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aicreg Identify model based upon AIC criteria from a stepreg() putput

Description

Identify model based upon AIC criteria from a stepreg() putput

Usage

aicreg(
xs,
start,
y_,
event,
steps_n = steps_n,
family = family,
object = NULL,
track = 0

)

Arguments

xs predictor input - an n by p matrix, where n (rows) is sample size, and p (columns)
the number of predictors. Must be in matrix form for complete data, no NA’s,
no Inf’s, etc., and not a data frame.
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start start time, Cox model only - class numeric of length same as number of patients
(n)

y_ output vector: time, or stop time for Cox model, y_ 0 or 1 for binomial (logistic),
numeric for gaussian. Must be a vector of length same as number of sample size.

event event indicator, 1 for event, 0 for census, Cox model only. Must be a numeric
vector of length same as sample size.

steps_n maximum number of steps done in stepwise regression fitting

family model family, "cox", "binomial" or "gaussian"

object A stepreg() output. If NULL it will be derived.

track Indicate whether or not to update progress in the console. Default of 0 sup-
presses these updates. The option of 1 provides these updates. In fitting clinical
data with non full rank design matrix we have found some R-packages to take a
very long time or possibly get caught in infinite loops. Therefore we allow the
user to track the package and judge whether things are moving forward or if the
process should be stopped.

Value

The identified model in form of a glm() or coxph() output object, with an entry of the stepreg()
output object.

See Also

stepreg , cv.stepreg , nested.glmnetr

Examples

set.seed(18306296)
sim.data=glmnetr.simdata(nrows=100, ncols=100, beta=c(0,1,1))
# this gives a more intersting case but takes longer to run
xs=sim.data$xs
# this will work numerically
xs=sim.data$xs[,c(2,3,50:55)]
y_=sim.data$yt
event=sim.data$event
cox.aic.fit = aicreg(xs, NULL, y_, event, family="cox", steps_n=40)
summary(cox.aic.fit)

y_=sim.data$yt
norm.aic.fit = aicreg(xs, NULL, y_, NULL, family="gaussian", steps_n=40)
summary(norm.aic.fit)
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ann_tab_cv Fit an Artificial Neural Network model on "tabular" provided as a
matrix, optionally allowing for an offset term

Description

Fit an Artificial Neural Network model for analysis of "tabular" data. The model has two hidden
layers where the number of terms in each layer is configurable by the user. The activation function
can also be switched between relu() (default) gelu() or sigmoid(). Optionally an offset term may
be included. Model "family" may be "cox" to fit a generalization of the Cox proportional hazards
model, "binomial" to fit a generalization of the logistic regression model and "gaussian" to fit a
generalization of linear regression model for a quantitative response. See the corresponding vignette
for examples.

Usage

ann_tab_cv(
myxs,
mystart = NULL,
myy,
myevent = NULL,
myoffset = NULL,
family = "binomial",
fold_n = 5,
epochs = 200,
eppr = 40,
lenz1 = 16,
lenz2 = 8,
actv = 1,
drpot = 0,
mylr = 0.005,
wd = 0,
l1 = 0,
lasso = 0,
lscale = 5,
scale = 1,
resetlw = 1,
minloss = 1,
gotoend = 0,
seed = NULL,
foldid = NULL

)

Arguments

myxs predictor input - an n by p matrix, where n (rows) is sample size, and p (columns)
the number of predictors. Must be in matrix form for complete data, no NA’s,
no Inf’s, etc., and not a data frame.
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mystart an optional vector of start times in case of a Cox model. Class numeric of length
same as number of patients (n)

myy dependent variable as a vector: time, or stop time for Cox model, Y_ 0 or 1 for
binomial (logistic), numeric for gaussian. Must be a vector of length same as
number of sample size.

myevent event indicator, 1 for event, 0 for census, Cox model only. Must be a numeric
vector of length same as sample size.

myoffset an offset term to be used when fitting the ANN. Not yet implemented in its pure
form. Functionally an offset can be included in the first column of the predictor
or feature matrix myxs and indicated as such using the lasso option.

family model family, "cox", "binomial" or "gaussian" (default)

fold_n number of folds for each level of cross validation

epochs number of epochs to run when tuning on number of epochs for fitting final model
number of epochs informed by cross validation

eppr for EPoch PRint. print summary info every eppr epochs. 0 will print first and
last epochs, 0 for first and last epoch, -1 for minimal and -2 for none.

lenz1 length of the first hidden layer in the neural network, default 16

lenz2 length of the second hidden layer in the neural network, default 16

actv for ACTiVation function. Activation function between layers, 1 for relu, 2 for
gelu, 3 for sigmoid.

drpot fraction of weights to randomly zero out. NOT YET implemented.

mylr learning rate for the optimization step in the neural network model fit

wd a possible weight decay for the model fit, default 0 for not considered

l1 a possible L1 penalty weight for the model fit, default 0 for not considered

lasso 1 to indicate the first column of the input matrix is an offset term, often derived
from a lasso model, else 0 (default)

lscale Scale used to allow ReLU to exend +/- lscale before capping the inputted linear
estimated

scale Scale used to transform the inital random paramter assingments by dividing by
scale

resetlw 1 as default to re-adjust weights to account for the offset every epoch. This is
only used in case lasso is set to 1.

minloss default of 1 for minimizing loss, else maximizing agreement (concordance for
Cox and Binomial, R-square for Gaussian), as function of epochs by cross val-
idaition

gotoend fit to the end of epochs. Good for plotting and exploration

seed an optional a numerical/integer vector of length 2, for R and torch random gen-
erators, default NULL to generate these. Integers should be positive and not
more than 2147483647.

foldid a vector of integers to associate each record to a fold. Should be integers from 1
and fold_n.
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Value

an artificial neural network model fit

Author(s)

Walter Kremers (kremers.walter@mayo.edu)

See Also

ann_tab_cv_best , predict_ann_tab, nested.glmnetr

ann_tab_cv_best Fit multiple Artificial Neural Network models on "tabular" provided
as a matrix, and keep the best one.

Description

Fit an multiple Artificial Neural Network models for analysis of "tabular" data using ann_tab_cv()
and select the best fitting model according to cross validaiton.

Usage

ann_tab_cv_best(
myxs,
mystart = NULL,
myy,
myevent = NULL,
myoffset = NULL,
family = "binomial",
fold_n = 5,
epochs = 200,
eppr = 40,
lenz1 = 32,
lenz2 = 8,
actv = 1,
drpot = 0,
mylr = 0.005,
wd = 0,
l1 = 0,
lasso = 0,
lscale = 5,
scale = 1,
resetlw = 1,
minloss = 1,
gotoend = 0,
bestof = 10,
seed = NULL,
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foldid = NULL
)

Arguments

myxs predictor input - an n by p matrix, where n (rows) is sample size, and p (columns)
the number of predictors. Must be in matrix form for complete data, no NA’s,
no Inf’s, etc., and not a data frame.

mystart an optional vector of start times in case of a Cox model. Class numeric of length
same as number of patients (n)

myy dependent variable as a vector: time, or stop time for Cox model, Y_ 0 or 1 for
binomial (logistic), numeric for gaussian. Must be a vector of length same as
number of sample size.

myevent event indicator, 1 for event, 0 for census, Cox model only. Must be a numeric
vector of length same as sample size.

myoffset an offset term to be ues when fitting the ANN. Not yet implemented.

family model family, "cox", "binomial" or "gaussian" (default)

fold_n number of folds for each level of cross validation

epochs number of epochs to run when tuning on number of epochs for fitting final model
number of epochs informed by cross validation

eppr for EPoch PRint. print summry info every eppr epochs. 0 will print first and last
epochs, -1 nothing.

lenz1 length of the first hidden layer in the neural network, default 16

lenz2 length of the second hidden layer in the neural network, default 16

actv for ACTiVation function. Activation function between layers, 1 for relu, 2 for
gelu, 3 for sigmoid.

drpot fraction of weights to randomly zero out. NOT YET implemented.

mylr learning rate for the optimization step in teh neural network model fit

wd weight decay for the model fit.

l1 a possible L1 penalty weight for the model fit, default 0 for not considered

lasso 1 to indicate the first column of the input matrix is an offset term, often derived
from a lasso model

lscale Scale used to allow ReLU to extend +/- lscale before capping the inputted linear
estimated

scale Scale used to transform the initial random parameter assingments by dividing
by scale

resetlw 1 as default to re-adjust weights to account for the offset every epoch. This is
only used in case lasso is set to 1

minloss default of 1 for minimizing loss, else maximizing agreement (concordance for
Cox and Binomial, R-square for Gaussian), as function of epochs by cross vali-
dation

gotoend fit to the end of epochs. Good for plotting and exploration
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bestof how many models to run, from which the best fitting model will be selected.

seed an optional a numerical/integer vector of length 2, for R and torch random gen-
erators, default NULL to generate these. Integers should be positive and not
more than 2147483647.

foldid a vector of integers to associate each record to a fold. Should be integers from 1
and fold_n.

Value

an artificial neural network model fit

Author(s)

Walter Kremers (kremers.walter@mayo.edu)

See Also

ann_tab_cv , predict_ann_tab, nested.glmnetr

best.preds Get the best models for the steps of a stepreg() fit

Description

Get the best models for the steps of a stepreg() fit

Usage

best.preds(modsum, risklist)

Arguments

modsum model summmary

risklist riskset list

Value

best predictors at each step of a stepwise regression

See Also

stepreg , cv.stepreg , nested.glmnetr
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boot.factor.foldid Generate foldid’s by 0/1 factor for bootstrap like samples where
unique option between 0 and 1

Description

Generate foldid’s by 0/1 factor for bootstrap like samples where unique option between 0 and 1

Usage

boot.factor.foldid(event, fraction)

Arguments

event the outcome variable in a vector identifying the different potential levels of the
outcome

fraction the fraction of the whole sample included in the bootstratp sample

Value

foldid’s in a vector the same length as event

See Also

get.foldid , nested.glmnetr

calceloss calculate cross-entry for multinomial outcomes

Description

calculate cross-entry for multinomial outcomes

Usage

calceloss(xx, yy)

Arguments

xx the sigmoid of the link, i.e, the estimated probabilities, i.e. xx = 1/(1+exp(-xb))

yy the observed data as 0’s and 1’s

Value

the cross-entropy on a per observation basis
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calplot Construct calibration plots for a nested.glmnetr output object

Description

Using k-fold cross validation this function constructs calibration plots for a nested.glmnetr output
object. Each hold out subset of the k-fold cross validation is regressed on the x*beta predicteds
based upon the model fit using the non-hold out data using splines. This yields k spline functions
for evaluating model performance. These k spline functions are averaged to provide an overall
model calibration. Standard deviations of the k spline fits are also calculated as a function of the
predicted X*beta, and these are used to derive and plot approximate 95 (mean +/- 2 * SD/sqrt(k)).
Because regression equations can be unreliable when extrapolating beyond the data range used in
model derivation, we display this overall calibration fit and CIs with solid lines only for the region
which lies within the ranges of the predicted x*betas for all the k leave out sets. The spline fits are
made using the same framework as in the original machine learning model fits, i.e. one of "cox",
"binomial" or "gaussian"family. For the "cox" famework the pspline() funciton is used, and for
the "binomial" and "gaussian" frameworks the ns() function is used. Predicted X*betas beyond the
range of any of the hold out sets are displayed by dashed lines to reflect the lessor certainty when
extrapolating even for a single hold out set.

Usage

calplot(
object,
wbeta = NULL,
df = 3,
resample = NULL,
oob = 1,
bootci = 0,
plot = 1,
plotfold = 0,
plothr = 0,
knottype = 1,
trim = 0,
vref = 0,
xlim = NULL,
ylim = NULL,
xlab = NULL,
ylab = NULL,
col.term = 1,
col.se = 2,
rug = 1,
seed = NULL,
cv = NULL,
fold = NULL,
...

)
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Arguments

object A nested.glmnetr() output object for calibration

wbeta Which Beta should be plotted, an integer. This will depend on which machine
learning models were run when creating the output object. If unsure the user
can run the function without specifying wbeta and a legend will be directed to
the console.

df The degrees of freedom for the spline function

resample 1 to base the splines on the leave out X*Beta’s ($xbetas.cv or $xbetas.boot.oob),
or 0 to use the naive X*Beta’s ($xbetas). This can be done to see biases associ-
ated with the naive approach.

oob 1 (default) to construct calibration plots using the out-of-bag data points, 0 to use
in bag (including resampled data points) data points. This option only applies
when bootstrap is used instead of k-fold cross validation, and when resample
is set to 1. For cross validation evaluations out-of-bag samples (folds) are al-
ways used for evaluation. The purpose of oob = 0 is to allow evaluation of
the variability of bootstrap calibrations ignoring bias like done in Riley et al.,
2023, doi: 10.1186/s12916-023-03212-y and Austin and Steyerberg 2013, doi:
10.1002/sim.5941

bootci 1 to calculate bootstrap confidence intervals for calibration curves adjusting for
bias, 0 (default) to simply plot the calibration curves based upon the inbag data.
This is for exploration only, and only when bootstrap samples were used for
model performance evaluation. The applicability of bootstrap confidence inter-
vals for these calibration curves is questionable. If bootci is set to 1 then oob is
set to 0.

plot 1 by default to produce plots, 0 to output data for plots only, 2 to plot and output
data.

plotfold 0 by default to not plot the individual fold calibrations, 1 to overlay the k leave
out spline calibration fits in a single figure and 2 to produce separate plots for
each of the k hold out calibration curves.

plothr a power > 1 determining the spacing of the values on the axes, e.g. 2, exp(1),
sqrt(10) or 10. The default of 0 plots the X*Beta. This only applies fore "cox"
survival data models.

knottype 1 (default) to use XBeta used for the spline fit to choose knots in ns() for gaussian
and binomial families, 2 to use the XBeta from all re-samples to determine the
knots.

trim the percent of top and bottom of the data to be trimmed away when producing
plots. The original data are still used used calcualting the curves for plotting.

vref Similar to trim but instead of trimming the spline lines, plots vertical refence
lines aht the top vref and bottom vref percent of the model X*Betas’s

xlim xlim for the plots. This does not effect the curves within the plotted region.
Caution, for the "cox" framework the xlim are specified in terms of the X*beta
and not the HR, even when HR is described on the axes.

ylim ylim for the plots, which will usually only be specified in a second run of for the
same data. This does not effect the curves within the plotted region. Caution,
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for the "cox" framework the ylim are specified in terms of the X*beta and not
the HR, even when HR is described on the axes.

xlab a user specified label for the x axis

ylab a user specified label for the y axis

col.term a number for the line depicting the overall calibration estimates

col.se a number for the line depicting the +/- 2 * standard error lines for the overall
calibration estimates

rug 1 to plot a rug for the model x*betas, 0 (default) to not.

seed an integer seed used to random select the multiple of X*Betas to be used in the
rug when using bootstraping for model evaluation as sample elements may be
included multiple times as test (Out Of Bag) data.

cv Deprecated. Use resample option instead.

fold Deprecated. This term is now ignored.

... allowance to pass terms to the invoked plot function

Details

Optionally, for comparison, the program can fit a spline based upon the predicted x*betas ignoring
the cross validation structure, or one can fit a spline using the x*betas calculated using the model
based upon all data.

Value

Calibration plots are returned by default, and optionally data for plots are output to a list.

Author(s)

Walter Kremers (kremers.walter@mayo.edu)

See Also

plot.nested.glmnetr , summary.nested.glmnetr , nested.glmnetr

cox.sat.dev Calculate the CoxPH saturated log-likelihood

Description

Calculate the saturated log-likelihood for the Cox model using both the Efron and Breslow approx-
imations for the case where all ties at a common event time have the same weights (exp(X*B)). For
the simple case without ties the saturated log-likelihood is 0 as the contribution to the log-likelihood
at each event time point can be made arbitrarily close to 1 by assigning a much larger weight to the
record with an event. Similarly, in the case of ties one can assign a much larger weight to be asso-
ciated with one of the event times such that the associated record contributes a 1 to the likelihood.
Next one can assign a very large weight to a second tie, but smaller than the first tie considered, and
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this too will contribute a 1 to the likelihood. Continuing in this way for this and all time points with
ties, the partial log-likelihood is 0, just like for the no-ties case. Note, this is the same argument
with which we derive the log-likelihood of 0 for the no ties case. Still, to be consistent with others
we derive the saturated log-likelihood with ties under the constraint that all ties at each event time
carry the same weights.

Usage

cox.sat.dev(y_, e_)

Arguments

y_ Time variable for a survival analysis, whether or not there is a start time

e_ Event indicator with 1 for event 0 otherwise.

Value

Saturated log likelihood for the Efron and Breslow approximations.

See Also

nested.glmnetr

cv.glmnetr Get a cross validation informed relaxed lasso model fit.

Description

Derive a relaxed lasso model and identifies hyperparameters, i.e. lambda and gamma, which give the
best bit using cross validation. It is analogous to the cv.glmnet() function of the ’glmnet’ package,
but handles cases where glmnet() may run slowly when using the relaxed=TRUE option.

Usage

cv.glmnetr(
xs,
start = NULL,
y_,
event = NULL,
family = "gaussian",
lambda = NULL,
gamma = c(0, 0.25, 0.5, 0.75, 1),
folds_n = 10,
limit = 2,
fine = 0,
track = 0,
seed = NULL,
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foldid = NULL,
ties = "efron",
stratified = 1,
time = NULL,
...

)

Arguments

xs predictor matrix

start vector of start times or the Cox model. Should be NULL for other models.

y_ outcome vector

event event vector in case of the Cox model. May be NULL for other models.

family model family, "cox", "binomial" or "gaussian" (default)

lambda the lambda vector. May be NULL.

gamma the gamma vector. Default is c(0,0.25,0.50,0.75,1).

folds_n number of folds for cross validation. Default and generally recommended is 10.

limit limit the small values for lambda after the initial fit. This will eliminate calcula-
tions that have small or minimal impact on the cross validation. Default is 2 for
moderate limitation, 1 for less limitation, 0 for none.

fine use a finer step in determining lambda. Of little value unless one repeats the
cross validation many times to more finely tune the hyperparameters. See the
’glmnet’ package documentation.

track indicate whether or not to update progress in the console. Default of 0 sup-
presses these updates. The option of 1 provides these updates. In fitting clinical
data with non full rank design matrix we have found some R-packages to take a
vary long time or seemingly be caught in infinite loops. Therefore we allow the
user to track the program progress and judge whether things are moving forward
or if the process should be stopped.

seed a seed for set.seed() so one can reproduce the model fit. If NULL the program
will generate a random seed. Whether specified or NULL, the seed is stored
in the output object for future reference. Note, for the default this randomly
generated seed depends on the seed in memory at that time so will depend on
any calls of set.seed prior to the call of this function.

foldid a vector of integers to associate each record to a fold. The integers should be
between 1 and folds_n.

ties method for handling ties in Cox model for relaxed model component. Default is
"efron", optionally "breslow". For penalized fits "breslow" is always used as in
the ’glmnet’ package.

stratified folds are to be constructed stratified on an indicator outcome 1 (default) for yes,
0 for no. Pertains to event variable for "cox" and y_ for "binomial" family.

time track progress by printing to console elapsed and split times. Suggested to use
track option instead as time options will be eliminated.

... Additional arguments that can be passed to glmnet()
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Details

This is the main program for model derivation. As currently implemented the package requires the
data to be input as vectors and matrices with no missing values (NA). All data vectors and matrices
must be numerical. For factors (categorical variables) one should first construct corresponding
numerical variables to represent the factor levels. To take advantage of the lasso model, one can use
one hot coding assigning an indicator for each level of each categorical variable, or creating as well
other contrasts variables suggested by the subject matter.

Value

A cross validation informed relaxed lasso model fit.

Author(s)

Walter Kremers (kremers.walter@mayo.edu)

See Also

summary.cv.glmnetr , predict.cv.glmnetr , glmnetr , nested.glmnetr

Examples

# set seed for random numbers, optionally, to get reproducible results
set.seed(82545037)
sim.data=glmnetr.simdata(nrows=100, ncols=100, beta=NULL)
xs=sim.data$xs
y_=sim.data$y_
event=sim.data$event
# for this example we use a small number for folds_n to shorten run time
cv.glmnetr.fit = cv.glmnetr(xs, NULL, y_, NULL, family="gaussian", folds_n=3, limit=2)
plot(cv.glmnetr.fit)
plot(cv.glmnetr.fit, coefs=1)
summary(cv.glmnetr.fit)

cv.stepreg Cross validation informed stepwise regression model fit.

Description

Cross validation informed stepwise regression model fit.

Usage

cv.stepreg(
xs_cv,
start_cv = NULL,
y_cv,
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event_cv,
family = "cox",
steps_n = 0,
folds_n = 10,
method = "loglik",
seed = NULL,
foldid = NULL,
stratified = 1,
track = 0

)

Arguments

xs_cv predictor input - an n by p matrix, where n (rows) is sample size, and p (columns)
the number of predictors. Must be in matrix form for complete data, no NA’s,
no Inf’s, etc., and not a data frame.

start_cv start time, Cox model only - class numeric of length same as number of patients
(n)

y_cv output vector: time, or stop time for Cox model, Y_ 0 or 1 for binomal (logistic),
numeric for gaussian. #’ Must be a vector of length same as number of sample
size.

event_cv event indicator, 1 for event, 0 for census, Cox model only. Must be a numeric
vector of length same as sample size.

family model family, "cox", "binomial" or "gaussian"

steps_n Maximun number of steps done in stepwise regression fitting. If 0, then takes
the value rank(xs_cv).

folds_n number of folds for cross validation

method method for choosing model in stepwise procedure, "loglik" or "concordance".
Other procedures use the "loglik".

seed a seed for set.seed() to assure one can get the same results twice. If NULL the
program will generate a random seed. Whether specified or NULL, the seed is
stored in the output object for future reference.

foldid a vector of integers to associate each record to a fold. The integers should be
between 1 and folds_n.

stratified folds are to be constructed stratified on an indicator outcome 1 (default) for yes,
0 for no. Pertains to event variable for "cox" and y_ for "binomial" family.

track indicate whether or not to update progress in the console. Default of 0 sup-
presses these updates. The option of 1 provides these updates. In fitting clinical
data with non full rank design matrix we have found some R-packages to take a
very long time. Therefore we allow the user to track the program progress and
judge whether things are moving forward or if the process should be stopped.

Value

cross validation infomred stepwise regression model fit tuned by number of model terms or p-value
for inclusion.
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See Also

predict.cv.stepreg , summary.cv.stepreg, stepreg , aicreg , nested.glmnetr

Examples

set.seed(955702213)
sim.data=glmnetr.simdata(nrows=1000, ncols=100, beta=c(0,1,1))
# this gives a more interesting case but takes longer to run
xs=sim.data$xs
# this will work numerically as an example
xs=sim.data$xs[,c(2,3,50:55)]
dim(xs)
y_=sim.data$yt
event=sim.data$event
# for this example we use small numbers for steps_n and folds_n to shorten run time
cv.stepreg.fit = cv.stepreg(xs, NULL, y_, event, steps_n=10, folds_n=3, track=0)
summary(cv.stepreg.fit)

devrat_ Calculate deviance ratios for CV based

Description

Calculate deviance ratios for individual folds and collectively. Calculations are based upon the
average -2 Log Likelihoods calculated on each leave out test fold data for the models trained on the
other (K-1) folds.

Usage

devrat_(m2.ll.mod, m2.ll.null, m2.ll.sat, n__)

Arguments

m2.ll.mod -2 Log Likelihoods calculated on the test data

m2.ll.null -2 Log Likelihoods for the null models

m2.ll.sat -2 Log Likelihoods for teh saturated models

n__ sample zize for the indivual foles, or number of events for the Cox model

Value

a list with devrat.cv for the deviance ratios for the indivual folds, and devrat, a single collective
deviance ratio

See Also

nested.glmnetr
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diff_time Output to console the elapsed and split times

Description

Output to console the elapsed and split times

Usage

diff_time(time_start = NULL, time_last = NULL)

Arguments

time_start beginning time for printing elapsed time

time_last last time for calculating split time

Value

Time of program invocation

See Also

diff_time , nested.glmnetr

Examples

time_start = diff_time()
time_last = diff_time(time_start)
time_last = diff_time(time_start,time_last)
time_last = diff_time(time_start,time_last)

diff_time1 Get elapsed time in c(hour, minute, secs)

Description

Get elapsed time in c(hour, minute, secs)

Usage

diff_time1(time1, time2)

Arguments

time1 start time

time2 stop time
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Value

Returns a vector of elapsed time in (hour, minute, secs)

See Also

diff_time

factor.foldid Generate foldid’s by factor levels

Description

Generate foldid’s by factor levels

Usage

factor.foldid(event, fold_n = 10)

Arguments

event the outcome variable in a vector identifying the different potential levels of the
outcome

fold_n the numbe of folds to be constructed

Value

foldid’s in a vector the same length as event

See Also

get.foldid , nested.glmnetr

get.foldid Get foldid’s with branching for cox, binomial and gaussian models

Description

Get foldid’s with branching for cox, binomial and gaussian models

Usage

get.foldid(y_, event, family, folds_n, stratified = 1)
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Arguments

y_ see help for cv.glmnetr() or nested.glmnetr()

event see help for cv.glmnetr() or nested.glmnetr()

family see help for cv.glmnetr() or nested.glmnetr()

folds_n see help for cv.glmnetr() or nested.glmnetr()

stratified see help for cv.glmnetr() or nested.glmnetr()

Value

A numeric vector with foldid’s for use in a cross validation

See Also

factor.foldid , nested.glmnetr

get.id.foldid Get foldid’s when id variable is used to identify groups of dependent
sampling units. With branching for cox, binomial and gaussian models

Description

Get foldid’s when id variable is used to identify groups of dependent sampling units. With branching
for cox, binomial and gaussian models

Usage

get.id.foldid(y_, event, id, family, folds_n, stratified)

Arguments

y_ see help for cv.glmnetr() or nested.glmnetr()

event see help for cv.glmnetr() or nested.glmnetr()

id see help for nested.glmnetr()

family see help for cv.glmnetr() or nested.glmnetr()

folds_n see help for cv.glmnetr() or nested.glmnetr()

stratified see help for cv.glmnetr() or nested.glmnetr()

Value

A numeric vector with foldid’s for use in a cross validation

See Also

factor.foldid , nested.glmnetr



22 glmnetr

glmnetr Fit relaxed part of lasso model

Description

Derive the relaxed lasso fits and optionally calls glmnet() to derive the fully penalized lasso fit.

Usage

glmnetr(
xs_tmp,
start_tmp,
y_tmp,
event_tmp,
family = "cox",
lambda = NULL,
gamma = c(0, 0.25, 0.5, 0.75, 1),
object = NULL,
track = 0,
ties = "efron",
time = NULL,
...

)

Arguments

xs_tmp predictor (X) matrix

start_tmp start time in case Cox model and (Start, Stop) time for use in model

y_tmp outcome (Y) variable, in case of Cox model (stop) time

event_tmp event variable in case of Cox model

family model family, "cox", "binomial" or "gaussian" (default)

lambda lambda vector, as in glmnet(), default is NULL

gamma gamma vector, as with glmnet(), default c(0,0.25,0.50,0.75,1)

object an output object from glmnet() using relax=FALSE with the model fits for the
fully penalized lasso models, i.e. gamma=1. Default is NULL in which case
these are derived within the function.

track Indicate whether or not to update progress in the console. Default of 0 sup-
presses these updates. The option of 1 provides these updates. In fitting clinical
data with non full rank design matrix we have found some R-packages to take a
vary long time or possibly get caught in infinite loops. Therefore we allow the
user to track the package and judge whether things are moving forward or if the
process should be stopped.

ties method for handling ties in Cox model for relaxed model component. Default is
"efron", optionally "breslow". For penalized fits "breslow" is always used as in
the ’glmnet’ package.
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time track progress by printing to console elapsed and split times. Suggested to use
track option instead as time options will be eliminated.

... Additional arguments that can be passed to glmnet()

Value

A list with two matrices, one for the model coefficients with gamma=1 and the other with gamma=0.

See Also

predict.glmnetr , cv.glmnetr , nested.glmnetr

Examples

set.seed(82545037)
sim.data=glmnetr.simdata(nrows=200, ncols=100, beta=NULL)
xs=sim.data$xs
y_=sim.data$yt
event=sim.data$event
glmnetr.fit = glmnetr( xs, NULL, y_, event, family="cox")
plot(glmnetr.fit)

glmnetr.cis A redirect to nested.cis()

Description

See nested.cis(), glmnetr.cis() is depricated

Usage

glmnetr.cis(object, type = "devrat", pow = 1, digits = 4, returnd = 0)

Arguments

object A nested.glmnetr output object.

type determines what type of nested cross validation performance measures are com-
pared. Possible values are "devrat" to compare the deviance ratios, i.e. the
fractional reduction in deviance relative to the null model deviance, "agree" to
compare agreement, "lincal" to compare the linear calibration slope coefficients,
"intcal" to compare the linear calibration intercept coefficients, from the nested
cross validation.
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pow the power to which the average of correlations is to be raised. Only applies
to the "gaussian" model. Default is 2 to yield R-square but can be on to show
correlations. pow is ignored for the family of "cox" and "binomial". When
pow = 2, calculations are made using correlations and the final estimates and
confidence intervals are raised to the power of 2. A negative sign before an
R-square estimate or confidence limit indicates the estimate or confidence limit
was negative before being raised to the power of 2.

digits digits for printing of z-scores, p-values, etc. with default of 4

returnd 1 to return the deviance ratios in a list, 0 to not return. The deviances are stored
in the nested.glmnetr() output object but not the deviance ratios. This function
provides a simple mechanism to obtain the cross validated deviance ratios.

Value

A printout to the R console

glmnetr.compcv A redirect to nested.compare

Description

See nested.compare(), as glmnetr.compcv() is depricated

Usage

glmnetr.compcv(object, digits = 4, type = "devrat", pow = 1)

Arguments

object A nested.glmnetr output object.

digits digits for printing of z-scores, p-values, etc. with default of 4

type determines what type of nested cross validation performance measures are com-
pared. Possible values are "devrat" to compare the deviance ratios, i.e. the
fractional reduction in deviance relative to the null model deviance, "agree" to
compare agreement, "lincal" to compare the linear calibration slope coefficients,
"intcal" to compare the linear calibration intercept coefficients, from the nested
cross validation.

pow the power to which the average of correlations is to be raised.

Value

A printout to the R console.

See Also

nested.compare



glmnetr.simdata 25

glmnetr.simdata Generate example data

Description

Generate an example data set with specified number of observations, and predictors. The first
column in the design matrix is identically equal to 1 for an intercept. Columns 2 to 5 are for the 4
levels of a character variable, 6 to 11 for the 6 levels of another character variable. Columns 12 to
17 are for 3 binomial predictors, again over parameterized. Such over parameterization can cause
difficulties with the glmnet() of the ’glmnet’ package.

Usage

glmnetr.simdata(
nrows = 1000,
ncols = 100,
beta = NULL,
intr = NULL,
nid = NULL

)

Arguments

nrows Sample size (>=100) for simulated data, default=1000.

ncols Number of columns (>=17) in design matrix, i.e. predictors, default=100.

beta Vector of length <= ncols for "left most" coefficients. If beta has length < ncols,
then the values at length(beta)+1 to ncols are set to 0. Default=NULL, where a
beta of length 25 is assigned standard normal values.

intr either NULL for no interactions or a vector of length 3 to impose a product effect
as decribed by intr[1]*xs[,3]*xs[,8] + intr[2]*xs[,4]*xs[,16] + intr[3]*xs[,18]*xs[,19]
+ intr[4]*xs[,21]*xs[,22]

nid number of id levels where each level is associated with a random effect, of vari-
ance 1 for normal data.

Value

A list with elements xs for desing matrix, y_ for a quantitative outcome, yt for a survival time, event
for an indicator of event (1) or censoring (0), in the Cox proportional hazards survival model setting,
yb for yes/no (binomial) outcome data, and beta the beta used in random number generation.

See Also

nested.glmnetr



26 glmnetr_seed

Examples

sim.data=glmnetr.simdata(nrows=1000, ncols=100, beta=NULL)
# for Cox PH survial model data
xs=sim.data$xs
y_=sim.data$yt
event=sim.data$event
# for linear regression model data
xs=sim.data$xs
y_=sim.data$y_
# for logistic regression model data
xs=sim.data$xs
y_=sim.data$yb

glmnetr_seed Get seeds to store, facilitating replicable results

Description

Get seeds to store, facilitating replicable results

Usage

glmnetr_seed(seed, folds_n = 10, folds_ann_n = NULL)

Arguments

seed The intput seed as a start, NULL, a vector of lenght 1 or 2, or a list with vectors
of lenght 1 or the number of folds, $seedr for most models and $seedt for the
ANN fits

folds_n The number of folds in general

folds_ann_n The number of folds for the ANN fits

Value

seed(s) in a list format for input to subsequent runs

See Also

nested.glmnetr
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nested.cis Calculate performance measure CI’s and p’s

Description

Calculate overall estimates and confidence intervals for performance measures based upon stored
cross validation performance measures in a nested.glmnetr() output object.

Usage

nested.cis(object, type = "devrat", pow = 1, digits = 4, returnd = 0)

Arguments

object A nested.glmnetr output object.

type determines what type of nested cross validation performance measures are com-
pared. Possible values are "devrat" to compare the deviance ratios, i.e. the
fractional reduction in deviance relative to the null model deviance, "agree" to
compare agreement, "lincal" to compare the linear calibration slope coefficients,
"intcal" to compare the linear calibration intercept coefficients, from the nested
cross validation.

pow the power to which the average of correlations is to be raised. Only applies
to the "gaussian" model. Default is 2 to yield R-square but can be on to show
correlations. pow is ignored for the family of "cox" and "binomial". When
pow = 2, calculations are made using correlations and the final estimates and
confidence intervals are raised to the power of 2. A negative sign before an
R-square estimate or confidence limit indicates the estimate or confidence limit
was negative before being raised to the power of 2.

digits digits for printing of z-scores, p-values, etc. with default of 4

returnd 1 to return the deviance ratios in a list, 0 to not return. The deviances are stored
in the nested.glmnetr() output object but not the deviance ratios. This function
provides a simple mechanism to obtain the cross validated deviance ratios.

Value

A printout to the R console

See Also

nested.compare , summary.nested.glmnetr , nested.glmnetr

Examples

sim.data=glmnetr.simdata(nrows=1000, ncols=100, beta=NULL)
xs=sim.data$xs
y_=sim.data$yt
event=sim.data$event
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# for this example we use a small number for folds_n to shorten run time
fit3 = nested.glmnetr(xs, NULL, y_, event, family="cox", folds_n=3)
nested.cis(fit3)

nested.compare Compare cross validation fit performances from a nested.glmnetr out-
put.

Description

Compare cross-validation model fits in terms of average performances from the nested cross vali-
dation fits.

Usage

nested.compare(object, type = "devrat", digits = 4, pow = 1)

Arguments

object A nested.glmnetr output object.

type determines what type of nested cross validation performance measures are com-
pared. Possible values are "devrat" to compare the deviance ratios, i.e. the
fractional reduction in deviance relative to the null model deviance, "agree" to
compare agreement, "lincal" to compare the linear calibration slope coefficients,
"intcal" to compare the linear calibration intercept coefficients, from the nested
cross validation.

digits digits for printing of z-scores, p-values, etc. with default of 4

pow the power to which the average of correlations is to be raised. Only applies
to the "gaussian" model. Default is 2 to yield R-square but can be on to show
correlations. pow is ignored for the family of "cox" and "binomial".

Value

A printout to the R console.

See Also

nested.cis , summary.nested.glmnetr , nested.glmnetr
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Examples

sim.data=glmnetr.simdata(nrows=1000, ncols=100, beta=NULL)
xs=sim.data$xs
y_=sim.data$yt
event=sim.data$event
# for this example we use a small number for folds_n to shorten run time
fit3 = nested.glmnetr(xs, NULL, y_, event, family="cox", folds_n=3)
nested.compare(fit3)

nested.glmnetr Using (nested) cross validation, describe and compare some machine
learning model performances

Description

Performs a nested cross validation or bootstrap validation for cross validation informed relaxed
lasso, Gradient Boosting Machine (GBM), Random Forest (RF), (artificial) Neural Network (ANN)
with two hidden layers, Recursive Partitioning (RPART) and step wise regression. That is hyper
parameters for all these models are informed by cross validation (CV) (or in the case of RF by out-
of-bag calculations), and a second layer of resampling is used to evaluate the performance of these
CV informed model fits. For step wise regression CV is used to inform either a p-value for entry or
degrees of freedom (df) for the final model choice. For input we require predictors (features) to be
in numeric matrix format with no missing values. This is similar to how the glmnet package expects
predictors. For survival data we allow input of start time as an option, and require stop time, and
an event indicator, 1 for event and 0 for censoring, as separate terms. This may seem unorthodox
as it might seem simpler to accept a Surv() object as input. However, multiple packages we use for
model fitting models require data in various formats and this choice was the most straight forward
for constructing the data formats required. As an example, the XGBoost routines require a data
format specific to the XGBoost package, not a matrix, not a data frame. Note, for XGBoost and
survival models, only a "stop time" variable, taking a positive value to indicate being associated
with an event, and the negative of the time when associated with a censoring, is passed to the input
data object for analysis.

Usage

nested.glmnetr(
xs,
start = NULL,
y_,
event = NULL,
family = "gaussian",
resample = NULL,
folds_n = 10,
stratified = NULL,
dolasso = 1,
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doxgb = 0,
dorf = 0,
doorf = 0,
doann = 0,
dorpart = 0,
dostep = 0,
doaic = 0,
ensemble = 0,
method = "loglik",
lambda = NULL,
gamma = NULL,
relax = TRUE,
steps_n = 0,
seed = NULL,
foldid = NULL,
limit = 1,
fine = 0,
ties = "efron",
keepdata = 0,
keepxbetas = 1,
bootstrap = 0,
unique = 0,
id = NULL,
track = 0,
do_ncv = NULL,
...

)

Arguments

xs predictor input - an n by p matrix, where n (rows) is sample size, and p (columns)
the number of predictors. Must be in (numeric) matrix form for complete data,
no NA’s, no Inf’s, etc., and not a data frame.

start optional start times in case of a Cox model. A numeric (vector) of length same
as number of patients (n). Optionally start may be specified as a column matrix
in which case the colname value is used when outputting summaries. Only the
lasso, stepwise, and AIC models allow for (start,stop) time data as input.

y_ dependent variable as a numeric vector: time, or stop time for Cox model, 0 or
1 for binomial (logistic), numeric for gaussian. Must be a vector of length same
as number of sample size. Optionally y_ may be specified as a column matrix
in which case the colname value is used when outputting summaries.

event event indicator, 1 for event, 0 for census, Cox model only. Must be a numeric
vector of length same as sample size. Optionally event may be specified as a
column matrix in which case the colname value is used when outputing sum-
maries.

family model family, "cox", "binomial" or "gaussian" (default)
resample 1 by default to do the Nested Cross Validation or bootstrap resampling calcu-

lations to assess model performance (see bootstrap option), or 0 to only fit the
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various models without doing resampling. In this case the nested.glmnetr() func-
tion will only derive the models based upon the full data set. This may be use-
ful when exploring various models without having to do the timely resampling
to assess model performance, for example, when wanting to examine extreme
gradient boosting models (GBM) or Artificial Neural Network (ANN) models
which can take a long time.

folds_n the number of folds for the outer loop of the nested cross validation, and if not
overridden by the individual model specifications, also the number of folds for
the inner loop of the nested cross validation, i.e. the number of folds used in
model derivation.

stratified 1 to generate fold IDs stratified on outcome or event indicators for the binomial
or Cox model, 0 to generate foldid’s without regard to outcome. Default is 1 for
nested CV (i.e. bootstrap=0), and 0 for bootstrap>=1.

dolasso fit and do cross validation for lasso model, 0 or 1

doxgb fit and evaluate a cross validation informed XGBoost (GBM) model. 1 for
yes, 0 for no (default). By default the number of folds used when training the
GBM model will be the same as the number of folds used in the outer loop of
the nested cross validation, and the maximum number of rounds when train-
ing the GBM model is set to 1000. To control these values one may specify
a list for the doxgb argument. The list can have elements $nfold, $nrounds,
and $early_stopping_rounds, each numerical values of length 1, $folds, a list
as used by xgb.cv() do identify folds for cross validation, and $eta, $gamma,
$max_depth, $min_child_weight, $colsample_bytree, $lambda, $alpha and $sub-
sample, each a numeric of length 2 giving the lower and upper values for the re-
spective tuning parameter. Here we deviate from nomenclature used elsewhere
in the package to be able to use terms those used in the ’xgboost’ (and mlrMBO)
package, in particular as used in xgb.train(), e.g. nfold instead of folds_n and
folds instead of foldid. If not provided defaults will be used. Defaults can be
seen from the output object$doxgb element, again a list. In case not NULL, the
seed and folds option values override the $seed and $folds values.
If to shorten run time the user sets nfold to a value other than folds_n we rec-
ommend that nfold = folds_n/2 or folds_n/3. Then the folds will be formed
by collapsing the folds_n folds allowing a better comparisons of model perfor-
mances between the different machine learning models. Typically one would
want to keep the full data model but the GBM models can cause the output ob-
ject to require large amounts of storage space so optionally one can choose to
not keep the final model when the goal is basically only to assess model perfor-
mance for the GBM. In that case the tuning parameters for the final tuned model
ae retained facilitating recalculation of the final model, this will also require the
original training data.

dorf fit and evaluate a random forest (RF) model. 1 for yes, 0 for no (default). Also,
if dorf is specified by a list, then RF models will be fit. The randomForestSRC
package is used. This list can have three elements. One is the vector mtryc,
and contains values for mtry. The program searches over the different values
to find a better fir for the final model. If not specified mtryc is set to round(
sqrt(dim(xs)[2]) * c(0.67 , 1, 1.5, 2.25, 3.375) ). The second list element the
vector ntreec. The first item (ntreec[1]) specifies the number of trees to fit in
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evaluating the models specified by the different mtry values. The second item
(ntreec[2]) specifies the number of trees to fit in the final model. The default is
ntreec = c(25,250). The third element in the list is the numeric variable keep,
with the value 1 (default) to store the model fit on all data in the output object,
or the value 0 to not store the full data model fit. Typically one would want to
keep the full data model but the RF models can cause the output object to require
large amounts of storage space so optionally one can choose to not keep the final
model when the goal is basically only to assess model performance for the RF.
Random forests use the out-of-bag (OOB) data elements for assessing model fit
and hyperparameter tuning and so cross validation is not used for tuning. Still,
because of the number of trees in the forest random forest can take long to run.

doorf fit and evaluate an Oblique random forest (RF) model. 1 for yes, 0 for no (de-
fault). While the nomenclature used by orrsf() is slightly different than that used
by rfsrc() nomenclature for this object follows that of dorf.

doann fit and evaluate a cross validation informed Artificial Neural Network (ANN)
model with two hidden levels. 1 for yes, 0 for no (default). By default the num-
ber of folds used when training the ANN model will be the same as the number
of folds used in the outer loop of the nested cross validation. To override this,
for example to shrtn run time, one may specify a list for the doann argument
where the element $folds_ann_n gives the number of folds used when training
the ANN. To shorten run we recommend folds_ann_n = folds_n/2 or folds_n/3,
and at least 3. Then the folds will be formed by collapsing the folds_n folds
using in fitting other models allowing a better comparisons of model perfor-
mances between the different machine learning models. The list can also have
elements $epochs, $epochs2, $myler, $myler2, $eppr, $eppr2, $lenv1, $lenz2,
$actv, $drpot, $wd, wd2, l1, l12, $lscale, $scale, $minloss and $gotoend. These
arguments are then passed to the ann_tab_cv_best() function, with the meanings
described in the help for that function, with some exception. When there are
two similar values like $epoch and $epoch2 the first applies to the ANN mod-
els trained without transfer learning and the second to the models trained with
transfer learning from the lasso model. Elements of this list unspecified will
take default values. The user may also specify the element $bestof (a positive
integer) to fit bestof models with different random starting weights and biases
while taking the best performing of the different fits based upon CV as the final
model. The default value for bestof is 1.

dorpart fit and do a nested cross validation for an RPART model. As rpart() does its own
approximation for cross validation there is no new functions for cross validation.

dostep fit and do cross validation for stepwise regression fit, 0 or 1, as discussed in
James, Witten, Hastie and Tibshirani, 2nd edition.

doaic fit and do cross validation for AIC fit, 0 or 1. This is provided primarily as a
reference.

ensemble This is a vector 8 characters long and specifies a set of ensemble like model to
be fit based upon the predicteds form a relaxed lasso model fit, by either inl-
cuding the predicteds as an additional term (feature) in the machine learning
model, or including the predicteds similar to an offset. For XGBoost, the off-
set is specified in the model with the "base_margin" in the XGBoost call. For
the Artificial Neural Network models fit using the ann_tab_cv_best() function,
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one can initialize model weights (parameters) to account for the predicteds in
prediction and either let these weights by modified each epoch or update and
maintain these weights during the fitting process. For ensemble[1] = 1 a model
is fit ignoring these predicteds, ensemble[2]=1 a model is fit including the pre-
dicteds as an additional feature. For ensemble[3]=1 a model is fit using the
predicteds as an offset when running the xgboost model, or a model is fit in-
cluding the predicteds with initial weights corresponding to an offset, but then
weights are allowed to be tuned over the epochs. For i >= 4 ensemble[i] only
applies to the neural network models. For ensemble[4]=1 a model is fit like for
ensemble[3]=1 but the weights are reassigned to correspond to an offset after
each epoch. For i in (5,6,7,8) ensemble[i] is similar to ensemble[i-4] except the
original predictor (feature) set is replaced by the set of non-zero terms in the
relaxed lasso model fit. If ensemble is specified as 0 or NULL, then ensemble
is assigned c(1,0,0,0, 0,0,0,0). If ensemble is specified as 1, then ensemble is
assigned c(1,0,0,0, 0,1,0,1).

method method for choosing model in stepwise procedure, "loglik" or "concordance".
Other procedures use the "loglik".

lambda lambda vector for the lasso fit

gamma gamma vector for the relaxed lasso fit, default is c(0,0.25,0.5,0.75,1)

relax fit the relaxed lasso model when fitting a lasso model

steps_n number of steps done in stepwise regression fitting

seed optional, either NULL, or a numerical/integer vector of length 2, for R and torch
random generators, or a list with two two vectors, each of length folds_n+1, for
generation of random folds of the outer cross validation loop, and the remaining
folds_n terms for the random generation of the folds or the bootstrap samples
for the model fits of the inner loops. This can be used to replicate model fits.
Whether specified or NULL, the seed is stored in the output object for future
reference. The stored seed is a list with two vectors seedr for the seeds used
in generating the random fold splits, and seedt for generating the random initial
weights and biases in the torch neural network models. The first element in each
of these vectors is for the all data fits and remaining elements for the folds of the
inner cross validation. The integers assigned to seed should be positive and not
more than 2147483647.

foldid a vector of integers to associate each record to a fold. Should be integers from 1
and folds_n. These will only be used in the outer folds.

limit limit the small values for lambda after the initial fit. This will have minimal
impact on the cross validation. Default is 2 for moderate limitation, 1 for less
limitation, 0 for none.

fine use a finer step in determining lambda. Of little value unless one repeats the
cross validation many times to more finely tune the hyper paramters. See the
’glmnet’ package documentation

ties method for handling ties in Cox model for relaxed model component. Default
is "efron", optionally "breslow". For penalized fits "breslow" is always used as
derived form to ’glmnet’ package.
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keepdata 0 (default) to delete the input data (xs, start, y_, event) from the output objects
from the random forest fit and the glm() fit for the stepwise AIC model, 1 to
keep.

keepxbetas 1 (default) to retain in the output object a copy of the functional outcome vari-
able, i.e. y_ for "gaussian" and "binomial" data, and the Surv(y_,event) or
Surv(start,y_,event) for "cox" data. This allows calibration studies of the mod-
els, going beyond the linear calibration information calculated by the function.
The xbetas are calculated both for the model derived using all data as well as for
the hold out sets (1/k of the data each) for the models derived within the cross
validation ((k-1)/k of the data for each fit).

bootstrap 0 (default) to use nested cross validation, a positive integer to perform as many
iterations of the bootstrap for model evaluation.

unique 0 to use the bootstrap sample as is as training data, 1 to include the unique
sample elements only once. A fractional value between 0.5 and 0.9 will sample
without replacement a fraction of this value for training and use the remaining
as test data.

id optional vector identifying dependent observations. Can be used, for example,
when some study subjects have more than one row in the data. No values should
be NA. Default is NULL where all rows can be regarded as independent.

track 1 (default) to track progress by printing to console elapsed and split times, 0 to
not track

do_ncv Deprecated, and replaced by resample

... additional arguments that can be passed to glmnet()

Value

- Model fit performance for LASSO, GBM, Random Forest, Oblique Random Forest, RPART,
artificial neural network (ANN) or STEPWISE models are estimated using k-cross validation or
bootstrap. Full data model fits for these models are also calculated independently (prior to) the
performance evaluation, often using a second layer of resampling validation.

Author(s)

Walter Kremers (kremers.walter@mayo.edu)

See Also

glmnetr.simdata , summary.nested.glmnetr , nested.compare , plot.nested.glmnetr , predict.nested.glmnetr
, predict_ann_tab, cv.glmnetr , xgb.tuned , rf_tune , orf_tune , ann_tab_cv , cv.stepreg

Examples

sim.data=glmnetr.simdata(nrows=1000, ncols=100, beta=NULL)
xs=sim.data$xs
y_=sim.data$y_
# for this example we use a small number for folds_n to shorten run time
nested.glmnetr.fit = nested.glmnetr( xs, NULL, y_, NULL, family="gaussian", folds_n=3)
plot(nested.glmnetr.fit, type="devrat", ylim=c(0.7,1))
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plot(nested.glmnetr.fit, type="lincal", ylim=c(0.9,1.1))
plot(nested.glmnetr.fit, type="lasso")
plot(nested.glmnetr.fit, type="coef")
summary(nested.glmnetr.fit)
nested.compare(nested.glmnetr.fit)
summary(nested.glmnetr.fit, cvfit=TRUE)

orf_tune Fit a Random Forest model on data provided in matrix and vector
formats.

Description

Fit an Random Forest model using the orsf() function of the randomForestSRC package.

Usage

orf_tune(
xs,
start = NULL,
y_,
event = NULL,
family = NULL,
mtryc = NULL,
ntreec = NULL,
nsplitc = 8,
seed = NULL,
tol = 1e-05,
track = 0

)

Arguments

xs predictor input - an n by p matrix, where n (rows) is sample size, and p (columns)
the number of predictors. Must be in matrix form for complete data, no NA’s,
no Inf’s, etc., and not a data frame.

start an optional vector of start times in case of a Cox model. Class numeric of length
same as number of patients (n)

y_ dependent variable as a vector: time, or stop time for Cox model, Y_ 0 or 1 for
binomial (logistic), numeric for gaussian. Must be a vector of length same as
number of sample size.

event event indicator, 1 for event, 0 for census, Cox model only. Must be a numeric
vector of length same as sample size.

family model family, "cox", "binomial" or "gaussian" (default)
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mtryc a vector (numeric) of values to search over for optimization of the Random For-
est fit. This if for the mtry input variable of the orsf() program specifying the
number of terms to consider in each step of teh Random Forest fit.

ntreec a vector (numeric) of 2 values, the first for the number of forests (ntree from
orsf()) to use when searhcing for a better bit and the second to use when fitting
the final model. More trees should give a better fit but require more computa-
tions and storage for the final. model.

nsplitc This nsplit of orsf(), a non-negative integer for the number of random splits for
a predictor.

seed a seed for set.seed() so one can reproduce the model fit. If NULL the program
will generate a random seed. Whether specified or NULL, the seed is stored
in the output object for future reference. Note, for the default this randomly
generated seed depends on the seed in memory at that time so will depend on
any calls of set.seed prior to the call of this function.

tol a small number, a lower bound to avoid division by 0

track 1 to output a brief summary of the final selected model, 2 to output a brief
summary on each model fit in search of a better model or 0 (default) to not
output this information.

Value

a Random Forest model fit

Author(s)

Walter Kremers (kremers.walter@mayo.edu)

See Also

summary.orf_tune , rederive_orf , nested.glmnetr

plot.cv.glmnetr Plot cross-validation deviances, or model coefficients.

Description

By default, with coefs=FALSE, plots the average deviances as function of lam (lambda) and gam
(gamma), and also indicates the gam and lam which minimize deviance based upon a cv.glmnetr()
output object. Optionally, with coefs=TRUE, plots the relaxed lasso coefficients.
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Usage

## S3 method for class 'cv.glmnetr'
plot(
x,
gam = NULL,
lambda.lo = NULL,
plup = 0,
title = NULL,
coefs = FALSE,
comment = TRUE,
...

)

Arguments

x a cv.glmnetr() output object.

gam a specific level of gamma for plotting. By default gamma.min will be used.

lambda.lo a lower limit of lambda when plotting.

plup an indicator to plot the upper 95 percent two-sided confidence limits.

title a title for the plot.

coefs default of FALSE plots deviances, option of TRUE plots coefficients.

comment default of TRUE to write to console information on lam and gam selected for
output. FALSE will suppress this write to console.

... Additional arguments passed to the plot function.

Value

This program returns a plot to the graphics window, and may provide some numerical information
to the R Console. If gam is not specified, then then the gamma.min from the deviance minimizing
(lambda.min, gamma.min) pair will be used, and the corresponding lambda.min will be indicated
by a vertical line, and the lambda minimizing deviance under the restricted set of models where
gamma=0 will be indicated by a second vertical line.

See Also

plot.glmnetr , plot.nested.glmnetr , cv.glmnetr

Examples

# set seed for random numbers, optionally, to get reproducible results
set.seed(82545037)
sim.data=glmnetr.simdata(nrows=100, ncols=100, beta=NULL)
xs=sim.data$xs
y_=sim.data$y_
event=sim.data$event
# for this example we use a small number for folds_n to shorten run time
cv_glmnetr_fit = cv.glmnetr(xs, NULL, y_, NULL, family="gaussian", folds_n=3, limit=2)
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plot(cv_glmnetr_fit)
plot(cv_glmnetr_fit, coefs=1)

plot.glmnetr Plot the relaxed lasso coefficients.

Description

Plot the relaxed lasso coefficients from either a glmnetr(), cv.glmnetr() or nested.glmnetr() out-
put object. One may specify gam, single value for gamma. If gam is unspecified (NULL), then
cv.glmnetr and nested.glmnetr() will use the gam which minimizes loss, and glmentr() will use
gam=1.

Usage

## S3 method for class 'glmnetr'
plot(x, gam = NULL, lambda.lo = NULL, title = NULL, comment = TRUE, ...)

Arguments

x Either a glmnetr, cv.glmnetr or a nested.glmnetr output object.

gam A specific level of gamma for plotting. By default gamma.min from the deviance
minimizing (lambda.min, gamma.min) pair will be used.

lambda.lo A lower limit of lambda for plotting.

title A title for the plot

comment Default of TRUE to write to console information on lam and gam selected for
output. FALSE will suppress this write to console.

... Additional arguments passed to the plot function.

Value

This program returns a plot to the graphics window, and may provide some numerical information
to the R Console. If the input object is from a nested.glmnetr or cv.glmnetr object, and gamma is not
specified, then the gamma.min from the deviance minimizing (lambda.min, gamma.min) pair will
be used, and the minimizing lambda.min will be indicated by a vertical line. Also, if one specifies
gam=0, the lambda which minimizes deviance for the restricted set of models where gamma=0 will
indicated by a vertical line.

See Also

plot.cv.glmnetr , plot.nested.glmnetr , glmnetr
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Examples

set.seed(82545037)
sim.data=glmnetr.simdata(nrows=200, ncols=100, beta=NULL)
xs=sim.data$xs
y_=sim.data$yt
event=sim.data$event
glmnetr.fit = glmnetr( xs, NULL, y_, event, family="cox")
plot(glmnetr.fit)

plot.nested.glmnetr Plot results from a nested.glmnetr() output

Description

Plot the nested cross validation performance numbers, cross validated relaxed lasso deviances or
coefficients from a nested.glmnetr() call.

Usage

## S3 method for class 'nested.glmnetr'
plot(
x,
type = "devrat",
gam = NULL,
lambda.lo = NULL,
title = NULL,
plup = 0,
coefs = FALSE,
comment = TRUE,
pow = 2,
ylim = 1,
plot = 1,
fold = 1,
xgbsimple = 0,
...

)

Arguments

x A nested.glmnetr output object

type type of plot to be produced form the (nested) cross validation performance mea-
sures, and the lasso model tuning or lasso model coefficients. For the lasso
model the options include "lasso" to plot deviances informing hyperparmeter
choice or "coef" to plot lasso parameter estimates. Else nested cross valida-
tion performance measures are plotted. To show cross validation performance
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measures the options include "devrat" to plot deviance ratios, i.e. the fractional
reduction in deviance relative to the null model deviance, "agree" to plot agree-
ment, "lincal" to plot the linear calibration slope coefficients, "intcal" to plot the
linear calibration intercept coefficients or "devian" to plot the deviances from
the nested cross validation. For each performance measure estimates from the
individual (outer) cross validation fold are depicted by thin lines of different
colors and styles, while the composite value from all fol=ds is depicted by a
thicker black line, and the performance measures naively calculated on the all
data using the model derived from all data is depicted in a thicker red line.

gam A specific level of gamma for plotting. By default gamma.min will be used.
Applies only for type = "lasso".

lambda.lo A lower limit of lambda when plotting. Applies only for type = "lasso".

title A title

plup Plot upper 95 percent two-sided confidence intervals for the deviance plots. Ap-
plies only for type = "lasso".

coefs Depricated. See option ’type’. To plot coefficients specify ’type = coef’.

comment Default of TRUE to write to console information on lam and gam selected for
output. FALSE will suppress this write to console. Applies only for type =
"lasso".

pow Power to which agreement is to be raised when the "gaussian" model is fit, i.e.
2 for R-square, 1 for correlation. Does not apply to type = "lasso".

ylim y axis limits for model performance plots, i.e. does not apply to type = "lasso".
The ridge model may calibrate very poorly obscuring plots for type of "lincal" or
"intcal", so one may specify the ylim value. If ylim is set to 1, then the program
will derive a reasonable range for ylim. If ylim is set to 0, then the entire range
for all models will be displayed. Does not apply to type = "lasso".

plot By default 1 to produce a plot, 0 to return the data used in the plot in the form
of a list.

fold By default 1 to display model performance estimates form individual folds (or
replicaitons for boostrap evaluations) when type of "agree", "intcal", "lincal",
"devrat" for "devian". If 0 then the individual fold calculations are not displayed.
When there are many replications as sometimes the case when using bootstrap,
one may specify the number of randomly selected lines for plotting.

xgbsimple 1 (default) to include results for the untuned XGB model, 0 to not include.

... Additional arguments passed to the plot function.

Value

This program returns a plot to the graphics window, and may provide some numerical information
to the R Console.

Author(s)

Walter Kremers (kremers.walter@mayo.edu)
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See Also

plot_perf_glmnetr , calplot , plot.cv.glmnetr , nested.glmnetr

Examples

sim.data=glmnetr.simdata(nrows=1000, ncols=100, beta=NULL)
xs=sim.data$xs
y_=sim.data$yt
event=sim.data$event
# for this example we use a small number for folds_n to shorten run time
fit3 = nested.glmnetr(xs, NULL, y_, event, family="cox", folds_n=3)
plot(fit3)
plot(fit3, type="coef")

plot_perf_glmnetr Plot nested cross validation performance summaries

Description

This function plots summary information from a nested.glmnetr() output object, that is from a nested
cross validation performance. Alternamvely one can output the numbers otherwise displayed to a
list for extraction or customized plotting. Performance measures for plotting include "devrat" the
deviance ratio, i.e. the fractional reduction in deviance relative to the null model deviance, "agree"
a measure of agreement, "lincal" the slope from a linear calibration and "intcal" the intercept from a
linear calibration. Performance measure estimates from the individual (outer) cross validation fold
are depicted by thin lines of different colors and styles, while the composite value from all folds is
depicted by a thicker black line, and the performance measures naively calculated on the all data
using the model derived from all data is depicted by a thicker red line.

Usage

plot_perf_glmnetr(
x,
type = "devrat",
pow = 2,
ylim = 1,
fold = 1,
xgbsimple = 0,
plot = 1

)

Arguments

x A nested.glmnetr output object
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type determines what type of nested cross validation performance measures are plot-
ted. Possible values are "devrat" to plot the deviance ratio, i.e. the fractional
reduction in deviance relative to the null model deviance, "agree" to plot agree-
ment in terms of concordance, correlation or R-square, "lincal" to plot the linear
calibration slope coefficients, "intcal" to plot the linear calibration intercept co-
efficients, from the (nested) cross validation.

pow Power to which agreement is to be raised when the "gaussian" model is fit, i.e.
2 for R-square, 1 for correlation. Does not apply to type = "lasso".

ylim y axis limits for model perforamnce plots, i.e. does not apply to type = "lasso".
The ridge model may calibrate very poorly obscuring plots for type of "lincal" or
"intcal", so one may specify the ylim value. If ylim is set to 1, then the program
will derive a reasonable range for ylim. If ylim is set to 0, then the entire range
for all models will be displayed. Does not apply to type = "lasso".

fold By default 1 to display using a spaghetti the performance as calculated from the
individual folds, 0 to display using dots only the composite values calculated
using all folds.

xgbsimple 1 (default) to include results for the untuned XGB model, 0 to not include.

plot By default 1 to produce a plot, 0 to return the data used in the plot in the form
of a list.

Value

This program returns a plot to the graphics window by default, and returns a list with data used in
teh plots if the plot=1 is specified.

Author(s)

Walter Kremers (kremers.walter@mayo.edu)

See Also

plot.nested.glmnetr , nested.glmnetr

predict.cv.glmnetr Give predicteds based upon a cv.glmnetr() output object.

Description

Give predicteds based upon a cv.glmnetr() output object. By default lambda and gamma are chosen
as the minimizing values for the relaxed lasso model. If gam=1 and lam=NULL then the best
unrelaxed lasso model is chosen and if gam=0 and lam=NULL then the best fully relaxed lasso
model is selected.

Usage

## S3 method for class 'cv.glmnetr'
predict(object, xs_new = NULL, lam = NULL, gam = NULL, comment = TRUE, ...)



predict.cv.stepreg 43

Arguments

object A cv.glmnetr (or nested.glmnetr) output object.

xs_new The predictor matrix. If NULL, then betas are provided.

lam The lambda value for choice of beta. If NULL, then lambda.min is used from
the cross validated tuned relaxed model. We use the term lam instead of lambda
as lambda usually denotes a vector in the package.

gam The gamma value for choice of beta. If NULL, then gamma.min is used from
the cross validated tuned relaxed model. We use the term gam instead of gamma
as gamma usually denotes a vector in the package.

comment Default of TRUE to write to console information on lam and gam selected for
output. FALSE will suppress this write to console.

... Additional arguments passed to the predict function.

Value

Either predicteds (xs_new*beta estimates based upon the predictor matrix xs_new) or model coef-
ficients, based upon a cv.glmnetr() output object. When outputting coefficients (beta), creates a list
with the first element, beta_, including 0 and non-0 terms and the second element, beta, including
only non 0 terms.

See Also

summary.cv.glmnetr , cv.glmnetr , nested.glmnetr

Examples

# set seed for random numbers, optionally, to get reproducible results
set.seed(82545037)
sim.data=glmnetr.simdata(nrows=200, ncols=100, beta=NULL)
xs=sim.data$xs
y_=sim.data$y_
event=sim.data$event
# for this example we use a small number for folds_n to shorten run time
cv.glmnetr.fit = cv.glmnetr(xs, NULL, y_, NULL, family="gaussian", folds_n=3, limit=2)
predict(cv.glmnetr.fit)

predict.cv.stepreg Beta’s or predicteds based upon a cv.stepreg() output object.

Description

Give predicteds or Beta’s based upon a cv.stepreg() output object. If an input data matrix is specified
the X*Beta’s are output. If an input data matrix is not specified then the Beta’s are output. In the
first column values are given based upon df as a tuning parameter and in the second column values
based upon p as a tuning parameter.
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Usage

## S3 method for class 'cv.stepreg'
predict(object, xs = NULL, ...)

Arguments

object cv.stepreg() output object

xs dataset for predictions. Must have the same columns as the input predictor ma-
trix in the call to cv.stepreg().

... pass through parameters

Value

a matrix of beta’s or predicteds

See Also

summary.cv.stepreg, cv.stepreg , nested.glmnetr

predict.glmnetr Get predicteds or coefficients using a glmnetr output object

Description

Give predicteds based upon a glmnetr() output object. Because the glmnetr() function has no cross
validation information, lambda and gamma must be specified. To choose lambda and gamma based
upon cross validation one may use the cv.glmnetr() or nested.glmnetr() and the corresponding pre-
dict() functions.

Usage

## S3 method for class 'glmnetr'
predict(object, xs_new = NULL, lam = NULL, gam = NULL, ...)

Arguments

object A glmnetr output object

xs_new A desing matrix for predictions

lam The value for lambda for determining the lasso fit. Required.

gam The value for gamma for determining the lasso fit. Required.

... Additional arguments passed to the predict function.

Value

Coefficients or predictions using a glmnetr output object. When outputting coefficients (beta), cre-
ates a list with the first element, beta_, including 0 and non-0 terms and the second element, beta,
including only non 0 terms.
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See Also

glmnetr , cv.glmnetr , nested.glmnetr

Examples

set.seed(82545037)
sim.data=glmnetr.simdata(nrows=200, ncols=100, beta=NULL)
xs=sim.data$xs
y_=sim.data$yt
event=sim.data$event
glmnetr.fit = glmnetr( xs, NULL, y_, event, family="cox")
betas = predict(glmnetr.fit,NULL,exp(-2),0.5 )
betas$beta

predict.nested.glmnetr

Give predicteds based upon the cv.glmnet output object contained in
the nested.glmnetr output object.

Description

This is essentially a redirect to the summary.cv.glmnetr function for nested.glmnetr output objects,
based uopn the cv.glmnetr output object contained in the nested.glmnetr output object.

Usage

## S3 method for class 'nested.glmnetr'
predict(object, xs_new = NULL, lam = NULL, gam = NULL, comment = TRUE, ...)

Arguments

object A nested.glmnetr output object.

xs_new The predictor matrix. If NULL, then betas are provided.

lam The lambda value for choice of beta. If NULL, then lambda.min is used from
the cross validation informed relaxed model. We use the term lam instead of
lambda as lambda usually denotes a vector in the package.

gam The gamma value for choice of beta. If NULL, then gamma.min is used from
the cross validation informed relaxed model. We use the term gam instead of
gamma as gamma usually denotes a vector in the package.

comment Default of TRUE to write to console information on lam and gam selected for
output. FALSE will suppress this write to console.

... Additional arguments passed to the predict function.
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Value

Either the xs_new*Beta estimates based upon the predictor matrix, or model coefficients.

See Also

predict.cv.glmnetr , predict_ann_tab , nested.glmnetr

Examples

sim.data=glmnetr.simdata(nrows=1000, ncols=100, beta=NULL)
xs=sim.data$xs
y_=sim.data$yt
event=sim.data$event
# for this example we use a small number for folds_n to shorten run time
fit3 = nested.glmnetr(xs, NULL, y_, event, family="cox", folds_n=3)
betas = predict(fit3)
betas$beta

predict_ann_tab Get predicteds for an Artificial Neural Network model fit in
nested.glmnetr()

Description

All but one of the Artificial Neural Network (ANNs) fit by nested.glmnetr() are based upon a neural
network model and input from a lasso model. Thus a simple model(xs) statement will not give the
proper predicted values. This function process information form the lasso and ANN model fits to
give the correct predicteds. Whereas the ann_tab_cv() function ca be used to fit a model based upon
an input data set it does not fit a lasso model to allow an informed starting point for the ANN fit.
The pieces fo this are in nested.glmnetr(). To fit a cross validation (CV) informed ANN model fit
one can run nested.glmnetr() with folds_n = 0 to derive the full data models without doing a cross
validation.

Usage

predict_ann_tab(object, xs, modl = NULL)

Arguments

object a output object from the nested.glmnetr() function

xs new data of the same form used as input to nested.glmnetr()

modl ANN model entry an integer from 1 to 5 indicating which "lasso informed"
ANN is to be used for calculations. The number corresponds to the position of
the ensemble input from the nested.glmnetr() call. The model must already be
fit to calculate predicteds: 1 for ensemble[1] = 1, for model based upon raw data
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; 2 for ensemble[2] = 1, raw data plus lasso predicteds as a predictor variable
(features) ; 4 for ensemble[3] = 1, raw data plus lasso predicteds and initial
weights corresponding to offset and allowed to update ; 5 for ensemble[4] = 1,
raw data plus lasso predicteds and initial weights corresponding to offset and
not allowed to updated ; 6 for ensemble[5] = 1, nonzero relaxed lasso terms
; 7 for ensemble[6] = 1, nonzero relaxed lasso terms plus lasso predicteds as a
predictor variable (features) ; 8 for ensemble[7] = 1, nonzero relaxed lasso terms
plus lasso predicteds with initial weights corresponding to offset and allowed to
update ; 9 for ensemble[8] = 1, nonzero relaxed lasso terms plus lasso predicteds
with initial weights corresponding to offset and not allowed to update.

Value

a vector of predicteds

Author(s)

Walter Kremers (kremers.walter@mayo.edu)

See Also

ann_tab_cv , nested.glmnetr

print.nested.glmnetr A redirect to the summary() function for nested.glmnetr() output ob-
jects

Description

A redirect to the summary() function for nested.glmnetr() output objects

Usage

## S3 method for class 'nested.glmnetr'
print(x, ...)

Arguments

x a nested.glmnetr() output object.

... additional pass through inputs for the print function.

Value

- a nested cross validation fit summary, or a cross validation model summary.

See Also

summary.nested.glmnetr , nested.glmnetr
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Examples

sim.data=glmnetr.simdata(nrows=1000, ncols=100, beta=NULL)
xs=sim.data$xs
y_=sim.data$yt
event=sim.data$event
# for this example we use a small number for folds_n to shorten run time
fit3 = nested.glmnetr(xs, NULL, y_, event, family="cox", folds_n=3)
print(fit3)

print.orf_tune Print output from orf_tune() function

Description

Print output from orf_tune() function

Usage

## S3 method for class 'orf_tune'
print(x, ...)

Arguments

x output from an orf_tune() function

... optional pass through parameters to pass to print.orf()

Value

summary to console

See Also

summary.orf_tune , orf_tune , nested.glmnetr
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print.rf_tune Print output from rf_tune() function

Description

Print output from rf_tune() function

Usage

## S3 method for class 'rf_tune'
print(x, ...)

Arguments

x output from an rf_tune() function
... optional pass through parameters to pass to print.rfsrc()

Value

summary to console

See Also

summary.rf_tune , rf_tune , nested.glmnetr

rederive_orf Rederive Oblique Random Forest models not kept in nested.glmnetr()
output

Description

Because the oblique random forest models sometimes take large amounts of storage one may decide
to set keep=0 within the doorf list passed to nested.glmnetr(). This function allows the user to
rederive the oblique random forest models without doing the search. Note, the oblique random
forest fitting for survival data routine does not allow for (start,stop) times.

Usage

rederive_orf(object, xs, y_, event = NULL, type = NULL)

Arguments

object A nested.glmnetr() output object
xs Same xs used as input to ntested.glmnetr() for input object.
y_ Same y_ used as input to ntested.glmnetr() for input object.
event Same event used as input to ntested.glmnetr() for input object.
type Same type used as input to ntested.glmnetr() for input object.
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Value

an output like nested.glmnetr()$rf_tuned_fitX for X in c("", "F", "O")

See Also

orf_tune , nested.glmnetr

rederive_rf Rederive Random Forest models not kept in nested.glmnetr() output

Description

Because the random forest models sometimes take large amounts of storage one may decide to set
keep=0 within the dorf list passed to nested.glmnetr(). This function allows the user to rederive the
random forest models without doing the search. Note, the random forest fitting routine does not
allow for (start,stop) times.

Usage

rederive_rf(object, xs, y_, event = NULL, type = NULL)

Arguments

object A nested.glmnetr() output object

xs Same xs used as input to ntested.glmnetr() for input object.

y_ Same y_ used as input to ntested.glmnetr() for input object.

event Same event used as input to ntested.glmnetr() for input object.

type Same type used as input to ntested.glmnetr() for input object.

Value

an output like nested.glmnetr()$rf_tuned_fitX for X in c("", "F", "O")

See Also

rf_tune , nested.glmnetr
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rederive_xgb Rederive XGB models not kept in nested.glmnetr() output

Description

Because the XGBoost models sometimes take large amounts of storage one may decide to set
keep=0 with in the doxgb list passed to nested.glmnetr(). This function allows the user to red-
erive the XGBoost models without doing the search. Note, the random forest fitting routine does
not allow for (start,stop) times.

Usage

rederive_xgb(object, xs, y_, event = NULL, type = "base", tuned = 1)

Arguments

object A nested.glmnetr() output object

xs Same xs used as input to ntested.glmnetr() for input object.

y_ Same y_ used as input to ntested.glmnetr() for input object.

event Same event used as input to ntested.glmnetr() for input object.

type Same type used as input to ntested.glmnetr() for input object.

tuned 1 (default) to derive the tuned model like with xgb.tuned(), 0 to derive the basic
models like with xgb.simple().

Value

an output like nested.glmnetr()$xgb.simple.fitX or nested.glmnetr()$xgb.tuned.fitX for X in c("",
"F", "O")

See Also

xgb.tuned , xgb.simple , nested.glmnetr

rf_tune Fit a Random Forest model on data provided in matrix and vector
formats.

Description

Fit an Random Forest model using the rfsrc() function of the randomForestSRC package.
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Usage

rf_tune(
xs,
start = NULL,
y_,
event = NULL,
family = NULL,
mtryc = NULL,
ntreec = NULL,
nsplitc = 8,
seed = NULL,
track = 0

)

Arguments

xs predictor input - an n by p matrix, where n (rows) is sample size, and p (columns)
the number of predictors. Must be in matrix form for complete data, no NA’s,
no Inf’s, etc., and not a data frame.

start an optional vector of start times in case of a Cox model. Class numeric of length
same as number of patients (n)

y_ dependent variable as a vector: time, or stop time for Cox model, Y_ 0 or 1 for
binomial (logistic), numeric for gaussian. Must be a vector of length same as
number of sample size.

event event indicator, 1 for event, 0 for census, Cox model only. Must be a numeric
vector of length same as sample size.

family model family, "cox", "binomial" or "gaussian" (default)

mtryc a vector (numeric) of values to search over for optimization of the Random For-
est fit. This if for the mtry input variable of the rfsrc() program specifying the
number of terms to consider in each step of teh Random Forest fit.

ntreec a vector (numeric) of 2 values, the first for the number of forests (ntree from rf-
src()) to use when searhcing for a better bit and the second to use when fitting the
final model. More trees should give a better fit but require more computations
and storage for the final. model.

nsplitc This nsplit of rfsrc(), a non-negative integer for the number of random splits for
a predictor.

seed a seed for set.seed() so one can reproduce the model fit. If NULL the program
will generate a random seed. Whether specified or NULL, the seed is stored
in the output object for future reference. Note, for the default this randomly
generated seed depends on the seed in memory at that time so will depend on
any calls of set.seed prior to the call of this function.

track 1 to output a brief summary of the final selected model, 2 to output a brief
summary on each model fit in search of a better model or 0 (default) to not
output this information.
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Value

a Random Forest model fit

Author(s)

Walter Kremers (kremers.walter@mayo.edu)

See Also

summary.rf_tune , rederive_rf , nested.glmnetr

roundperf round elements of a summary.glmnetr() output

Description

round elements of a summary.glmnetr() output

Usage

roundperf(summdf, digits = 3, resample = 1)

Arguments

summdf a summary data frame from summary.nested.glmnetr() obtained using the option
table=0

digits the minimum number of decimals to display the elements of the data frame

resample 1 (default) if the summdf object is a summary for an analysis including nested
cross validation, 0 if only the full data models were fit.

Value

a data frame with same form as the input but with rounding for easier display

See Also

summary.nested.glmnetr , nested.glmnetr
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stepreg Fit the steps of a stepwise regression.

Description

Fit the steps of a stepwise regression.

Usage

stepreg(
xs_st,
start_time_st = NULL,
y_st,
event_st,
steps_n = 0,
method = "loglik",
family = NULL,
track = 0

)

Arguments

xs_st predictor input - an n by p matrix, where n (rows) is sample size, and p (columns)
the number of predictors. Must be in matrix form for complete data, no NA’s,
no Inf’s, etc., and not a data frame.

start_time_st start time, Cox model only - class numeric of length same as number of patients
(n)

y_st output vector: time, or stop time for Cox model, y_st 0 or 1 for binomal (logis-
tic), numeric for gaussian. Must be a vector of length same as number of sample
size.

event_st event_st indicator, 1 for event, 0 for census, Cox model only. Must be a numeric
vector of length same as sample size.

steps_n number of steps done in stepwise regression fitting

method method for choosing model in stepwise procedure, "loglik" or "concordance".
Other procedures use the "loglik".

family model family, "cox", "binomial" or "gaussian"

track 1 to output stepwise fit program, 0 (default) to suppress

Value

does a stepwise regression of depth maximum depth steps_n

See Also

summary.stepreg , aicreg , cv.stepreg , nested.glmnetr
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Examples

set.seed(18306296)
sim.data=glmnetr.simdata(nrows=100, ncols=100, beta=c(0,1,1))
# this gives a more intersting case but takes longer to run
xs=sim.data$xs
# this will work numerically
xs=sim.data$xs[,c(2,3,50:55)]
y_=sim.data$yt
event=sim.data$event
# for a Cox model
cox.step.fit = stepreg(xs, NULL, y_, event, family="cox", steps_n=40)
# ... and for a linear model
y_=sim.data$yt
norm.step.fit = stepreg(xs, NULL, y_, NULL, family="gaussian", steps_n=40)

summary.cv.glmnetr Output summary of a cv.glmnetr() output object.

Description

Summarize the cross-validation informed model fit. The fully penalized (gamma=1) beta estimate
will not be given by default but can too be output using printg1=TRUE.

Usage

## S3 method for class 'cv.glmnetr'
summary(object, printg1 = "FALSE", orderall = FALSE, ...)

Arguments

object a cv.glmnetr() output object.

printg1 TRUE to also print out the fully penalized lasso beta, else FALSE to suppress.

orderall By default (orderall=FALSE) the order terms enter into the lasso model is given
for the number of terms that enter in lasso minimizing loss model. If order-
all=TRUE then all terms that are included in any lasso fit are described.

... Additional arguments passed to the summary function.

Value

Coefficient estimates (beta)

See Also

predict.cv.glmnetr , cv.glmnetr , nested.glmnetr
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Examples

# set seed for random numbers, optionally, to get reproducible results
set.seed(82545037)
sim.data=glmnetr.simdata(nrows=100, ncols=100, beta=NULL)
xs=sim.data$xs
y_=sim.data$y_
event=sim.data$event
# for this example we use a small number for folds_n to shorten run time
cv.glmnetr.fit = cv.glmnetr(xs, NULL, y_, NULL, family="gaussian", folds_n=3, limit=2)
summary(cv.glmnetr.fit)

summary.cv.stepreg Summarize results from a cv.stepreg() output object.

Description

Summarize results from a cv.stepreg() output object.

Usage

## S3 method for class 'cv.stepreg'
summary(object, ...)

Arguments

object A cv.stepreg() output object

... Additional arguments passed to the summary function.

Value

Summary of a stepreg() (stepwise regression) output object.

See Also

predict.cv.stepreg , cv.stepreg , nested.glmnetr

Examples

set.seed(955702213)
sim.data=glmnetr.simdata(nrows=1000, ncols=100, beta=c(0,1,1))
# this gives a more interesting case but takes longer to run
xs=sim.data$xs
# this will work numerically as an example
xs=sim.data$xs[,c(2,3,50:55)]
dim(xs)
y_=sim.data$yt
event=sim.data$event
# for this example we use small numbers for steps_n and folds_n to shorten run time
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cv.stepreg.fit = cv.stepreg(xs, NULL, y_, event, steps_n=10, folds_n=3, track=0)
summary(cv.stepreg.fit)

summary.nested.glmnetr

Summarize a nested.glmnetr() output object

Description

Summarize the model fit from a nested.glmnetr() output object, i.e. the fit of a cross-validation
informed relaxed lasso model fit, inferred by nested cross validation. Else summarize the cross-
validated model fit.

Usage

## S3 method for class 'nested.glmnetr'
summary(
object,
cvfit = FALSE,
pow = 2,
printg1 = FALSE,
digits = 4,
call = NULL,
onese = 0,
table = 1,
tuning = 0,
width = 84,
cal = 0,
...

)

Arguments

object a nested.glmnetr() output object.

cvfit default of FALSE to summarize fit of a cross validation informed relaxed lasso
model fit, inferred by nested cross validation. Option of TRUE will describe the
cross validation informed relaxed lasso model itself.

pow the power to which the average of correlations is to be raised. Only applies
to the "gaussian" model. Default is 2 to yield R-square but can be on to show
correlations. Pow is ignored for the family of "cox" and "binomial".

printg1 TRUE to also print out the fully penalized lasso beta, else to suppress. Only
applies to cvfit=TRUE.

digits digits for printing of deviances, linear calibration coefficients and agreement
(concordances and R-squares).
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call 1 to print call used in generation of the object, 0 or NULL to not print

onese 0 (default) to not include summary for 1se lasso fits in tables, 1 to include

table 1 to print table to console, 0 to output the tabled information to a data frame

tuning 1 to print tuning parameters, 0 (default) to not print

width character width of the text body preceding the performance measures which can
be adjusted between 60 and 120.

cal 1 print performance statistics for lasso models calibrated on training data, 2 to
print performance statistics for lasso and random forest models calibrated on
training data, 0 (default) to not print. Note, despite any intuitive appeal these
training data calibrated models may sometimes do rather poorly.

... Additional arguments passed to the summary function.

Value

- a nested cross validation fit summary, or a cross validation model summary.

See Also

nested.compare , nested.cis , summary.cv.glmnetr , roundperf , plot.nested.glmnetr ,
calplot , nested.glmnetr

Examples

sim.data=glmnetr.simdata(nrows=1000, ncols=100, beta=NULL)
xs=sim.data$xs
y_=sim.data$yt
event=sim.data$event
# for this example we use a small number for folds_n to shorten run time
fit3 = nested.glmnetr(xs, NULL, y_, event, family="cox", folds_n=3)
summary(fit3)

summary.orf_tune Summarize output from rf_tune() function

Description

Summarize output from rf_tune() function

Usage

## S3 method for class 'orf_tune'
summary(object, ...)
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Arguments

object output from an rf_tune() function

... optional pass through parameters to pass to summary.orsf()

Value

summary to console

See Also

rf_tune , nested.glmnetr

summary.rf_tune Summarize output from rf_tune() function

Description

Summarize output from rf_tune() function

Usage

## S3 method for class 'rf_tune'
summary(object, ...)

Arguments

object output from an rf_tune() function

... optional pass through parameters to pass to summary.rfsrc()

Value

summary to console

See Also

rf_tune , nested.glmnetr
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summary.stepreg Briefly summarize steps in a stepreg() output object, i.e. a stepwise
regression fit

Description

Briefly summarize steps in a stepreg() output object, i.e. a stepwise regression fit

Usage

## S3 method for class 'stepreg'
summary(object, ...)

Arguments

object A stepreg() output object

... Additional arguments passed to the summary function.

Value

Summarize a stepreg() object

See Also

stepreg , cv.stepreg , nested.glmnetr

xgb.simple Get a simple XGBoost model fit (no tuning)

Description

This fits a gradient boosting machine model using the XGBoost platform. If uses a single set of
hyperparameters that have sometimes been reasonable so runs very fast. For a better fit one can
use xgb.tuned() which searches for a set of hyperparameters using the mlrMBO package which will
generally provide a better fit but take much longer. See xgb.tuned() for a description of the data
format required for input.

Usage

xgb.simple(
train.xgb.dat,
booster = "gbtree",
objective = "survival:cox",
eval_metric = NULL,
minimize = NULL,
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seed = NULL,
folds = NULL,
doxgb = NULL,
track = 2

)

Arguments

train.xgb.dat The data to be used for training the XGBoost model

booster for now just "gbtree" (default)

objective one of "survival:cox" (default), "binary:logistic" or "reg:squarederror"

eval_metric one of "cox-nloglik" (default), "auc", "rmse" or NULL. Default of NULL will
select an appropriate value based upon the objective value.

minimize whether the eval_metric is to be minimized or maximized

seed a seed for set.seed() to assure one can get the same results twice. If NULL the
program will generate a random seed. Whether specified or NULL, the seed is
stored in the output object for future reference.

folds an optional list where each element is a vector of indexes for a test fold. Default
is NULL. If specified then doxgb$nfold is ignored as in xgb.cv().

doxgb a list with parameters for passed to xgb.cv() including $nfold, $nrounds, and
$early_stopping_rounds. If not provided defaults will be used. Defaults can be
seen form the output object$doxgb element, again a list. In case not NULL, the
seed and folds option values override the $seed and $folds values in doxgb.

track 0 (default) to not track progress, 2 to track progress.

Value

a XGBoost model fit

Author(s)

Walter K Kremers with contributions from Nicholas B Larson

See Also

xgb.tuned , nested.glmnetr

Examples

# Simulate some data for a Cox model
sim.data=glmnetr.simdata(nrows=1000, ncols=100, beta=NULL)
Surv.xgb = ifelse( sim.data$event==1, sim.data$yt, -sim.data$yt )
data.full <- xgboost::xgb.DMatrix(data = sim.data$xs, label = Surv.xgb)
# for this example we use a small number for folds_n and nrounds to shorten run time
xgbfit = xgb.simple( data.full, objective = "survival:cox")
preds = predict(xgbfit, sim.data$xs)
summary( preds )
preds[1:8]
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xgb.tuned Get a tuned XGBoost model fit

Description

This fits a gradient boosting machine model using the XGBoost platform. It uses the mlrMBO
mlrMBO package to search for a well fitting set of hyperparameters and will generally provide
a better fit than xgb.simple(). Both this program and xgb.simple() require data to be provided in a
xgb.DMatrix() object. This object can be constructed with a command like data.full <- xgb.DMatrix(
data=myxs, label=mylabel), where myxs object contains the predictors (features) in a numerical ma-
trix format with no missing values, and mylabel is the outcome or dependent variable. For logistic
regression this would typically be a vector of 0’s and 1’s. For linear regression this would be vector
of numerical values. For a Cox proportional hazards model this would be in a format required for
XGBoost, which is different than for the survival package or glmnet package. For the Cox model a
vector is used where observations associated with an event are assigned the time of event, and ob-
servations associated with censoring are assigned the NEGATIVE of the time of censoring. In this
way information about time and status are communicated in a single vector instead of two vectors.
The xgb.tuned() function does not handle (start,stop) time, i.e. interval, data. To tune the xgboost
model we use the mlrMBO package which "suggests" the DiceKriging and rgenoud packages, but
doe not install these. Still, for xgb.tuned() to run it seems that one should install the DiceKriging
and rgenoud packages.

Usage

xgb.tuned(
train.xgb.dat,
booster = "gbtree",
objective = "survival:cox",
eval_metric = NULL,
minimize = NULL,
seed = NULL,
folds = NULL,
doxgb = NULL,
track = 0

)

Arguments

train.xgb.dat The data to be used for training the XGBoost model

booster for now just "gbtree" (default)

objective one of "survival:cox" (default), "binary:logistic" or "reg:squarederror"

eval_metric one of "cox-nloglik" (default), "auc" or "rmse",

minimize whether the eval_metric is to be minimized or maximized
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seed a seed for set.seed() to assure one can get the same results twice. If NULL the
program will generate a random seed. Whether specified or NULL, the seed is
stored in the output object for future reference.

folds an optional list where each element is a vector of indeces for a test fold. Default
is NULL. If specified then nfold is ignored a la xgb.cv().

doxgb A list specifying how the program is to do the xgb tune and fit. The list can have
elements $nfold, $nrounds, and $early_stopping_rounds, each numerical values
of length 1, $folds, a list as used by xgb.cv() do identify folds for cross valida-
tion, and $eta, $gamma, $max_depth, $min_child_weight, $colsample_bytree,
$lambda, $alpha and $subsample, each a numeric of length 2 giving the lower
and upper values for the respective tuning parameter. The meaning of these
terms is as in ’xgboost’ xgb.train(). If not provided defaults will be used. De-
faults can be seen from the output object$doxgb element, again a list. In case not
NULL, the seed and folds option values override the $seed and $folds values.

track 0 (default) to not track progress, 2 to track progress.

Value

a tuned XGBoost model fit

Author(s)

Walter K Kremers with contributions from Nicholas B Larson

See Also

xgb.simple , rederive_xgb , nested.glmnetr

Examples

# Simulate some data for a Cox model
sim.data=glmnetr.simdata(nrows=1000, ncols=100, beta=NULL)
Surv.xgb = ifelse( sim.data$event==1, sim.data$yt, -sim.data$yt )
data.full <- xgboost::xgb.DMatrix(data = sim.data$xs, label = Surv.xgb)
# for this example we use a small number for folds_n and nrounds to shorten
# run time. This may still take a minute or so.
# xgbfit=xgb.tuned(data.full,objective="survival:cox",nfold=5,nrounds=20)
# preds = predict(xgbfit, sim.data$xs)
# summary( preds )
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