
Samhain (version 1.2.2)

User Manual

Rainer Wichmann
http://la-samhna.de

June 20, 2001

Contents

1 Functional summary 1

1.1 Overview . 1

1.2 Installation Requirements & Environment 2

1.3 How to invoke . 3

1.4 Signals . 3

1.5 PID file . 4

1.6 Options & configuration file . 4

1.7 Support (bug/problem reports) . 4

2 Basic 5

2.1 Trusted users and trusted paths . 5

2.2 Hash function . 5

2.3 Logging – severities, clases, thresholds, and facilities 5

2.3.1 Severity levels . 6

Example . 7

3 Configuring logging facilities 8

3.1 Thresholds – Activating logging facilities 8

Example . 9

3.2 Configuration . 10

3.2.1 E-mail . 10

Complete example . 11

3.2.2 Log file . 11

3.2.3 Log server . 12

3.2.4 External facilities . 12

3.3 Details of logging facilities . 12

3.3.1 Console . 12

3.3.2 Syslog . 12

3.3.3 E-mail . 13

3.3.4 The log file . 14

3.3.5 The log server . 15

4 samhain – The file monitor 16

4.1 Basic usage instructions . 16

4.2 File signatures . 17

4.3 Defining which files/directories to monitor 17

4.3.1 Monitoring policies . 17

4.3.2 File/directory specification . 18

4.3.3 ’All except ...’ . 18

4.3.4 Non-existent/disappeared/new files 19

4.3.5 Recursion depth(s) . 19

4.4 Timing file checks . 20

4.5 Initializing, updating, or checking . 20

4.6 The database . 20

4.7 Checking the file system for SUID/SGID binaries 20

Configuration . 21

4.8 Detecting Loadable Kernel Module (LKM) rootkits 21

What is a LKM rootkit ? . 21

How can samhain detect them ? 21

Configuration . 22

4.9 Monitoring login/logout events . 22

4.10 Modules . 23

5 yule – The log server 24

5.1 General . 24

5.2 Client registry . 25

5.3 Database / configuration file download . 26

5.4 Server status information . 27

5.5 Authentication protocol . 28

5.5.1 Challenge-response . 28

5.5.2 SRP . 28

5.6 Message transfer protocol . 29

5.7 File transfer protocol . 29

6 Hooks for External Programs 31

6.1 Pipes . 31

6.2 System V message queue . 31

6.3 Calling external programs . 31

Example . 33

7 Signed Configuration/Database File 34

8 Stealth mode 36

8.1 Hiding the executable . 36

8.2 Packing the executable . 37

9 Deployment to remote host 39

9.1 Usage Notes . 40

10 Security Design 42

A Compilation options 43

A.1 General . 43

A.2 OpenPGP Signatures on Configuration/Database Files 44

A.3 Client/Server Connectivity . 44

A.4 Paths . 45

B Command line options 45

B.1 General . 45

B.2 samhain . 46

B.3 yule . 47

C The configuration file 47

C.1 General . 47

Example . 47

C.1.1 Conditionals . 48

Example . 48

C.2 Files to check . 48

C.3 Severity of events . 49

C.4 Logging thresholds . 49

C.5 Watching login/logout events . 50

C.6 Checking for kernel module rootkits . 50

C.7 Checking for SUID/SGID files . 50

C.8 Miscellaneous . 50

C.9 External . 52

C.10 Clients . 52

C.11 End of file . 53

Abstract

samhain is a data integrity / intrusion alert system that can be used on single hosts as
well as for large, UNIX-based networks.
samhain offers several features to support and facilitate centralized monitoring: samhain
can be used as a client/server system, with monitoring clients on individual hosts and a
central log server. Powerful conditionals allow to build a single configuration file for all
clients on the network. Clients may download the configuration file and the database of
file signatures from the log server.
This manual gives a detailed description of the samhain system. It is intended to be of
help for anyone wishing to use, test, or modify samhain .

1 Functional summary

samhain is a system to monitor the integrity of files. It has a number of features that are
intended to support and facilitate centralized monitoring in a network, although it can
also be used on single hosts.

In particular, samhain can optionally be used as a client/server system with monitoring
clients on individual hosts, and a central log server that collects the messages of all clients.

The configuration and database files for each client can be stored centrally and downloaded
by clients from the log server. Using conditionals (based on hostname, machine type, OS,
and OS release, all with regular expresions) a single configuration file for all hosts on the
network can be constructed.

The client (or standalone) part is called samhain , while the server is referred to as yule
. Both can run as daemon processes.

1.1 Overview

NOTE: This overview assumes that the database is already initialized (see Sect. 4.1).
On startup, samhain /yule will

1. If samhain is used as SUID application (note that SUID usage is neither necessary
nor recommended): set the effective user to some compiled-in default (e.g. nobody).

2. Parse the command line. Options given on the command line will override those in
the configuration file.

3. Check whether the path to the configuration file is trusted (see Sect. 2.1), determine
the checksum – or verify the signature – of the configuration file, then read in from
it:

• A list of files and directories to monitor, together with the specification of the
policies that should be applied, i.e. what kind of modifications will be allowed
or not. Wildcard patterns are supported.

• Instructions regarding the logging facilities to be used.

• Settings for the monitoring of login/logout events.

• Miscellaneous other settings, as described in the appendix.

4. Obtain the local hostname, and information on the real and effective user. Initialize
according to the specified options (e.g. disconnect from the parent process to become
a daemon).

5. (samhain only): Determine the checksum – or verify the signature – of the file
database.

6. Issue a startup message including user, time, and information on checksums – or
signature keys – of configuration file and database.

7. samhain : Enter a loop to check the files specified in the configuration file against
the database at regular intervals as defined in the configuration file.
yule : Enter a loop to wait for connections from clients.

8. samhain : If not running as daemon, exit after the first loop, else, exit on SIGTERM
or SIGQUIT (see Sect. 1.4).
yule : Exit on SIGTERM or SIGQUIT (see Sect. 1.4).

9. Issue an exit message including time and reason for exit.

1.2 Installation Requirements & Environment

samhain requires an ANSI C compiler and a POSIX operating system. The installation
procedure uses GNU autoconfigure (all configuration options are listed in the appendix):

./configure [options]
make

make install
– or –
make install-boot

Executables will be stripped upon installation. On Linux, the sstrip utility (copyright
1999 by Brian Raiter, under the GNU GPL) will be used to strip the executable even
more, to prevent debugging with the GNU gdb debugger.

The following files will be installed (the last three files listed are optional, and only
compiled and installed if the --enable-network option (yule, samhain setpwd) or the
--with-stealth option (samhain stealth) has been selected):

Original Installed to Purpose Mode

samhain.8 $(mandir)/man8/samhain.8 manpage 600
samhainrc.5 $(mandir)/man5/samhainrc.5 manpage 600
samhainrc $(configdir)/.samhainrc configuration 600
samhain $(bindir)/samhain executable 700
The log server:
(yule) $(bindir)/yule executable 700
Helper app (network):
(samhain setpwd) $(bindir)/samhain setpwd executable 700
Helper app (stealth):
(samhain stealth) $(bindir)/samhain stealth executable 700

The configuration file should be carefully checked before installation, especially with re-
spect to the (e-mail, log server, time server) addresses listed therein.
Installed files should be owned by root. The path to the configuration file must be write-
able by trusted users only (see Sect. 2.1).
If the --with-stealth option is used, it is recommended to also use the option --with-install-name

in order to rename all installed files, as well as files created by samhain , to some less
suspicious name upon installation.

1.3 How to invoke

From the command line:

samhain -t init [more options] to initialize the database
samhain -t check [more options] to check against the database

By default, samhain will not become a daemon, but stay in the foreground. Daemon
mode must be set in the configuration file or on the command line.
Also by default, samhain will neither initialize its file system database nor check the
file system against it. The desired mode must be set in the configuration file or on the
command line.
A complete list of command line options is given in the appendix.

To start as daemon during the boot sequence:

For Linux, make will generate boot scripts for SuSE, RedHat, and Debian, and make

install-boot will figure out which of them to install, and where (if the correct distribu-
tion cannot be determined, none of them will be installed).

For any other system, you need to figure out by yourself how to start samhain during the
boot sequence.

1.4 Signals

On startup, all signals will be reset to their default. Then a signal handler will be installed
for all signals that (i) can be trapped by a process and (ii) whose default action would be
to stop, abort, or terminate the process, to allow for graceful termination,

For SIGSEGV, SIGILL, SIGBUS, and SIGFPE, a ’fast’ termination will occur, with only
minimal cleanup that may result in a stale lock file being left.

If the operating system supports the siginfo t parameter for the signal handling routine
(see man sigaction), the origin of the signal will be checked.

The following signals can be sent to the process to control it:

• SIGUSR1 Switch on maximally verbose output to the console.

• SIGUSR2 Return to previous console output mode.

• SIGTERM Terminate the process.

• SIGQUIT Terminate the server process after processing all currently pending requests
from clients. Terminate the client process after finishing the current task (from the
terminal, SIGQUIT usually is CRTL-backslash).

• SIGHUP Re-read the configuration file. Note that it is not possible to override
command-line options given at startup.

• SIGABRT Unlock the log file, wait three seconds, then proceed. At the next access,
the log file will be locked again and a fresh audit trail – with a fresh signature key
– will be started. This allows log rotation without splitting an audit trail. See
Sect. 3.3.4.

1.5 PID file

samhain does not generate a PID file by default. However, if you use use its own signed
log file facility, a lock file will be created that holds the PID. You can configure the path
to the lock file at compile time.

1.6 Options & configuration file

All command line options, and all settings in the configuration file, are described in the
appendix.

1.7 Support (bug/problem reports)

If you have problems getting samhain to run, or think that you have encountered a bug,
you can visit the user forum at http://la-samhna.de/forum and ask there for help (rec-
ommended for questions of probably general interest), or send email to support@la-samhna.de.

Please be sure to provide relevant details, such as:

• your operating system, its release version, and the machine (uname -srm).

• the version of samhain that you are using, and the options that you have supplied
to configure.

• in case of problems it is usually very helpful if you compile samhain with the
configure option --enable-debug, and run it with the command line switches
-p debug -z 1.

2 Basic

2.1 Trusted users and trusted paths

Trusted users are root and the effective user of the process (usually, the effective user
will be root herself). Additional trusted users can be defined in the configuration file (see
Sect. 3.2.2 for an example), or at compile time (see appendix for compile options).

A trusted path is a path with all elements writeable only by trusted users. samhain

requires the paths to the configuration and log file to be trusted paths, as well as the path
to the lock file that will be created to lock access to the log file.

Evidently, if the path to the configuration file itself is writeable by other users than root

and the effective user, these must be defined as trusted already at compile time. This is
especially the case on some systems where the root directory is owned by the user bin.

If a path element is group writeable, all group members must be trusted.
Please note: The list of group members in /etc/group may be incomplete or even
empty. samhain will check /etc/passwd (where each user has a GID field) in addition to
/etc/group to find all members of a group.

2.2 Hash function

A hash function is a one-way function H(foo) such that it is easy to compute H(foo) from
foo, yet infeasible to compute foo from H(foo).

One common usage of a hash function is the computation of checksums of files, such that
any modification of a file can be noticed, as its checksum will change.

For computing checksums of files, and also for some other purposes, samhain uses the
TIGER hash function developed by Ross Anderson and Eli Biham. The output of this
function is 192 bits long, and the function can be implemented efficiently on 32-bit and
64-bit machines. Technical details can be found at
http://www.cs.technion.ac.il/~ biham/Reports/Tiger/.

2.3 Logging – severities, clases, thresholds, and facilities

Events (e.g. unauthorized modifications of files monitored by samhain) will generate
messages of some severity. These messages will be logged to all logging facilities, whose
threshold is equal to, or lower than, the severity of the message.

Events of related type are grouped into classes. For each logging facility, it is possible to
restrict logging to a subset of these classes (see Sect. 3.1). The available classes are:

AUD System calls.
RUN Normal run messages (e.g. startup, exit, ...)
STAMP Timestamps and alike.
FIL Messages related to file integrity checking.
TCP Messages from the client/server subsystem.
PANIC Fatal errors, leading to program termination.
ERR Error messages (general).
ENET Error messages (network).
EINPUT Error messages (input, e.g. configuration file).

2.3.1 Severity levels

The following severity levels are defined:

none Not logged.
debug Debugging-level messages.
info Informational message.
notice Normal conditions.
warn Warning conditions.
mark Timestamps.
err Error conditions.
crit Critical conditions, including program startup/normal exit.
alert Fatal error, causing abnormal program termination.
inet Incoming messages from clients (server only).

Most events (e.g. timestamps, internal errors, program startup/exit) have fixed severities.
The following events have configurable severities:

• policy violations (for monitored files)

• access errors for files

• access errors for directories

• obscure file names (with non-printable characters)

• login/logout events (if samhain is configured to monitor them)

Severity levels for events (see Sect. 2.3.1) are set in the EventSeverity and (for lo-
gin/logout events) the Utmp sections of the configuration file.

Example In the configuration file, these can be set as follows:

[EventSeverity]

#
these are policies (see section 4.3.1)
#
SeverityReadOnly=crit
SeverityLogFiles=crit
SeverityGrowingLogs=warn
SeverityIgnoreNone=crit
SeverityIgnoreAll=info
#
these are access errors
#
SeverityFiles=err
SeverityDirs=err
#
these are obscure file names
#
SeverityNames=info
#
This is the section for login/logout monitoring
#
[Utmp]

SeverityLogin=notice
SeverityLogout=notice
multiple logins by same user
SeverityLoginMulti=err

3 Configuring logging facilities

samhain supports the following facilities for logging:

e-mail samhain uses built-in SMTP code, rather than an external mailer
program. E-mails are signed to prevent forging.

syslog The system logging utility.
console If running as daemon, /dev/console is used, otherwise stderr.

/dev/console can be replaced by other devices.
log file Entries are signed to provide tamper-resistance.
log server samhain uses TCP/IP with strong authentication and

signed and encrypted messages.
external samhain can be configured to invoke external programs for logging.

Each of these logging facilities has to be activated by setting an appropriate threshold on
the messages to be logged by this facility.

In addition, some of these facilities require proper settings in the configuration file (see
next sections).

3.1 Thresholds – Activating logging facilities

Messages are only logged to a log facility if their severity is at least as high as the threshold
of that facility. Thresholds can be specified individually for each facility. A threshold of
’none’ switches off the respective facility.

Thresholds are set in the Log section of the configuration file. For each threshold option
FacilitySeverity there is also a corresponding option FacilityClass to limit that facility to
messages within a given set of class. The argument must be a list of valid message classes,
separated by space or comma.

System calls: certain system calls (execve, utime, unlink, dup (+ dup2), chdir, open,
kill, exit (+ exit), fork, setuid, setgid, pipe) can be logged (only to console and syslog).
You can determine the set of system calls to log via the option LogCalls=call1, call2,
.... By default, this is off (nothing is logged). The priority is notice (= LOG NOTICE in
syslog), and the class is AUD.

Example

[Log]

#
Threshold for E-mails (none = switched off)
#
MailSeverity=none
#
Threshold for log file
#
LogSeverity=err
LogClass=RUN FIL STAMP
#
Threshold for console
#
PrintSeverity=info
#
Threshold for syslog (none = switched off)
#
SyslogSeverity=none
#
Threshold for forwarding to the log server
#
ExportSeverity=crit
#
Threshold for invoking an external program
#
ExternalSeverity=crit
#
System calls to log
#
LogCalls=open, kill

3.2 Configuration

Configuration options should be in the [Misc] section of the configuration file, except for
external facilities.

3.2.1 E-mail

Items that must be configured are:

Recipients address in the format

SetMailAddress=username@hostname

Up to eight addresses are possible, each one at most 63 characters long, each on a
seperate line in the configuration file

Caveat: usually not all hosts in a domain are configured to receive e-mail, but
rather there is often a dedicated mail exchanger. The host given in the e-mail
address must be willing to handle e-mail, otherwise you need the Mail relay / Mail
exchanger option (see below).
Hint: it is recommended to use numerical IP addresses instead of host names (to
avoid DNS lookups).

Relay host / Mail exchanger in the format

SetMailRelay=mail.some domain.com

There are two cases where you need this option:

(1) Some sites don’t allow outbound e-mail connections from any arbitrary host.
If the recipient is offsite, and your site uses a mail relay host to route outbound
e-mails, you need to specify the relay host.

(2) Likewise, some hosts do not accept e-mails, in which case you have to use the
proper mail exchanger as relay. You can get the name of the mail exchanger for
host.some domain.com with the command

nslookup -type=mx host.some domain.com

Maximum interval in the format

SetMailTime=86400

You may want to set a maximum interval between any two consecutive e-mails, to
be sure that samhain is still ’alive’.

Maximum pending in the format

SetMailNum=10

Messages can be queued to send several messages in one e-mail. You may want to
set the the maximum number of messages to queue. (Note: messages of highest
priority (alert) are always sent immediately.

Multiple recipients in the format

MailSingle=yes/no

If there are multiple recipients, whether to send a single mail with the recipient
list, or send multiple mails. If all recipients are on same domain, a single mail may
suffice, otherwise it depends on whether the mail server supports forwarding (for
security, most don’t).

Complete example

[Misc]

#
E-mail receipient (offsite in this case). Up to eight addresses,
each one at most 63 characters long.
#
SetMailAddress=username@host.some domain.com
#
Need a relay host for outgoing mail.
#
SetMailRelay=relay.mydomain
#
Number of pending mails.
#
SetMailNum=10
#
Maximum time between e-mails.
Want a message every day, just to be sure that the
program still runs.
#
SetMailTime=86400
#
To all recipients in a single mail.
#
MailSingle=yes/no

3.2.2 Log file

Trusted users in the format

TrustedUser=username

If some element in the path to the log file is writeable by someone else than root or
the effective user of the process, you have to include that user in the list of trusted
users (unless their UIDs are already compiled in).

3.2.3 Log server

Server address in the format

SetLogServer=my.server.address

You have to specify the server address, unless it is already compiled in. It is possible
to specify a second server that will be used as backup.

Hint: if you want to store the configuration file on the server, the server address
must be compiled in.

3.2.4 External facilities

samhain can invoke external scripts/programs for logging (i.e. to implement support for
pagers etc.). This is explained in detail in Sect. 6.

3.3 Details of logging facilities

This section discusses some details of the logging facilities offered by samhain Configuring
logging facilities (if required) is explained above. Activating logging facilities (by setting
an appropriate threshold) is explained in section 3.1 .

3.3.1 Console

Up to two console devices are supported, both of which may also be named pipes. If
running as daemon, samhain will use /dev/console for output, otherwise stdout. On
Linux, PATH CONSOLE will be used instead of /dev/console, if it is defined in the file
paths.h.

You can override this at compile time, or in the configuration file with the SetConsole=device
option. Up to two console devices are supported, both of which may also be named pipes
(use the SetConsole option twice to set both devices).

3.3.2 Syslog

samhain will translate its own severities into syslog priorities as follows:

debug LOG DEBUG
info LOG INFO
notice LOG NOTICE
warn LOG WARNING
mark LOG ERR
err LOG ERR
crit LOG CRIT
alert LOG ALERT

Messages will be truncated to 1023 chars. By default, samhain will use the identity
’samhain’, the syslog facility LOG AUTHPRIV, and will log its PID (process identification
number) in addition to the message.

The syslog facility can be modified via the directive SyslogFacility=LOG xxx in the
[Misc] section of the configuration file.

3.3.3 E-mail

The subject line contains timestamp and local hostname, which are repeated in the mes-
sage body. samhain uses its own built-in SMTP code rather than the system mailer,
because in case of temporary connection failures, the system mailer (e.g. sendmail)
would queue the message on disk, where it may become visible to unauthorized persons.

During temporary connection failures, messages are stored in memory. The maximum
number of stored messages is 128. samhain will re-try to mail every hour for at most 48
hours. In conformance with RFC 821, samhain will keep the responsibility for the message
delivery until the recipient’s mail server has confirmed receipt of the e-mail (except that,
as noted above, after 48 hours it will assume a permanent connection failure).

The body of the mail may consist of several messages that were pending on the internal
queue (see Sect. 3), followed by a signature that is computed from the message and a
key. The key is initialized with a random number, and for each e-mail iterated by a hash
chain.

The initial key is revealed in the first email sent (obviously, you have to believe that this
first e-mail is authentical). This initial key is not transmitted in cleartext, but encrypted
with a one-time pad. The one-time pad is generated by hashing a base (a compiled-in
key) with a salt (the message itself). This way, different one-time pads can be generated
from the same base.

The signature is followed by a unique identification string. This is used to identify seperate
audit trails (here, a trail is a sequence of e-mails from the same run of samhain), and to
enumerate individual e-mails within a trail.

The mail thus looks like:

<--- MESSAGE ---->

first message
second message
...
<--- SIGNATURE ---->

signature
ID TRAIL ID:hostname
<--- END ---->

To verify the integrity of an e-mail audit trail, a convenience function is provided:

samhain -M path to mailbox file

The mailbox file may contain multiple and/or overlapping audit trails from different runs
of samhain and/or different clients (hosts).

3.3.4 The log file

The log file is named .samhain log by default, and placed into
/usr/local/var/log by default (name and location can be configured at compile time).

The log file is created if it does not exist, and locked by creating a lock file. By default,
the lock file is named .samhain lock and placed in
/usr/local/var/log (name and location can be configured at compile time). The lock
file contains the PID of the process that created it. Upon normal program termination,
the lock file is removed. Stale lock files are removed at startup if there is no process with
that PID.

The directory where the log and its lock file are located must be writeable only by trusted
users (see Sect. 2.1). This requirement refers to the complete path, i.e. all directories
therein. By default, only root and the effective user of the process are trusted.

Audit trails (sequences of messages from individual runs of samhain) in the log file start
with a [SOF] marker. Each message is followed by a signature, that is formed by hashing
the message with a key.

The first key is generated at random, and sent by e-mail, encrypted with a one-time pad
as described in the previous section on e-mail. Further keys are generated by a hash chain
(i.e. the key is hashed to generate the next key). Thus, only by knowing the initial key
the integrity of the log file can be assured.

The mail with the key looks like:

-----BEGIN MESSAGE-----

message
-----BEGIN LOGKEY-----

Key(48 chars)[timestamp]
-----BEGIN SIGNATURE-----

signature
ID TRAIL ID:hostname
<--- END ---->

To verify the log file’s integrity, a convenience function is provided:

samhain -L path to log file

When encountering the start of an audit trail, you will then be asked for the key (as sent
to you by e-mail). You can then:
(i) hit return to skip signature verification,
(ii) enter the key (without the appended timestamp), or
(iii) enter the path to a file that contains the key (e.g. the mail box).

If you use option (iii), the path must be an absolute path (starting with a ’/’, not longer
than 48 chars. For each audit trail, the file must contain a two-line block with the
-----BEGIN LOGKEY----- line followed by the line (Key(48 chars)[timestamp]) from
the mail. Additional lines before/after any such two-line block are ignored.

3.3.5 The log server

Details of the transmission protocols can be found in section 5. Configuring samhain for
logging to the log server is explained in section 3 (setting the IP address of the server)
and section 3.1 (activating the facility by setting an appropriate threshold).

During temporary connection failures, messages are stored in a FIFO queue in memory.
The maximum number of stored messages is 128. After a connection failure, samhain
will make the next attempt only after a deadtime that starts with 1 sec and doubles after
each unsuccessful attempt (max is 2048 sec). A re-connection attempt is actually only
made for the next message after the deadtime – you should send timestamps (i.e. set the
threshold to mark) to ensure re-connection attempts for failed connections.

It is possible to specify two log servers in the client configuration file. The first one will be
used by default (primary), and the second one as fallback in case of a connection failure
with the primary log server.

4 samhain – The file monitor

The samhain monitor checks the integrity of files by comparing them against a database
of file signatures, and notify the user of inconsistencies. The level of logging is configurable,
and several logging facilities are provided.

samhain can be used as a client that forwards messages to the server part (yule) of the
samhain system, or as a standalone program (for single hosts).

samhain monitor can be run as a background process (i.e. a daemon), or it can be started
at regular intervals by cron. It is recommended to run samhain as daemon and start it up
immediately at system boot. Using it with cron opens up a security hole, because in that
case the samhain program might be modified or replaced by a rogue program between
two consecutive invocations.

4.1 Basic usage instructions

To use samhain , the following steps must be followed:

1. The configuration file must be prepared (see Sect. 4.3, 2.3, and 4.9 for details).

• All files and directories that you want to monitor must be listed. Wildcard
patterns are supported.

• The policies for monitoring them (i.e. which modifications are allowed and
which not) must be chosen.

• The severity of a policy violation must be selected.

• The threshold level of logging must be defined.

• The logging facilities must be chosen.

• Eventually, the address of the e-mail recepient and/or the IP address of the log
server must be given.

2. The database must be initialized.

• If it already exists, it should be deleted (samhain will not overwrite, but ap-
pend), or update instead of init should be used.

• samhain must be run with the command line option
samhain -t init

3. Now start samhain in check mode. Either select this mode in the configuration file,
or use the command line option

samhain -t check [more options]

To run samhain as a background process, use the command line option
samhain -t check -D [more options]

4.2 File signatures

samhain works by generating a database of file signatures, and later comparing file against
that database to recognize file modifications and/or added/deleted files.

File signatures include:

• a 192-bit cryptographic checksum computed using the TIGER hash algorithm,

• the inode of the file,

• the type of the file,

• owner and group,

• access permissions,

• on Linux only: flags of the ext2 file system (see man chattr),

• the timestamps of the file,

• the file size,

• the number of hard links,

• and the name of the linked file (if the file is a symbolic link).

Depending on the policy chosen for a particular file, only a subset of these may be checked
for modifications (see sect. 4.3.1).

4.3 Defining which files/directories to monitor

This section explains how to specify in the configuration file, which files or directories
should be monitored, and which monitoring policy should be used.

4.3.1 Monitoring policies

samhain offers several pre-defined monitoring policies. Each of these policies has its own
section in the configuration file. Placing a file in one of these sections will select the
respective policy for that file.

The available policies (section headings) are:

ReadOnly All modifications except access times will be reported for these files.

LogFiles Modifications of timestamps, file size, and signature will be ignored.

GrowingLogFiles Modifications of timestamps, and signature will be ignored. Modifi-
cation of the file size will only be ignored if the file size has increased.

Attributes Only modifications of ownership and access permissions will be checked.

IgnoreAll No modifications will be reported. However, the existence of that file/directory
will still be checked.

IgnoreNone All modifications, including access time, will be reported.

Hint: Each policy can be modified in the config file section ”[Misc]” with entries like
RedefReadOnly=+XXX or -XXX, to add (+XXX) or remove (-XXX) a test XXX, where
XXX can be any of CHK (checksum), LNK (link), HLN (hardlink), INO (inode), USR
(user), GRP (group), MTM (mtime), ATM (atime), CTM (ctime), SIZ (size), and/or
MOD (file mode).
Note: that this must come before any file policies are used in the config file.

4.3.2 File/directory specification

Entries for files have the following syntax:

file=/full/path/to/the/file

Entries for directories have the following syntax:

dir=[recursion depth]/full/path/to/the/directory

The specification of a recursion depth is optional (see 4.3.5). (Note: Do not put the
recursion depth in brackets – they just indicate that this is an optional argument ...).

Wildcard patterns (’*’, ’?’, ’[...]’) as in shell globbing are supported for paths. The leading
’/’ is mandatory.

4.3.3 ’All except ...’

To exclude individual files from a directory, place them under the policy IgnoreAll. Note
that the existence of such files will still be checked (see next section).

To exclude subdirectories from a directory, place them under the policy IgnoreAll with
an individual recursion depth of -1 (see Sect. 4.3.5).

Note that any change in a directory will also modify the directory itself (i.e. the special
file that holds the directory information). If you want to check all but a few files in a
directory (say, /etc), and you expect some of the excluded files to get modified, you
should use a setup like:

[ReadOnly]

#
dir=/etc

#
[Attributes]

#
less restrictive policy for the directory file itself
#
file=/etc

#
[IgnoreAll]

#
exclude this file
#
file=/etc/resolv.conf.save

#

4.3.4 Non-existent/disappeared/new files

If files specified in the configuration file are non-existent already when the database is
initialized, you will get an error message (for file access) only at initialization, while later,
on file checking, only a message of severity info is generated.

If files disappear after initialization, you will get an error message with the severity spec-
ified for file access errors (except if the file is placed under the IgnoreAll policy, in which
case a message of SeverityIgnoreAll – see Sect. 2.3.1 – is generated).

If new files appear in a monitored directory after initialization, you will get an error
message with the severity specified for that directory’s file policy (except if the file is
placed under the IgnoreAll policy, in which case a message of SeverityIgnoreAll – see
Sect. 2.3.1 – is generated).

The special treatment of files under the IgnoreAll policy allows to handle cases where a
file might be deleted and/or recreated by the system sometimes.

4.3.5 Recursion depth(s)

Directories can be monitored up to a maximum recursion depth of 99 (i.e. 99 levels of
subdirectories. The recursion depth actually used is defined in the following order of
priority:

1. The recursion depth specified for that individual directory (see 4.3). As a special
case, for directories with the policy IgnoreAll, the recursion depth should be set

to 0, if you want to monitor (the existence of) the files within that directory, but to
-1, if you do not want samhain to look into that directory.

2. The global default recursion depth specified in the configuration file. This is done
in the configuration file section Misc with the entry
SetRecursionLevel=number

3. The default recursion depth, which is zero.

4.4 Timing file checks

In the Misc section of the configuration file, you can set the interval (in seconds) between
succesive file checks:

SetFilecheckTime=value

4.5 Initializing, updating, or checking

In the Misc section of the configuration file, you can choose between initializing the
database, updating it, or checking the files against the existing database:

ChecksumTest=init—update—check—none

If you use the mode none, you should specify on the command line one of init, update, or
check, like: samhain -t check

4.6 The database

The database file is named .samhain file by default, and placed into
/usr/local/var/log by default (name and location can be configured at compile time).

The database is a binary file. For security reasons, it is recommended to store a backup
copy of the database on read-only media, otherwise you will not be able to recognize file
modifications after its deletion (by accident or by some malicious person).

samhain will compute the checksum of the database at startup and verify it at each
access. samhain will first open() the database, compute the checksum, rewind the file,
and then read it. Thus it is not possible to modify the file between checksumming and
reading.

4.7 Checking the file system for SUID/SGID binaries

To enable this option, use the configure option

--with-suidcheck

If enabled, this will cause the samhain daemon to check the whole file system hierarchy
for SUID/SGID files at user-defined intervals, and to report on any that are not included
in the file database, or that are included, but not checked for file mode or checksum
modifications. Excluded are nfs, proc, msdos, vfat, and iso9660 (CD-ROM) file systems.

Configuration This facility is configured in the [SuidCheck] section of the configura-
tion file.

[SuidCheck]

activate (0 for switching off)
SuidCheckActive=1
interval between checks (in seconds, default 7200)
SuidCheckInterval=86400
this is the severity (see section 2.3.1)
SeveritySuidCheck=crit

4.8 Detecting Loadable Kernel Module (LKM) rootkits

This option is currently supported only for Linux, kernel versions 2.2.x and 2.4.x, on i86
machines.

What is a LKM rootkit ? A rootkit is a set of programs installed to ”keep a backdoor
open” after an intruder has obtained root access to a system. Usually such rootkits are
very easy to install, and provide facilities to hide the intrusion (e.g. erase all traces from
audit logs, install a modified ’ps’ that will not list certain programs, etc.).

While ”normal” rootkits can be detected with checksums on programs, like samhain does
(the modified ’ps’ would have a different checksum than the original one), this method can
be subverted by rootkits that are implemented as loadable kernel modules, i.e. modules
that are loaded into the kernel at runtime.

A LKM can modify any kernel syscall to yield false results. Thus, it is possible to modify
e.g. the sys getdents call that reads directories in order to hide any file whose name
comprises a certain ”magic” string.

How can samhain detect them ? It is possible to compile into the samhain exe-
cutable a map of all kernel syscall addresses. samhain will then check periodically, if any
of these addresses has changed, thus indicating that the corresponding syscall has been
clobbered by some other code. Note that if you use the option --enable-khide to use a
kernel module to hide the presence of samhain , the sys getdents syscalls will cause only
a warning if modified only once (i.e. by the samhain hide LKM).

To use this facility, you need to use the configure option:

--with-kcheck="/path/to/System.map"

System.map is a file (sometimes with the kernel version appended to its name) that is
generated when the kernel is compiled, and is usually installed in the same directory as
your kernel (e.g. /boot), or in the root directory. To find it, you can use:

locate System.map

Configuration This facility is configured in the [Kernel] section of the configuration
file.

[Kernel]

activate (0 for switching off)
KernelCheckActive=1
interval between checks (in seconds, default 300)
KernelCheckInterval=600
this is the severity (see section 2.3.1)
SeverityKernel=crit

4.9 Monitoring login/logout events

samhain can be compiled to monitor login/logout events of system users. For initializa-
tion, the system utmp file is searched for users currently logged in. To recognize changes
(i.e. logouts or logins), the system wtmp file is then used.
This facility is configured in the [Utmp] section of the configuration file:

[Utmp]

#
activate (0 for switching off)
#
LoginCheckActive=1
#
interval between checks (in seconds)
#
LoginCheckInterval=600
#
these are the severities (see section 2.3.1)
#
SeverityLogin=info
SeverityLogout=info
#

multiple logins by same user
#
SeverityLoginMulti=crit

4.10 Modules

samhain has a programming interface that allows to add modules written in C. Basically,
for each module a structure of type struct mod type, as defined in sh modules.h, must
be added to the list in sh modules.c.

This structure contains pointers to initialization, timing, checking, and cleanup functions,
as well as information for parsing the configuration file.

For details, in the source code distribution check the files sh modules.h, sh modules.c,
as well as utmp.c, utmp.h, which implement a module to monitor login/logout events.

5 yule – The log server

yule is the log server within the samhain file integrity monitoring system. yule is part
of the distribution package. It is only required if you intend to use the client/server
capability of the samhain system for centralized logging to yule .

5.1 General

yule is a non-forking server. Instead of forking a new process for each incoming logging
request, it multiplexes connections internally.

Each potential client must be registered with yule to make a connection (see Sect. 4.1
and the example below). The client tells its host name to the server, and the server verifies
it against the peer of the connecting socket. On the first connection made by a client,
an authentication protocol is performed. This protocol provides mutual authentication of
client and server, as well as a fresh session key.

By default, all messages are encrypted using ¡i¿Rijndael¡/i¿ (selected as the Advanced
Encryption Standard algorithms). The 192-bit key version of the algorithm is used. There
is a compile-time option to switch off encryption, if your local lawmakers don’t allow to
use it (see Appendix).

yule keeps track of all clients and their session keys. As connections are dropped after
successful completion of message delivery, there is no limit on the total number of clients.
There is, however, a limit on the maximum number of simultaneous connections. This
limit depends on the operating system, but may be of order 103.

Session key expire after two hours. If its session key is expired, the client is forced to
repeat the authentication protocol to set up a fresh session key.

Incoming messages are signed by the client. On receipt, yule will:

1. check the signature,

2. accept the message if the signature can be verified, otherwise discard it and issue
an error message,

3. discard the clients signature,

4. log the message, and the client’s hostname, to the console and the log file, and

5. add its own signature to the log file entry.

It is possible to set a time limit for the maximum time between two consecutive messages
of a client (option SetClientTimeLimit in the configuration file). If the time limit is
exceeded without a message from the client, the server will issue a warning. The default
is 86400 seconds (one day); specifying a value of 0 will switch off this option.

By default, client messages have the severity inet, and are logged only to the console and
the log file (and to external, if threshold is properly set). It is possible to override this
behavior by setting the option UseClientSeverity=yes in the configuration file. In that
case, the client message severity is used, and client messages are treated just like local
messages (i.e. like those from the server itself).

5.2 Client registry

As noted above, clients must be registered with yule to make a connection. The respec-
tive section in the configuration file looks like:

[Clients]

#
A client
#
Client=HOSTNAME CLIENT1@salt1@verifier1
#
another one
#
Client=HOSTNAME CLIENT2@salt2@verifier2
#

The entries have to be computed in the following way:

1. Choose a password (16 chars hexadecimal, i.e. only 0 – 9, a – f, A – F allowed. You
may use:

yule –gen-password

2. Use the program samhain setpwd to reset the password in the compiled binary (that
is, samhain , not yule) to the one you have chosen. Running samhain setpwd

without arguments will print out exhaustive usage information.

3. Use the server’s convenience function to create a registration entry:

yule -P password

4. The output will look like:

Client=HOSTNAME@salt@verifier

You now have to replace HOSTNAME with the fully qualified domain name of the
host on which the client should run.

5. Put the registration entry into the servers’s configuration file, under the section
heading Clients (see Sect. 5.2). You need to send SIGHUP to the server for the
new entry to take effect.

6. Repeat steps (a) – (e) for any number of clients you need (actually, you need a
registration entry for each client’s host, but you don’t neccesarily need different
passwords for each client. I.e. you may skip steps (a) – (c)).

5.3 Database / configuration file download

Caveat: Obviously, retrieving the configuration file from the log server requires that the
IP address of the log server is compiled in.

If the compiled-in path to the configuration file begins the special value “REQ FROM SERVER”,
the client will request to download the configuration file from yule . If “REQ FROM SERVER”
is followed by a path, the server will use that path as the path to its configuration file (ba-
sically, this feature allows to use the same configuration options for client and server). If
the client is initializing the database (rather than checking), and “REQ FROM SERVER”
is followed by a path, the client will use that path as the path to a local configuration file.

Likewise, if the compiled-in path to the database file begins with the special value
“REQ FROM SERVER”, the client will request to download the database file from yule

for reading. “REQ FROM SERVER” must be followed by a path that will be used for
writing the database file when initializing (the client cannot upload the database file to
the server, as this would open a security hole).

The server will search for the configuration file to send in the following order of priority
(dataroot is the data directory, see Sect. A.4; clientname is the hostname of the client’s
host):

1. $dataroot/rc.clientname

2. $dataroot/rc

3. The server’s own configuration file

The server will search for the database file to send in the following order of priority:

1. $dataroot/file.clientname

2. $dataroot/file

5.4 Server status information

yule writes the current status to a HTML file. The default name of this file is .samhain.html,
and by default it is placed in /usr/local/var/log.

The file contains a header with the current status of the server (starting time, current
time, open connections, total connections since start), and a table that lists the status of
all registered clients.

There are a number of pre-defined events that may occur for a client:

Inactive The client has not connected since server startup.
Started The client has started.

This message may be missing if the client was
already running at server startup.

Exited The client has exited.
Message The client has sent a message.
File transfer The client has fetched a file from the server.
ILLEGAL Startup without prior exit.

May indicate a preceding abnormal termination.
PANIC The client has encountered a fatal error condition.
FAILED An unsuccessful attempt to set up a session key

or transfer a message.
POLICY The client has discovered a policy violation.

For each client, the latest event of each given type is listed. Events are sorted by time.
Events that have not occurred (yet) are not listed.

It is possible to specify templates for (i) the file header, (ii) a single table entry, and (iii)
the file end. Templates must be named head.html, entry.html, and foot.html, respectively,
and must be located in the $dataroot directory (see Sect. A.4). The distribution package
includes two sample files head.html and foot.html.

The following replacements will be made in the head template:

%T Current time.
%S Startup time.
%L Time of last connection.
%O Open connections.
%A Total connections since startup.
%M Maximum simultaneous connections.

The following replacements will be made in the entry template:

%H Host name.
%S Event.
%T Time of event.

NOTE: A literal ’%’ in the HTML output must be represented by a ’% ’ (’%’ followed by
space) in the template.

5.5 Authentication protocol

Depending in the option selected at compile time, either a challenge-response protocol or
the Secure Remote Password (SRP) protocol will be used for mutual authentication and
exchange of a session key.

5.5.1 Challenge-response

1. The client requests a random nonce from the server.

2. The server generates a random nonce v and sends H(v:password)v to the client. (H
is a one-way hash function.)

3. The client generates a random nonce u and sends H(H(u:v)password)u.

4. The session key is H(v:password:u)

5.5.2 SRP

The protocol is described in detail in the following paper (available at
http://srp.stanford.edu/srp):
T. Wu, The Secure Remote Password Protocol, in Proceedings of the 1998 Internet So-
ciety Network and Distributed System Security Symposium, San Diego, CA, Mar 1998,

pp. 97-111.

Some of the advantages of SRP are:

1. No useful information about the password is revealed.

2. No useful information about the session key is revealed to an eavesdropper.

3. A compromise of a session key does not help to determine the password.

4. A compromise of the password does not allow to determine the session key for past
sessions.

5. A man-in-the-middle may at worst cause the authentication to fail.

5.6 Message transfer protocol

To submit a message to yule , the following protocol is used:

1. The client request a random nonce from the server.

2. The server generates a random nonce u and sends it to the client.

3. The client send the message, followed by a signature. The signature is computed as
H(message:u:session key). (H is a one-way hash function.)

4. On receipt of the message, the server verifies the signature, and discards message
on failure.

5. The server confirms successful receipt by sending H(message:session key:u) (i.e.
reverse order of u and session key in the hash).

6. The client verifies the server’s confirmation.

Message transfer is relieable in the sense that the client assumes responsibility for the
message until it has verified the server’s confirmation of the receipt.

5.7 File transfer protocol

For file transmission, the following protocol is used:

1. The client announces that it requests a file from the server.

2. The server generates and sends a random nonce u.

3. The client generates and sends a random nonce v, together with a request for either
the configuration or database file.

4. The server sends the file in chunks of 65280 bytes, each preceded by a checksum
computed as H(H(u:v:session key)H(data)).

5. The client verifies the checksum, and discards data on failure.

6. The server ends the file transmission with an EOF marker signed by H(H(u:v:session
key)H(client hostname)).

7. The client verifies the EOF marker, and discards the file on failure.

On the client side, transferred data are written to a temporary file that is created in
the home directory of the effective user. The filename is chosen at random, the file is
opened for writing after checking that it does not exist already, and immediately thereafter
unlinked.
Thus the name of the file will be deleted from the filesystem, but the file itself will remain
in existence until the file descriptor referring it is closed (see man unlink), or the process
exits (on exit, all open file descriptors belonging to the process are closed).

6 Hooks for External Programs

samhain provides several hooks for external programs for (re-)processing the audit trail,
including pipes, a System V message queue, and the option to call external programs.

6.1 Pipes

It is possible to use named pipes as ’console’ device(s) (samhain supports up to two
console devices, both of which may be named pipes. You can set the device path at
compile time (see A.4), and/or in the configuration file (see 3.3.1).

6.2 System V message queue

It is possible to have a SystemV IPC message queue (which is definitely more elegant than
named pipes) as additional ’console’ device. You need to compile with --enable-message-queue

and use the option MessageQueueActive=T/F. The default mode is 700 (rwx——), but
this is a compile option (message queues are kernel-resident, but have access permissions
like files). To get the System V IPC key for the message queue, use ftok("/tmp", ’#’);

(man ftok, man msgctl, man msgrcv). Note that not all systems support SysV IPC.

6.3 Calling external programs

samhain may invoke external programs or scripts in order to implement logging capabili-
ties that are not supported by samhain itself (e.g. pager support). This section provides
an overview of this capability.

External programs/scripts invoked for logging will receive the formatted log message on
stdin. The program should expect that stdout and stderr are closed, and that the
working directory is the root directory.

Each external program must be defined in the configuration file, in a section starting with
the header [External].
In addition, ExternalSeverity must be set to an appropriate threshold in the section
[Log].

Each program definition starts with the line

OpenCommand=/full/path

Options for the program may follow. The definition of an external program is ended when
the section ends, or when another OpenCommand=/full/path line for the next command is
encountered.

• There are several places in samhain where external programs may be called. Each

such place is identified by a type. Currently, valid types are:

log An external logging facility, which is handled like other logging facilities. The
program will receive the logged message on stdin, followed by a newline, fol-
lowed by the string [EOF] and another newline.

srv Executed by the server, whenever the status of a client, as displayed in the
HTML status table, has changed. The program will receive the client host-
name, the timestamp, and the new status, followed by a newline, followed by
[EOF] and another newline.

• Any number of external programs may be defined in the configuration file. Each
external program has a type, which is log by default. Whenever external programs
are called, all programs of the appropriate type are executed. The type can be set
with

SetType=type

• External programs must be on a trusted path (see Sect. 2.1), i.e. must not be
writeable by untrusted users.

• For enhanced security, the (192-bit TIGER) checksum of the external program/script
may be specified in the configuration file:

SetChecksum=checksum (one string, no blanks in checksum)

• Command line arguments and environment variables for each external program are
configurable (the default is no command line arguments, and only the timezone in
the environment):

SetCommandline=full command line (starting with the name of the program)
Setenviron=KEY=value

• The user whose credentials shall be used, can be specified:
SetCredentials=username

• Some filters are available to make the execution of an external program dependent
on the message content:

SetFilterNot=list If any word in list matches a word in the message, the
program is not executed, else

SetFilterAnd=list if any word in list is missing in the message, the program
is not executed, else

SetFilterOr=list if none of the words in list is in the message, the program is
not executed.
Any filter not defined is not evaluated.

• It is possible to set a ’deadtime’. Within that ’deadtime’, the respective external
program will be executed only once (if triggered).

Example

[External]

start definition of first external program
OpenCommand=/usr/local/bin/warn me
SetType=log
arguments
SetCommandline=warn me -v
environment
SetEnviron=HOME=/home/moses
SetEnviron=PATH=/bin:/usr/bin:/usr/local/bin
checksum
SetChecksum=4CA372D66F9C909B8A974E27A43EAC51D68F11FE0B30E08A
credentials
SetCredentials=moses
filter
SetFilterOr=POLICY

7 Signed Configuration/Database File

Both the configuration file (Sect. C.1) and the database of file signatures (Sect. 4.6) may
always be cleartext signed by GnuGP (gpg) or PGP (pgp).
Note that pgp 2.6.3 seems to refuse a cleartext signature on the database (???) (any pro-
gram that tries to be smarter than the user should be considered seriously flawed). If you
experience problems, we recommend switching to GnuPG, which seems more respectful
of the user’s wishes, however strange they may be.

If compiled with support for signatures, samhain will invoke gpg or pgp to verify the
signature. To compile with gpg/pgp support, use the configure option:

./configure --with-gpg=/full/path/to/gpg (GnuPG)
- or -

./configure --with-pgp=/full/path/to/pgp (PGP)

• samhain will check that the path to the executable is writeable only by trusted
users (see Sect. 2.1).

• The programm will be called without using the shell, with its full path (as compiled
in), and with an environment that is limited to the $HOME variable.

• The public key must be in in the subdirectory $HOME/.gnupg/$HOME/.pgp, where
$HOME is the home directory of the effective user (usually root).

• From the command line, the signature must verify correctly with
/path/to/gpg --status-fd 1 --verify - < FILE (GnuPG), or
/path/to/pgp +language=en -o /dev/null -f < FILE (PGP),
when invoked by the effective user of samhain (usually root).

As signatures on files are only useful as long as you can trust the gpg/pgp executable and
the file holding the public key, you may consider using the following options:

• it is possible to compile in the TIGER checksum of the gpg/pgp executable, which
then will be verified before calling the program. The appropriate configure option
is:

--with-checksum="CHECKSUM"

CHECKSUM should be the checksum as printed by

gpg --load-extension tiger --print-md TIGER192 /path/to/gpg

- or -
samhain -H /path/to/gpg

(the full line of output, with spaces).

Example:
--with-checksum="/usr/bin/gpg: 1C739B6A F768C949 FABEF313 5F0B37F5 22ED4A27

60D59664"

• it is possible to compile in the key fingerprint of the signature key, which then will
be verified after checking the signature itself:

--with-fp=FINGERPRINT

FINGERPRINT should be the key fingerprint without spaces.

Example:
--with-fp=EF6CEF54701A0AFDB86AF4C31AAD26C80F571F6C

samhain will report the signature key owner and the key fingerprint as obtained from
gpg/pgp. If both files are present and checked (i.e. when checking files against the
database), both must be signed with the same key. If the verification is successful, samhain
will only report the signature on the configuration file. If the verification fails, or the key
for the configuration file is different from that of the database file, an error message will
result.

8 Stealth mode

If an intruder does not know that samhain is running, s/he will make no attempt to
subvert it. Hence, you may consider to run samhain in stealth mode, using some of the
options discussed in this section.

8.1 Hiding the executable

samhain may be compiled with support for a stealth mode of operation, meaning that
the program can be run without any obvious trace of its presence on disk. The following
options are provided:

–with-stealth=xor val provides the following measures:

1. All embedded strings are obfuscated by XORing them with some value xor val
chosen at compile time. The allowed range for xor val is 128 to 255.

2. The messages in the log file are obfuscated by XORing them with xor val. The built-
in routine for validating the log file will handle this transparently. You may specify
as path an already existing binary file (e.g. an executable, or a JPEG image), to
which the log will get appended.

3. Strings in the database file are obfuscated by XORing them with xor val. You may
append the database file to some binary file (e.g. an executable, or a JPEG image),
if you like.

4. The configuration file must be steganographically hidden in a postscript image file
(the image data must be uncompressed). To create such a file from an existing
image, you may use e.g. the program convert, which is part of the ImageMagick

package, such as:
convert +compress ima.jpg ima.ps.

To hide/extract the configuration data within/from the postscript file, a utility
program samhain stealth is provided. Use it without options to get help.

Note: If --with-stealth is used together with --with-gpg/pgp, then the config
file must be signed before hiding it (rather than signing the PS image file afterwards).

–with-micro-stealth=xor val is like --with-stealth, but uses a ’normal’ configuration
file (not hidden steganographically).

–with-nocl[=ARG] will disables command line parsing. The optional argument is a
’magic’ word that will enable reading command-line arguments from stdin. If the first

command-line argument is not the ’magic’ word, all command line arguments will be
ignored. This allows to start the program with completely arbitrary command-line argu-
ments.

–with-install-name=NAME will rename every installed file from *samhain* to *NAME*.
Also, the boot scripts (samhain.startSuSE, samhain.startDebian, samhain.startRedHat)
will be updated accordingly. Files created by samhain (e.g. the database) will also have
’samhain’ replaced by ’NAME’ in their filenames.

Hint: the man pages have far too much specific information enabling an intruder to infer
the presence of samhain. There is no point in changing ’samhain’ to ’NAME’ there - this
would rather help an intruder to find out what ’NAME’ is. You probably want to avoid
installing man8/samhain.8 and man5/samhainrc.5.

–enable-khide (Linux only) will compile/install two loadable kernel modules (samhain hide.o/samhain erase.o).
samhain hide.o will hide every file/directory/process with the string NAME (from --with-install-name=NAME).
If --with-install-name is not used, NAME is set to samhain .
To hide the module itself, the second module samhain erase.o is provided. Loading
and immediately thereafter unloading this module will hide any module with the string
NAME in its name.
make install will install the kernel modules to the appropriate place.
Note: hidden files can still be accessed if their names are known, thus using the --with-install-name
to rename installed files is recommended for security.
Note: using the modules at system boot may cause problems with the GNOME (1.2)
gdm display manager (no problems observed with kdm). In case of problems, you may
need to reboot into single-user mode and edit the boot init script ...

8.2 Packing the executable

For even more stealthyness, it is possible to pack and encrypt the samhain executable.
The packer is just moderately effective, but portable. Note that the encryption key of
course must be present in the packed executable, thus this is no secure encryption, but
rather is intended for obfuscation of the executable. There is a make target for packing
the samhain executable:

make samhain.pk

On execution, samhain.pk will unpack into a temporary file and execute this, passing
along all command line arguments. The temporary file is created in /tmp, if the sticky
bit is set on this directory, and in /usr/bin otherwise. The filename is chosen at random,
and the file is only opened if it does not exist already (otherwise a new random filename
will be tried). The file permission is set to 700.

The directory entry for the unpacked executable will be deleted after executing it, but on

systems with a /proc filesystem, the deleted entry may show up there. In particular, this
is the case for Linux. You should be aware that this may raise suspicion.

On Linux, the /proc filesystem is used to call the unpacked executable without a race
condition, by executing /proc/self/fd/NN, where NN is the file descriptor to which the
unpacked executable has been written. On other systems, the filename of the unpacked
executable must be used, which creates a race condition (the file may be modified between
creation and execution).

The packed executable will not honour the SUID bit.

9 Deployment to remote host

samhain includes a system to facilitate deployment of the client to remote hosts. There
are two major parts of this system:

• A library of profiles depending on the remote system type (the subdirectories profiles/type/
in the source tree) that includes three files for each system type:

1. configopts holds the build configure options, i.e. the options given to configure
when building the samhain executable on the remote host,

2. samhainrc holds the configuration file for the samhain executable, and

3. bootscript is a script that modifies the remote host configuration to make
samhain start when booting.

• A script deploy.sh (created by configure from deploy.sh.in) that, on execution,
will:

1. create a mini-distribution samhain-deploy.tar.gz,

2. copy it to the remote host,

3. compile (if needed) and install the samhain client,

4. initialize and retrieve the database (and the compiled binary), delete the database
on the remote host, and

5. store the client’s credentials in a file yulerc. If this file does not exist already,
it is copied from yulerc.template.

The compiled client is retrieved and saved in the profiles/type/ directory. For
deployment to another host of the same type, this compiled client will be used,
instead of recompiling it.

deploy.sh takes the following arguments (order is relevant):

[-v|–verbose] verbose output
[-f|–force] force recompilation, even if compiled binary available
[-p|–pack] pack the executable

host remote hostname
type system type of remote host (profiles/type/)
[password] client/server password (autogenerated by default)

In addition, the following environment variables are recognized:

SH PREFIX Install directory prefix on the remote host (set by configure).
SH NAME The name of the executable (default=samhain).
SH SRCDIR The top source directory (default=.).
SH BUILDDIR The build directory on the remote host (default=/).
SH REMOTE USER The remote host username for compiling (default=root).
SH REMOTE ROOT The remote host superuser name (default=root).
SH LOCALHOST The local hostname (FQDN). Will use ’hostname’, if available.
SH NOCL CODE The ’magic’ value to enable CL parsing (default=quark).
SH XOR CODE The XOR value to obfuscate strings (set by configure).
SH BASE1 The ’B1’ in –with-base=B1,B2 (set by configure).
SH BASE2 The ’B2’ in –with-base=B1,B2 (set by configure).

9.1 Usage Notes

• You must run configure first, and compile the server (yule), before using deploy.sh.

• yule must be in your path, if deploy.sh is not used from the top source directory.
It is not necessary to have the server running, though.

• deploy.sh uses ssh/scp. You need to have the sshd daemon running on the remote
host. It is helpful if RSA-based authentication is possible for root, otherwise you
have to type in your password quite a few times.
Note: if you use RSA-based authentication, it is recommended:

– not to store an unencrypted private RSA key (in .ssh/identity) on a remote
host that may be accessible to an intruder (very dangerous – the private RSA
key can be used to login as root on other machines).

– not to use ssh’s own scheme of encrypting the private key with a passphrase
(very inconvenient – you would need to type in the passphrase for every ssh/scp
command).

– but instead to use GnuPG or PGP to encrypt the private RSA key (in
.ssh/identity), and store it on a trusted machine or removeable media only.
Only store the public RSA key (in .ssh/authorized keys) on remote hosts. Only
decrypt the private RSA key if you need to login to (a) remote host(s), and
delete the decrypted key if not needed anymore.

• SH XOR CODE, SH BASE1, SH BASE2 are needed for consistency across multiple
runs of configure. This is not important for client/server interaction, but for veri-
fication of e-mails/log files written by the client (if you make use of these additional
logging facilities).

• The deployed client is compiled to retrieve the database and the configuration file
from the server. It will not work (except for initialization of the database) with

database/configuration files stored on the client side. When invoked for file system
checking, the deployed client will expect the server running on the host specified
in the environment variable SH LOCALHOST, which by default is set to the local
host on which deploy.sh is executed (surprise, surprise ...).

• To add support for another system type, just create a subdirectory named profiles/type/
in the source tree, and figure out appropriate files configopts, samhainrc, and
bootscript.

• To add credentials of new clients at runtime to yule , copy the file yulerc (or the
new client credentials therein) to the server’s configuration file, and send a SIGUSR1
signal to yule to reconfigure.

10 Security Design

Obviously, a security application should not open up security holes by itself. Therefore,
an inportant aspect in the development of samhain has been the security of the program
itself. While samhain comes with no warranty (see the license), much effort has been
invested to identify security problems and avoid them.

To avoid buffer overflows, only secure string handling functions are used to limit the
amount of data copied into a buffer to the size of the respective buffer (unless it is known
in advance that the data will fit into the buffer).

On startup, the timezone is saved, and all environment variables are set to zero thereafter.
Signal handlers, timers, and file creation mask are reset, and the core dump size is set to
zero. If started as daemon, all file descriptors are closed, and the first three streams are
opened to /dev/null.

If external programs are used (in the entropy gatherer, if /dev/random is not available),
they are invoked directly (without using the shell), with the full path, and with a limited
environment (by default only the timezone). Privileged credentials are dropped before
calling the external program.

With respect to its own files (configuration, database, the log file, and its lock), on access
samhain checks the complete path for write access by untrusted users. Some care has
been taken to avoid race conditions on file access as far as possible.

samhain requires root privileges to monitor files with privileged access. If set SUID root,
samhain will run with the credentials of a compiled-in user, which by default is nobody.
In that case, root privileges will only be used if neccessary.

Critical information, including session keys and data read from files for computing check-
sums, is kept in memory for which paging is disabled (if the operating system supports
this). This way it is avoided that such information is transfered to a persistent swap store
medium, where it might be accessible to unauthorized users.

Random numbers are generated from a pseudo-random number generator (PRNG) with a
period of 288 (actually by mixing the output from three instances of the PRNG). The inter-
nal state of the PRNG is seeded from a strong entropy source (if available, /dev/random
is used, else lots of system statistics is pooled and mixed with a hash function). The
PRNG is re-seeded from the entropy source at regular intervals (one hour).

Numbers generated from a PRNG can be predicted, if the internal state of the PRNG
can be inferred. To avoid this, the internal state of the PRNG is hidden by hashing the
output with a hash function.

A Compilation options

A.1 General

–enable-login-watch Compile in the module to watch for login/logout events.

–with-identity=USER The username to use when dropping root privileges (default
nobody).

–with-sender=SENDER The username of the sender for e-mail (default is daemon).

–with-recipient=ADDR The recepient(s) for e-mail, seperated by whitespace (max.
8). You can add recepients in the configuration file as well.

–with-trusted=UID Trusted users (must be a comma-separated list of numerical UIDs).
Only required if the configuration file must be on a path writeable by others than
root and the effective user.

–with-timeserver=HOST Set host address for time server (default is literal “NULL”
- use own clock). You can set this in the configuration file as well. An address in
the configuration file will take precedence.

–with-alttimeserver=HOST Set host address for an alternative (backup) time server.

–with-suidcheck Check file system for SUID/SGID binaries not in the database.

–with-kcheck=SYSTEM MAP (Linux only) Check for clobbered kernel syscalls (to
detect kernel module rootkits). SYSTEM MAP must be the path to the System.map
file corresponding to the kernel.

–with-stealth=XOR VAL Enable stealth mode, and set XOR VAL. XOR VAL must
be decimal, in the range 127 – 255, and will be used to obfuscate literal strings.

–with-micro-stealth=XOR VAL As --with-stealth, but without steganographic
hidden configuration file.

–with-nocl=PW Command line parsing is enabled only if the first command line argu-
ment is PW. PW=”” (empty string) will disable command line parsing completely.
This may be used as addition to –with(-micro)-stealth to prevent interactive en-
forcement of telltale output.

–with-install-name=NAME Upon installation, rename every file from *samhain* to
NAME. To be used in conjunction with –with-(micro-)stealth.

–with-base=B1,B2 Set base key for one-time pads. Must be ONE string (no space)
made of TWO comma-separated integers in the range 0 – 2147483647.
Caveat: If this option is not used, a random value will be chosen at compile time

(by the configuration script). Binaries compiled with different values cannot verify
the audit trail(s) of each other.

–enable-db-reload Enable reload of database on SIGHUP (otherwise, only the config
file will be read again).

–enable-debug Enable debugging. Will slow down things, increase resource usage, and
may leak information that should be kept secure. Do not use in production code.

–enable-ptrace Periodically check whether a debugger is attached, and abort if yes.
Only takes effect if --enable-debug is not used.

A.2 OpenPGP Signatures on Configuration/Database Files

–with-gpg=PATH Use GnuPG to verify database/configuration file. The public key
of the effective user (in /.gnupg/pubring.gpg) will be used.

–with-pgp=PATH Use PPG to verify database/configuration file. The public key of
the effective user (in /.pgp/pubring.pgp) will be used.

–with-checksum=CHECKSUM Compile in TIGER checksum of the gpg/pgp binary.
CHECKSUM must be the full line output by samhain or gpg when computing the
checksum (pgp has no support for the TIGER algorithm).

–with-fp=FINGERPRINT Compile in the fingerprint of the key used to sign the
configuration/database files. FINGERPRINT must be without spaces. If used,
samhain will verify the fingerprint, but still report on the used public key.

A.3 Client/Server Connectivity

–enable-network Compile with client/server support.

–disable-encrypt Disable encryption for client/server communication.

–disable-srp Disable the use of the zero-knowledge SRP protocol to authenticate to log
server, and use a (faster, but less secure) challenge-response protocol.

–with-port=PORT The port on which the server will listen (default is 49777). Only
needed if this port is already used by some other application. Port numbers below
1024 require root privileges for the server.

–with-logserver=HOST The host address of the log server. This can be set in the
configuration file. A compiled-in address is only required if you want to fetch the
configuration file from the log server. An address in the configuration file will take
precedence.

–with-altlogserver=HOST The host address of an alternative (backup) log server.

A.4 Paths

Compiled-in paths may be as long as 255 chars. If the --with-stealth option is used,
the limit is 127 chars.
The paths to the database, log file, and lock file can be overridden in the configuration file
(see Sect. C.1 - use ”AUTO” to simply tack on the hostname on the compiled-in path).
The same length limits apply.

–prefix=PREFIX The root install directory (default is /usr/local).

–with-tmp-dir=PFX The directory where tmp files are created (config/database down-
loads from server, extracted PGP-signed parts of config/database files) (default is
$HOME).

–with-config-file=FILE The full path of the configuration file (default is $PREFIX/etc/.samhainrc).

–with-dataroot-prefix=PFX The dataroot directory (default is $PREFIX/var/log).

–with-log-file=FILE The path of the log file (default is $PFX/.samhain log).

–with-lock-file=FILE The path of the lock file (default is $PFX/.samhain lock).

–with-data-file=FILE The path of the database file written by samhain (default is
$PFX/.samhain file).

–with-html-file=FILE The path of the html report file written by yule (default is
$PFX/.samhain.html).

–with-console=PATH The path of the console (default is /dev/console). This may be
a FIFO.

–with-altconsole=PATH The path of a second console (default is none). This may be
a FIFO. If defined, console output will always go to both console devices (but note
that console devices are only used when running as daemon).

B Command line options

B.1 General

-D, –deamon Run as daemon.

-s <arg>, –set-syslog-severity=<arg> Set the severity threshold for syslog. arg may
be one of none, debug, info, notice, warn, mark, err, crit, alert.

-l <arg>, –set-log-severity=<arg> Set the severity threshold for logfile. arg may be
one of none, debug, info, notice, warn, mark, err, crit, alert.

-m <arg>, –set-mail-severity=<arg> Set the severity threshold for e-mail. arg may
be one of none, debug, info, notice, warn, mark, err, crit, alert.

-p <arg>, –set-print-severity=<arg> Set the severity threshold for terminal/console.
arg may be one of none, debug, info, notice, warn, mark, err, crit, alert.

-x <arg>, –set-extern-severity=<arg> Set the severity threshold for external pro-
gram(s). arg may be one of none, debug, info, notice, warn, mark, err,

crit, alert.

-L <arg>, –verify-log=<arg> Verify the integrity of the log file (arg is the path of
the log file).

-M <arg>, –verify-mail=<arg> Verify the integrity of e-mailed messages (arg is the
path of the mail box).

-H <arg>, –hash-string=<arg> Print the hash of a string / the checksum of a file,
and exit. If arg starts with a ’/’, it is assumed to be a file, otherwise a string. This
function is useful to test the hash algorithm.

-z <arg>, –tracelevel=<arg> If compiled with –enable-debug: arg > 0 to switch on
debug output.
If compiled with –enable-trace: arg > 0 max. level for call tracing.

-i <arg>, –milestone=<arg> If compiled with –enable-trace: trace from milestone
arg to arg+1. If arg = -1, trace all.

-O, –pre1 1 9 Enable compatibility mode.

-c, –copyright Print copyright information and exit.

-h, –help Print a short help on command line options and exit.

B.2 samhain

-t <arg>, –set-checksum-test=<arg> Set file checking to init, update, or check. Use
init to create the database, update to update it, and check to check files against the
database.

-e <arg>, –set-export-severity=<arg> Set the severity threshold for forwarding mes-
sages to the log server. arg may be one of none, debug, info, notice, warn,

mark, err, crit, alert.

-r <arg>, –recursion=<arg> Set the default recursion level for directories (0 – 99).

B.3 yule

-S, –server Run as server. Only required if the binary is dual-purpose.

-q, –qualified Log received messages with the fully qualified name of client host.

-G <arg>, –gen-password Generate a random password suitable for use in the follow-
ing option (16 hexadecimal digits).

-P <arg>, –password=<arg> Compute a client registry entry. arg is the chosen pass-
word (16 hexadecimal digits).

C The configuration file

C.1 General

The configuration file for samhain is named .samhainrc by default. Also by default, it
is placed in /usr/local/etc. (Name and location is configurable at compile time). The
distribution package comes with a commented sample configuration file.

This section introduces the general structure of the configuration file. Details on individual
entries in the configuration files are discussed in Sect. 4.3 (which files to monitor), Sect. 2.3
(what should be logged, which logging facilities should be used, and how these facilities
are properly configured), and Sect. 4.9 (monitoring login/logout events).

The configuration file contains several sections, indicated by headings in square brackets.
Each section may hold zero or more key=value pairs. Keys are not case sensitive, and
space around the ’=’ is allowed. Blank lines and lines starting with ’#’ are comments.
Everything before the first section and after an [EOF] is ignored. The [EOF] end-of-file
marker is optional. Keys are not case sensitive, and space around the ’=’ is allowed. The
file thus looks like:

Example

this is a comment
[Section heading]

key1=value
key2=value

[Another section]

key3=value
key4=value

C.1.1 Conditionals

Conditional inclusion of entries for some host(s) is supported via any number of @host-
name/@end directives. @hostname and @end must each be on separate lines. Lines in
between will only be read if hostname (which may be a regular expression) matches the
local host.

Likewise, conditional inclusion of entries based on system type is supported via any num-
ber of $sysname:release:machine/$end directives.
sysname:release:machine for the local host can be determined using the command uname

-srm and may be a regular expression.

A ’!’ in front of the ’@’/’$’ will invert its meaning. Conditionals may be nested up to
15 levels.

Example

@hostname
only read if hostname matches local host
@end
!@hostname
not read if hostname matches local host
@end
#
$sysname:release:machine
only read if sysname:release:machine matches local host
$end
!$sysname:release:machine
not read if sysname:release:machine matches local host
$end

C.2 Files to check

Allowed section headings (see Sect. 4.3.1 for more details) are:

[Attributes]

[LogFiles]

[GrowingLogFiles]

[IgnoreAll]

[IgnoreNone]

[ReadOnly]

Placing an entry under one of these headings will select the respective policy for that
entry (see Sect. 4.3.1). Entries under the above section headings must be of the form:

dir=[optional numerical recursion depth]path
file=path

C.3 Severity of events

Section heading (see Sect. 2.3.1 for more details):

[EventSeverity]

Entries:

SeverityReadOnly=severity
SeverityLogFiles=severity
SeverityGrowingLogs=severity
SeverityIgnoreNone=severity
SeverityIgnoreAll=severity
SeverityAttributes=severity

SeverityFiles=severity
SeverityDirs=severity
SeverityNames=severity

severity may be one of none, debug, info, notice, warn, mark, err, crit, alert.

C.4 Logging thresholds

Section heading (see Sect. 3.1 for more details):

[Log]

Entries:

MailSeverity=[optional specifier]threshold
PrintSeverity=[optional specifier]threshold
LogSeverity=[optional specifier]threshold
SyslogSeverity=[optional specifier]threshold
ExportSeverity=[optional specifier]threshold
ExternalSeverity=[optional specifier]threshold

threshold may be one of none, debug, info, notice, warn, mark, err, crit, alert.

The optional specifier may be one of ’ !’, ’*’, or ’=’, which are interpreted as ’all’, ’all but’,
and ’only’, respectively.

C.5 Watching login/logout events

Section heading:

[Utmp]

Entries:

LoginCheckActive=1/0 ’1’ to switch on, ’0’ to switch off.
LoginCheckInterval=seconds Interval between checks.
SeverityLogin=severity Severity for login events.
SeverityLoginMulti=severity Severity for logout events.
SeverityLogout=severity Severity for multiple logins by same user.

C.6 Checking for kernel module rootkits

Section heading:

[Kernel]

Entries:

KernelCheckActive=1/0 ’1’ to switch on, ’0’ to switch off.
KernelCheckInterval=seconds Interval between checks.
SeverityKernel=severity Severity for events.

C.7 Checking for SUID/SGID files

Section heading:

[SuidCheck]

Entries:

SuidCheckActive=1/0 ’1’ to switch on, ’0’ to switch off.
SuidCheckInterval=seconds Interval between checks.
SeveritySuidCheck=severity Severity for events.

C.8 Miscellaneous

Section heading:

[Misc]

Entries:

Daemon=yes/no Whether to become a daemon (default: no)

SetLoopTime=seconds Interval between timestamp messages.
SetFilecheckTime=seconds Interval between file checks.
ReportOnlyOnce=yes/no Report only once on a modified file.
ReportFullDetail=yes/no Report in full detail on modified files.
ChecksumTest=none/init/update/check The default action.

SetConsole=device Set the console device.
MessageQueueActive=1/0 ’1’ to switch on, ’0’ to switch off.

SetMailTime=seconds Maximum time interval between mail messages.
SetMailNum=0 – 127 Maximum number of pending mails on internal queue.
SetMailAddress=recepient Add a recepient e-mail address (max. 8).
SetMailRelay=IP address The mail relay (for offsite mail).

SamhainPath=path The path of the process image.

SetLogServer=IP address The log server.

SetTimeServer=IP address The time server.

TrustedUser=username(,username,..). List of additional trusted users.

SetDatabasePath=AUTO or /path Path to database (AUTO to tack
hostname on compiled-in path).

SetLogfilePath=AUTO or /path Path to log file (AUTO to tack
hostname on compiled-in path).

SetLockfilePath=AUTO or /path Path to lock file (AUTO to tack
hostname on compiled-in path).

RedefReadOnly=+XXX or -XXX Add or subtract test XXX from the ReadOnly policy.
RedefAttributes=+XXX or -XXX Add or subtract test XXX from the Attributes policy.
RedefLogFiles=+XXX or -XXX Add or subtract test XXX from the LogFiles policy.
RedefGrowingLogFiles=-XXX or XXXAdd or subtract test XXX from the GrowingLogFiles policy.
RedefIgnoreAll=+XXX or -XXX Add or subtract test XXX from the IgnoreAll policy.
RedefIgnoreNone=+XXX or -XXX Add or subtract test XXX from the IgnoreNone policy.

SeverityLookup=severity Severity for socket peer not equal client address.
SetClientTimeLimit=seconds Time limit until next client message (server-only).

MessageHeader=”%S %T %F %L %C” Specify custom format for message header.
HideSetup=yes/no Don’t log names of config/database files on startup.
SyslogFacility=LOG xxx Set syslog facility (default is LOG AUTHPRIV).
MACType=HASH-TIGER/HMAC-TIGER Set type of message auth. code (HMAC).

Remarks: (i) root and the effective user are always trusted.
(ii) If no time server is given, the local host clock is used.
(iii) If the path of the process image is given, the process image will be checksummed at
startup and exit, and both checksums compared.

C.9 External

Definition of an arbitrary number of external programs/scripts (see Sect. 6). Section
heading:

[External]

Entries:

OpenCommand=/full/path/to/program Starts new command definition.
SetType=log/srv Type/purpose of the program.
SetCommandline=list The command line.
SetEnviron=KEY=value Environment variable (can be repeated).
SetChecksum=TIGER checksum Checksum of the program.
SetCredentials=username User whose credentials shall be used.
SetFilterNot=list Words not allowed in message.
SetFilterAnd=list Words required (ALL) in message.
SetFilterOr=list Words required (at least one) in message.
SetDeadtime=seconds Deadtime between consecutive calls.

C.10 Clients

This section is relevant for yule only. Section heading:

[Clients]

Entries must be of the form:

Client=hostname@salt@verifier

See Sect. 5.2 on how to compute a valid entry.

The hostname must be the same name that the client retrieves from the host on which
it runs. Usually, this will be a fully qualified hostname, no numerical address. However,

there is no method that guarantees to yield the fully qualified hostname (it is not even
guaranteed that a host has one ...).
The only way to know for sure is to set up the client, and check whether the connection
is refused by the server with a message like

Connection attempt from unregistered host hostname
In that case, hostname is what you should use.

C.11 End of file

[EOF] Not required, unless there is junk beyond.

