
Package ‘shapley’
October 23, 2024

Type Package

Title Weighted Mean SHAP for Feature Selection in ML Grid and Ensemble

Version 0.4

Depends R (>= 3.5.0)

Description This R package introduces Weighted Mean SHapley Additive exPlanations (WMSHAP),
an innovative method for calculating SHAP values for a grid of fine-tuned base-learner machine
learning models as well as stacked ensembles, a method not previously available due to the
common reliance on single best-performing models. By integrating the weighted mean
SHAP values from individual base-learners comprising the ensemble or individual
base-learners in a tuning grid search, the package weights SHAP contributions
according to each model's performance, assessed by multiple either R squared
(for both regression and classification models). alternatively, this software
also offers weighting SHAP values based on the area under the precision-recall
curve (AUCPR), the area under the curve (AUC), and F2 measures for binary classifiers.
It further extends this framework to implement weighted confidence intervals for
weighted mean SHAP values, offering a more comprehensive and robust feature importance
evaluation over a grid of machine learning models, instead of solely computing SHAP
values for the best model. This methodology is particularly beneficial for addressing
the severe class imbalance (class rarity) problem by providing a transparent,
generalized measure of feature importance that mitigates the risk of reporting
SHAP values for an overfitted or biased model and maintains robustness under severe
class imbalance, where there is no universal criteria of identifying the absolute
best model. Furthermore, the package implements hypothesis testing to ascertain the
statistical significance of SHAP values for individual features, as well as
comparative significance testing of SHAP contributions between features. Additionally,
it tackles a critical gap in feature selection literature by presenting criteria for
the automatic feature selection of the most important features across a grid of models
or stacked ensembles, eliminating the need for arbitrary determination of the number
of top features to be extracted. This utility is invaluable for researchers analyzing
feature significance, particularly within severely imbalanced outcomes where
conventional methods fall short. Moreover, it is also expected to report democratic
feature importance across a grid of models, resulting in a more comprehensive and
generalizable feature selection. The package further implements a novel method for
visualizing SHAP values both at subject level and feature level as well as a plot
for feature selection based on the weighted mean SHAP ratios.

1

2 h2o.get_ids

License MIT + file LICENSE

Encoding UTF-8

Imports ggplot2 (>= 3.4.2), h2o (>= 3.34.0.0), curl (>= 4.3.0), waffle
(>= 1.0.2)

RoxygenNote 7.3.1

URL https://github.com/haghish/shapley,

https://www.sv.uio.no/psi/english/people/academic/haghish/

BugReports https://github.com/haghish/shapley/issues

NeedsCompilation no

Author E. F. Haghish [aut, cre, cph]

Maintainer E. F. Haghish <haghish@hotmail.com>

Repository CRAN

Date/Publication 2024-10-23 03:40:02 UTC

Contents
h2o.get_ids . 2
normalize . 3
shapley . 4
shapley.domain . 7
shapley.feature.selection . 9
shapley.plot . 10
shapley.row.plot . 12
shapley.test . 14
shapley.top . 16
test . 17

Index 19

h2o.get_ids h2o.get_ids

Description

extracts the model IDs from H2O AutoML object or H2O grid

Usage

h2o.get_ids(automl)

Arguments

automl a h2o "AutoML" grid object

https://github.com/haghish/shapley
https://www.sv.uio.no/psi/english/people/academic/haghish/
https://github.com/haghish/shapley/issues

normalize 3

Value

a character vector of trained models’ names (IDs)

Author(s)

E. F. Haghish

Examples

Not run:
library(h2o)
h2o.init(ignore_config = TRUE, nthreads = 2, bind_to_localhost = FALSE, insecure = TRUE)
prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.importFile(path = prostate_path, header = TRUE)
y <- "CAPSULE"
prostate[,y] <- as.factor(prostate[,y]) #convert to factor for classification
aml <- h2o.automl(y = y, training_frame = prostate, max_runtime_secs = 30)

get the model IDs
ids <- h2o.ids(aml)

End(Not run)

normalize Normalize a vector based on specified minimum and maximum values

Description

This function normalizes a vector based on specified minimum and maximum values. If the min-
imum and maximum values are not specified, the function will use the minimum and maximum
values of the vector.

Usage

normalize(x, min = NULL, max = NULL)

Arguments

x numeric vector
min minimum value
max maximum value

Value

normalized numeric vector

Author(s)

E. F. Haghish

4 shapley

shapley Weighted average of SHAP values and weighted SHAP confidence in-
tervals for a grid of fine-tuned models or base-learners of a stacked
ensemble model

Description

Weighted average of SHAP values and weighted SHAP confidence intervals provide a measure of
feature importance for a grid of fine-tuned models or base-learners of a stacked ensemble model. In-
stead of reporting relative SHAP contributions for a single model, this function takes the variability
in feature importance of multiple models into account and computes weighted mean and confidence
intervals for each feature, taking the performance metric of each model as the weight. The function
also provides a plot of the weighted SHAP values and confidence intervals. Currently only models
trained by h2o machine learning software or autoEnsemble package are supported.

Usage

shapley(
models,
newdata,
plot = TRUE,
performance_metric = "r2",
standardize_performance_metric = FALSE,
performance_type = "xval",
minimum_performance = 0,
method = c("lowerCI"),
cutoff = 0,
top_n_features = NULL,
n_models = 10

)

Arguments

models H2O search grid, AutoML grid, or a character vector of H2O model IDs. the
"h2o.get_ids" function from "h2otools" can retrieve the IDs from grids.

newdata h2o frame (data.frame). the data.frame must be already uploaded on h2o server
(cloud). when specified, this dataset will be used for evaluating the models. if
not specified, model performance on the training dataset will be reported.

plot logical. if TRUE, the weighted mean and confidence intervals of the SHAP
values are plotted. The default is TRUE.

performance_metric

character, specifying the performance metric to be used for weighting the SHAP
values (mean and 95 "r2" (R Squared). For binary classification, other options
include "aucpr" (area under the precision-recall curve), "auc" (area under the
ROC curve), and "f2" (F2 score).

shapley 5

standardize_performance_metric

logical. if TRUE, performance_metric, which is used as weights vector is stan-
dardized such that the sum of the weights vector would be equal to the length of
the vector. the default value is FALSE.

performance_type

character, specifying where the performance metric should be retrieved from.
"train" means the performance of the training process should be reported, "valid"
indicates that the performance of the validation process should be reported, and
"xval" means the cross-validation performance to be retrieved.

minimum_performance

the minimum performance metric for a recognizable model. any model with
performance equal or lower than this argument will have weight of zero in com-
puting the weighted mean and CI SHAP values. the default value is zero.

method character, specifying the method used for identifying the most important fea-
tures according to their weighted SHAP values. The default selection method
is "lowerCI", which includes features whose lower weighted confidence interval
exceeds the predefined ’cutoff’ value (default is 0). Alternatively, the "mean"
option can be specified, indicating any feature with normalized weighted mean
SHAP contribution above the specified ’cutoff’ should be selected. Another
alternative options is "shapratio", a method that filters for features where the
proportion of their relative weighted SHAP value exceeds the ’cutoff’. This
approach calculates the relative contribution of each feature’s weighted SHAP
value against the aggregate of all features, with those surpassing the ’cutoff’
being selected as top feature.

cutoff numeric, specifying the cutoff for the method used for selecting the top features.
the default is zero, which means that all features with the "method" criteria above
zero will be selected.

top_n_features integer. if specified, the top n features with the highest weighted SHAP values
will be selected, overrullung the ’cutoff’ and ’method’ arguments. specifying
top_n_feature is also a way to reduce computation time, if many features are
present in the data set. The default is NULL, which means the shap values will
be computed for all features.

n_models minimum number of models that should meet the ’minimum_performance’ cri-
terion in order to compute WMSHAP and CI. If the intention is to compute
global summary SHAP values (at feature level) for a single model, set n_models
to 1. The default is 10.

Value

a list including the GGPLOT2 object, the data frame of SHAP values, and performance metric of
all models, as well as the model IDs.

Author(s)

E. F. Haghish

6 shapley

Examples

Not run:
load the required libraries for building the base-learners and the ensemble models
library(h2o) #shapley supports h2o models
library(shapley)

initiate the h2o server
h2o.init(ignore_config = TRUE, nthreads = 2, bind_to_localhost = FALSE, insecure = TRUE)

upload data to h2o cloud
prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.importFile(path = prostate_path, header = TRUE)

set.seed(10)

H2O provides 2 types of grid search for tuning the models, which are
AutoML and Grid. Below, I demonstrate how weighted mean shapley values
can be computed for both types.

###
PREPARE AutoML Grid (takes a couple of minutes)
###
run AutoML to tune various models (GBM) for 60 seconds
y <- "CAPSULE"
prostate[,y] <- as.factor(prostate[,y]) #convert to factor for classification
aml <- h2o.automl(y = y, training_frame = prostate, max_runtime_secs = 120,

include_algos=c("GBM"),

this setting ensures the models are comparable for building a meta learner
seed = 2023, nfolds = 10,
keep_cross_validation_predictions = TRUE)

call 'shapley' function to compute the weighted mean and weighted confidence intervals
of SHAP values across all trained models.
Note that the 'newdata' should be the testing dataset!
result <- shapley(models = aml, newdata = prostate, performance_metric = "aucpr", plot = TRUE)

###
PREPARE H2O Grid (takes a couple of minutes)
###
make sure equal number of "nfolds" is specified for different grids
grid <- h2o.grid(algorithm = "gbm", y = y, training_frame = prostate,

hyper_params = list(ntrees = seq(1,50,1)),
grid_id = "ensemble_grid",

this setting ensures the models are comparable for building a meta learner
seed = 2023, fold_assignment = "Modulo", nfolds = 10,
keep_cross_validation_predictions = TRUE)

result2 <- shapley(models = grid, newdata = prostate, performance_metric = "aucpr", plot = TRUE)

###

shapley.domain 7

PREPARE autoEnsemble STACKED ENSEMBLE MODEL
###

get the models' IDs from the AutoML and grid searches.
this is all that is needed before building the ensemble,
i.e., to specify the model IDs that should be evaluated.
library(autoEnsemble)
ids <- c(h2o.get_ids(aml), h2o.get_ids(grid))
autoSearch <- ensemble(models = ids, training_frame = prostate, strategy = "search")
result3 <- shapley(models = autoSearch, newdata = prostate,

performance_metric = "aucpr", plot = TRUE)

End(Not run)

shapley.domain compute and plot weighted mean SHAP contributions at group level
(factors or domains)

Description

This function applies different criteria to visualize SHAP contributions

Usage

shapley.domain(
shapley,
domains,
plot = "bar",
method = "AUTO",
legendstyle = "continuous",
scale_colour_gradient = NULL,
print = FALSE

)

Arguments

shapley object of class ’shapley’, as returned by the ’shapley’ function

domains character list, specifying the domains for grouping the features’ contributions.
Domains are clusters of features’ names, that can be used to compute WMSHAP
at higher level, along with their 95 better understand how a cluster of features
influence the outcome. Note that either of ’features’ or ’domains’ arguments can
be specified at the time.

plot character, specifying the type of the plot, which can be either ’bar’, ’waffle’, or
’shap’. The default is ’bar’.

8 shapley.domain

method character, specifying the method used for identifying the most important fea-
tures according to their weighted SHAP values. The default selection method
is "AUTO", which selects a method based on number of models that have been
evaluated because lowerCI method is not applicable to SHAP values of a single
model. If ’lowerCI’ is specified, features whose lower weighted confidence in-
terval exceeds the predefined ’cutoff’ value would be reported. Alternatively, the
"mean" option can be specified, indicating any feature with normalized weighted
mean SHAP contribution above the specified ’cutoff’ should be selected. An-
other alternative options is "shapratio", a method that filters for features where
the proportion of their relative weighted SHAP value exceeds the ’cutoff’. This
approach calculates the relative contribution of each feature’s weighted SHAP
value against the aggregate of all features, with those surpassing the ’cutoff’
being selected as top feature.

legendstyle character, specifying the style of the plot legend, which can be either ’contin-
uous’ (default) or ’discrete’. the continuous legend is only applicable to ’shap’
plots and other plots only use ’discrete’ legend.

scale_colour_gradient

character vector for specifying the color gradients for the plot.

print logical. if TRUE, the WMSHAP summary table for the given row is printed

Value

ggplot object

Author(s)

E. F. Haghish

Examples

Not run:
load the required libraries for building the base-learners and the ensemble models
library(h2o) #shapley supports h2o models
library(shapley)

initiate the h2o server
h2o.init(ignore_config = TRUE, nthreads = 2, bind_to_localhost = FALSE, insecure = TRUE)

upload data to h2o cloud
prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.importFile(path = prostate_path, header = TRUE)

H2O provides 2 types of grid search for tuning the models, which are
AutoML and Grid. Below, I demonstrate how weighted mean shapley values
can be computed for both types.

set.seed(10)

###
PREPARE AutoML Grid (takes a couple of minutes)

shapley.feature.selection 9

###
run AutoML to tune various models (GBM) for 60 seconds
y <- "CAPSULE"
prostate[,y] <- as.factor(prostate[,y]) #convert to factor for classification
aml <- h2o.automl(y = y, training_frame = prostate, max_runtime_secs = 120,

include_algos=c("GBM"),

this setting ensures the models are comparable for building a meta learner
seed = 2023, nfolds = 10,
keep_cross_validation_predictions = TRUE)

call 'shapley' function to compute the weighted mean and weighted confidence intervals
of SHAP values across all trained models.
Note that the 'newdata' should be the testing dataset!
result <- shapley(models = aml, newdata = prostate, plot = TRUE)

###
PLOT THE WEIGHTED MEAN SHAP VALUES
###

shapley.plot(result, plot = "bar")
shapley.plot(result, plot = "waffle")

End(Not run)

shapley.feature.selection

Selects the top features with highest weighted mean shap values based
on the specified criteria

Description

This function specifies the top features and prepares the data for plotting SHAP contributions for
each row, or summary of absolute SHAP contributions for each feature.

Usage

shapley.feature.selection(
shapley,
method = "lowerCI",
cutoff = 0,
top_n_features = NULL,
features = NULL

)

Arguments

shapley shapley object

10 shapley.plot

method character, specifying the method used for identifying the most important fea-
tures according to their weighted SHAP values. The default selection method
is "lowerCI", which includes features whose lower weighted confidence interval
exceeds the predefined ’cutoff’ value (default is relative SHAP of 1 Alterna-
tively, the "mean" option can be specified, indicating any feature with normal-
ized weighted mean SHAP contribution above the specified ’cutoff’ should be
selected. Another alternative options is "shapratio", a method that filters for
features where the proportion of their relative weighted SHAP value exceeds
the ’cutoff’. This approach calculates the relative contribution of each feature’s
weighted SHAP value against the aggregate of all features, with those surpassing
the ’cutoff’ being selected as top feature.

cutoff numeric, specifying the cutoff for the method used for selecting the top features.
the default is zero, which means that all features with the "method" criteria above
zero will be selected.

top_n_features integer. if specified, the top n features with the highest weighted SHAP values
will be selected, overrullung the ’cutoff’ and ’method’ arguments.

features character vector, specifying the feature to be plotted.

Value

normalized numeric vector

Author(s)

E. F. Haghish

shapley.plot Plot weighted SHAP contributions

Description

This function applies different criteria to visualize SHAP contributions

Usage

shapley.plot(
shapley,
plot = "bar",
method = "lowerCI",
cutoff = 0,
top_n_features = NULL,
features = NULL,
legendstyle = "continuous",
scale_colour_gradient = NULL

)

shapley.plot 11

Arguments

shapley object of class ’shapley’, as returned by the ’shapley’ function

plot character, specifying the type of the plot, which can be either ’bar’, ’waffle’, or
’shap’. The default is ’bar’.

method character, specifying the method used for identifying the most important fea-
tures according to their weighted SHAP values. The default selection method
is "lowerCI", which includes features whose lower weighted confidence interval
exceeds the predefined ’cutoff’ value (default is relative SHAP of 1 Alterna-
tively, the "mean" option can be specified, indicating any feature with normal-
ized weighted mean SHAP contribution above the specified ’cutoff’ should be
selected. Another alternative options is "shapratio", a method that filters for
features where the proportion of their relative weighted SHAP value exceeds
the ’cutoff’. This approach calculates the relative contribution of each feature’s
weighted SHAP value against the aggregate of all features, with those surpassing
the ’cutoff’ being selected as top feature.

cutoff numeric, specifying the cutoff for the method used for selecting the top features.

top_n_features integer. if specified, the top n features with the highest weighted SHAP values
will be selected, overrullung the ’cutoff’ and ’method’ arguments.

features character vector, specifying the feature to be plotted.

legendstyle character, specifying the style of the plot legend, which can be either ’contin-
uous’ (default) or ’discrete’. the continuous legend is only applicable to ’shap’
plots and other plots only use ’discrete’ legend.

scale_colour_gradient

character vector for specifying the color gradients for the plot.

Value

ggplot object

Author(s)

E. F. Haghish

Examples

Not run:
load the required libraries for building the base-learners and the ensemble models
library(h2o) #shapley supports h2o models
library(shapley)

initiate the h2o server
h2o.init(ignore_config = TRUE, nthreads = 2, bind_to_localhost = FALSE, insecure = TRUE)

upload data to h2o cloud
prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.importFile(path = prostate_path, header = TRUE)

H2O provides 2 types of grid search for tuning the models, which are

12 shapley.row.plot

AutoML and Grid. Below, I demonstrate how weighted mean shapley values
can be computed for both types.

set.seed(10)

###
PREPARE AutoML Grid (takes a couple of minutes)
###
run AutoML to tune various models (GBM) for 60 seconds
y <- "CAPSULE"
prostate[,y] <- as.factor(prostate[,y]) #convert to factor for classification
aml <- h2o.automl(y = y, training_frame = prostate, max_runtime_secs = 120,

include_algos=c("GBM"),

this setting ensures the models are comparable for building a meta learner
seed = 2023, nfolds = 10,
keep_cross_validation_predictions = TRUE)

call 'shapley' function to compute the weighted mean and weighted confidence intervals
of SHAP values across all trained models.
Note that the 'newdata' should be the testing dataset!
result <- shapley(models = aml, newdata = prostate, plot = TRUE)

###
PLOT THE WEIGHTED MEAN SHAP VALUES
###

shapley.plot(result, plot = "bar")
shapley.plot(result, plot = "waffle")

End(Not run)

shapley.row.plot Weighted mean SHAP values computed at subject level

Description

Weighted mean of SHAP values and weighted SHAP confidence intervals provide a measure of
feature importance for a grid of fine-tuned models or base-learners of a stacked ensemble model at
subject level, showing that how each feature influences the prediction made for a row in the dataset
and to what extend different models agree on that effect. If the 95 vertical line at 0.00, then it can
be concluded that the feature does not significantly influences the subject, when variability across
models is taken into consideration.

Usage

shapley.row.plot(
shapley,
row_index,

shapley.row.plot 13

features = NULL,
plot = TRUE,
print = FALSE

)

Arguments

shapley object of class ’shapley’, as returned by the ’shapley’ function

row_index subject or row number in a wide-format dataset to be visualized

features character vector, specifying the feature to be plotted.

plot logical. if TRUE, the plot is visualized.

print logical. if TRUE, the WMSHAP summary table for the given row is printed

Value

a list including the GGPLOT2 object, the data frame of SHAP values, and performance metric of
all models, as well as the model IDs.

Author(s)

E. F. Haghish

Examples

Not run:
load the required libraries for building the base-learners and the ensemble models
library(h2o) #shapley supports h2o models
library(shapley)

initiate the h2o server
h2o.init(ignore_config = TRUE, nthreads = 2, bind_to_localhost = FALSE,

insecure = TRUE)

upload data to h2o cloud
prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.importFile(path = prostate_path, header = TRUE)

set.seed(10)

H2O provides 2 types of grid search for tuning the models, which are
AutoML and Grid. Below, I demonstrate how weighted mean shapley values
can be computed for both types.

###
PREPARE AutoML Grid (takes a couple of minutes)
###
run AutoML to tune various models (GBM) for 60 seconds
y <- "CAPSULE"
prostate[,y] <- as.factor(prostate[,y]) #convert to factor for classification
aml <- h2o.automl(y = y, training_frame = prostate, max_runtime_secs = 120,

14 shapley.test

include_algos=c("GBM"),

seed = 2023, nfolds = 10,
keep_cross_validation_predictions = TRUE)

call 'shapley' function to compute the weighted mean and weighted confidence intervals
of SHAP values across all trained models.
Note that the 'newdata' should be the testing dataset!
result <- shapley(models = aml, newdata = prostate,

performance_metric = "aucpr", plot = TRUE)

###
PREPARE H2O Grid (takes a couple of minutes)
###
make sure equal number of "nfolds" is specified for different grids
grid <- h2o.grid(algorithm = "gbm", y = y, training_frame = prostate,

hyper_params = list(ntrees = seq(1,50,1)),
grid_id = "ensemble_grid",

this setting ensures the models are comparable for building a meta learner
seed = 2023, fold_assignment = "Modulo", nfolds = 10,
keep_cross_validation_predictions = TRUE)

result2 <- shapley(models = grid, newdata = prostate,
performance_metric = "aucpr", plot = TRUE)

###
PREPARE autoEnsemble STACKED ENSEMBLE MODEL
###

get the models' IDs from the AutoML and grid searches.
this is all that is needed before building the ensemble,
i.e., to specify the model IDs that should be evaluated.
library(autoEnsemble)
ids <- c(h2o.get_ids(aml), h2o.get_ids(grid))
autoSearch <- ensemble(models = ids, training_frame = prostate, strategy = "search")
result3 <- shapley(models = autoSearch, newdata = prostate,

performance_metric = "aucpr", plot = TRUE)

#plot all important features
shapley.row.plot(shapley, row_index = 11)

#plot only the given features
shapPlot <- shapley.row.plot(shapley, row_index = 11, features = c("PSA", "AGE"))

inspect the computed data for the row 11
ptint(shapPlot$rowSummarySHAP)

End(Not run)

shapley.test Normalize a vector based on specified minimum and maximum values

shapley.test 15

Description

This function normalizes a vector based on specified minimum and maximum values. If the min-
imum and maximum values are not specified, the function will use the minimum and maximum
values of the vector.

Usage

shapley.test(shapley, features, n = 5000)

Arguments

shapley object of class ’shapley’, as returned by the ’shapley’ function

features character, name of two features to be compared with permutation test

n integer, number of permutations

Value

normalized numeric vector

Author(s)

E. F. Haghish

Examples

Not run:
load the required libraries for building the base-learners and the ensemble models
library(h2o) #shapley supports h2o models
library(autoEnsemble) #autoEnsemble models, particularly useful under severe class imbalance
library(shapley)

initiate the h2o server
h2o.init(ignore_config = TRUE, nthreads = 2, bind_to_localhost = FALSE, insecure = TRUE)

upload data to h2o cloud
prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.importFile(path = prostate_path, header = TRUE)

H2O provides 2 types of grid search for tuning the models, which are
AutoML and Grid. Below, I demonstrate how weighted mean shapley values
can be computed for both types.

set.seed(10)

###
PREPARE AutoML Grid (takes a couple of minutes)
###
run AutoML to tune various models (GBM) for 60 seconds
y <- "CAPSULE"
prostate[,y] <- as.factor(prostate[,y]) #convert to factor for classification
aml <- h2o.automl(y = y, training_frame = prostate, max_runtime_secs = 120,

16 shapley.top

include_algos=c("GBM"),

this setting ensures the models are comparable for building a meta learner
seed = 2023, nfolds = 10,
keep_cross_validation_predictions = TRUE)

call 'shapley' function to compute the weighted mean and weighted confidence intervals
of SHAP values across all trained models.
Note that the 'newdata' should be the testing dataset!
result <- shapley(models = aml, newdata = prostate, plot = TRUE)

###
Significance testing of contributions of two features
###

shapley.test(result, features = c("GLEASON", "PSA"), n=5000)

End(Not run)

shapley.top Select top features in a model

Description

This function applies different criteria simultaniously to identify the most important features in
a model. The criteria include: 1) minimum limit of lower weighted confidence intervals of SHAP
values relative to the feature with highest SHAP value. 2) minimum limit of percentage of weighted
mean SHAP values relative to over all SHAP values of all features. These are specified with two
different cutoff values.

Usage

shapley.top(shapley, lowerci = 0.01, shapratio = 0.005)

Arguments

shapley object of class ’shapley’, as returned by the ’shapley’ function

lowerci numeric, specifying the lower limit of weighted confidence intervals of SHAP
values relative to the feature with highest SHAP value. the default is 0.01

shapratio numeric, specifying the lower limit of percentage of weighted mean SHAP val-
ues relative to over all SHAP values of all features. the default is 0.005

Value

data.frame of selected features

Author(s)

E. F. Haghish

test 17

Examples

Not run:
load the required libraries for building the base-learners and the ensemble models
library(h2o) #shapley supports h2o models
library(shapley)

initiate the h2o server
h2o.init(ignore_config = TRUE, nthreads = 2, bind_to_localhost = FALSE, insecure = TRUE)

upload data to h2o cloud
prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.importFile(path = prostate_path, header = TRUE)

H2O provides 2 types of grid search for tuning the models, which are
AutoML and Grid. Below, I demonstrate how weighted mean shapley values
can be computed for both types.

set.seed(10)

###
PREPARE AutoML Grid (takes a couple of minutes)
###
run AutoML to tune various models (GBM) for 60 seconds
y <- "CAPSULE"
prostate[,y] <- as.factor(prostate[,y]) #convert to factor for classification
aml <- h2o.automl(y = y, training_frame = prostate, max_runtime_secs = 120,

include_algos=c("GBM"),

this setting ensures the models are comparable for building a meta learner
seed = 2023, nfolds = 10,
keep_cross_validation_predictions = TRUE)

call 'shapley' function to compute the weighted mean and weighted confidence intervals
of SHAP values across all trained models.
Note that the 'newdata' should be the testing dataset!
result <- shapley(models = aml, newdata = prostate, plot = TRUE)

###
Significance testing of contributions of two features
###

shapley.top(result, lowerci = 0.01, shapratio = 0.005)

End(Not run)

test Weighted Permutation Test for Difference of Means

18 test

Description

This function performs a weighted permutation test to determine if there is a significant difference
between the means of two weighted numeric vectors. It tests the null hypothesis that the difference
in means is zero against the alternative that it is not zero.

Usage

test(var1, var2, weights, n = 2000)

Arguments

var1 A numeric vector.

var2 A numeric vector of the same length as var1.

weights A numeric vector of weights, assumed to be the same for both var1 and var2.

n The number of permutations to perform (default is 2000).

Value

A list containing the observed difference in means and the p-value of the test.

Index

h2o.get_ids, 2

normalize, 3

shapley, 4
shapley.domain, 7
shapley.feature.selection, 9
shapley.plot, 10
shapley.row.plot, 12
shapley.test, 14
shapley.top, 16

test, 17

19

	h2o.get_ids
	normalize
	shapley
	shapley.domain
	shapley.feature.selection
	shapley.plot
	shapley.row.plot
	shapley.test
	shapley.top
	test
	Index

