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The functions

The ann_cv_lin() function fits a neural network (NN) model to tabular data. The network has a simple
“sequential” structure with linear components and by default ReLU activations. It has two hidden layers
where the number of terms in the two layers can be specified by the user. Data for input are in a format
as with the nested.glmnetr() function. Models can be fit as generalizations to the Cox, logistic or linear
regression models.

We originally wrote the ann_cv_lin() function to better understand how a NN model which begins its
“numerical optimization” near a model informed by a linear model might perform better than a standardly
fit NN model. The program is not optimized to find the “best algorithm” for model fitting so other NN
programs may perform better. Still, it does show how this “transfer learning” from a linear model to the
NN can dramatically improve model fit. Here we use the relaxed lasso regression model (tuned on lambda
and gamma) as the linear model for the transfer learning. In that both the relaxed lasso and NN models
are fit in nested.glmneter() we use this function to fit these transfer learning NN models. As nested cross
validations can have long run times, as an option, one may fit these models without actually performing the
nested part.

The nested.glmnetr() function also fits lasso, XGBoost and p-value tuned stepwise regression models while
using one level of cross validation to inform hyper parameters and another level of cross validation to evaluate
model performance, that is it does nested cross validation. Measures of model performance include, as often
done, deviance and agreement (concordance or R-square). We also provide linear calibration coefficients,
the values obtained by regressing the original outcome variable on the predicteds from the different models,
including the NNs. In this formulation the predicteds are taken before any “final” activation so they are
analogous to the X * Beta term from a Cox, logistic or linear model. A regression coefficient from this refit
greater than 1 suggests a bias in the model under fitting and a coefficient less than 1 suggests a bias in over
fitting.

Installing glmnetr

Installing glmnetr is much like installing other R packages, but with a small wrinkle. As usual one submits

install.packages( 'glmnetr' )

and then loads the package from the library

library( glmnetr )
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So far this is like with most packages. However, when loading the package for the first time one may be
prompted to load further software needed to run the torch library for the neural network models, for example
as in

> library( glmnetr )
i Additional software needs to be downloaded and installed for torch to work correctly.
Do you want to continue? (Yes/no/cancel)

where response Yes should allow neural network model fitting. A no answer will not install torch, and if not
already installed then attempting to run the neural network models will lead to crashes.

Data requirements

The data elements for input to the ann_tab_cv() function are basically the same as for the other glmnetr
functions like nested.glmenter() and cv.glmneter(). Input data should comprise of 1) a (numerical) matrix
of predictors and 2) an outcome variable or variables in (numerical) vector form. NULL and Na’s are not
allowed in input matrices or vectors. For the estimation of the “fully” relaxed parts (where gamma=0) of
the relaxed lasso models the package is set up to fit the “gaussian” and “binomial” models using the stats
glm() function and Cox survival models using the the coxph() function of the survival pacakge. When fitting
the Cox model or an extension like with NNs the “outcome” variable is interpreted as the “time” variable
in the Cox model, and one must also specify 3) an indicator variable for event, again in vector form. Start
times are not at this time accounted for in ann_tab_cv(). Row i of the predictor matrix and element i of
the outcome vector(s) are to include the data for the same sampling unit.

For fitting the NNs we use the R torch package. We refer to the package reference manual and the book
https://skeydan.github.io/Deep-Learning-and-Scientific-Computing-with-R-torch/ for general information
on this package. To run the NN models one needs to install the R torch package. When first using the
package one may also be prompted to allow torch to download some tensor libraries. The NN torch library
generally requires input data to be in torch tensor format, and provides output in torch tensor format as
well. Here we convert data from the usual R format to the torch format so the user does not have to. In
some functions, too, we convert outputs from torch format back to standard R format for the user.

An example dataset

To demonstrate usage of ann_tab_cv() we first generate a data set for analysis. The code

# Simulate data for use in an example relaxed lasso fit of survival data
# first, optionally, assign seeds for random number generation to get replicable results
set.seed(116291949)
torch::torch_manual_seed(77421177)
simdata=glmnetr.simdata(nrows=1000, ncols=100, beta=NULL, intr=c(1,0,1,0))

generates simulated data with interactions (specified by the intr=c(1,0,1,0) term) for analysis. We extract
data in the format required for input to the ann_tab_cv() program.

# Extract simulated survival data
xs = simdata$xs # matrix of predictors
yt = simdata$yt # vector of survival times
event = simdata$event # indicator of event vs. censoring
y_ = simdata$y_ # vector of quantitative values
yb = simdata$yb # vector of 0 and 1 values
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Inspecting the predictor matrix we see

# Check the sample size and number of predictors
print(dim(xs))

## [1] 1000 100

# Check the rank of the design matrix, i.e. the degrees of freedom in the predictors
Matrix::rankMatrix(xs)[[1]]

## [1] 94

# Inspect the first few rows and some select columns
print(xs[1:10,c(1:12,18:20)])

## X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X18 X19 X20
## [1,] 1 1 0 0 0 0 0 0 0 1 0 1 0.1513225 -0.4034383 0.35250844
## [2,] 1 0 0 0 1 0 0 1 0 0 0 0 -1.1610480 0.5533030 0.14578868
## [3,] 1 0 0 1 0 0 1 0 0 0 0 0 -0.3292269 0.3086399 -0.48443836
## [4,] 1 1 0 0 0 0 0 0 0 1 0 0 2.0635214 -0.5500741 -0.02173104
## [5,] 1 0 0 0 1 0 0 1 0 0 0 0 0.3905722 -0.6836452 -0.37643201
## [6,] 1 0 1 0 0 0 0 0 1 0 0 0 -0.2397597 1.6909447 0.49599945
## [7,] 1 0 1 0 0 0 0 1 0 0 0 0 -0.5592424 0.2314638 -0.53198341
## [8,] 1 0 0 1 0 0 0 0 0 0 1 0 -1.0050514 0.5319574 0.54287646
## [9,] 1 0 0 1 0 0 0 0 0 0 1 0 1.2548034 0.8213164 0.17067691
## [10,] 1 0 0 0 1 0 0 0 1 0 0 0 -0.3079151 -0.6105910 -0.88711869

Fitting a basic neural network model to “tabular” data

To fit a NN model we can use a simple function call as in

## fit a model with some monitoring to the R console
set.seed( 67213041 )
torch::torch_manual_seed( 7221250 )
ann_tab_cox_ex1 = ann_tab_cv(myxs=xs, myy=yt, myevent=event, family="cox",

fold_n=10, eppr=-2)

## Epoch: 0 Full data Loss: 6.205775 Train Concordance: 0.5323026
## imax= 40 minloss= 1 which_loss= 40 which_agree= 51 gotoend= 0 l1= 0
## Epoch: 40 Train Loss: 5.267481 Train Concordance: 0.8725083

We see there is little the user needs to specify, which is basically the data one includes when fitting a regular
Cox model. The one piece of input which is unusual is the eppr=-2. The eppr term has no influence on the
model but instructs the program to send some fit information to the R console for monitoring the model
fitting process. Here we see the model loss and concordance calculated using the training data. From the
output generated during model fit we see that for the “starting point” of the model fit the loss function is
about 6.2 and concordance 0.5. The concordance of about 0.5 is what we expect by chance alone, consistent
with the fact that when we begin the model fit we are taking a model chosen at random. After the gradient
descent goes through 0 iterations, as suggested by cross validation, the loss based upon the training data
goes down to about 3.55 and the concordance increases to about 0.787, a marked increase. This minimal
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amount of information sent to the R console is achieved by setting eppr=-2. To avoid any information being
sent to the console one may set eppr = -3, or any number less than -2. Numbers larger than -2 will provide
more updates during the model fitting process.

To see more information on the model fit we submit

## simple model summary
ann_tab_cox_ex1$modelsum

## n folds epochs length Z1 length Z2 actv
## 10.0000000 200.0000000 16.0000000 8.0000000 1.0000000
## drpot mylr wd l1 lasso
## 0.0000000 0.0050000 0.0000000 0.0000000 0.0000000
## lscale scale which loss which agree CV loss
## 5.0000000 1.0000000 40.0000000 51.0000000 3.5545326
## CV Agree CV accuracy naive loss naive agree naive accuracy
## 0.7871030 0.0000000 5.2674809 0.8725083 0.0000000
## agree i_=0
## 0.5323026

Here we see that the cross validation is based upon a 10 fold split of the data, and the gradient descent
algorithm goes through 200 iterations or epochs for each fold of the data. For this simple model fit we are
tuning on number of iterations in the gradient descent fitting. This is not necessarily the most robust way
to fit a model but 1) this is meant as simpler example of how to fit NN models and 2) the original purpose of
the ann_tab_cv() function was to see how we can improve NN fits by using a transfer learning form a linear
model to the NN (and discuss below). Next we see the first hidden layer is a vector of length 16, and the
second hidden layer a vector of length 8. The actv of 1 specifies a ReLU activation function was used, drpot
of 0 that no drop out was used, mylr of 0.005 indicates the learning rate used in the optimization. wd and l1
indicate the L2 and L1 penalties used when model fitting, corresponding to ridge and lasso regression. Both
are 0 here indicating these penalties were not employed. The “which loss” and “which agree” values indicate
the number of epochs when loss is minimized and agreement (concordance or R-square) is maximized in the
cross validation and inform the number of epochs to be used in the final model fit using the whole data set.
The CV loss and CV concordance based upon these numbers of fits were about 1 and 40, while the “naive”
loss and concordances calculated using training data were much greater at about 3.55 and 0.787. This is as
we expect for concordance as the values based upon the training data are associated with a lot of over fitting
due to the number of free parameters in the NN model. The naive deviance of 3.55 being larger than the
cv deviance of 1 may derive from the larger sample size when using the whole data set for calculations. CV
accuracy, the fraction of “correctly classified” is not calculated here and 0 is displayed. The concordance for
the random starting model was about 0.5, as sent to the R console in the example above.

We can get more information on the NN model, for example with the command

## This shows the tensor (matrix) structure used in the model
str(ann_tab_cox_ex1$model$parameters)

## List of 6
## $ 0.weight:Float [1:16, 1:100]
## $ 0.bias :Float [1:16]
## $ 3.weight:Float [1:8, 1:16]
## $ 3.bias :Float [1:8]
## $ 6.weight:Float [1:1, 1:8]
## $ 6.bias :Float [1:1]
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The first item here, 0.wieght, describes the dimensions of the tensor (matrix) used in transforming the original
data to the fist hidden layer, here 100 and 16. While we would usually expect this tensor to be 100 rows
tall and 16 columns wide, tensors are often transposed to take greater advantage of machine architecture
to speed calculations. Next we see 0.bias, a tensor with 1 dimension and thus essentially a vector, which
contains the intercept terms when transforming from the input data to the first hidden layer. The 3.weight
and 3.bias terms determine the transformation from the first hidden to the second hidden layer. Here they
transform a vector with 16 terms to a vector or 8 terms. Finally the 6.weight and 6.bias terms determine
the transformation from the second hidden layer to the model output of 1 dimension. To get more model
information we can use the command

## This shows the general structure of the neural network model
ann_tab_cox_ex1$model$modules[[1]]

## An ‘nn_module‘ containing 1,761 parameters.
##
## -- Modules ---------------------------------------------------------------------
## * 0: <nn_module> #1,616 parameters
## * 1: <nn_relu> #0 parameters
## * 2: <nn_dropout> #0 parameters
## * 3: <nn_module> #136 parameters
## * 4: <nn_relu> #0 parameters
## * 5: <nn_dropout> #0 parameters
## * 6: <nn_module> #9 parameters
## * 7: <nn_identity> #0 parameters

This shows the model structure. The first term nn_module, involves a linear transformation from the inputs
to a hidden layer. This module is based upon the “nn_linear” tensor module which we modified to allow
us to more easily set or update model weights and biases. This is followed by a ReLU activation and
then a “dropout” with probability 0. The activation function is a nonlinear transformation that allows the
NN to fit more general response surfaces than linear models. Without this the NN would simply involve
matrix multiplication which would result in another matrix, and reduce to a linear model. The dropout
can be used to randomly set terms to 0, i.e. to drop them out, with a specified probability. This can
sometimes improve model fit. Here though we set this probability to 0 so this is not impacting our model
fit. The final element “nn_identity” unsurprisingly means to apply the identity function. This could be set
to “sigmoid”, i.e. (1/(1+exp(-x)), to transform the input values to the interval (0,1), as can be done when
fitting generalizations of the logistic regression model.

See here how we have been inspecting elements of lists of lists. The basic flow of model fitting using R torch
is to first define a model object and then use numerical routines to update the contents of this model object
using numerical algorithms. Here we combine this model object with other information in a list to organize
in one place the model, information about the model fit and how the model was derived.

Though we can, we do not typically inspect individual parameters (weights and biases) in a NN. The value
of NN models lies instead in their ability to predict. In general predicted values can be gotten in R torch by
a command like model(newdata). We can get predicteds form an ann_tab_cv() output object, for example,
with a command like

# ann_tab_cv() predicteds in torch tensor format
preds = ann_tab_cox_ex1$model(xs)
preds[1:8]

## torch_tensor
## -1.3484
## -2.5415
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## 2.0611
## -0.2247
## -0.2538
## 0.8529
## -1.9225
## -1.2967
## [ CPUFloatType{8,1} ][ grad_fn = <SliceBackward0> ]

Since R torch models work with tensors the model predicteds, too, are put in a torch tensor format. We can
easily change the output to a usual R numerical format by wrapping the output in the as.numeric() function,
for example, as in

# ann_tab_cv() predicteds in standard R numerical format
preds = as.numeric( ann_tab_cox_ex1$model(xs) )
preds[1:8]

## [1] -1.3484466 -2.5415084 2.0611162 -0.2246912 -0.2537898 0.8529062 -1.9224828
## [8] -1.2967243

Working with torch tensors

When managing tensors torch does not always make actual copies of newly crated tensors. Instead it will
often store a pointer to wahre a tensor may be found and opdrations that need to be performed to obtain
the tensor identified by its name. A difficulty with this is when one leaves the R session teh actual tensors
may be lost. To be able to store and retreive the NN models we store the tensors used in the models as R
vectors and matrices. We can then save object with code like

save( ann_tab_cox_ex1, file="~data/ann_tab_cox_ex1.RLIST")

and read a stored output object with code like

load( file="~data/ann_tab_cox_ex1.RLIST" )

Because the actual tensors can be lost when doing this the functions above taking torch objects including
tensors may not work. We have written a predict function, predict_ann_tab(), which allows the user to get
predicteds from a load()ed model. This is done in an example below.

Performing calibrations with the neural network models

We can then use the predicteds in this R numerical format for evaluation using other R functions and
packages. For example for calibration of the NN model one could begin with the code

# ann_tab_cv() linear calibration
cox_fit1 = coxph(Surv(yt, event) ~ preds)
summary(cox_fit1)

## Call:
## coxph(formula = Surv(yt, event) ~ preds)
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##
## n= 1000, number of events= 699
##
## coef exp(coef) se(coef) z Pr(>|z|)
## preds 1.30396 3.68385 0.03954 32.98 <2e-16 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## exp(coef) exp(-coef) lower .95 upper .95
## preds 3.684 0.2715 3.409 3.981
##
## Concordance= 0.876 (se = 0.006 )
## Likelihood ratio test= 1427 on 1 df, p=<2e-16
## Wald test = 1087 on 1 df, p=<2e-16
## Score (logrank) test = 1216 on 1 df, p=<2e-16

Here the coefficient of about 1.3 being greater than 1 suggests the NN model may be underestimating the
hazard ratios between sample elements. To further evaluate the need for calibration we can fit a spline on
the NN predicteds as in

# Fit a spline to preds using coxph, and plot
cox_fit2 = coxph(Surv(yt, event) ~ pspline(preds))
termplot(cox_fit2,term=1,se=T,rug=T)
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The spline fit depicted in this graph does not appear to be consistent with a strignt line suggesting the NN
is not, in its current form, well calibrated.
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So, why the ann in ann_tab_cv? Many of the torch functions begin with nn_. To not confuse our function
with a native torch function we begin the name with a different, yet we hope recognizable, letter sequence.
The ann can be thought of as denoting “Artificial NN”.

Transfer learning from linear models to neural network models

It is very common to start model fits informed by previously fit NNs. Recognizing that NNs are a general-
ization of linear models one can start an NN model fit informed by a linear model. Basically one can chose
some of the weights (like betas in a linear regression) and biases (like intercepts) to replicate the informing
linear model, and let the other weights and biases be chosen at random as is common, in many contexts
usual, when fitting a NN.

The demonstrate such a NN model fit informed by a linear model we use the nested.glmnetr() function. This
is out of convenience in that the nested.glmenter() function already fits lasso linear and NN models and so
contains the pieces to combine the two for transfer learning.

A NN model based upon the Cox regression informed by a lasso model

A NN for “tabular” data informed by a linear model can be fit using nested.glmnetr()

## Fit an AN informed with staring point for iterative fit by a lasso fit
nested_cox_fit_ex2 = nested.glmnetr(xs=xs, y_=yt, event=event, family="cox",

dolasso=1, doann=1, ensemble=c(0,0,0,1), folds_n=10, resample=0,
seed=c(101844880,882560297),track=0)

## seed$seedr[1] = 101844880

Here we see that to fit a NN informed by a lasso model the user need do very little beyond specifying the
data for the fit. In addition to providing the usual data for a Cox model, one specifies doann=1 to “do an
ann” model, and ensemble=c(0,0,1) where the ensemble[3] = 1 indicates the NN model is to be fit informed
by the lasso model. The folds_n=10 specifies there are to be 10 folds for CV, and the resample = 0 indicates
to not do a nested CV, that is to just do the one layer of CV. If unspecified, resample defaults to 1 and a
nested CV will be performed allowing one to assess and compare model performances. How to specify these
terms is described in the reference manual.

Run time observed for fitting the NN model can be displayed by

cat(nested_cox_fit_ex2$hr_mn_sc) ## run time in hours : minutes : seconds

## 0 1 9

here using a machine with an Intel(R) i7 processor.

One can get model information about the model fit similar to when using the ann_tab_cv() function, for
example

## The lasso informed model fit is saved to "object"$ann_fit_4
## The object that provides the lasso information to ann_fit_4 is "object"$cv_glment_fit
nested_cox_fit_ex2$ann_fit_4$modelsum
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## n folds epochs length Z1 length Z2 actv
## 10.0000000 200.0000000 18.0000000 10.0000000 1.0000000
## drpot mylr wd l1 lasso
## 0.0000000 0.0010000 0.0000000 0.0000000 1.0000000
## lscale scale which loss which agree CV loss
## 5.0000000 1.0000000 1.0000000 1.0000000 3.2327777
## CV Agree CV accuracy naive loss naive agree naive accuracy
## 0.8389834 0.0000000 5.5141220 0.8385522 0.0000000
## agree i_=0 bestof
## 0.8385522 1.0000000

## This shows the number of terms, weights and biases, for the the two hidden layers
str(nested_cox_fit_ex2$ann_fit_4$model$parameters)

## List of 6
## $ 0.weight:Float [1:18, 1:100]
## $ 0.bias :Float [1:18]
## $ 3.weight:Float [1:10, 1:18]
## $ 3.bias :Float [1:10]
## $ 6.weight:Float [1:1, 1:10]
## $ 6.bias :Float [1:1]

From this we also see the number of predictors the last hidden layer to be 10. As we have implemented
this lasso informed fit we only include those terms that had non zero coefficients in the tuned relaxed lasso
model. We can inspect the model structure as in

# view more information on the NN model structure
nested_cox_fit_ex2$ann_fit_4$model$modules[[1]]

## An ‘nn_module‘ containing 2,019 parameters.
##
## -- Modules ---------------------------------------------------------------------
## * 0: <nn_module> #1,818 parameters
## * 1: <nn_relu> #0 parameters
## * 2: <nn_dropout> #0 parameters
## * 3: <nn_module> #190 parameters
## * 4: <nn_relu> #0 parameters
## * 5: <nn_dropout> #0 parameters
## * 6: <nn_module> #11 parameters
## * 7: <nn_identity> #0 parameters

We can obtain predicteds from the lasso informed NN models. Since this involves combining information
from the lasso and NN fits we wrap this in the function predict_ann_tab() with an example usage of

#print(ann_cv_lin_fit1$model)
preds = predict_ann_tab(nested_cox_fit_ex2, xs, modl=4)
preds[1:10]

## [1] -0.25772744 -2.50471306 2.51362753 0.81688875 -0.33578008 0.81903362
## [7] -2.83028698 0.04283409 3.80171132 0.54789227
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Here the first input is the nested.glmnetr() output object, the second input the data for which we want the
predicteds and finally modl=3 means we want the predicted from the model indicated by ensemble[3] = 1
in the call to nested.glmentr(). Note, the predicteds are output as a numerical vector value rather than as
a torch tensor generally allowing easier processing of the predicteds in the R environment.

# ann_tab_cv() linear calibration
cox_fit3 = coxph(Surv(yt, event) ~ preds)
summary(cox_fit3)

## Call:
## coxph(formula = Surv(yt, event) ~ preds)
##
## n= 1000, number of events= 699
##
## coef exp(coef) se(coef) z Pr(>|z|)
## preds 1.00385 2.72876 0.03359 29.89 <2e-16 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## exp(coef) exp(-coef) lower .95 upper .95
## preds 2.729 0.3665 2.555 2.914
##
## Concordance= 0.839 (se = 0.007 )
## Likelihood ratio test= 973.8 on 1 df, p=<2e-16
## Wald test = 893.2 on 1 df, p=<2e-16
## Score (logrank) test = 869 on 1 df, p=<2e-16

Here the liner calibration coefficient is very near to 1, much nearer than for the model not informed by the
lasso fit.

# Fit a spline to preds using coxph, and plot
cox_fit4 = coxph(Surv(yt, event) ~ pspline(preds))
print(cox_fit4)

## Call:
## coxph(formula = Surv(yt, event) ~ pspline(preds))
##
## coef se(coef) se2 Chisq DF p
## pspline(preds), linear 1.0073 0.0334 0.0334 911.4073 1.00 <2e-16
## pspline(preds), nonlin 9.0913 3.08 0.03
##
## Iterations: 4 outer, 15 Newton-Raphson
## Theta= 0.791
## Degrees of freedom for terms= 4.1
## Likelihood ratio test=985 on 4.08 df, p=<2e-16
## n= 1000, number of events= 699

termplot(cox_fit4,term=1,se=T,rug=T)

10



−6 −4 −2 0 2 4 6

−
10

−
5

0
5

preds

P
ar

tia
l f

or
 p

sp
lin

e(
pr

ed
s)

The spline fit is nearer a straight line than was the case for the uninformed NN fit, but still not as straight
as we might want. This calibration plot should be viewed with caution as it is based upon the same sample
as used for model derivation. In the next example we will base calibration upon hold out data.

A NN model based upon least squares informed by a lasso model

This model is essentialy a generalization of linear regression and can be fit, for example, by

nested_nrm_fit_ex3 = nested.glmnetr(xs=xs, y_=y_, family="gaussian", dolasso=1, doann=1,
seed=c(17820414,95337508), ensemble=c(1,0,0,1), folds_n=10, resample=0, track=-1)

## seed$seedr[1] = 17820414

Here since we did a nested cross validation of the derived model (with the option resample left as defualt)
we can calibrate using the calplot() function

preds = predict_ann_tab(nested_nrm_fit_ex3, xs)

##
## modl not spedified, modl = 4 used

glm_fit1 <- glm(y_ ~ preds, family="gaussian")
summary(glm_fit1)
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##
## Call:
## glm(formula = y_ ~ preds, family = "gaussian")
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.05661 0.04903 -1.155 0.249
## preds 0.99954 0.01732 57.700 <2e-16 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## (Dispersion parameter for gaussian family taken to be 2.149967)
##
## Null deviance: 9303.4 on 999 degrees of freedom
## Residual deviance: 2145.7 on 998 degrees of freedom
## AIC: 3607.3
##
## Number of Fisher Scoring iterations: 2

and graphically by

glm_fit2 <- glm(y_ ~ pspline(preds), family="gaussian")
termplot(glm_fit2, rug=T, se=T)
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Here the linear calibration coefficient is about 1 and the spline fit on the predicteds about linear with wiggle
in the extremes where there are few data.
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A NN model based upon logistic regression informed by a lasso model

An example NN fit based upon the logistic model frame work is

## fit a neural network based upon logistic regression framework
set.seed( 4695289 )
torch::torch_manual_seed( 24260321 )
nested_bin_fit_ex4 = nested.glmnetr(xs=xs, y_=yb, family="binomial",

dolasso=1, doann=1, ensemble=c(1,0,1,0), folds_n=5, resample=0,
track=0)

## print a short summary
summary( nested_bin_fit_ex4 )

## Sample information including number of records, events, number of columns in
## design (predictor, X) matrix, and df (rank) of design matrix:
## family n nevent xs.columns xs.df null.dev/n
## binomial 1000 609 100 94 1.34
##
## For LASSO, Artificial Neural Networks (ANN), naive performance measures
## calculated using all data without cross validation are given
##
## Naive DevRat Naive Concordance Non Zero
## LASSO min 0.4345 0.9117 35
## LASSO minR 0.4203 0.9000 10
## LASSO minR.G0 0.4203 0.9000 10
## Ridge 0.4756 0.9291 99
##
## Naive DevRat Naive Concordance Non Zero
## ANN Uninformed 0.8875 0.9987 100
## ANN lasso weights 0.4558 0.9137 100

Comparison of lasso and neural network models

As the nested.glmnetr() function performs nested cross validation of the lasso and NN models we can use it
to compare performances between these models. An example is

## print a summary
nested_nrm_fit_ex5

## Sample information including number of records, number of columns in
## design (predictor, X) matrix, and df (rank) of design matrix:
## family n xs.columns xs.df null.dev/n
## gaussian 1011 100 94 13.9
##
## For LASSO, Artificial Neural Networks (ANN), average (Ave) model performance
## measures from the 10-fold (NESTED) Cross Validation are given together with naive
## summaries calculated using all data without cross validation
##
## Ave DevRat Ave Int Ave Slope Ave R-square
## LASSO min 0.8286 0.0411 1.0524 0.8352
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## LASSO minR 0.8321 -0.0070 0.9951 0.8366
## LASSO minR.G0 0.8321 -0.0070 0.9951 0.8366
## Ridge 0.8063 0.0818 1.1101 0.8192
## Ave Non Zero Naive DevRat Naive R-square Non Zero
## LASSO min 33.9 0.8440 0.9199 35
## LASSO minR 17.7 0.8442 0.9188 18
## LASSO minR.G0 17.7 0.8442 0.9188 18
## Ridge 99.0 0.8511 0.9231 99
##
## Ave DevRat Ave Int Ave Slope Ave R-square
## ANN Uninformed 0.7147 -0.0455 0.9715 0.7208
## ANN lasso weights, reset 0.8295 0.0227 0.9938 0.8359
## Ave Non Zero Naive DevRat Naive R-square Non Zero
## ANN Uninformed 100 0.9451 0.9453 100
## ANN lasso weights, reset 100 0.8430 0.8445 100

where the NN model with an R-square of NA seems to perform similar to the lasso models with an R-squares
of about NA. Further, the NN fit without this transfer of information from the lasso model with it’s R-square
of NA, did not perform nearly as well as the lasso informed NN or the lasso model itself. This shows the
direct benefit of this transfer learning of the information from the linear model when fitting NN models.
It is not the NN itself that it is performing competitivley with the lasso model but the NN model fit in
conjunction with the lasso model information. We also see the cross validated linear calibration coefficients
are about 1 for the lasso informed NN and the tuned relaxed lasso model suggesting these models may be
reasonably well calibrated. The fully penalized lasso and the ridge regression model, with cross validated
linear calibration coefficients deviating more form 1, are less well calibrated.

For this example we deliberately simulated data where there are interactions or product terms in the analysis
data set. This we did by setting intr=c(1,0,0,1) in the call to glmnetr.simdata(). NNs can, if there is sufficient
information in the data, pick up non-linear and interaction (or product) terms. In the absence of non-linearity
or interactions a strict linear model should out perform a NN model because it more parsimoniously uses
model parameters.

We do not show more simulation results recognizing that one can typically show one model to be better than
the others by simulating the right data set. Instead others can run the nested.glmnetr() function on their
own data sets, potentially historical data sets if at hand, and see which models tend to perform better in
their setting.

Calibration plots based upon hold out data

Since we did the nested cross validation (by leaving the resample option as default) when generating
nested_nrm_fit_ex5 we can draw a calibration plot using the calplot() function. For the “basic” ANN
this is

#calplot(nested_nrm_fit_ex5 ) ## can be used to show which models go with wbeta
calplot(nested_nrm_fit_ex5, wbeta=9)

## Range of X*Beta for calibration:
## -13.29167 10.15936
## Range of calibrated confidence intervals:
## -16.30174 12.69897
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Lasso.1se cal X*Beta (Nested CV)
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## Due to user specified xlim 2 tick marks are not displayed in rug
## min:max xb = -13.4051713264127 10.2196196519552

More on calibration and the calplot() function are described in the “Calibraiton of Machine Learning Models”
vignette. A calibration plot for the ANN including the relaxed lasso as an offset is

calplot(nested_nrm_fit_ex5, wbeta=12)

## Range of X*Beta for calibration:
## -13.29123 10.08104
## Range of calibrated confidence intervals:
## -16.00493 12.17642
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lassoR.min cal X*Beta (Nested CV)
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## Due to user specified xlim 2 tick marks are not displayed in rug
## min:max xb = -13.5918925894992 10.1591424376403

The calibration plot for the ANN with offset seems slightly better calibrated, consistent with the slightly
better Deviance Ratio as shown in the above summaries.

Internal implementaiton of the “transfer learning”

The NN model informed by the relaxed lasso model when ensemble[3]=1 adds a column of predicteds to
the input matrix in the nested.glmnetr() call, and then extends the hidden layers to carry the positive and
negative part of the lasso predicteds through to the final model output. It also sets weights and biases for
this new column so that there is at the beginning of the model fitting process no communication between
the lasso predicteds and the other predictor variables. A second option set by ensemble[2] = 1 appends the
lasso predicteds to the xs predictor matrix and treats this similar to the other input variables. The NN
model informed by the relaxed lasso model when ensemble[4]=1 fits like with ensemble[3] = 1 but reassigns
weights and biases at each optimization epoch. The models fit for ensemble[i+4]=1 are like those fit for
ensemble[i]+1 except only those variables with non-zero coefficients in the lasso model are included in the
input dataset.

Before fitting the NN models the predictor variables are standardized to have mean 0 and standard deviation
of 1. This is accounted for when deriving predicteds. This is important when using L1 (lasso) or L2 (ridge
or weight decay) penalties to assure the models are not scale dependent. This is also done in the glmnet
package functions.
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Further extensions of “transfer learning”

Just as one can assign a subset of the bias and weight (initial) values for the NN to replicate a linear model,
and thereby improve model fit, one can also define another subset of the bias and weight values to replicate
linear splines. One attractive feature of the NN numerical optimization is that the bias terms dictating where
the spline “knots” are updated during model fit to improve fit, that is they need not be fixed in advance of
the fitting.

Transfer learning and the gradient boosting machine

Just as we have informed the NN model with the results form a relaxed lasso model fit we an do the same
with gradient boosting machines by either adding the lasso predicted as an additional predictor or including
it as an offset. This is done by setting doxgb=1 in the nested.glmnetr() call. Results are similar but different
from those for the NN models. For our data sets the GBMs took much longer to run since we used a search
algorithm to find a “best” hyperparameter set.
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