but the called function
does not know this: it only knows what value the argument had. For example, given a
function called as

foo = "bar";
fcn (foo0)

you should not think of the argument as being “the variable foo.” Instead, think of the
argument as the string value, "bar".

Even though Octave uses pass-by-value semantics for function arguments, values are not
copied unnecessarily. For example,

Chapter 8: Expressions 117

x = rand (1000);

f x);
does not actually force two 1000 by 1000 element matrices to exist unless the function £
modifies the value of its argument. Then Octave must create a copy to avoid changing the
value outside the scope of the function f, or attempting (and probably failing!) to modify
the value of a constant or the value of a temporary result.

8.2.2 Recursion

With some restrictions!, recursive function calls are allowed. A recursive function is one
which calls itself, either directly or indirectly. For example, here is an inefficient? way to
compute the factorial of a given integer:

function retval = fact (n)
if (m > 0)
retval = n *x fact (n-1);
else
retval = 1;
endif
endfunction

This function is recursive because it calls itself directly. It eventually terminates because
each time it calls itself, it uses an argument that is one less than was used for the previous
call. Once the argument is no longer greater than zero, it does not call itself, and the
recursion ends.

The built-in variable max_recursion_depth specifies a limit to the recursion depth and
prevents Octave from recursing infinitely.

val = max_recursion_depth () [Built-in Function]

old_val = max_recursion_depth (new_val) [Built-in Function]
Query or set the internal limit on the number of times a function may be called
recursively. If the limit is exceeded, an error message is printed and control returns
to the top level.

8.3 Arithmetic Operators

The following arithmetic operators are available, and work on scalars and matrices.

x+y Addition. If both operands are matrices, the number of rows and columns must
both agree. If one operand is a scalar, its value is added to all the elements of
the other operand.

X .ty Element by element addition. This operator is equivalent to +.

X -y Subtraction. If both operands are matrices, the number of rows and columns
of both must agree.

1 Some of Octave’s functions are implemented in terms of functions that cannot be called recursively. For
example, the ODE solver 1sode is ultimately implemented in a Fortran subroutine that cannot be called
recursively, so 1sode should not be called either directly or indirectly from within the user-supplied
function that 1sode requires. Doing so will result in an error.

2 1t would be much better to use prod (1:n), or gamma (n+1) instead, after first checking to ensure that
the value n is actually a positive integer.

118

X**y

X Kk y

-X
+X

X)

X)

Note that because Octave’s element by element operators begin with a

GNU Octave

Element by element subtraction. This operator is equivalent to -.

Matrix multiplication. The number of columns of x must agree with the number
of rows of y.

Element by element multiplication. If both operands are matrices, the number
of rows and columns must both agree.
Right division. This is conceptually equivalent to the expression

(inverse (y’) * x’)°
but it is computed without forming the inverse of y’.
If the system is not square, or if the coefficient matrix is singular, a minimum
norm solution is computed.

Element by element right division.

Left division. This is conceptually equivalent to the expression
inverse (x) * y
but it is computed without forming the inverse of x.
If the system is not square, or if the coefficient matrix is singular, a minimum

norm solution is computed.

Element by element left division. Each element of y is divided by each corre-
sponding element of x.

Power operator. If x and y are both scalars, this operator returns x raised to
the power y. If x is a scalar and y is a square matrix, the result is computed
using an eigenvalue expansion. If x is a square matrix, the result is computed
by repeated multiplication if y is an integer, and by an eigenvalue expansion if
y is not an integer. An error results if both x and y are matrices.

The implementation of this operator needs to be improved.

Element by element power operator. If both operands are matrices, the number
of rows and columns must both agree.

Negation.
Unary plus. This operator has no effect on the operand.

Complex conjugate transpose. For real arguments, this operator is the same as
the transpose operator. For complex arguments, this operator is equivalent to
the expression

conj (x.”)
Transpose.

‘.7, there is a

possible ambiguity for statements like

1./m

because the period could be interpreted either as part of the constant or as part of the
operator. To resolve this conflict, Octave treats the expression as if you had typed

Chapter 8: Expressions 119

(1) ./ m
and not
(1.) / m

Although this is inconsistent with the normal behavior of Octave’s lexer, which usually
prefers to break the input into tokens by preferring the longest possible match at any given
point, it is more useful in this case.

ctranspose (x) [Built-in Function]
Return the complex conjugate transpose of x. This function is equivalent to x’.

See also: [transpose], page 120.

ldivide (x, y) [Built-in Function]
Return the element-by-element left division of x and y. This function is equivalent
tox .\y.

See also: [rdivide], page 120, [mldivide], page 119.

minus (x, y) [Built-in Function]
This function is equivalent to x - y.

See also: [plus|, page 119.

mldivide (x, y) [Built-in Function]
Return the matrix left division of x and y. This function is equivalent to x \ y.

See also: [mrdivide|, page 119, [ldivide], page 119.

mpower (x, y) [Built-in Function]
Return the matrix power operation of x raised to the y power. This function is
equivalent to x ~ y.

See also: [power]|, page 120.

mrdivide (x, y) [Built-in Function]
Return the matrix right division of x and y. This function is equivalent to x / y.

See also: [mldivide], page 119, [rdivide], page 120.

mtimes (x, y) [Built-in Function]

mtimes (x1, x2, ...) [Built-in Function]
Return the matrix multiplication product of inputs. This function is equivalent to
x * y. If more arguments are given, the multiplication is applied cumulatively from
left to right:

(oo ((x1 % x2) * x3) * ...)

At least one argument is required.

See also: [times], page 120.

plus (x, y) [Built-in Function]

plus (x1, x2, ...) [Built-in Function]
This function is equivalent to x + y. If more arguments are given, the summation is
applied cumulatively from left to right:

120 GNU Octave

(oo o ((x1 + x2) +x3) +...)

At least one argument is required.
See also: [minus|, page 119.

power (x,y) [Built-in Function]
Return the element-by-element operation of x raised to the y power. This function

is equivalent to x .~ y.

See also: [mpower], page 119.

rdivide (x, y) [Built-in Function]
Return the element-by-element right division of x and y. This function is equivalent
tox ./ y.

See also: [ldivide], page 119, [mrdivide], page 119.

times (x, y) [Built-in Function]

times (x1, x2, ...) [Built-in Function]
Return the element-by-element multiplication product of inputs. This function is
equivalent to x .* y. If more arguments are given, the multiplication is applied cu-
mulatively from left to right:

(oo ((x1 o% x2) % x3) .x ...)
At least one argument is required.

See also: [mtimes], page 119.

transpose (x) [Built-in Function]
Return the transpose of x. This function is equivalent to x.’.

See also: [ctranspose], page 119.

uminus (x) [Built-in Function]
This function is equivalent to - x.

uplus (x) [Built-in Function]
This function is equivalent to + x.

8.4 Comparison Operators

Comparison operators compare numeric values for relationships such as equality. They are
written using relational operators.
All of Octave’s comparison operators return a value of 1 if the comparison is true, or 0
if it is false. For matrix values, they all work on an element-by-element basis. For example:
[1, 2; 3, 4] == [1, 3; 2, 4]
= 1 0
0 1

If one operand is a scalar and the other is a matrix, the scalar is compared to each
element of the matrix in turn, and the result is the same size as the matrix.

x <y True if x is less than y.

Chapter 8: Expressions 121

True if x is less than or equal to y.

y
x ==y True if x is equal to y.
y

x >= True if x is greater than or equal to y.
x>y True if x is greater than y.

xl=y

x "=y True if x is not equal to y.

For complex numbers, the following ordering is defined: z1 < z2 iff

abs(z1) < abs(z2)
|| (abs(z1l) == abs(z2) && arg(zl) < arg(z2))

This is consistent with the ordering used by max, min and sort, but is not consistent
with MATLAB, which only compares the real parts.

String comparisons may also be performed with the strcmp function, not with the com-
parison operators listed above. See Chapter 5 [Strings|, page 55.
eq (x,y) [Built-in Function]
Return true if the two inputs are equal. This function is equivalent to x == y.
See also: [ne|, page 121, [isequal], page 121.

ge (x.y) [Built-in Function]
This function is equivalent to x >= y.

gt (x,5) [Built-in Function]
This function is equivalent to x > y.

isequal (x1, x2,...) [Function File]
Return true if all of x1, x2, ... are equal.

See also: [isequalwithequalnans], page 121.

isequalwithequalnans (x1, x2, ...) [Function File]
Assuming NaN == NaN, return true if all of xI, x2, ... are equal.
See also: [isequal], page 121.

le (x,y) [Built-in Function]
This function is equivalent to x <=y.

1t (%, y) [Built-in Function]
This function is equivalent to x < y.

ne (x,y) [Built-in Function]
Return true if the two inputs are not equal. This function is equivalent to x !=y.

See also: [eq], page 121, [isequal], page 121.

122 GNU Octave

8.5 Boolean Expressions

8.5.1 Element-by-element Boolean Operators

An element-by-element boolean expression is a combination of comparison expressions using
the boolean operators “or” (‘|’), “and” (‘&’), and “not” (‘!’), along with parentheses to
control nesting. The truth of the boolean expression is computed by combining the truth
values of the corresponding elements of the component expressions. A value is considered
to be false if it is zero, and true otherwise.

Element-by-element boolean expressions can be used wherever comparison expressions
can be used. They can be used in if and while statements. However, a matrix value used
as the condition in an if or while statement is only true if all of its elements are nonzero.

Like comparison operations, each element of an element-by-element boolean expression
also has a numeric value (1 if true, 0 if false) that comes into play if the result of the boolean
expression is stored in a variable, or used in arithmetic.

Here are descriptions of the three element-by-element boolean operators.

booleanl & boolean2
Elements of the result are true if both corresponding elements of booleanl and
boolean2 are true.

booleanl | boolean2
Elements of the result are true if either of the corresponding elements of
booleanl or boolean?2 is true.

I boolean

~ boolean
Each element of the result is true if the corresponding element of boolean is
false.

For matrix operands, these operators work on an element-by-element basis. For example,

the expression
(1, 0; 0, 1] & [1, 0; 2, 3]
returns a two by two identity matrix.

For the binary operators, the dimensions of the operands must conform if both are
matrices. If one of the operands is a scalar and the other a matrix, the operator is applied
to the scalar and each element of the matrix.

For the binary element-by-element boolean operators, both subexpressions booleanl and
boolean?2 are evaluated before computing the result. This can make a difference when the
expressions have side effects. For example, in the expression

a & b++
the value of the variable b is incremented even if the variable a is zero.

This behavior is necessary for the boolean operators to work as described for matrix-
valued operands.

and (x, y) [Built-in Function]

and (x1, x2, ...) [Built-in Function]
Return the logical AND of x and y. This function is equivalent to x & y. If more
arguments are given, the logical and is applied cumulatively from left to right:

Chapter 8: Expressions 123

oo ((x1 & x2) & x3) & ...)

At least one argument is required.

See also: [or|, page 123, [not], page 123.

not (x) [Built-in Function]
Return the logical NOT of x. This function is equivalent to ! x.

See also: [and], page 122, [or], page 123.

or (x,y) [Built-in Function]

or (x1,x2,...) [Built-in Function]
Return the logical OR of x and y. This function is equivalent to x | y. If more
arguments are given, the logical or is applied cumulatively from left to right:

oo (x1 1 x2) | x3) | ...)

At least one argument is required.

See also: [and], page 122, [not], page 123.

8.5.2 Short-circuit Boolean Operators

Combined with the implicit conversion to scalar values in if and while conditions, Oc-
tave’s element-by-element boolean operators are often sufficient for performing most logical
operations. However, it is sometimes desirable to stop evaluating a boolean expression as
soon as the overall truth value can be determined. Octave’s short-circuit boolean operators
work this way.

booleanl && boolean2
The expression booleanl is evaluated and converted to a scalar using the equiv-
alent of the operation all (booleani (:)). If it is false, the result of the overall
expression is 0. If it is true, the expression boolean2 is evaluated and converted
to a scalar using the equivalent of the operation all (booleani1 (:)). If it is
true, the result of the overall expression is 1. Otherwise, the result of the overall
expression is 0.

Warning: there is one exception to the rule of evaluating all (boolean1 (:)),
which is when booleanl is the empty matrix. The truth value of an empty
matrix is always false so [] && true evaluates to false even though all
([1) is true.

booleanl || boolean2

The expression booleanl is evaluated and converted to a scalar using the equiv-
alent of the operation all (boolean1 (:)). If it is true, the result of the overall
expression is 1. If it is false, the expression boolean?2 is evaluated and converted
to a scalar using the equivalent of the operation all (boolean1 (:)). If it is
true, the result of the overall expression is 1. Otherwise, the result of the overall
expression is 0.

Warning: the truth value of an empty matrix is always false, see the previous
list item for details.

The fact that both operands may not be evaluated before determining the overall truth
value of the expression can be important. For example, in the expression

124 GNU Octave

a && b++
the value of the variable b is only incremented if the variable a is nonzero.
This can be used to write somewhat more concise code. For example, it is possible write

function f (a, b, c)
if (nargin > 2 && ischar (c))

instead of having to use two if statements to avoid attempting to evaluate an argument
that doesn’t exist. For example, without the short-circuit feature, it would be necessary to
write
function f (a, b, c)
if (nargin > 2)
if (ischar (c))

Writing
function £ (a, b, c)
if (nargin > 2 & ischar (c))

would result in an error if £ were called with one or two arguments because Octave would
be forced to try to evaluate both of the operands for the operator ‘&’.

The ternary operator (?:) is not supported in Octave. If short-circuiting is not important,
it can be replaced by the ifelse function.

merge (mask, tval, fval) [Built-in Function]
ifelse (mask, tval, fval) [Built-in Function]
Merge elements of true_val and false_val, depending on the value of mask. If mask is
a logical scalar, the other two arguments can be arbitrary values. Otherwise, mask
must be a logical array, and tval, fval should be arrays of matching class, or cell
arrays. In the scalar mask case, tval is returned if mask is true, otherwise fval is
returned.
In the array mask case, both tval and fval must be either scalars or arrays with
dimensions equal to mask. The result is constructed as follows:
result (mask) = tval(mask);
result (! mask) = fval(! mask);

mask can also be arbitrary numeric type, in which case it is first converted to logical.

See also: [logical], page 50.

8.6 Assignment Expressions
An assignment is an expression that stores a new value into a variable. For example, the
following expression assigns the value 1 to the variable z:

z =1
After this expression is executed, the variable z has the value 1. Whatever old value z had
before the assignment is forgotten. The ‘=’ sign is called an assignment operator.

Assignments can store string values also. For example, the following expression would
store the value "this food is good" in the variable message:

Chapter 8: Expressions 125

thing = "food"

predicate = "good"

message = ["this " , thing , " is " , predicate]
(This also illustrates concatenation of strings.)

Most operators (addition, concatenation, and so on) have no effect except to compute
a value. If you ignore the value, you might as well not use the operator. An assignment
operator is different. It does produce a value, but even if you ignore the value, the assignment
still makes itself felt through the alteration of the variable. We call this a side effect.

The left-hand operand of an assignment need not be a variable (see Chapter 7 [Variables|,
page 103). It can also be an element of a matrix (see Section 8.1 [Index Expressions],
page 113) or a list of return values (see Section 8.2 [Calling Functions|, page 115). These
are all called Ivalues, which means they can appear on the left-hand side of an assignment
operator. The right-hand operand may be any expression. It produces the new value which
the assignment stores in the specified variable, matrix element, or list of return values.

It is important to note that variables do mot have permanent types. The type of a
variable is simply the type of whatever value it happens to hold at the moment. In the
following program fragment, the variable foo has a numeric value at first, and a string value
later on:

Il
[y

octave:13> foo
foo =1
octave:13> foo = "bar"
foo = bar

When the second assignment gives foo a string value, the fact that it previously had a
numeric value is forgotten.

Assignment of a scalar to an indexed matrix sets all of the elements that are referenced
by the indices to the scalar value. For example, if a is a matrix with at least two columns,

a(:, 2) =5
sets all the elements in the second column of a to 5.

Assigning an empty matrix ‘[]’ works in most cases to allow you to delete rows or
columns of matrices and vectors. See Section 4.1.1 [Empty Matrices], page 43. For example,
given a 4 by 5 matrix A, the assignment

A (3,) =1]

deletes the third row of A, and the assignment
A (:, 1:2:5) =[]

deletes the first, third, and fifth columns.

An assignment is an expression, so it has a value. Thus, z = 1 as an expression has the
value 1. One consequence of this is that you can write multiple assignments together:

x=y=2=0
stores the value 0 in all three variables. It does this because the value of z = 0, which is 0,
is stored into y, and then the value of y = z = 0, which is 0, is stored into x.
This is also true of assignments to lists of values, so the following is a valid expression
[a, b, ¢] = [u, s, v] = svd (a)

that is exactly equivalent to

126 GNU Octave

—
[t

, vl = svd (a)

b

n o n

0O o W

=v
In expressions like this, the number of values in each part of the expression need not
match. For example, the expression
[a, b] = [u, s, v] = svd (a)

is equivalent to

[u, s, v] = svd (a)
a=u
b =-s

The number of values on the left side of the expression can, however, not exceed the number
of values on the right side. For example, the following will produce an error.

[a, b, ¢, dl = [u, s, vl = svd (a);
- error: element number 4 undefined in return list

The symbol = may be used as a placeholder in the list of lvalues, indicating that the
corresponding return value should be ignored and not stored anywhere:

[, s, v] = svd (a);

This is cleaner and more memory efficient than using a dummy variable. The nargout
value for the right-hand side expression is not affected. If the assignment is used as an
expression, the return value is a comma-separated list with the ignored values dropped.

A very common programming pattern is to increment an existing variable with a given
value, like this

a=a+ 2;
This can be written in a clearer and more condensed form using the += operator
a += 2;
Similar operators also exist for subtraction (-=), multiplication (*=), and division (/=). An
expression of the form
exprl op= expr2
is evaluated as
exprl = (exprl) op (expr2)
where op can be either +, -, *, or /. So, the expression
a *= b+l
is evaluated as
a=a * (b+l)
and not
a=axb+1

You can use an assignment anywhere an expression is called for. For example, it is valid
to write x != (y = 1) to set y to 1 and then test whether x equals 1. But this style tends
to make programs hard to read. Except in a one-shot program, you should rewrite it to get
rid of such nesting of assignments. This is never very hard.

Chapter 8: Expressions 127

8.7 Increment Operators

Increment operators increase or decrease the value of a variable by 1. The operator to
increment a variable is written as ‘“++’. It may be used to increment a variable either before
or after taking its value.

For example, to pre-increment the variable x, you would write ++x. This would add one
to x and then return the new value of x as the result of the expression. It is exactly the
same as the expression x = x + 1.

To post-increment a variable x, you would write x++. This adds one to the variable x,
but returns the value that x had prior to incrementing it. For example, if x is equal to 2,
the result of the expression x++ is 2, and the new value of x is 3.

For matrix and vector arguments, the increment and decrement operators work on each
element of the operand.

Here is a list of all the increment and decrement expressions.

++x This expression increments the variable x. The value of the expression is the
new value of x. It is equivalent to the expression x = x + 1.

--x This expression decrements the variable x. The value of the expression is the
new value of x. It is equivalent to the expression x = x - 1.

x++ This expression causes the variable x to be incremented. The value of the
expression is the old value of x.

x-= This expression causes the variable x to be decremented. The value of the
expression is the old value of x.

8.8 Operator Precedence

Operator precedence determines how operators are grouped, when different operators ap-
pear close by in one expression. For example, ‘*’ has higher precedence than ‘+’. Thus, the
expression a + b * ¢ means to multiply b and ¢, and then add a to the product (i.e., a + (b
*x c)).

You can overrule the precedence of the operators by using parentheses. You can think
of the precedence rules as saying where the parentheses are assumed if you do not write
parentheses yourself. In fact, it is wise to use parentheses whenever you have an unusual
combination of operators, because other people who read the program may not remember
what the precedence is in this case. You might forget as well, and then you too could make
a mistake. Explicit parentheses will help prevent any such mistake.

When operators of equal precedence are used together, the leftmost operator groups
first, except for the assignment and exponentiation operators, which group in the opposite
order. Thus, the expression a - b + ¢ groups as (a - b) + c, but the expression a =b = ¢
groups as a = (b = c¢).

The precedence of prefix unary operators is important when another operator follows
the operand. For example, -x~2 means -(x~2), because ‘-’ has lower precedence than

(e~
Here is a table of the operators in Octave, in order of increasing precedence.

statement separators

[R
PRI

128 GNU Octave

assignment
=7 4= == %= /=" This operator groups right to left.
logical "or" and "and"
<| |>’ :&&a'
element-wise "or" and "and"
&
relational
4<?’ C<=77 L==’7 L>=7’ 4>7’ ¢|=7’ L~=7
colon ©

add, subtract

multiply, divide
6*7’ 4/7’ 4\77 (.\77 C.*7, (./7.

transpose

[0 I A I
P

unary plus, minus, increment, decrement, and ¢ ‘not’’
) Y ¢ ¢ 7L ()
+7_7++7__7 !7 -
exponentiation

[70 A~)
, kT ek,

Chapter 9: Evaluation 129

9 Ewvaluation

Normally, you evaluate expressions simply by typing them at the Octave prompt, or by
asking Octave to interpret commands that you have saved in a file.

Sometimes, you may find it necessary to evaluate an expression that has been computed
and stored in a string, which is exactly what the eval function lets you do.

eval (try, catch) [Built-in Function]
Parse the string try and evaluate it as if it were an Octave program. If that fails,
evaluate the optional string catch. The string try is evaluated in the current context,
so any results remain available after eval returns.

The following example makes the variable a with the approximate value 3.1416 avail-
able.

eval("a = acos(-1);");
If an error occurs during the evaluation of try the catch string is evaluated, as the
following example shows:

eval (error ("This is a bad example");’,
’printf ("This error occurred:\n%s\n", lasterr ());’);
< This error occurred:
This is a bad example

9.1 Calling a Function by its Name

The feval function allows you to call a function from a string containing its name. This
is useful when writing a function that needs to call user-supplied functions. The feval
function takes the name of the function to call as its first argument, and the remaining
arguments are given to the function.

The following example is a simple-minded function using feval that finds the root of a
user-supplied function of one variable using Newton’s method.

function result = newtroot (fname, x)

usage: newtroot (fname, x)

#
fname : a string naming a function f(x).
x : initial guess

delta = tol = sqrt (eps);

maxit = 200;

fx = feval (fname, x);
for i = 1l:maxit
if (abs (fx) < tol)
result = x;
return;
else
fx_new = feval (fname, x + delta);
deriv = (fx_new - fx) / delta;

130 GNU Octave

x = x - fx / deriv;
fx = fx_new;
endif
endfor

result = x;

endfunction

Note that this is only meant to be an example of calling user-supplied functions and
should not be taken too seriously. In addition to using a more robust algorithm, any serious
code would check the number and type of all the arguments, ensure that the supplied func-
tion really was a function, etc. See Section 4.8 [Predicates for Numeric Objects]|, page 52,
for example, for a list of predicates for numeric objects, and see Section 7.3 [Status of
Variables], page 108, for a description of the exist function.

feval (name, ...) [Built-in Function]
Evaluate the function named name. Any arguments after the first are passed on to
the named function. For example,
feval ("acos", -1)
= 3.1416

calls the function acos with the argument ‘-1’

The function feval is necessary in order to be able to write functions that call user-
supplied functions, because Octave does not have a way to declare a pointer to a
function (like C) or to declare a special kind of variable that can be used to hold the
name of a function (like EXTERNAL in Fortran). Instead, you must refer to functions
by name, and use feval to call them.

A similar function run exists for calling user script files, that are not necessarily on the
user path

run script [Command]|

run (script) [Function File]
Run scripts in the current workspace that are not necessarily on the path. If script is
the script to run, including its path, then run changes the directory to the directory
where script is found. run then executes the script, and returns to the original
directory.

See also: [system], page 581.

9.2 Evaluation in a Different Context

Before you evaluate an expression you need to substitute the values of the variables used in
the expression. These are stored in the symbol table. Whenever the interpreter starts a new
function it saves the current symbol table and creates a new one, initializing it with the list
of function parameters and a couple of predefined variables such as nargin. Expressions
inside the function use the new symbol table.

Sometimes you want to write a function so that when you call it, it modifies variables in
your own context. This allows you to use a pass-by-name style of function, which is similar
to using a pointer in programming languages such as C.

Chapter 9: Evaluation 131

Consider how you might write save and load as m-files. For example:

function create_data
x = linspace (0, 10, 10);
y = sin (x);
save mydata x y
endfunction

With evalin, you could write save as follows:

function save (file, namel, name2)
f = open_save_file (file);
save_var(f, namel, evalin ("caller", namel));
save_var(f, name2, evalin ("caller", name2));
endfunction

Here, ‘caller’ is the create_data function and namel is the string "x", which evaluates
simply as the value of x.

You later want to load the values back from mydata in a different context:

function process_data
load mydata
. do work ...
endfunction

With assignin, you could write load as follows:

function load (file)
f = open_load_file (file);
[name, val] = load_var (f);
assignin ("caller", name, val);
[name, val] = load_var (f);
assignin ("caller", name, val);
endfunction

Here, ‘caller’ is the process_data function.

You can set and use variables at the command prompt using the context ‘base’ rather
than ‘caller’.

These functions are rarely used in practice. One example is the fail (‘code’,
‘pattern’) function which evaluates ‘code’ in the caller’s context and checks that the
error message it produces matches the given pattern. Other examples such as save and
load are written in C++ where all Octave variables are in the ‘caller’ context and evalin
is not needed.

evalin (context, try, catch) [Built-in Function]
Like eval, except that the expressions are evaluated in the context context, which
may be either "caller" or "base".

assignin (context, varname, value) [Built-in Function]
Assign value to varname in context context, which may be either "base" or "caller".

Chapter 10: Statements 133

10 Statements

Statements may be a simple constant expression or a complicated list of nested loops and
conditional statements.

Control statements such as if, while, and so on control the flow of execution in Octave
programs. All the control statements start with special keywords such as if and while,
to distinguish them from simple expressions. Many control statements contain other state-
ments; for example, the if statement contains another statement which may or may not be
executed.

Each control statement has a corresponding end statement that marks the end of the
control statement. For example, the keyword endif marks the end of an if statement, and
endwhile marks the end of a while statement. You can use the keyword end anywhere a
more specific end keyword is expected, but using the more specific keywords is preferred
because if you use them, Octave is able to provide better diagnostics for mismatched or
missing end tokens.

The list of statements contained between keywords like if or while and the correspond-
ing end statement is called the body of a control statement.

10.1 The if Statement

The if statement is Octave’s decision-making statement. There are three basic forms of an
if statement. In its simplest form, it looks like this:

if (condition)
then-body
endif

condition is an expression that controls what the rest of the statement will do. The then-
body is executed only if condition is true.

The condition in an if statement is considered true if its value is non-zero, and false if
its value is zero. If the value of the conditional expression in an if statement is a vector or
a matrix, it is considered true only if it is non-empty and all of the elements are non-zero.

The second form of an if statement looks like this:

if (condition)
then-body
else
else-body
endif

If condition is true, then-body is executed; otherwise, else-body is executed.
Here is an example:

if (rem (x, 2) == 0)
printf ("x is even\n");
else
printf ("x is odd\n");
endif

134 GNU Octave

In this example, if the expression rem (x, 2) == 0 is true (that is, the value of x is
divisible by 2), then the first printf statement is evaluated, otherwise the second printf
statement is evaluated.

The third and most general form of the if statement allows multiple decisions to be
combined in a single statement. It looks like this:

if (condition)
then-body

elseif (condition)
elseif-body

else
else-body

endif

Any number of elseif clauses may appear. Each condition is tested in turn, and if one is
found to be true, its corresponding body is executed. If none of the conditions are true and
the else clause is present, its body is executed. Only one else clause may appear, and it
must be the last part of the statement.

In the following example, if the first condition is true (that is, the value of x is divisible
by 2), then the first printf statement is executed. If it is false, then the second condition
is tested, and if it is true (that is, the value of x is divisible by 3), then the second printf
statement is executed. Otherwise, the third printf statement is performed.

if (rem (x, 2) == 0)
printf ("x is even\n");
elseif (rem (x, 3) == 0)
printf ("x is odd and divisible by 3\n");
else
printf ("x is odd\n");
endif

Note that the elseif keyword must not be spelled else if, as is allowed in Fortran. If
it is, the space between the else and if will tell Octave to treat this as a new if statement
within another if statement’s else clause. For example, if you write

if (c1)
body-1
else if (c2)
body-2
endif

Octave will expect additional input to complete the first if statement. If you are using
Octave interactively, it will continue to prompt you for additional input. If Octave is reading
this input from a file, it may complain about missing or mismatched end statements, or, if
you have not used the more specific end statements (endif, endfor, etc.), it may simply
produce incorrect results, without producing any warning messages.

It is much easier to see the error if we rewrite the statements above like this,

Chapter 10: Statements 135

if (c1)
body-1
else
if (c2)
body-2
endif
using the indentation to show how Octave groups the statements. See Chapter 11 [Functions

and Scripts], page 145.

10.2 The switch Statement

It is very common to take different actions depending on the value of one variable. This is
possible using the if statement in the following way

if (X == 1)
do_something () ;
elseif (X == 2)
do_something_else ();
else
do_something_completely_different ();
endif
This kind of code can however be very cumbersome to both write and maintain. To overcome
this problem Octave supports the switch statement. Using this statement, the above

example becomes

switch (X)
case 1
do_something ();
case 2
do_something_else ();
otherwise
do_something_completely_different ();
endswitch

This code makes the repetitive structure of the problem more explicit, making the code
easier to read, and hence maintain. Also, if the variable X should change its name, only one
line would need changing compared to one line per case when if statements are used.

The general form of the switch statement is

switch expression
case label

command_list
case label

command_1list

otherwise
command_1list
endswitch

136 GNU Octave

where label can be any expression. However, duplicate label values are not detected, and
only the command_list corresponding to the first match will be executed. For the switch
statement to be meaningful at least one case label command_list clause must be present,
while the otherwise command_list clause is optional.

If label is a cell array the corresponding command_list is executed if any of the elements of
the cell array match expression. As an example, the following program will print ‘Variable
is either 6 or 7’.

A=1T7;
switch A
case { 6, 7 }
printf ("variable is either 6 or 7\n");
otherwise
printf ("variable is neither 6 nor 7\n");
endswitch

As with all other specific end keywords, endswitch may be replaced by end, but you
can get better diagnostics if you use the specific forms.

One advantage of using the switch statement compared to using if statements is that
the labels can be strings. If an if statement is used it is not possible to write

if (X == "a string") # This is NOT valid
since a character-to-character comparison between X and the string will be made instead of
evaluating if the strings are equal. This special-case is handled by the switch statement,
and it is possible to write programs that look like this
switch (X)
case "a string"
do_something

enaé&itch
10.2.1 Notes for the C Programmer

The switch statement is also available in the widely used C programming language. There
are, however, some differences between the statement in Octave and C

e Cases are exclusive, so they don’t ‘fall through’ as do the cases in the switch statement
of the C language.

e The command_list elements are not optional. Making the list optional would have
meant requiring a separator between the label and the command list. Otherwise,
things like

switch (foo)
case (1) -2

would produce surprising results, as would
switch (foo)
case (1)
case (2)
doit ();

Chapter 10: Statements 137

particularly for C programmers. If doit () should be executed if foo is either 1 or 2,
the above code should be written with a cell array like this

switch (foo)
case {1, 2 }
doit ();

10.3 The while Statement

In programming, a loop means a part of a program that is (or at least can be) executed
two or more times in succession.

The while statement is the simplest looping statement in Octave. It repeatedly executes
a statement as long as a condition is true. As with the condition in an if statement, the
condition in a while statement is considered true if its value is non-zero, and false if its
value is zero. If the value of the conditional expression in a while statement is a vector or
a matrix, it is considered true only if it is non-empty and all of the elements are non-zero.

Octave’s while statement looks like this:

while (condition)
body
endwhile

Here body is a statement or list of statements that we call the body of the loop, and
condition is an expression that controls how long the loop keeps running.

The first thing the while statement does is test condition. If condition is true, it executes
the statement body. After body has been executed, condition is tested again, and if it is
still true, body is executed again. This process repeats until condition is no longer true. If
condition is initially false, the body of the loop is never executed.

This example creates a variable fib that contains the first ten elements of the Fibonacci
sequence.

fib = ones (1, 10);

i= 3;

while (i <= 10)
fib (i) = fib (i-1) + fib (i-2);
i++;

endwhile
Here the body of the loop contains two statements.

The loop works like this: first, the value of i is set to 3. Then, the while tests whether
i is less than or equal to 10. This is the case when i equals 3, so the value of the i-th
element of £ib is set to the sum of the previous two values in the sequence. Then the i++
increments the value of i and the loop repeats. The loop terminates when i reaches 11.

A newline is not required between the condition and the body; but using one makes the
program clearer unless the body is very simple.

138 GNU Octave

10.4 The do-until Statement

The do-until statement is similar to the while statement, except that it repeatedly exe-
cutes a statement until a condition becomes true, and the test of the condition is at the end
of the loop, so the body of the loop is always executed at least once. As with the condition
in an if statement, the condition in a do-until statement is considered true if its value
is non-zero, and false if its value is zero. If the value of the conditional expression in a
do-until statement is a vector or a matrix, it is considered true only if it is non-empty and
all of the elements are non-zero.

Octave’s do—until statement looks like this:

do
body
until (condition)

Here body is a statement or list of statements that we call the body of the loop, and
condition is an expression that controls how long the loop keeps running.

This example creates a variable fib that contains the first ten elements of the Fibonacci
sequence.

ones (1, 10);

fib (i) = fib (i-1) + fib (i-2);
until (i == 10)

A newline is not required between the do keyword and the body; but using one makes
the program clearer unless the body is very simple.

10.5 The for Statement

The for statement makes it more convenient to count iterations of a loop. The general
form of the for statement looks like this:

for var = expression
body
endfor

where body stands for any statement or list of statements, expression is any valid expression,
and var may take several forms. Usually it is a simple variable name or an indexed variable.
If the value of expression is a structure, var may also be a vector with two elements. See
Section 10.5.1 [Looping Over Structure Elements|, page 139, below.

The assignment expression in the for statement works a bit differently than Octave’s
normal assignment statement. Instead of assigning the complete result of the expression, it
assigns each column of the expression to var in turn. If expression is a range, a row vector,
or a scalar, the value of var will be a scalar each time the loop body is executed. If var is a
column vector or a matrix, var will be a column vector each time the loop body is executed.

The following example shows another way to create a vector containing the first ten
elements of the Fibonacci sequence, this time using the for statement:

Chapter 10: Statements 139

fib = ones (1, 10);
for i = 3:10

fib (i) = fib (i-1) + fib (i-2);
endfor

This code works by first evaluating the expression 3:10, to produce a range of values from 3
to 10 inclusive. Then the variable i is assigned the first element of the range and the body
of the loop is executed once. When the end of the loop body is reached, the next value in
the range is assigned to the variable i, and the loop body is executed again. This process
continues until there are no more elements to assign.

Within Octave is it also possible to iterate over matrices or cell arrays using the for
statement. For example consider

disp("Loop over a matrix")
for i = [1,3;2,4]
i
endfor
disp("Loop over a cell array")
for i = {1,"two";"three",4}
i
endfor
In this case the variable i takes on the value of the columns of the matrix or cell matrix.
So the first loop iterates twice, producing two column vectors [1;2], followed by [3;4],
and likewise for the loop over the cell array. This can be extended to loops over multi-
dimensional arrays. For example:

a = [1,3;2,4]; b = cat(3, a, 2*a);
for i = ¢

i
endfor

In the above case, the multi-dimensional matrix c is reshaped to a two-dimensional matrix
as reshape (c, rows(c), prod(size(c)(2:end))) and then the same behavior as a loop
over a two dimensional matrix is produced.

Although it is possible to rewrite all for loops as while loops, the Octave language has
both statements because often a for loop is both less work to type and more natural to
think of. Counting the number of iterations is very common in loops and it can be easier
to think of this counting as part of looping rather than as something to do inside the loop.

10.5.1 Looping Over Structure Elements
A special form of the for statement allows you to loop over all the elements of a structure:

for [val, key] = expression
body
endfor

In this form of the for statement, the value of expression must be a structure. If it is, key
and val are set to the name of the element and the corresponding value in turn, until there
are no more elements. For example:

140 GNU Octave

x.a =1
x.b = [1, 2; 3, 4]
x.c = "string"
for [val, key] = x
key
val
endfor
- key = a
- val =1
-+ key =D
- val =
_|
o 1 2
o 3 4
_{
- key = c
- val = string

The elements are not accessed in any particular order. If you need to cycle through
the list in a particular way, you will have to use the function fieldnames and sort the list
yourself.

The key variable may also be omitted. If it is, the brackets are also optional. This is
useful for cycling through the values of all the structure elements when the names of the
elements do not need to be known.

10.6 The break Statement

The break statement jumps out of the innermost for or while loop that encloses it. The
break statement may only be used within the body of a loop. The following example finds
the smallest divisor of a given integer, and also identifies prime numbers:

num = 103;
div = 2;
while (div*div <= num)
if (rem (num, div) == 0)
break;
endif
div++;
endwhile
if (rem (num, div) == 0)
printf ("Smallest divisor of %d is %d\n", num, div)
else
printf ("%d is prime\n", num);
endif

When the remainder is zero in the first while statement, Octave immediately breaks
out of the loop. This means that Octave proceeds immediately to the statement following

Chapter 10: Statements 141

the loop and continues processing. (This is very different from the exit statement which
stops the entire Octave program.)

Here is another program equivalent to the previous one. It illustrates how the condition
of a while statement could just as well be replaced with a break inside an if:

num = 103;
div = 2;
while (1)
if (rem (num, div) == 0)
printf ("Smallest divisor of %d is %d\n", num, div);
break;
endif
div++;
if (div*div > num)
printf ("%d is prime\n", num);
break;
endif
endwhile

10.7 The continue Statement

The continue statement, like break, is used only inside for or while loops. It skips over
the rest of the loop body, causing the next cycle around the loop to begin immediately.
Contrast this with break, which jumps out of the loop altogether. Here is an example:

print elements of a vector of random
integers that are even.

first, create a row vector of 10 random
integers with values between O and 100:

vec = round (rand (1, 10) * 100);
print what we’re interested in:

for x = vec
if (rem (x, 2) '= 0)
continue;
endif
printf ("%d\n", x);
endfor

If one of the elements of vec is an odd number, this example skips the print statement
for that element, and continues back to the first statement in the loop.

This is not a practical example of the continue statement, but it should give you a clear
understanding of how it works. Normally, one would probably write the loop like this:

142 GNU Octave

for x = vec
if (rem (x, 2) == 0)
printf ("%d\n", x);
endif
endfor

10.8 The unwind_protect Statement

Octave supports a limited form of exception handling modelled after the unwind-protect
form of Lisp.

The general form of an unwind_protect block looks like this:

unwind_protect
body
unwind_protect_cleanup
cleanup
end_unwind_protect

where body and cleanup are both optional and may contain any Octave expressions or
commands. The statements in cleanup are guaranteed to be executed regardless of how
control exits body.

This is useful to protect temporary changes to global variables from possible errors. For
example, the following code will always restore the original value of the global variable
frobnosticate even if an error occurs in the first part of the unwind_protect block.

save_frobnosticate = frobnosticate;
unwind_protect
frobnosticate = true;

unwind_protect_cleanup
frobnosticate = save_frobnosticate;
end_unwind_protect

Without unwind_protect, the value of frobnosticate would not be restored if an error occurs
while evaluating the first part of the unwind_protect block because evaluation would stop
at the point of the error and the statement to restore the value would not be executed.

10.9 The try Statement

In addition to unwind_protect, Octave supports another limited form of exception handling.
The general form of a try block looks like this:
try
body
catch
cleanup
end_try_catch
where body and cleanup are both optional and may contain any Octave expressions or
commands. The statements in cleanup are only executed if an error occurs in body.
No warnings or error messages are printed while body is executing. If an error does
occur during the execution of body, cleanup can use the function lasterr to access the

Chapter 10: Statements 143

text of the message that would have been printed. This is the same as eval (try, catch)
but it is more efficient since the commands do not need to be parsed each time the try and
catch statements are evaluated. See Chapter 12 [Errors and Warnings|, page 169, for more
information about the lasterr function.

10.10 Continuation Lines

In the Octave language, most statements end with a newline character and you must tell
Octave to ignore the newline character in order to continue a statement from one line to the
next. Lines that end with the characters ... or \ are joined with the following line before
they are divided into tokens by Octave’s parser. For example, the lines

x = long_variable_name
+ longer_variable_name \
- 42
form a single statement. The backslash character on the second line above is interpreted as
a continuation character, not as a division operator.

For continuation lines that do not occur inside string constants, whitespace and com-
ments may appear between the continuation marker and the newline character. For example,
the statement

x = long_variable_name ... # comment one
+ longer_variable_name \ # comment two
- 42 # last comment

is equivalent to the one shown above. Inside string constants, the continuation marker must
appear at the end of the line just before the newline character.

Input that occurs inside parentheses can be continued to the next line without having
to use a continuation marker. For example, it is possible to write statements like

if (fine_dining destination == on_a_boat
|| fine_dining destination == on_a_train)
seuss (i, will, not, eat, them, sam, i, am, i,
will, not, eat, green, eggs, and, ham);
endif

without having to add to the clutter with continuation markers.

Chapter 11: Functions and Scripts 145

11 Functions and Scripts

Complicated Octave programs can often be simplified by defining functions. Functions can
be defined directly on the command line during interactive Octave sessions, or in external
files, and can be called just like built-in functions.

11.1 Defining Functions

In its simplest form, the definition of a function named name looks like this:

function name
body
endfunction

A valid function name is like a valid variable name: a sequence of letters, digits and under-
scores, not starting with a digit. Functions share the same pool of names as variables.
The function body consists of Octave statements. It is the most important part of the
definition, because it says what the function should actually do.
For example, here is a function that, when executed, will ring the bell on your terminal
(assuming that it is possible to do so):

function wakeup
printf ("\a");
endfunction
The printf statement (see Chapter 14 [Input and Output], page 183) simply tells Octave
to print the string "\a". The special character ‘\a’ stands for the alert character (ASCII
7). See Chapter 5 [Strings], page 55.
Once this function is defined, you can ask Octave to evaluate it by typing the name of
the function.
Normally, you will want to pass some information to the functions you define. The
syntax for passing parameters to a function in Octave is
function name (arg-list)
body
endfunction
where arg-list is a comma-separated list of the function’s arguments. When the function is
called, the argument names are used to hold the argument values given in the call. The list
of arguments may be empty, in which case this form is equivalent to the one shown above.
To print a message along with ringing the bell, you might modify the wakeup to look
like this:
function wakeup (message)
printf ("\a%s\n", message);
endfunction
Calling this function using a statement like this
wakeup ("Rise and shine!");
will cause Octave to ring your terminal’s bell and print the message ‘Rise and shine!’,
followed by a newline character (the ‘\n’ in the first argument to the printf statement).
In most cases, you will also want to get some information back from the functions you
define. Here is the syntax for writing a function that returns a single value:

146 GNU Octave

function ret-var = name (arg-list)
body
endfunction

The symbol ret-var is the name of the variable that will hold the value to be returned by
the function. This variable must be defined before the end of the function body in order
for the function to return a value.

Variables used in the body of a function are local to the function. Variables named
in arg-list and ret-var are also local to the function. See Section 7.1 [Global Variables],
page 105, for information about how to access global variables inside a function.

For example, here is a function that computes the average of the elements of a vector:

function retval = avg (v)
retval = sum (v) / length (v);
endfunction

If we had written avg like this instead,

function retval = avg (v)
if (isvector (v))
retval = sum (v) / length (v);
endif
endfunction

and then called the function with a matrix instead of a vector as the argument, Octave
would have printed an error message like this:

error: value on right hand side of assignment is undefined

because the body of the if statement was never executed, and retval was never defined.
To prevent obscure errors like this, it is a good idea to always make sure that the return
variables will always have values, and to produce meaningful error messages when problems
are encountered. For example, avg could have been written like this:

function retval = avg (v)
retval = 0;
if (isvector (v))
retval = sum (v) / length (v);
else
error ("avg: expecting vector argument");
endif
endfunction

There is still one additional problem with this function. What if it is called without an
argument? Without additional error checking, Octave will probably print an error message
that won'’t really help you track down the source of the error. To allow you to catch errors
like this, Octave provides each function with an automatic variable called nargin. Each
time a function is called, nargin is automatically initialized to the number of arguments
that have actually been passed to the function. For example, we might rewrite the avg
function like this:

Chapter 11: Functions and Scripts 147

function retval = avg (v)
retval = O;

if (nargin !'= 1)
usage ("avg (vector)");
endif

if (isvector (v))
retval = sum (v) / length (v);
else
error ("avg: expecting vector argument");
endif
endfunction

Although Octave does not automatically report an error if you call a function with more
arguments than expected, doing so probably indicates that something is wrong. Octave
also does not automatically report an error if a function is called with too few arguments,
but any attempt to use a variable that has not been given a value will result in an error.
To avoid such problems and to provide useful messages, we check for both possibilities and
issue our own error message.

nargin () [Built-in Function]

nargin (fcn_name) [Built-in Function]
Within a function, return the number of arguments passed to the function. At the
top level, return the number of command line arguments passed to Octave. If called
with the optional argument fcn_name, return the maximum number of arguments
the named function can accept, or -1 if the function accepts a variable number of
arguments.

See also: [nargout|, page 148, [varargin|, page 149, [varargout|, page 149.

inputname (n) [Function File]
Return the name of the n-th argument to the calling function. If the argument is not
a simple variable name, return an empty string.

val = silent_functions () [Built-in Function]

old_val = silent_functions (new_val) [Built-in Function]
Query or set the internal variable that controls whether internal output from a func-
tion is suppressed. If this option is disabled, Octave will display the results produced
by evaluating expressions within a function body that are not terminated with a
semicolon.

11.2 Multiple Return Values

Unlike many other computer languages, Octave allows you to define functions that return
more than one value. The syntax for defining functions that return multiple values is
function [ret-list] = name (arg-list)
body
endfunction

where name, arg-list, and body have the same meaning as before, and ret-list is a comma-
separated list of variable names that will hold the values returned from the function. The

148 GNU Octave

list of return values must have at least one element. If ret-list has only one element, this
form of the function statement is equivalent to the form described in the previous section.

Here is an example of a function that returns two values, the maximum element of a
vector and the index of its first occurrence in the vector.

function [max, idx] = vmax (v)

idx = 1;
max = v (idx);
for i = 2:length (v)

if (v (i) > max)
max = v (i);
idx = i;
endif
endfor
endfunction

In this particular case, the two values could have been returned as elements of a single
array, but that is not always possible or convenient. The values to be returned may not
have compatible dimensions, and it is often desirable to give the individual return values
distinct names.

In addition to setting nargin each time a function is called, Octave also automatically
initializes nargout to the number of values that are expected to be returned. This allows
you to write functions that behave differently depending on the number of values that the
user of the function has requested. The implicit assignment to the built-in variable ans
does not figure in the count of output arguments, so the value of nargout may be zero.

The svd and 1lu functions are examples of built-in functions that behave differently
depending on the value of nargout.

It is possible to write functions that only set some return values. For example, calling
the function

function [x, y, z] = £ O
x =1;
z = 2;
endfunction
as
la, b, cl = O
produces:

a=1

o
I

(1 (0x0)

c =2

along with a warning.

nargout () [Built-in Function]
nargout (fcn_name) [Built-in Function]
Within a function, return the number of values the caller expects to receive. If called
with the optional argument fcn_name, return the maximum number of values the

Chapter 11: Functions and Scripts 149

named function can produce, or -1 if the function can produce a variable number of
values.

For example,

£ 0
will cause nargout to return O inside the function f and
[s, t] = £ O

will cause nargout to return 2 inside the function f.

At the top level, nargout is undefined.

See also: [nargin|, page 147, [varargin|, page 149, [varargout|, page 149.

msgstr = nargchk (minargs, maxargs, nargs) [Function File]
msgstr = nargchk (minargs, maxargs, nargs, "string") [Function File]
msgstruct = nargchk (minargs, maxargs, nargs, "struct") [Function File]

Return an appropriate error message string (or structure) if the number of inputs
requested is invalid.

This is useful for checking to see that the number of input arguments supplied to a
function is within an acceptable range.

See also: [nargoutchk], page 149, [error], page 169, [nargin], page 147, [nargout],

page 148.
msgstr = nargoutchk (minargs, maxargs, nargs) [Function File]
msgstr = nargoutchk (minargs, maxargs, nargs, "string") [Function File]
msgstruct = nargoutchk (minargs, maxargs, nargs, "struct") [Function File]

Return an appropriate error message string (or structure) if the number of outputs
requested is invalid.

This is useful for checking to see that the number of output arguments supplied to a
function is within an acceptable range.

See also: [nargchk], page 149, [error], page 169, [nargout], page 148, [nargin|, page 147.

isargout (k) [Built-in Function]
Within a function, return a logical value indicating whether the argument k will be
assigned on output to a variable. If the result is false, the argument has been ignored
during the function call through the use of the tilde () special output argument.
Functions can use isargout to avoid performing unnecessary calculations for outputs
which are unwanted.

If k is outside the range 1:max(nargout), the function returns false. k can also be
an array, in which case the function works element-by-element and a logical array is
returned. At the top level, isargout returns an error.

See also: [nargout], page 148, [nargin], page 147, [varargin], page 149, [varargout],
page 149.

150 GNU Octave

11.3 Variable-length Argument Lists

Sometimes the number of input arguments is not known when the function is defined. As
an example think of a function that returns the smallest of all its input arguments. For
example:

smallest (1, 2, 3);
smallest (1, 2, 3, 4);

a
b

In this example both a and b would be 1. One way to write the smallest function is

function val = smallest (argl, arg2, arg3, arg4, argb)
body
endfunction

and then use the value of nargin to determine which of the input arguments should be
considered. The problem with this approach is that it can only handle a limited number of
input arguments.

If the special parameter name varargin appears at the end of a function parameter list
it indicates that the function takes a variable number of input arguments. Using varargin
the function looks like this

function val = smallest (varargin)
body
endfunction

In the function body the input arguments can be accessed through the variable varargin.
This variable is a cell array containing all the input arguments. See Section 6.2 [Cell Arrays],
page 90, for details on working with cell arrays. The smallest function can now be defined
like this

function val = smallest (varargin)
val = min ([varargin{:}]);
endfunction

This implementation handles any number of input arguments, but it’s also a very simple
solution to the problem.

A slightly more complex example of varargin is a function print_arguments that prints
all input arguments. Such a function can be defined like this

function print_arguments (varargin)
for i = l:length (varargin)
printf ("Input argument %d: ", i);
disp (varargin{il});
endfor
endfunction

This function produces output like this

print_arguments (1, "two", 3);
- Input argument 1: 1
- Input argument 2: two
- Input argument 3: 3

Chapter 11: Functions and Scripts 151

[reg, prop] = parseparams (params) [Function File]

[reg, varl, ...] = parseparams (params, namel, defaultl, [Function File]
Return in reg the cell elements of param up to the first string element and in prop
all remaining elements beginning with the first string element. For example:

[reg, prop] = parseparams ({1, 2, "linewidth", 10})

reg =
{
[1,1] = 1
[1,2] = 2
}
prop =
{
[1,1] = linewidth
[1,2] = 10
}

The parseparams function may be used to separate 'regular’ arguments and additional
arguments given as property/value pairs of the varargin cell array.

In the second form of the call, available options are specified directly with their default
values given as name-value pairs. If params do not form name-value pairs, or if an
option occurs that does not match any of the available options, an error occurs. When
called from a m-file function, the error is prefixed with the name of the caller function.
The matching of options is case-insensitive.

See also: [varargin|, page 149.

11.4 Ignoring Arguments

In the formal argument list, it is possible to use the dummy placeholder ~ instead of a name.
This indicates that the corresponding argument value should be ignored and not stored to
any variable.

function val = pick2nd (7, arg2)
val = arg2;
endfunction

The value of nargin is not affected by using this declaration.

11.5 Variable-length Return Lists

It is possible to return a variable number of output arguments from a function using a
syntax that’s similar to the one used with the special varargin parameter name. To let a
function return a variable number of output arguments the special output parameter name
varargout is used. As with varargin, varargout is a cell array that will contain the
requested output arguments.

As an example the following function sets the first output argument to 1, the second to
2, and so on.

152 GNU Octave

function varargout = one_to_n ()
for i = l:nargout
varargout{i} = i;
endfor
endfunction

When called this function returns values like this

[a, b, c] = one_to_n ()

= a= 1
= b= 2
= c= 3

If varargin (varargout) does not appear as the last element of the input (output)
parameter list, then it is not special, and is handled the same as any other parameter name.

[r1, r2, ..., rn] = deal (a) [Function File]

[r1, r2, ..., rn] = deal (al, a2, ..., an) [Function File]
Copy the input parameters into the corresponding output parameters. If only one
input parameter is supplied, its value is copied to each of the outputs.

For example,

[a, b, c]

deal (x, y, 2);

is equivalent to

a = x;
b =1y;
c = z;

and
[a, b, c] = deal (x);

is equivalent to

a=b=c=zx;

11.6 Returning from a Function

The body of a user-defined function can contain a return statement. This statement returns
control to the rest of the Octave program. It looks like this:

return

Unlike the return statement in C, Octave’s return statement cannot be used to return
a value from a function. Instead, you must assign values to the list of return variables that
are part of the function statement. The return statement simply makes it easier to exit
a function from a deeply nested loop or conditional statement.

Here is an example of a function that checks to see if any elements of a vector are nonzero.

Chapter 11: Functions and Scripts 153

function retval = any_nonzero (v)
retval = O;
for i = 1:length (v)
if (v (1) !'= 0)
retval = 1;
return;
endif
endfor
printf ("no nonzero elements found\n");
endfunction

Note that this function could not have been written using the break statement to exit
the loop once a nonzero value is found without adding extra logic to avoid printing the
message if the vector does contain a nonzero element.

return [Keyword|
When Octave encounters the keyword return inside a function or script, it returns
control to the caller immediately. At the top level, the return statement is ignored.
A return statement is assumed at the end of every function definition.

11.7 Default Arguments

Since Octave supports variable number of input arguments, it is very useful to assign default
values to some input arguments. When an input argument is declared in the argument list
it is possible to assign a default value to the argument like this

function name (argl = vall, ...)
body
endfunction

If no value is assigned to argl by the user, it will have the value vall.

As an example, the following function implements a variant of the classic “Hello, World”
program.

function hello (who = "World")
printf ("Hello, %s!'\n", who);
endfunction

When called without an input argument the function prints the following

hello O;
- Hello, World!

and when it’s called with an input argument it prints the following
hello ("Beautiful World of Free Software");
- Hello, Beautiful World of Free Software!

Sometimes it is useful to explicitly tell Octave to use the default value of an input
argument. This can be done writing a ‘:’ as the value of the input argument when calling
the function.

hello (:);
- Hello, World!

154 GNU Octave

11.8 Function Files

Except for simple one-shot programs, it is not practical to have to define all the functions
you need each time you need them. Instead, you will normally want to save them in a file
so that you can easily edit them, and save them for use at a later time.

Octave does not require you to load function definitions from files before using them.
You simply need to put the function definitions in a place where Octave can find them.

When Octave encounters an identifier that is undefined, it first looks for variables or
functions that are already compiled and currently listed in its symbol table. If it fails to
find a definition there, it searches a list of directories (the path) for files ending in ‘.m’ that
have the same base name as the undefined identifier.! Once Octave finds a file with a name
that matches, the contents of the file are read. If it defines a single function, it is compiled
and executed. See Section 11.9 [Script Files], page 162, for more information about how
you can define more than one function in a single file.

When Octave defines a function from a function file, it saves the full name of the file it
read and the time stamp on the file. If the time stamp on the file changes, Octave may reload
the file. When Octave is running interactively, time stamp checking normally happens at
most once each time Octave prints the prompt. Searching for new function definitions also
occurs if the current working directory changes.

Checking the time stamp allows you to edit the definition of a function while Octave is
running, and automatically use the new function definition without having to restart your
Octave session.

To avoid degrading performance unnecessarily by checking the time stamps on func-
tions that are not likely to change, Octave assumes that function files in the directory tree
‘octave-home /share/octave/version/m’ will not change, so it doesn’t have to check their
time stamps every time the functions defined in those files are used. This is normally a very
good assumption and provides a significant improvement in performance for the function
files that are distributed with Octave.

If you know that your own function files will not change while you are running Octave,
you can improve performance by calling ignore_function_time_stamp ("all"), so that
Octave will ignore the time stamps for all function files. Passing "system" to this function
resets the default behavior.

edit name [Command]|
edit field value [Command|
value = edit get field [Command]

Edit the named function, or change editor settings.

If edit is called with the name of a file or function as its argument it will be opened
in a text editor.

e If the function name is available in a file on your path and that file is modifiable,
then it will be edited in place. If it is a system function, then it will first be
copied to the directory HOME (see further down) and then edited. If no file is
found, then the m-file variant, ending with ".m", will be considered. If still no
file is found, then variants with a leading "@" and then with both a leading "@"
and trailing ".m" will be considered.

! The ‘.m’ suffix was chosen for compatibility with MATLAB.

Chapter 11: Functions and Scripts 155

e If name is the name of a function defined in the interpreter but not in an m-file,
then an m-file will be created in HOME to contain that function along with its
current definition.

e If name.cc is specified, then it will search for name.cc in the path and try to
modify it, otherwise it will create a new ‘.cc’ file in HOME. If name happens to
be an m-file or interpreter defined function, then the text of that function will
be inserted into the .cc file as a comment.

e If name.ext is on your path then it will be edited, otherwise the editor will be
started with ‘HOME/name.ext’ as the filename. If ‘name.ext’ is not modifiable, it
will be copied to HOME before editing.

WARNING! You may need to clear name before the new definition is available. If
you are editing a .cc file, you will need to mkoctfile ‘name. cc’ before the definition
will be available.

If edit is called with field and value variables, the value of the control field field will
be value. If an output argument is requested and the first argument is get then edit
will return the value of the control field field. If the control field does not exist, edit
will return a structure containing all fields and values. Thus, edit get all returns a
complete control structure. The following control fields are used:

‘editor’ This is the editor to use to modify the functions. By default it uses
Octave’s EDITOR built-in function, which comes from getenv ("EDITOR")
and defaults to emacs. Use %s In place of the function name. For example,

‘[EDITOR, " %s"]’
Use the editor which Octave uses for bug_report.

‘"xedit %s &"
pop up simple X11 editor in a separate window

‘"gnudoit -q \"(find-file \\\"%s\\\")\""’
Send it to current Emacs; must have (gnuserv-start) in
‘.emacs’.

See also field 'mode’, which controls how the editor is run by Octave.
On Cygwin, you will need to convert the Cygwin path to a Windows path
if you are using a native Windows editor. For example:

""C:/Program Files/Good Editor/Editor.exe" "$(cygpath -wa %s)"’

‘home’ This is the location of user local m-files. Be be sure it is in your path.
The default is ‘~/octave’.

‘author’ This is the name to put after the "## Author:" field of new functions.
By default it guesses from the gecos field of password database.

‘email’ This is the e-mail address to list after the name in the author field. By
default it guesses <$LOGNAME@$HOSTNAME>, and if $HOSTNAME is not de-
fined it uses uname -n. You probably want to override this. Be sure to
use <user@host> as your format.

‘license’

156 GNU Octave

‘gpl’ GNU General Public License (default).
‘bsd’ BSD-style license without advertising clause.
‘pd’ Public domain.

‘“"text"’ Your own default copyright and license.

Unless you specify ‘pd’, edit will prepend the copyright statement with
"Copyright (C) yyyy Function Author".

‘mode’ This value determines whether the editor should be started in async mode
(editor is started in the background and Octave continues) or sync mode
(Octave waits until the editor exits). Set it to "async" to start the editor
in async mode. The default is "sync" (see also "system").

‘editinplace’
Determines whether files should be edited in place, without regard to
whether they are modifiable or not. The default is false.

mfilename () [Built-in Function]
mfilename ("fullpath") [Built-in Function]
mfilename ("fullpathext") [Built-in Function]

Return the name of the currently executing file. At the top-level, return the empty
string. Given the argument "fullpath", include the directory part of the file name,
but not the extension. Given the argument "fullpathext", include the directory
part of the file name and the extension.

val = ignore_function_time_stamp () [Built-in Function]

old_val = ignore_function_time_stamp (new_val) [Built-in Function]
Query or set the internal variable that controls whether Octave checks the time stamp
on files each time it looks up functions defined in function files. If the internal variable
is set to "system", Octave will not automatically recompile function files in subdi-
rectories of ‘octave-home/lib/version’ if they have changed since they were last
compiled, but will recompile other function files in the search path if they change. If
set to "all", Octave will not recompile any function files unless their definitions are
removed with clear. If set to "none", Octave will always check time stamps on files
to determine whether functions defined in function files need to recompiled.

11.8.1 Manipulating the Load Path

When a function is called, Octave searches a list of directories for a file that contains the
function declaration. This list of directories is known as the load path. By default the
load path contains a list of directories distributed with Octave plus the current working
directory. To see your current load path call the path function without any input or output
arguments.

It is possible to add or remove directories to or from the load path using addpath and
rmpath. As an example, the following code adds ‘~/Octave’ to the load path.

addpath("~/0Octave")

After this the directory ‘~/0ctave’ will be searched for functions.

Chapter 11: Functions and Scripts 157

addpath (diri, ...) [Built-in Function]
addpath (diri, ..., option) [Built-in Function]
Add dirl, ... to the current function search path. If option is ‘"-begin"’ or 0 (the

default), prepend the directory name to the current path. If option is ‘"-end"’ or 1,
append the directory name to the current path. Directories added to the path must
exist,.

In addition to accepting individual directory arguments, lists of directory names sep-
arated by pathsep are also accepted. For example:

addpath ("dirl:/dir2:7/dir3");

See also: [path]|, page 157, [rmpath]|, page 157, [genpath], page 157, [pathdef],
page 157, [savepath], page 157, [pathsep|, page 158.

genpath (dir) [Built-in Function]

genpath (dir, skip, ...) [Built-in Function]
Return a path constructed from dir and all its subdirectories. If additional string
parameters are given, the resulting path will exclude directories with those names.

rmpath (diri, ...) [Built-in Function]
Remove dirl, ... from the current function search path.
In addition to accepting individual directory arguments, lists of directory names sep-
arated by pathsep are also accepted. For example:
rmpath ("dirl:/dir2:7/dir3");
See also: [path], page 157, [addpath]|, page 156, [genpath], page 157, [pathdef],
page 157, [savepath], page 157, [pathsep], page 158.

savepath (file) [Function File]
Save the portion of the current function search path, that is not set during Octave’s
initialization process, to file. If file is omitted, ‘*/.octaverc’ is used. If successful,
savepath returns 0.

See also: [path], page 157, [addpath], page 156, [rmpath]|, page 157, [genpath],
page 157, [pathdef], page 157, [pathsep|, page 158.

path (...) [Built-in Function]
Modify or display Octave’s load path.

If nargin and nargout are zero, display the elements of Octave’s load path in an easy
to read format.

If nargin is zero and nargout is greater than zero, return the current load path.

If nargin is greater than zero, concatenate the arguments, separating them with
pathsep. Set the internal search path to the result and return it.

No checks are made for duplicate elements.

See also: [addpath], page 156, [rmpath], page 157, [genpath], page 157, [pathdef],
page 157, [savepath], page 157, [pathsep], page 158.

val = pathdef () [Function File]
Return the default path for Octave. The path information is extracted from one of
three sources. In order of preference, those are;

158 GNU Octave

1. *"/.octaverc’
2. ‘<octave-home>/.../<version>/m/startup/octaverc’

3. Octave’s path prior to changes by any octaverc.

See also: [path], page 157, [addpath], page 156, [rmpath]|, page 157, [genpath],
page 157, [savepath], page 157, [pathsep], page 158.

val = pathsep () [Built-in Function]
old_val = pathsep (new_val) [Built-in Function]
Query or set the character used to separate directories in a path.

See also: [filesep], page 576.

rehash () [Built-in Function]
Reinitialize Octave’s load path directory cache.

file_in_loadpath (file) [Built-in Function]

file_in_loadpath (file, "all") [Built-in Function]
Return the absolute name of file if it can be found in the list of directories specified
by path. If no file is found, return an empty character string.

If the first argument is a cell array of strings, search each directory of the loadpath
for element of the cell array and return the first that matches.

If the second optional argument "all" is supplied, return a cell array containing the
list of all files that have the same name in the path. If no files are found, return an
empty cell array.

See also: [file_in_path], page 576, [path], page 157.

restoredefaultpath (...) [Built-in Function]
Restore Octave’s path to it’s initial state at startup.

See also: [path], page 157, [addpath], page 156, [rmpath]|, page 157, [genpath],
page 157, [pathdef], page 157, [savepath], page 157, [pathsep], page 158.

command_line_path (...) [Built-in Function]
Return the command line path variable.

See also: [path], page 157, [addpath], page 156, [rmpath]|, page 157, [genpath],
page 157, [pathdef], page 157, [savepath], page 157, [pathsep], page 158.

find_dir_in_path (dir, "all") [Built-in Function]
Return the full name of the path element matching dir. The match is performed
at the end of each path element. For example, if dir is "foo/bar", it matches
the path element "/some/dir/foo/bar", but not "/some/dir/foo/bar/baz" or
"/some/dir/allfoo/bar".

The second argument is optional. If it is supplied, return a cell array containing all
the directory names that match.

Chapter 11: Functions and Scripts 159

11.8.2 Subfunctions

A function file may contain secondary functions called subfunctions. These secondary func-
tions are only visible to the other functions in the same function file. For example, a file
‘f.m’ containing
function £ ()
printf ("in f, calling g\n");
g O
endfunction
function g ()
printf ("in g, calling h\n");
h O
endfunction
function h (O
printf ("in h\n")
endfunction
defines a main function £ and two subfunctions. The subfunctions g and h may only be
called from the main function f or from the other subfunctions, but not from outside the
file ‘f.m’.

11.8.3 Private Functions

In many cases one function needs to access one or more helper functions. If the helper
function is limited to the scope of a single function, then subfunctions as discussed above
might be used. However, if a single helper function is used by more than one function,
then this is no longer possible. In this case the helper functions might be placed in a
subdirectory, called "private", of the directory in which the functions needing access to this
helper function are found.

As a simple example, consider a function funci, that calls a helper function func2 to
do much of the work. For example:

function y = funcl (x)
y = func2 (x);
endfunction
Then if the path to funcl is <directory>/funcl.m, and if func2 is found in the directory
<directory>/private/func2.m, then func? is only available for use of the functions, like
funcl, that are found in <directory>.

11.8.4 Overloading and Autoloading

Functions can be overloaded to work with different input arguments. For example, the oper-
ator '+ has been overloaded in Octave to work with single, double, uint8, int32, and many
other arguments. The preferred way to overload functions is through classes and object
oriented programming (see Section 33.4.1 [Function Overloading], page 551). Occasionally,
however, one needs to undo user overloading and call the default function associated with
a specific type. The builtin function exists for this purpose.

[...] builtin (£, ...) [Loadable Function]
Call the base function f even if f is overloaded to another function for the given type
signature.

160 GNU Octave

A single dynamically linked file might define several functions. However, as Octave
searches for functions based on the functions filename, Octave needs a manner in which to
find each of the functions in the dynamically linked file. On operating systems that support
symbolic links, it is possible to create a symbolic link to the original file for each of the
functions which it contains.

However, there is at least one well known operating system that doesn’t support symbolic
links. Making copies of the original file for each of the functions is undesirable as it increases
the amount of disk space used by Octave. Instead Octave supplies the autoload function,
that permits the user to define in which file a certain function will be found.

autoload (function, file) [Built-in Function]
Define function to autoload from file.

The second argument, file, should be an absolute file name or a file name in the same
directory as the function or script from which the autoload command was run. file
should not depend on the Octave load path.

Normally, calls to autoload appear in PKG_ADD script files that are evaluated when
a directory is added to the Octave’s load path. To avoid having to hardcode directory
names in file, if file is in the same directory as the PKG_ADD script then

autoload ("foo", "bar.oct");

will load the function foo from the file bar.oct. The above when bar.oct is not in
the same directory or uses like

autoload ("foo", file_in_loadpath ("bar.oct"))
are strongly discouraged, as their behavior might be unpredictable.

With no arguments, return a structure containing the current autoload map.

See also: [PKG_ADD], page 601.

11.8.5 Function Locking

It is sometime desirable to lock a function into memory with the mlock function. This is
typically used for dynamically linked functions in Oct-files or mex-files that contain some
initialization, and it is desirable that calling clear does not remove this initialization.

As an example,
mlock ("my_function");

prevents my_function from being removed from memory, even if clear is called. It is
possible to determine if a function is locked into memory with the mislocked, and to
unlock a function with munlock, which the following illustrates.

mlock ("my_function");
mislocked ("my_function")
= ans =1

munlock ("my_function");
mislocked ("my_function")
= ans = 0

A common use of mlock is to prevent persistent variables from being removed from
memory, as the following example shows:

Chapter 11: Functions and Scripts 161

function count_calls()
persistent calls = O;
printf ("’count_calls’ has been called %d times\n",
++calls);
endfunction
mlock ("count_calls");

count_calls ();
- ’count_calls’ has been called 1 times

clear count_calls
count_calls ();
- ’count_calls’ has been called 2 times

It is, however, often inconvenient to lock a function from the prompt, so it is also possible
to lock a function from within its body. This is simply done by calling mlock from within
the function.

function count_calls ()
mlock ();
persistent calls = O;
printf ("’count_calls’ has been called %d times\n",
++calls);
endfunction

mlock might equally be used to prevent changes to a function from having effect in
Octave, though a similar effect can be had with the ignore_function_time_stamp function.

mlock () [Built-in Function]
Lock the current function into memory so that it can’t be cleared.

See also: [munlock], page 161, [mislocked], page 161, [persistent], page 106.

munlock (fcn) [Built-in Function]
Unlock the named function. If no function is named then unlock the current function.

See also: [mlock], page 161, [mislocked], page 161, [persistent|, page 106.

mislocked (fcn) [Built-in Function]
Return true if the named function is locked. If no function is named then return true
if the current function is locked.

See also: [mlock], page 161, [munlock|, page 161, [persistent], page 106.

11.8.6 Function Precedence

Given the numerous different ways that Octave can define a function, it is possible and even
likely that multiple versions of a function, might be defined within a particular scope. The
precedence of which function will be used within a particular scope is given by

1. Subfunction A subfunction with the required function name in the given scope.

2. Private function A function defined within a private directory of the directory which
contains the current function.

162 GNU Octave

3. Class constructor A function that constuctors a user class as defined in chapter
Chapter 33 [Object Oriented Programming], page 541.

4. Class method An overloaded function of a class as in chapter Chapter 33 [Object
Oriented Programming], page 541.

5. Legacy Dispatch An overloaded function as defined by dispatch.
6. Command-line Function A function that has been defined on the command-line.

7. Autoload function A function that is marked as autoloaded with See [doc-autoload],
page 160.

8. A Function on the Path A function that can be found on the users load-path. There can
also be Oct-file, mex-file or m-file versions of this function and the precedence between
these versions are in that order.

9. Built-in function A function that is builtin to Octave itself such as numel, size, etc.

11.9 Script Files

A script file is a file containing (almost) any sequence of Octave commands. It is read and
evaluated just as if you had typed each command at the Octave prompt, and provides a
convenient way to perform a sequence of commands that do not logically belong inside a
function.

Unlike a function file, a script file must not begin with the keyword function. If it does,
Octave will assume that it is a function file, and that it defines a single function that should
be evaluated as soon as it is defined.

A script file also differs from a function file in that the variables named in a script file
are not local variables, but are in the same scope as the other variables that are visible on
the command line.

Even though a script file may not begin with the function keyword, it is possible to
define more than one function in a single script file and load (but not execute) all of them
at once. To do this, the first token in the file (ignoring comments and other white space)
must be something other than function. If you have no other statements to evaluate, you
can use a statement that has no effect, like this:

Prevent Octave from thinking that this
is a function file:

1
Define function one:

function one ()

To have Octave read and compile these functions into an internal form, you need to
make sure that the file is in Octave’s load path (accessible through the path function), then
simply type the base name of the file that contains the commands. (Octave uses the same
rules to search for script files as it does to search for function files.)

Chapter 11: Functions and Scripts 163

If the first token in a file (ignoring comments) is function, Octave will compile the func-
tion and try to execute it, printing a message warning about any non-whitespace characters
that appear after the function definition.

Note that Octave does not try to look up the definition of any identifier until it needs
to evaluate it. This means that Octave will compile the following statements if they appear
in a script file, or are typed at the command line,

not a function file:

1;

function foo ()
do_something ();

endfunction

function do_something ()
do_something_else ();

endfunction

even though the function do_something is not defined before it is referenced in the function
foo. This is not an error because Octave does not need to resolve all symbols that are
referenced by a function until the function is actually evaluated.

Since Octave doesn’t look for definitions until they are needed, the following code will
always print ‘bar = 3’ whether it is typed directly on the command line, read from a script
file, or is part of a function body, even if there is a function or script file called ‘bar.m’ in
Octave’s path.

eval ("bar = 3");
bar

Code like this appearing within a function body could fool Octave if definitions were
resolved as the function was being compiled. It would be virtually impossible to make
Octave clever enough to evaluate this code in a consistent fashion. The parser would have
to be able to perform the call to eval at compile time, and that would be impossible unless
all the references in the string to be evaluated could also be resolved, and requiring that
would be too restrictive (the string might come from user input, or depend on things that
are not known until the function is evaluated).

Although Octave normally executes commands from script files that have the name
‘file.m’, you can use the function source to execute commands from any file.

source (file) [Built-in Function]
Parse and execute the contents of file. This is equivalent to executing commands from
a script file, but without requiring the file to be named ‘file.m’.

11.10 Function Handles, Inline Functions, and Anonymous
Functions

It can be very convenient store a function in a variable so that it can be passed to a different
function. For example, a function that performs numerical minimization needs access to
the function that should be minimized.

11.10.1 Function Handles

A function handle is a pointer to another function and is defined with the syntax

164 GNU Octave

Q@function-name
For example,
f = @sin;
creates a function handle called £ that refers to the function sin.

Function handles are used to call other functions indirectly, or to pass a function as an
argument to another function like quad or fsolve. For example:

f = @sin;
quad (f, 0, pi)
= 2

You may use feval to call a function using function handle, or simply write the name
of the function handle followed by an argument list. If there are no arguments, you must
use an empty argument list ‘()’. For example:

f = 0sin;
feval (f, pi/4)
= 0.70711
f (pi/4)
= 0.70711

functions (fcn_handle) [Built-in Function]
Return a struct containing information about the function handle fcn_handle.

func2str (fcn_handle) [Built-in Function]
Return a string containing the name of the function referenced by the function handle
fen_handle.

str2func (fcn_name) [Built-in Function]

str2func (fcn_name, "global") [Built-in Function]

Return a function handle constructed from the string fcn_name. If the optional
"global" argument is passed, locally visible functions are ignored in the lookup.

11.10.2 Anonymous Functions
Anonymous functions are defined using the syntax
Q(argument-1list) expression

Any variables that are not found in the argument list are inherited from the enclosing scope.
Anonymous functions are useful for creating simple unnamed functions from expressions or
for wrapping calls to other functions to adapt them for use by functions like quad. For
example,

f =0(x) x.72;
quad (f, 0, 10)
= 333.33

creates a simple unnamed function from the expression x.~2 and passes it to quad,

quad (@(x) sin (x), 0, pi)
= 2

wraps another function, and

Chapter 11: Functions and Scripts 165

a=1;

b = 2;

quad (@(x) betainc (x, a, b), 0, 0.4)
= 0.13867

adapts a function with several parameters to the form required by quad. In this example,
the values of a and b that are passed to betainc are inherited from the current environment.

11.10.3 Inline Functions

An inline function is created from a string containing the function body using the inline
function. The following code defines the function f(x) = z? + 2.

f = inline("x"2 + 2");

After this it is possible to evaluate f at any x by writing £ (x).

inline (str) [Built-in Function]
inline (str, argi, ...) [Built-in Function]
inline (str, n) [Built-in Function]

Create an inline function from the character string str. If called with a single argu-
ment, the arguments of the generated function are extracted from the function itself.
The generated function arguments will then be in alphabetical order. It should be
noted that i, and j are ignored as arguments due to the ambiguity between their use as
a variable or their use as an inbuilt constant. All arguments followed by a parenthesis
are considered to be functions.

If the second and subsequent arguments are character strings, they are the names of
the arguments of the function.

If the second argument is an integer n, the arguments are "x", "P1" ... "PN".

See also: [argnames|, page 165, [formula], page 165, [vectorize], page 165.

argnames (fun) [Built-in Function]
Return a cell array of character strings containing the names of the arguments of the
inline function fun.

See also: [inline|, page 165, [formula], page 165, [vectorize|, page 165.

formula (fun) [Built-in Function]
Return a character string representing the inline function fun. Note that char (fun)
is equivalent to formula (fun).

See also: [argnames], page 165, [inline], page 165, [vectorize], page 165.

vectorize (fun) [Built-in Function]
Create a vectorized version of the inline function fun by replacing all occurrences of
, /, etc., with ., ./, etc.

symvar (s) [Function File]
Identifies the argument names in the function defined by a string. Common constant
names such as pi, NaN, Inf, eps, i or j are ignored. The arguments that are found
are returned in a cell array of strings. If no variables are found then the returned cell
array is empty.

166 GNU Octave

11.11 Commands

Commands are a special class of functions that only accept string input arguments. A
command can be called as an ordinary function, but it can also be called without the
parentheses. For example,

my_command hello world
is equivalent to
my_command ("hello", "world")
The general form of a command call is
cmdname argl arg2
which translates directly to
cmdname ("argl", "arg2", ...)

Any regular function can be used as a command if it accepts string input arguments.
For example:
toupper lower_case_arg
= ans = LOWER_CASE_ARG
One difficulty of commands occurs when one of the string input arguments is stored in a
variable. Because Octave can’t tell the difference between a variable name and an ordinary
string, it is not possible to pass a variable as input to a command. In such a situation a
command must be called as a function. For example:
strvar = "hello world";
toupper strvar
= ans = STRVAR
toupper (strvar)
= ans = HELLO WORLD

11.12 Organization of Functions Distributed with Octave

Many of Octave’s standard functions are distributed as function files. They are loosely
organized by topic, in subdirectories of ‘octave-home/lib/octave/version/m’, to make
it easier to find them.

The following is a list of all the function file subdirectories, and the types of functions
you will find there.

‘audio’ Functions for playing and recording sounds.
‘control’ Functions for design and simulation of automatic control systems.
‘elfun’ Elementary functions.

‘finance’ Functions for computing interest payments, investment values, and rates of
return.

‘general’ Miscellaneous matrix manipulations, like flipud, rot90, and triu, as well as
other basic functions, like ismatrix, nargchk, etc.
‘image’ Image processing tools. These functions require the X Window System.

(]

io Input-output functions.

Chapter 11: Functions and Scripts 167

‘linear-algebra’
Functions for linear algebra.

‘miscellaneous’

Functions that don’t really belong anywhere else.
‘optimization’

Minimization of functions.

‘path’ Functions to manage the directory path Octave uses to find functions.
‘pkg’ Install external packages of functions in Octave.

‘plot’ Functions for displaying and printing two- and three-dimensional graphs.
‘polynomial’

Functions for manipulating polynomials.

¢ b

set Functions for creating and manipulating sets of unique values.
‘signal’ Functions for signal processing applications.

‘sparse’ Functions for handling sparse matrices.

‘specfun’ Special functions.

‘special-matrix’
Functions that create special matrix forms.

‘startup’ Octave’s system-wide startup file.

‘statistics’
Statistical functions.

‘strings’ Miscellaneous string-handling functions.
‘testfun’ Perform unit tests on other functions.

‘time’ Functions related to time keeping.

Chapter 12: Errors and Warnings 169

12 Errors and Warnings

Octave includes several functions for printing error and warning messages. When you write
functions that need to take special action when they encounter abnormal conditions, you
should print the error messages using the functions described in this chapter.

Since many of Octave’s functions use these functions, it is also useful to understand
them, so that errors and warnings can be handled.

12.1 Handling Errors

An error is something that occurs when a program is in a state where it doesn’t make sense
to continue. An example is when a function is called with too few input arguments. In this
situation the function should abort with an error message informing the user of the lacking
input arguments.

Since an error can occur during the evaluation of a program, it is very convenient to be
able to detect that an error occurred, so that the error can be fixed. This is possible with
the try statement described in Section 10.9 [The try Statement], page 142.

12.1.1 Raising Errors

The most common use of errors is for checking input arguments to functions. The following
example calls the error function if the function f is called without any input arguments.

function f (argl)
if (nargin == 0)
error("not enough input arguments");
endif
endfunction

When the error function is called, it prints the given message and returns to the Octave
prompt. This means that no code following a call to error will be executed.

error (template, ...) [Built-in Function]

error (id, template, ...) [Built-in Function]
Format the optional arguments under the control of the template string template
using the same rules as the printf family of functions (see Section 14.2.4 [Formatted
Output], page 199) and print the resulting message on the stderr stream. The
message is prefixed by the character string ‘error: ’

Calling error also sets Octave’s internal error state such that control will return to
the top level without evaluating any more commands. This is useful for aborting from
functions or scripts.

If the error message does not end with a new line character, Octave will print a
traceback of all the function calls leading to the error. For example, given the following
function definitions:

function £ () g (); end

function g () h (); end

function h () nargin == 1 || error ("nargin != 1"); end

calling the function £ will result in a list of messages that can help you to quickly
locate the exact location of the error:

170 GNU Octave

f 0O

error: nargin != 1

error: called from:

error: error at line -1, column -1
error: h at line 1, column 27
error: g at line 1, column 15
error: f at line 1, column 15

If the error message ends in a new line character, Octave will print the message but
will not display any traceback messages as it returns control to the top level. For
example, modifying the error message in the previous example to end in a new line
causes Octave to only print a single message:

function h () nargin == 1 || error ("nargin != 1\n"); end
£ 0
error: nargin !=1

Since it is common to use errors when there is something wrong with the input to a
function, Octave supports functions to simplify such code. When the print_usage function
is called, it reads the help text of the function calling print_usage, and presents a useful
error. If the help text is written in Texinfo it is possible to present an error message that
only contains the function prototypes as described by the @deftypefn parts of the help
text. When the help text isn’t written in Texinfo, the error message contains the entire
help message.

Consider the following function.

—*x- texinfo —*-
Q@deftypefn {Function File} f (@var{argl})
Function help text goes here...
Qend deftypefn
function f (argl)

if (nargin == 0)

print_usage ();

endif

endfunction

When it is called with no input arguments it produces the following error.

Chapter 12: Errors and Warnings 171

f O

- error: Invalid call to f. Correct usage is:

_|

4 -- Function File: f (ARG1)

_|

_|

- Additional help for built-in functions and operators is

- available in the on-line version of the manual. Use the command

- ‘doc <topic>’ to search the manual index.

_|

- Help and information about Octave is also available on the WWW

< at http://www.octave.org and via the help@octave.org

- mailing list.
print_usage () [Function File]
print_usage (name) [Function File]

Print the usage message for a function. When called with no input arguments the
print_usage function displays the usage message of the currently executing function.

See also: [help], page 17.

usage (msg) [Built-in Function]
Print the message msg, prefixed by the string ‘usage: ’, and set Octave’s internal
error state such that control will return to the top level without evaluating any more
commands. This is useful for aborting from functions.

After usage is evaluated, Octave will print a traceback of all the function calls leading
to the usage message.

You should use this function for reporting problems errors that result from an im-
proper call to a function, such as calling a function with an incorrect number of
arguments, or with arguments of the wrong type. For example, most functions dis-
tributed with Octave begin with code like this

if (nargin !'= 2)
usage ("foo (a, b)");
endif

to check for the proper number of arguments.

beep () [Function File]
Produce a beep from the speaker (or visual bell).

See also: [puts], page 198, [fputs|, page 198, [printf], page 199, [fprintf], page 199.

val = beep_on_error () [Built-in Function]

old_val = beep_on_error (new_val) [Built-in Function]
Query or set the internal variable that controls whether Octave will try to ring the
terminal bell before printing an error message.

172 GNU Octave

12.1.2 Catching Errors

When an error occurs, it can be detected and handled using the try statement as described
in Section 10.9 [The try Statement|, page 142. As an example, the following piece of code
counts the number of errors that occurs during a for loop.

number_of_errors = 0;
for n = 1:100
try
catch
number_of_errors++;

end_try_catch
endfor

The above example treats all errors the same. In many situations it can however be
necessary to discriminate between errors, and take different actions depending on the error.
The lasterror function returns a structure containing information about the last error
that occurred. As an example, the code above could be changed to count the number of
errors related to the ‘*’ operator.

number_of_errors = 0;
for n = 1:100
try
catch
msg = lasterror.message;

if (strfind (msg, "operator *"))
number_of_errors++;

endif
end_try_catch
endfor
lasterr = lasterror () [Built-in Function]
lasterror (err) [Built-in Function]
lasterror (’reset’) [Built-in Function)]

Query or set the last error message. Called without any arguments returns a structure
containing the last error message, as well as other information related to this error.
The elements of this structure are:

‘message’ The text of the last error message
‘identifier’ The message identifier of this error message

"stack’ A structure containing information on where the message occurred. This
might be an empty structure if this in the case where this information
cannot be obtained. The fields of this structure are:

file’ The name of the file where the error occurred
‘name’ The name of function in which the error occurred

line’ The line number at which the error occurred

Chapter 12: Errors and Warnings 173

‘column’ An optional field with the column number at which the error
occurred

The err structure may also be passed to lasterror to set the information about the
last error. The only constraint on err in that case is that it is a scalar structure. Any
fields of err that match the above are set to the value passed in err, while other fields
are set to their default values.

If lasterror is called with the argument 'reset’, all values take their default values.

[msg, msgid] = lasterr (msg, msgid) [Built-in Function]
Without any arguments, return the last error message. With one argument, set the
last error message to msg. With two arguments, also set the last message identifier.

When an error has been handled it is possible to raise it again. This can be useful when
an error needs to be detected, but the program should still abort. This is possible using
the rethrow function. The previous example can now be changed to count the number of
errors related to the ‘*’ operator, but still abort if another kind of error occurs.

number_of_errors = 0;
for n = 1:100
try
catch
msg = lasterror.message;
if (strfind (msg, "operator *"))
number_of_errors++;
else
rethrow (lasterror);
endif

end_try_catch
endfor

rethrow (err) [Built-in Function]
Reissue a previous error as defined by err. err is a structure that must contain at
least the 'message’ and ’identifier’ fields. err can also contain a field ’stack’ that gives
information on the assumed location of the error. Typically err is returned from
lasterror.

See also: [lasterror|, page 172, [lasterr|, page 173, [error|, page 169.

err = errno () [Built-in Function]
err = errno (val) [Built-in Function]
err = errno (name) [Built-in Function]

Return the current value of the system-dependent variable errno, set its value to
val and return the previous value, or return the named error code given name as a
character string, or -1 if name is not found.

errno_list () [Built-in Function]
Return a structure containing the system-dependent errno values.

174 GNU Octave

12.2 Handling Warnings

Like an error, a warning is issued when something unexpected happens. Unlike an error,
a warning doesn’t abort the currently running program. A simple example of a warning is
when a number is divided by zero. In this case Octave will issue a warning and assign the
value Inf to the result.

a=1/0
- warning: division by zero
= a = Inf

12.2.1 Issuing Warnings

It is possible to issue warnings from any code using the warning function. In its most simple
form, the warning function takes a string describing the warning as its input argument. As
an example, the following code controls if the variable ‘a’ is non-negative, and if not issues
a warning and sets ‘a’ to zero.
a = -1;
if (a < 0)
warning ("’a’ must be non-negative. Setting ’a’ to zero.");
a=0;
endif
- ’a’ must be non-negative. Setting ’a’ to zero.

Since warnings aren’t fatal to a running program, it is not possible to catch a warning
using the try statement or something similar. It is however possible to access the last
warning as a string using the lastwarn function.

It is also possible to assign an identification string to a warning. If a warning has such
an ID the user can enable and disable this warning as will be described in the next section.
To assign an ID to a warning, simply call warning with two string arguments, where the
first is the identification string, and the second is the actual warning.

warning (template, ...) [Built-in Function]

warning (id, template, ...) [Built-in Function]
Format the optional arguments under the control of the template string template
using the same rules as the printf family of functions (see Section 14.2.4 [Formatted
Output], page 199) and print the resulting message on the stderr stream. The
message is prefixed by the character string ‘warning: ’. You should use this function
when you want to notify the user of an unusual condition, but only when it makes
sense for your program to go on.

The optional message identifier allows users to enable or disable warnings tagged by
id. The special identifier ‘"all"’ may be used to set the state of all warnings.
warning ("on", id) [Built-in Function]
warning ("off", id) [Built-in Function]
warning ("error", id) [Built-in Function]
warning ("query", id) [Built-in Function]
Set or query the state of a particular warning using the identifier id. If the identifier is
omitted, a value of ‘"all"’ is assumed. If you set the state of a warning to ‘"error"’,
the warning named by id is handled as if it were an error instead.

Chapter 12: Errors and Warnings 175

See also: [warning_ids|, page 175.

[msg, msgid] = lastwarn (msg, msgid) [Built-in Function]
Without any arguments, return the last warning message. With one argument, set
the last warning message to msg. With two arguments, also set the last message
identifier.

12.2.2 Enabling and Disabling Warnings

The warning function also allows you to control which warnings are actually printed to
the screen. If the warning function is called with a string argument that is either "on" or
"off" all warnings will be enabled or disabled.
It is also possible to enable and disable individual warnings through their string identi-
fications. The following code will issue a warning
warning ("non-negative-variable",
"’a’ must be non-negative. Setting ’a’ to zero.");

while the following won’t issue a warning

warning ("off", "non-negative-variable");
warning ("non-negative-variable",
"’a’ must be non-negative. Setting ’a’ to zero.");

The functions distributed with Octave can issue one of the following warnings.

Octave:array-to-scalar
If the Octave:array-to-scalar warning is enabled, Octave will warn when an
implicit conversion from an array to a scalar value is attempted. By default,
the Octave:array-to-scalar warning is disabled.

Octave:array-to-vector
If the Octave:array-to-vector warning is enabled, Octave will warn when an
implicit conversion from an array to a vector value is attempted. By default,
the Octave:array-to-vector warning is disabled.

Octave:assign-as—-truth-value
If the Octave:assign-as-truth-value warning is enabled, a warning is issued
for statements like

if (s = t)

since such statements are not common, and it is likely that the intent was to
write

if (s == t)

instead.

There are times when it is useful to write code that contains assignments within
the condition of a while or if statement. For example, statements like

while (c = getc())

are common in C programming.

176

Octave:

Octave:

Octave:

Octave

Octave:

Octave:

GNU Octave

It is possible to avoid all warnings about such statements by disabling the
Octave:assign-as-truth-value warning, but that may also let real errors
like

if (x = 1) # intended to test (x == 1)!

slip by.

In such cases, it is possible suppress errors for specific statements by writing
them with an extra set of parentheses. For example, writing the previous ex-
ample as

while ((c = getc()))

will prevent the warning from being printed for this statement, while allowing
Octave to warn about other assignments used in conditional contexts.

By default, the Octave:assign-as-truth-value warning is enabled.

associativity-change
If the Octave:associativity-change warning is enabled, Octave will warn
about possible changes in the meaning of some code due to changes in associa-
tivity for some operators. Associativity changes have typically been made for
MATLAB compatibility. By default, the Octave:associativity-change warn-
ing is enabled.

divide-by-zero
If the Octave:divide-by-zero warning is enabled, a warning is issued when
Octave encounters a division by zero. By default, the Octave:divide-by-zero
warning is enabled.

empty-list-elements
If the Octave:empty-list-elements warning is enabled, a warning is issued
when an empty matrix is found in a matrix list. For example:

a=1[1, [1, 3, [1, 8]

By default, the Octave:empty-list-elements warning is enabled.

:fortran-indexing

If the Octave:fortran-indexing warning is enabled, a warning is printed for
expressions which select elements of a two-dimensional matrix using a single
index. By default, the Octave:fortran-indexing warning is disabled.

function-name-clash
If the Octave:function-name-clash warning is enabled, a warning is issued
when Octave finds that the name of a function defined in a function file differs
from the name of the file. (If the names disagree, the name declared inside
the file is ignored.) By default, the Octave:function-name-clash warning is
enabled.

future-time-stamp
If the Octave:future-time-stamp warning is enabled, Octave will print a
warning if it finds a function file with a time stamp that is in the future. By
default, the Octave:future-time-stamp warning is enabled.

Chapter 12: Errors and Warnings 177

Octave:

Octave

Octave

Octave:

Octave:

Octave:

Octave:

Octave:

imag-to-real
If the Octave:imag-to-real warning is enabled, a warning is printed for
implicit conversions of complex numbers to real numbers. By default, the
Octave:imag-to-real warning is disabled.

:matlab-incompatible

Print warnings for Octave language features that may cause compatibility prob-
lems with MATLAB.

:missing-semicolon

If the Octave:missing-semicolon warning is enabled, Octave will warn when
statements in function definitions don’t end in semicolons. By default the
Octave:missing-semicolon warning is disabled.

neg-dim-as-zero
If the Octave:neg-dim-as-zero warning is enabled, print a warning for ex-
pressions like

eye (-1)

By default, the Octave:neg-dim-as-zero warning is disabled.

num-to-str
If the Octave:num-to-str warning is enable, a warning is printed for implicit
conversions of numbers to their ASCII character equivalents when strings are
constructed using a mixture of strings and numbers in matrix notation. For
example,

["fv, 111, 111 1]
= "foo"

elicits a warning if the Octave :num-to-str warning is enabled. By default, the
Octave:num-to-str warning is enabled.

precedence-change
If the Octave:precedence-change warning is enabled, Octave will warn about
possible changes in the meaning of some code due to changes in precedence
for some operators. Precedence changes have typically been made for MATLAB
compatibility. By default, the Octave:precedence-change warning is enabled.

reload-forces-clear
If several functions have been loaded from the same file, Octave must clear all
the functions before any one of them can be reloaded. If the Octave:reload-
forces-clear warning is enabled, Octave will warn you when this happens,
and print a list of the additional functions that it is forced to clear. By default,
the Octave:reload-forces-clear warning is enabled.

resize-on-range-error
If the Octave:resize-on-range-error warning is enabled, print a warning
when a matrix is resized by an indexed assignment with indices outside the
current bounds. By default, the Octave:resize-on-range-error warning is

disabled.

178 GNU Octave

Octave:separator-insert
Print warning if commas or semicolons might be inserted automatically in literal
matrices.

Octave:single-quote-string
Print warning if a single quote character is used to introduce a string constant.

Octave:str-to-num
If the Octave: str-to-num warning is enabled, a warning is printed for implicit
conversions of strings to their numeric ASCII equivalents. For example,

"abc" + 0
= 97 98 99

elicits a warning if the Octave:str-to-num warning is enabled. By default, the
Octave:str-to-num warning is disabled.

Octave:string-concat
If the Octave:string-concat warning is enabled, print a warning when con-
catenating a mixture of double and single quoted strings. By default, the
Octave:string-concat warning is disabled.

Octave:undefined-return-values
If the Octave:undefined-return-values warning is disabled, print a warning
if a function does not define all the values in the return list which are expected.
By default, the Octave:undefined-return-values warning is enabled.

Octave:variable-switch-label
If the Octave:variable-switch-label warning is enabled, Octave will print a
warning if a switch label is not a constant or constant expression. By default,
the Octave:variable-switch-label warning is disabled.

Chapter 13: Debugging 179

13 Debugging

Octave includes a built-in debugger to aid in the development of scripts. This can be used
to interrupt the execution of an Octave script at a certain point, or when certain conditions
are met. Once execution has stopped, and debug mode is entered, the symbol table at the
point where execution has stopped can be examined and modified to check for errors.

The normal command-line editing and history functions are available in debug mode.

13.1 Entering Debug Mode

There are two basic means of interrupting the execution of an Octave script. These are
breakpoints see Section 13.3 [Breakpoints|, page 180, discussed in the next section and
interruption based on some condition.

Octave supports three means to stop execution based on the values set in the functions
debug_on_interrupt, debug_on_warning and debug_on_error.

val = debug_on_interrupt () [Built-in Function]

old_val = debug_on_interrupt (new_val) [Built-in Function]
Query or set the internal variable that controls whether Octave will try to enter
debugging mode when it receives an interrupt signal (typically generated with C-c).
If a second interrupt signal is received before reaching the debugging mode, a normal
interrupt will occur.

val = debug_on_warning () [Built-in Function]

old_val = debug_on_warning (new_val) [Built-in Function]
Query or set the internal variable that controls whether Octave will try to enter the
debugger when a warning is encountered.

val = debug_on_error () [Built-in Function]

old_val = debug_on_error (new_val) [Built-in Function]
Query or set the internal variable that controls whether Octave will try to enter the
debugger when an error is encountered. This will also inhibit printing of the normal
traceback message (you will only see the top-level error message).

13.2 Leaving Debug Mode

To leave the debug mode, use either dbcont or return.

dbcont [Command]
In debugging mode, quit debugging mode and continue execution.

See also: [dbstep], page 182, [dbquit], page 179.
To quit debug mode and return directly to the prompt dbquit should be used instead

dbquit [Command]|
In debugging mode, quit debugging mode and return to the top level.
See also: [dbstep|, page 182, [dbcont], page 179.

Finally, typing exit or quit at the debug prompt will result in Octave terminating
normally.

180 GNU Octave

13.3 Breakpoints

Breakpoints can be set in any Octave function, using the dbstop function.

rline = dbstop (func, line, ...) [Loadable Function]
Set a breakpoint in a function

func String representing the function name. When already in debug mode this
should be left out and only the line should be given.

line Line number you would like the breakpoint to be set on. Multiple lines
might be given as separate arguments or as a vector.

The rline returned is the real line that the breakpoint was set at.

See also: [dbclear], page 180, [dbstatus], page 180, [dbstep], page 182.

Note that breakpoints cannot be set in built-in functions (e.g., sin, etc.) or dynamically
loaded function (i.e., oct-files). To set a breakpoint immediately on entering a function,
the breakpoint should be set to line 1. The leading comment block will be ignored and the
breakpoint will be set to the first executable statement in the function. For example:

dbstop ("asind", 1)

= 27
Note that the return value of 27 means that the breakpoint was effectively set to line 27.
The status of breakpoints in a function can be queried with the dbstatus function.

1st = dbstatus (func) [Loadable Function]
Return a vector containing the lines on which a function has breakpoints set.

func String representing the function name. When already in debug mode this
should be left out.

See also: [dbclear], page 180, [dbwhere], page 181.

Taking the above as an example, dbstatus ("asind") should return 27. The breakpoints
can then be cleared with the dbclear function

dbclear (func, line, ...) [Loadable Function]
Delete a breakpoint in a function

func String representing the function name. When already in debug mode this
should be left out and only the line should be given.

line Line number where you would like to remove the breakpoint. Multiple
lines might be given as separate arguments or as a vector.

No checking is done to make sure that the line you requested is really a breakpoint.
If you get the wrong line nothing will happen.

See also: [dbstop], page 180, [dbstatus|, page 180, [dbwhere], page 181.

These functions can be used to clear all the breakpoints in a function. For example:
dbclear ("asind", dbstatus ("asind"));

A breakpoint can be set in a subfunction. For example if a file contains the functions

Chapter 13: Debugging 181

function y = funcl (x)
y = func2 (x);
endfunction
function y = func2 (x)
y =x + 1;
endfunction
then a breakpoint can be set at the start of the subfunction directly with
dbstop (["funcl", filemarker(), "func2"])
= 5
Note that filemarker returns a character that marks the subfunctions from the file
containing them.
Another simple way of setting a breakpoint in an Octave script is the use of the keyboard
function.

keyboard () [Built-in Function]

keyboard (prompt) [Built-in Function]
This function is normally used for simple debugging. When the keyboard function
is executed, Octave prints a prompt and waits for user input. The input strings are
then evaluated and the results are printed. This makes it possible to examine the
values of variables within a function, and to assign new values if necessary. To leave
the prompt and return to normal execution type ‘return’ or ‘dbcont’. The keyboard
function does not return an exit status.

If keyboard is invoked without arguments, a default prompt of ‘debug> ’ is used.

See also: [dbcont], page 179, [dbquit], page 179.

The keyboard function is typically placed in a script at the point where the user desires
that the execution is stopped. It automatically sets the running script into the debug mode.

13.4 Debug Mode

There are two additional support functions that allow the user to interrogate where in the
execution of a script Octave entered the debug mode and to print the code in the script
surrounding the point where Octave entered debug mode.

dbwhere () [Loadable Function]
Show where we are in the code
See also: [dbclear], page 180, [dbstatus], page 180, [dbstop], page 180.

dbtype () [Loadable Function]

List script file with line numbers.

See also: [dbclear], page 180, [dbstatus|, page 180, [dbstop], page 180.
You may also use isdebugmode to determine whether the debugger is currently active.

isdebugmode () [Loadable Function]
Return true if debug mode is on, otherwise false.

See also: [dbstack|, page 182, [dbclear], page 180, [dbstop]|, page 180, [dbstatus],
page 180.

182 GNU Octave

Debug mode also allows single line stepping through a function using the commands
dbstep.

dbstep [Command]|
dbstep n [Command]|
dbstep in [Command]|
dbstep out [Command]|

In debugging mode, execute the next n lines of code. If n is omitted , execute the
next single line of code. If the next line of code is itself defined in terms of an m-file
remain in the existing function.

Using dbstep in will cause execution of the next line to step into any m-files defined
on the next line. Using dbstep out will cause execution to continue until the current
function returns.

See also: [dbcont], page 179, [dbquit], page 179.

13.5 Call Stack

[stack, idx] dbstack (n) [Loadable Function]
Print or return current stack information. With optional argument n, omit the n
innermost stack frames.

See also: [dbclear], page 180, [dbstatus], page 180, [dbstop], page 180.

dbup [Loadable Function]

dbup (n) [Loadable Function]
In debugging mode, move up the execution stack n frames. If n is omitted, move up
one frame.

See also: [dbstack], page 182.

dbdown [Loadable Function]

dbdown (n) [Loadable Function]
In debugging mode, move down the execution stack n frames. If n is omitted, move
down one frame.

See also: [dbstack], page 182.

Chapter 14: Input and Output 183

14 Input and Output

Octave supports several ways of reading and writing data to or from the prompt or a file.
The simplest functions for data Input and Output (I/O) are easy to use, but only provides
limited control of how data is processed. For more control, a set of functions modelled after
the C standard library are also provided by Octave.

14.1 Basic Input and Output

14.1.1 Terminal Output

Since Octave normally prints the value of an expression as soon as it has been evaluated, the
simplest of all I/O functions is a simple expression. For example, the following expression
will display the value of ‘pi’
pi
4 pi = 3.1416
This works well as long as it is acceptable to have the name of the variable (or ‘ans’)
printed along with the value. To print the value of a variable without printing its name,
use the function disp.

The format command offers some control over the way Octave prints values with disp
and through the normal echoing mechanism.

disp (x) [Built-in Function]
Display the value of x. For example:

disp ("The value of pi is:"), disp (pi)

- the value of pi is:
- 3.1416

Note that the output from disp always ends with a newline.

If an output value is requested, disp prints nothing and returns the formatted output
in a string.

See also: [fdisp], page 192.

format [Command|

format options [Command]|
Reset or specify the format of the output produced by disp and Octave’s normal
echoing mechanism. This command only affects the display of numbers but not how
they are stored or computed. To change the internal representation from the default
double use one of the conversion functions such as single, uint8, int64, etc.

By default, Octave displays 5 significant digits in a human readable form (option
‘short’ paired with ‘loose’ format for matrices). If format is invoked without any
options, this default format is restored.

Valid formats for floating point numbers are listed in the following table.

short Fixed point format with 5 significant figures in a field that is a maximum
of 10 characters wide. (default).

184

long

short e
long e

short E
long E

short g
long g

short eng
long eng

long G
short G

free
none

GNU Octave

If Octave is unable to format a matrix so that columns line up on the
decimal point and all numbers fit within the maximum field width then
it switches to an exponential ‘e’ format.

Fixed point format with 15 significant figures in a field that is a maximum
of 20 characters wide.

As with the ‘short’ format, Octave will switch to an exponential ‘e’
format if it is unable to format a matrix properly using the current format.

Exponential format. The number to be represented is split between a
mantissa and an exponent (power of 10). The mantissa has 5 significant
digits in the short format and 15 digits in the long format. For example,
with the ‘short e’ format, pi is displayed as 3.1416e+00.

Identical to ‘short e’ or ‘long e’ but displays an uppercase ‘E’ to indicate
the exponent. For example, with the ‘long E’ format, pi is displayed as
3.14159265358979E+00.

Optimally choose between fixed point and exponential format based on
the magnitude of the number. For example, with the ‘short g’ format,
pi .~ [2; 4; 8; 16; 32] is displayed as

ans =

9.8696
97.409
9488.5
9.0032e+07
8.1058e+15

Identical to ‘short e’ or ‘long e’ but displays the value using an engi-
neering format, where the exponent is divisible by 3. For example, with
the ‘short eng’ format, 10 * pi is displayed as 31.4159e+00.

Identical to ‘short g’ or ‘long g’ but displays an uppercase ‘E’ to indicate
the exponent.

Print output in free format, without trying to line up columns of matrices
on the decimal point. This also causes complex numbers to be format-
ted as numeric pairs like this ‘(0.60419, 0.60709)’ instead of like this
‘0.60419 + 0.607091".

The following formats affect all numeric output (floating point and integer types).

Chapter 14: Input and Output 185

+

+ chars

plus

plus chars
Print a ‘+’ symbol for nonzero matrix elements and a space for zero matrix
elements. This format can be very useful for examining the structure of
a large sparse matrix.

The optional argument chars specifies a list of 3 characters to use for
printing values greater than zero, less than zero and equal to zero. For
example, with the ‘+ "+-." format, [1, 0, -1; -1, 0, 1] is displayed

as
ans =
+.-
-. +

bank Print in a fixed format with two digits to the right of the decimal point.

native-hex
Print the hexadecimal representation of numbers as they are stored in
memory. For example, on a workstation which stores 8 byte real values
in IEEE format with the least significant byte first, the value of pi when
printed in native-hex format is 400921fb54442d18.

hex The same as native-hex, but always print the most significant byte first.

native-bit
Print the bit representation of numbers as stored in memory. For example,
the value of pi is

01000000000010010010000111111011
01010100010001000010110100011000

(shown here in two 32 bit sections for typesetting purposes) when printed
in native-bit format on a workstation which stores 8 byte real values in
IEEE format with the least significant byte first.

bit The same as native-bit, but always print the most significant bits first.

rat Print a rational approximation, i.e., values are approximated as the ratio
of small integers. For example, with the ‘rat’ format, pi is displayed as
355/113.

The following two options affect the display of all matrices.

compact Remove extra blank space around column number labels producing more
compact output with more data per page.

loose Insert blank lines above and below column number labels to produce a
more readable output with less data per page. (default).

See also: [fixed_point_format], page 42, [output_max_field_width], page 41,
[output_precision], page 41, [split_long_rows|, page 42, [rats], page 345.

186 GNU Octave

14.1.1.1 Paging Screen Output

When running interactively, Octave normally sends any output intended for your terminal
that is more than one screen long to a paging program, such as less or more. This avoids
the problem of having a large volume of output stream by before you can read it. With
less (and some versions of more) you can also scan forward and backward, and search for
specific items.

Normally, no output is displayed by the pager until just before Octave is ready to print
the top level prompt, or read from the standard input (for example, by using the fscanf or
scanf functions). This means that there may be some delay before any output appears on
your screen if you have asked Octave to perform a significant amount of work with a single
command statement. The function £flush may be used to force output to be sent to the
pager (or any other stream) immediately.

You can select the program to run as the pager using the PAGER function, and you can
turn paging off by using the function more.

more [Command]|
more on [Command]|
more off [Command]|

Turn output pagination on or off. Without an argument, more toggles the current
state. The current state can be determined via page_screen_output.

val = PAGER () [Built-in Function]

old_val = PAGER (new_val) [Built-in Function]
Query or set the internal variable that specifies the program to use to display ter-
minal output on your system. The default value is normally "less", "more", or
"pg", depending on what programs are installed on your system. See Appendix G
[Installation|, page 677.

See also: [more|, page 186, [page_screen_output], page 186, [page_output_immediately],[]
page 186, [PAGER_FLAGS], page 186.

val = PAGER_FLAGS () [Built-in Function]
old_val = PAGER_FLAGS (new_val) [Built-in Function]
Query or set the internal variable that specifies the options to pass to the pager.

See also: [PAGER], page 186.

val = page_screen_output () [Built-in Function]

old_val = page_screen_output (new_val) [Built-in Function]
Query or set the internal variable that controls whether output intended for the
terminal window that is longer than one page is sent through a pager. This allows
you to view one screenful at a time. Some pagers (such as less—see Appendix G
[Installation], page 677) are also capable of moving backward on the output.

val = page_output_immediately () [Built-in Function]

val = page_output_immediately (new_val) [Built-in Function]
Query or set the internal variable that controls whether Octave sends output to the
pager as soon as it is available. Otherwise, Octave buffers its output and waits until
just before the prompt is printed to flush it to the pager.

Chapter 14: Input and Output 187

fflush (fid) [Built-in Function]
Flush output to fid. This is useful for ensuring that all pending output makes it to
the screen before some other event occurs. For example, it is always a good idea to
flush the standard output stream before calling input.

fflush returns 0 on success and an OS dependent error value (—1 on Unix) on error.

See also: [fopen|, page 196, [fclose], page 198.

14.1.2 Terminal Input

Octave has three functions that make it easy to prompt users for input. The input and
menu functions are normally used for managing an interactive dialog with a user, and the
keyboard function is normally used for doing simple debugging.

input (prompt) [Built-in Function]
input (prompt, "s") [Built-in Function]
Print a prompt and wait for user input. For example,
input ("Pick a number, any number! ")
prints the prompt

Pick a number, any number!

and waits for the user to enter a value. The string entered by the user is evaluated
as an expression, so it may be a literal constant, a variable name, or any other valid
expression.

Currently, input only returns one value, regardless of the number of values produced
by the evaluation of the expression.

If you are only interested in getting a literal string value, you can call input with the
character string "s" as the second argument. This tells Octave to return the string
entered by the user directly, without evaluating it first.

Because there may be output waiting to be displayed by the pager, it is a good
idea to always call £flush (stdout) before calling input. This will ensure that all
pending output is written to the screen before your prompt. See Chapter 14 [Input
and Output], page 183.

menu (title, optl, ...) [Function File]
Print a title string followed by a series of options. Each option will be printed along
with a number. The return value is the number of the option selected by the user.
This function is useful for interactive programs. There is no limit to the number of
options that may be passed in, but it may be confusing to present more than will fit
easily on one screen.

See also: [disp|, page 183, [printf], page 199, [input], page 187.

yes_or_no (prompt) [Built-in Function]
Ask the user a yes-or-no question. Return 1 if the answer is yes. Takes one argu-
ment, which is the string to display to ask the question. It should end in a space;
‘yes-or-no-p’ adds ‘(yes or no) ’ to it. The user must confirm the answer with
RET and can edit it until it has been confirmed.

188 GNU Octave

For input, the normal command line history and editing functions are available at the
prompt.

Octave also has a function that makes it possible to get a single character from the
keyboard without requiring the user to type a carriage return.

kbhit () [Built-in Function]

Read a single keystroke from the keyboard. If called with one argument, don’t wait
for a keypress. For example,

x = kbhit Q;
will set x to the next character typed at the keyboard as soon as it is typed.

x = kbhit (1);
identical to the above example, but don’t wait for a keypress, returning the empty
string if no key is available.

14.1.3 Simple File I/O

The save and load commands allow data to be written to and read from disk files in various
formats. The default format of files written by the save command can be controlled using
the functions default_save_options and save_precision.
As an example the following code creates a 3-by-3 matrix and saves it to the file
‘myfile.mat’.
A=1[1:3; 4:6; 7:9 1;
save myfile.mat A
Once one or more variables have been saved to a file, they can be read into memory
using the load command.

load myfile.mat

A
4 A=
4
4 1 2 3
4 4 5 6
4 7 8 9
save file [Command]
save options file [Command|
save options file vl v2 ... [Command]|
save options file -struct STRUCT £1 £2 ... [Command]
Save the named variables vI, v2, ..., in the file file. The special filename ‘-’ may

be used to write output to the terminal. If no variable names are listed, Octave
saves all the variables in the current scope. Otherwise, full variable names or pattern
syntax can be used to specify the variables to save. If the ‘-struct’ modifier is used,
fields f1 f2 ... of the scalar structure STRUCT are saved as if they were variables
with corresponding names. Valid options for the save command are listed in the
following table. Options that modify the output format override the format specified
by default_save_options.

If save is invoked using the functional form

Chapter 14: Input and Output 189

save ("-optionl", ..., "file", "v1i", ...)

then the options, file, and variable name arguments (v1, ...) must be specified as
character strings.

-—ascii Save a single matrix in a text file without header or any other information.
-binary Save the data in Octave’s binary data format.

-float-binary
Save the data in Octave’s binary data format but only using single pre-
cision. Only use this format if you know that all the values to be saved
can be represented in single precision.

-hdf5 Save the data in HDF5 format. (HDF5 is a free, portable binary format
developed by the National Center for Supercomputing Applications at
the University of Illinois.) This format is only available if Octave was
built with a link to the HDF5 libraries.

-float-hdf5
Save the data in HDF5 format but only using single precision. Only use
this format if you know that all the values to be saved can be represented
in single precision.

-V7
-v7
-7
-mat7-binary
Save the data in MATLAB’s v7 binary data format.

-Vé
-v6
-6
-mat
-mat-binary
Save the data in MATLAB’s v6 binary data format.

-mat4-binary
Save the data in the binary format written by MATLAB version 4.

-text Save the data in Octave’s text data format. (default).
-zip
-z Use the gzip algorithm to compress the file. This works equally on files

that are compressed with gzip outside of octave, and gzip can equally be
used to convert the files for backward compatibility. This option is only
available if Octave was built with a link to the zlib libraries.

The list of variables to save may use wildcard patterns containing the following special
characters:

? Match any single character.

190 GNU Octave

* Match zero or more characters.

[I1ist] Match the list of characters specified by list. If the first character is !
or ~, match all characters except those specified by list. For example,
the pattern [a-zA-Z] will match all lower and upper case alphabetic
characters.

Wildcards may also be used in the field name specifications when using
the ‘-struct’ modifier (but not in the struct name itself).

Except when using the MATLAB binary data file format or the ‘-ascii’ format, saving

global variables also saves the global status of the variable. If the variable is restored

at a later time using ‘load’, it will be restored as a global variable.

The command

save -binary data a bx*

saves the variable ‘a’ and all variables beginning with ‘b’ to the file ‘data’ in Octave’s

binary format.
See also: [load], page 190, [default_save_options], page 191, [dlmread], page 193,
[csvread], page 194, [fread], page 208.
load file [Command]
load options file [Command]
load options file v1 v2 ... [Command]
S = load ("options", "file", "vI", "v2" ...) [Command]

Load the named variables v1, v2, ..., from the file file. If no variables are specified

then all variables found in the file will be loaded. As with save, the list of variables
to extract can be full names or use a pattern syntax. The format of the file is
automatically detected but may be overridden by supplying the appropriate option.

If load is invoked using the functional form
load ("-optionl", ..., "file", "v1i", ...)

then the options, file, and variable name arguments (v1, ...) must be specified as
character strings.

If a variable that is not marked as global is loaded from a file when a global symbol
with the same name already exists, it is loaded in the global symbol table. Also, if
a variable is marked as global in a file and a local symbol exists, the local symbol is
moved to the global symbol table and given the value from the file.

If invoked with a single output argument, Octave returns data instead of insert-
ing variables in the symbol table. If the data file contains only numbers (TAB- or
space-delimited columns), a matrix of values is returned. Otherwise, load returns a
structure with members corresponding to the names of the variables in the file.

The load command can read data stored in Octave’s text and binary formats,
and MATLAB’s binary format. If compiled with zlib support, it can also load
gzip-compressed files. It will automatically detect the type of file and do conversion
from different floating point formats (currently only IEEE big and little endian,
though other formats may be added in the future).

Valid options for load are listed in the following table.

Chapter 14: Input and Output 191

-force This option is accepted for backward compatibility but is ignored. Octave
now overwrites variables currently in memory with those of the same name
found in the file.

-—ascii Force Octave to assume the file contains columns of numbers in text
format without any header or other information. Data in the file will be
loaded as a single numeric matrix with the name of the variable derived
from the name of the file.

-binary Force Octave to assume the file is in Octave’s binary format.

-hdf5 Force Octave to assume the file is in HDF5 format. (HDF5 is a free,
portable binary format developed by the National Center for Supercom-
puting Applications at the University of Illinois.) Note that Octave can
read HDF5 files not created by itself, but may skip some datasets in for-
mats that it cannot support. This format is only available if Octave was
built with a link to the HDF5 libraries.

-import This option is accepted for backward compatibility but is ignored. Octave
can now support multi-dimensional HDF data and automatically modifies
variable names if they are invalid Octave identifiers.

-mat

-mat-binary

-6

-v6

-7

-v7 Force Octave to assume the file is in MATLAB’s version 6 or 7 binary
format.

-mat4-binary

-4

-v4

-v4 Force Octave to assume the file is in the binary format written by MATLAB
version 4.

-text Force Octave to assume the file is in Octave’s text format.

See also: [save|, page 188, [dlmwrite], page 192, [csvwrite], page 193, [fwrite], page 210.

There are three functions that modify the behavior of save.

val = default_save_options () [Built-in Function]
old_val = default_save_options (new_val) [Built-in Function]
Query or set the internal variable that specifies the default options for the save
command, and defines the default format. Typical values include "-ascii", "-text

-zip". The default value is ‘-text’.

See also: [save|, page 188.

val = save_precision () [Built-in Function]

old_val = save_precision (new_val) [Built-in Function]
Query or set the internal variable that specifies the number of digits to keep when
saving data in text format.

192 GNU Octave

val = save_header_format_string () [Built-in Function]
old_val = save_header_format_string (new_val) [Built-in Function]
Query or set the internal variable that specifies the format string used for the comment
line written at the beginning of text-format data files saved by Octave. The format
string is passed to strftime and should begin with the character ‘#’ and contain no
newline characters. If the value of save_header_format_string is the empty string,
the header comment is omitted from text-format data files. The default value is
"# Created by Octave VERSION, %a %b %d %H:%M:%S %Y %Z <USER@HOST>"

See also: [strftime], page 563, [save], page 188.

native_float_format () [Built-in Function]
Return the native floating point format as a string

It is possible to write data to a file in a similar way to the disp function for writing data
to the screen. The fdisp works just like disp except its first argument is a file pointer as
created by fopen. As an example, the following code writes to data ‘myfile.txt’.

fid = fopen ("myfile.txt", "w");
fdisp (fid, "3/8 is ");

fdisp (fid, 3/8);

fclose (fid);

See Section 14.2.1 [Opening and Closing Files], page 196, for details on how to use fopen
and fclose.

fdisp (fid, x) [Built-in Function]
Display the value of x on the stream fid. For example:

fdisp (stdout, "The value of pi is:"), fdisp (stdout, pi)

- the value of pi is:
- 3.1416

Note that the output from fdisp always ends with a newline.

See also: [disp|, page 183.
Octave can also read and write matrices text files such as comma separated lists.

dlmwrite (file, M) [Function File]

dlmwrite (file, M, delim, r, c) [Function File]

dlmwrite (file, M, key, val ...) [Function File]

dlmwrite (file, M, "-append", ...) [Function File]
Write the matrix M to the named file using delimiters.

file should be a file name or writable file ID given by fopen.
The parameter delim specifies the delimiter to use to separate values on a row.

The value of r specifies the number of delimiter-only lines to add to the start of the
file.

The value of ¢ specifies the number of delimiters to prepend to each line of data.
If the argument "-append" is given, append to the end of the file.

In addition, the following keyword value pairs may appear at the end of the argument
list:

Chapter 14: Input and Output 193

data
data
data
data
data

"append" Either ‘"on"’ or ‘"off"’. See ‘"-append"’ above.

"delimiter"
See delim above.

"newline" The character(s) to use to separate each row. Three special cases exist for
this option. ‘"unix"’ is changed into \n’, ‘"pc"’ is changed into \r\n’,
and ‘"mac"’ is changed into '\r’. Other values for this option are kept as

is.

"roffset" See r above.
"coffset" See ¢ above.
"precision"

The precision to use when writing the file. It can either be a format string
(as used by fprintf) or a number of significant digits.

dlmwrite ("file.csv", reshape (1:16, 4, 4));

dlmwrite ("file.tex", a, "delimiter", "&", "newline", "\\n")

See also: [dlmread], page 193, [csvread], page 194, [csvwrite], page 193.

= dlmread (file) [Loadable Function]
= dlmread (file, sep) [Loadable Function]
= dlmread (file, sep, r0, c0) [Loadable Function]
= dlmread (file, sep, range) [Loadable Function]

]

= dlmread (..., "emptyvalue", EMPTYVAL) [Loadable Function
Read the matrix data from a text file. If not defined the separator between fields is
determined from the file itself. Otherwise the separation character is defined by sep.

Given two scalar arguments r0 and c0, these define the starting row and column of
the data to be read. These values are indexed from zero, such that the first row
corresponds to an index of zero.

The range parameter may be a 4-element vector containing the upper left and lower
right corner [RO,CO0,R1,C1] where the lowest index value is zero. Alternatively,
a spreadsheet style range such as "A2..Q15” or "T1:AA5’ can be used. The lowest
alphabetical index ’A’ refers to the first column. The lowest row index is 1.

file should be a file name or file id given by fopen. In the latter case, the file is read
until end of file is reached.

The "emptyvalue" option may be used to specify the value used to fill empty fields.
The default is zero.

See also: [csvread], page 194, [textscan], page 194, [textread], page 194, [dlmwrite],
page 192.

csvwrite (filename, x) [Function File]
csvwrite (filename, x, d1lm_opts) [Function File]

Write the matrix x to the file filename in comma-separated-value format.
This function is equivalent to

dlmwrite (filename, x, ",", ...)

See also: [csvread], page 194, [dlmwrite], page 192, [dlmread], page 193.

194

>
]

GNU Octave
= csvread (filename) [Function File]
csvread (filename, dlm_opts) [Function File]

Read the comma-separated-value file filename into the matrix x.
This function is equivalent to

x = dlmread (filename, "," , ...)

See also: [csvwrite], page 193, [dlmread], page 193, [dlmwrite], page 192.

Formatted data from can be read from, or written to, text files as well.

[a,
[a,
[a,

MmO QaQQa

C, position] = textscan (...)

..] = textread (filename) [Function File]
...] = textread (filename, format) [Function File]
..] = textread (filename, format, propl, valuel, ...) [Function File]

Read data from a text file.

The file filename is read and parsed according to format. The function behaves like
strread except it works by parsing a file instead of a string. See the documentation
of strread for details. In addition to the options supported by strread, this function
supports one more:

e "headerlines":

The first value number of lines of str are skipped.

See also: [strread], page 67, [load], page 190, [dlmread], page 193, [fscanf], page 204.

textscan (fid, format) [Function File]
textscan (fid, format, n) [Function File]

= textscan (fid, format, param, value, ...) [Function File]
textscan (fid, format, n, param, value, ...) [Function File]
textscan (str, ...) [Function File]

[]

Function File
Read data from a text file.

The file associated with fid is read and parsed according to format. The function
behaves like strread except it works by parsing a file instead of a string. See the doc-
umentation of strread for details. In addition to the options supported by strread,
this function supports one more:

e "headerlines":

The first value number of lines of str are skipped.

The optional input, n, specifes the number of lines to be read from the file, associated
with fid.

The output, C, is a cell array whose length is given by the number of format specifiers.

The second output, position, provides the position, in characters, from the beginning
of the file.

See also: [dlmread], page 193, [fscanf], page 204, [load|, page 190, [strread], page 67,
[textread], page 194.

Chapter 14: Input and Output 195

14.1.3.1 Saving Data on Unexpected Exits

If Octave for some reason exits unexpectedly it will by default save the variables available in
the workspace to a file in the current directory. By default this file is named ‘octave-core’
and can be loaded into memory with the load command. While the default behavior most
often is reasonable it can be changed through the following functions.

val = crash_dumps_octave_core () [Built-in Function]

old_val = crash_dumps_octave_core (new_val) [Built-in Function]
Query or set the internal variable that controls whether Octave tries to save all current
variables to the file "octave-core" if it crashes or receives a hangup, terminate or
similar signal.

See also: [octave_core_file_limit], page 195, [octave_core_file_name]|, page 195,
[octave_core_file_options|, page 195.

val = sighup_dumps_octave_core () [Built-in Function]

old_val = sighup_dumps_octave_core (new_val) [Built-in Function]
Query or set the internal variable that controls whether Octave tries to save all current
variables to the file "octave-core" if it receives a hangup signal.

val = sigterm_dumps_octave_core () [Built-in Function]

old_val = sigterm_dumps_octave_core (new_val) [Built-in Function]
Query or set the internal variable that controls whether Octave tries to save all current
variables to the file "octave-core" if it receives a terminate signal.

val = octave_core_file_options () [Built-in Function]

old_val = octave_core_file_options (new_val) [Built-in Function]
Query or set the internal variable that specifies the options used for saving the
workspace data if Octave aborts. The value of octave_core_file_options should
follow the same format as the options for the save function. The default value is
Octave’s binary format.

See also: [crash_dumps_octave_core|, page 195, [octave_core_file_name|, page 195,
[octave_core_file_limit], page 195.

val = octave_core_file_limit () [Built-in Function]

old_val = octave_core_file_limit (new_val) [Built-in Function]
Query or set the internal variable that specifies the maximum amount of memory (in
kilobytes) of the top-level workspace that Octave will attempt to save when writing
data to the crash dump file (the name of the file is specified by octave_core_file_name).
If octave_core_file_options flags specify a binary format, then octave_core_file_limit
will be approximately the maximum size of the file. If a text file format is used, then
the file could be much larger than the limit. The default value is -1 (unlimited)

See also: [crash_dumps_octave_core|, page 195, [octave_core_file_name|, page 195,
[octave_core_file_options|, page 195.

val = octave_core_file_name () [Built-in Function]

old_val = octave_core_file_name (new_val) [Built-in Function]
Query or set the internal variable that specifies the name of the file used for saving
data from the top-level workspace if Octave aborts. The default value is "octave-
core"

196 GNU Octave

See also: [crash_dumps_octave_core|, page 195, [octave_core_file_name|, page 195,
[octave_core_file_options|, page 195.

14.2 C-Style I/O Functions

Octave’s C-style input and output functions provide most of the functionality of the C
programming language’s standard 1/O library. The argument lists for some of the input
functions are slightly different, however, because Octave has no way of passing arguments
by reference.

In the following, file refers to a file name and fid refers to an integer file number, as
returned by fopen.

There are three files that are always available. Although these files can be accessed using
their corresponding numeric file ids, you should always use the symbolic names given in the
table below, since it will make your programs easier to understand.

stdin () [Built-in Function]
Return the numeric value corresponding to the standard input stream. When Octave
is used interactively, this is filtered through the command line editing functions.

See also: [stdout], page 196, [stderr], page 196.

stdout () [Built-in Function]
Return the numeric value corresponding to the standard output stream. Data written
to the standard output is normally filtered through the pager.

See also: [stdin], page 196, [stderr], page 196.

stderr () [Built-in Function]
Return the numeric value corresponding to the standard error stream. Even if paging
is turned on, the standard error is not sent to the pager. It is useful for error messages
and prompts.

See also: [stdin|, page 196, [stdout], page 196.

14.2.1 Opening and Closing Files

When reading data from a file it must be opened for reading first, and likewise when writing
to a file. The fopen function returns a pointer to an open file that is ready to be read or
written. Once all data has been read from or written to the opened file it should be closed.
The fclose function does this. The following code illustrates the basic pattern for writing
to a file, but a very similar pattern is used when reading a file.

filename = "myfile.txt";

fid = fopen (filename, "w");
Do the actual I/0 here...
fclose (fid);

[fid, msg] = fopen (name, mode, arch) [Built-in Function]
fid_list = fopen ("all") [Built-in Function]
[file, mode, arch] = fopen (fid) [Built-in Function]

The first form of the fopen function opens the named file with the specified mode
(read-write, read-only, etc.) and architecture interpretation (IEEE big endian, IEEE

Chapter 14: Input and Output 197

little endian, etc.), and returns an integer value that may be used to refer to the file
later. If an error occurs, fid is set to —1 and msg contains the corresponding system
error message. The mode is a one or two character string that specifies whether the
file is to be opened for reading, writing, or both.

The second form of the fopen function returns a vector of file ids corresponding to
all the currently open files, excluding the stdin, stdout, and stderr streams.

The third form of the fopen function returns information about the open file given
its file id.

For example,
myfile = fopen ("splat.dat", "r", "ieee-le");

opens the file ‘splat.dat’ for reading. If necessary, binary numeric values will be
read assuming they are stored in IEEE format with the least significant bit first, and
then converted to the native representation.

Opening a file that is already open simply opens it again and returns a separate file
id. It is not an error to open a file several times, though writing to the same file
through several different file ids may produce unexpected results.

The possible values ‘mode’ may have are

‘r’ Open a file for reading.

‘w’ Open a file for writing. The previous contents are discarded.

‘a’ Open or create a file for writing at the end of the file.

‘r+’ Open an existing file for reading and writing.

‘w+’ Open a file for reading or writing. The previous contents are discarded.
‘at’ Open or create a file for reading or writing at the end of the file.

Append a "t" to the mode string to open the file in text mode or a "b" to open in
binary mode. On Windows and Macintosh systems, text mode reading and writing
automatically converts linefeeds to the appropriate line end character for the system
(carriage-return linefeed on Windows, carriage-return on Macintosh). The default if
no mode is specified is binary mode.

Additionally, you may append a "z" to the mode string to open a gzipped file for
reading or writing. For this to be successful, you must also open the file in binary
mode.

The parameter arch is a string specifying the default data format for the file. Valid
values for arch are:
‘native’ The format of the current machine (this is the default).
‘ieee-be’ IEEE big endian format.
‘ieee-le’ IEEE little endian format.
‘vaxd’ VAX D floating format.
‘vaxg’ VAX G floating format.

‘cray’ Cray floating format.

198 GNU Octave

however, conversions are currently only supported for ‘native’ ‘ieee-be’, and
‘ieee-1le’ formats.

See also: [fclose], page 198, [fgets], page 199, [fputs], page 198, [fread], page 208,
[fseek], page 212, [ferror]|, page 212, [fprintf], page 199, [fscanf], page 204, [ftell],
page 212, [fwrite], page 210.

fclose (fid) [Built-in Function]
Close the specified file. If successful, fclose returns 0, otherwise, it returns -1.

See also: [fopen|, page 196, [fseek], page 212, [ftell], page 212.

is_valid_file_id (fid) [Function File]
Return true if fid refers to an open file.

See also: [fopen], page 196.
14.2.2 Simple Output

Once a file has been opened for writing a string can be written to the file using the fputs
function. The following example shows how to write the string ‘Free Software is needed
for Free Science’ to the file ‘free.txt’.

filename = "free.txt";

fid = fopen (filename, "w");

fputs (fid, "Free Software is needed for Free Science");

fclose (fid);

fputs (fid, string) [Built-in Function]
Write a string to a file with no formatting.
Return a non-negative number on success and EOF on error.

See also: [scanf], page 205, [sscanf], page 205, [fread], page 208, [fprintf], page 199,
[fgets], page 199, [fscanf], page 204.

A function much similar to fputs is available for writing data to the screen. The puts
function works just like fputs except it doesn’t take a file pointer as its input.

puts (string) [Built-in Function]
Write a string to the standard output with no formatting.

Return a non-negative number on success and EOF on error.

14.2.3 Line-Oriented Input

To read from a file it must be opened for reading using fopen. Then a line can be read
from the file using fgetl as the following code illustrates

fid = fopen ("free.txt");
txt = fgetl (fid)

- Free Software is needed for Free Science
fclose (fid);

This of course assumes that the file ‘free.txt’ exists and contains the line ‘Free Software
is needed for Free Science’.

Chapter 14: Input and Output 199

fgetl (fid, len) [Built-in Function]
Read characters from a file, stopping after a newline, or EOF, or len characters have
been read. The characters read, excluding the possible trailing newline, are returned
as a string.

If len is omitted, fgetl reads until the next newline character.

If there are no more characters to read, fgetl returns —1.

See also: [fread], page 208, [fscanf], page 204.

fgets (fid, len) [Built-in Function]
Read characters from a file, stopping after a newline, or EOF, or len characters have
been read. The characters read, including the possible trailing newline, are returned
as a string.

If len is omitted, fgets reads until the next newline character.

If there are no more characters to read, fgets returns —1.

See also: [fputs], page 198, [fopen], page 196, [fread], page 208, [fscanf], page 204.

fskipl (fid, count) [Built-in Function]
Skip a given number of lines, i.e., discards characters until an end-of-line is met exactly
count-times, or end-of-file occurs. Returns the number of lines skipped (end-of-line
sequences encountered). If count is omitted, it defaults to 1. count may also be Inf,
in which case lines are skipped to the end of file. This form is suitable for counting
lines in a file.

See also: [fgetl], page 198, [fgets], page 199.

14.2.4 Formatted Output
This section describes how to call printf and related functions.

The following functions are available for formatted output. They are modelled after the
C language functions of the same name, but they interpret the format template differently
in order to improve the performance of printing vector and matrix values.

printf (template, ...) [Built-in Function]
Print optional arguments under the control of the template string template to the
stream stdout and return the number of characters printed.

See the Formatted Output section of the GNU Octave manual for a complete descrip-
tion of the syntax of the template string.

See also: [fprintf], page 199, [sprintf], page 200, [scanf], page 205.

fprintf (fid, template, ...) [Built-in Function]
This function is just like printf, except that the output is written to the stream fid
instead of stdout. If fid is omitted, the output is written to stdout.

See also: [printf], page 199, [sprintf], page 200, [fread], page 208, [fscanf]|, page 204,
[fopen], page 196, [fclose], page 198.

200 GNU Octave

sprintf (template, ...) [Built-in Function]
This is like printf, except that the output is returned as a string. Unlike the C
library function, which requires you to provide a suitably sized string as an argument,
Octave’s sprintf function returns the string, automatically sized to hold all of the
items converted.

See also: [printf], page 199, [fprintf], page 199, [sscanf], page 205.

The printf function can be used to print any number of arguments. The template
string argument you supply in a call provides information not only about the number of
additional arguments, but also about their types and what style should be used for printing
them.

Ordinary characters in the template string are simply written to the output stream
as-is, while conversion specifications introduced by a ‘%’ character in the template cause
subsequent arguments to be formatted and written to the output stream. For example,

pct = 37;

filename = "foo.txt";

printf ("Processed %d%% of ‘J%s’.\nPlease be patient.\n",
pct, filename);

produces output like

Processed 37% of ‘foo.txt’.
Please be patient.

This example shows the use of the ‘%d’ conversion to specify that a scalar argument
should be printed in decimal notation, the ‘%s’ conversion to specify printing of a string
argument, and the ‘%%’ conversion to print a literal ‘%’ character.

There are also conversions for printing an integer argument as an unsigned value in
octal, decimal, or hexadecimal radix (‘%0’, ‘%u’, or ‘%x’, respectively); or as a character
value (‘%c’).

Floating-point numbers can be printed in normal, fixed-point notation using the ‘%f’
conversion or in exponential notation using the ‘%e’ conversion. The ‘%g’ conversion uses
either ‘%e’ or ‘%f’ format, depending on what is more appropriate for the magnitude of the
particular number.

You can control formatting more precisely by writing modifiers between the ‘%’ and
the character that indicates which conversion to apply. These slightly alter the ordinary
behavior of the conversion. For example, most conversion specifications permit you to
specify a minimum field width and a flag indicating whether you want the result left- or
right-justified within the field.

The specific flags and modifiers that are permitted and their interpretation vary de-
pending on the particular conversion. They’re all described in more detail in the following
sections.

14.2.5 Output Conversion for Matrices

When given a matrix value, Octave’s formatted output functions cycle through the format
template until all the values in the matrix have been printed. For example:

Chapter 14: Input and Output 201

printf ("%4.2f %10.2e %8.4g\n", hilb (3));

4+ 1.00 5.00e-01 0.3333
-4 0.50 3.33e-01 0.25
-4 0.33 2.50e-01 0.2

If more than one value is to be printed in a single call, the output functions do not
return to the beginning of the format template when moving on from one value to the next.
This can lead to confusing output if the number of elements in the matrices are not exact
multiples of the number of conversions in the format template. For example:

printf ("%4.2f %10.2e %8.4g\n", [1, 2], [3, 41);

-4 1.00 2.00e+00 3
- 4.00

If this is not what you want, use a series of calls instead of just one.

14.2.6 Output Conversion Syntax

This section provides details about the precise syntax of conversion specifications that can
appear in a printf template string.

Characters in the template string that are not part of a conversion specification are
printed as-is to the output stream.

The conversion specifications in a printf template string have the general form:
% flags width [. precision | type conversion

For example, in the conversion specifier ‘%-10.81d’, the ‘=’ is a flag, ‘10’ specifies the field
width, the precision is ‘8", the letter ‘1’ is a type modifier, and ‘d’ specifies the conversion
style. (This particular type specifier says to print a numeric argument in decimal notation,
with a minimum of 8 digits left-justified in a field at least 10 characters wide.)

In more detail, output conversion specifications consist of an initial ‘%’ character followed
in sequence by:
e Zero or more flag characters that modify the normal behavior of the conversion speci-
fication.

e An optional decimal integer specifying the minimum field width. If the normal conver-

sion produces fewer characters than this, the field is padded with spaces to the specified
width. This is a minimum value; if the normal conversion produces more characters
than this, the field is not truncated. Normally, the output is right-justified within the
field.
You can also specify a field width of ‘*’. This means that the next argument in the
argument list (before the actual value to be printed) is used as the field width. The
value is rounded to the nearest integer. If the value is negative, this means to set the
‘=’ flag (see below) and to use the absolute value as the field width.

e An optional precision to specify the number of digits to be written for the numeric
conversions. If the precision is specified, it consists of a period (‘.”) followed optionally
by a decimal integer (which defaults to zero if omitted).

You can also specify a precision of ‘*’. This means that the next argument in the
argument list (before the actual value to be printed) is used as the precision. The value
must be an integer, and is ignored if it is negative.

202

GNU Octave

e An optional type modifier character. This character is ignored by Octave’s printf
function, but is recognized to provide compatibility with the C language printf.

e A character that specifies the conversion to be applied.

The exact options that are permitted and how they are interpreted vary between the
different conversion specifiers. See the descriptions of the individual conversions for infor-
mation about the particular options that they use.

14.2.7 Table of Output Conversions

Here is a table summarizing what all the different conversions do:

‘%d’7 ‘%i’

(%07

L%u7

Upo?’ t%x7

(%f?

4%677 ‘%E’

4%g7’ e

‘%C’

(%57

C%%?

Print an integer as a signed decimal number. See Section 14.2.8 [Integer Con-
versions|, page 203, for details. ‘%d’ and ‘%1i’ are synonymous for output, but are
different when used with scanf for input (see Section 14.2.13 [Table of Input
Conversions|, page 206).

Print an integer as an unsigned octal number. See Section 14.2.8 [Integer Con-
versions|, page 203, for details.

Print an integer as an unsigned decimal number. See Section 14.2.8 [Integer
Conversions|, page 203, for details.

Print an integer as an unsigned hexadecimal number. ‘%x’ uses lower-case letters
and ‘%X’ uses upper-case. See Section 14.2.8 [Integer Conversions|, page 203,
for details.

Print a floating-point number in normal (fixed-point) notation. See
Section 14.2.9 [Floating-Point Conversions|, page 203, for details.

Print a floating-point number in exponential notation. ‘%e’ uses lower-case let-
ters and ‘%E’ uses upper-case. See Section 14.2.9 [Floating-Point Conversions],
page 203, for details.

Print a floating-point number in either normal (fixed-point) or exponential no-
tation, whichever is more appropriate for its magnitude. ‘%g’ uses lower-case
letters and ‘%G’ uses upper-case. See Section 14.2.9 [Floating-Point Conver-
sions|, page 203, for details.

Print a single character. See Section 14.2.10 [Other Output Conversions|,
page 204.

Print a string. See Section 14.2.10 [Other Output Conversions|, page 204.

Print a literal ‘%’ character. See Section 14.2.10 [Other Output Conversions],
page 204.

If the syntax of a conversion specification is invalid, unpredictable things will happen,
so don’t do this. If there aren’t enough function arguments provided to supply values for
all the conversion specifications in the template string, or if the arguments are not of the
correct types, the results are unpredictable. If you supply more arguments than conversion
specifications, the extra argument values are simply ignored; this is sometimes useful.

Chapter 14: Input and Output 203

14.2.8 Integer Conversions

This section describes the options for the ‘%d’, ‘%i’, ‘%o’, ‘%u’, ‘%x’, and ‘%X’ conversion
)) b bl)
specifications. These conversions print integers in various formats.

The ‘%d’ and ‘%i’ conversion specifications both print an numeric argument as a signed
decimal number; while ‘%o0’, ‘%u’, and ‘%x’ print the argument as an unsigned octal, decimal,
or hexadecimal number (respectively). The ‘%X’ conversion specification is just like ‘%x’
except that it uses the characters ‘ABCDEF’ as digits instead of ‘abcdef’.

The following flags are meaningful:
Left-justify the result in the field (instead of the normal right-justification).
4 For the signed ‘%d’ and ‘%i’ conversions, print a plus sign if the value is positive.

For the signed ‘%d’ and ‘%i’ conversions, if the result doesn’t start with a plus
or minus sign, prefix it with a space character instead. Since the ‘+’ flag ensures
that the result includes a sign, this flag is ignored if you supply both of them.

‘# For the ‘%0’ conversion, this forces the leading digit to be ‘0’, as if by increasing
the precision. For ‘%%’ or ‘%X’, this prefixes a leading ‘0x’ or ‘0X’ (respectively) to
the result. This doesn’t do anything useful for the ‘%d’, ‘%i’, or ‘%u’ conversions.

‘0’ Pad the field with zeros instead of spaces. The zeros are placed after any
indication of sign or base. This flag is ignored if the ‘-’ flag is also specified, or
if a precision is specified.

If a precision is supplied, it specifies the minimum number of digits to appear; leading
zeros are produced if necessary. If you don’t specify a precision, the number is printed with
as many digits as it needs. If you convert a value of zero with an explicit precision of zero,
then no characters at all are produced.

14.2.9 Floating-Point Conversions

This section discusses the conversion specifications for floating-point numbers: the ‘%f’,
‘%he’, “hE’, ‘hg’, and ‘%G’ conversions.

The ‘%f’ conversion prints its argument in fixed-point notation, producing output of the
form [-]ddd.ddd, where the number of digits following the decimal point is controlled by
the precision you specify.

The ‘%e’ conversion prints its argument in exponential notation, producing output of
the form [-]d.ddde[+|-]dd. Again, the number of digits following the decimal point is
controlled by the precision. The exponent always contains at least two digits. The ‘%E’
conversion is similar but the exponent is marked with the letter ‘E’ instead of ‘e’.

The ‘%g’ and ‘%G’ conversions print the argument in the style of ‘%e’ or ‘4E’ (respectively)
if the exponent would be less than -4 or greater than or equal to the precision; otherwise
they use the ‘%f’ style. Trailing zeros are removed from the fractional portion of the result
and a decimal-point character appears only if it is followed by a digit.

The following flags can be used to modify the behavior:
=’ Left-justify the result in the field. Normally the result is right-justified.

+ Always include a plus or minus sign in the result.

204 GNU Octave

If the result doesn’t start with a plus or minus sign, prefix it with a space
instead. Since the ‘+’ flag ensures that the result includes a sign, this flag is
ignored if you supply both of them.

‘# Specifies that the result should always include a decimal point, even if no digits
follow it. For the ‘%g’ and ‘%G’ conversions, this also forces trailing zeros after
the decimal point to be left in place where they would otherwise be removed.

‘0’ Pad the field with zeros instead of spaces; the zeros are placed after any sign.
This flag is ignored if the ‘-’ flag is also specified.

The precision specifies how many digits follow the decimal-point character for the ‘%f’,
‘he’, and ‘%4E’ conversions. For these conversions, the default precision is 6. If the precision
is explicitly 0, this suppresses the decimal point character entirely. For the ‘%g’ and ‘%G’
conversions, the precision specifies how many significant digits to print. Significant digits
are the first digit before the decimal point, and all the digits after it. If the precision is 0
or not specified for ‘%g’ or ‘%G’ it is treated like a value of 1. If the value being printed
cannot be expressed precisely in the specified number of digits, the value is rounded to the
nearest number that fits.

14.2.10 Other Output Conversions

This section describes miscellaneous conversions for printf.

The ‘%c’ conversion prints a single character. The ‘=’ flag can be used to specify left-

justification in the field, but no other flags are defined, and no precision or type modifier
can be given. For example:

printf ("%C%C%C%C%C", llh"’ ||ell, "1"’ lll"’ "O") ;
prints ‘hello’.

The ‘%s’ conversion prints a string. The corresponding argument must be a string. A
precision can be specified to indicate the maximum number of characters to write; otherwise
characters in the string up to but not including the terminating null character are written
to the output stream. The ‘-’ flag can be used to specify left-justification in the field, but
no other flags or type modifiers are defined for this conversion. For example:

printf ("%3s%-6s", "no", "where");

prints ‘ nowhere ’ (note the leading and trailing spaces).

14.2.11 Formatted Input

Octave provides the scanf, fscanf, and sscanf functions to read formatted input. There
are two forms of each of these functions. One can be used to extract vectors of data from
a file, and the other is more ‘C-like’.

[val, count] = fscanf (fid, template, size) [Built-in Function]

[vi, v2, ..., count] = fscanf (fid, template, "C") [Built-in Function]
In the first form, read from fid according to template, returning the result in the
matrix val.

The optional argument size specifies the amount of data to read and may be one of

Inf Read as much as possible, returning a column vector.

Chapter 14: Input and Output 205

nr Read up to nr elements, returning a column vector.

[nr, Inf] Read as much as possible, returning a matrix with nr rows. If the number
of elements read is not an exact multiple of nr, the last column is padded
with zeros.

[nr, nc] Read up to nr * nc elements, returning a matrix with nr rows. If the
number of elements read is not an exact multiple of nr, the last column
is padded with zeros.

If size is omitted, a value of Inf is assumed.
A string is returned if template specifies only character conversions.
The number of items successfully read is returned in count.

In the second form, read from fid according to template, with each conversion specifier
in template corresponding to a single scalar return value. This form is more ‘C-like’,
and also compatible with previous versions of Octave. The number of successful
conversions is returned in count

See the Formatted Input section of the GNU Octave manual for a complete description
of the syntax of the template string.

See also: [scanf], page 205, [sscanf], page 205, [fread], page 208, [fprintf], page 199,
[fgets], page 199, [fputs], page 198.

[val, count] = scanf (template, size) [Built-in Function]
[vi, v2, ..., count]] = scanf (template, "C") [Built-in Function]
This is equivalent to calling fscanf with fid = stdin.

It is currently not useful to call scanf in interactive programs.

See also: [fscanf], page 204, [sscanf], page 205, [printf], page 199.

[val, count] = sscanf (string, template, size) [Built-in Function]
[vi, v2, ..., count] = sscanf (string, template, "C") [Built-in Function]
This is like fscanf, except that the characters are taken from the string string instead
of from a stream. Reaching the end of the string is treated as an end-of-file condition.

See also: [fscanf], page 204, [scanf], page 205, [sprintf], page 200.

Calls to scanf are superficially similar to calls to printf in that arbitrary arguments are
read under the control of a template string. While the syntax of the conversion specifications
in the template is very similar to that for printf, the interpretation of the template is
oriented more towards free-format input and simple pattern matching, rather than fixed-
field formatting. For example, most scanf conversions skip over any amount of “white
space” (including spaces, tabs, and newlines) in the input file, and there is no concept
of precision for the numeric input conversions as there is for the corresponding output
conversions. Ordinarily, non-whitespace characters in the template are expected to match
characters in the input stream exactly.

When a matching failure occurs, scanf returns immediately, leaving the first non-
matching character as the next character to be read from the stream, and scanf returns all
the items that were successfully converted.

206 GNU Octave

The formatted input functions are not used as frequently as the formatted output func-
tions. Partly, this is because it takes some care to use them properly. Another reason is
that it is difficult to recover from a matching error.

14.2.12 Input Conversion Syntax

A scanf template string is a string that contains ordinary multibyte characters interspersed
with conversion specifications that start with ‘%’.

Any whitespace character in the template causes any number of whitespace characters
in the input stream to be read and discarded. The whitespace characters that are matched
need not be exactly the same whitespace characters that appear in the template string. For
example, write ¢ , ’ in the template to recognize a comma with optional whitespace before
and after.

Other characters in the template string that are not part of conversion specifications
must match characters in the input stream exactly; if this is not the case, a matching
failure occurs.

The conversion specifications in a scanf template string have the general form:
% flags width type conversion

In more detail, an input conversion specification consists of an initial ‘%’ character fol-
lowed in sequence by:

e An optional flag character ‘*’, which says to ignore the text read for this specification.
When scanf finds a conversion specification that uses this flag, it reads input as directed
by the rest of the conversion specification, but it discards this input, does not return
any value, and does not increment the count of successful assignments.

e An optional decimal integer that specifies the maximum field width. Reading of char-
acters from the input stream stops either when this maximum is reached or when a
non-matching character is found, whichever happens first. Most conversions discard
initial whitespace characters, and these discarded characters don’t count towards the
maximum field width. Conversions that do not discard initial whitespace are explicitly
documented.

e An optional type modifier character. This character is ignored by Octave’s scanf
function, but is recognized to provide compatibility with the C language scanf.

e A character that specifies the conversion to be applied.

The exact options that are permitted and how they are interpreted vary between the
different conversion specifiers. See the descriptions of the individual conversions for infor-
mation about the particular options that they allow.

14.2.13 Table of Input Conversions

Here is a table that summarizes the various conversion specifications:

“hd’ Matches an optionally signed integer written in decimal. See Section 14.2.14
[Numeric Input Conversions|, page 207.

hi’ Matches an optionally signed integer in any of the formats that the C language
defines for specifying an integer constant. See Section 14.2.14 [Numeric Input
Conversions|, page 207.

Chapter 14: Input and Output 207

‘%ho’ Matches an unsigned integer written in octal radix. See Section 14.2.14 [Nu-
meric Input Conversions], page 207.

hu’ Matches an unsigned integer written in decimal radix. See Section 14.2.14
[Numeric Input Conversions|, page 207.

%x’, KX’ Matches an unsigned integer written in hexadecimal radix. See Section 14.2.14
[Numeric Input Conversions|, page 207.

‘%e’, ‘%f’7 c%ga’ ‘%E’, ‘%G’
Matches an optionally signed floating-point number. See Section 14.2.14 [Nu-
meric Input Conversions], page 207.

s’ Matches a string containing only non-whitespace characters. See Section 14.2.15
[String Input Conversions|, page 207.

“he’ Matches a string of one or more characters; the number of characters read is con-
trolled by the maximum field width given for the conversion. See Section 14.2.15
[String Input Conversions], page 207.

Ut This matches a literal ‘)’ character in the input stream. No corresponding
argument is used.

If the syntax of a conversion specification is invalid, the behavior is undefined. If there
aren’t enough function arguments provided to supply addresses for all the conversion spec-
ifications in the template strings that perform assignments, or if the arguments are not of
the correct types, the behavior is also undefined. On the other hand, extra arguments are
simply ignored.

14.2.14 Numeric Input Conversions

This section describes the scanf conversions for reading numeric values.
The ‘%d’ conversion matches an optionally signed integer in decimal radix.

The ‘%1’ conversion matches an optionally signed integer in any of the formats that the
C language defines for specifying an integer constant.

For example, any of the strings ‘10’, ‘Oxa’, or ‘012’ could be read in as integers under
the ‘%i’ conversion. Each of these specifies a number with decimal value 10.

The ‘%o’, ‘%u’, and ‘%x’ conversions match unsigned integers in octal, decimal, and hex-
adecimal radices, respectively.

The ‘%X’ conversion is identical to the ‘%x’ conversion. They both permit either uppercase
or lowercase letters to be used as digits.

Unlike the C language scanf, Octave ignores the ‘h’; ‘1’, and ‘L’ modifiers.

14.2.15 String Input Conversions

This section describes the scanf input conversions for reading string and character values:
‘%s’ and ‘%c’.

The ‘%c’ conversion is the simplest: it matches a fixed number of characters, always. The
maximum field with says how many characters to read; if you don’t specify the maximum,
the default is 1. This conversion does not skip over initial whitespace characters. It reads
precisely the next n characters, and fails if it cannot get that many.

208 GNU Octave

The ‘%s’ conversion matches a string of non-whitespace characters. It skips and dis-
cards initial whitespace, but stops when it encounters more whitespace after having read
something.

For example, reading the input:

hello, world

with the conversion ‘%10c’ produces " hello, wo", but reading the same input with the
conversion ‘%10s’ produces "hello,".

14.2.16 Binary I/0

Octave can read and write binary data using the functions fread and fwrite, which are
patterned after the standard C functions with the same names. They are able to automat-
ically swap the byte order of integer data and convert among the supported floating point
formats as the data are read.

[val, count] = fread (fid, size, precision, skip, arch) [Built-in Function]
Read binary data of type precision from the specified file ID fid.

The optional argument size specifies the amount of data to read and may be one of
Inf Read as much as possible, returning a column vector.
nr Read up to nr elements, returning a column vector.

[nr, Inf] Read as much as possible, returning a matrix with nr rows. If the number
of elements read is not an exact multiple of nr, the last column is padded
with zeros.

[nr, nc] Read up to nr * nc elements, returning a matrix with nr rows. If the
number of elements read is not an exact multiple of nr, the last column
is padded with zeros.

If size is omitted, a value of Inf is assumed.

The optional argument precision is a string specifying the type of data to read and
may be one of

"schar"
"signed char"
Signed character.

"uchar"
"unsigned char"
Unsigned character.

llint8ll
"integer®1"

8-bit signed integer.
"int16"
"integer*2"

16-bit signed integer.
"int32"
"integer*4"

32-bit signed integer.

Chapter 14: Input and Output 209

"int64"
"integer*8"

64-bit signed integer.
"uint8" 8-bit unsigned integer.

"uint16" 16-bit unsigned integer.
"uint32" 32-bit unsigned integer.
"uint64" 64-bit unsigned integer.

"single"

"float32"

"real*4" 32-bit floating point number.

"double"

"float64"

"real*8" 64-bit floating point number.

llchar|'

"char*1" Single character.

"short" Short integer (size is platform dependent).
"int" Integer (size is platform dependent).
"long" Long integer (size is platform dependent).
"ushort"

"unsigned short"
Unsigned short integer (size is platform dependent).

"uint"
"unsigned int"
Unsigned integer (size is platform dependent).

IIUIOngll
"unsigned long"
Unsigned long integer (size is platform dependent).

"float" Single precision floating point number (size is platform dependent).

The default precision is "uchar".

The precision argument may also specify an optional repeat count. For example,
‘32*single’ causes fread to read a block of 32 single precision floating point numbers.
Reading in blocks is useful in combination with the skip argument.

The precision argument may also specify a type conversion. For example,
‘int16=>int32’ causes fread to read 16-bit integer values and return an array of
32-bit integer values. By default, fread returns a double precision array. The special
form ‘*TYPE’ is shorthand for ‘TYPE=>TYPE’.

The conversion and repeat counts may be combined. For example, the specification
‘32*single=>single’ causes fread to read blocks of single precision floating point
values and return an array of single precision values instead of the default array of
double precision values.

210

GNU Octave

The optional argument skip specifies the number of bytes to skip after each element
(or block of elements) is read. If it is not specified, a value of 0 is assumed. If the
final block read is not complete, the final skip is omitted. For example,

fread (f, 10, "3*single=>single", 8)

will omit the final 8-byte skip because the last read will not be a complete block of 3
values.

The optional argument arch is a string specifying the data format for the file. Valid
values are

"native" The format of the current machine.

"jeee-be"
IEEE big endian.

"ieee-le"
IEEE little endian.

"vaxd" VAX D floating format.
"vaxg" VAX G floating format.
"cray" Cray floating format.

Conversions are currently only supported for "ieee-be" and "ieee-1le" formats.

The data read from the file is returned in val, and the number of values read is
returned in count

See also: [fwrite], page 210, [fopen|, page 196, [fclose], page 198.

count = fwrite (fid, data, precision, skip, arch) [Built-in Function]

Write data in binary form of type precision to the specified file ID fid, returning the
number of values successfully written to the file.

The argument data is a matrix of values that are to be written to the file. The values
are extracted in column-major order.

The remaining arguments precision, skip, and arch are optional, and are interpreted
as described for fread.

The behavior of fwrite is undefined if the values in data are too large to fit in the
specified precision.

See also: [fread], page 208, [fopen]|, page 196, [fclose], page 198.

14.2.17 Temporary Files

Sometimes one needs to write data to a file that is only temporary. This is most commonly
used when an external program launched from within Octave needs to access data. When
Octave exits all temporary files will be deleted, so this step need not be executed manually.

[fid, name, msg] = mkstemp (template, delete) [Built-in Function]

Return the file ID corresponding to a new temporary file with a unique name created
from template. The last six characters of template must be XXXXXX and these are
replaced with a string that makes the filename unique. The file is then created with
mode read /write and permissions that are system dependent (on GNU /Linux systems,

Chapter 14: Input and Output 211

the permissions will be 0600 for versions of glibc 2.0.7 and later). The file is opened
with the 0_EXCL flag.

If the optional argument delete is supplied and is true, the file will be deleted auto-
matically when Octave exits, or when the function purge_tmp_files is called.

If successful, fid is a valid file ID, name is the name of the file, and msg is an empty
string. Otherwise, fid is -1, name is empty, and msg contains a system-dependent
error message.

See also: [tmpfile], page 211, [tmpnam], page 211, [P_tmpdir|, page 577.

[fid, msg] = tmpfile () [Built-in Function]
Return the file ID corresponding to a new temporary file with a unique name. The file
is opened in binary read/write ("w+b") mode. The file will be deleted automatically
when it is closed or when Octave exits.

If successful, fid is a valid file ID and msg is an empty string. Otherwise, fid is -1
and msg contains a system-dependent error message.

See also: [tmpnam]|, page 211, [mkstemp], page 210, [P_tmpdir], page 577.

tmpnam () [Built-in Function]
tmpnam (dir) [Built-in Function]
tmpnam (dir, prefix) [Built-in Function]

Return a unique temporary file name as a string.

If prefix is omitted, a value of "oct-" is used. If dir is also omitted, the default
directory for temporary files is used. If dir is provided, it must exist, otherwise the
default directory for temporary files is used. Since the named file is not opened, by
tmpnam, it is possible (though relatively unlikely) that it will not be available by the
time your program attempts to open it.

See also: [tmpfile], page 211, [mkstemp], page 210, [P_tmpdir|, page 577.

14.2.18 End of File and Errors

Once a file has been opened its status can be acquired. As an example the feof functions
determines if the end of the file has been reached. This can be very useful when reading
small parts of a file at a time. The following example shows how to read one line at a time
from a file until the end has been reached.

filename = "myfile.txt";

fid = fopen (filename, "r");

while (! feof (fid))
text_line = fgetl (fid);

endwhile

fclose (fid);

Note that in some situations it is more efficient to read the entire contents of a file and then
process it, than it is to read it line by line. This has the potential advantage of removing
the loop in the above code.

212 GNU Octave

feof (fid) [Built-in Function]
Return 1 if an end-of-file condition has been encountered for a given file and 0 other-
wise. Note that it will only return 1 if the end of the file has already been encountered,
not if the next read operation will result in an end-of-file condition.

See also: [fread], page 208, [fopen], page 196, [fclose], page 198.

lerr, msg] = ferror (fid, "clear") [Built-in Function]
Return 1 if an error condition has been encountered for the file ID fid and 0 otherwise.
Note that it will only return 1 if an error has already been encountered, not if the
next operation will result in an error condition.

The second argument is optional. If it is supplied, also clear the error condition.

fclear (fid) [Built-in Function]
Clear the stream state for the specified file.

freport () [Built-in Function]
Print a list of which files have been opened, and whether they are open for reading,
writing, or both. For example:

freport ()
- number mode mname
_{
= 0 r stdin
= 1 w stdout
= 2 w stderr
o 3 r myfile

14.2.19 File Positioning

Three functions are available for setting and determining the position of the file pointer for
a given file.

ftell (fid) [Built-in Function]
Return the position of the file pointer as the number of characters from the beginning
of the file fid.

See also: [fseek], page 212, [fopen|, page 196, [fclose|, page 198.

fseek (fid, offset, origin) [Built-in Function]
Set the file pointer to any location within the file fid.
The pointer is positioned offset characters from the origin, which may be one of the
predefined variables SEEK_CUR (current position), SEEK_SET (beginning), or SEEK_END
(end of file) or strings "cof", "bof" or "eof". If origin is omitted, SEEK_SET is assumed.
The offset must be zero, or a value returned by ftell (in which case origin must be
SEEK_SET).

Return 0 on success and -1 on error.

See also: [ftell], page 212, [fopen], page 196, [fclose], page 198.

Chapter 14: Input and Output 213

SEEK_SET () [Built-in Function]
SEEK_CUR () [Built-in Function]
SEEK_END () [Built-in Function]

Return the value required to request that fseek perform one of the following actions:
SEEK_SET Position file relative to the beginning.

SEEK_CUR Position file relative to the current position.

SEEK_END Position file relative to the end.

frewind (fid) [Built-in Function]
Move the file pointer to the beginning of the file fid, returning 0 for success, and -1 if
an error was encountered. It is equivalent to fseek (fid, 0, SEEK_SET).

The following example stores the current file position in the variable marker, moves the
pointer to the beginning of the file, reads four characters, and then returns to the original
position.

marker = ftell (myfile);

frewind (myfile);

fourch = fgets (myfile, 4);

fseek (myfile, marker, SEEK_SET);

Chapter 15: Plotting 215

15 Plotting

15.1 Introduction to Plotting

Earlier versions of Octave provided plotting through the use of gnuplot. This capability is
still available. But, a newer plotting capability is provided by access to OpenGL. Which
plotting system is used is controlled by the graphics_toolkit function. (See Section 15.4.6
[Graphics Toolkits], page 298.)

The function call graphics_toolkit ("f1ltk") selects the FLTK/OpenGL system, and
graphics_toolkit ("gnuplot") selects the gnuplot system. The two systems may be used
selectively through the use of the graphics_toolkit property of the graphics handle for
each figure. This is explained in Section 15.3 [Graphics Data Structures], page 263.

15.2 High-Level Plotting

Octave provides simple means to create many different types of two- and three-dimensional
plots using high-level functions.

If you need more detailed control, see Section 15.3 [Graphics Data Structures|, page 263
and Section 15.4 [Advanced Plotting], page 285.

15.2.1 Two-Dimensional Plots

The plot function allows you to create simple x-y plots with linear axes. For example,

x = -10:0.1:10;

plot (x, sin (x));
displays a sine wave shown in Figure 15.1. On most systems, this command will open a
separate plot window to display the graph.

Figure 15.1: Simple Two-Dimensional Plot.

plot (y) [Function File]
plot (x,y) [Function File]

216

plot (x, y, property, value, ...)

plot (h, ...)

GNU Octave

Function File

Function File

[]
plot (x, y, fmt) [Function File]
[]
[]

h = plot (...)

Function File
Produce two-dimensional plots.

Many different combinations of arguments are possible. The simplest form is

plot (y)
where the argument is taken as the set of y coordinates and the x coordinates are
taken to be the indices of the elements starting with 1.

To save a plot, in one of several image formats such as PostScript or PNG, use the
print command.

If more than one argument is given, they are interpreted as
plot (y, property, value, ...)

or
plot (x, y, property, value, ...)

or
plot (x, y, fmt, ...)

and so on. Any number of argument sets may appear. The x and y values are
interpreted as follows:

e If a single data argument is supplied, it is taken as the set of y coordinates and
the x coordinates are taken to be the indices of the elements, starting with 1.

e If the x is a vector and y is a matrix, then the columns (or rows) of y are plotted
versus x. (using whichever combination matches, with columns tried first.)

e If the x is a matrix and y is a vector, y is plotted versus the columns (or rows)
of x. (using whichever combination matches, with columns tried first.)

e If both arguments are vectors, the elements of y are plotted versus the elements
of x.

e If both arguments are matrices, the columns of y are plotted versus the columns
of x. In this case, both matrices must have the same number of rows and columns
and no attempt is made to transpose the arguments to make the number of rows
match.

If both arguments are scalars, a single point is plotted.
Multiple property-value pairs may be specified, but they must appear in pairs. These
arguments are applied to the lines drawn by plot.
If the fit argument is supplied, it is interpreted as follows. If fit is missing, the
default gnuplot line style is assumed.
= Set lines plot style (default).
© Set dots plot style.

n Interpreted as the plot color if n is an integer in the range 1 to 6.

nm If nm is a two digit integer and m is an integer in the range 1 to 6, m is
interpreted as the point style. This is only valid in combination with the
@ or -@ specifiers.

Chapter 15: Plotting 217

‘¢’ If ¢ is one of "k" (black), "r" (red), "g" (green), "b" (blue), "m" (ma-
genta), "c" (cyan), or "w" (whlte), it is interpreted as the line plot color.

‘Mititle;
Here "title" is the label for the key.

4+?

(*7

LO7

4X7

i Used in combination with the points or linespoints styles, set the point
style.

‘@’ Select the next unused point style.

The fmt argument may also be used to assign key titles. To do so, include the desired
title between semi-colons after the formatting sequence described above, e.g., "+3;Key
Title;" Note that the last semi-colon is required and will generate an error if it is left
out.

Here are some plot examples:

plot (x, y, "@12", x, y2, x, y3, "4", x, y4, "+")
This command will plot y with points of type 2 (displayed as ‘+’) and color 1 (red),
y2 with lines, y3 with lines of color 4 (magenta) and y4 with points displayed as ‘+’.

plot (b, "*", "markersize", 3)
This command will plot the data in the variable b, with points displayed as ‘*’ with
a marker size of 3.

=0:0.1:6.3;

plot (t, cos(t), "—;cos(t);", t, sin(t), "+3;sin(t);");
This will plot the cosine and sine functions and label them accordingly in the key.
If the first argument is an axis handle, then plot into these axes, rather than the
current axis handle returned by gca.

See also: [semilogx|, page 218, [semilogy|, page 218, [loglog], page 218, [polar],
page 229, [mesh], page 238, [contour], page 224, [bar], page 219, [stairs], page 221,
[errorbar|, page 227, [xlabel], page 249, [ylabel], page 249, [title], page 248, [print],
page 258.

The plotyy function may be used to create a plot with two independent y axes.

plotyy (x1, y1, x2, y2) [Function File]
plotyy (..., fun) [Function File]
plotyy (..., funl, fun2) [Function File]
plotyy (h, J) [Function File]
lax, h1, h2] = plotyy (...) [Function File]

Plots two sets of data with independent y-axes. The arguments x1 and y1 define the
arguments for the first plot and x1 and y2 for the second.

By default the arguments are evaluated with feval (@plot, x, y). However the type
of plot can be modified with the fun argument, in which case the plots are generated

218

GNU Octave

by feval (fun, x, y). fun can be a function handle, an inline function or a string

of a function name.

The function to use for each of the plots can be independently defined with funl and

fun2.

If given, h defines the principal axis in which to plot the x1 and y1 data. The return
value ax is a two element vector with the axis handles of the two plots. hl and h2

are handles to the objects generated by the plot commands.
x = 0:0.1:2%pi;

yl = sin (x);

y2 = exp (x - 1);

ax = plotyy (x, yl, x - 1, y2, @plot, @semilogy);
xlabel ("X");

ylabel (ax(1), "Axis 1");
ylabel (ax(2), "Axis 2");

The functions semilogx, semilogy, and loglog are similar to the plot function, but

produce plots in which one or both of the axes use log scales.

semilogx (y)

semilogx (x, y)

semilogx (x, y, property, value, ...)
semilogx (x, y, fmt)

semilogx (h, ...)

h = semilogx (...)

Produce a two-dimensional plot using a logarithmic scale for the x axis.

Function File
Function File
Function File
Function File
Function File
Function File
See the

]
]
]
]
]
]

documentation of plot for a description of the arguments that semilogx will accept.

See also: [plot], page 215, [semilogy]|, page 218, [loglog], page 218.

semilogy (y)

semilogy (x, y)
semilogy (x, y, property, value, ...)

semilogy (x, y, fmt)
semilogy (b, ...)

[Function File]
[Function File]
[Function File]
[Function File]
[Function File]
[]

h = semilogy (...) Function File
Produce a two-dimensional plot using a logarithmic scale for the y axis. See the
documentation of plot for a description of the arguments that semilogy will accept.
See also: [plot], page 215, [semilogx|, page 218, [loglog], page 218.

loglog (y) Function File

loglog (x, y)
loglog (x, y, property, value, ...)

loglog (x, y, fmt)
loglog (h, ...)
h = loglog (...)

[]
[Function File]
[Function File]
[Function File]
[Function File]
[Function File]

Produce a two-dimensional plot using log scales for both axes. See the documentation

of plot for a description of the arguments that loglog will accept.
See also: [plot], page 215, [semilogx|, page 218, [semilogy], page 218.

Chapter 15: Plotting 219

The functions bar, barh, stairs, and stem are useful for displaying discrete data. For
example,

hist (randn (10000, 1), 30);

produces the histogram of 10,000 normally distributed random numbers shown in
Figure 15.2.

1000

600

Figure 15.2: Histogram.

bar
bar
bar
bar

h =

bar

Function File
Function File

bar (..., prop, val)
(h, ...)

Produce a bar graph from two vectors of x-y data.

(%, v) [Function File]
(¥) [Function File]
(x, v, w) [Function File]
(x, y. w, style) [Function File]
[|
[|

If only one argument is given, y, it is taken as a vector of y-values and the x coordinates
are taken to be the indices of the elements.

The default width of 0.8 for the bars can be changed using w.

If y is a matrix, then each column of y is taken to be a separate bar graph plotted
on the same graph. By default the columns are plotted side-by-side. This behavior
can be changed by the style argument, which can take the values "grouped" (the
default), or "stacked".

The optional return value h provides a handle to the "bar series" object with one
handle per column of the variable y. This series allows common elements of the group
of bar series objects to be changed in a single bar series and the same properties are
changed in the other "bar series". For example,

h = bar (rand (5, 10));
set (h(1), "basevalue", 0.5);

changes the position on the base of all of the bar series.

220 GNU Octave
The optional input handle h allows an axis handle to be passed.
The bar graph’s appearance may be modified by specifying property/value pairs. The
following example modifies the face and edge colors.
bar (randn (1, 100), "facecolor", "r", "edgecolor", "b")
The color of the bars is taken from the figure’s colormap, such that
bar (rand(10,3))
colormap (summer ())
will change the colors used for the bars. The color of bars can also be set manually
using the "facecolor" property as shown below.
h = bar (rand(10,3))
set (h(1), "facecolor", "r")
set (h(2), "facecolor", "g")
set (h(3), "facecolor", "b")
See also: [barh], page 220, [plot], page 215.
barh (x, y) [Function File]
barh (y) [Function File]
barh (x, y, w) [Function File]
barh (x, y, w, style) [Function File]
h = barh (..., prop, val) [Function File]
barh (h, ...) [Function File]
Produce a horizontal bar graph from two vectors of x-y data.
If only one argument is given, it is taken as a vector of y-values and the x coordinates
are taken to be the indices of the elements.
The default width of 0.8 for the bars can be changed using w.
If y is a matrix, then each column of y is taken to be a separate bar graph plotted
on the same graph. By default the columns are plotted side-by-side. This behavior
can be changed by the style argument, which can take the values "grouped" (the
default), or "stacked".
The optional return value h provides a handle to the bar series object. See bar for a
description of the use of the bar series.
The optional input handle h allows an axis handle to be passed. Properties of the
patch graphics object can be changed using prop, val pairs.
See also: [bar], page 219, [plot], page 215.
hist (y) Function File
hist (y, x) Function File

hist (y, x, norm)
[nn, xx] = hist (...)

[..

[]
[]
hist (y, nbins) [Function File]
[]
[]
[]

.] = hist (..., prop, val)

Function File
Function File
Function File
Produce histogram counts or plots.

With one vector input argument, y, plot a histogram of the values with 10 bins. The
range of the histogram bins is determined by the range of the data. With one matrix
input argument, y, plot a histogram where each bin contains a bar per input column.

Chapter 15: Plotting 221

Given a second vector argument, x, use that as the centers of the bins, with the width
of the bins determined from the adjacent values in the vector.

If scalar, the second argument, nbins, defines the number of bins.

If a third argument is provided, the histogram is normalized such that the sum of the
bars is equal to norm.

Extreme values are lumped in the first and last bins.

With two output arguments, produce the values nn and xx such that bar (xx, nn)
will plot the histogram.

The histogram’s appearance may be modified by specifying property/value pairs, prop
and val pairs. For example the face and edge color may be modified.

hist (randn (1, 100), 25, "facecolor", "r", "edgecolor", "b")
The histograms colors also depend upon the colormap.

hist (rand (10, 3))

colormap (summer ())

See also: [bar]|, page 219.

stairs (y) Function File
stairs (x, y) Function File
stairs (..., style) Function File
stairs (..

stairs (h, ...) Function File

h = stairs (...) Function File

[xstep, ystep] = stairs (...) Function File
Produce a stairstep plot. The arguments may be vectors or matrices.

[]
[]
[]
., prop, val) [Function File]
[]
[]
[]

If only one argument is given, it is taken as a vector of y-values and the x coordinates
are taken to be the indices of the elements.

If one output argument is requested, return a graphics handle to the plot. If two
output arguments are specified, the data are generated but not plotted. For example,
stairs (x, y);
and
[xs, ys] = stairs (x, y);
plot (xs, ys);

are equivalent.

See also: [plot], page 215, [semilogx], page 218, [semilogy], page 218, [loglog], page 218,
[polar], page 229, [mesh], page 238, [contour|, page 224, [bar]|, page 219, [xlabel],
page 249, [ylabel], page 249, [title], page 248.

Function File
stem (x, y) Function File

stem (x)]
]
stem (x, y, linespec) Function File]
]
]

[
[
[
stem (..., "filled") [Function File
h = stem (...) [Function File

Plot a stem graph from two vectors of x-y data. If only one argument is given, it is
taken as the y-values and the x coordinates are taken from the indices of the elements.

222

GNU Octave

If y is a matrix, then each column of the matrix is plotted as a separate stem graph.
In this case x can either be a vector, the same length as the number of rows in y, or

it can be a matrix of the same size as y.

The default color is "b" (blue). The default line style is "-" and the default marker
is "o". The line style can be altered by the 1linespec argument in the same manner

as the plot command. For example,

x = 1:10;

y
stem (x, y, "r");

plots 10 stems with heights from 2 to 20 in red;

ones (1, length (x))*2.*x;

The return value of stem is a vector of "stem series" graphics handles, with one handle
per column of the variable y. This handle regroups the elements of the stem graph
together as the children of the "stem series" handle, allowing them to be altered

together. For example,

x = [0 : 10]’;
y = [sin(x), cos(x)]
h = stem (%, y);

set (h(2), "color",
set (h(1), "basevalue",

changes the color of the second "stem series" and moves the base line of the first.

See also: [bar], page 219, [barh], page 220, [plot], page 215.

h = stem3 (x, y, z, linespec)

[Function File]

Plot a three-dimensional stem graph and return the handles of the line and marker
objects used to draw the stems as "stem series" object. The default color is "r" (red).

The default line style is "-" and the default marker is "o".

For example,
theta = 0:0.2:6;

stem3 (cos (theta), sin (theta),
plots 31 stems with heights from 0 to 6 lying on a circle.

RGB-triples are not valid!

Color definitions with

See also: [bar], page 219, [barh|, page 220, [stem], page 221, [plot], page 215.

scatter (x, y)
scatter (X Vv, 8)
scatter (x, y, c)
scatter (x,y, s, c)
scatter (x,y, s, c, style)
scatter (x, y, s, ¢, prop, val)
scatter (.. "ﬁ]]ed")
scatter (h, o)

h = scatter (...)

[Function File]
[Function File]
[Function File]
[Function File]
[Function File]
[Function File]
[Function File]
[Function File]
[Function File]

Plot a scatter plot of the data. A marker is plotted at each point defined by the
points in the vectors x and y. The size of the markers used is determined by the s,

Chapter 15: Plotting 223

which can be a scalar, a vector of the same length of x and y. If s is not given or is
an empty matrix, then the default value of 8 points is used.

The color of the markers is determined by ¢, which can be a string defining a fixed
color; a 3-element vector giving the red, green,and blue components of the color; a
vector of the same length as x that gives a scaled index into the current colormap; or
a n-by-3 matrix defining the colors of each of the markers individually.
The marker to use can be changed with the style argument, that is a string defining
a marker in the same manner as the plot command. If the argument "filled" is
given then the markers as filled. All additional arguments are passed to the underlying
patch command.
The optional return value h provides a handle to the patch object

x = randn (100, 1);

y = randn (100, 1);

scatter (x, y, [J, sqrt(x.”2 + y."2));

See also: [plot], page 215, [patch], page 253, [scatter3|, page 244.

plotmatrix (x, y) [Function File]
plotmatrix (x) [Function File]
plotmatrix (..., style) [Function File]
plotmatrix (h, ...) [Function File]

(h, ax, bigax, p, pax] = plotmatrix (...) [Function File]
Scatter plot of the columns of one matrix against another. Given the arguments x and
v, that have a matching number of rows, plotmatrix plots a set of axes corresponding
to

plot (x (:, 1), vy (1, J)
Given a single argument x, then this is equivalent to

plotmatrix (x, x)
except that the diagonal of the set of axes will be replaced with the histogram hist
(x (:, 1)).
The marker to use can be changed with the style argument, that is a string defining
a marker in the same manner as the plot command. If a leading axes handle h is
passed to plotmatrix, then this axis will be used for the plot.

The optional return value h provides handles to the individual graphics objects in the
scatter plots, whereas ax returns the handles to the scatter plot axis objects. bigax is
a hidden axis object that surrounds the other axes, such that the commands xlabel,
title, etc., will be associated with this hidden axis. Finally p returns the graphics
objects associated with the histogram and pax the corresponding axes objects.

plotmatrix (randn (100, 3), ’g+’)

pareto (x) [Function File]
pareto (x, y) [Function File]
pareto (h, ...) [Function File]
h = pareto (...) [Function File]
Draw a Pareto chart, also called ABC chart. A Pareto chart is a bar graph used
to arrange information in such a way that priorities for process improvement can be

224 GNU Octave

established. It organizes and displays information to show the relative importance of
data. The chart is similar to the histogram or bar chart, except that the bars are
arranged in decreasing order from left to right along the abscissa.

The fundamental idea (Pareto principle) behind the use of Pareto diagrams is that the
majority of an effect is due to a small subset of the causes, so for quality improvement
the first few (as presented on the diagram) contributing causes to a problem usually
account for the majority of the result. Thus, targeting these "major causes" for
elimination results in the most cost-effective improvement scheme.

The data are passed as x and the abscissa as y. If y is absent, then the abscissa are

assumed to be 1 : length (x). y can be a string array, a cell array of strings or a
numerical vector.

An example of the use of pareto is
Cheese = {"Cheddar", "Swiss", "Camembert",
"Munster", "Stilton", "Blue"};
Sold = [105, 30, 70, 10, 15, 20];
pareto(Sold, Cheese);

rose (th, r) [Function File]
rose (h, ...) [Function File]
h = rose (...) [Function File]
[r, th] = rose (...) [Function File]
Plot an angular histogram. With one vector argument th, plots the histogram with 20
angular bins. If th is a matrix, then each column of th produces a separate histogram.
If r is given and is a scalar, then the histogram is produced with r bins. If r is a
vector, then the center of each bin are defined by the values of r.
The optional return value h provides a list of handles to the the parts of the vector
field (body, arrow and marker).
If two output arguments are requested, then rather than plotting the histogram, the
polar vectors necessary to plot the histogram are returned.
[r, t] = rose ([2*randn(le5,1), pi + 2 * randn(le5,1)]);
polar (r, t);

See also: [plot], page 215, [compass]|, page 231, [polar|, page 229, [hist], page 220.

The contour, contourf and contourc functions produce two-dimensional contour plots
from three-dimensional data.

contour (z) [Function File]

contour (z, vn) [Function File]

contour (x,y, z) [Function File]

contour (x,y, z, vn) [Function File]

contour (..., style) [Function File]

contour (h, ...) [Function File]
[

[c, h] = contour (...) Function File]
Plot level curves (contour lines) of the matrix z, using the contour matrix ¢ computed
by contourc from the same arguments; see the latter for their interpretation. The
set of contour levels, ¢, is only returned if requested. For example:

Chapter 15: Plotting 225

[c,
[c,
[c,
[c,
[c,
[c,
[c,
[c,

[c,

x = 0:2;

y = x5

z =x’ *y;

contour (x, y, z, 2:3)
The style to use for the plot can be defined with a line style style in a similar manner
to the line styles used with the plot command. Any markers defined by style are
ignored.
The optional input and output argument h allows an axis handle to be passed to
contour and the handles to the contour objects to be returned.

See also: [contourc|, page 225, [patch], page 253, [plot], page 215.

h] = contourf (x,y, z, 1vl) [Function File]
h] = contourf (x,y, z, n) [Function File]
h] = contourf (x,y, z) [Function File]
h] = contourf (z n) [Function File]
h] = contourf (z, 1vl) [Function File]
h] = contourf (z) [Function File]
h] = contourf (ax, ...) [Function File]
h] = contourf (..., "property", val) [Function File]

Compute and plot filled contours of the matrix z. Parameters x, y and n or Ilvl are
optional.

The return value c¢ is a 2xn matrix containing the contour lines as described in the
help to the contourc function.

The return value h is handle-vector to the patch objects creating the filled contours.

If x and y are omitted they are taken as the row/column index of z. n is a scalar
denoting the number of lines to compute. Alternatively Ivl is a vector containing the
contour levels. If only one value (e.g., Iv10) is wanted, set Ivl to [Iv10, 1v10]. If both n
or Ivl are omitted a default value of 10 contour level is assumed.

If provided, the filled contours are added to the axes object ax instead of the current
axis.

The following example plots filled contours of the peaks function.
[x, y, z] = peaks (50);

contourf (x, y, z, -7:9)

See also: [contour|, page 224, [contourc|, page 225, [patch], page 253.

lev] = contourc (x, y, 2, vn) [Function File]
Compute isolines (contour lines) of the matrix z. Parameters x, y and vn are optional.

The return value lev is a vector of the contour levels. The return value ¢ is a 2 by n
matrix containing the contour lines in the following format

c = [levl, x1, x2, ..., levn, x1, x2,
lenl, y1, y2, ..., lenn, yi, y2, ...]

in which contour line n has a level (height) of levn and length of lenn.

If x and y are omitted they are taken as the row/column index of z. vn is either a
scalar denoting the number of lines to compute or a vector containing the values of

226 GNU Octave

the lines. If only one value is wanted, set va = [val, vall; If vn is omitted it defaults
to 10.

For example:

x = 0:2;

y = %3

z =x’ *y;

contourc (x, y, z, 2:3)
= 2.0000 2.0000 1.0000 3.0000 1.5000 2.0000
2.0000 1.0000 2.0000 2.0000 2.0000 1.5000

See also: [contour], page 224.

contour3 (z) [Function File]
contour3 (z, vn) [Function File]
contour3 (x, y, z) [Function File]
contour3 (x, y, z, vn) [Function File]
contour3 (..., style) [Function File]
contour3 (h, ...) [Function File]
[c, h] = contour3 (...) [Function File]
Plot level curves (contour lines) of the matrix z, using the contour matrix ¢ computed
by contourc from the same arguments; see the latter for their interpretation. The
contours are plotted at the Z level corresponding to their contour. The set of contour
levels, ¢, is only returned if requested. For example:

contour3 (peaks (19));

hold on

surface (peaks (19), "facecolor", "none", "EdgeColor", "black")
colormap hot

The style to use for the plot can be defined with a line style style in a similar manner
to the line styles used with the plot command. Any markers defined by style are
ignored.

The optional input and output argument h allows an axis handle to be passed to
contour and the handles to the contour objects to be returned.

See also: [contourc], page 225, [patch], page 253, [plot], page 215.

The errorbar, semilogxerr, semilogyerr, and loglogerr functions produce plots
with error bar markers. For example,

x = 0:0.1:10;
y = sin (x);
yp = 0.1 .* randn (size (x));
ym = -0.1 .* randn (size (x));

errorbar (x, sin (x), ym, yp);

produces the figure shown in Figure 15.3.

Chapter 15: Plotting 227

Figure 15.3: Errorbar plot.

errorbar (args) [Function File]
This function produces two-dimensional plots with errorbars. Many different combi-
nations of arguments are possible. The simplest form is

errorbar (y, ey)

where the first argument is taken as the set of y coordinates and the second argument
ey is taken as the errors of the y values. x coordinates are taken to be the indices of
the elements, starting with 1.

If more than two arguments are given, they are interpreted as
errorbar (x, y, ..., fmt, ...)

where after x and y there can be up to four error parameters such as ey, ex, ly, uy,
etc., depending on the plot type. Any number of argument sets may appear, as long
as they are separated with a format string fmt.

If y is a matrix, x and error parameters must also be matrices having same dimensions.
The columns of y are plotted versus the corresponding columns of x and errorbars
are drawn from the corresponding columns of error parameters.

If fmt is missing, yerrorbars ("~") plot style is assumed.

If the fint argument is supplied, it is interpreted as in normal plots. In addition, fmt
may include an errorbar style which must precede the line and marker format. The
following plot styles are supported by errorbar:

Set yerrorbars plot style (default).

> Set xerrorbars plot style.
>’ Set xyerrorbars plot style.
‘4 Set boxes plot style.

‘%’ Set boxerrorbars plot style.

228 GNU Octave
#> Set boxxyerrorbars plot style.
Examples:
errorbar (x, y, ex, ">")
produces an xerrorbar plot of y versus x with x errorbars drawn from x-ex to x+ex.
errorbar (x, y1, ey, "™",
x, y2, ly, uy)
produces yerrorbar plots with y1 and y2 versus x. Errorbars for yI are drawn from
yl-ey to yl+ey, errorbars for y2 from y2-ly to y2+uy.
errorbar (x, y, lx, ux,
1y, uy’ n~>u)
produces an xyerrorbar plot of y versus x in which x errorbars are drawn from x-Ix
to x+ux and y errorbars from y-ly to y+uy.
See also: [semilogxerr], page 228, [semilogyerr|, page 228, [loglogerr], page 228.
semilogxerr (args) [Function File]
Produce two-dimensional plots using a logarithmic scale for the x axis and errorbars
at each data point. Many different combinations of arguments are possible. The most
used form is
semilogxerr (x, y, ey, fmt)
which produces a semi-logarithmic plot of y versus x with errors in the y-scale defined
by ey and the plot format defined by fmt. See errorbar for available formats and
additional information.
See also: [errorbar|, page 227, [loglogerr], page 228, [semilogyerr]|, page 228.
semilogyerr (args) [Function File]
Produce two-dimensional plots using a logarithmic scale for the y axis and errorbars
at each data point. Many different combinations of arguments are possible. The most
used form is
semilogyerr (x, y, ey, fmt)
which produces a semi-logarithmic plot of y versus x with errors in the y-scale defined
by ey and the plot format defined by fmt. See errorbar for available formats and
additional information.
See also: [errorbar]|, page 227, [loglogerr]|, page 228, [semilogxerr]|, page 228.
loglogerr (args) [Function File]

Produce two-dimensional plots on double logarithm axis with errorbars. Many differ-
ent combinations of arguments are possible. The most used form is

loglogerr (x, y, ey, fmt)

which produces a double logarithm plot of y versus x with errors in the y-scale
defined by ey and the plot format defined by fit. See errorbar for available formats
and additional information.

See also: [errorbar]|, page 227, [semilogxerr], page 228, [semilogyerr], page 228.

Chapter 15: Plotting 229

Finally, the polar function allows you to easily plot data in polar coordinates. However,
the display coordinates remain rectangular and linear. For example,

polar (0:0.1:10%pi, 0:0.1:10%pi);
produces the spiral plot shown in Figure 15.4.

Figure 15.4: Polar plot.

polar (theta, rho) [Function File]

polar (theta, rho, fmt) [Function File]

polar (h, ...) [Function File]

h = polar (...) [Function File]
Make a two-dimensional plot given the polar coordinates theta and rho.

The optional third argument specifies the line type.
See also: [plot], page 215.

pie (x) [Function File]
pie (x, explode) [Function File]
pie (..., labels) [Function File]
pie (h, ...); [Function File]

[]

h = pie (...); Function File
Produce a pie chart.

Called with a single vector argument, produces a pie chart of the elements in x, with
the size of the slice determined by percentage size of the values of x.

The variable explode is a vector of the same length as x that if non zero ’explodes’
the slice from the pie chart.

If given labels is a cell array of strings of the same length as x, giving the labels of
each of the slices of the pie chart.

The optional return value h provides a handle to the patch object.

See also: [pie3|, page 230, [bar|, page 219, [stem], page 221.

230

pie3
pie3
pie3
pie3
h

quiver (u, v)

= pie3 (...);

GNU Octave

(x) [Function File]
(x, explode) [Function File]
(..., labels) [Function File]
(b, ...); [Function File]

[Function File]
Draw a 3-D pie chart.

Called with a single vector argument, produces a 3-D pie chart of the elements in x,
with the size of the slice determined by percentage size of the values of x.

The variable explode is a vector of the same length as x that if non zero ’explodes’
the slice from the pie chart.

If given labels is a cell array of strings of the same length as x, giving the labels of
each of the slices of the pie chart.

The optional return value h provides a handle list to patch, surface and text objects
generating this plot.

See also: [pie|, page 229, [bar|, page 219, [stem], page 221.

Function File

quiver (x,y, u, v) Function File
quiver) Function File
quiver , ‘filled’) Function File

quiver (h, o)

h

quiver3 (u, v, w)

[]

([]

(- []

quiver (.. style) [Function File]
(- []

[]

[]

= quiver (...)

Function File
Function File
Plot the (u, v) components of a vector field in an (x, y) meshgrid. If the grid is
uniform, you can specify x and y as vectors.

If x and y are undefined they are assumed to be (1:m, 1:n) where [m, n] = size(u).
The variable s is a scalar defining a scaling factor to use for the arrows of the field
relative to the mesh spacing. A value of 0 disables all scaling. The default value is 1.

The style to use for the plot can be defined with a line style style in a similar manner
to the line styles used with the plot command. If a marker is specified then markers
at the grid points of the vectors are printed rather than arrows. If the argument
filled’ is given then the markers as filled.

The optional return value h provides a quiver group that regroups the components of
the quiver plot (body, arrow and marker), and allows them to be changed together

[x, y] = meshgrid (1:2:20);
= quiver (x, y, sin (2*pi*x/10), sin (2*pixy/10));
set (h, "maxheadsize", 0.33);

See also: [plot], page 215.

Function File

[]
quiver3 (X Y, Z, U, V, W) [Function File]
quiver3 (..., s) [Function File]
quiver3 (.. style) [Function File]
quiver3 (..., 'filled’) [Function File]

[]

quiver3 (h, o)

Function File

Chapter 15: Plotting 231

h = quiver3 (...) [Function File]
Plot the (u, v, w) components of a vector field in an (x, y), z meshgrid. If the
grid is uniform, you can specify x, y z as vectors.

If x, y and z are undefined they are assumed to be (1:m, 1:n, 1:p) where [m, n]
= size(u) and p = max (size (w)).

The variable s is a scalar defining a scaling factor to use for the arrows of the field
relative to the mesh spacing. A value of 0 disables all scaling. The default value is 1.

The style to use for the plot can be defined with a line style style in a similar manner
to the line styles used with the plot command. If a marker is specified then markers
at the grid points of the vectors are printed rather than arrows. If the argument
‘filled’ is given then the markers as filled.

The optional return value h provides a quiver group that regroups the components of
the quiver plot (body, arrow and marker), and allows them to be changed together

[x, y, z] = peaks (25);

surf (x, y, 2);

hold on;

[u, v, wl = surfnorm (x, y, z / 10);
h = quiver3 (x, y, z, u, v, w);

set (h, "maxheadsize", 0.33);

See also: [plot], page 215.

compass (u, v) [Function File]
compass (z) [Function File]
compass (..., style) [Function File]
compass (h, ...) [Function File]
h = compass (...) [Function File]

Plot the (u, v) components of a vector field emanating from the origin of a polar
plot. If a single complex argument z is given, then u = real (z) and v = imag (z).

The style to use for the plot can be defined with a line style style in a similar manner
to the line styles used with the plot command.

The optional return value h provides a list of handles to the the parts of the vector
field (body, arrow and marker).

a = toeplitz([1;randn(9,1)],[1,randn(1,9)]1);
compass (eig (a))

See also: [plot], page 215, [polar], page 229, [quiver|, page 230, [feather|, page 231.

feather (u, v) [Function File]
feather (z) [Function File]
feather (..., style) [Function File]
feather (h, ...) [Function File]

]

h = feather (...) [Function File
Plot the (u, v) components of a vector field emanating from equidistant points on
the x-axis. If a single complex argument z is given, then u = real (z) and v = imag

(=z).

232 GNU Octave

The style to use for the plot can be defined with a line style style in a similar manner
to the line styles used with the plot command.

The optional return value h provides a list of handles to the the parts of the vector
field (body, arrow and marker).

phi = [0 : 15 : 360] * pi / 180;
feather (sin (phi), cos (phi))

See also: [plot], page 215, [quiver], page 230, [compass]|, page 231.

pcolor (x,y, c) [Function File]

pcolor (c) [Function File]
Density plot for given matrices x, and y from meshgrid and a matrix ¢ corresponding
to the x and y coordinates of the mesh’s vertices. If x and y are vectors, then a typical
vertex is (x(j), (i), ¢(i,j)). Thus, columns of ¢ correspond to different x values and
rows of ¢ correspond to different y values.

The colormap is scaled to the extents of ¢. Limits may be placed on the color axis
by the command caxis, or by setting the clim property of the parent axis.

The face color of each cell of the mesh is determined by interpolating the values of
¢ for the cell’s vertices. Contrast this with imagesc which renders one cell for each
element of c.

shading modifies an attribute determining the manner by which the face color of
each cell is interpolated from the values of ¢, and the visibility of the cells’ edges. By
default the attribute is "faceted", which renders a single color for each cell’s face with
the edge visible.

h is the handle to the surface object.

See also: [caxis|, page 234, [contour]|, page 224, [meshgrid], page 241, [imagesc|,
page 532, [shading], page 243.

Function File
Function File

area []
[|
., prop, val, ...) [Function File]
[]
[]

area (x,y, 1vl)

EX7 y)
area (..
(v,

area (y, ...) Function File
area (h, ...) Function File
h = area (...) [Function File]

Area plot of cumulative sum of the columns of y. This shows the contributions of a
value to a sum, and is functionally similar to plot (x, cumsum (y, 2)), except that
the area under the curve is shaded.

If the x argument is omitted it is assumed to be given by 1 : rows (y). A value Ivl
can be defined that determines where the base level of the shading under the curve
should be defined.

Additional arguments to the area function are passed to the patch. The optional
return value h provides a handle to area series object representing the patches of the
areas.

See also: [plot], page 215, [patch], page 253.

Chapter 15: Plotting 233

comet (y) [Function File]
comet (x, y) [Function File]
comet (x,y, p) [Function File]
comet (ax, ...) [Function File]

Produce a simple comet style animation along the trajectory provided by the input
coordinate vectors (x, y), where x will default to the indices of y.

The speed of the comet may be controlled by p, which represents the time which
passes as the animation passes from one point to the next. The default for p is 0.1
seconds.

If ax is specified the animation is produced in that axis rather than the gca.

comet3 (z) [Function File]
comet3 (x, v, z, p) [Function File]
comet3 (ax, ...) [Function File]

Produce a simple comet style animation along the trajectory provided by the input
coordinate vectors (x, y), where x will default to the indices of y.

The speed of the comet may be controlled by p, which represents the time which
passes as the animation passes from one point to the next. The default for p is 0.1
seconds.

If ax is specified the animation is produced in that axis rather than the gca.

The axis function may be used to change the axis limits of an existing plot and various
other axis properties, such as the aspect ratio and the appearance of tic marks.

Function File
Function File

axis () [|
axis ([x_lo, x_hi]) []
axis ([x_lo, x_hi, y_lo, y_hi]) [Function File]
axis ([x_lo, x_hi, y_lo, y_hi, z_lo, z_hi|) [Function File]
axis (option) [Function File]
axis ([Function File]
axis (b, ...) [Function File]
limits = axis () [Function File]

Set axis limits for plots.

The argument limits should be a 2-; 4-, or 6-element vector. The first and second

elements specify the lower and upper limits for the x-axis. The third and fourth

specify the limits for the y-axis, and the fifth and sixth specify the limits for the

7-axis.

Without any arguments, axis turns autoscaling on.

With one output argument, x = axis returns the current axes.

The vector argument specifying limits is optional, and additional string arguments
may be used to specify various axis properties. For example,

axis ([1, 2, 3, 4], "square");
forces a square aspect ratio, and

axis ("tic", "labely");
turns tic marks on for all axes and tic mark labels on for the y-axis only.
The following options control the aspect ratio of the axes.

234

GNU Octave

"square" Force a square aspect ratio.

"equal" Force x distance to equal y-distance.

"normal" Restore the balance.

The following options control the way axis limits are interpreted.

"auto" Set the specified axes to have nice limits around the data or all if no axes
are specified.

"manual" Fix the current axes limits.
"tight" Fix axes to the limits of the data.
The option "image" is equivalent to "tight" and "equal".

The following options affect the appearance of tic marks.

"on" Turn tic marks and labels on for all axes.
"off" Turn tic marks off for all axes.
"tic[xyz]" Turn tic marks on for all axes, or turn them on for the specified axes and

off for the remainder.

"label[xyz]"
Turn tic labels on for all axes, or turn them on for the specified axes and
off for the remainder.

"nolabel" Turn tic labels off for all axes.

Note, if there are no tic marks for an axis, there can be no labels.

The following options affect the direction of increasing values on the axes.
"ij" Reverse y-axis, so lower values are nearer the top.
"xy" Restore y-axis, so higher values are nearer the top.

If an axes handle is passed as the first argument, then operate on this axes rather
than the current axes.

Similarly the axis limits of the colormap can be changed with the caxis function.

caxis (limits) [Function File]
caxis (h, ...) [Function File]

Set color axis limits for plots.

The argument limits should be a 2-element vector specifying the lower and upper
limits to assign to the first and last value in the colormap. Values outside this range
are clamped to the first and last colormap entries.

If Iimits is ’auto’, then automatic colormap scaling is applied, whereas if limits is
‘'manual’ the colormap scaling is set to manual.

Called without any arguments to current color axis limits are returned.

If an axes handle is passed as the first argument, then operate on this axes rather
than the current axes.

Chapter 15: Plotting 235

The x1im, ylim, and zlim functions may be used to get or set individual axis limits.
Each has the same form.

x1 = x1im () [Function File]
xlim (x1) [Function File]
m = x1lim ('mode’) [Function File]
xlim (m) [Function File]

]

xlim (h, ...) [Function File
Get or set the limits of the x-axis of the current plot. Called without arguments x1im
returns the x-axis limits of the current plot. If passed a two element vector xI, the
limits of the x-axis are set to this value.

The current mode for calculation of the x-axis can be returned with a call x1im
(’mode’), and can be either ’auto’ or 'manual’. The current plotting mode can be
set by passing either ’auto’ or 'manual’ as the argument.

If passed a handle as the first argument, then operate on this handle rather than the
current axes handle.

See also: [ylim], page 235, [zlim|, page 235, [set]|, page 267, [get], page 266, [gcal,
page 266.

15.2.1.1 Two-dimensional Function Plotting

Octave can plot a function from a function handle inline function or string defining the
function without the user needing to explicitly create the data to be plotted. The function
fplot also generates two-dimensional plots with linear axes using a function name and
limits for the range of the x-coordinate instead of the x and y data. For example,

fplot (@sin, [-10, 10], 201);

produces a plot that is equivalent to the one above, but also includes a legend displaying
the name of the plotted function.

fplot (fn, limits) [Function File]
fplot (fn, limits, tol) [Function File]
fplot (fn, limits, n) [Function File]
fplot (..., fmt) [Function File]

Plot a function fn, within the defined limits. fn an be either a string, a function
handle or an inline function. The limits of the plot are given by limits of the form
[xlo, xhi] or [xlo, xhi, ylo, yhi]. tolis the default tolerance to use for the plot,
and if tol is an integer it is assumed that it defines the number points to use in the
plot. The fmt argument is passed to the plot command.

fplot ("cos", [0, 2xpil)

fplot ("[cos(x), sin(x)]", [0, 2xpil)

See also: [plot], page 215.

Other functions that can create two-dimensional plots directly from a function include
ezplot, ezcontour, ezcontourf and ezpolar.

ezplot (f) [Function File]
ezplot (fx, fy) [Function File]

236 GNU Octave

ezplot (..., dom) [Function File]

ezplot (..., n) [Function File]

ezplot (h, ...) [Function File]

h = ezplot (...) [Function File]
Plots in two-dimensions the curve defined by f. The function f may be a string, inline
function or function handle and can have either one or two variables. If f has one
variable, then the function is plotted over the domain -2*pi < x < 2*pi with 500
points.

If f has two variables then f (x,y) = 0 is calculated over the meshed domain -2*pi
<x | y <2xpi with 60 by 60 in the mesh. For example:

ezplot (@(x, y) x .~ 2 -y .72 - 1)

If two functions are passed as strings, inline functions or function handles, then the
parametric function

x = fx (t)
y = fy (t)

is plotted over the domain -2*pi < t < 2*pi with 500 points.

If dom is a two element vector, it represents the minimum and maximum value of x,
y and t. If it is a four element vector, then the minimum and maximum values of x
and t are determined by the first two elements and the minimum and maximum of y
by the second pair of elements.

n is a scalar defining the number of points to use in plotting the function.

The optional return value h provides a list of handles to the the line objects plotted.
See also: [plot], page 215, [ezplot3], page 244.

ezcontour (f) [Function File]

ezcontour (..., dom) [Function File]

ezcontour (..., n) [Function File]

ezcontour (h, ...) [Function File]

h = ezcontour (...) [Function File]
Plots the contour lines of a function. f is a string, inline function or function handle
with two arguments defining the function. By default the plot is over the domain
-2*xpi < x < 2*pi and -2*pi < y < 2*pi with 60 points in each dimension.

If dom is a two element vector, it represents the minimum and maximum value of
both x and y. If dom is a four element vector, then the minimum and maximum
value of x and y are specify separately.

n is a scalar defining the number of points to use in each dimension.

The optional return value h provides a list of handles to the the parts of the vector
field (body, arrow and marker).

f = 0(x,y) sqrt(abs(x .* y)) ./ (1 + x.72 + y."2);
ezcontour (f, [-3, 31);

See also: [ezplot], page 235, [ezcontourf]|, page 237, [ezsurfc|, page 247, [ezmeshc],
page 245.

Chapter 15: Plotting 237

ezcontourf (f) [Function File]

ezcontourf (..., dom) [Function File]

ezcontourf (..., n) [Function File]

ezcontourf (h, ...) [Function File]

h = ezcontourf (...) [Function File]
Plots the filled contour lines of a function. f is a string, inline function or function
handle with two arguments defining the function. By default the plot is over the
domain -2*pi < x < 2*pi and -2*pi < y < 2*pi with 60 points in each dimension.
If dom is a two element vector, it represents the minimum and maximum value of
both x and y. If dom is a four element vector, then the minimum and maximum
value of x and y are specify separately.

n is a scalar defining the number of points to use in each dimension.

The optional return value h provides a list of handles to the the parts of the vector
field (body, arrow and marker).

f = 0(x,y) sqrt(abs(x .x y)) ./ (1 + x.72 + y."2);
ezcontourf (f, [-3, 3]);

See also: [ezplot], page 235, [ezcontour|, page 236, [ezsurfc|, page 247, [ezmeshc]|,
page 245.

ezpolar (f) [Function File]

ezpolar (..., dom) [Function File]

ezpolar (..., n) [Function File]

ezpolar (h, ...) [Function File]

h = ezpolar (...) [Function File]
Plots in polar plot defined by a function. The function f is either a string, inline
function or function handle with one arguments defining the function. By default the
plot is over the domain 0 < x < 2*pi with 60 points.

If dom is a two element vector, it represents the minimum and maximum value of
both t. nis a scalar defining the number of points to use.

The optional return value h provides a list of handles to the the parts of the vector
field (body, arrow and marker).

ezpolar (@(t) 1 + sin (t));

See also: [polar], page 229, [ezplot], page 235, [ezsurf], page 246, [ezmesh], page 245.
15.2.2 Three-Dimensional Plotting

The function mesh produces mesh surface plots. For example,
tx = ty = linspace (-8, 8, 41)’;
[xx, yy] = meshgrid (tx, ty);
r =sqrt (xx .~ 2 +yy .~ 2) + eps;
tz = sin (r) ./ r;
mesh (tx, ty, tz);
produces the familiar “sombrero” plot shown in Figure 15.5. Note the use of the function

meshgrid to create matrices of X and Y coordinates to use for plotting the Z data. The
ndgrid function is similar to meshgrid, but works for N-dimensional matrices.

238 GNU Octave

o O O O

WD O NS oy O

Figure 15.5: Mesh plot.
The meshc function is similar to mesh, but also produces a plot of contours for the
surface.

The plot3 function displays arbitrary three-dimensional data, without requiring it to
form a surface. For example,

t = 0:0.1:10%pi;
r = linspace (0, 1, numel (t));
z = linspace (0, 1, numel (t));

plot3 (r.*sin(t), r.*cos(t), z);

displays the spiral in three dimensions shown in Figure 15.6.

Figure 15.6: Three-dimensional spiral.

Finally, the view function changes the viewpoint for three-dimensional plots.

Chapter 15: Plotting 239

Function File

mesh (x,y, z) {F i %

unction File
[]
[]

(3

mesh (z)

mesh (..., c) Function File
mesh (hax, ...) Function File
h = mesh (...) [Function File]
Plot a mesh given matrices x, and y from meshgrid and a matrix z corresponding to
the x and y coordinates of the mesh. If x and y are vectors, then a typical vertex is
(x(j), y(i), z(i,j)). Thus, columns of z correspond to different x values and rows of z
correspond to different y values.

The color of the mesh is derived from the colormap and the value of z. Optionally
the color of the mesh can be specified independent of z, by adding a fourth matrix, c.

See also: [colormap|, page 534, [contour]|, page 224, [meshgrid], page 241, [surf],
page 239.

meshc (x, y, z) [Function File]
Plot a mesh and contour given matrices x, and y from meshgrid and a matrix z
corresponding to the x and y coordinates of the mesh. If x and y are vectors, then
a typical vertex is (x(j), v(i), z(i,j)). Thus, columns of z correspond to different x
values and rows of z correspond to different y values.

See also: [meshgrid], page 241, [mesh], page 238, [contour|, page 224.

meshz (x, y, z) [Function File]
Plot a curtain mesh given matrices x, and y from meshgrid and a matrix z corre-
sponding to the x and y coordinates of the mesh. If x and y are vectors, then a typical
vertex is (x(j), yv(i), z(i,j)). Thus, columns of z correspond to different x values and
rows of z correspond to different y values.

See also: [meshgrid], page 241, [mesh]|, page 238, [contour|, page 224.

hidden (mode) [Function File]

hidden () [Function File]
Manipulation the mesh hidden line removal. Called with no argument the hidden line
removal is toggled. The argument mode can be either ’on’ or 'off” and the set of the
hidden line removal is set accordingly.

See also: [mesh], page 238, [meshc|, page 239, [surf], page 239.

surf (x,y, z) Function File

surf (z) Function File
surf (hax, ...) Function File

[]
[|

surf (..., c) [Function File]
[]
[

h = surf (...) Function File]
Plot a surface given matrices x, and y from meshgrid and a matrix z corresponding
to the x and y coordinates of the mesh. If x and y are vectors, then a typical vertex
is (x(j), y(i), z(i,j)). Thus, columns of z correspond to different x values and rows of
z correspond to different y values.

The color of the surface is derived from the colormap and the value of z. Optionally

the color of the surface can be specified independent of z, by adding a fourth matrix,
c.

240 GNU Octave

See also: [colormap|, page 534, [contour], page 224, [meshgrid], page 241, [mesh],
page 238.

surfc (x, y, z) [Function File]
Plot a surface and contour given matrices x, and y from meshgrid and a matrix z
corresponding to the x and y coordinates of the mesh. If x and y are vectors, then
a typical vertex is (x(j), y(i), z(i,j)). Thus, columns of z correspond to different x
values and rows of z correspond to different y values.

See also: [meshgrid], page 241, [surf], page 239, [contour|, page 224.

surfl (x, y, z) [Function File]
surfl (z) [Function File]
surfl (x,y, z L) [Function File]
surfl (x,y, z L, P) [Function File]
surfl (..., "light") [Function File]

Plot a lighted surface given matrices x, and y from meshgrid and a matrix z cor-
responding to the x and y coordinates of the mesh. If x and y are vectors, then
a typical vertex is (x(j), v(i), z(i,j)). Thus, columns of z correspond to different x
values and rows of z correspond to different y values.

The light direction can be specified using L. It can be given as 2-element vector
[azimuth, elevation] in degrees or as 3-element vector [Ix, ly, 1z]. The default value is
rotated 45 counter-clockwise from the current view.

The material properties of the surface can specified using a 4-element vector P = [AM
D SP exp] which defaults to p = [0.55 0.6 0.4 10].

"AM" strength of ambient light
"D" strength of diffuse reflection
"SP" strength of specular reflection
"EXP" specular exponent

The default lighting mode "cdata", changes the cdata property to give the impression
of a lighted surface. Please note: the alternative "light" mode, which creates a light
object to illuminate the surface is not implemented (yet).

Example:

colormap(bone) ;
surfl(peaks) ;
shading interp;

See also: [surf], page 239, [diffuse], page 241, [specular], page 241, [surface], page 253.

surfnorm (x, y, z) [Function File

surfnorm (z) [Function File

[nx, ny, nz] = surfnorm (...) [Function File

surfnorm (h, ...) [Function File
Find the vectors normal to a meshgridded surface. The meshed gridded surface is
defined by x, y, and z. If x and y are not defined, then it is assumed that they are
given by

]
]
]
]

Chapter 15: Plotting 241

[x, y] = meshgrid (1:size(z, 1),
1:size(z, 2));

If no return arguments are requested, a surface plot with the normal vectors to the
surface is plotted. Otherwise the components of the normal vectors at the mesh
gridded points are returned in nx, ny, and nz.
The normal vectors are calculated by taking the cross product of the diagonals of
each of the quadrilaterals in the meshgrid to find the normal vectors of the centers
of these quadrilaterals. The four nearest normal vectors to the meshgrid points are
then averaged to obtain the normal to the surface at the meshgridded points.
An example of the use of surfnorm is

surfnorm (peaks (25));
See also: [surf], page 239, [quiver3], page 230.

diffuse (sx, sy, sz, 1v) [Function File]

Calculate diffuse reflection strength of a surface defined by the normal vector elements
sx, sy, sz. The light vector can be specified using parameter Iv. It can be given as
2-element vector [azimuth, elevation] in degrees or as 3-element vector [Ix, ly, 1z].

See also: [specular], page 241, [surfl], page 240.

specular (sx, sy, sz, 1v, vv) [Function File]
specular (sx, sy, sz, 1v, vv, se) [Function File]

[xx,
[xx,
[xx,

[y1,
[y1,

Calculate specular reflection strength of a surface defined by the normal vector el-
ements sx, sy, sz using Phong’s approximation. The light and view vectors can be
specified using parameter Iv and vv respectively. Both can be given as 2-element
vectors [azimuth, elevation] in degrees or as 3-element vector [x, y, z]. An optional
6th argument describes the specular exponent (spread) se.

See also: [surfl], page 240, [diffuse], page 241.

yy, zz] = meshgrid (x,y, z) [Function File]
yy] = meshgrid (x, y) [Function File]
yy] = meshgrid (x) [Function File]

Given vectors of x and y and z coordinates, and returning 3 arguments, return three-
dimensional arrays corresponding to the x, y, and z coordinates of a mesh. When
returning only 2 arguments, return matrices corresponding to the x and y coordinates
of a mesh. The rows of xx are copies of x, and the columns of yy are copies of y. If y
is omitted, then it is assumed to be the same as x, and z is assumed the same as y.

See also: [mesh], page 238, [contour], page 224.

y2, ..., yn] = ndgrid (x1, x2, ..., xn) [Function File]
y2, ..., yn] = ndgrid (x) [Function File]
Given n vectors x1, ... xn, ndgrid returns n arrays of dimension n. The elements

of the i-th output argument contains the elements of the vector xi repeated over all
dimensions different from the i-th dimension. Calling ndgrid with only one input
argument x is equivalent of calling ndgrid with all n input arguments equal to x:

[v1, 2, ..., yn] = ndgrid (x, ..., x)
See also: [meshgrid], page 241.

242 GNU Octave

plot3 (args) [Function File]
Produce three-dimensional plots. Many different combinations of arguments are pos-
sible. The simplest form is

plot3 (x, y, z)

in which the arguments are taken to be the vertices of the points to be plotted in three
dimensions. If all arguments are vectors of the same length, then a single continuous
line is drawn. If all arguments are matrices, then each column of the matrices is
treated as a separate line. No attempt is made to transpose the arguments to make
the number of rows match.

If only two arguments are given, as
plot3 (x, ¢)

the real and imaginary parts of the second argument are used as the y and z coordi-
nates, respectively.

If only one argument is given, as
plot3 (c)

the real and imaginary parts of the argument are used as the y and z values, and
they are plotted versus their index.

Arguments may also be given in groups of three as
plot3 (x1, yi1, z1, x2, y2, z2, ...)

in which each set of three arguments is treated as a separate line or set of lines in
three dimensions.

To plot multiple one- or two-argument groups, separate each group with an empty
format string, as

plot3 (x1, c1, "", c2, "", ...)
An example of the use of plot3 is
z = [0:0.05:5];
plot3 (cos(2xpi*z), sin(2xpixz), z, ";helix;");
plot3 (z, exp(2i*pi*z), ";complex sinusoid;");

See also: [plot], page 215, [xlabel], page 249, [ylabel], page 249, [zlabel], page 249,
[title], page 248, [print], page 258.

lazimuth, elevation] = view () [Function File]
view (azimuth, elevation) [Function File]
view ([azimuth, elevation]) [Function File]
view ([x, y, z]) [Function File]
view (dims) [Function File]
view (ax, ...) [Function File]
Query or set the viewpoint for the current axes. The parameters azimuth and eleva-
tion can be given as two arguments or as 2-element vector. The viewpoint can also be
given with Cartesian coordinates x, y, and z. The call view (2) sets the viewpoint to
azimuth = 0 and elevation = 90, which is the default for 2-D graphs. The call view
(3) sets the viewpoint to azimuth = -37.5 and elevation = 30, which is the default
for 3-D graphs. If ax is given, the viewpoint is set for this axes, otherwise it is set for
the current axes.

Chapter 15: Plotting 243

slice (x, y, z, v, sx, Sy, sz) [Function File]
slice (x,y, z, v, xi, yi, zi) [Function File]
slice (v, sx, sy, sz) [Function File]
slice (v, xi, yi, zi) [Function File]
h = slice (...) [Function File]
h = slice (..., method) [Function File]
Plot slices of 3-D data/scalar fields. Each element of the 3-dimensional array v repre-
sents a scalar value at a location given by the parameters x, y, and z. The parameters
x, x, and z are either 3-dimensional arrays of the same size as the array v in the
"meshgrid" format or vectors. The parameters xi, etc. respect a similar format to x,
etc., and they represent the points at which the array vi is interpolated using interp3.
The vectors sx, sy, and sz contain points of orthogonal slices of the respective axes.

If x, y, z are omitted, they are assumed to be x = 1:size (v, 2),y = 1:size (v, 1)
and z = 1:size (v, 3).

Method is one of:

"nearest" Return the nearest neighbor.

"linear" Linear interpolation from nearest neighbors.
"cubic" Cubic interpolation from four nearest neighbors (not implemented yet).
"spline" Cubic spline interpolation—smooth first and second derivatives through-

out the curve.

The default method is "linear". The optional return value h is a vector of handles
to the surface graphic objects.

Examples:

[x, y, z] = meshgrid (linspace (-8, 8, 32));

v = sin (sqrt (x.72 + y.72 + z.72)) ./ (sqrt (x.72 + y."2 + z2.72));
slice (x, y, z, v, [1, 0, [1);

[xi, yi] = meshgrid (linspace (-7, 7));

zi = xi + yi;

slice (x, y, z, v, xi, yi, zi);

See also: [interp3], page 500, [surface], page 253, [pcolor|, page 232.

ribbon (x, y, width) [Function File]
ribbon (y) [Function File]
h = ribbon (...) [Function File]

Plot a ribbon plot for the columns of y vs. x. The optional parameter width specifies
the width of a single ribbon (default is 0.75). If x is omitted, a vector containing the
row numbers is assumed (l:rows(Y)). If requested, return a vector h of the handles
to the surface objects.

See also: [gcal, page 266, [colorbar], page 251.
shading (type) [Function File]

shading (ax, ...) [Function File]
Set the shading of surface or patch graphic objects. Valid arguments for type are

244 GNU Octave

"fHat" Single colored patches with invisible edges.
"faceted" Single colored patches with visible edges.

"interp" Color between patch vertices are interpolated and the patch edges are
invisible.

If ax is given the shading is applied to axis ax instead of the current axis.

scatter3 (x, y, z, s, ¢) [Function File]

scatter3 (..., 'filled’) [Function File]

scatter3 (..., style) [Function File]

scatter3 (..., prop, val) [Function File]

scatter3 (b, ...) [Function File]

h = scatter3 (...) [Function File]
Plot a scatter plot of the data in 3D. A marker is plotted at each point defined by
the points in the vectors x, y and z. The size of the markers used is determined by s,
which can be a scalar or a vector of the same length of x, y and z. If s is not given
or is an empty matrix, then the default value of 8 points is used.

The color of the markers is determined by ¢, which can be a string defining a fixed
color; a 3-element vector giving the red, green, and blue components of the color; a
vector of the same length as x that gives a scaled index into the current colormap; or
a n-by-3 matrix defining the colors of each of the markers individually.

The marker to use can be changed with the style argument, that is a string defining
a marker in the same manner as the plot command. If the argument ’filled’ is given
then the markers as filled. All additional arguments are passed to the underlying
patch command.

The optional return value h provides a handle to the patch object

[x, y, z] = peaks (20);
scatter3 (x(:), y(:), z(:), [, z(:));

See also: [plot], page 215, [patch], page 253, [scatter|, page 222.
15.2.2.1 Three-dimensional Function Plotting

ezplot3 (fx, fy, fz) [Function File]

ezplot3 (..., dom) [Function File]

ezplot3 (..., n) [Function File]

ezplot3 (h, ...) [Function File]

h = ezplot3 (...) [Function File]
Plots in three-dimensions the curve defined parametrically. fx, fy, and fz are strings,
inline functions or function handles with one arguments defining the function. By
default the plot is over the domain -2*pi < x < 2*pi with 60 points.

If dom is a two element vector, it represents the minimum and maximum value of t.
n is a scalar defining the number of points to use.

The optional return value h provides a list of handles to the the parts of the vector
field (body, arrow and marker).

Chapter 15: Plotting 245

ezmesh (h, ...)

fx = @(t) cos (t);

fy = @(t) sin (t);

fz = @(t) t;

ezplot3 (fx, fy, fz, [0, 10xpi], 100);

See also: [plot3], page 242, [ezplot], page 235, [ezsurf], page 246, [ezmesh], page 245.

Function File

ezmesh (f) [Function File]
ezmesh (fx, fy, fz) [Function File]
ezmesh (.. dom) [Function File]
ezmesh (..., n) [Function File]
ezmesh (..., CII‘C) [Function File]
[]

|

h = ezmesh (...) [Function File
Plots the mesh defined by a function. f is a string, inline function or function handle
with two arguments defining the function. By default the plot is over the domain
-2*pi < x < 2#pi and -2*pi < y < 2*xpi with 60 points in each dimension.

If dom is a two element vector, it represents the minimum and maximum value of

both x and y. If dom is a four element vector, then the minimum and maximum

value of x and y are specify separately.

n is a scalar defining the number of points to use in each dimension.

If three functions are passed, then plot the parametrically defined function [fx (s,

t), fy (s, t), fz (s, t)].

If the argument ’circ’ is given, then the function is plotted over a disk centered on

the middle of the domain dom.

The optional return value h provides a list of handles to the the parts of the vector

field (body, arrow and marker).

= 0(x,y) sqrt(abs(x .* y)) ./ (1 + x.72 + y."2);
ezmesh (f, [-3, 3]1);
An example of a parametrically defined function is
fx = @(s,t) cos (s) .* cos(t);
fy = @(s,t) sin (s) .* cos(t);
fz = @(s,t) sin(t);
ezmesh (fx, fy, fz, [-pi, pi, -pi/2, pi/2], 20);

See also: [ezplot], page 235, [ezsurf], page 246, [ezsurfc|, page 247, [ezmeshc], page 245.
ezmeshc (f) [Function File]
ezmeshc (fx, fy, fz) [Function File]
ezmeshc (.. dom) [Function File]
ezmeshc (..., n) [Function File]
ezmeshc (..., circ’) [Function File]
ezmeshc (h, ...) [Function File]
h = ezmeshc (...) [Function File]

Plots the mesh and contour lines defined by a function. f is a string, inline function
or function handle with two arguments defining the function. By default the plot

ezsurf (h, ...)

Function File

246 GNU Octave
is over the domain -2*pi < x < 2*pi and -2*pi < y < 2*pi with 60 points in each
dimension.

If dom is a two element vector, it represents the minimum and maximum value of

both x and y. If dom is a four element vector, then the minimum and maximum

value of x and y are specify separately.

n is a scalar defining the number of points to use in each dimension.

If three functions are passed, then plot the parametrically defined function [fx (s,

t), fy (s, t), fz (s, t)].

If the argument ’circ’ is given, then the function is plotted over a disk centered on

the middle of the domain dom.

The optional return value h provides a list of handles to the the parts of the vector

field (body, arrow and marker).

f = 0(x,y) sqrt(abs(x .* y)) ./ (1 + x.72 + y."2);
ezmeshc (f, [-3, 3]);

See also: [ezplot], page 235, [ezsurfc|, page 247, [ezsurf], page 246, [ezmesh], page 245.
ezsurf (f) [Function File]
ezsurf (fx, fy, fz) [Function File]
ezsurf (..., dom) [Function File]
ezsurf (..., n) [Function File]
ezsurf (..., 'circ’) [Function File]

[|
]

h

ezsurf (...) [Function File
Plots the surface defined by a function. f is a string, inline function or function
handle with two arguments defining the function. By default the plot is over the
domain -2*pi < x < 2*pi and -2*pi < y < 2*pi with 60 points in each dimension.
If dom is a two element vector, it represents the minimum and maximum value of
both x and y. If dom is a four element vector, then the minimum and maximum
value of x and y are specify separately.

n is a scalar defining the number of points to use in each dimension.

If three functions are passed, then plot the parametrically defined function [fx (s,
t), fy (s, t), fz (s, t)].

If the argument ’circ’ is given, then the function is plotted over a disk centered on
the middle of the domain dom.

The optional return value h provides a list of handles to the the parts of the vector
field (body, arrow and marker).

f = 0(x,y) sqrt(abs(x .*x y)) ./ (1 + x.72 + y."2);

ezsurf (£, [-3, 31);
An example of a parametrically defined function is

fx = @(s,t) cos (s) .* cos(t);

fy = @(s,t) sin (s) .* cos(t);

fz = @(s,t) sin(t);

ezsurf (fx, fy, fz, [-pi, pi, -pi/2, pi/2], 20);

Chapter 15: Plotting 247

See also: [ezplot], page 235, [ezmesh]|, page 245, [ezsurfc], page 247, [ezmeshc],
page 245.

f)
ezsurfc (fx, fy, £fz)

(Function File
(
ezsurfc (
(
(

[

[Function File
., dom) [Function File

[

[

[

ezsurfc]
]
]
Function File]
]
]
]

ezsurfc (..., n)

ezsurfc (..., circ’) Function File
ezsurfc (h, ...) Function File
h = ezsurfc (...) [Function File

Plots the surface and contour lines defined by a function. f is a string, inline function
or function handle with two arguments defining the function. By default the plot
is over the domain -2*pi < x < 2*pi and -2*pi < y < 2*pi with 60 points in each
dimension.

If dom is a two element vector, it represents the minimum and maximum value of
both x and y. If dom is a four element vector, then the minimum and maximum
value of x and y are specify separately.

n is a scalar defining the number of points to use in each dimension.

If three functions are passed, then plot the parametrically defined function [fx (s,
t), fy (s, t), fz (s, t)].

If the argument ’circ’ is given, then the function is plotted over a disk centered on
the middle of the domain dom.

The optional return value h provides a list of handles to the the parts of the vector
field (body, arrow and marker).

f = 0(x,y) sqrt(abs(x .*x y)) ./ (1 + x.72 + y."2);
ezsurfc (f, [-3, 31);

See also: [ezplot], page 235, [ezmeshc], page 245, [ezsurf]|, page 246, [ezmesh],
page 245.

15.2.2.2 Three-dimensional Geometric Shapes

cylinder [Function File]
cylinder (r) [Function File]
cylinder (r, n) [Function File]
[x, y, z] = cylinder (...) [Function File]
cylinder (ax, ...) [Function File]

Generates three matrices in meshgrid format, such that surf (x, y, z) generates
a unit cylinder. The matrices are of size n+1-by-n+1. r is a vector containing the
radius along the z-axis. If n or r are omitted then default values of 20 or [1 1] are
assumed.

Called with no return arguments, cylinder calls directly surf (x, y, z). If an axes
handle ax is passed as the first argument, the surface is plotted to this set of axes.
Examples:

[x, y, z] = cylinder (10:-1:0,50);

surf (x, y, 2);

title ("a comne")

248 GNU Octave

See also: [sphere|, page 248.

[x, y, z] = sphere (n) [Function File]

sphere (h, ...) [Function File]
Generates three matrices in meshgrid format, such that surf (x, y, z) generates a
unit sphere. The matrices of n+1-by-n+1. If n is omitted then a default value of 20
is assumed.

Called with no return arguments, sphere call directly surf (x, y, z). If an axes
handle is passed as the first argument, the surface is plotted to this set of axes.

See also: [peaks|, page 263.

[x, y, z] = ellipsoid (xc, yc, zc, xr, yr, zr, n) [Function File]

ellipsoid (h, ...) [Function File]
Generate three matrices in meshgrid format that define an ellipsoid. Called with
no return arguments, ellipsoid calls directly surf (x, y, z). If an axes handle is
passed as the first argument, the surface is plotted to this set of axes.

See also: [sphere], page 248.
15.2.3 Plot Annotations

You can add titles, axis labels, legends, and arbitrary text to an existing plot. For example:
= -10:0.1:10;

plot (x, sin (x));

title ("sin(x) for x = -10:0.1:10");

xlabel ("x");

ylabel ("sin (x)");

text (pi, 0.7, "arbitrary text");

legend ("sin (x)");

The functions grid and box may also be used to add grid and border lines to the plot.

By default, the grid is off and the border lines are on.

title (string) [Function File]
title (string, p1, vi1,...) [Function File]
Create a title object and return a handle to it.

legend (stri, str2, ...) Function File

[]
legend (matstr) [Function File]
legend (cell) [Function File]
legend (..., "location", pos) [Function File]
legend (..., "orientation", orient) [Function File]
legend (hax, ...) [Function File]
legend (hobjs . [Function File]
legend (hax, hobjs, ...) [Function File]

[

legend ("option") Function File]
Display a legend for the axes with handle hax, or the current axes, using the specified
strings as labels. Legend entries may be specified as individual character string argu-
ments, a character array, or a cell array of character strings. If the handles, hobjs, are
not specified then the legend’s strings will be associated with the axes’ descendants.

Chapter 15: Plotting 249

(= s s = S

Legend works on line graphs, bar graphs, etc. A plot must exist before legend is

called.

The optional parameter pos specifies the location of the legend as follows:

north center top
south center bottom
east right center

west left center

northeast right top (default)

northwest left top

southeast right bottom

southwest left bottom

outside can be appended to any location string

The optional parameter orient determines if the key elements are placed vertically or
horizontally. The allowed values are "vertical" or "horizontal" with the default being

"vertical".

The following customizations are available using option:

"ShOW“

llhidell
n toggle n

"boxon"
"boxoff"
"left"

"right"
lloﬁ‘u

= text (x, y, label) [
= text (x, y, z, label) [Function File
(%, y, label, p1, v1, ...) [

= text

Show legend on the plot

Hide legend on the plot
Toggles between "hide" and "show"

Show a box around legend
Hide the box around legend
Place text to the left of the keys

Place text to the right of the keys
Delete the legend object

Function File

]
]
Function File]
]

= text (x, y, z, label, p1, v1, ...) [Function File
Create a text object with text label at position x, y, z on the current axes. Property-
value pairs following label may be used to specify the appearance of the text.

See Section 15.3.3.5 [Text Properties], page 277 for the properties that you can set.

250 GNU Octave

xlabel (string) [Function File]
xlabel (h, string) [Function File]
h = xlabel (...) [Function File]
ylabel (...) [Function File]
zlabel (...) [Function File]
Specify x-, y-, or z-axis labels for the current axis. If h is specified then label the axis
defined by h. The optional return value h provides a handle to the created label.

See also: [plot], page 215, [semilogx], page 218, [semilogy], page 218, [loglog], page 218,
[polar], page 229, [mesh|, page 238, [contour], page 224, [bar|, page 219, [stairs],
page 221, [title], page 248.

clabel (c, h) Function File

[]
clabel (c, h, v) [Function File]
clabel (c, h, "manual") [Function File]
clabel (c) [Function File]
clabel (c, h) [Function File]
clabel (..., prop, val, ...) [Function File]
h = clabel (...) [Function File]

Adds labels to the contours of a contour plot. The contour plot is specified by the
contour matrix ¢ and optionally the contourgroup object h that are returned by
contour, contourf and contour3. The contour labels are rotated and placed in the
contour itself.

By default, all contours are labeled. However, the contours to label can be specified
by the vector v. If the "manual" argument is given then the contours to label can be
selected with the mouse.

Additional property/value pairs that are valid properties of text objects can be given
and are passed to the underlying text objects. Additionally, the property "LabelSpac-
ing" is available allowing the spacing between labels on a contour (in points) to be
specified. The default is 144 points, or 2 inches.

The returned value h is the set of text object that represent the contour labels. The
"userdata" property of the text objects contains the numerical value of the contour
label.

An example of the use of clabel is

[c, h] = contour (peaks(), -4 : 6);
clabel (c, h, -4 : 2 : 6, ’fontsize’, 12);

See also: [contour|, page 224, [contourf], page 225, [contour3], page 226, [meshc],
page 239, [surfc], page 240, [text], page 249.

box (arg) [Function File]

box (h, ...) [Function File]
Control the display of a border around the plot. The argument may be either "on"
or "off". If it is omitted, the current box state is toggled.

See also: [grid], page 250.

grid (arg) [Function File]
grid ("minor", arg2) [Function File]

Chapter 15: Plotting 251

grid (hax, ...) [Function File]
Force the display of a grid on the plot. The argument may be either "on", or "off".
If it is omitted, the current grid state is toggled.

If arg is "minor" then the minor grid is toggled. When using a minor grid a second
argument arg? is allowed, which can be either "on" or "off" to explicitly set the
state of the minor grid.

If the first argument is an axis handle, hax, operate on the specified axis object.

See also: [plot], page 215.

colorbar (s) [Function File]
colorbar ("peer", h, ...) [Function File]
Adds a colorbar to the current axes. Valid values for s are

"EastOutside"
Place the colorbar outside the plot to the right. This is the default.

"East" Place the colorbar inside the plot to the right.

"WestOutside"
Place the colorbar outside the plot to the left.

"West" Place the colorbar inside the plot to the left.

"NorthOutside"
Place the colorbar above the plot.

"North" Place the colorbar at the top of the plot.

"SouthOutside"
Place the colorbar under the plot.

"South" Place the colorbar at the bottom of the plot.

uOﬁ‘n "NOI]G"
Remove any existing colorbar from the plot.

If the argument "peer" is given, then the following argument is treated as the axes
handle on which to add the colorbar.

15.2.4 Multiple Plots on One Page

Octave can display more than one plot in a single figure. The simplest way to do this is to
use the subplot function to divide the plot area into a series of subplot windows that are
indexed by an integer. For example,

subplot (2, 1, 1)
fplot (@sin, [-10, 10]);
subplot (2, 1, 2)
fplot (@cos, [-10, 10]);

creates a figure with two separate axes, one displaying a sine wave and the other a cosine
wave. The first call to subplot divides the figure into two plotting areas (two rows and one
column) and makes the first plot area active. The grid of plot areas created by subplot is
numbered in column-major order (top to bottom, left to right).

252 GNU Octave

subplot (rows, cols, index) [Function File]
subplot (rcn) [Function File]
Set up a plot grid with rows by cols subwindows and plot in location given by index.
If only one argument is supplied, then it must be a three digit value specifying the
location in digits 1 (rows) and 2 (columns) and the plot index in digit 3.
The plot index runs row-wise. First all the columns in a row are filled and then the
next row is filled.

For example, a plot with 2 by 3 grid will have plot indices running as follows:

See also: [plot], page 215.
15.2.5 Multiple Plot Windows

You can open multiple plot windows using the figure function. For example,

figure (1);

fplot (@sin, [-10, 10]);

figure (2);

fplot (@cos, [-10, 10]);
creates two figures, with the first displaying a sine wave and the second a cosine wave.
Figure numbers must be positive integers.

figure (n) [Function File]

figure (n, property, value, ...) [Function File]
Set the current plot window to plot window n. If no arguments are specified, the next
available window number is chosen.

Multiple property-value pairs may be specified for the figure, but they must appear
in pairs.
15.2.6 Use of axis, line, and patch functions

You can create axes, line, and patch objects directly using the axes, line, and patch
functions. These objects become children of the current axes object.

axes () [Function File]
axes (property, value, ...) [Function File]
axes (h) [Function File]

Create an axes object and return a handle to it.

line () [Function File]
line (x, y) [Function File]
line (x, y, 2) [Function File]
line (x, y, z, property, value, ...) [Function File]

Create line object from x and y and insert in current axes object. Return a handle
(or vector of handles) to the line objects created.

Chapter 15: Plotting 253

Multiple property-value pairs may be specified for the line, but they must appear in

pairs.
patch () [Function File]
patch (x, y, c) [Function File]
patch (x, y, z, C) [Function File]
patch (fv) [Function File]
patch (’Faces’, £, 'Vertices’, v, . ..) [Function File]
patch (..., prop, val) [Function File]
patch (b, ...) [Function File]
h = patch () [Function File]

Create patch object from x and y with color ¢ and insert in the current axes object.
Return handle to patch object.

For a uniform colored patch, ¢ can be given as an RGB vector, scalar value referring
to the current colormap, or string value (for example, "r" or "red").

If passed a structure fv contain the fields "vertices", "faces" and optionally "facev-
ertexcdata", create the patch based on these properties.

fill (x, y, c) Function File
fill (x1, y1, c1, x2, y2, c2) Function File

(]

(]

fill (..., prop, val) Function File]
(]

]

£ill (h, ...) Function File
h = flll (.) [Function File
Create one or more filled patch objects, returning a patch object for each.

surface (x, y, z, ¢) [Function File]
surface (x, y, z) [Function File]
surface (z, c¢) [Function File]
surface (z) [Function File]
surface (..., prop, val) [Function File]
surface (h, ...) [Function File]

[]

h = surface (...) Function File
Plot a surface graphic object given matrices x, and y from meshgrid and a matrix
z corresponding to the x and y coordinates of the surface. If x and y are vectors,
then a typical vertex is (x(j), y(i), z(i,j)). Thus, columns of z correspond to different
x values and rows of z correspond to different y values. If x and y are missing, they
are constructed from size of the matrix z.

Any additional properties passed are assigned to the surface.

See also: [surf], page 239, [mesh], page 238, [patch], page 253, [line], page 252.

15.2.7 Manipulation of plot windows
By default, Octave refreshes the plot window when a prompt is printed, or when waiting

for input. The drawnow function is used to cause a plot window to be updated.

drawnow () [Built-in Function]
drawnow ("expose") [Built-in Function]

254 GNU Octave

drawnow (term, file, mono, debug_file) [Built-in Function]
Update figure windows and their children. The event queue is flushed and any call-
backs generated are executed. With the optional argument "expose", only graphic
objects are updated and no other events or callbacks are processed. The third calling
form of drawnow is for debugging and is undocumented.

Only figures that are modified will be updated. The refresh function can also be used
to force an update of the current figure, even if it is not modified.

refresh () [Function File]

refresh (h) [Function File]
Refresh a figure, forcing it to be redrawn. Called without an argument the current
figure is redrawn, otherwise the figure pointed to by h is redrawn.

See also: [drawnow], page 253.

Normally, high-level plot functions like plot or mesh call newplot to initialize the state
of the current axes so that the next plot is drawn in a blank window with default property
settings. To have two plots superimposed over one another, use the hold function. For
example,

hold on;

x = -10:0.1:10;
plot (x, sin (x));
plot (x, cos (x));
hold off;

displays sine and cosine waves on the same axes. If the hold state is off, consecutive plotting
commands like this will only display the last plot.

newplot () [Function File]
Prepare graphics engine to produce a new plot. This function is called at the beginning
of all high-level plotting functions. It is not normally required in user programs.

hold [Command]
hold state [Command]|
hold (hax, ...) [Function File]

Toggle or set the 'hold’ state of the plotting engine which determines whether new
graphic objects are added to the plot or replace the existing objects.

hold on Retain plot data and settings so that subsequent plot commands are
displayed on a single graph.

hold all Retain plot line color, line style, data and settings so that subsequent
plot commands are displayed on a single graph with the next line color
and style.

hold off Clear plot and restore default graphics settings before each new plot com-
mand. (default).

hold Toggle the current "hold’ state.

Chapter 15: Plotting 255

When given the additional argument hax, the hold state is modified only for the given
axis handle.

To query the current ’hold’ state use the ishold function.

See also: [ishold], page 255, [cla], page 255, [newplot], page 254, [clf], page 255.

ishold [Command]
Return true if the next plot will be added to the current plot, or false if the plot
device will be cleared before drawing the next plot.

See also: [hold], page 254.

To clear the current figure, call the c1f function. To clear the current axis, call the cla
function. To bring the current figure to the top of the window stack, call the shg function.
To delete a graphics object, call delete on its index. To close the figure window, call the
close function.

clf () [Function File]
clf ("reset") [Function File]
clf (hfig) [Function File]
clf (hfig, "reset") [Function File]

Clear the current figure window. clf operates by deleting child graphics objects with
visible handles (handlevisibility = on). If hfig is specified operate on it instead of
the current figure. If the optional argument "reset" is specified, all objects including
those with hidden handles are deleted.

See also: [cla], page 255, [close], page 256, [delete], page 255.

cla () [Function File]
cla ("reset") [Function File]
cla (hax) [Function File]
cla (hax, "reset") [Function File]

Delete the children of the current axes with visible handles. If hax is specified and
is an axes object handle, operate on it instead of the current axes. If the optional
argument "reset" is specified, also delete the children with hidden handles.

See also: [clf], page 255.
shg [Command]
Show the graph window. Currently, this is the same as executing drawnow.

See also: [drawnow]|, page 253, [figure|, page 252.

delete (file) [Function File]
delete (handle) [Function File]
Delete the named file or graphics handle.

Deleting graphics objects is the proper way to remove features from a plot without
clearing the entire figure.

See also: [clf], page 255, [cla], page 255.

256 GNU Octave

close [Command]
close (n) [Command]|
close all [Command|
close all hidden [Command]|

Close figure window(s) by calling the function specified by the "closerequestfcn'
property for each figure. By default, the function closereq is used.

See also: [closereq|, page 256.

closereq () [Function File]
Close the current figure and delete all graphics objects associated with it.

See also: [close], page 256, [delete], page 255.

15.2.8 Use of the interpreter Property

All text objects, including titles, labels, legends, and text, include the property 'interpreter’,
this property determines the manner in which special control sequences in the text are
rendered. If the interpreter is set to 'none’, then no rendering occurs. At this point the
"latex’ option is not implemented and so the ’latex’ interpreter also does not interpret the
text.

The ’tex’ option implements a subset of TEX functionality in the rendering of the text.
This allows the insertion of special characters such as Greek or mathematical symbols within
the text. The special characters are also inserted with a code starting with the back-slash
(\) character, as in the table Table 15.1.

In addition, the formatting of the text can be changed within the string with the codes

\bf Bold font

\it Italic font
\sl Oblique Font
\rm Normal font

These are be used in conjunction with the { and } characters to limit the change in the
font to part of the string. For example,

xlabel (°{\bf H} = a {\bf V}’)

where the character ’a’ will not appear in a bold font. Note that to avoid having Octave
interpret the backslash characters in the strings, the strings should be in single quotes.

It is also possible to change the fontname and size within the text

\fontname{fontname} Specify the font to use
\fontsize{size} Specify the size of the font to use

Finally, the superscript and subscripting can be controlled with the =" and ’_’ characters.
If the ’~” or ’_’ is followed by a { character, then all of the block surrounded by the { } pair
is super- or sub-scripted. Without the { } pair, only the character immediately following
the ~7 or ’_’ is super- or sub-scripted.

Chapter 15: Plotting 257

Code Sym | Code Sym | Code Sym
\forall v \exists 3 \ni >
\cong = \Delta A \Phi o
\Gamma r \vartheta 9 \Lambda A
\Pi I \Theta C) \Sigma z
\varsigma S \Omega Q \Xi =
\Psi 1\ \perp s \alpha «
\beta g \chi X \delta)
\epsilon € \phi 10) \gamma ~y
\eta n \iota L \varphi ©
\kappa K \lambda A \mu i
\nu v \o < \pi s
\theta 0 \rho p \sigma o
\tau T \upsilon v \varpi w
\omega w \xi I3 \psi P
\zeta ¢ \sim ~ \ Upsilon T
\prime / \leq < \infty 00
\clubsuit & \diamondsuit | \heartsuit Q
\spadesuit [) \leftrightarrow | <> \leftarrow —
\uparrow 0 \rightarrow — \downarrow i)
\circ o \pm + \geq >
\times X \propto x \partial 0
\bullet . \div + \neq #
\equiv = \approx ~ \ldots .
\mid | \aleph N \Im R}
\Re R \wp o) \otimes ®
\oplus ® \oslash %) \cap N
\cup U \supset D \supseteq)
\subset C \subseteq C \in €
\notin ¢ \angle / \bigtriangledown |7
\langle (\rangle) \nabla \%
\prod I1 \surd Vv \cdot

\neg - \wedge A \vee \Y
\Leftrightarrow |< \Leftarrow = \Uparrow 1
\Rightarrow = \Downarrow (8 \diamond o
\copyright © \rfloor | \lceil [
\Ifloor | \reeil 1 \int Ik

Table 15.1: Available special characters in TEX mode

A complete example showing the capabilities of the extended text is

258 GNU Octave

x = 0:0.01:3;
plot (x,erf(x));
hold on;
plot(x,x,"r");
axis([0, 3, 0, 11);
text(0.65, 0.6175, strcat(’\leftarrow x = {2/\surd\pi’,
> {\fontsize{16}\int_{\fontsize{8}0} " {\fontsize{8}x}}’,
> e~{-t"2} dt} = 0.61757))
The result of which can be seen in Figure 15.7

2
x = 2/Vmf e dt = 0.6175 i

Figure 15.7: Example of inclusion of text with the TEX interpreter
15.2.9 Printing and Saving Plots

The print command allows you to save plots in a variety of formats. For example,
print -deps foo.eps

writes the current figure to an encapsulated PostScript file called ‘foo.eps’.

print () [Function File]
print (options) [Function File]
print (filename, options) [Function File]
print (h, filename, options) [Function File]

Print a graph, or save it to a file

filename defines the file name of the output file. If the file name has no suffix, one
is inferred from the specified device and appended to the file name. If no filename is
specified, the output is sent to the printer.

h specifies the figure handle. If no handle is specified the handle for the current figure
is used.

options:

-fh Specify the handle, h, of the figure to be printed. The default is the
current figure.

Chapter 15: Plotting 259

-Pprinter

Set the printer name to which the graph is sent if no filename is specified.

-Gghostscript_command

-color
-mono

-solid
—dashed

-portrait

-landscape

—-ddevice

Specify the command for calling Ghostscript. For Unix and Windows,
the defaults are 'gs’ and 'gswin32c’, respectively.

Monochrome or color output.

Forces all lines to be solid or dashed, respectively.

Specify the orientation of the plot for printed output. For non-printed
output the aspect ratio of the output corresponds to the plot area defined
by the "paperposition" property in the orientation specified. This options
is equivalent to changing the figure’s "paperorientation" property.

Output device, where device is one of:

ps

ps2

psc

psc?2 Postscript (level 1 and 2, mono and color). The FLTK graph-
ics toolkit generates Postscript level 3.0.

eps

eps2

epsc

epsc2 Encapsulated postscript (level 1 and 2, mono and color). The
FLTK graphic toolkit generates Postscript level 3.0.

tex

epslatex

epslatexstandalone

pstex

pslatex

pdflatex Generate a INTEX (or TEX) file for labels, and eps/ps/pdf for
graphics. The file produced by epslatexstandalone can be
processed directly by INTEX. The other formats are intended
to be included in a WTEX (or TEX) document. The tex device
is the same as the epslatex device. The pdflatex device is
only available for the FLTK graphics toolkit.

tikz Generate a IMTEX file using PGF/TikZ. For the FLTK the
result is PGF.

ill

aifm Adobe Illustrator (Obsolete for Gnuplot versions > 4.2)

cdr
corel CorelDraw

260

GNU Octave

dxf AutoCAD

emf

meta Microsoft Enhanced Metafile

fig XFig. For the Gnuplot graphics toolkit, the additional op-
tions ‘~textspecial’ or ‘-~textnormal’ can be used to con-

trol whether the special flag should be set for the text in the
figure (default is ‘~textnormal’).

hpgl HP plotter language

mf Metafont

png Portable network graphics

jpg

jpeg JPEG image

gif GIF image (only available for the Gnuplot graphics toolkit)
pbm PBMbplus

svg Scalable vector graphics

pdf Portable document format

If the device is omitted, it is inferred from the file extension, or if there
is no filename it is sent to the printer as postscript.

-dghostscript_device

—append
-TNUM

Additional devices are supported by Ghostscript. Some examples are;
ljet2p HP LaserJet 1IP

ljet3 HP LaserJet I1I

deskjet HP DeskJet and DeskJet Plus

cdj550 HP DeskJet 550C

paintjet HP PointJet

pcx24b 24-bit color PCX file format

ppm Portable Pixel Map file format

pdfwrite Produces pdf output from eps

For a complete list, type ‘system ("gs -h")’ to see what formats and
devices are available.

When Ghostscript output is sent to a printer the size is determined by
the figure’s "papersize" property. When the output is sent to a file the
size is determined by the plot box defined by the figure’s "paperposition"
property.

Appends the PS, or PDF output to a pre-existing file of the same type.

Resolution of bitmaps in pixels per inch. For both metafiles and SVG the
default is the screen resolution, for other it is 150 dpi. To specify screen
resolution, use "-rQ".

Chapter 15: Plotting 261

-tight Forces a tight bounding box for eps-files.
-preview Adds a preview to eps-files. Supported formats are;

—-interchange
Provides an interchange preview.

-metalfile
Provides a metafile preview.

-pict Provides pict preview.
-tiff Provides a tiff preview.
-Sxsize,ysize

Plot size in pixels for EMF, GIF, JPEG, PBM, PNG and SVG. For PS,
EPS, PDF, and other vector formats the plot size is in points. This option
is equivalent to changing the size of the plot box associated with "paper-
position" property. Using the command form of the print function, you
must quote the xsize,ysize option. For example, by writing "-S640,480".

-Ffontname

-Ffontname :size

-F:size Associates all text with the fontname and/or fontsize. fontname is ig-
nored for some devices; dxf, fig, hpgl, etc.

The filename and options can be given in any order.
Example: Print to a file, using the svg device.

figure (1)

clf O

surf (peaks)

print -dsvg figurel.svg
Example: Print to an HP Deskjet 550C.

figure (1)

clf O

surf (peaks)

print -dcdjb550

See also: [figure|, page 252, [orient|, page 262, [saveas]|, page 261.

saveas (h, filename) [Function File]
saveas (h, filename, fmt) [Function File]
Save graphic object h to the file filename in graphic format fmt.

fmt should be one of the following formats:

ps Postscript

eps Encapsulated Postscript
jrg JPEG Image

png PNG Image

emf Enhanced Meta File

262 GNU Octave

pdf Portable Document Format

All device formats specified in print may also be used. If fmt is omitted it is extracted
from the extension of filename. The default format is "pdf".

figure (1);

clf O;

surf (peaks);

saveas(l, "figurel.png");

See also: [print], page 258.

orient (orientation) [Function File]
Set the default print orientation. Valid values for orientation include "landscape",
"portrait", and "tall".

The "tall" option sets the orientation to portait and fills the page with the plot,
while leaving a 0.25in border.

If called with no arguments, return the default print orientation.

15.2.10 Interacting with Plots

The user can select points on a plot with the ginput function or selection the position at
which to place text on the plot with the gtext function using the mouse.

[x, y, buttons] = ginput (n) [Function File]
Return which mouse buttons were pressed and keys were hit on the current figure. If
n is defined, then wait for n mouse clicks before returning. If n is not defined, then
ginput will loop until the return key is pressed.

b = waitforbuttonpress () [Function File]
Wait for button or mouse press.over a figure window. The value of b returns 0 if a
mouse button was pressed or 1 is a key was pressed.

See also: [ginput], page 262.

gtext (s) [Function File]
gtext ({s1;s2;...3}) [Function File]
gtext (..., prop, val) [Function File]

Place text on the current figure using the mouse. The text is defined by the string
s. If s is a cell array, each element of the cell array is written to a separate line.
Additional arguments are passed to the underlying text object as properties.

See also: [ginput], page 262, [text], page 249.
15.2.11 Test Plotting Functions

The functions sombrero and peaks provide a way to check that plotting is working. Typing
either sombrero or peaks at the Octave prompt should display a three-dimensional plot.

sombrero (n) [Function File]
Produce the familiar three-dimensional sombrero plot using n grid lines. If n is omit-
ted, a value of 41 is assumed.

The function plotted is

Chapter 15: Plotting 263

z = sin (sqrt (x"2 + y~2)) / (sqrt (x"2 + y~2))
See also: [surf], page 239, [meshgrid], page 241, [mesh], page 238.

peaks () [Function File]

peaks (n) [Function File]

peaks (x, y) [Function File]

z = peaks (...) [Function File]

[x, y, z] = peaks (...) [Function File]
Generate a function with lots of local maxima and minima. The function has the
form

Flay) =3(1 =)0 10 (2 — a7 — yf)) - el
Called without a return argument, peaks plots the surface of the above function using
mesh. If n is a scalar, the peaks returns the values of the above function on a n-by-n

mesh over the range [-3,3]. The default value for n is 49.

If n is a vector, then it represents the x and y values of the grid on which to calculate
the above function. The x and y values can be specified separately.

See also: [surf], page 239, [mesh], page 238, [meshgrid], page 241.

15.3 Graphics Data Structures

15.3.1 Introduction to Graphics Structures

The graphics functions use pointers, which are of class graphics_handle, in order to address
the data structures which control graphical displays. A graphics handle may point any one
of a number of different object types. The objects are the graphics data structures. The
types of objects are: figure, axes, line, text, patch, surface, text and image.

Each of these objects has a function by the same name. and, each of these functions
returns a graphics handle pointing to an object of corresponding type. In addition there
are several functions which operate on properties of the graphics objects and which return
handles: the functions plot and plot3 return a handle pointing to an object of type line,
the function subplot returns a handle pointing to an object of type axes, the function
f£ill returns a handle pointing to an object of type patch, the functions area, bar, barh,
contour, contourf, contour3d, surf, mesh, surfc, meshc, errorbar, quiver, quiver3,
scatter, scatter3, stair, stem, stem3 each return a handle as documented in [Data
Sources], page 291.

The graphics objects are arranged in a hierarchy:

1. The root is at 0. i.e., get (0) returns the properties of the root object.

2. Below the root are figure objects.

3. Below the figure objects are axes.

4. Below the axes objects are 1line, text, patch, surface, and image objects.

Graphics handles may be distinguished from function handles (Section 11.10.1 [Function
Handles], page 163) by means of the function ishandle. ishandle returns true if its
argument is a handle of a graphics object. In addition, the figure object may be tested using
isfigure. isfigure returns true only if its argument is a handle of a figure. ishghandle()
is synonymous with ishandle(). The whos function can be used to show the object type

264 GNU Octave

of each currently defined graphics handle. (Note: this is not true today, but it is, I hope,
considered an error in whos. It may be better to have whos just show graphics_handle as
the class, and provide a new function which, given a graphics handle, returns its object
type. This could generalize the ishandle() functions and, in fact, replace them.)

The get and set commands are used to obtain and set the values of properties of graphics
objects. In addition, the get command may be used to obtain property names.

For example, the property "type" of the graphics object pointed to by the graphics
handle h may be displayed by:

get (b, "type")

The properties and their current values are returned by get (h) where h is a handle
of a graphics object. If only the names of the allowed properties are wanted they may be
displayed by: get (h, "").

Thus, for example,

h = figure Q;

get (h, "type")

ans = figure

get (b, "");

error: get: ambiguous figure property name ; possible matches:

__graphics_toolkit__ hittest resize

__enhanced__ integerhandle resizefcn
__modified__ interruptible selected
__myhandle__ inverthardcopy selectionhighlight
__plot_stream__ keypressfcn selectiontype
alphamap keyreleasefcn tag

beingdeleted menubar toolbar

busyaction mincolormap type

buttondownfcn name uicontextmenu
children nextplot units

clipping numbertitle userdata
closerequestfcn paperorientation visible

color paperposition windowbuttondownfcn
colormap paperpositionmode windowbuttonmotionfcn
createfcn papersize windowbuttonupfcn
currentaxes papertype windowbuttonwheelfcn
currentcharacter paperunits windowstyle
currentobject parent wvisual
currentpoint pointer wvisualmode
deletefcn pointershapecdata xdisplay
dockcontrols pointershapehotspot =xvisual
doublebuffer position xvisualmode
filename renderer

handlevisibility renderermode

The root figure has index 0. Its properties may be displayed by: get (0, "").
The uses of get and set are further explained in [get], page 266, [set], page 267.

res = isprop (h, prop) [Function File]
Return true if prop is a property of the object with handle h.

See also: [get], page 266, [set], page 267.

Chapter 15: Plotting 265

15.3.2 Graphics Objects

The hierarchy of graphics objects was explained above. (See Section 15.3.1 [Introduction to
Graphics Structures|, page 263. Here the specific objects are described, and the properties
contained in these objects are discussed. Keep in mind that graphics objects are always
referenced by handle.

root figure the top level of the hierarchy and the parent of all figure objects. The handle
index of the root figure is 0.

figure A figure window.

axes A set of axes. This object is a child of a figure object and may be a parent of
line, text, image, patch, or surface objects.

line A line in two or three dimensions.

text Text annotations.

image A bitmap image.

patch A filled polygon, currently limited to two dimensions.
surface A three-dimensional surface.

15.3.2.1 Handle Functions

To determine whether a variable is a graphics object index or a figure index, use the functions
ishandle and isfigure.

ishandle (h) [Built-in Function]
Return true if h is a graphics handle and false otherwise. h may also be a matrix of
handles in which case a logical array is returned that is true where the elements of h
are graphics handles and false where they are not.

See also: [isfigure|, page 265.

ishghandle (h) [Function File]
Return true if h is a graphics handle and false otherwise.

isfigure (h) [Function File]
Return true if h is a graphics handle that contains a figure object.

See also: [ishandle], page 265.

The function gcf returns an index to the current figure object, or creates one if none
exists. Similarly, gca returns the current axes object, or creates one (and its parent figure
object) if none exists.

gect () [Function File]
Return the current figure handle. If a figure does not exist, create one and return its
handle. The handle may then be used to examine or set properties of the figure. For

example,
fplot (@sin, [-10, 10]);
fig = gcf O;

set (fig, "visible", "off");

266 GNU Octave

plots a sine wave, finds the handle of the current figure, and then makes that figure
invisible. Setting the visible property of the figure to "on" will cause it to be displayed
again.

See also: [get], page 266, [set], page 267.

geca () [Function File]
Return a handle to the current axis object. If no axis object exists, create one and
return its handle. The handle may then be used to examine or set properties of the
axes. For example,

ax = gca ();
set (ax, "position", [0.5, 0.5, 0.5, 0.5]);

creates an empty axes object, then changes its location and size in the figure window.
See also: [get], page 266, [set], page 267.

The get and set functions may be used to examine and set properties for graphics
objects. For example,

get (0)
= ans =

{
type = root
currentfigure = [](0x0)
children = [](0x0)
visible = on

}

returns a structure containing all the properties of the root figure. As with all functions
in Octave, the structure is returned by value, so modifying it will not modify the internal
root figure plot object. To do that, you must use the set function. Also, note that in this
case, the currentfigure property is empty, which indicates that there is no current figure
window.

The get function may also be used to find the value of a single property. For example,

get (gca (O, "xlim")
= [01]

returns the range of the x-axis for the current axes object in the current figure.
To set graphics object properties, use the set function. For example,
set (gca O, "xlim", [-10, 10]);

sets the range of the x-axis for the current axes object in the current figure to ‘[-10,
10]’. Additionally, calling set with a graphics object index as the only argument returns a
structure containing the default values for all the properties for the given object type. For
example,

set (gca)

returns a structure containing the default property values for axes objects.

Chapter 15: Plotting 267

get (h, p) [Built-in Function]
Return the named property p from the graphics handle h. If p is omitted, return the
complete property list for h. If h is a vector, return a cell array including the property
values or lists respectively.

set (h, property, value, ...) [Built-in Function]
set (h, properties, values) [Built-in Function]
set (h, pv) [Built-in Function]

Set named property values for the graphics handle (or vector of graphics handles) h.
There are three ways how to give the property names and values:

e as a comma separated list of property, value pairs

Here, each property is a string containing the property name, each value is a
value of the appropriate type for the property.

e as a cell array of strings properties containing property names and a cell array
values containing property values.

In this case, the number of columns of values must match the number of elements
in properties. The first column of values contains values for the first entry in
properties, etc. The number of rows of values must be 1 or match the number
of elements of h. In the first case, each handle in h will be assigned the same
values. In the latter case, the first handle in h will be assigned the values from
the first row of values and so on.

e as a structure array pv

Here, the field names of pv represent the property names, and the field values
give the property values. In contrast to the previous case, all elements of pv will
be set in all handles in h independent of the dimensions of pv.

parent = ancestor (h, type) [Function File]

parent = ancestor (h, type, 'toplevel’) [Function File]
Return the first ancestor of handle object h whose type matches type, where type is
a character string. If type is a cell array of strings, return the first parent whose type
matches any of the given type strings.

If the handle object h is of type type, return h.
If "toplevel" is given as a 3rd argument, return the highest parent in the object
hierarchy that matches the condition, instead of the first (nearest) one.

See also: [get], page 266, [set], page 267.
h = allchild (handles) [Function File]
Find all children, including hidden children, of a graphics object.

This function is similar to get (h, "children"), but also returns hidden objects. If
handles is a scalar, h will be a vector. Otherwise, h will be a cell matrix of the same
size as handles and each cell will contain a vector of handles.

See also: [get], page 266, [set], page 267, [findall], page 284, [findobj], page 283.
15.3.3 Graphics Object Properties

In this Section the object properties are discussed in detail, starting with the root figure
properties and continuing through the graphics object hierarchy.

268

15.3.3.1 Root Figure Properties

The root figure properties are

__modified__
— Values: "on," "off"
__myhandle__
beingdeleted
— Values: "on," "off"
busyaction
buttondownfcn
callbackobject
children

clipping — Values: "on," "off"

createfcn
currentfigure
deletefcn
handlevisibility
— Values: "on," "off"

hittest — Values: "on," "off"

interruptible
— Values: "on," "off"

parent

screendepth
screenpixelsperinch
screensize

selected

selectionhighlight
screendepth
screenpixelsperinch
showhiddenhandles

— Values: "on," "off"

tag

type

uicontextmenu
units

userdata

visible

GNU Octave

Chapter 15: Plotting 269

15.3.3.2 Figure Properties

The figure properties are:

__graphics_toolkit__
— The graphics toolkit currently in use.

_enhanced__
__modified__
__myhandle__
__plot_stream_
alphamap

beingdeleted
— Values: "on," "off"

busyaction
buttondownfcn
children Handle to children.

clipping — Values: "on," "off"

closerequestfcn
— Handle of function to call on close.

color
colormap An N-by-3 matri