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Preface

The purpose of this book is to help you understand how
to program shared-memory parallel machines without
risking your sanity.1 By describing the algorithms and
designs that have worked well in the past, we hope to
help you avoid at least some of the pitfalls that have beset
parallel projects. But you should think of this book as a
foundation on which to build, rather than as a completed
cathedral. Your mission, if you choose to accept, is to
help make further progress in the exciting field of parallel
programming, progress that should in time render this
book obsolete. Parallel programming is not as hard as it
is reputed, and it is hoped that this book makes it even
easier for you.

This book follows a watershed shift in the parallel-
programming field, from being primarily the domain of
science, research, and grand-challenge projects to being
primarily an engineering discipline. In presenting this
engineering discipline, this book will examine the specific
development tasks peculiar to parallel programming, and
describe how they may be most effectively handled, and,
in some surprisingly common special cases, automated.

This book is written in the hope that presenting the
engineering discipline underlying successful parallel-
programming projects will free a new generation of par-
allel hackers from the need to slowly and painstakingly
reinvent old wheels, instead focusing their energy and
creativity on new frontiers. Although the book is intended
primarily for self-study, it is likely to be more generally
useful. It is hoped that this book will be useful to you, and
that the experience of parallel programming will bring
you as much fun, excitement, and challenge as it has
provided the authors over the years.

1 Or, perhaps more accurately, without much greater risk to your
sanity than that incurred by non-parallel programming. Which, come to
think of it, might not be saying all that much. Either way, Appendix A
discusses some important questions whose answers are less intuitive in
parallel programs than in sequential program.

xi
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Chapter 1

Introduction

Parallel programming has earned a reputation as one
of the most difficult areas a hacker can tackle. Papers and
textbooks warn of the perils of deadlock, livelock, race
conditions, non-determinism, Amdahl’s-Law limits to
scaling, and excessive realtime latencies. And these perils
are quite real; we authors have accumulated uncounted
years of experience dealing with them, and all of the
emotional scars, grey hairs, and hair loss that go with
such an experience.

However, new technologies have always been difficult
to use at introduction, but have invariably become eas-
ier over time. For example, there was a time when the
ability to drive a car was a rare skill, but in many de-
veloped countries, this skill is now commonplace. This
dramatic change came about for two basic reasons: (1)
cars became cheaper and more readily available, so that
more people had the opportunity to learn to drive, and (2)
cars became simpler to operate, due to automatic trans-
missions, automatic chokes, automatic starters, greatly
improved reliability, and a host of other technological
improvements.

The same is true of a host of other technologies, in-
cluding computers. It is no longer necessary to operate a
keypunch in order to program. Spreadsheets allow most
non-programmers to get results from their computers that
would have required a team of specialists a few decades
ago. Perhaps the most compelling example is web-surfing
and content creation, which since the early 2000s has
been easily done by untrained, uneducated people using
various now-commonplace social-networking tools. As
recently as 1968, such content creation was a far-out re-
search project [Eng68], described at the time as “like a
UFO landing on the White House lawn”[Gri00].

Therefore, if you wish to argue that parallel program-
ming will remain as difficult as it is currently perceived
by many to be, it is you who bears the burden of proof,

keeping in mind the many centuries of counter-examples
in a variety of fields of endeavor.

1.1 Historic Parallel Programming
Difficulties

As indicated by its title, this book takes a different ap-
proach. Rather than complain about the difficulty of par-
allel programming, it instead examines the reasons why
parallel programming is difficult, and then works to help
the reader to overcome these difficulties. As will be seen,
these difficulties have fallen into several categories, in-
cluding:

1. The historic high cost and relative rarity of parallel
systems.

2. The typical researcher’s and practitioner’s lack of
experience with parallel systems.

3. The paucity of publicly accessible parallel code.

4. The lack of a widely understood engineering disci-
pline of parallel programming.

5. The high cost of communication relative to that of
processing, even in tightly coupled shared-memory
computers.

Many of these historic difficulties are well on the way to
being overcome. First, over the past few decades, the cost
of parallel systems has decreased from many multiples of
that of a house to a fraction of that of a used car, thanks
to the advent of multicore systems. Papers calling out the
advantages of multicore CPUs were published as early
as 1996 [ONH+96], IBM introduced simultaneous multi-
threading into its high-end POWER family in 2000, and

1
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multicore in 2001. Intel introduced hyperthreading into
its commodity Pentium line in November 2000, and both
AMD and Intel introduced dual-core CPUs in 2005. Sun
followed with the multicore/multi-threaded Niagara in
late 2005. In fact, in 2008, it is becoming difficult to
find a single-CPU desktop system, with single-core CPUs
being relegated to netbooks and embedded devices.

Second, the advent of low-cost and readily available
multicore system means that the once-rare experience
of parallel programming is now available to almost all
researchers and practitioners. In fact, parallel systems are
now well within the budget of students and hobbyists. We
can therefore expect greatly increased levels of invention
and innovation surrounding parallel systems, and that
increased familiarity will over time make once-forbidding
field of parallel programming much more friendly and
commonplace.

Third, where in the 20th century, large systems of highly
parallel software were almost always closely guarded
proprietary secrets, the 21st century has seen numer-
ous open-source (and thus publicly available) parallel
software projects, including the Linux kernel [Tor03c],
database systems [Pos08, MS08], and message-passing
systems [The08, UoC08]. This book will draw primarily
from the Linux kernel, but will provide much material
suitable for user-level applications.

Fourth, even though the large-scale parallel-
programming projects of the 1980s and 1990s were
almost all proprietary projects, these projects have
seeded the community with a cadre of developers who
understand the engineering discipline required to develop
production-quality parallel code. A major purpose of this
book is to present this engineering discipline.

Unfortunately, the fifth difficulty, the high cost of com-
munication relative to that of processing, remains largely
in force. Although this difficulty has been receiving in-
creasing attention during the new millennium, according
to Stephen Hawking, the finite speed of light and the
atomic nature of matter is likely to limit progress in this
area [Gar07, Moo03]. Fortunately, this difficulty has been
in force since the late 1980s, so that the aforementioned
engineering discipline has evolved practical and effective
strategies for handling it. In addition, hardware designers
are increasingly aware of these issues, so perhaps future
hardware will be more friendly to parallel software as
discussed in Section 2.3.

Quick Quiz 1.1: Come on now!!! Parallel program-
ming has been known to be exceedingly hard for many
decades. You seem to be hinting that it is not so hard.

What sort of game are you playing?
However, even though parallel programming might not

be as hard as is commonly advertised, it is often more
work than is sequential programming.

Quick Quiz 1.2: How could parallel programming
ever be as easy as sequential programming?

It therefore makes sense to consider alternatives to
parallel programming. However, it is not possible to
reasonably consider parallel-programming alternatives
without understanding parallel-programming goals. This
topic is addressed in the next section.

1.2 Parallel Programming Goals
The three major goals of parallel programming (over and
above those of sequential programming) are as follows:

1. Performance.

2. Productivity.

3. Generality.

Quick Quiz 1.3: Oh, really??? What about correct-
ness, maintainability, robustness, and so on?

Quick Quiz 1.4: And if correctness, maintainability,
and robustness don’t make the list, why do productivity
and generality?

Quick Quiz 1.5: Given that parallel programs are
much harder to prove correct than are sequential pro-
grams, again, shouldn’t correctness really be on the list?

Quick Quiz 1.6: What about just having fun?
Each of these goals is elaborated upon in the following

sections.

1.2.1 Performance
Performance is the primary goal behind most parallel-
programming effort. After all, if performance is not a
concern, why not do yourself a favor, just write sequential
code, and be happy? It will very likely be easier, and you
will probably get done much more quickly.

Quick Quiz 1.7: Are there no cases where parallel
programming is about something other than performance?

Note that “performance” is interpreted quite broadly
here, including scalability (performance per CPU) and
efficiency (for example, performance per watt).
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Figure 1.1: MIPS/Clock-Frequency Trend for Intel CPUs

That said, the focus of performance has shifted from
hardware to parallel software. This change in focus is due
to the fact that although Moore’s Law continues to deliver
increases in transistor density, it has ceased to provide the
traditional single-threaded performance increases, as can
be seen in Figure 1.1.1 This means that writing single-
threaded code and simply waiting a year or two for the
CPUs to catch up may no longer be an option. Given
the recent trends on the part of all major manufacturers
towards multicore/multithreaded systems, parallelism is
the way to go for those wanting the avail themselves of
the full performance of their systems.

Even so, the first goal is performance rather than scal-
ability, especially given that the easiest way to attain
linear scalability is to reduce the performance of each
CPU [Tor01]. Given a four-CPU system, which would
you prefer? A program that provides 100 transactions
per second on a single CPU, but does not scale at all?
Or a program that provides 10 transactions per second
on a single CPU, but scales perfectly? The first program
seems like a better bet, though the answer might change
if you happened to be one of the lucky few with access to
a 32-CPU system.

1 This plot shows clock frequencies for newer CPUs theoretically
capable of retiring one or more instructions per clock, and MIPS for
older CPUs requiring multiple clocks to execute even the simplest
instruction. The reason for taking this approach is that the newer CPUs’
ability to retire multiple instructions per clock is typically limited by
memory-system performance.

That said, just because you have multiple CPUs is not
necessarily in and of itself a reason to use them all, espe-
cially given the recent decreases in price of multi-CPU
systems. The key point to understand is that parallel pro-
gramming is primarily a performance optimization, and,
as such, it is one potential optimization of many. If your
program is fast enough as currently written, there is no rea-
son to optimize, either by parallelizing it or by applying
any of a number of potential sequential optimizations.2

By the same token, if you are looking to apply parallelism
as an optimization to a sequential program, then you will
need to compare parallel algorithms to the best sequential
algorithms. This may require some care, as far too many
publications ignore the sequential case when analyzing
the performance of parallel algorithms.

1.2.2 Productivity

Quick Quiz 1.8: Why all this prattling on about non-
technical issues??? And not just any non-technical issue,
but productivity of all things? Who cares?

Productivity has been becoming increasingly important
through the decades. To see this, consider that early com-
puters cost millions of dollars at a time when engineering
salaries were a few thousand dollars a year. If dedicating
a team of ten engineers to such a machine would improve
its performance by 10%, their salaries would be repaid
many times over.

One such machine was the CSIRAC, the oldest still-
intact stored-program computer, put in operation in
1949 [Mus04, Mel06]. Given that the machine had but
768 words of RAM, it is safe to say that the productivity
issues that arise in large-scale software projects were not
an issue for this machine. Because this machine was built
before the transistor era, it was constructed of 2,000 vac-
uum tubes, ran with a clock frequency of 1kHz, consumed
30kW of power, and weighed more than three metric tons.

It would be difficult to purchase a machine with this lit-
tle compute power roughly sixty years later (2008), with
the closest equivalents being 8-bit embedded micropro-
cessors exemplified by the venerable Z80 [Wik08]. This
CPU had 8,500 transistors, and can still be purchased in
2008 for less than $2 US per unit in 1,000-unit quantities.
In stark contrast to the CSIRAC, software-development
costs are anything but insignificant for the Z80.

The CSIRAC and the Z80 are two points in a long-term

2 Of course, if you are a hobbyist whose primary interest is writing
parallel software, that is more than enough reason to parallelize whatever
software you are interested in.
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Figure 1.2: MIPS per Die for Intel CPUs

trend, as can be seen in Figure 1.2. This figure plots an
approximation to computational power per die over the
past three decades, showing a consistent four-order-of-
magnitude increase. Note that the advent of multicore
CPUs has permitted this increase to continue unabated
despite the clock-frequency wall encountered in 2003.

One of the inescapable consequences of the rapid de-
crease in the cost of hardware is that software productivity
grows increasingly important. It is no longer sufficient
merely to make efficient use of the hardware, it is now
also necessary to make extremely efficient use of software
developers. This has long been the case for sequential
hardware, but only recently has parallel hardware become
a low-cost commodity. Therefore, the need for high pro-
ductivity in creating parallel software has only recently
become hugely important.

Quick Quiz 1.9: Given how cheap parallel hardware
has become, how can anyone afford to pay people to
program it?

Perhaps at one time, the sole purpose of parallel soft-
ware was performance. Now, however, productivity is
increasingly important.

1.2.3 Generality
One way to justify the high cost of developing parallel
software is to strive for maximal generality. All else being
equal, the cost of a more-general software artifact can be
spread over more users than can a less-general artifact.

Unfortunately, generality often comes at the cost of per-
formance, productivity, or both. To see this, consider the
following popular parallel programming environments:

C/C++ “Locking Plus Threads” : This category,
which includes POSIX Threads (pthreads) [Ope97],
Windows Threads, and numerous operating-system
kernel environments, offers excellent performance
(at least within the confines of a single SMP system)
and also offers good generality. Pity about the
relatively low productivity.

Java : This programming environment, which is inher-
ently multithreaded, is widely believed to be much
more productive than C or C++, courtesy of the au-
tomatic garbage collector and the rich set of class
libraries, and is reasonably general purpose. How-
ever, its performance, though greatly improved over
the past ten years, is generally considered to be less
than that of C and C++.

MPI : this message-passing interface [MPI08] powers
the largest scientific and technical computing clus-
ters in the world, so offers unparalleled performance
and scalability. It is in theory general purpose, but
has generally been used for scientific and technical
computing. Its productivity is believed by many to
be even less than that of C/C++ “locking plus threads”
environments.

OpenMP : this set of compiler directives can be used to
parallelize loops. It is thus quite specific to this task,
and this specificity often limits its performance. It
is, however, much easier to use than MPI or parallel
C/C++.

SQL : structured query language [Int92] is extremely
specific, applying only to relational database queries.
However, its performance is quite good, doing quite
well in Transaction Processing Performance Council
(TPC) benchmarks [Tra01]. Productivity is excellent,
in fact, this parallel programming environment per-
mits people who know almost nothing about parallel
programming to make good use of a large parallel
machine.

The nirvana of parallel programming environments,
one that offers world-class performance, productivity, and
generality, simply does not yet exist. Until such a nir-
vana appears, it will be necessary to make engineering
tradeoffs among performance, productivity, and gener-
ality. One such tradeoff is shown in Figure 1.3, which
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shows how productivity becomes increasingly important
at the upper layers of the system stack, while performance
and generality become increasingly important at the lower
layers of the system stack. The huge development costs
incurred near the bottom of the stack must be spread over
equally huge numbers of users on the one hand (hence the
importance of generality), and performance lost near the
bottom of the stack cannot easily be recovered further up
the stack. Near the top of the stack, there might be very
few users for a given specific application, in which case
productivity concerns are paramount. This explains the
tendency towards “bloatware” further up the stack: extra
hardware is often cheaper than would be the extra devel-
opers. This book is intended primarily for developers
working near the bottom of the stack, where performance
and generality are paramount concerns.

It is important to note that a tradeoff between produc-
tivity and generality has existed for centuries in many
fields. For but one example, a nailgun is far more pro-
ductive than is a hammer, but in contrast to the nailgun,
a hammer can be used for many things besides driving
nails. It should therefore be absolutely no surprise to see
similar tradeoffs appear in the field of parallel computing.
This tradeoff is shown schematically in Figure 1.4. Here,
Users 1, 2, 3, and 4 have specific jobs that they need
the computer to help them with. The most productive
possible language or environment for a given user is one
that simply does that user’s job, without requiring any
programming, configuration, or other setup.

Quick Quiz 1.10: This is a ridiculously unachievable
ideal! Why not focus on something that is achievable in
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Figure 1.4: Tradeoff Between Productivity and Generality

practice?
Unfortunately, a system that does the job required by

user 1 is unlikely to do user 2’s job. In other words, the
most productive languages and environments are domain-
specific, and thus by definition lacking generality.

Another option is to tailor a given programming lan-
guage or environment to the hardware system (for exam-
ple, low-level languages such as assembly, C, C++, or
Java) or to some abstraction (for example, Haskell, Pro-
log, or Snobol), as is shown by the circular region near the
center of Figure 1.4. These languages can be considered
to be general in the sense that they are equally ill-suited
to the jobs required by users 1, 2, 3, and 4. In other
words, their generality is purchased at the expense of de-
creased productivity when compared to domain-specific
languages and environments.

With the three often-conflicting parallel-programming
goals of performance, productivity, and generality in
mind, it is now time to look into avoiding these conflicts
by considering alternatives to parallel programming.

1.3 Alternatives to Parallel Pro-
gramming

In order to properly consider alternatives to parallel pro-
gramming, you must first have thought through what you
expect the parallelism to do for you. As seen in Sec-
tion 1.2, the primary goals of parallel programming are
performance, productivity, and generality.

Although historically most parallel developers might
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be most concerned with the first goal, one advantage of
the other goals is that they relieve you of the need to
justify using parallelism. The remainder of this section is
concerned only performance improvement.

It is important to keep in mind that parallelism is but
one way to improve performance. Other well-known
approaches include the following, in roughly increasing
order of difficulty:

1. Run multiple instances of a sequential application.

2. Construct the application to make use of existing
parallel software.

3. Apply performance optimization to the serial appli-
cation.

1.3.1 Multiple Instances of a Sequential
Application

Running multiple instances of a sequential application can
allow you to do parallel programming without actually
doing parallel programming. There are a large number of
ways to approach this, depending on the structure of the
application.

If your program is analyzing a large number of different
scenarios, or is analyzing a large number of independent
data sets, one easy and effective approach is to create a
single sequential program that carries out a single analysis,
then use any of a number of scripting environments (for
example the bash shell) to run a number of instances of
this sequential program in parallel. In some cases, this
approach can be easily extended to a cluster of machines.

This approach may seem like cheating, and in fact
some denigrate such programs as “embarrassingly paral-
lel”. And in fact, this approach does have some potential
disadvantages, including increased memory consumption,
waste of CPU cycles recomputing common intermediate
results, and increased copying of data. However, it is
often extremely effective, garnering extreme performance
gains with little or no added effort.

1.3.2 Make Use of Existing Parallel Soft-
ware

There is no longer any shortage of parallel software en-
vironments that can present a single-threaded program-
ming environment, including relational databases, web-
application servers, and map-reduce environments. For
example, a common design provides a separate program

for each user, each of which generates SQL that is run
concurrently against a common relational database. The
per-user programs are responsible only for the user inter-
face, with the relational database taking full responsibility
for the difficult issues surrounding parallelism and persis-
tence.

Taking this approach often sacrifices some perfor-
mance, at least when compared to carefully hand-coding
a fully parallel application. However, such sacrifice is
often justified given the great reduction in development
effort required.

1.3.3 Performance Optimization

Up through the early 2000s, CPU performance was dou-
bling every 18 months. In such an environment, it is often
much more important to create new functionality than to
do careful performance optimization. Now that Moore’s
Law is “only” increasing transistor density instead of in-
creasing both transistor density and per-transistor perfor-
mance, it might be a good time to rethink the importance
of performance optimization.

After all, performance optimization can reduce power
consumption as well as increasing performance.

From this viewpoint, parallel programming is but an-
other performance optimization, albeit one that is be-
coming much more attractive as parallel systems become
cheaper and more readily available. However, it is wise
to keep in mind that the speedup available from paral-
lelism is limited to roughly the number of CPUs, while
the speedup potentially available from straight software
optimization can be multiple orders of magnitude.

Furthermore, different programs might have different
performance bottlenecks. Parallel programming will only
help with some bottlenecks. For example, suppose that
your program spends most of its time waiting on data from
your disk drive. In this case, making your program use
multiple CPUs is not likely to gain much performance. In
fact, if the program was reading from a large file laid out
sequentially on a rotating disk, parallelizing your program
might well make it a lot slower. You should instead add
more disk drives, optimize the data so that the file can be
smaller (thus faster to read), or, if possible, avoid the need
to read quite so much of the data.

Quick Quiz 1.11: What other bottlenecks might pre-
vent additional CPUs from providing additional perfor-
mance?

Parallelism can be a powerful optimization technique,
but it is not the only such technique, nor is it appropriate



1.4. WHAT MAKES PARALLEL PROGRAMMING HARD? 7

for all situations. Of course, the easier it is to parallelize
your program, the more attractive parallelization becomes
as an optimization. Parallelization has a reputation of
being quite difficult, which leads to the question “exactly
what makes parallel programming so difficult?”

1.4 What Makes Parallel Program-
ming Hard?

It is important to note that the difficulty of parallel pro-
gramming is as much a human-factors issue as it is a set of
technical properties of the parallel programming problem.
This is the case because we need human beings to be able
to tell parallel systems what to do, and this two-way com-
munication between human and computer is as much a
function of the human as it is of the computer. Therefore,
appeals to abstractions or to mathematical analyses will
necessarily be of severely limited utility.

In the Industrial Revolution, the interface between hu-
man and machine was evaluated by human-factor studies,
then called time-and-motion studies. Although there have
been a few human-factor studies examining parallel pro-
gramming [ENS05, ES05, HCS+05, SS94], these studies
have been extremely narrowly focused, and hence unable
to demonstrate any general results. Furthermore, given
that the normal range of programmer productivity spans
more than an order of magnitude, it is unrealistic to expect
an affordable study to be capable of detecting (say) a 10%
difference in productivity. Although the multiple-order-
of-magnitude differences that such studies can reliably
detect are extremely valuable, the most impressive im-
provements tend to be based on a long series of 10%
improvements.

We must therefore take a different approach.
One such approach is to carefully consider the tasks

that parallel programmers must undertake that are not
required of sequential programmers. We can then evaluate
how well a given programming language or environment
assists the developer with these tasks. These tasks fall into
the four categories shown in Figure 1.5, each of which is
covered in the following sections.

1.4.1 Work Partitioning

Work partitioning is absolutely required for parallel exe-
cution: if there is but one “glob” of work, then it can be
executed by at most one CPU at a time, which is by defini-
tion sequential execution. However, partitioning the code

Partitioning
Work

Access Control
Parallel

With Hardware
Interacting

Performance Productivity

Generality

Resource
Partitioning and

Replication

Figure 1.5: Categories of Tasks Required of Parallel Pro-
grammers

requires great care. For example, uneven partitioning can
result in sequential execution once the small partitions
have completed [Amd67]. In less extreme cases, load
balancing can be used to fully utilize available hardware,
thus attaining more-optimal performance.

In addition, partitioning of work can complicate han-
dling of global errors and events: a parallel program may
need to carry out non-trivial synchronization in order to
safely process such global events.

Each partition requires some sort of communication:
after all, if a given thread did not communicate at all,
it would have no effect and would thus not need to be
executed. However, because communication incurs over-
head, careless partitioning choices can result in severe
performance degradation.

Furthermore, the number of concurrent threads must
often be controlled, as each such thread occupies common
resources, for example, space in CPU caches. If too many
threads are permitted to execute concurrently, the CPU
caches will overflow, resulting in high cache miss rate,
which in turn degrades performance. On the other hand,
large numbers of threads are often required to overlap
computation and I/O.

Quick Quiz 1.12: What besides CPU cache capacity
might require limiting the number of concurrent threads?

Finally, permitting threads to execute concurrently
greatly increases the program’s state space, which can
make the program difficult to understand, degrading pro-
ductivity. All else being equal, smaller state spaces having
more regular structure are more easily understood, but
this is a human-factors statement as much as it is a tech-
nical or mathematical statement. Good parallel designs
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might have extremely large state spaces, but neverthe-
less be easy to understand due to their regular structure,
while poor designs can be impenetrable despite having a
comparatively small state space. The best designs exploit
embarrassing parallelism, or transform the problem to
one having an embarrassingly parallel solution. In either
case, “embarrassingly parallel” is in fact an embarrass-
ment of riches. The current state of the art enumerates
good designs; more work is required to make more gen-
eral judgements on state-space size and structure.

1.4.2 Parallel Access Control

Given a sequential program with only a single thread,
that single thread has full access to all of the program’s
resources. These resources are most often in-memory data
structures, but can be CPUs, memory (including caches),
I/O devices, computational accelerators, files, and much
else besides.

The first parallel-access-control issue is whether the
form of the access to a given resource depends on that re-
source’s location. For example, in many message-passing
environments, local-variable access is via expressions and
assignments, while remote-variable access uses an en-
tirely different syntax, usually involving messaging. The
POSIX threads environment [Ope97], Structured Query
Language (SQL) [Int92], and partitioned global address-
space (PGAS) environments such as Universal Parallel C
(UPC) [EGCD03] offer implicit access, while Message
Passing Interface (MPI) [MPI08] offers explicit access
because access to remote data requires explicit messaging.

The other parallel access-control issue is how threads
coordinate access to the resources. This coordination is
carried out by the very large number of synchronization
mechanisms provided by various parallel languages and
environments, including message passing, locking, trans-
actions, reference counting, explicit timing, shared atomic
variables, and data ownership. Many traditional parallel-
programming concerns such as deadlock, livelock, and
transaction rollback stem from this coordination. This
framework can be elaborated to include comparisons of
these synchronization mechanisms, for example locking
vs. transactional memory [MMW07], but such elabora-
tion is beyond the scope of this section.

1.4.3 Resource Partitioning and Replica-
tion

The most effective parallel algorithms and systems exploit
resource parallelism, so much so that it is usually wise to
begin parallelization by partitioning your write-intensive
resources and replicating frequently accessed read-mostly
resources. The resource in question is most frequently
data, which might be partitioned over computer systems,
mass-storage devices, NUMA nodes, CPU cores (or dies
or hardware threads), pages, cache lines, instances of syn-
chronization primitives, or critical sections of code. For
example, partitioning over locking primitives is termed
“data locking” [BK85].

Resource partitioning is frequently application depen-
dent, for example, numerical applications frequently par-
tition matrices by row, column, or sub-matrix, while com-
mercial applications frequently partition write-intensive
data structures and replicate read-mostly data structures.
For example, a commercial application might assign the
data for a given customer to a given few computer sys-
tems out of a large cluster. An application might statically
partition data, or dynamically change the partitioning over
time.

Resource partitioning is extremely effective, but it can
be quite challenging for complex multilinked data struc-
tures.

1.4.4 Interacting With Hardware
Hardware interaction is normally the domain of the op-
erating system, the compiler, libraries, or other software-
environment infrastructure. However, developers working
with novel hardware features and components will often
need to work directly with such hardware. In addition,
direct access to the hardware can be required when squeez-
ing the last drop of performance out of a given system. In
this case, the developer may need to tailor or configure
the application to the cache geometry, system topology,
or interconnect protocol of the target hardware.

In some cases, hardware may be considered to be a
resource which may be subject to partitioning or access
control, as described in the previous sections.

1.4.5 Composite Capabilities
Although these four capabilities are fundamental, good
engineering practice uses composites of these capabilities.
For example, the data-parallel approach first partitions
the data so as to minimize the need for inter-partition
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Figure 1.6: Ordering of Parallel-Programming Tasks

communication, partitions the code accordingly, and fi-
nally maps data partitions and threads so as to maximize
throughput while minimizing inter-thread communication,
as shown in Figure 1.6. The developer can then consider
each partition separately, greatly reducing the size of the
relevant state space, in turn increasing productivity. Of
course, some problems are non-partitionable but on the
other hand, clever transformations into forms permitting
partitioning can greatly enhance both performance and
scalability [Met99].

1.4.6 How Do Languages and Environ-
ments Assist With These Tasks?

Although many environments require that the developer
deal manually with these tasks, there are long-standing
environments that bring significant automation to bear.
The poster child for these environments is SQL, many
implementations of which automatically parallelize single
large queries and also automate concurrent execution of
independent queries and updates.

These four categories of tasks must be carried out in all
parallel programs, but that of course does not necessarily
mean that the developer must manually carry out these
tasks. We can expect to see ever-increasing automation of
these four tasks as parallel systems continue to become
cheaper and more readily available.

Quick Quiz 1.13: Are there any other obstacles to
parallel programming?

1.5 Guide to This Book
This book is not a collection of optimal algorithms with
tiny areas of applicability; instead, it is a handbook of
widely applicable and heavily used techniques. We of
course could not resist the urge to include some of our
favorites that have not (yet!) passed the test of time (what
author could?), but we have nonetheless gritted our teeth
and banished our darlings to appendices. Perhaps in time,
some of them will see enough use that we can promote
them into the main body of the text.

1.5.1 Quick Quizzes
“Quick quizzes” appear throughout this book. Some of
these quizzes are based on material in which that quick
quiz appears, but others require you to think beyond that
section, and, in some cases, beyond the entire book. As
with most endeavors, what you get out of this book is
largely determined by what you are willing to put into
it. Therefore, readers who invest some time into these
quizzes will find their effort repaid handsomely with in-
creased understanding of parallel programming.

Answers to the quizzes may be found in Appendix G
starting on page 303.

Quick Quiz 1.14: Where are the answers to the Quick
Quizzes found?

Quick Quiz 1.15: Some of the Quick Quiz questions
seem to be from the viewpoint of the reader rather than
the author. Is that really the intent?

Quick Quiz 1.16: These Quick Quizzes just are not
my cup of tea. What do you recommend?

1.5.2 Sample Source Code
This book discusses its fair share of source code, and
in many cases this source code may be found in the
CodeSamples directory of this book’s git tree. For
example, on UNIX systems, you should be able to type:

find CodeSamples -name rcu_rcpls.c -print

to locate the file rcu_rcpls.c, which is called out in
Section 8.3.5. Other types of systems have well-known
ways of locating files by filename.

The source to this book may be found in the git
archive at git://git.kernel.org/pub/scm/
linux/kernel/git/paulmck/perfbook.git,
and git itself is available as part of most main-
stream Linux distributions. PDFs of this book are
sporadically posted at http://kernel.org/pub/

git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git
git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git
http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html


10 CHAPTER 1. INTRODUCTION

linux/kernel/people/paulmck/perfbook/
perfbook.html.

http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html


Chapter 2

Hardware and its Habits

Most people have an intuitive understanding that pass-
ing messages between systems is considerably more ex-
pensive than performing simple calculations within the
confines of a single system. However, it is not always
so clear that communicating among threads within the
confines of a single shared-memory system can also be
quite expensive. This chapter therefore looks the cost
of synchronization and communication within a shared-
memory system. This chapter merely scratches the sur-
face of shared-memory parallel hardware design; readers
desiring more detail would do well to start with a recent
edition of Hennessy and Patterson’s classic text [HP95].

Quick Quiz 2.1: Why should parallel programmers
bother learning low-level properties of the hardware?
Wouldn’t it be easier, better, and more general to remain
at a higher level of abstraction?

2.1 Overview
Careless reading of computer-system specification sheets
might lead one to believe that CPU performance is a
footrace on a clear track, as illustrated in Figure 2.1, where
the race always goes to the swiftest.

Although there are a few CPU-bound benchmarks that
approach the ideal shown in Figure 2.1, the typical pro-
gram more closely resembles an obstacle course than
a race track. This is because the internal architecture of
CPUs has changed dramatically over the past few decades,
courtesy of Moore’s Law. These changes are described in
the following sections.

2.1.1 Pipelined CPUs
In the early 1980s, the typical microprocessor fetched an
instruction, decoded it, and executed it, typically taking
at least three clock cycles to complete one instruction

Figure 2.1: CPU Performance at its Best

before proceeding to the next. In contrast, the CPU of
the late 1990s and early 2000s will be executing many
instructions simultaneously, using a deep “pipeline” to
control the flow of instructions internally to the CPU, this
difference being illustrated by Figure 2.2.

Achieving full performance with a CPU having a long
pipeline requires highly predictable control flow through
the program. Suitable control flow can be provided by
a program that executes primarily in tight loops, for ex-
ample, programs doing arithmetic on large matrices or
vectors. The CPU can then correctly predict that the
branch at the end of the loop will be taken in almost all
cases. In such programs, the pipeline can be kept full and

11
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Figure 2.2: CPUs Old and New

the CPU can execute at full speed.

Figure 2.3: CPU Meets a Pipeline Flush

If, on the other hand, the program has many loops with
small loop counts, or if the program is object oriented
with many virtual objects that can reference many differ-
ent real objects, all with different implementations for
frequently invoked member functions, then it is difficult
or even impossible for the CPU to predict where a given
branch might lead. The CPU must then either stall waiting
for execution to proceed far enough to know for certain
where the branch will lead, or guess — and, in the face

of programs with unpredictable control flow, frequently
guess wrong. In either case, the pipeline will empty and
have to be refilled, leading to stalls that can drastically
reduce performance, as fancifully depicted in Figure 2.3.

Unfortunately, pipeline flushes are not the only hazards
in the obstacle course that modern CPUs must run. The
next section covers the hazards of referencing memory.

2.1.2 Memory References
In the 1980s, it often took less time for a microprocessor
to load a value from memory than it did to execute an
instruction. In 2006, a microprocessor might be capable
of executing hundreds or even thousands of instructions in
the time required to access memory. This disparity is due
to the fact that Moore’s Law has increased CPU perfor-
mance at a much greater rate than it has increased memory
performance, in part due to the rate at which memory sizes
have grown. For example, a typical 1970s minicomputer
might have 4KB (yes, kilobytes, not megabytes, let alone
gigabytes) of main memory, with single-cycle access. In
2008, CPU designers still can construct a 4KB memory
with single-cycle access, even on systems with multi-GHz
clock frequencies. And in fact they frequently do con-
struct such memories, but they now call them “level-0
caches”.

Although the large caches found on modern micropro-
cessors can do quite a bit to help combat memory-access
latencies, these caches require highly predictable data-
access patterns to successfully hide memory latencies.
Unfortunately, common operations, such as traversing a
linked list, have extremely unpredictable memory-access
patterns — after all, if the pattern was predictable, us
software types would not bother with the pointers, right?

Therefore, as shown in Figure 2.4, memory references
are often severe obstacles for modern CPUs.

Thus far, we have only been considering obstacles
that can arise during a given CPU’s execution of single-
threaded code. Multi-threading presents additional obsta-
cles to the CPU, as described in the following sections.

2.1.3 Atomic Operations
One such obstacle is atomic operations. The whole idea of
an atomic operation in some sense conflicts with the piece-
at-a-time assembly-line operation of a CPU pipeline. To
hardware designers’ credit, modern CPUs use a number
of extremely clever tricks to make such operations look
atomic even though they are in fact being executed piece-
at-a-time, but even so, there are cases where the pipeline
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Figure 2.4: CPU Meets a Memory Reference

must be delayed or even flushed in order to permit a given
atomic operation to complete correctly.

The resulting effect on performance is depicted in Fig-
ure 2.5.

Unfortunately, atomic operations usually apply only to
single elements of data. Because many parallel algorithms
require that ordering constraints be maintained between
updates of multiple data elements, most CPUs provide
memory barriers. These memory barriers also serve as
performance-sapping obstacles, as described in the next
section.

Quick Quiz 2.2: What types of machines would allow
atomic operations on multiple data elements?

2.1.4 Memory Barriers
Memory barriers will be considered in more detail in
Section 12.2 and Appendix C. In the meantime, consider
the following simple lock-based critical section:

1 spin_lock(&mylock);
2 a = a + 1;
3 spin_unlock(&mylock);

If the CPU were not constrained to execute these state-
ments in the order shown, the effect would be that the
variable “a” would be incremented without the protection
of “mylock”, which would certainly defeat the purpose
of acquiring it. To prevent such destructive reordering,

Figure 2.5: CPU Meets an Atomic Operation

locking primitives contain either explicit or implicit mem-
ory barriers. Because the whole purpose of these memory
barriers is to prevent reorderings that the CPU would
otherwise undertake in order to increase performance,
memory barriers almost always reduce performance, as
depicted in Figure 2.6.

2.1.5 Cache Misses
An additional multi-threading obstacle to CPU perfor-
mance is the “cache miss”. As noted earlier, modern
CPUs sport large caches in order to reduce the perfor-
mance penalty that would otherwise be incurred due to
high memory latencies. However, these caches are actu-
ally counter-productive for variables that are frequently
shared among CPUs. This is because when a given CPU
wishes to modify the variable, it is most likely the case
that some other CPU has modified it recently. In this case,
the variable will be in that other CPU’s cache, but not in
this CPU’s cache, which will therefore incur an expensive
cache miss (see Section C.1 for more detail). Such cache
misses form a major obstacle to CPU performance, as
shown in Figure 2.7.

2.1.6 I/O Operations
A cache miss can be thought of as a CPU-to-CPU I/O
operation, and as such is one of the cheapest I/O oper-
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Figure 2.6: CPU Meets a Memory Barrier

ations available. I/O operations involving networking,
mass storage, or (worse yet) human beings pose much
greater obstacles than the internal obstacles called out in
the prior sections, as illustrated by Figure 2.8.

This is one of the differences between shared-memory
and distributed-system parallelism: shared-memory paral-
lel programs must normally deal with no obstacle worse
than a cache miss, while a distributed parallel program
will typically incur the larger network communication
latencies. In both cases, the relevant latencies can be
thought of as a cost of communication—a cost that would
be absent in a sequential program. Therefore, the ratio
between the overhead of the communication to that of the
actual work being performed is a key design parameter.
A major goal of parallel design is to reduce this ratio as
needed to achieve the relevant performance and scalability
goals.

Of course, it is one thing to say that a given operation is
an obstacle, and quite another to show that the operation
is a significant obstacle. This distinction is discussed in
the following sections.

Figure 2.7: CPU Meets a Cache Miss

2.2 Overheads

This section presents actual overheads of the obstacles to
performance listed out in the previous section. However,
it is first necessary to get a rough view of hardware system
architecture, which is the subject of the next section.

2.2.1 Hardware System Architecture

Figure 2.9 shows a rough schematic of an eight-core com-
puter system. Each die has a pair of CPU cores, each
with its cache, as well as an interconnect allowing the pair
of CPUs to communicate with each other. The system
interconnect in the middle of the diagram allows the four
dies to communicate, and also connects them to main
memory.

Data moves through this system in units of “cache
lines”, which are power-of-two fixed-size aligned blocks
of memory, usually ranging from 32 to 256 bytes in size.
When a CPU loads a variable from memory to one of its
registers, it must first load the cacheline containing that
variable into its cache. Similarly, when a CPU stores a
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Figure 2.8: CPU Waits for I/O Completion

value from one of its registers into memory, it must also
load the cacheline containing that variable into its cache,
but must also ensure that no other CPU has a copy of that
cacheline.

For example, if CPU 0 were to perform a compare-
and-swap (CAS) operation on a variable whose cacheline
resided in CPU 7’s cache, the following over-simplified
sequence of events might ensue:

1. CPU 0 checks its local cache, and does not find the
cacheline.

2. The request is forwarded to CPU 0’s and 1’s intercon-
nect, which checks CPU 1’s local cache, and does
not find the cacheline.

3. The request is forwarded to the system interconnect,
which checks with the other three dies, learning that
the cacheline is held by the die containing CPU 6
and 7.

4. The request is forwarded to CPU 6’s and 7’s inter-
connect, which checks both CPUs’ caches, finding
the value in CPU 7’s cache.

5. CPU 7 forwards the cacheline to its interconnect,
and also flushes the cacheline from its cache.

CPU 0
Cache

CPU 1
Cache

Interconnect

CPU 2
Cache

CPU 3
Cache

Interconnect

CPU 6
Cache

CPU 7
Cache

Interconnect

CPU 4
Cache

CPU 5
Cache

Interconnect
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Speed−of−Light Round−Trip Distance in Vacuum
for 1.8GHz Clock Period (8cm)

System Interconnect

Figure 2.9: System Hardware Architecture

6. CPU 6’s and 7’s interconnect forwards the cacheline
to the system interconnect.

7. The system interconnect forwards the cacheline to
CPU 0’s and 1’s interconnect.

8. CPU 0’s and 1’s interconnect forwards the cacheline
to CPU 0’s cache.

9. CPU 0 can now perform the CAS operation on the
value in its cache.

Quick Quiz 2.3: This is a simplified sequence of
events? How could it possibly be any more complex?

Quick Quiz 2.4: Why is it necessary to flush the cache-
line from CPU 7’s cache?

2.2.2 Costs of Operations
The overheads of some common operations important
to parallel programs are displayed in Table 2.1. This
system’s clock period rounds to 0.6ns. Although it is not
unusual for modern microprocessors to be able to retire
multiple instructions per clock period, the operations will
be normalized to a full clock period in the third column,
labeled “Ratio”. The first thing to note about this table is
the large values of many of the ratios.

The best-case CAS operation consumes almost forty
nanoseconds, a duration more than sixty times that of the
clock period. Here, “best case” means that the same CPU
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Operation Cost (ns) Ratio
Clock period 0.6 1.0
Best-case CAS 37.9 63.2
Best-case lock 65.6 109.3
Single cache miss 139.5 232.5
CAS cache miss 306.0 510.0
Comms Fabric 3,000 5,000
Global Comms 130,000,000 216,000,000

Table 2.1: Performance of Synchronization Mechanisms
on 4-CPU 1.8GHz AMD Opteron 844 System

now performing the CAS operation on a given variable
was the last CPU to operate on this variable, so that the
corresponding cache line is already held in that CPU’s
cache, Similarly, the best-case lock operation (a “round
trip” pair consisting of a lock acquisition followed by
a lock release) consumes more than sixty nanoseconds,
or more than one hundred clock cycles. Again, “best
case” means that the data structure representing the lock
is already in the cache belonging to the CPU acquiring and
releasing the lock. The lock operation is more expensive
than CAS because it requires two atomic operations on
the lock data structure.

An operation that misses the cache consumes almost
one hundred and forty nanoseconds, or more than two
hundred clock cycles. A CAS operation, which must look
at the old value of the variable as well as store a new value,
consumes over three hundred nanoseconds, or more than
five hundred clock cycles. Think about this a bit. In the
time required to do one CAS operation, the CPU could
have executed more than five hundred normal instructions.
This should demonstrate the limitations of fine-grained
locking.

Quick Quiz 2.5: Surely the hardware designers could
be persuaded to improve this situation! Why have they
been content with such abysmal performance for these
single-instruction operations?

I/O operations are even more expensive. A high per-
formance (and expensive!) communications fabric, such
as InfiniBand or any number of proprietary interconnects,
has a latency of roughly three microseconds, during which
time five thousand instructions might have been executed.
Standards-based communications networks often require
some sort of protocol processing, which further increases
the latency. Of course, geographic distance also increases
latency, with the theoretical speed-of-light latency around
the world coming to roughly 130 milliseconds, or more

than 200 million clock cycles.
Quick Quiz 2.6: These numbers are insanely large!

How can I possibly get my head around them?

2.3 Hardware Free Lunch?

The major reason that concurrency has been receiving so
much focus over the past few years is the end of Moore’s-
Law induced single-threaded performance increases (or
“free lunch” [Sut08]), as shown in Figure 1.1 on page 3.
This section briefly surveys a few ways that hardware
designers might be able to bring back some form of the
“free lunch”.

However, the preceding section presented some sub-
stantial hardware obstacles to exploiting concurrency.
One severe physical limitation that hardware designers
face is the finite speed of light. As noted in Figure 2.9
on page 15, light can travel only about an 8-centimeters
round trip in a vacuum during the duration of a 1.8 GHz
clock period. This distance drops to about 3 centimeters
for a 5 GHz clock. Both of these distances are relatively
small compared to the size of a modern computer system.

To make matters even worse, electrons in silicon move
from three to thirty times more slowly than does light
in a vacuum, and common clocked logic constructs run
still more slowly, for example, a memory reference may
need to wait for a local cache lookup to complete before
the request may be passed on to the rest of the system.
Furthermore, relatively low speed and high power drivers
are required to move electrical signals from one silicon
die to another, for example, to communicate between a
CPU and main memory.

There are nevertheless some technologies (both hard-
ware and software) that might help improve matters:

1. 3D integration,

2. Novel materials and processes,

3. Substituting light for electrons,

4. Special-purpose accelerators, and

5. Existing parallel software.

Each of these is described in one of the following sec-
tions.
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Figure 2.10: Latency Benefit of 3D Integration

2.3.1 3D Integration

3-dimensional integration (3DI) is the practice of bonding
very thin silicon dies to each other in a vertical stack.
This practice provides potential benefits, but also poses
significant fabrication challenges [Kni08].

Perhaps the most important benefit of 3DI is decreased
path length through the system, as shown in Figure 2.10.
A 3-centimeter silicon die is replaced with a stack of four
1.5-centimeter dies, in theory decreasing the maximum
path through the system by a factor of two, keeping in
mind that each layer is quite thin. In addition, given
proper attention to design and placement, long horizontal
electrical connections (which are both slow and power
hungry) can be replaced by short vertical electrical con-
nections, which are both faster and more power efficient.

However, delays due to levels of clocked logic will
not be decreased by 3D integration, and significant man-
ufacturing, testing, power-supply, and heat-dissipation
problems must be solved for 3D integration to reach pro-
duction while still delivering on its promise. The heat-
dissipation problems might be solved using semiconduc-
tors based on diamond, which is a good conductor for
heat, but an electrical insulator. That said, it remains
difficult to grow large single diamond crystals, to say
nothing of slicing them into wafers. In addition, it seems
unlikely that any of these technologies will be able to de-
liver the exponential increases to which some people have
become accustomed. That said, they may be necessary
steps on the path to the late Jim Gray’s “smoking hairy
golf balls” [Gra02].

2.3.2 Novel Materials and Processes

Stephen Hawking is said to have claimed that semiconduc-
tor manufacturers have but two fundamental problems: (1)
the finite speed of light and (2) the atomic nature of mat-

ter [Gar07]. It is possible that semiconductor manufactur-
ers are approaching these limits, but there are nevertheless
a few avenues of research and development focused on
working around these fundamental limits.

One workaround for the atomic nature of matter are so-
called “high-K dielectric” materials, which allow larger
devices to mimic the electrical properties of infeasibly
small devices. These materials pose some severe fabrica-
tion challenges, but nevertheless may help push the fron-
tiers out a bit farther. Another more-exotic workaround
stores multiple bits in a single electron, relying on the
fact that a given electron can exist at a number of energy
levels. It remains to be seen if this particular approach can
be made to work reliably in production semiconductor
devices.

Another proposed workaround is the “quantum dot”
approach that allows much smaller device sizes, but which
is still in the research stage.

Although the speed of light would be a hard limit, the
fact is that semiconductor devices are limited by the speed
of electrons rather than that of light, given that electrons
in semiconductor materials move at between 3% and 30%
of the speed of light in a vacuum. The use of copper
connections on silicon devices is one way to increase the
speed of electrons, and it is quite possible that additional
advances will push closer still to the actual speed of light.
In addition, there have been some experiments with tiny
optical fibers as interconnects within and between chips,
based on the fact that the speed of light in glass is more
than 60% of the speed of light in a vacuum. One obsta-
cle to such optical fibers is the inefficiency conversion
between electricity and light and vice versa, resulting in
both power-consumption and heat-dissipation problems.

That said, absent some fundamental advances in the
field of physics, any exponential increases in the speed of
data flow will be sharply limited by the actual speed of
light in a vacuum.

2.3.3 Special-Purpose Accelerators

A general-purpose CPU working on a specialized problem
is often spending significant time and energy doing work
that is only tangentially related to the problem at hand.
For example, when taking the dot product of a pair of
vectors, a general-purpose CPU will normally use a loop
(possibly unrolled) with a loop counter. Decoding the
instructions, incrementing the loop counter, testing this
counter, and branching back to the top of the loop are in
some sense wasted effort: the real goal is instead to multi-
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ply corresponding elements of the two vectors. Therefore,
a specialized piece of hardware designed specifically to
multiply vectors could get the job done more quickly and
with less energy consumed.

This is in fact the motivation for the vector instructions
present in many commodity microprocessors. Because
these instructions operate on multiple data items simulta-
neously, they would permit a dot product to be computed
with less instruction-decode and loop overhead.

Similarly, specialized hardware can more efficiently
encrypt and decrypt, compress and decompress, encode
and decode, and many other tasks besides. Unfortunately,
this efficiency does not come for free. A computer system
incorporating this specialized hardware will contain more
transistors, which will consume some power even when
not in use. Software must be modified to take advantage
of this specialized hardware, and this specialized hard-
ware must be sufficiently generally useful that the high
up-front hardware-design costs can be spread over enough
users to make the specialized hardware affordable. In part
due to these sorts of economic considerations, specialized
hardware has thus far appeared only for a few application
areas, including graphics processing (GPUs), vector pro-
cessors (MMX, SSE, and VMX instructions), and, to a
lesser extent, encryption.

Nevertheless, given the end of Moore’s-Law-induced
single-threaded performance increases, it seems safe to
predict that there will be an increasing variety of special-
purpose hardware going forward.

2.3.4 Existing Parallel Software

Although multicore CPUs seem to have taken the com-
puting industry by surprise, the fact remains that shared-
memory parallel computer systems have been commer-
cially available for more than a quarter century. This is
more than enough time for significant parallel software to
make its appearance, and it indeed has. Parallel operating
systems are quite commonplace, as are parallel threading
libraries, parallel relational database management sys-
tems, and parallel numerical software. Using existing
parallel software goes a long ways towards solving any
parallel-software crisis we might encounter.

Perhaps the most common example is the parallel re-
lational database management system. It is not unusual
for single-threaded programs, often written in high-level
scripting languages, to access a central relational database
concurrently. In the resulting highly parallel system, only
the database need actually deal directly with parallelism.

A very nice trick when it works!

2.4 Software Design Implications
The values of the ratios in Table 2.1 are critically im-
portant, as they limit the efficiency of a given parallel
application. To see this, suppose that the parallel applica-
tion uses CAS operations to communicate among threads.
These CAS operations will typically involve a cache miss,
that is, assuming that the threads are communicating pri-
marily with each other rather than with themselves. Sup-
pose further that the unit of work corresponding to each
CAS communication operation takes 300ns, which is suf-
ficient time to compute several floating-point transcen-
dental functions. Then about half of the execution time
will be consumed by the CAS communication operations!
This in turn means that a two-CPU system running such a
parallel program would run no faster than one a sequential
implementation running on a single CPU.

The situation is even worse in the distributed-system
case, where the latency of a single communications oper-
ation might take as long as thousands or even millions of
floating-point operations. This illustrates how important
it is for communications operations to be extremely infre-
quent and to enable very large quantities of processing.

Quick Quiz 2.7: Given that distributed-systems com-
munication is so horribly expensive, why does anyone
bother with them?

The lesson should be quite clear: parallel algorithms
must be explicitly designed to run nearly independent
threads. The less frequently the threads communicate,
whether by atomic operations, locks, or explicit messages,
the better the application’s performance and scalability
will be. In short, achieving excellent parallel performance
and scalability means striving for embarrassingly paral-
lel algorithms and implementations, whether by careful
choice of data structures and algorithms, use of existing
parallel applications and environments, or transforming
the problem into one for which an embarrassingly parallel
solution exists.

Chapter 5 will discuss design disciplines that promote
performance and scalability.



Chapter 3

Tools of the Trade

This chapter provides a brief introduction to some ba-
sic tools of the parallel-programming trade, focusing
mainly on those available to user applications running
on operating systems similar to Linux. Section 3.1 be-
gins with scripting languages, Section 3.2 describes the
multi-process parallelism supported by the POSIX API,
Section 3.2 touches on POSIX threads, and finally, Sec-
tion 3.3 describes atomic operations.

Please note that this chapter provides but a brief intro-
duction. More detail is available from the references cited,
and more information on how best to use these tools will
be provided in later chapters.

3.1 Scripting Languages
The Linux shell scripting languages provide simple but
effective ways of managing parallelism. For example,
suppose that you had a program compute_it that you
needed to run twice with two different sets of arguments.
This can be accomplished as follows:

1 compute_it 1 > compute_it.1.out &
2 compute_it 2 > compute_it.2.out &
3 wait
4 cat compute_it.1.out
5 cat compute_it.2.out

Lines 1 and 2 launch two instances of this program,
redirecting their output to two separate files, with the &
character directing the shell to run the two instances of
the program in the background. Line 3 waits for both
instances to complete, and lines 4 and 5 display their
output. The resulting execution is as shown in Figure 3.1:
the two instances of compute_it execute in parallel,
wait completes after both of them do, and then the two
instances of cat execute sequentially.

Quick Quiz 3.1: But this silly shell script isn’t a real

compute_it 1 >
compute_it.1.out &

compute_it 2 >
compute_it.2.out &

wait

cat compute_it.1.out

cat compute_it.2.out

Figure 3.1: Execution Diagram for Parallel Shell Execu-
tion

parallel program! Why bother with such trivia???

Quick Quiz 3.2: Is there a simpler way to create a
parallel shell script? If so, how? If not, why not?

For another example, the make software-build script-
ing language provides a -j option that specifies how
much parallelism should be introduced into the build pro-
cess. For example, typing make -j4 when building a
Linux kernel specifies that up to four parallel compiles be
carried out concurrently.

It is hoped that these simple examples convince you
that parallel programming need not always be complex or
difficult.

Quick Quiz 3.3: But if script-based parallel program-
ming is so easy, why bother with anything else?

19
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1 pid = fork();
2 if (pid == 0) {
3 /* child */
4 } else if (pid < 0) {
5 /* parent, upon error */
6 perror("fork");
7 exit(-1);
8 } else {
9 /* parent, pid == child ID */
10 }

Figure 3.2: Using the fork() Primitive

3.2 POSIX Multiprocessing
This section scratches the surface of the POSIX environ-
ment, including pthreads [Ope97], as this environment is
readily available and widely implemented. Section 3.2.1
provides a glimpse of the POSIX fork() and related
primitives, Section 3.2.2 touches on thread creation and
destruction, Section 3.2.3 gives a brief overview of POSIX
locking, and, finally, Section 3.4 presents the analogous
operations within the Linux kernel.

3.2.1 POSIX Process Creation and De-
struction

Processes are created using the fork() primitive, they
may be destroyed using the kill() primitive, they may
destroy themselves using the exit() primitive. A pro-
cess executing a fork() primitive is said to be the “par-
ent” of the newly created process. A parent may wait on
its children using the wait() primitive.

Please note that the examples in this section are quite
simple. Real-world applications using these primitives
might need to manipulate signals, file descriptors, shared
memory segments, and any number of other resources. In
addition, some applications need to take specific actions
if a given child terminates, and might also need to be
concerned with the reason that the child terminated. These
concerns can of course add substantial complexity to the
code. For more information, see any of a number of
textbooks on the subject [Ste92].

If fork() succeeds, it returns twice, once for the
parent and again for the child. The value returned from
fork() allows the caller to tell the difference, as shown
in Figure 3.2 (forkjoin.c). Line 1 executes the
fork() primitive, and saves its return value in local
variable pid. Line 2 checks to see if pid is zero, in
which case, this is the child, which continues on to ex-
ecute line 3. As noted earlier, the child may terminate
via the exit() primitive. Otherwise, this is the parent,

1 void waitall(void)
2 {
3 int pid;
4 int status;
5
6 for (;;) {
7 pid = wait(&status);
8 if (pid == -1) {
9 if (errno == ECHILD)
10 break;
11 perror("wait");
12 exit(-1);
13 }
14 }
15 }

Figure 3.3: Using the wait() Primitive

which checks for an error return from the fork() prim-
itive on line 4, and prints an error and exits on lines 5-7
if so. Otherwise, the fork() has executed successfully,
and the parent therefore executes line 9 with the variable
pid containing the process ID of the child.

The parent process may use the wait() primitive
to wait for its children to complete. However, use of
this primitive is a bit more complicated than its shell-
script counterpart, as each invocation of wait() waits
for but one child process. It is therefore customary to
wrap wait() into a function similar to the waitall()
function shown in Figure 3.3 (api-pthread.h), this
waitall() function having semantics similar to the
shell-script wait command. Each pass through the loop
spanning lines 6-15 waits on one child process. Line 7
invokes the wait() primitive, which blocks until a child
process exits, and returns that child’s process ID. If the
process ID is instead -1, this indicates that the wait()
primitive was unable to wait on a child. If so, line 9
checks for the ECHILD errno, which indicates that there
are no more child processes, so that line 10 exits the loop.
Otherwise, lines 11 and 12 print an error and exit.

Quick Quiz 3.4: Why does this wait() primitive
need to be so complicated? Why not just make it work
like the shell-script wait does?

It is critically important to note that the parent and
child do not share memory. This is illustrated by the
program shown in Figure 3.4 (forkjoinvar.c), in
which the child sets a global variable x to 1 on line 6,
prints a message on line 7, and exits on line 8. The parent
continues at line 14, where it waits on the child, and on
line 15 finds that its copy of the variable x is still zero.
The output is thus as follows:

Child process set x=1
Parent process sees x=0
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1 int x = 0;
2 int pid;
3
4 pid = fork();
5 if (pid == 0) { /* child */
6 x = 1;
7 printf("Child process set x=1\n");
8 exit(0);
9 }
10 if (pid < 0) { /* parent, upon error */
11 perror("fork");
12 exit(-1);
13 }
14 waitall();
15 printf("Parent process sees x=%d\n", x);

Figure 3.4: Processes Created Via fork() Do Not Share
Memory

1 int x = 0;
2
3 void *mythread(void *arg)
4 {
5 x = 1;
6 printf("Child process set x=1\n");
7 return NULL;
8 }
9
10 int main(int argc, char *argv[])
11 {
12 pthread_t tid;
13 void *vp;
14
15 if (pthread_create(&tid, NULL, mythread, NULL) != 0) {
16 perror("pthread_create");
17 exit(-1);
18 }
19 if (pthread_join(tid, &vp) != 0) {
20 perror("pthread_join");
21 exit(-1);
22 }
23 printf("Parent process sees x=%d\n", x);
24 return 0;
25 }

Figure 3.5: Threads Created Via pthread_create()
Share Memory

Quick Quiz 3.5: Isn’t there a lot more to fork() and
wait() than discussed here?

The finest-grained parallelism requires shared memory,
and this is covered in Section 3.2.2. That said, shared-
memory parallelism can be significantly more complex
than fork-join parallelism.

3.2.2 POSIX Thread Creation and De-
struction

To create a thread within an existing process, invoke the
pthread_create() primitive, for example, as shown
on line 15 of Figure 3.5 (pcreate.c). The first argu-

ment is a pointer to a pthread_t in which to store the
ID of the thread to be created, the second NULL argument
is a pointer to an optional pthread_attr_t, the third
argument is the function (in this case, mythread() that
is to be invoked by the new thread, and the last NULL argu-
ment is the argument that will be passed to mythread.

In this example, mythread() simply returns, but it
could instead call pthread_exit().

Quick Quiz 3.6: If the mythread() function in Fig-
ure 3.5 can simply return, why bother with pthread_
exit()?

The pthread_join() primitive, shown on line 19,
is analogous to the fork-join wait() primitive. It blocks
until the thread specified by the tid variable completes
execution, either by invoking pthread_exit() or
by returning from the thread’s top-level function. The
thread’s exit value will be stored through the pointer
passed as the second argument to pthread_join().
The thread’s exit value is either the value passed to
pthread_exit() or the value returned by the thread’s
top-level function, depending on how the thread in ques-
tion exits.

The program shown in Figure 3.5 produces output as
follows, demonstrating that memory is in fact shared be-
tween the two threads:

Child process set x=1
Parent process sees x=1

Note that this program carefully makes sure that only
one of the threads stores a value to variable x at a time.
Any situation in which one thread might be storing a value
to a given variable while some other thread either loads
from or stores to that same variable is termed a “data
race”. Because the C language makes no guarantee that
the results of a data race will be in any way reasonable,
we need some way of safely accessing and modifying data
concurrently, such as the locking primitives discussed in
the following section.

Quick Quiz 3.7: If the C language makes no guaran-
tees in presence of a data race, then why does the Linux
kernel have so many data races? Are you trying to tell me
that the Linux kernel is completely broken???

3.2.3 POSIX Locking

The POSIX standard allows the programmer to avoid data
races via “POSIX locking”. POSIX locking features a
number of primitives, the most fundamental of which are
pthread_mutex_lock() and pthread_mutex_
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unlock(). These primitives operate on locks, which are
of type pthread_mutex_t. These locks may be de-
clared statically and initialized with PTHREAD_MUTEX_
INITIALIZER, or they may be allocated dynamically
and initialized using the pthread_mutex_init()
primitive. The demonstration code in this section will
take the former course.

The pthread_mutex_lock() primitive “acquires”
the specified lock, and the pthread_mutex_
unlock() “releases” the specified lock. Because these
are “exclusive” locking primitives, only one thread at a
time may “hold” a given lock at a given time. For exam-
ple, if a pair of threads attempt to acquire the same lock
concurrently, one of the pair will be “granted” the lock
first, and the other will wait until the first thread releases
the lock.

Quick Quiz 3.8: What if I want several threads to hold
the same lock at the same time?

This exclusive-locking property is demonstrated using
the code shown in Figure 3.6 (lock.c). Line 1 defines
and initializes a POSIX lock named lock_a, while line 2
similarly defines and initializes a lock named lock_b.
Line 3 defines and initializes a shared variable x.

Lines 5-28 defines a function lock_reader()
which repeatedly reads the shared variable x while hold-
ing the lock specified by arg. Line 10 casts arg to
a pointer to a pthread_mutex_t, as required by the
pthread_mutex_lock() and pthread_mutex_
unlock() primitives.

Quick Quiz 3.9: Why not simply make the argument
to lock_reader() on line 5 of Figure 3.6 be a pointer
to a pthread_mutex_t?

Lines 12-15 acquire the specified pthread_mutex_
t, checking for errors and exiting the program if any
occur. Lines 16-23 repeatedly check the value of x, print-
ing the new value each time that it changes. Line 22
sleeps for one millisecond, which allows this demonstra-
tion to run nicely on a uniprocessor machine. Line 24-27
release the pthread_mutex_t, again checking for er-
rors and exiting the program if any occur. Finally, line 28
returns NULL, again to match the function type required
by pthread_create().

Quick Quiz 3.10: Writing four lines of code for each
acquisition and release of a pthread_mutex_t sure
seems painful! Isn’t there a better way?

Lines 31-49 of Figure 3.6 shows lock_writer(),
which periodically update the shared variable x while
holding the specified pthread_mutex_t. As with
lock_reader(), line 34 casts arg to a pointer to

1 pthread_mutex_t lock_a = PTHREAD_MUTEX_INITIALIZER;
2 pthread_mutex_t lock_b = PTHREAD_MUTEX_INITIALIZER;
3 int x = 0;
4
5 void *lock_reader(void *arg)
6 {
7 int i;
8 int newx = -1;
9 int oldx = -1;
10 pthread_mutex_t *pmlp = (pthread_mutex_t *)arg;
11
12 if (pthread_mutex_lock(pmlp) != 0) {
13 perror("lock_reader:pthread_mutex_lock");
14 exit(-1);
15 }
16 for (i = 0; i < 100; i++) {
17 newx = ACCESS_ONCE(x);
18 if (newx != oldx) {
19 printf("lock_reader(): x = %d\n", newx);
20 }
21 oldx = newx;
22 poll(NULL, 0, 1);
23 }
24 if (pthread_mutex_unlock(pmlp) != 0) {
25 perror("lock_reader:pthread_mutex_unlock");
26 exit(-1);
27 }
28 return NULL;
29 }
30
31 void *lock_writer(void *arg)
32 {
33 int i;
34 pthread_mutex_t *pmlp = (pthread_mutex_t *)arg;
35
36 if (pthread_mutex_lock(pmlp) != 0) {
37 perror("lock_reader:pthread_mutex_lock");
38 exit(-1);
39 }
40 for (i = 0; i < 3; i++) {
41 ACCESS_ONCE(x)++;
42 poll(NULL, 0, 5);
43 }
44 if (pthread_mutex_unlock(pmlp) != 0) {
45 perror("lock_reader:pthread_mutex_unlock");
46 exit(-1);
47 }
48 return NULL;
49 }

Figure 3.6: Demonstration of Exclusive Locks
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1 printf("Creating two threads using same lock:\n");
2 if (pthread_create(&tid1, NULL,
3 lock_reader, &lock_a) != 0) {
4 perror("pthread_create");
5 exit(-1);
6 }
7 if (pthread_create(&tid2, NULL,
8 lock_writer, &lock_a) != 0) {
9 perror("pthread_create");
10 exit(-1);
11 }
12 if (pthread_join(tid1, &vp) != 0) {
13 perror("pthread_join");
14 exit(-1);
15 }
16 if (pthread_join(tid2, &vp) != 0) {
17 perror("pthread_join");
18 exit(-1);
19 }

Figure 3.7: Demonstration of Same Exclusive Lock

pthread_mutex_t, lines 36-39 acquires the specified
lock, and lines 44-47 releases it. While holding the lock,
lines 40-48 increment the shared variable x, sleeping for
five milliseconds between each increment.

Figure 3.7 shows a code fragment that runs lock_
reader() and lock_writer() as thread using the
same lock, namely, lock_a. Lines 2-6 create a thread
running lock_reader(), and then Lines 7-11 create
a thread running lock_writer(). Lines 12-19 wait
for both threads to complete. The output of this code
fragment is as follows:

Creating two threads using same lock:
lock_reader(): x = 0

Because both threads are using the same lock, the
lock_reader() thread cannot see any of the interme-
diate values of x produced by lock_writer() while
holding the lock.

Quick Quiz 3.11: Is “x = 0” the only possible output
from the code fragment shown in Figure 3.7? If so, why?
If not, what other output could appear, and why?

Figure 3.8 shows a similar code fragment, but this time
using different locks: lock_a for lock_reader()
and lock_b for lock_writer(). The output of this
code fragment is as follows:

Creating two threads w/different locks:
lock_reader(): x = 0
lock_reader(): x = 1
lock_reader(): x = 2
lock_reader(): x = 3

Because the two threads are using different locks, they

1 printf("Creating two threads w/different locks:\n");
2 x = 0;
3 if (pthread_create(&tid1, NULL,
4 lock_reader, &lock_a) != 0) {
5 perror("pthread_create");
6 exit(-1);
7 }
8 if (pthread_create(&tid2, NULL,
9 lock_writer, &lock_b) != 0) {
10 perror("pthread_create");
11 exit(-1);
12 }
13 if (pthread_join(tid1, &vp) != 0) {
14 perror("pthread_join");
15 exit(-1);
16 }
17 if (pthread_join(tid2, &vp) != 0) {
18 perror("pthread_join");
19 exit(-1);
20 }

Figure 3.8: Demonstration of Different Exclusive Locks

do not exclude each other, and can run concurrently. The
lock_reader() function can therefore see the inter-
mediate values of x stored by lock_writer().

Quick Quiz 3.12: Using different locks could cause
quite a bit of confusion, what with threads seeing each
others’ intermediate states. So should well-written paral-
lel programs restrict themselves to using a single lock in
order to avoid this kind of confusion?

Quick Quiz 3.13: In the code shown in Figure 3.8,
is lock_reader() guaranteed to see all the values
produced by lock_writer()? Why or why not?

Quick Quiz 3.14: Wait a minute here!!! Figure 3.7
didn’t initialize shared variable x, so why does it need to
be initialized in Figure 3.8?

Although there is quite a bit more to POSIX exclusive
locking, these primitives provide a good start and are in
fact sufficient in a great many situations. The next section
takes a brief look at POSIX reader-writer locking.

3.2.4 POSIX Reader-Writer Locking
The POSIX API provides a reader-writer lock, which
is represented by a pthread_rwlock_t. As with
pthread_mutex_t, pthread_rwlock_t may
be statically initialized via PTHREAD_RWLOCK_
INITIALIZER or dynamically initialized via
the pthread_rwlock_init() primitive. The
pthread_rwlock_rdlock() primitive read-
acquires the specified pthread_rwlock_t, the
pthread_rwlock_wrlock() primitive write-
acquires it, and the pthread_rwlock_unlock()
primitive releases it. Only a single thread may write-hold
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1 pthread_rwlock_t rwl = PTHREAD_RWLOCK_INITIALIZER;
2 int holdtime = 0;
3 int thinktime = 0;
4 long long *readcounts;
5 int nreadersrunning = 0;
6
7 #define GOFLAG_INIT 0
8 #define GOFLAG_RUN 1
9 #define GOFLAG_STOP 2
10 char goflag = GOFLAG_INIT;
11
12 void *reader(void *arg)
13 {
14 int i;
15 long long loopcnt = 0;
16 long me = (long)arg;
17
18 __sync_fetch_and_add(&nreadersrunning, 1);
19 while (ACCESS_ONCE(goflag) == GOFLAG_INIT) {
20 continue;
21 }
22 while (ACCESS_ONCE(goflag) == GOFLAG_RUN) {
23 if (pthread_rwlock_rdlock(&rwl) != 0) {
24 perror("pthread_rwlock_rdlock");
25 exit(-1);
26 }
27 for (i = 1; i < holdtime; i++) {
28 barrier();
29 }
30 if (pthread_rwlock_unlock(&rwl) != 0) {
31 perror("pthread_rwlock_unlock");
32 exit(-1);
33 }
34 for (i = 1; i < thinktime; i++) {
35 barrier();
36 }
37 loopcnt++;
38 }
39 readcounts[me] = loopcnt;
40 return NULL;
41 }

Figure 3.9: Measuring Reader-Writer Lock Scalability

a given pthread_rwlock_t at any given time, but
multiple threads may read-hold a given pthread_
rwlock_t, at least while there is no thread currently
write-holding it.

As you might expect, reader-writer locks are designed
for read-mostly situations. In these situations, a reader-
writer lock can provide greater scalability than can an
exclusive lock because the exclusive lock is by defini-
tion limited to a single thread holding the lock at any
given time, while the reader-writer lock permits an arbi-
trarily large number of readers to concurrently hold the
lock. However, in practice, we need to know how much
additional scalability is provided by reader-writer locks.

Figure 3.9 (rwlockscale.c) shows one way of
measuring reader-writer lock scalability. Line 1 shows
the definition and initialization of the reader-writer lock,
line 2 shows the holdtime argument controlling the
time each thread holds the reader-writer lock, line 3 shows

the thinktime argument controlling the time between
the release of the reader-writer lock and the next acqui-
sition, line 4 defines the readcounts array into which
each reader thread places the number of times it acquired
the lock, and line 5 defines the nreadersrunning
variable, which determines when all reader threads have
started running.

Lines 7-10 define goflag, which synchronizes the
start and the end of the test. This variable is initially set to
GOFLAG_INIT, then set to GOFLAG_RUN after all the
reader threads have started, and finally set to GOFLAG_
STOP to terminate the test run.

Lines 12-41 define reader(), which is the
reader thread. Line 18 atomically increments the
nreadersrunning variable to indicate that this thread
is now running, and lines 19-21 wait for the test to start.
The ACCESS_ONCE() primitive forces the compiler to
fetch goflag on each pass through the loop—the com-
piler would otherwise be within its rights to assume that
the value of goflag would never change.

The loop spanning lines 22-38 carries out the per-
formance test. Lines 23-26 acquire the lock, lines 27-
29 hold the lock for the specified duration (and the
barrier() directive prevents the compiler from op-
timizing the loop out of existence), lines 30-33 release
the lock, and lines 34-36 wait for the specified duration
before re-acquiring the lock. Line 37 counts this lock
acquisition.

Line 38 moves the lock-acquisition count to this
thread’s element of the readcounts[] array, and
line 40 returns, terminating this thread.

Figure 3.10 shows the results of running this test on
a 64-core Power-5 system with two hardware threads
per core for a total of 128 software-visible CPUs. The
thinktime parameter was zero for all these tests, and
the holdtime parameter set to values ranging from one
thousand (“1K” on the graph) to 100 million (“100M” on
the graph). The actual value plotted is:

LN

NL1
(3.1)

where N is the number of threads, LN is the number of
lock acquisitions by N threads, and L1 is the number of
lock acquisitions by a single thread. Given ideal hardware
and software scalability, this value will always be 1.0.

As can be seen in the figure, reader-writer locking
scalability is decidedly non-ideal, especially for smaller
sizes of critical sections. To see why read-acquisition
can be so slow, consider that all the acquiring threads
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Figure 3.10: Reader-Writer Lock Scalability

must update the pthread_rwlock_t data structure.
Therefore, if all 128 executing threads attempt to read-
acquire the reader-writer lock concurrently, they must
update this underlying pthread_rwlock_t one at a
time. One lucky thread might do so almost immediately,
but the least-lucky thread must wait for all the other 127
threads to do their updates. This situation will only get
worse as you add CPUs.

Quick Quiz 3.15: Isn’t comparing against single-CPU
throughput a bit harsh?

Quick Quiz 3.16: But 1,000 instructions is not a par-
ticularly small size for a critical section. What do I do if
I need a much smaller critical section, for example, one
containing only a few tens of instructions?

Quick Quiz 3.17: In Figure 3.10, all of the traces other
than the 100M trace deviate gently from the ideal line. In
contrast, the 100M trace breaks sharply from the ideal
line at 64 CPUs. In addition, the spacing between the
100M trace and the 10M trace is much smaller than that
between the 10M trace and the 1M trace. Why does the
100M trace behave so much differently than the other
traces?

Quick Quiz 3.18: Power 5 is several years old, and
new hardware should be faster. So why should anyone
worry about reader-writer locks being slow?

Despite these limitations, reader-writer locking is quite
useful in many cases, for example when the readers must
do high-latency file or network I/O. There are alternatives,

some of which will be presented in Chapters 4 and 8.

3.3 Atomic Operations
Given that Figure 3.10 shows that the overhead of reader-
writer locking is most severe for the smallest critical sec-
tions, it would be nice to have some other way to protect
the tiniest of critical sections. One such way are atomic
operations. We have seen one atomic operations already,
in the form of the __sync_fetch_and_add() prim-
itive on line 18 of Figure 3.9. This primitive atomically
adds the value of its second argument to the value refer-
enced by its first argument, returning the old value (which
was ignored in this case). If a pair of threads concur-
rently execute __sync_fetch_and_add() on the
same variable, the resulting value of the variable will
include the result of both additions.

The gcc compiler offers a number of additional atomic
operations, including __sync_fetch_and_sub(),
__sync_fetch_and_or(), __sync_fetch_
and_and(), __sync_fetch_and_xor(), and
__sync_fetch_and_nand(), all of which return
the old value. If you instead need the new value, you
can instead use the __sync_add_and_fetch(),
__sync_sub_and_fetch(), __sync_or_
and_fetch(), __sync_and_and_fetch(),
__sync_xor_and_fetch(), and __sync_nand_
and_fetch() primitives.

Quick Quiz 3.19: Is it really necessary to have both
sets of primitives?

The classic compare-and-swap operation is provided
by a pair of primitives, __sync_bool_compare_
and_swap() and __sync_val_compare_and_
swap(). Both of these primitive atomically update a
location to a new value, but only if its prior value was
equal to the specified old value. The first variant returns 1
if the operation succeeded and 0 if it failed, for example,
if the prior value was not equal to the specified old value.
The second variant returns the prior value of the location,
which, if equal to the specified old value, indicates that
the operation succeeded. Either of the compare-and-swap
operation is “universal” in the sense that any atomic op-
eration on a single location can be implemented in terms
of compare-and-swap, though the earlier operations are
often more efficient where they apply. The compare-and-
swap operation is also capable of serving as the basis for
a wider set of atomic operations, though the more elabo-
rate of these often suffer from complexity, scalability, and
performance problems [Her90].
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The __sync_synchronize() primitive issues a
“memory barrier”, which constrains both the compiler’s
and the CPU’s ability to reorder operations, as discussed
in Section 12.2. In some cases, it is sufficient to constrain
the compiler’s ability to reorder operations, while allow-
ing the CPU free rein, in which case the barrier()
primitive may be used, as it in fact was on line 28 of
Figure 3.9. In some cases, it is only necessary to ensure
that the compiler avoids optimizing away a given memory
access, in which case the ACCESS_ONCE() primitive
may be used, as it was on line 17 of Figure 3.6. These last
two primitives are not provided directly by gcc, but may
be implemented straightforwardly as follows:

#define ACCESS_ONCE(x) (*(volatile typeof(x) *)&(x))
#define barrier() __asm__ __volatile__("": : :"memory")

Quick Quiz 3.20: Given that these atomic operations
will often be able to generate single atomic instructions
that are directly supported by the underlying instruction
set, shouldn’t they be the fastest possible way to get things
done?

3.4 Linux-Kernel Equivalents to
POSIX Operations

Unfortunately, threading operations, locking primitives,
and atomic operations were in reasonably wide use long
before the various standards committees got around to
them. As a result, there is considerable variation in how
these operations are supported. It is still quite common to
find these operations implemented in assembly language,
either for historical reasons or to obtain better perfor-
mance in specialized circumstances. For example, the
gcc __sync_ family of primitives all provide memory-
ordering semantics, motivating many developers to create
their own implementations for situations where the mem-
ory ordering semantics are not required.

Therefore, Table 3.1 on page 27 provides a rough map-
ping between the POSIX and gcc primitives to those used
in the Linux kernel. Exact mappings are not always avail-
able, for example, the Linux kernel has a wide variety of
locking primitives, while gcc has a number of atomic op-
erations that are not directly available in the Linux kernel.
Of course, on the one hand, user-level code does not need
the Linux kernel’s wide array of locking primitives, while
on the other hand, gcc’s atomic operations can be emu-
lated reasonably straightforwardly using cmpxchg().

Quick Quiz 3.21: What happened to the Linux-kernel

equivalents to fork() and join()?

3.5 The Right Tool for the Job:
How to Choose?

As a rough rule of thumb, use the simplest tool that will
get the job done. If you can, simply program sequentially.
If that is insufficient, try using a shell script to mediate par-
allelism. If the resulting shell-script fork()/exec()
overhead (about 480 microseconds for a minimal C pro-
gram on an Intel Core Duo laptop) is too large, try using
the C-language fork() and wait() primitives. If the
overhead of these primitives (about 80 microseconds for
a minimal child process) is still too large, then you might
need to use the POSIX threading primitives, choosing the
appropriate locking and/or atomic-operation primitives. If
the overhead of the POSIX threading primitives (typically
sub-microsecond) is too great, then the primitives intro-
duced in Chapter 8 may be required. Always remember
that inter-process communication and message-passing
can be good alternatives to shared-memory multithreaded
execution.

Of course, the actual overheads will depend not only
on your hardware, but most critically on the manner in
which you use the primitives. Therefore, it is necessary
to make the right design choices as well as the correct
choice of individual primitives, as is discussed at length
in subsequent chapters.
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Category POSIX Linux Kernel
Thread Management pthread_t struct task_struct

pthread_create() kthread_create
pthread_exit() kthread_should_stop()(rough)
pthread_join() kthread_stop()(rough)
poll(NULL, 0, 5) schedule_timeout_interruptible()

POSIX Locking pthread_mutex_t spinlock_t(rough)
struct mutex

PTHREAD_MUTEX_INITIALIZER DEFINE_SPINLOCK()
DEFINE_MUTEX()

pthread_mutex_lock() spin_lock()(and friends)
mutex_lock()(and friends)

pthread_mutex_unlock() spin_unlock()(and friends)
mutex_unlock()

POSIX Reader-Writer pthread_rwlock_t rwlock_t(rough)
Locking struct rw_semaphore

PTHREAD_RWLOCK_INITIALIZERDEFINE_RWLOCK()
DECLARE_RWSEM()

pthread_rwlock_rdlock() read_lock()(and friends)
down_read()(and friends)

pthread_rwlock_unlock() read_unlock()(and friends)
up_read()

thread_rwlock_wrlock() write_lock()(and friends)
down_write()(and friends)

pthread_rwlock_unlock() write_unlock()(and friends)
up_write()

Atomic Operations C Scalar Types atomic_t
atomic64_t

__sync_fetch_and_add() atomic_add_return()
atomic64_add_return()

__sync_fetch_and_sub() atomic_sub_return()
atomic64_sub_return()

__sync_val_compare_and_swap()cmpxchg()
__sync_lock_test_and_set()xchg() (rough)
__sync_synchronize() smp_mb()

Table 3.1: Mapping from POSIX to Linux-Kernel Primitives
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Chapter 4

Counting

Counting is perhaps the simplest and most natural for
a computer to do. However, counting efficiently and scal-
ably on a large shared-memory multiprocessor can be
quite challenging. Furthermore, the simplicity of the un-
derlying concept of counting allows us to explore the
fundamental issues of concurrency without the distrac-
tions of elaborate data structures or complex synchroniza-
tion primitives. Counting therefore provides an excellent
introduction to parallel programming.

This chapter covers a number of special cases for which
there are simple, fast, and scalable counting algorithms.
But first, let us find out how much you already know about
concurrent counting.

Quick Quiz 4.1: Why on earth should efficient and
scalable counting be hard? After all, computers have
special hardware for the sole purpose of doing counting,
addition, subtraction, and lots more besides, don’t they???

Quick Quiz 4.2: Network-packet counting prob-
lem. Suppose that you need to collect statistics on the
number of networking packets (or total number of bytes)
transmitted and/or received. Packets might be transmitted
or received by any CPU on the system. Suppose further
that this large machine is capable of handling a million
packets per second, and that there is a systems-monitoring
package that reads out the count every five seconds. How
would you implement this statistical counter?

Quick Quiz 4.3: Approximate structure-allocation
limit problem. Suppose that you need to maintain a
count of the number of structures allocated in order to
fail any allocations once the number of structures in use
exceeds a limit (say, 10,000). Suppose further that these
structures are short-lived, that the limit is rarely exceeded,
and that a “sloppy” approximate limit is acceptable.

Quick Quiz 4.4: Exact structure-allocation limit
problem. Suppose that you need to maintain a count

of the number of structures allocated in order to fail any
allocations once the number of structures in use exceeds
an exact limit (say, 10,000). Suppose further that these
structures are short-lived, and that the limit is rarely ex-
ceeded, that there is almost always at least one structure in
use, and suppose further still that it is necessary to know
exactly when this counter reaches zero, for example, in
order to free up some memory that is not required unless
there is at least one structure in use.

Quick Quiz 4.5: Removable I/O device access-
count problem. Suppose that you need to maintain a
reference count on a heavily used removable mass-storage
device, so that you can tell the user when it is safe to re-
moved the device. This device follows the usual removal
procedure where the user indicates a desire to remove the
device, and the system tells the user when it is safe to do
so.

The remainder of this chapter will develop answers to
these questions.

1 long counter = 0;
2
3 void inc_count(void)
4 {
5 counter++;
6 }
7
8 long read_count(void)
9 {
10 return counter;
11 }

Figure 4.1: Just Count!
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1 atomic_t counter = ATOMIC_INIT(0);
2
3 void inc_count(void)
4 {
5 atomic_inc(&counter);
6 }
7
8 long read_count(void)
9 {
10 return atomic_read(&counter);
11 }

Figure 4.2: Just Count Atomically!

4.1 Why Isn’t Concurrent Count-
ing Trivial?

Let’s start with something simple, for example, the
straightforward use of arithmetic shown in Figure 4.1
(count_nonatomic.c). Here, we have a counter on
line 1, we increment it on line 5, and we read out its value
on line 10. What could be simpler?

This approach has the additional advantage of being
blazingly fast if you are doing lots of reading and almost
no incrementing, and on small systems, the performance
is excellent.

There is just one large fly in the ointment: this approach
can lose counts. On my dual-core laptop, a short run in-
voked inc_count() 100,014,000 times, but the final
value of the counter was only 52,909,118. Although it
is true that approximate values have their place in com-
puting, it is almost always necessary to do better than
this.

Quick Quiz 4.6: But doesn’t the ++ operator produce
an x86 add-to-memory instruction? And won’t the CPU
cache cause this to be atomic?

Quick Quiz 4.7: The 8-figure accuracy on the number
of failures indicates that you really did test this. Why
would it be necessary to test such a trivial program, espe-
cially when the bug is easily seen by inspection?

The straightforward way to count accurately is to use
atomic operations, as shown in Figure 4.2 (count_
atomic.c). Line 1 defines an atomic variable, line 5
atomically increments it, and line 10 reads it out. Be-
cause this is atomic, it keeps perfect count. However, it is
slower: on a Intel Core Duo laptop, it is about six times
slower than non-atomic increment when a single thread
is incrementing, and more than ten times slower if two
threads are incrementing.

This poor performance should not be a surprise, given
the discussion in Chapter 2, nor should it be a surprise

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1  2  3  4  5  6  7  8

Ti
m

e 
P

er
 In

cr
em

en
t (

na
no

se
co

nd
s)

Number of CPUs/Threads

Figure 4.3: Atomic Increment Scalability on Nehalem

that the performance of atomic increment gets slower as
the number of CPUs and threads increase, as shown in
Figure 4.3. In this figure, the horizontal dashed line rest-
ing on the x axis is the ideal performance that would be
achieved by a perfectly scalable algorithm: with such an
algorithm, a given increment would incur the same over-
head that it would in a single-threaded program. Atomic
increment of a single global variable is clearly decidedly
non-ideal, and gets worse as you add CPUs.

Quick Quiz 4.8: Why doesn’t the dashed line on the
x axis meet the diagonal line at y = 1?

Quick Quiz 4.9: But atomic increment is still pretty
fast. And incrementing a single variable in a tight loop
sounds pretty unrealistic to me, after all, most of the
program’s execution should be devoted to actually doing
work, not accounting for the work it has done! Why
should I care about making this go faster?

For another perspective on global atomic increment,
consider Figure 4.4. In order for each CPU to get a chance
to increment a given global variable, the cache line con-
taining that variable must circulate among all the CPUs,
as shown by the red arrows. Such circulation will take
significant time, resulting in the poor performance seen
in Figure 4.3.

The following sections discuss high-performance
counting, which avoids the delays inherent in such circu-
lation.

Quick Quiz 4.10: But why can’t CPU designers sim-

count_nonatomic.c
count_atomic.c
count_atomic.c
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Figure 4.4: Data Flow For Global Atomic Increment

ply ship the operation to the data, avoiding the need to
circulate the cache line containing the global variable
being incremented?

4.2 Statistical Counters
This section covers the common special case of statistical
counters, where the count is updated extremely frequently
and the value is read out rarely, if ever. These will be used
to solve the network-packet counting problem from the
Quick Quiz on page 29.

4.2.1 Design

Statistical counting is typically handled by providing a
counter per thread (or CPU, when running in the kernel),
so that each thread updates its own counter. The aggregate
value of the counters is read out by simply summing up
all of the threads’ counters, relying on the commutative
and associative properties of addition. This is an example
of the Data Ownership pattern that will be introduced in
Section 5.3.4.

Quick Quiz 4.11: But doesn’t the fact that C’s “inte-
gers” are limited in size complicate things?

4.2.2 Array-Based Implementation

One way to provide per-thread variables is to allocate
an array with one element per thread (presumably cache
aligned and padded to avoid false sharing).

Quick Quiz 4.12: An array??? But doesn’t that limit
the number of threads?

1 DEFINE_PER_THREAD(long, counter);
2
3 void inc_count(void)
4 {
5 __get_thread_var(counter)++;
6 }
7
8 long read_count(void)
9 {
10 int t;
11 long sum = 0;
12
13 for_each_thread(t)
14 sum += per_thread(counter, t);
15 return sum;
16 }

Figure 4.5: Array-Based Per-Thread Statistical Counters

Such an array can be wrapped into per-thread primi-
tives, as shown in Figure 4.5 (count_stat.c). Line 1
defines an array containing a set of per-thread counters of
type long named, creatively enough, counter.

Lines 3-6 show a function that increments the counters,
using the __get_thread_var() primitive to locate
the currently running thread’s element of the counter
array. Because this element is modified only by the corre-
sponding thread, non-atomic increment suffices.

Lines 8-16 show a function that reads out the aggregate
value of the counter, using the for_each_thread()
primitive to iterate over the list of currently running
threads, and using the per_thread() primitive to
fetch the specified thread’s counter. Because the hard-
ware can fetch and store a properly aligned long atomi-
cally, and because gcc is kind enough to make use of this
capability, normal loads suffice, and no special atomic
instructions are required.

Quick Quiz 4.13: What other choice does gcc have,
anyway???

Quick Quiz 4.14: How does the per-thread counter
variable in Figure 4.5 get initialized?

Quick Quiz 4.15: How is the code in Figure 4.5 sup-
posed to permit more than one counter?

This approach scales linearly with increasing number
of updater threads invoking inc_count(). As is shown
by the green arrows in Figure 4.6, the reason for this is
that each CPU can make rapid progress incrementing
its thread’s variable, with no expensive communication
required crossing the full diameter of the computer system.
However, this excellent update-side scalability comes at
great read-side expense for large numbers of threads. The
next section shows one way to reduce read-side expense
while still retaining the update-side scalability.

count_stat.c
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Figure 4.6: Data Flow For Per-Thread Increment

4.2.3 Eventually Consistent Implementa-
tion

One way to retain update-side scalability while greatly
improving read-side performance is to weaken consis-
tency requirements. While the counting algorithm in
the previous section is guaranteed to return a value be-
tween the value that an ideal counter would have taken on
near the beginning of read_count()’s execution and
that near the end of read_count()’s execution. Even-
tual consistency [Vog09] provides a weaker guarantee:
in absence of calls to inc_count(), calls to read_
count() will eventually return the correct answer.

We exploit eventual consistency by maintaining a
global counter. However, updaters only manipulate their
per-thread counters. A separate thread is provided to
transfer counts from the per-thread counters to the global
counter. Readers simply access the value of the global
counter. If updaters are active, the value used by the read-
ers will be out of date, however, once updates cease, the
global counter will eventually converge on the true value—
hence this approach qualifies as eventually consistent.

The implementation is shown in Figure 4.7 (count_
stat_eventual.c). Lines 1-2 show the per-thread
variable and the global variable that track the counter’s
value, and line three shows stopflag which is used to
coordinate termination (for the case where we want to ter-
minate the program with an accurate counter value). The
inc_count() function shown on lines 5-8 is identical
to its counterpart in Figure 4.5. The read_count()
function shown on lines 10-13 simply returns the value of
the global_count variable.

However, the count_init() function on lines 34-

1 DEFINE_PER_THREAD(atomic_t, counter);
2 atomic_t global_count;
3 int stopflag;
4
5 void inc_count(void)
6 {
7 atomic_inc(&__get_thread_var(counter));
8 }
9
10 unsigned long read_count(void)
11 {
12 return atomic_read(&global_count);
13 }
14
15 void *eventual(void *arg)
16 {
17 int t;
18 int sum;
19
20 while (stopflag < 3) {
21 sum = 0;
22 for_each_thread(t)
23 sum += atomic_xchg(&per_thread(counter, t), 0);
24 atomic_add(sum, &global_count);
25 poll(NULL, 0, 1);
26 if (stopflag) {
27 smp_mb();
28 stopflag++;
29 }
30 }
31 return NULL;
32 }
33
34 void count_init(void)
35 {
36 thread_id_t tid;
37
38 if (pthread_create(&tid, NULL, eventual, NULL) != 0) {
39 perror("count_init:pthread_create");
40 exit(-1);
41 }
42 }
43
44 void count_cleanup(void)
45 {
46 stopflag = 1;
47 while (stopflag < 3)
48 poll(NULL, 0, 1);
49 smp_mb();
50 }

Figure 4.7: Array-Based Per-Thread Eventually Consis-
tent Counters

count_stat_eventual.c
count_stat_eventual.c
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42 creates the eventual() thread shown on lines 15-
32, which cycles through all the threads, using the
atomic_xchg() function to remove count from each
thread’s local counter, adding the sum to the global_
count variable. The eventual() thread waits an ar-
bitrarily chosen one millisecond between passes. The
count_cleanup() function on lines 44-50 coordi-
nates termination.

This approach gives extremely fast counter read-out
while still supporting linear counter-update performance.
However, this excellent read-side performance and update-
side scalability comes at the cost of high update-side over-
head, due to both the atomic operations and the array
indexing hidden in the __get_thread_var() prim-
itive, which can be quite expensive on some CPUs with
deep pipelines.

Quick Quiz 4.16: Why does inc_count() in Fig-
ure 4.7 need to use atomic instructions?

Quick Quiz 4.17: Won’t the single global thread in the
function eventual() of Figure 4.7 be just as severe a
bottleneck as a global lock would be?

Quick Quiz 4.18: Won’t the estimate returned by
read_count() in Figure 4.7 become increasingly in-
accurate as the number of threads rises?

4.2.4 Per-Thread-Variable-Based Imple-
mentation

Fortunately, gcc provides an __thread storage class
that provides per-thread storage. This can be used as
shown in Figure 4.8 (count_end.c) to implement a
statistical counter that not only scales, but that also incurs
little or no performance penalty to incrementers compared
to simple non-atomic increment.

Lines 1-4 define needed variables: counter is the per-
thread counter variable, the counterp[] array allows
threads to access each others’ counters, finalcount accu-
mulates the total as individual threads exit, and final_
mutex coordinates between threads accumulating the
total value of the counter and exiting threads.

Quick Quiz 4.19: Why do we need an explicit array
to find the other threads’ counters? Why doesn’t gcc pro-
vide a per_thread() interface, similar to the Linux
kernel’s per_cpu() primitive, to allow threads to more
easily access each others’ per-thread variables?

The inc_count() function used by updaters is quite
simple, as can be seen on lines 6-9.

The read_count() function used by readers is a
bit more complex. Line 16 acquires a lock to exclude

1 long __thread counter = 0;
2 long *counterp[NR_THREADS] = { NULL };
3 long finalcount = 0;
4 DEFINE_SPINLOCK(final_mutex);
5
6 void inc_count(void)
7 {
8 counter++;
9 }
10
11 long read_count(void)
12 {
13 int t;
14 long sum;
15
16 spin_lock(&final_mutex);
17 sum = finalcount;
18 for_each_thread(t)
19 if (counterp[t] != NULL)
20 sum += *counterp[t];
21 spin_unlock(&final_mutex);
22 return sum;
23 }
24
25 void count_register_thread(void)
26 {
27 int idx = smp_thread_id();
28
29 spin_lock(&final_mutex);
30 counterp[idx] = &counter;
31 spin_unlock(&final_mutex);
32 }
33
34 void count_unregister_thread(int nthreadsexpected)
35 {
36 int idx = smp_thread_id();
37
38 spin_lock(&final_mutex);
39 finalcount += counter;
40 counterp[idx] = NULL;
41 spin_unlock(&final_mutex);
42 }

Figure 4.8: Per-Thread Statistical Counters

count_end.c
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exiting threads, and line 21 releases it. Line 17 initializes
the sum to the count accumulated by those threads that
have already exited, and lines 18-20 sum the counts being
accumulated by threads currently running. Finally, line 22
returns the sum.

Quick Quiz 4.20: Why on earth do we need something
as heavyweight as a lock guarding the summation in the
function read_count() in Figure 4.8?

Lines 25-32 show the count_register_
thread() function, which must be called by
each thread before its first use of this counter. This
function simply sets up this thread’s element of the
counterp[] array to point to its per-thread counter
variable.

Quick Quiz 4.21: Why on earth do we need to ac-
quire the lock in count_register_thread() in
Figure 4.8? It is a single properly aligned machine-word
store to a location that no other thread is modifying, so it
should be atomic anyway, right?

Lines 34-42 show the count_unregister_
thread() function, which must be called prior to
exit by each thread that previously called count_
register_thread(). Line 38 acquires the lock,
and line 41 releases it, thus excluding any calls to
read_count() as well as other calls to count_
unregister_thread(). Line 39 adds this thread’s
counter to the global finalcount, and then NULLs
out its counterp[] array entry. A subsequent call to
read_count() will see the exiting thread’s count in
the global finalcount, and will skip the exiting thread
when sequencing through the counterp[] array, thus
obtaining the correct total.

This approach gives updaters almost exactly the same
performance as a non-atomic add, and also scales linearly.
On the other hand, concurrent reads contend for a sin-
gle global lock, and therefore perform poorly and scale
abysmally. However, this is not a problem for statistical
counters, where incrementing happens often and readout
happens almost never. In addition, this approach is con-
siderably more complex than the array-based scheme, due
to the fact that a given thread’s per-thread variables vanish
when that thread exits.

Quick Quiz 4.22: Fine, but the Linux kernel doesn’t
have to acquire a lock when reading out the aggregate
value of per-CPU counters. So why should user-space
code need to do this???

4.2.5 Discussion

These two implementations show that it is possible to
obtain uniprocessor performance for statistical counters,
despite running on a parallel machine.

Quick Quiz 4.23: What fundamental difference is
there between counting packets and counting the total
number of bytes in the packets, given that the packets
vary in size?

Quick Quiz 4.24: Given that the reader must sum all
the threads’ counters, this could take a long time given
large numbers of threads. Is there any way that the in-
crement operation can remain fast and scalable while
allowing readers to also enjoy reasonable performance
and scalability?

Given what has been presented in this section, you
should now be able to answer the Quick Quiz about sta-
tistical counters for networking near the beginning of this
chapter.

4.3 Approximate Limit Counters
Another special case of counting involves limit-checking.
For example, as noted in the approximate structure-
allocation limit problem in the Quick Quiz on page 29,
suppose that you need to maintain a count of the number
of structures allocated in order to fail any allocations once
the number of structures in use exceeds a limit, in this
case, 10,000. Suppose further that these structures are
short-lived, and that this limit is rarely exceeded.

4.3.1 Design

One possible design for limit counters is to divide the
limit of 10,000 by the number of threads, and give each
thread a fixed pool of structures. For example, given 100
threads, each thread would manage its own pool of 100
structures. This approach is simple, and in some cases
works well, but it does not handle the common case where
a given structure is allocated by one thread and freed by
another [MS93]. On the one hand, if a given thread takes
credit for any structures it frees, then the thread doing
most of the allocating runs out of structures, while the
threads doing most of the freeing have lots of credits
that they cannot use. On the other hand, if freed struc-
tures are credited to the CPU that allocated them, it will
be necessary for CPUs to manipulate each others’ coun-
ters, which will require lots of expensive atomic instruc-
tions. Furthermore, because structures come in different
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sizes, rather than supporting inc_count() and dec_
count() interfaces, we implement add_count() and
sub_count() to allow variable-sized structures to be
properly accounted for.

In short, for many important workloads, we cannot
fully partition the counter. However, we can partially
partition the counter, so that in the common case, each
thread need only manipulate its own private state, while
still allowing counts to flow between threads as needed.
The statistical counting scheme discussed in Section 4.2.4
provides an interesting starting point, in that it maintains
a global counter as well as per-thread counters, with the
aggregate value being the sum of all of these counters,
global along with per-thread. The key change is to pull
each thread’s counter into the global sum while that thread
is still running, rather than waiting for thread exit. Clearly,
we want threads to pull in their own counts, as cross-
thread accesses are expensive and scale poorly.

This leaves open the question of exactly when a given
thread’s counter should be pulled into the global counter.
In the initial implementation, we will start by maintaining
a limit on the value of the per-thread counter. When this
limit would be exceeded, the thread pulls its counter into
the global counter. Of course, we cannot simply add
to the counter when a structure is allocated: we must
also subtract from the counter when a structure is freed.
We must therefore make use of the global counter when
a subtraction would otherwise reduce the value of the
per-thread counter below zero. However, if the limit is
reasonably large, almost all of the addition and subtraction
operations should be handled by the per-thread counter,
which should give us good performance and scalability.

This design is an example of “parallel fastpath”, which
is an important design pattern in which the common case
executes with no expensive instructions and no interac-
tions between threads, but where occasional use is also
made of a more conservatively designed global algorithm.

4.3.2 Simple Limit Counter Implementa-
tion

Figure 4.9 shows both the per-thread and global vari-
ables used by this implementation. The per-thread
counter and countermax variables are the corre-
sponding thread’s local counter and the upper bound on
that counter, respectively. The globalcountmax vari-
able on line 3 contains the upper bound for the aggregate
counter, and the globalcount variable on line 4 is the
global counter. The sum of globalcount and each

1 unsigned long __thread counter = 0;
2 unsigned long __thread countermax = 0;
3 unsigned long globalcountmax = 10000;
4 unsigned long globalcount = 0;
5 unsigned long globalreserve = 0;
6 unsigned long *counterp[NR_THREADS] = { NULL };
7 DEFINE_SPINLOCK(gblcnt_mutex);

Figure 4.9: Simple Limit Counter Variables
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Figure 4.10: Simple Limit Counter Variable Relationships

thread’s counter gives the aggregate value of the over-
all counter. The globalreserve variable on line 5
is the sum of all of the per-thread countermax vari-
ables. The relationship among these variables is shown
by Figure 4.10:

1. The sum of globalcount and
globalreserve must be less than or equal
to globalcountmax.

2. The sum of all threads’ countermax values must
be less than or equal to globalreserve.

3. Each thread’s counter must be less than or equal
to that thread’s countermax.

Each element of the counterp[] array references
the corresponding thread’s counter variable, and, fi-
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1 int add_count(unsigned long delta)
2 {
3 if (countermax - counter >= delta) {
4 counter += delta;
5 return 1;
6 }
7 spin_lock(&gblcnt_mutex);
8 globalize_count();
9 if (globalcountmax -
10 globalcount - globalreserve < delta) {
11 spin_unlock(&gblcnt_mutex);
12 return 0;
13 }
14 globalcount += delta;
15 balance_count();
16 spin_unlock(&gblcnt_mutex);
17 return 1;
18 }
19
20 int sub_count(unsigned long delta)
21 {
22 if (counter >= delta) {
23 counter -= delta;
24 return 1;
25 }
26 spin_lock(&gblcnt_mutex);
27 globalize_count();
28 if (globalcount < delta) {
29 spin_unlock(&gblcnt_mutex);
30 return 0;
31 }
32 globalcount -= delta;
33 balance_count();
34 spin_unlock(&gblcnt_mutex);
35 return 1;
36 }
37
38 unsigned long read_count(void)
39 {
40 int t;
41 unsigned long sum;
42
43 spin_lock(&gblcnt_mutex);
44 sum = globalcount;
45 for_each_thread(t)
46 if (counterp[t] != NULL)
47 sum += *counterp[t];
48 spin_unlock(&gblcnt_mutex);
49 return sum;
50 }

Figure 4.11: Simple Limit Counter Add, Subtract, and
Read

nally, the gblcnt_mutex spinlock guards all of the
global variables, in other words, no thread is permitted to
access or modify any of the global variables unless it has
acquired gblcnt_mutex.

Figure 4.11 shows the add_count(), sub_
count(), and read_count() functions (count_
lim.c).

Lines 1-18 show add_count(), which adds the spec-
ified value delta to the counter. Line 3 checks to see if
there is room for delta on this thread’s counter, and,
if so, line 4 adds it and line 6 returns success. This is the

add_counter() fastpath, and it does no atomic oper-
ations, references only per-thread variables, and should
not incur any cache misses.

Quick Quiz 4.25: What is with the strange form of the
condition on line 3 of Figure 4.11? Why not the following
more intuitive form of the fastpath?

3 if (counter + delta <= countermax){
4 counter += delta;
5 return 1;
6 }

If the test on line 3 fails, we must access global vari-
ables, and thus must acquire gblcnt_mutex on line 7,
which we release on line 11 in the failure case or on
line 16 in the success case. Line 8 invokes globalize_
count(), shown in Figure 4.12, which clears the thread-
local variables, adjusting the global variables as needed,
thus simplifying global processing. (But don’t take my
word for it, try coding it yourself!) Lines 9 and 10 check
to see if addition of delta can be accommodated, with
the meaning of the expression preceding the less-than
sign shown in Figure 4.10 as the difference in height of
the two red bars. If the addition of delta cannot be
accommodated, then line 11 (as noted earlier) releases
gblcnt_mutex and line 12 returns indicating failure.

Otherwise, line 14 subtracts delta from
globalcount, line 15 invokes balance_count()
(shown in Figure 4.12) in order to update both the
global and the per-thread variables (hopefully setting
this thread’s countermax to re-enable the fastpath),
if appropriate, to re-enable fastpath processing, line 16
release gblcnt_mutex (again, as noted earlier), and,
finally, line 17 returns indicating success.

Quick Quiz 4.26: Why do globalize_count()
to zero the per-thread variables, only to later call
balance_count() to refill them in Figure 4.11? Why
not just leave the per-thread variables non-zero?

Lines 20-36 show sub_count(), which subtracts
the specified delta from the counter. Line 22 checks to
see if the per-thread counter can accommodate this sub-
traction, and, if so, line 23 does the subtraction and line 24
returns success. These lines form sub_count()’s fast-
path, and, as with add_count(), this fastpath executes
no costly operations.

If the fastpath cannot accommodate subtraction of
delta, execution proceeds to the slowpath on lines 26-
35. Because the slowpath must access global state, line 26
acquires gblcnt_mutex, which is release either by
line 29 (in case of failure) or by line 34 (in case of suc-

count_lim.c
count_lim.c
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cess). Line 27 invokes globalize_count(), shown
in Figure 4.12, which again clears the thread-local vari-
ables, adjusting the global variables as needed. Line 28
checks to see if the counter can accommodate subtracting
delta, and, if not, line 29 releases gblcnt_mutex
(as noted earlier) and line 30 returns failure.

Quick Quiz 4.27: Given that globalreserve
counted against us in add_count(), why doesn’t it
count for us in sub_count() in Figure 4.11?

If, on the other hand, line 28 finds that the counter
can accommodate subtracting delta, then line 32 does
the subtraction, line 33 invokes balance_count()
(shown in Figure 4.12) in order to update both global and
per-thread variables (hopefully re-enabling the fastpath),
line 34 releases gblcnt_mutex, and line 35 returns
success.

Quick Quiz 4.28: Why have both add_count()
and sub_count() in Figure 4.11? Why not simply
pass a negative number to add_count()?

Lines 38-50 show read_count(), which returns the
aggregate value of the counter. It acquires gblcnt_
mutex on line 43 and releases it on line 48, exclud-
ing global operations from add_count() and sub_
count(), and, as we will see, also excluding thread
creation and exit. Line 44 initializes local variable sum
to the value of globalcount, and then the loop span-
ning lines 45-47 sums the per-thread counter variables.
Line 49 then returns the sum.

Figure 4.12 shows a number of utility functions
that support the add_count() sub_count(), and
read_count() primitives shown in Figure 4.11.

Lines 1-7 show globalize_count(), which ze-
ros the current thread’s per-thread counters, adjusting
the global variables appropriately. It is important to
note that this function does not change the aggregate
value of the counter, but instead changes how the
counter’s current value is represented. Line 3 adds
the thread’s counter variable to globalcount, and
line 4 zeroes counter. Similarly, line 5 subtracts the
per-thread countermax from globalreserve, and
line 6 zeroes countermax. It is helpful to refer to Fig-
ure 4.10 when reading both this function and balance_
count(), which is next.

Lines 9-19 show balance_count(), which can is,
roughly speaking the inverse of globalize_count().
This function sets the current thread’s counter and
countermax variables (with corresponding adjust-
ments to globalcount and globalreserve) in
an attempt to promote use of add_count()’s and

1 static void globalize_count(void)
2 {
3 globalcount += counter;
4 counter = 0;
5 globalreserve -= countermax;
6 countermax = 0;
7 }
8
9 static void balance_count(void)
10 {
11 countermax = globalcountmax -
12 globalcount - globalreserve;
13 countermax /= num_online_threads();
14 globalreserve += countermax;
15 counter = countermax / 2;
16 if (counter > globalcount)
17 counter = globalcount;
18 globalcount -= counter;
19 }
20
21 void count_register_thread(void)
22 {
23 int idx = smp_thread_id();
24
25 spin_lock(&gblcnt_mutex);
26 counterp[idx] = &counter;
27 spin_unlock(&gblcnt_mutex);
28 }
29
30 void count_unregister_thread(int nthreadsexpected)
31 {
32 int idx = smp_thread_id();
33
34 spin_lock(&gblcnt_mutex);
35 globalize_count();
36 counterp[idx] = NULL;
37 spin_unlock(&gblcnt_mutex);
38 }

Figure 4.12: Simple Limit Counter Utility Functions
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sub_count()’s fastpaths. As with globalize_
count(), balance_count() does not change the
aggregate value of the counter. Lines 11-13 compute
this thread’s share of that portion of globalcountmax
that is not already covered by either globalcount or
globalreserve, and assign the computed quantity to
this thread’s countermax. Line 14 makes the corre-
sponding adjustment to globalreserve. Line 15 sets
this thread’s counter to the middle of the range from
zero to countermax. Line 16 checks to see whether
globalcount can in fact accommodate this value of
counter, and, if not, line 17 decreases counter ac-
cordingly. Finally, in either case, line 18 makes the corre-
sponding adjustment to globalcount.

Lines 21-28 show count_register_thread(),
which sets up state for newly created threads. This func-
tion simply installs a pointer to the newly created thread’s
counter variable into the corresponding entry of the
counterp[] array under the protection of gblcnt_
mutex.

Finally, lines 30-38 show count_unregister_
thread(), which tears down state for a soon-to-be-
exiting thread. Line 34 acquires gblcnt_mutex and
line 37 releases it. Line 35 invokes globalize_
count() to clear out this thread’s counter state, and
line 36 clears this thread’s entry in the counterp[]
array.

4.3.3 Simple Limit Counter Discussion

This type of counter is quite fast when aggregate val-
ues are near zero, with some overhead due to the com-
parison and branch in both add_count()’s and sub_
count()’s fastpaths. However, the use of a per-thread
countermax reserve means that add_count() can
fail even when the aggregate value of the counter is
nowhere near globalcountmax. Similarly, sub_
count() can fail even when the aggregate value of the
counter is nowhere near zero.

In many cases, this is unacceptable. Even if the
globalcountmax is intended to be an approximate
limit, there is usually a limit to exactly how much approx-
imation can be tolerated. One way to limit the degree of
approximation is to impose an upper limit on the value
of the per-thread countermax instances. This task is
undertaken in the next section.

1 unsigned long __thread counter = 0;
2 unsigned long __thread countermax = 0;
3 unsigned long globalcountmax = 10000;
4 unsigned long globalcount = 0;
5 unsigned long globalreserve = 0;
6 unsigned long *counterp[NR_THREADS] = { NULL };
7 DEFINE_SPINLOCK(gblcnt_mutex);
8 #define MAX_COUNTERMAX 100

Figure 4.13: Approximate Limit Counter Variables

1 static void balance_count(void)
2 {
3 countermax = globalcountmax - globalcount - globalreserve;
4 countermax /= num_online_threads();
5 if (countermax > MAX_COUNTERMAX)
6 countermax = MAX_COUNTERMAX;
7 globalreserve += countermax;
8 counter = countermax / 2;
9 if (counter > globalcount)
10 counter = globalcount;
11 globalcount -= counter;
12 }

Figure 4.14: Approximate Limit Counter Balancing

4.3.4 Approximate Limit Counter Imple-
mentation

Because this implementation (count_lim_app.c) is
quite similar to that in the previous section (Figures 4.9,
4.11, and 4.12), only the changes are shown here. Fig-
ure 4.13 is identical to Figure 4.9, with the addition of
MAX_COUNTERMAX, which sets the maximum permissi-
ble value of the per-thread countermax variable.

Similarly, Figure 4.14 is identical to the balance_
count() function in Figure 4.12), with the addition
of lines 5 and 6, which enforce the MAX_COUNTERMAX
limit on the per-thread countermax variable.

4.3.5 Approximate Limit Counter Discus-
sion

These changes greatly reduce the limit inaccuracy seen
in the previous version, but present another problem:
any given value of MAX_COUNTERMAX will cause a
workload-dependent fraction of accesses to fall off the
fastpath. As the number of threads increase, non-fastpath
execution will become both a performance and a scala-
bility problem. However, we will defer this problem and
turn instead to counters with exact limits.

count_lim_app.c
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1 atomic_t __thread counterandmax = ATOMIC_INIT(0);
2 unsigned long globalcountmax = 10000;
3 unsigned long globalcount = 0;
4 unsigned long globalreserve = 0;
5 atomic_t *counterp[NR_THREADS] = { NULL };
6 DEFINE_SPINLOCK(gblcnt_mutex);
7 #define CM_BITS (sizeof(atomic_t) * 4)
8 #define MAX_COUNTERMAX ((1 << CM_BITS) - 1)
9
10 static void
11 split_counterandmax_int(int cami, int *c, int *cm)
12 {
13 *c = (cami >> CM_BITS) & MAX_COUNTERMAX;
14 *cm = cami & MAX_COUNTERMAX;
15 }
16
17 static void
18 split_counterandmax(atomic_t *cam, int *old,
19 int *c, int *cm)
20 {
21 unsigned int cami = atomic_read(cam);
22
23 *old = cami;
24 split_counterandmax_int(cami, c, cm);
25 }
26
27 static int merge_counterandmax(int c, int cm)
28 {
29 unsigned int cami;
30
31 cami = (c << CM_BITS) | cm;
32 return ((int)cami);
33 }

Figure 4.15: Atomic Limit Counter Variables and Access
Functions

4.4 Exact Limit Counters

To solve the exact structure-allocation limit problem noted
in the Quick Quiz on page 29, we need a limit counter that
can tell exactly when its limits are exceeded. One way
of implementing such a limit counter is to cause threads
that have reserved counts to give them up. One way to
do this is to use atomic instructions. Of course, atomic
instructions will slow down the fastpath, but on the other
hand, it would be silly not to at least give them a try.

4.4.1 Atomic Limit Counter Implementa-
tion

Unfortunately, when causing a given thread to give up its
count, it is necessary to atomically manipulate both that
thread’s counter and countermax variables. The
usual way to do this is to combine these two variables
into a single variable, for example, given a 32-bit variable,
using the high-order 16 bits to represent counter and
the low-order 16 bits to represent countermax.

The variables and access functions for a simple atomic

limit counter are shown in Figure 4.15 (count_lim_
atomic.c). The counter and countermax vari-
ables in earlier algorithms are combined into the sin-
gle variable counterandmax shown on line 1, with
counter in the upper half and countermax in the
lower half. This variable is of type atomic_t, which
has an underlying representation of int.

Lines 2-6 show the definitions for
globalcountmax, globalcount,
globalreserve, counterp, and gblcnt_mutex,
all of which take on roles similar to their counterparts
in Figure 4.13. Line 7 defines CM_BITS, which gives
the number of bits in each half of counterandmax,
and line 8 defines MAX_COUNTERMAX, which gives
the maximum value that may be held in either half of
counterandmax.

Quick Quiz 4.29: In what way does line 7 of Fig-
ure 4.15 violate the C standard?

Lines 10-15 show the split_counterandmax_
int() function, which, when given the underlying
int from the atomic_t counterandmax variable.
Line 13 isolates the most-significant half of this int,
placing the result as specified by argument c, and line 14
isolates the least-significant half of this int, placing the
result as specified by argument cm.

Lines 17-25 show the split_counterandmax()
function, which picks up the underlying int from the
specified variable on line 21, stores it as specified by
the old argument on line 23, and then invokes split_
counterandmax_int() to split it on line 24.

Quick Quiz 4.30: Given that there is only one
counterandmax variable, why bother passing in a
pointer to it on line 18 of Figure 4.15?

Lines 27-33 show the merge_counterandmax()
function, which can be thought of as the inverse of
split_counterandmax(). Line 31 merges the
counter and countermax values passed in c and
cm, respectively, and returns the result.

Quick Quiz 4.31: Why does merge_
counterandmax() in Figure 4.15 return an int
rather than storing directly into an atomic_t?

Figure 4.16 shows the add_count(), sub_
count(), and read_count() functions.

Lines 1-32 show add_count(), whose fastpath
spans lines 8-15, with the remainder of the function being
the slowpath. Lines 8-14 of the fastpath form a compare-
and-swap (CAS) loop, with the atomic_cmpxchg()
primitives on lines 13-14 performing the actual CAS.
Line 9 splits the current thread’s counterandmax vari-

count_lim_atomic.c
count_lim_atomic.c
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1 int add_count(unsigned long delta)
2 {
3 int c;
4 int cm;
5 int old;
6 int new;
7
8 do {
9 split_counterandmax(&counterandmax, &old, &c, &cm);
10 if (delta > MAX_COUNTERMAX || c + delta > cm)
11 goto slowpath;
12 new = merge_counterandmax(c + delta, cm);
13 } while (atomic_cmpxchg(&counterandmax,
14 old, new) != old);
15 return 1;
16 slowpath:
17 spin_lock(&gblcnt_mutex);
18 globalize_count();
19 if (globalcountmax - globalcount -
20 globalreserve < delta) {
21 flush_local_count();
22 if (globalcountmax - globalcount -
23 globalreserve < delta) {
24 spin_unlock(&gblcnt_mutex);
25 return 0;
26 }
27 }
28 globalcount += delta;
29 balance_count();
30 spin_unlock(&gblcnt_mutex);
31 return 1;
32 }
33
34 int sub_count(unsigned long delta)
35 {
36 int c;
37 int cm;
38 int old;
39 int new;
40
41 do {
42 split_counterandmax(&counterandmax, &old, &c, &cm);
43 if (delta > c)
44 goto slowpath;
45 new = merge_counterandmax(c - delta, cm);
46 } while (atomic_cmpxchg(&counterandmax,
47 old, new) != old);
48 return 1;
49 slowpath:
50 spin_lock(&gblcnt_mutex);
51 globalize_count();
52 if (globalcount < delta) {
53 flush_local_count();
54 if (globalcount < delta) {
55 spin_unlock(&gblcnt_mutex);
56 return 0;
57 }
58 }
59 globalcount -= delta;
60 balance_count();
61 spin_unlock(&gblcnt_mutex);
62 return 1;
63 }

Figure 4.16: Atomic Limit Counter Add and Subtract

able into its counter (in c) and countermax (in cm)
components, while placing the underlying int into old.
Line 10 checks whether the amount delta can be accom-
modated locally (taking care to avoid integer overflow),
and if not, line 11 transfers to the slowpath. Otherwise,
line 11 combines an updated counter value with the
original countermax value into new. The atomic_
cmpxchg() primitive on lines 13-14 then atomically
compares this thread’s counterandmax variable to
old, updating its value to new if the comparison suc-
ceeds. If the comparison succeeds, line 15 returns success,
otherwise, execution continues in the loop at line 9.

Quick Quiz 4.32: Yecch! Why the ugly goto on
line 11 of Figure 4.16? Haven’t you heard of the break
statement???

Quick Quiz 4.33: Why would the atomic_
cmpxchg() primitive at lines 13-14 of Figure 4.16 ever
fail? After all, we picked up its old value on line 9 and
have not changed it!

Lines 16-32 of Figure 4.16 show add_count()’s
slowpath, which is protected by gblcnt_mutex, which
is acquired on line 17 and released on lines 24 and 30.
Line 18 invokes globalize_count(), which moves
this thread’s state to the global counters. Lines 19-20
check whether the delta value can be accommodated
by the current global state, and, if not, line 21 invokes
flush_local_count() to flush all threads’ local
state to the global counters, and then lines 22-23 recheck
whether delta can be accommodated. If, after all that,
the addition of delta still cannot be accommodated,
then line 24 releases gblcnt_mutex (as noted earlier),
and then line 25 returns failure.

Otherwise, line 28 adds delta to the global counter,
line 29 spreads counts to the local state if appropriate,
line 30 releases gblcnt_mutex (again, as noted ear-
lier), and finally, line 31 returns success.

Lines 34-63 of Figure 4.16 show sub_count(),
which is structured similarly to add_count(), having
a fastpath on lines 41-48 and a slowpath on lines 49-62. A
line-by-line analysis of this function is left as an exercise
to the reader.

Figure 4.17 shows read_count(). Line 9 acquires
gblcnt_mutex and line 16 releases it. Line 10 initial-
izes local variable sum to the value of globalcount,
and the loop spanning lines 11-15 adds the per-thread
counters to this sum, isolating each per-thread counter
using split_counterandmax on line 13. Finally,
line 17 returns the sum.

Figure 4.18 shows the utility functions globalize_
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1 unsigned long read_count(void)
2 {
3 int c;
4 int cm;
5 int old;
6 int t;
7 unsigned long sum;
8
9 spin_lock(&gblcnt_mutex);
10 sum = globalcount;
11 for_each_thread(t)
12 if (counterp[t] != NULL) {
13 split_counterandmax(counterp[t], &old, &c, &cm);
14 sum += c;
15 }
16 spin_unlock(&gblcnt_mutex);
17 return sum;
18 }

Figure 4.17: Atomic Limit Counter Read

count(), flush_local_count(), balance_
count(), count_register_thread(), and
count_unregister_thread(). The code for
globalize_count() is shown on lines 1-12, and it
is similar to that of previous algorithms, with the addition
of line 7, which is now required to split out counter
and countermax from counterandmax.

The code for flush_local_count(), which
moves all threads’ local counter state to the global counter,
is shown on lines 14-32. Line 22 checks to see if the value
of globalreserve permits any per-thread counts, and,
if not, line 23 returns. Otherwise, line 24 initializes lo-
cal variable zero to a combined zeroed counter and
countermax. The loop spanning lines 25-31 sequences
through each thread. Line 26 checks to see if the current
thread has counter state, and, if so, lines 27-30 move that
state to the global counters. Line 27 atomically fetches the
current thread’s state while replacing it with zero. Line 28
splits this state into its counter (in local variable c)
and countermax (in local variable cm) components.
Line 29 adds this thread’s counter to globalcount,
while line 30 subtracts this thread’s countermax from
globalreserve.

Quick Quiz 4.34: What stops a thread from simply
refilling its counterandmax variable immediately af-
ter flush_local_count() on line 14 of Figure 4.18
empties it?

Quick Quiz 4.35: What prevents concurrent execution
of the fastpath of either atomic_add() or atomic_
sub() from interfering with the counterandmax vari-
able while flush_local_count() is accessing it on
line 27 of Figure 4.18 empties it?

Lines 34-54 show the code for balance_count(),

1 static void globalize_count(void)
2 {
3 int c;
4 int cm;
5 int old;
6
7 split_counterandmax(&counterandmax, &old, &c, &cm);
8 globalcount += c;
9 globalreserve -= cm;
10 old = merge_counterandmax(0, 0);
11 atomic_set(&counterandmax, old);
12 }
13
14 static void flush_local_count(void)
15 {
16 int c;
17 int cm;
18 int old;
19 int t;
20 int zero;
21
22 if (globalreserve == 0)
23 return;
24 zero = merge_counterandmax(0, 0);
25 for_each_thread(t)
26 if (counterp[t] != NULL) {
27 old = atomic_xchg(counterp[t], zero);
28 split_counterandmax_int(old, &c, &cm);
29 globalcount += c;
30 globalreserve -= cm;
31 }
32 }
33
34 static void balance_count(void)
35 {
36 int c;
37 int cm;
38 int old;
39 unsigned long limit;
40
41 limit = globalcountmax - globalcount - globalreserve;
42 limit /= num_online_threads();
43 if (limit > MAX_COUNTERMAX)
44 cm = MAX_COUNTERMAX;
45 else
46 cm = limit;
47 globalreserve += cm;
48 c = cm / 2;
49 if (c > globalcount)
50 c = globalcount;
51 globalcount -= c;
52 old = merge_counterandmax(c, cm);
53 atomic_set(&counterandmax, old);
54 }
55
56 void count_register_thread(void)
57 {
58 int idx = smp_thread_id();
59
60 spin_lock(&gblcnt_mutex);
61 counterp[idx] = &counterandmax;
62 spin_unlock(&gblcnt_mutex);
63 }
64
65 void count_unregister_thread(int nthreadsexpected)
66 {
67 int idx = smp_thread_id();
68
69 spin_lock(&gblcnt_mutex);
70 globalize_count();
71 counterp[idx] = NULL;
72 spin_unlock(&gblcnt_mutex);
73 }

Figure 4.18: Atomic Limit Counter Utility Functions
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which refills the calling thread’s local counterandmax
variable. This function is quite similar to that of the
preceding algorithms, with changes required to handle the
merged counterandmax variable. Detailed analysis of
the code is left as an exercise for the reader, as it is with
the count_register_thread() function starting
on line 56 and the count_unregister_thread()
function starting on line 65.

Quick Quiz 4.36: Given that the atomic_set()
primitive does a simple store to the specified atomic_t,
how can line 53 of balance_count() in Figure 4.18
work correctly in face of concurrent flush_local_
count() updates to this variable?

4.4.2 Atomic Limit Counter Discussion
This is the first implementation that actually allows the
counter to be run all the way to either of its limits, but
it does so at the expense of adding atomic operations to
the fastpaths, which slow down the fastpaths significantly.
Although some workloads might tolerate this slowdown, it
is worthwhile looking for algorithms with better read-side
performance. One such algorithm uses a signal handler to
steal counts from other threads. Because signal handlers
run in the context of the signaled thread, atomic operations
are not necessary, as shown in the next section.

Quick Quiz 4.37: But signal handlers can be migrated
to some other CPU while running. Doesn’t this possibility
require that atomic instructions and memory barriers are
required to reliably communicate between a thread and a
signal handler that interrupts that thread?

4.4.3 Signal-Theft Limit Counter Design
Figure 4.19 shows the state diagram. The state machine
starts out in the IDLE state, and when add_count()
or sub_count() find that the combination of the local
thread’s count and the global count cannot accommodate
the request, the corresponding slowpath sets each thread’s
theft state to REQ (unless that thread has no count, in
which case it transitions directly to READY). Only the
slowpath, which holds the gblcnt_mutex lock, is per-
mitted to transition from the IDLE state, as indicated by
the green color. The slowpath then sends a signal to each
thread, and the corresponding signal handler checks the
corresponding thread’s theft and counting variables.
If the theft state is not REQ, then the signal handler is
not permitted to change the state, and therefore simply
returns. Otherwise, if the counting variable is set, indi-
cating that the current thread’s fastpath is in progress, the
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Figure 4.19: Signal-Theft State Machine

signal handler sets the theft state to ACK, otherwise to
READY.

If the theft state is ACK, only the fastpath is permit-
ted to change the theft state, as indicated by the blue
color. When the fastpath completes, it sets the theft
state to READY.

Once the slowpath sees a thread’s theft state is
READY, the slowpath is permitted to steal that thread’s
count. The slowpath then sets that thread’s theft state
to IDLE.

Quick Quiz 4.38: In Figure 4.19, why is the REQ
theft state colored blue?

Quick Quiz 4.39: In Figure 4.19, what is the point
of having separate REQ and ACK theft states? Why
not simplify the state machine by collapsing them into a
single state? Then whichever of the signal handler or the
fastpath gets there first could set the state to READY.

4.4.4 Signal-Theft Limit Counter Imple-
mentation

Figure 4.20 (count_lim_sig.c) shows the data struc-
tures used by the signal-theft based counter implemen-
tation. Lines 1-7 define the states and values for the
per-thread theft state machine described in the preceding
section. Lines 8-17 are similar to earlier implementations,
with the addition of lines 14 and 15 to allow remote ac-

count_lim_sig.c
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1 #define THEFT_IDLE 0
2 #define THEFT_REQ 1
3 #define THEFT_ACK 2
4 #define THEFT_READY 3
5
6 int __thread theft = THEFT_IDLE;
7 int __thread counting = 0;
8 unsigned long __thread counter = 0;
9 unsigned long __thread countermax = 0;
10 unsigned long globalcountmax = 10000;
11 unsigned long globalcount = 0;
12 unsigned long globalreserve = 0;
13 unsigned long *counterp[NR_THREADS] = { NULL };
14 unsigned long *countermaxp[NR_THREADS] = { NULL };
15 int *theftp[NR_THREADS] = { NULL };
16 DEFINE_SPINLOCK(gblcnt_mutex);
17 #define MAX_COUNTERMAX 100

Figure 4.20: Signal-Theft Limit Counter Data

cess to a thread’s countermax and theft variables,
respectively.

Figure 4.21 shows the functions responsible for migrat-
ing counts between per-thread variables and the global
variables. Lines 1-7 shows global_count(), which
is identical to earlier implementations. Lines 9-19 shows
flush_local_count_sig(), which is the signal
handler used in the theft process. Lines 11 and 12 check
to see if the theft state is REQ, and, if not returns with-
out change. Line 13 executes a memory barrier to ensure
that the sampling of the theft variable happens before any
change to that variable. Line 14 sets the theft state to
ACK, and, if line 15 sees that this thread’s fastpaths are
not running, line 16 sets the theft state to READY.

Quick Quiz 4.40: In Figure 4.21 function flush_
local_count_sig(), why are there ACCESS_
ONCE() wrappers around the uses of the theft per-
thread variable?

Lines 21-49 shows flush_local_count(),
which is called from the slowpath to flush all threads’
local counts. The loop spanning lines 26-34 advances the
theft state for each thread that has local count, and also
sends that thread a signal. Line 27 skips any non-existent
threads. Otherwise, line 28 checks to see if the current
thread holds any local count, and, if not, line 29 sets the
thread’s theft state to READY and line 28 skips to the
next thread. Otherwise, line 32 sets the thread’s theft
state to REQ and line 29 sends the thread a signal.

Quick Quiz 4.41: In Figure 4.21, why is it safe for
line 28 to directly access the other thread’s countermax
variable?

Quick Quiz 4.42: In Figure 4.21, why doesn’t line 33
check for the current thread sending itself a signal?

Quick Quiz 4.43: The code in Figure 4.21, works with

1 static void globalize_count(void)
2 {
3 globalcount += counter;
4 counter = 0;
5 globalreserve -= countermax;
6 countermax = 0;
7 }
8
9 static void flush_local_count_sig(int unused)
10 {
11 if (ACCESS_ONCE(theft) != THEFT_REQ)
12 return;
13 smp_mb();
14 ACCESS_ONCE(theft) = THEFT_ACK;
15 if (!counting) {
16 ACCESS_ONCE(theft) = THEFT_READY;
17 }
18 smp_mb();
19 }
20
21 static void flush_local_count(void)
22 {
23 int t;
24 thread_id_t tid;
25
26 for_each_tid(t, tid)
27 if (theftp[t] != NULL) {
28 if (*countermaxp[t] == 0) {
29 ACCESS_ONCE(*theftp[t]) = THEFT_READY;
30 continue;
31 }
32 ACCESS_ONCE(*theftp[t]) = THEFT_REQ;
33 pthread_kill(tid, SIGUSR1);
34 }
35 for_each_tid(t, tid) {
36 if (theftp[t] == NULL)
37 continue;
38 while (ACCESS_ONCE(*theftp[t]) != THEFT_READY) {
39 poll(NULL, 0, 1);
40 if (ACCESS_ONCE(*theftp[t]) == THEFT_REQ)
41 pthread_kill(tid, SIGUSR1);
42 }
43 globalcount += *counterp[t];
44 *counterp[t] = 0;
45 globalreserve -= *countermaxp[t];
46 *countermaxp[t] = 0;
47 ACCESS_ONCE(*theftp[t]) = THEFT_IDLE;
48 }
49 }
50
51 static void balance_count(void)
52 {
53 countermax = globalcountmax -
54 globalcount - globalreserve;
55 countermax /= num_online_threads();
56 if (countermax > MAX_COUNTERMAX)
57 countermax = MAX_COUNTERMAX;
58 globalreserve += countermax;
59 counter = countermax / 2;
60 if (counter > globalcount)
61 counter = globalcount;
62 globalcount -= counter;
63 }

Figure 4.21: Signal-Theft Limit Counter Value-Migration
Functions
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gcc and POSIX. What would be required to make it also
conform to the ISO C standard?

The loop spanning lines 35-48 waits until each thread
reaches READY state, then steals that thread’s count.
Lines 36-37 skip any non-existent threads, and the loop
spanning lines 38-42 wait until the current thread’s
theft state becomes READY. Line 39 blocks for a
millisecond to avoid priority-inversion problems, and if
line 40 determines that the thread’s signal has not yet
arrived, line 41 resends the signal. Execution reaches
line 43 when the thread’s theft state becomes READY,
so lines 43-46 do the thieving. Line 47 then sets the
thread’s theft state back to IDLE.

Quick Quiz 4.44: In Figure 4.21, why does line 41
resend the signal?

Lines 51-63 show balance_count(), which is sim-
ilar to that of earlier examples.

Lines 1-36 of Figure 4.22 shows the add_count()
function. The fastpath spans lines 5-20, and the slow-
path lines 21-35. Line 5 sets the per-thread counting
variable to 1 so that any subsequent signal handlers inter-
rupting this thread will set the theft state to ACK rather
than READY, allowing this fastpath to complete prop-
erly. Line 6 prevents the compiler from reordering any
of the fastpath body to precede the setting of counting.
Lines 7 and 8 check to see if the per-thread data can
accommodate the add_count() and if there is no on-
going theft in progress, and if so line 9 does the fastpath
addition and line 10 notes that the fastpath was taken.

In either case, line 12 prevents the compiler from re-
ordering the fastpath body to follow line 13, which per-
mits any subsequent signal handlers to undertake theft.
Line 14 again disables compiler reordering, and then
line 15 checks to see if the signal handler deferred the
theft state-change to READY, and, if so, line 16 exe-
cutes a memory barrier to ensure that any CPU that sees
line 17 setting state to READY also sees the effects of
line 9. If the fastpath addition at line 9 was executed, then
line 20 returns success.

Otherwise, we fall through to the slowpath starting at
line 21. The structure of the slowpath is similar to those
of earlier examples, so its analysis is left as an exercise
to the reader. Similarly, the structure of sub_count()
on lines 38-71 is the same as that of add_count(), so
the analysis of sub_count() is also left as an exercise
for the reader, as is the analysis of read_count() in
Figure 4.23.

Lines 1-12 of Figure 4.24 show count_init(),
which set up flush_local_count_sig() as the

1 int add_count(unsigned long delta)
2 {
3 int fastpath = 0;
4
5 counting = 1;
6 barrier();
7 if (countermax - counter >= delta &&
8 ACCESS_ONCE(theft) <= THEFT_REQ) {
9 counter += delta;
10 fastpath = 1;
11 }
12 barrier();
13 counting = 0;
14 barrier();
15 if (ACCESS_ONCE(theft) == THEFT_ACK) {
16 smp_mb();
17 ACCESS_ONCE(theft) = THEFT_READY;
18 }
19 if (fastpath)
20 return 1;
21 spin_lock(&gblcnt_mutex);
22 globalize_count();
23 if (globalcountmax - globalcount -
24 globalreserve < delta) {
25 flush_local_count();
26 if (globalcountmax - globalcount -
27 globalreserve < delta) {
28 spin_unlock(&gblcnt_mutex);
29 return 0;
30 }
31 }
32 globalcount += delta;
33 balance_count();
34 spin_unlock(&gblcnt_mutex);
35 return 1;
36 }
37
38 int sub_count(unsigned long delta)
39 {
40 int fastpath = 0;
41
42 counting = 1;
43 barrier();
44 if (counter >= delta &&
45 ACCESS_ONCE(theft) <= THEFT_REQ) {
46 counter -= delta;
47 fastpath = 1;
48 }
49 barrier();
50 counting = 0;
51 barrier();
52 if (ACCESS_ONCE(theft) == THEFT_ACK) {
53 smp_mb();
54 ACCESS_ONCE(theft) = THEFT_READY;
55 }
56 if (fastpath)
57 return 1;
58 spin_lock(&gblcnt_mutex);
59 globalize_count();
60 if (globalcount < delta) {
61 flush_local_count();
62 if (globalcount < delta) {
63 spin_unlock(&gblcnt_mutex);
64 return 0;
65 }
66 }
67 globalcount -= delta;
68 balance_count();
69 spin_unlock(&gblcnt_mutex);
70 return 1;
71 }

Figure 4.22: Signal-Theft Limit Counter Add and Sub-
tract Functions
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1 unsigned long read_count(void)
2 {
3 int t;
4 unsigned long sum;
5
6 spin_lock(&gblcnt_mutex);
7 sum = globalcount;
8 for_each_thread(t)
9 if (counterp[t] != NULL)
10 sum += *counterp[t];
11 spin_unlock(&gblcnt_mutex);
12 return sum;
13 }

Figure 4.23: Signal-Theft Limit Counter Read Function

1 void count_init(void)
2 {
3 struct sigaction sa;
4
5 sa.sa_handler = flush_local_count_sig;
6 sigemptyset(&sa.sa_mask);
7 sa.sa_flags = 0;
8 if (sigaction(SIGUSR1, &sa, NULL) != 0) {
9 perror("sigaction");
10 exit(-1);
11 }
12 }
13
14 void count_register_thread(void)
15 {
16 int idx = smp_thread_id();
17
18 spin_lock(&gblcnt_mutex);
19 counterp[idx] = &counter;
20 countermaxp[idx] = &countermax;
21 theftp[idx] = &theft;
22 spin_unlock(&gblcnt_mutex);
23 }
24
25 void count_unregister_thread(int nthreadsexpected)
26 {
27 int idx = smp_thread_id();
28
29 spin_lock(&gblcnt_mutex);
30 globalize_count();
31 counterp[idx] = NULL;
32 countermaxp[idx] = NULL;
33 theftp[idx] = NULL;
34 spin_unlock(&gblcnt_mutex);
35 }

Figure 4.24: Signal-Theft Limit Counter Initialization
Functions

signal handler for SIGUSR1, enabling the pthread_
kill() calls in flush_local_count() to invoke
flush_local_count_sig(). The code for thread
registry and unregistry is similar to that of earlier exam-
ples, so its analysis is left as an exercise for the reader.

4.4.5 Signal-Theft Limit Counter Discus-
sion

The signal-theft implementation runs more than twice as
fast as the atomic implementation on my Intel Core Duo
laptop. Is it always preferable?

The signal-theft implementation would be vastly prefer-
able on Pentium-4 systems, given their slow atomic in-
structions, but the old 80386-based Sequent Symmetry
systems would do much better with the shorter path length
of the atomic implementation. If ultimate performance is
of the essence, you will need to measure them both on the
system that your application is to be deployed on.

This is but one reason why high-quality APIs are so
important: they permit implementations to be changed as
required by ever-changing hardware performance charac-
teristics.

Quick Quiz 4.45: What if you want an exact limit
counter to be exact only for its lower limit?

4.5 Applying Specialized Parallel
Counters

Although the exact limit counter implementations in Sec-
tion 4.4 can be very useful, they are not much help if the
counter’s value remains near zero at all times, as it might
when counting the number of outstanding accesses to an
I/O device. The high overhead of such near-zero counting
is especially painful given that we normally don’t care
how many references there are. As noted in the removable
I/O device access-count problem on page 29, the number
of accesses is irrelevant except in those rare cases when
someone is actually trying to remove the device.

One simple solution to this problem is to add a large
“bias” (for example, one billion) to the counter in order
to ensure that the value is far enough from zero that the
counter can operate efficiently. When someone wants
to remove the device, this bias is subtracted from the
counter value. Counting the last few accesses will be
quite inefficient, but the important point is that the many
prior accesses will have been counted at full speed.

Quick Quiz 4.46: What else had you better have done
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when using a biased counter?

Although a biased counter can be quite helpful and
useful, it is only a partial solution to the removable I/O
device access-count problem called out on page 29. When
attempting to remove a device, we must not only know
the precise number of current I/O accesses, we also need
to prevent any future accesses from starting. One way
to accomplish this is to read-acquire a reader-writer lock
when updating the counter, and to write-acquire that same
reader-writer lock when checking the counter. Code for
doing I/O might be as follows:

1 read_lock(&mylock);
2 if (removing) {
3 read_unlock(&mylock);
4 cancel_io();
5 } else {
6 add_count(1);
7 read_unlock(&mylock);
8 do_io();
9 sub_count(1);

10 }

Line 1 read-acquires the lock, and either line 3 or 7
releases it. Line 2 checks to see if the device is being
removed, and, if so, line 3 releases the lock and line 4
cancels the I/O, or takes whatever action is appropriate
given that the device is to be removed. Otherwise, line 6
increments the access count, line 7 releases the lock, line 8
performs the I/O, and line 9 decrements the access count.

Quick Quiz 4.47: This is ridiculous! We are read-
acquiring a reader-writer lock to update the counter?
What are you playing at???

The code to remove the device might be as follows:

1 write_lock(&mylock);
2 removing = 1;
3 sub_count(mybias);
4 write_unlock(&mylock);
5 while (read_count() != 0) {
6 poll(NULL, 0, 1);
7 }
8 remove_device();

Line 1 write-acquires the lock and line 4 releases it.
Line 2 notes that the device is being removed, and the
loop spanning lines 5-7 wait for any I/O operations to
complete. Finally, line 8 does any additional processing
needed to prepare for device removal.

Quick Quiz 4.48: What other issues would need to be
accounted for in a real system?

4.6 Parallel Counting Discussion

This chapter has presented the reliability, performance,
and scalability problems with traditional counting primi-
tives. The C-language ++ operator is not guaranteed to
function reliably in multithreaded code, and atomic oper-
ations to a single variable neither perform nor scale well.
This chapter has also presented a number of counting al-
gorithms that perform and scale extremely well in certain
special cases.

Table 4.1 shows the performance of the three parallel
statistical counting algorithms. All three algorithms pro-
vide perfect linear scalability for updates. The per-thread-
variable implementation is significantly faster on updates
than the array-based implementation, but is slower at
reads, and suffers severe lock contention when there are
many parallel readers. This contention can be addressed
using techniques introduced in Chapter 8, as shown on
the last row of Table 4.1.

Quick Quiz 4.49: On the count_stat.c row of
Table 4.1, we see that the update side scales linearly with
the number of threads. How is that possible given that the
more threads there are, the more per-thread counters must
be summed up?

Quick Quiz 4.50: Even on the last row of Table 4.1,
the read-side performance of these statistical counter im-
plementations is pretty horrible. So why bother with
them?

Figure 4.2 shows the performance of the parallel limit-
counting algorithms. Exact enforcement of the limits
incurs a substantial performance penalty, although on the
Power 5 system this penalty can be reduced by substitut-
ing read-side signals for update-side atomic operations.
All of these implementations suffer from read-side lock
contention in the face of concurrent readers.

Quick Quiz 4.51: Given the performance data shown
in Table 4.2, we should always prefer update-side signals
over read-side atomic operations, right?

Quick Quiz 4.52: Can advanced techniques be ap-
plied to address the lock contention for readers seen in
Table 4.2?

The fact that these algorithms only work well in their
respective special cases might be considered a major prob-
lem with parallel programming in general. After all, the
C-language ++ operator works just fine in single-threaded
code, and not just for special cases, but in general, right?

This line of reasoning does contain a grain of truth, but
is in essence misguided. The problem is not parallelism
as such, but rather scalability. To understand this, first

count_stat.c
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Reads
Algorithm Section Updates 1 Core 64 Cores
count_stat.c 4.2.2 40.4 ns 220 ns 220 ns
count_end.c 4.2.4 6.7 ns 521 ns 205,000 ns
count_end_rcu.c 9.1 6.7 ns 481 ns 3,700 ns

Table 4.1: Statistical Counter Performance on Power 5

Reads
Algorithm Section Exact? Updates 1 Core 64 Cores
count_lim.c 4.9 N 9.7 ns 517 ns 202,000 ns
count_lim_app.c 4.3.4 N 6.6 ns 520 ns 205,000 ns
count_lim_atomic.c 4.4.1 Y 56.1 ns 606 ns 166,000 ns
count_lim_sig.c 4.4.4 Y 17.5 ns 520 ns 205,000 ns

Table 4.2: Limit Counter Performance on Power 5

consider the C-language ++ operator. The fact is that it
does not work in general, only for a restricted range of
numbers. If you need to deal with 1,000-digit decimal
numbers, the C-language ++ operator will not work for
you.

Quick Quiz 4.53: The ++ operator works just fine
for 1,000-digit numbers! Haven’t you heard of operator
overloading???

This problem is not specific to arithmetic. Suppose you
need to store and query data. Should you use an ASCII
file, XML, a relational database, a linked list, a dense
array, a B-tree, a radix tree, or any of the plethora of other
data structures and environments that permit data to be
stored and queried? It depends on what you need to do,
how fast you need it done, and how large your data set is.

Similarly, if you need to count, your solution will de-
pend on how large of numbers you need to work with,
how many CPUs need to be manipulating a given number
concurrently, how the number is to be used, and what
level of performance and scalability you will need.

Nor is this problem specific to software. The design
for a bridge meant to allow people to walk across a small
brook might be a simple as a plank thrown across the
brook. But this solution of using a plank does not scale.
You would probably not use a plank to span the kilometers-
wide mouth of the Columbia River, nor would such a
design be advisable for bridges carrying concrete trucks.
In short, just as bridge design must change with increasing
span and load, so must software design change as the
number of CPUs increases.

The examples in this chapter have shown that an impor-

tant tool permitting large numbers of CPUs to be brought
to bear is partitioning. Whether fully partitioned, as in
the statistical counters discussed in Section 4.2, or par-
tially partitioned as in the limit counters discussed in
Sections 4.3 and 4.4. Partitioning will be considered in
far greater depth in the next chapter.

Quick Quiz 4.54: But if we are going to have to parti-
tion everything, why bother with shared-memory multi-
threading? Why not just partition the problem completely
and run as multiple processes, each in its own address
space?

count_stat.c
count_end.c
count_end_rcu.c
count_lim.c
count_lim_app.c
count_lim_atomic.c
count_lim_sig.c


48 CHAPTER 4. COUNTING



Chapter 5

Partitioning and Synchronization Design

This chapter describes how to design software to take
advantage of the multiple CPUs that are increasingly ap-
pearing in commodity systems. It does this by presenting
a number of idioms, or “design patterns” that can help
you balance performance, scalability, and response time.
As noted in earlier chapters, the most important decision
you will make when creating parallel software is how to
carry out the partitioning. Correctly partitioned problems
lead to simple, scalable, and high-performance solutions,
while poorly partitioned problems result in slow and com-
plex solutions.

@@@ roadmap @@@

5.1 Partitioning Exercises

This section uses a pair of exercises (the classic Din-
ing Philosophers problem and a double-ended queue) to
demonstrate the value of partitioning.

5.1.1 Dining Philosophers Problem

Figure 5.1 shows a diagram of the classic Dining Philoso-
phers problem [Dij71]. This problem features five philoso-
phers who do nothing but think and eat a “very difficult
kind of spaghetti” which requires two forks to eat. A
given philosopher is permitted to use only the forks to his
or her immediate right and left, and once a philosopher
picks up a fork, he or she will not put it down until sated.

The object is to construct an algorithm that, quite liter-
ally, prevents starvation. One starvation scenario would
be if all of the philosophers picked up their leftmost forks
simultaneously. Because none of them would put down
their fork until after they ate, and because none of them
may pick up their second fork until at least one has fin-
ished eating, they all starve.

P1

P2

P3P4

P5

Figure 5.1: Dining Philosophers Problem

Dijkstra’s solution used a global semaphore, which
works fine assuming negligible communications delays,
an assumption that has become invalid in the ensuing
decades. Therefore, recent solutions number the forks
as shown in Figure 5.2. Each philosopher picks up the
lowest-numbered fork next to his or her plate, then picks
up the highest-numbered fork. The philosopher sitting
in the uppermost position in the diagram thus picks up
the leftmost fork first, then the rightmost fork, while the
rest of the philosophers instead pick up their rightmost
fork first. Because two of the philosophers will attempt
to pick up fork 1 first, and because only one of those
two philosophers will succeed, there will be five forks
available to four philosophers. At least one of these four
will be guaranteed to have two forks, and thus be able to
proceed eating.

This general technique of numbering resources and

49
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P1

1

P2

2

P3

3

P4

4

P5

5

Figure 5.2: Dining Philosophers Problem, Textbook Solu-
tion

acquiring them in numerical order is heavily used as a
deadlock-prevention technique. However, it is easy to
imagine a sequence of events that will result in only one
philosopher eating at a time even though all are hungry:

1. P2 picks up fork 1, preventing P1 from taking a fork.

2. P3 picks up fork 2.

3. P4 picks up fork 3.

4. P5 picks up fork 4.

5. P5 picks up fork 5 and eats.

6. P5 puts down forks 4 and 5.

7. P4 picks up fork 4 and eats.

Please think about ways of partitioning the Dining
Philosophers Problem before reading further.
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P1

P2

P3

P4

Figure 5.3: Dining Philosophers Problem, Partitioned

One approach is shown in Figure 5.3, which includes
four philosophers rather than five to better illustrate the
partition technique. Here the upper and rightmost philoso-
phers share a pair of forks, while the lower and leftmost
philosophers share another pair of forks. If all philoso-
phers are simultaneously hungry, at least two will be able
to eat concurrently. In addition, as shown in the figure, the
forks can now be bundled so that the pair are picked up
and put down simultaneously, simplifying the acquisition
and release algorithms.

Quick Quiz 5.1: Is there a better solution to the Dining
Philosophers Problem?

This is an example of “horizontal parallelism” [Inm85]
or “data parallelism”, so named because there is no de-
pendency among the philosophers. In a data-processing
system, a given item of data would pass through only one
of a replicated set of software components.

Quick Quiz 5.2: And in just what sense can this “hori-
zontal parallelism” be said to be “horizontal”?

5.1.2 Double-Ended Queue

A double-ended queue is a data structure containing a
list of elements that may be inserted or removed from
either end [Knu73]. It has been claimed that a lock-based
implementation permitting concurrent operations on both
ends of the double-ended queue is difficult [Gro07]. This
section shows how a partitioning design strategy can result
in a reasonably simple implementation, looking at three
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Figure 5.4: Double-Ended Queue With Left- and Right-
Hand Locks

general approaches in the following sections.

5.1.2.1 Right- and Left-Hand Locks

One seemingly straightforward approach would be to have
a left-hand lock for left-hand-end enqueue and dequeue
operations along with a right-hand lock for right-hand-
end operations, as shown in Figure 5.4. However, the
problem with this approach is that the two locks’ domains
must overlap when there are fewer than four elements
on the list. This overlap is due to the fact that removing
any given element affects not only that element, but also
its left- and right-hand neighbors. These domains are
indicated by color in the figure, with blue indicating the
domain of the left-hand lock, red indicating the domain
of the right-hand lock, and purple indicating overlapping
domains. Although it is possible to create an algorithm
that works this way, the fact that it has no fewer than five
special cases should raise a big red flag, especially given
that concurrent activity at the other end of the list can
shift the queue from one special case to another at any
time. It is far better to consider other designs.
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Lock L

DEQ L

Lock R

DEQ R

Figure 5.5: Compound Double-Ended Queue

5.1.2.2 Compound Double-Ended Queue

One way of forcing non-overlapping lock domains is
shown in Figure 5.5. Two separate double-ended queues
are run in tandem, each protected by its own lock. This
means that elements must occasionally be shuttled from
one of the double-ended queues to the other, in which case
both locks must be held. A simple lock hierarchy may
be used to avoid deadlock, for example, always acquiring
the left-hand lock before acquiring the right-hand lock.
This will be much simpler than applying two locks to
the same double-ended queue, as we can unconditionally
left-enqueue elements to the left-hand queue and right-
enqueue elements to the right-hand queue. The main com-
plication arises when dequeuing from an empty queue, in
which case it is necessary to:

1. If holding the right-hand lock, release it and acquire
the left-hand lock, rechecking that the queue is still
empty.

2. Acquire the right-hand lock.

3. Rebalance the elements across the two queues.

4. Remove the required element.

5. Release both locks.

Quick Quiz 5.3: In this compound double-ended
queue implementation, what should be done if the queue
has become non-empty while releasing and reacquiring
the lock?

The rebalancing operation might well shuttle a given
element back and forth between the two queues, wasting
time and possibly requiring workload-dependent heuris-
tics to obtain optimal performance. Although this might
well be the best approach in some cases, it is interesting
to try for an algorithm with greater determinism.

5.1.2.3 Hashed Double-Ended Queue

One of the simplest and most effective ways to deter-
ministically partition a data structure is to hash it. It is

Lock 0
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Lock 1
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Figure 5.6: Hashed Double-Ended Queue

possible to trivially hash a double-ended queue by assign-
ing each element a sequence number based on its position
in the list, so that the first element left-enqueued into
an empty queue is numbered zero and the first element
right-enqueued into an empty queue is numbered one. A
series of elements left-enqueued into an otherwise-idle
queue would be assigned decreasing numbers (-1, -2, -
3, ...), while a series of elements right-enqueued into an
otherwise-idle queue would be assigned increasing num-
bers (2, 3, 4, ...). A key point is that it is not necessary
to actually represent a given element’s number, as this
number will be implied by its position in the queue.

Given this approach, we assign one lock to guard the
left-hand index, one to guard the right-hand index, and
one lock for each hash chain. Figure 5.6 shows the result-
ing data structure given four hash chains. Note that the
lock domains do not overlap, and that deadlock is avoided
by acquiring the index locks before the chain locks, and
by never acquiring more than one lock of each type (index
or chain) at a time.

Each hash chain is itself a double-ended queue, and
in this example, each holds every fourth element. The
uppermost portion of Figure 5.7 shows the state after a
single element (“R1”) has been right-enqueued, with the
right-hand index having been incremented to reference
hash chain 2. The middle portion of this same figure
shows the state after three more elements have been right-
enqueued. As you can see, the indexes are back to their
initial states, however, each hash chain is now non-empty.
The lower portion of this figure shows the state after
three additional elements have been left-enqueued and an
additional element has been right-enqueued.

From the last state shown in Figure 5.7, a left-dequeue
operation would return element “L-2” and left the left-
hand index referencing hash chain 2, which would then
contain only a single element (“R2”). In this state, a
left-enqueue running concurrently with a right-enqueue
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Figure 5.7: Hashed Double-Ended Queue After Insertions

would result in lock contention, but the probability of such
contention can be arbitrarily reduced by using a larger
hash table.

Figure 5.8 shows how 12 elements would be organized
in a four-hash-bucket parallel double-ended queue. Each
underlying single-lock double-ended queue holds a one-
quarter slice of the full parallel double-ended queue.

Figure 5.9 shows the corresponding C-language data
structure, assuming an existing struct deq that pro-
vides a trivially locked double-ended-queue implementa-
tion. This data structure contains the left-hand lock on
line 2, the left-hand index on line 3, the right-hand lock
on line 4, the right-hand index on line 5, and, finally, the
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Figure 5.8: Hashed Double-Ended Queue With 12 Ele-
ments

1 struct pdeq {
2 spinlock_t llock;
3 int lidx;
4 spinlock_t rlock;
5 int ridx;
6 struct deq bkt[DEQ_N_BKTS];
7 };

Figure 5.9: Lock-Based Parallel Double-Ended Queue
Data Structure

hashed array of simple lock-based double-ended queues
on line 6. A high-performance implementation would
of course use padding or special alignment directives to
avoid false sharing.

Figure 5.10 shows the implementation of the enqueue
and dequeue functions.1 Discussion will focus on the left-
hand operations, as the right-hand operations are trivially
derived from them.

Lines 1-13 show pdeq_dequeue_l(), which left-
dequeues and returns an element if possible, returning
NULL otherwise. Line 6 acquires the left-hand spinlock,
and line 7 computes the index to be dequeued from. Line 8
dequeues the element, and, if line 9 finds the result to be
non-NULL, line 10 records the new left-hand index. Either
way, line 11 releases the lock, and, finally, line 12 returns
the element if there was one, or NULL otherwise.

Lines 15-24 shows pdeq_enqueue_l(), which left-
enqueues the specified element. Line 19 acquires the
left-hand lock, and line 20 picks up the left-hand in-
dex. Line 21 left-enqueues the specified element onto
the double-ended queue indexed by the left-hand index.
Line 22 updates the left-hand index, and finally line 23
releases the lock.

As noted earlier, the right-hand operations are com-
pletely analogous to their left-handed counterparts.

Quick Quiz 5.4: Is the hashed double-ended queue a
good solution? Why or why not?

1 One could easily create a polymorphic implementation in any
number of languages, but doing so is left as an exercise for the reader.
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1 struct element *pdeq_dequeue_l(struct pdeq *d)
2 {
3 struct element *e;
4 int i;
5
6 spin_lock(&d->llock);
7 i = moveright(d->lidx);
8 e = deq_dequeue_l(&d->bkt[i]);
9 if (e != NULL)
10 d->lidx = i;
11 spin_unlock(&d->llock);
12 return e;
13 }
14
15 void pdeq_enqueue_l(struct element *e, struct pdeq *d)
16 {
17 int i;
18
19 spin_lock(&d->llock);
20 i = d->lidx;
21 deq_enqueue_l(e, &d->bkt[i]);
22 d->lidx = moveleft(d->lidx);
23 spin_unlock(&d->llock);
24 }
25
26 struct element *pdeq_dequeue_r(struct pdeq *d)
27 {
28 struct element *e;
29 int i;
30
31 spin_lock(&d->rlock);
32 i = moveleft(d->ridx);
33 e = deq_dequeue_r(&d->bkt[i]);
34 if (e != NULL)
35 d->ridx = i;
36 spin_unlock(&d->rlock);
37 return e;
38 }
39
40 void pdeq_enqueue_r(struct element *e, struct pdeq *d)
41 {
42 int i;
43
44 spin_lock(&d->rlock);
45 i = d->ridx;
46 deq_enqueue_r(e, &d->bkt[i]);
47 d->ridx = moveright(d->lidx);
48 spin_unlock(&d->rlock);
49 }

Figure 5.10: Lock-Based Parallel Double-Ended Queue
Implementation

5.1.2.4 Compound Double-Ended Queue Revisited

This section revisits the compound double-ended queue,
using a trivial rebalancing scheme that moves all the ele-
ments from the non-empty queue to the now-empty queue.

Quick Quiz 5.5: Move all the elements to the queue
that became empty? In what possible universe is this
braindead solution in any way optimal???

In contrast to the hashed implementation presented in
the previous section, the compound implementation will
build on a sequential implementation of a double-ended
queue that uses neither locks nor atomic operations.

Figure 5.11 shows the implementation. Unlike the
hashed implementation, this compound implementation
is asymmetric, so that we must consider the pdeq_
dequeue_l() and pdeq_dequeue_r() implemen-
tations separately.

Quick Quiz 5.6: Why can’t the compound parallel
double-ended queue implementation be symmetric?

The pdeq_dequeue_l() implementation is shown
on lines 1-16 of the figure. Line 6 acquires the left-hand
lock, which line 14 releases. Line 7 attempts to left-
dequeue an element from the left-hand underlying double-
ended queue, and, if successful, skips lines 8-13 to simply
return this element. Otherwise, line 9 acquires the right-
hand lock, line 10 left-dequeues an element from the right-
hand queue, and line 11 moves any remaining elements on
the right-hand queue to the left-hand queue, and line 12
releases the right-hand lock. The element, if any, that was
dequeued on line 10 will be returned.

The pdeq_dequeue_r() implementation is shown
on lines 18-38 of the figure. As before, line 23 acquires
the right-hand lock (and line 36 releases it), and line 24
attempts to right-dequeue an element from the right-hand
queue, and, if successful, skips lines 24-35 to simply
return this element. However, if line 25 determines that
there was no element to dequeue, line 26 releases the
right-hand lock and lines 27-28 acquire both locks in
the proper order. Line 29 then attempts to right-dequeue
an element from the right-hand list again, and if line 30
determines that this second attempt has failed, line 31
right-dequeues an element from the left-hand queue (if
there is one available) and line 32 moves any remaining
elements from the left-hand queue to the right-hand queue.
Either way, line 34 releases the left-hand lock.

Quick Quiz 5.7: Why is it necessary to retry the right-
dequeue operation on line 29 of Figure 5.11?

Quick Quiz 5.8: Surely the left-hand lock must some-
times be available!!! So why is it necessary that line 26 of
Figure 5.11 unconditionally release the right-hand lock?
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1 struct list_head *pdeq_dequeue_l(struct pdeq *d)
2 {
3 struct list_head *e;
4 int i;
5
6 spin_lock(&d->llock);
7 e = deq_dequeue_l(&d->ldeq);
8 if (e == NULL) {
9 spin_lock(&d->rlock);
10 e = deq_dequeue_l(&d->rdeq);
11 list_splice_init(&d->rdeq.chain, &d->ldeq.chain);
12 spin_unlock(&d->rlock);
13 }
14 spin_unlock(&d->llock);
15 return e;
16 }
17
18 struct list_head *pdeq_dequeue_r(struct pdeq *d)
19 {
20 struct list_head *e;
21 int i;
22
23 spin_lock(&d->rlock);
24 e = deq_dequeue_r(&d->rdeq);
25 if (e == NULL) {
26 spin_unlock(&d->rlock);
27 spin_lock(&d->llock);
28 spin_lock(&d->rlock);
29 e = deq_dequeue_r(&d->rdeq);
30 if (e == NULL) {
31 e = deq_dequeue_r(&d->ldeq);
32 list_splice_init(&d->ldeq.chain, &d->rdeq.chain);
33 }
34 spin_unlock(&d->llock);
35 }
36 spin_unlock(&d->rlock);
37 return e;
38 }
39
40 void pdeq_enqueue_l(struct list_head *e, struct pdeq *d)
41 {
42 int i;
43
44 spin_lock(&d->llock);
45 deq_enqueue_l(e, &d->ldeq);
46 spin_unlock(&d->llock);
47 }
48
49 void pdeq_enqueue_r(struct list_head *e, struct pdeq *d)
50 {
51 int i;
52
53 spin_lock(&d->rlock);
54 deq_enqueue_r(e, &d->rdeq);
55 spin_unlock(&d->rlock);
56 }

Figure 5.11: Compound Parallel Double-Ended Queue
Implementation

The pdeq_enqueue_l() implementation is shown
on lines 40-47 of Figure 5.11. Line 44 acquires the left-
hand spinlock, line 45 left-enqueues the element onto
the left-hand queue, and finally line 46 releases the lock.
The pdeq_enqueue_r() implementation (shown on
lines 49-56) is quite similar.

5.1.2.5 Double-Ended Queue Discussion

The compound implementation is somewhat more com-
plex than the hashed variant presented in Section 5.1.2.3,
but is still reasonably simple. Of course, a more in-
telligent rebalancing scheme could be arbitrarily com-
plex, but the simple scheme shown here will has been
shown to perform well compared to software alterna-
tives [DCW+11] and even compared to algorithms using
hardware assist [DLM+10]. Nevertheless, the best we
can hope for from such a scheme is 2x scalability, as
at most two threads can be holding the dequeue’s locks
concurrently.

The key point is that there can be significant overhead
enqueuing to or dequeuing from a shared queue.

5.1.3 Partitioning Example Discussion

The optimal solution to the dining philosophers problem
given in the answer to the Quick Quiz in Section 5.1.1 is
an excellent example of “horizontal parallelism” or “data
parallelism”. The synchronization overhead in this case
is nearly (or even exactly) zero. In contrast, the double-
ended queue implementations are examples of “vertical
parallelism” or “pipelining”, given that data moves from
one thread to another. The tighter coordination required
for pipelining in turn requires larger units of work to
obtain a given level of efficiency.

Quick Quiz 5.9: The tandem double-ended queue runs
about twice as fast as the hashed double-ended queue,
even when I increase the size of the hash table to an
insanely large number. Why is that?

Quick Quiz 5.10: Is there a significantly better way of
handling concurrency for double-ended queues?

These two examples show just how powerful partition-
ing can be in devising parallel algorithms. However, these
example beg for more and better design criteria for paral-
lel programs, a topic taken up in the next section.



56 CHAPTER 5. PARTITIONING AND SYNCHRONIZATION DESIGN

5.2 Design Criteria
Section 1.2 called out the three parallel-programming
goals of performance, productivity, and generality. How-
ever, more detailed design criteria are required to actually
produce a real-world design, a task taken up in this sec-
tion. This being the real world, these criteria often conflict
to a greater or lesser degree, requiring that the designer
carefully balance the resulting tradeoffs.

As such, these criteria may be thought of as the
“forces” acting on the design, with particularly good
tradeoffs between these forces being called “design pat-
terns” [Ale79, GHJV95].

The design criteria for attaining the three parallel-
programming goals are speedup, contention, overhead,
read-to-write ratio, and complexity:

Speedup: As noted in Section 1.2, increased perfor-
mance is the major reason to go to all of the time and
trouble required to parallelize it. Speedup is defined
to be the ratio of the time required to run a sequential
version of the program to the time required to run a
parallel version.

Contention: If more CPUs are applied to a parallel pro-
gram than can be kept busy by that program, the
excess CPUs are prevented from doing useful work
by contention. This may be lock contention, memory
contention, or a host of other performance killers.

Work-to-Synchronization Ratio: A uniprocessor,
single-threaded, non-preemptible, and non-
interruptible2 version of a given parallel program
would not need any synchronization primitives.
Therefore, any time consumed by these primitives
(including communication cache misses as well
as message latency, locking primitives, atomic
instructions, and memory barriers) is overhead that
does not contribute directly to the useful work that
the program is intended to accomplish. Note that
the important measure is the relationship between
the synchronization overhead and the overhead of
the code in the critical section, with larger critical
sections able to tolerate greater synchronization
overhead. The work-to-synchronization ratio is
related to the notion of synchronization efficiency.

Read-to-Write Ratio: A data structure that is rarely up-
dated may often be replicated rather than partitioned,

2 Either by masking interrupts or by being oblivious to them.

and furthermore may be protected with asymmet-
ric synchronization primitives that reduce readers’
synchronization overhead at the expense of that of
writers, thereby reducing overall synchronization
overhead. Corresponding optimizations are possible
for frequently updated data structures, as discussed
in Chapter 4.

Complexity: A parallel program is more complex than
an equivalent sequential program because the paral-
lel program has a much larger state space than does
the sequential program, although these larger state
spaces can in some cases be easily understood given
sufficient regularity and structure. A parallel pro-
grammer must consider synchronization primitives,
messaging, locking design, critical-section identifi-
cation, and deadlock in the context of this larger state
space.

This greater complexity often translates to higher
development and maintenance costs. Therefore, bud-
getary constraints can limit the number and types
of modifications made to an existing program, since
a given degree of speedup is worth only so much
time and trouble. Furthermore, there may be poten-
tial sequential optimizations that are cheaper and
more effective than parallelization. As noted in Sec-
tion 1.2.1, parallelization is but one performance
optimization of many, and is furthermore an opti-
mization that applies most readily to CPU-based
bottlenecks.

These criteria will act together to enforce a maximum
speedup. The first three criteria are deeply interrelated, so
the remainder of this section analyzes these interrelation-
ships.3

Note that these criteria may also appear as part of the
requirements specification. For example, speedup may act
as a desideratum (“the faster, the better”) or as an absolute
requirement of the workload, or “context” (“the system
must support at least 1,000,000 web hits per second”).

An understanding of the relationships between these
design criteria can be very helpful when identifying ap-
propriate design tradeoffs for a parallel program.

1. The less time a program spends in critical sections,
the greater the potential speedup. This is a conse-
quence of Amdahl’s Law [Amd67] and of the fact

3 A real-world parallel system will be subject to many additional
design criteria, such as data-structure layout, memory size, memory-
hierarchy latencies, and bandwidth limitations.
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that only one CPU may execute within a given criti-
cal section at a given time.

2. The fraction of time that the program spends in a
given exclusive critical section must be much less
than the reciprocal of the number of CPUs for the
actual speedup to approach the number of CPUs.
For example, a program running on 10 CPUs must
spend much less than one tenth of its time in the
most-restrictive critical section if it is to scale at all
well.

3. Contention effects will consume the excess CPU
and/or wallclock time should the actual speedup be
less than the number of available CPUs. The larger
the gap between the number of CPUs and the ac-
tual speedup, the less efficiently the CPUs will be
used. Similarly, the greater the desired efficiency,
the smaller the achievable speedup.

4. If the available synchronization primitives have high
overhead compared to the critical sections that they
guard, the best way to improve speedup is to reduce
the number of times that the primitives are invoked
(perhaps by batching critical sections, using data
ownership, using RCU, or by moving toward a more
coarse-grained design such as code locking).

5. If the critical sections have high overhead compared
to the primitives guarding them, the best way to im-
prove speedup is to increase parallelism by moving
to reader/writer locking, data locking, RCU, or data
ownership.

6. If the critical sections have high overhead compared
to the primitives guarding them and the data struc-
ture being guarded is read much more often than
modified, the best way to increase parallelism is to
move to reader/writer locking or RCU.

7. Many changes that improve SMP performance, for
example, reducing lock contention, also improve
response times.

5.3 Synchronization Granularity
Figure 5.12 gives a pictorial view of different levels of
synchronization granularity, each of which is described
in one of the following sections. These sections focus
primarily on locking, but similar granularity issues arise
with all forms of synchronization.

Program
Sequential
Program

Sequential

Ownership
Data

Locking
Data

Locking
Code

Batch

Disown

Batch

Own

Partition

Partition

Figure 5.12: Design Patterns and Lock Granularity

5.3.1 Sequential Program

If the program runs fast enough on a single processor, and
has no interactions with other processes, threads, or in-
terrupt handlers, you should remove the synchronization
primitives and spare yourself their overhead and complex-
ity. Some years back, there were those who would argue
that Moore’s Law would eventually force all programs
into this category. However, given the cessation in rate
of CPU MIPS and clock-frequency growth in Intel CPUs
since the year 2003, as can be seen in Figure 5.13 increas-
ing performance will increasingly require parallelism.4

The debate as to whether this new trend will result in
single chips with thousands of CPUs will not be settled
soon, but given that Paul is typing this sentence on a dual-
core laptop, the age of SMP does seem to be upon us.
It is also important to note that Ethernet bandwidth is
continuing to grow, as shown in Figure 5.14. This growth
will motivate multithreaded servers in order to handle the
communications load.

Please note that this does not mean that you should
code each and every program in a multi-threaded manner.
Again, if a program runs quickly enough on a single

4 This plot shows clock frequencies for newer CPUs theoretically
capable of retiring one or more instructions per clock, and MIPS for
older CPUs requiring multiple clocks to execute even the simplest
instruction. The reason for taking this approach is that the newer CPUs’
ability to retire multiple instructions per clock is typically limited by
memory-system performance.
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Figure 5.13: MIPS/Clock-Frequency Trend for Intel
CPUs

processor, spare yourself the overhead and complexity of
SMP synchronization primitives. The simplicity of the
hash-table lookup code in Figure 5.15 underscores this
point.5

On the other hand, if you are not in this happy situation,
read on!

5.3.2 Code Locking
Code locking is the simplest locking design, using only
global locks.6 It is especially easy to retrofit an exist-
ing program to use code locking in order to run it on a
multiprocessor. If the program has only a single shared re-
source, code locking will even give optimal performance.
However, many of the larger and more complex programs
require much of the execution to occur in critical sections,
which in turn causes code locking to sharply limits their
scalability.

Therefore, you should use code locking on programs
that spend only a small fraction of their execution time
in critical sections or from which only modest scaling
is required. In these cases, code locking will provide
a relatively simple program that is very similar to its

5 The examples in this section are taken from Hart et al. [HMB06],
adapted for clarity by gathering code related code from multiple files.

6 If your program instead has locks in data structures, or, in the case
of Java, uses classes with synchronized instances, you are instead using
“data locking”, described in Section 5.3.3.
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Figure 5.14: Ethernet Bandwidth vs. Intel x86 CPU
Performance

sequential counterpart, as can be seen in Figure 5.16.
However, not that the simple return of the comparison
in hash_search() in Figure 5.15 has now become
three statements due to the need to release the lock before
returning.

However, code locking is particularly prone to “lock
contention”, where multiple CPUs need to acquire the
lock concurrently. SMP programmers who have taken
care of groups of small children (or of older people who
are acting like children) will immediately recognize the
danger of having only one of something, as illustrated in
Figure 5.17.

One solution to this problem, named “data locking”, is
described in the next section.

5.3.3 Data Locking

Many data structures may be partitioned, with each par-
tition of the data structure having its own lock. Then
the critical sections for each part of the data structure
can execute in parallel, although only one instance of the
critical section for a given part could be executing at a
given time. Use data locking when contention must be
reduced, and where synchronization overhead is not lim-
iting speedups. Data locking reduces contention by dis-
tributing the instances of the overly-large critical section
into multiple critical sections, for example, maintaining
per-hash-bucket critical sections in a hash table, as shown
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1 struct hash_table
2 {
3 long nbuckets;
4 struct node **buckets;
5 };
6
7 typedef struct node {
8 unsigned long key;
9 struct node *next;
10 } node_t;
11
12 int hash_search(struct hash_table *h, long key)
13 {
14 struct node *cur;
15
16 cur = h->buckets[key % h->nbuckets];
17 while (cur != NULL) {
18 if (cur->key >= key) {
19 return (cur->key == key);
20 }
21 cur = cur->next;
22 }
23 return 0;
24 }

Figure 5.15: Sequential-Program Hash Table Search

1 spinlock_t hash_lock;
2
3 struct hash_table
4 {
5 long nbuckets;
6 struct node **buckets;
7 };
8
9 typedef struct node {
10 unsigned long key;
11 struct node *next;
12 } node_t;
13
14 int hash_search(struct hash_table *h, long key)
15 {
16 struct node *cur;
17 int retval;
18
19 spin_lock(&hash_lock);
20 cur = h->buckets[key % h->nbuckets];
21 while (cur != NULL) {
22 if (cur->key >= key) {
23 retval = (cur->key == key);
24 spin_unlock(&hash_lock);
25 return retval;
26 }
27 cur = cur->next;
28 }
29 spin_unlock(&hash_lock);
30 return 0;
31 }

Figure 5.16: Code-Locking Hash Table Search

Figure 5.17: Lock Contention

in Figure 5.18. The increased scalability again results in
increased complexity in the form of an additional data
structure, the struct bucket.

In contrast with the contentious situation shown in
Figure 5.17, data locking helps promote harmony, as il-
lustrated by Figure 5.19 — and in parallel programs, this
almost always translates into increased performance and
scalability. For this reason, data locking was heavily used
by Sequent in both its DYNIX and DYNIX/ptx operating
systems [BK85, Inm85, Gar90, Dov90, MD92, MG92,
MS93].

However, as those how have taken care of small chil-
dren can again attest, even providing enough to go around
is no guarantee of tranquillity. The analogous situation
can arise in SMP programs. For example, the Linux
kernel maintains a cache of files and directories (called
“dcache”). Each entry in this cache has its own lock, but
the entries corresponding to the root directory and its di-
rect descendants are much more likely to be traversed than
are more obscure entries. This can result in many CPUs
contending for the locks of these popular entries, resulting
in a situation not unlike that shown in Figure 5.20.

In many cases, algorithms can be designed to reduce
the instance of data skew, and in some cases eliminate it
entirely (as appears to be possible with the Linux kernel’s
dcache [MSS04]). Data locking is often used for parti-
tionable data structures such as hash tables, as well as
in situations where multiple entities are each represented
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1 struct hash_table
2 {
3 long nbuckets;
4 struct bucket **buckets;
5 };
6
7 struct bucket {
8 spinlock_t bucket_lock;
9 node_t *list_head;
10 };
11
12 typedef struct node {
13 unsigned long key;
14 struct node *next;
15 } node_t;
16
17 int hash_search(struct hash_table *h, long key)
18 {
19 struct bucket *bp;
20 struct node *cur;
21 int retval;
22
23 bp = h->buckets[key % h->nbuckets];
24 spin_lock(&bp->bucket_lock);
25 cur = bp->list_head;
26 while (cur != NULL) {
27 if (cur->key >= key) {
28 retval = (cur->key == key);
29 spin_unlock(&bp->hash_lock);
30 return retval;
31 }
32 cur = cur->next;
33 }
34 spin_unlock(&bp->hash_lock);
35 return 0;
36 }

Figure 5.18: Data-Locking Hash Table Search

Figure 5.19: Data Locking

by an instance of a given data structure. The task list in
version 2.6.17 of the Linux kernel is an example of the
latter, each task structure having its own proc_lock.

A key challenge with data locking on dynamically allo-
cated structures is ensuring that the structure remains in
existence while the lock is being acquired. The code in
Figure 5.18 finesses this challenge by placing the locks
in the statically allocated hash buckets, which are never
freed. However, this trick would not work if the hash
table were resizeable, so that the locks were now dynami-
cally allocated. In this case, there would need to be some
means to prevent the hash bucket from being freed during
the time that its lock was being acquired.

Quick Quiz 5.11: What are some ways of prevent-
ing a structure from being freed while its lock is being
acquired?

5.3.4 Data Ownership
Data ownership partitions a given data structure over the
threads or CPUs, so that each thread/CPU accesses its
subset of the data structure without any synchronization
overhead whatsoever. However, if one thread wishes to
access some other thread’s data, the first thread is unable
to do so directly. Instead, the first thread must commu-
nicate with the second thread, so that the second thread
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Figure 5.20: Data Locking and Skew

performs the operation on behalf of the first, or, alterna-
tively, migrates the data to the first thread.

Data ownership might seem arcane, but it is used very
frequently:

1. Any variables accessible by only one CPU or thread
(such as auto variables in C and C++) are owned
by that CPU or process.

2. An instance of a user interface owns the correspond-
ing user’s context. It is very common for applica-
tions interacting with parallel database engines to be
written as if they were entirely sequential programs.
Such applications own the user interface and his cur-
rent action. Explicit parallelism is thus confined to
the database engine itself.

3. Parametric simulations are often trivially parallelized
by granting each thread ownership of a particular
region of the parameter space.

If there is significant sharing, communication between
the threads or CPUs can result in significant complexity
and overhead. Furthermore, if the most-heavily used data
happens to be that owned by a single CPU, that CPU will
be a “hot spot”, sometimes with results resembling that
shown in Figure 5.20. However, in situations where no
sharing is required, data ownership achieves ideal per-
formance, and with code that can be as simple as the

sequential-program case shown in Figure 5.15. Such situ-
ations are often referred to as “embarrassingly parallel”,
and, in the best case, resemble the situation previously
shown in Figure 5.19.

Another important instance of data ownership occurs
when the data is read-only, in which case, all threads can
“own” it via replication.

5.3.5 Locking Granularity and Perfor-
mance

This section looks at locking granularity and performance
from a mathematical synchronization-efficiency view-
point. Readers who are uninspired by mathematics might
choose to skip this section.

The approach is to use a crude queueing model for the
efficiency of synchronization mechanism that operate on
a single shared global variable, based on an M/M/1 queue.
M/M/1 queuing models are based on an exponentially
distributed “inter-arrival rate” λ and an exponentially
distributed “service rate” µ . The inter-arrival rate λ can
be thought of as the average number of synchronization
operations per second that the system would process if the
synchronization were free, in other words, λ is an inverse
measure of the overhead of each non-synchronization
unit of work. For example, if each unit of work was a
transaction, if each transaction took one millisecond to
process, not counting synchronization overhead, then λ

would be 1,000 transactions per second.
The service rate µ is defined similarly, but for the aver-

age number of synchronization operations per second that
the system would process if the overhead of each transac-
tion was zero, and ignoring the fact that CPUs must wait
on each other to complete their increment operations, in
other words, µ can be roughly thought of as the synchro-
nization overhead in absence of contention. For example,
some recent computer systems are able to do an atomic
increment every 25 nanoseconds or so if all CPUs are
doing atomic increments in a tight loop.7 The value of
µ is therefore about 40,000,000 atomic increments per
second.

Of course, the value of λ increases with increasing
numbers of CPUs, as each CPU is capable of processing
transactions independently (again, ignoring synchroniza-
tion):

7 Of course, if there are 8 CPUs, each CPU must wait 175 nanosec-
onds for each of the other CPUs to do its increment before consuming
an additional 25 nanoseconds doing its own increment.
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λ = nλ0 (5.1)

where n is the number of CPUs and λ0 is the
transaction-processing capability of a single CPU. Note
that the expected time for a single CPU to execute a single
transaction is 1/λ0.

Because the CPUs have to “wait in line” behind each
other to get their chance to increment the single shared
variable, we can use the M/M/1 queueing-model expres-
sion for the expected total waiting time:

T =
1

µ−λ
(5.2)

Substituting the above value of λ :

T =
1

µ−nλ0
(5.3)

Now, the efficiency is just the ratio of the time required
to process a transaction in absence of synchronization to
the time required including synchronization:

e =
1/λ0

T +1/λ0
(5.4)

Substituting the above value for T and simplifying:

e =
µ

λ0
−n

µ

λ0
− (n−1)

(5.5)

But the value of µ/λ0 is just the ratio of the time re-
quired to process the transaction (absent synchronization
overhead) to that of the synchronization overhead itself
(absent contention). If we call this ratio f , we have:

e =
f −n

f − (n−1)
(5.6)

Figure 5.21 plots the synchronization efficiency e as
a function of the number of CPUs/threads n for a few
values of the overhead ratio f . For example, again using
the 25-nanosecond atomic increment, the f = 10 line cor-
responds to each CPU attempting an atomic increment
every 250 nanoseconds, and the f = 100 line corresponds
to each CPU attempting an atomic increment every 2.5
microseconds, which in turn corresponds to several thou-
sand instructions. Given that each trace drops off sharply
with increasing numbers of CPUs or threads, we can con-
clude that synchronization mechanisms based on atomic
manipulation of a single global shared variable will not
scale well if used heavily on current commodity hardware.
This is a mathematical depiction of the forces leading to
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Figure 5.21: Synchronization Efficiency

the parallel counting algorithms that were discussed in
Chapter 4.

The concept of efficiency is useful even in cases having
little or no formal synchronization. Consider for example
a matrix multiply, in which the columns of one matrix
are multiplied (via “dot product”) by the rows of another,
resulting in an entry in a third matrix. Because none of
these operations conflict, it is possible to partition the
columns of the first matrix among a group of threads,
with each thread computing the corresponding columns
of the result matrix. The threads can therefore operate
entirely independently, with no synchronization overhead
whatsoever, as is done in matmul.c. One might there-
fore expect a parallel matrix multiply to have a perfect
efficiency of 1.0.

However, Figure 5.22 tells a different story, especially
for a 64-by-64 matrix multiply, which never gets above
an efficiency of about 0.7, even when running single-
threaded. The 512-by-512 matrix multiply’s efficiency is
measurably less than 1.0 on as few as 10 threads, and even
the 1024-by-1024 matrix multiply deviates noticeably
from perfection at a few tens of threads.

Quick Quiz 5.12: How can a single-threaded 64-by-
64 matrix multiple possibly have an efficiency of less
than 1.0? Shouldn’t all of the traces in Figure 5.22 have
efficiency of exactly 1.0 when running on only one thread?
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Figure 5.22: Matrix Multiply Efficiency

Given these inefficiencies, it is worthwhile to look into
more-scalable approaches such as the data locking de-
scribed in Section 5.3.3 or the parallel-fastpath approach
discussed in the next section.

Quick Quiz 5.13: How are data-parallel techniques
going to help with matrix multiply? It is already data
parallel!!!

5.4 Parallel Fastpath

Fine-grained (and therefore usually higher-performance)
designs are typically more complex than are coarser-
grained designs. In many cases, most of the overhead
is incurred by a small fraction of the code [Knu73]. So
why not focus effort on that small fraction?

This is the idea behind the parallel-fastpath design pat-
tern, to aggressively parallelize the common-case code
path without incurring the complexity that would be re-
quired to aggressively parallelize the entire algorithm.
You must understand not only the specific algorithm you
wish to parallelize, but also the workload that the algo-
rithm will be subjected to. Great creativity and design
effort is often required to construct a parallel fastpath.

Parallel fastpath combines different patterns (one for
the fastpath, one elsewhere) and is therefore a template
pattern. The following instances of parallel fastpath occur
often enough to warrant their own patterns, as depicted in
Figure 5.23:

Fastpath
Parallel

Locking
Hierarchical

Caches
Allocator

Locking
Reader/Writer

RCU

Figure 5.23: Parallel-Fastpath Design Patterns

1. Reader/Writer Locking (described below in Sec-
tion 5.4.1).

2. Read-copy update (RCU), which may be used as
a high-performance replacement for reader/writer
locking, is introduced in Section 8.3, and will not be
discussed further in this chapter.

3. Hierarchical Locking ([McK96a]), which is touched
upon in Section 5.4.2.

4. Resource Allocator Caches ([McK96a, MS93]). See
Section 5.4.3 for more detail.

5.4.1 Reader/Writer Locking

If synchronization overhead is negligible (for example,
if the program uses coarse-grained parallelism), and if
only a small fraction of the critical sections modify data,
then allowing multiple readers to proceed in parallel can
greatly increase scalability. Writers exclude both readers
and each other. Figure 5.24 shows how the hash search
might be implemented using reader-writer locking.

Reader/writer locking is a simple instance of asymmet-
ric locking. Snaman [ST87] describes a more ornate six-
mode asymmetric locking design used in several clustered
systems. Locking in general and reader-writer locking in
particular is described extensively in Chapter 6.
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1 rwlock_t hash_lock;
2
3 struct hash_table
4 {
5 long nbuckets;
6 struct node **buckets;
7 };
8
9 typedef struct node {
10 unsigned long key;
11 struct node *next;
12 } node_t;
13
14 int hash_search(struct hash_table *h, long key)
15 {
16 struct node *cur;
17 int retval;
18
19 read_lock(&hash_lock);
20 cur = h->buckets[key % h->nbuckets];
21 while (cur != NULL) {
22 if (cur->key >= key) {
23 retval = (cur->key == key);
24 read_unlock(&hash_lock);
25 return retval;
26 }
27 cur = cur->next;
28 }
29 read_unlock(&hash_lock);
30 return 0;
31 }

Figure 5.24: Reader-Writer-Locking Hash Table Search

5.4.2 Hierarchical Locking

The idea behind hierarchical locking is to have a coarse-
grained lock that is held only long enough to work out
which fine-grained lock to acquire. Figure 5.25 shows
how our hash-table search might be adapted to do hier-
archical locking, but also shows the great weakness of
this approach: we have paid the overhead of acquiring a
second lock, but we only hold it for a short time. In this
case, the simpler data-locking approach would be simpler
and likely perform better.

Quick Quiz 5.14: In what situation would hierarchical
locking work well?

5.4.3 Resource Allocator Caches

This section presents a simplified schematic of a parallel
fixed-block-size memory allocator. More detailed descrip-
tions may be found in the literature [MG92, MS93, BA01,
MSK01] or in the Linux kernel [Tor03c].

5.4.3.1 Parallel Resource Allocation Problem

The basic problem facing a parallel memory allocator is
the tension between the need to provide extremely fast

1 struct hash_table
2 {
3 long nbuckets;
4 struct bucket **buckets;
5 };
6
7 struct bucket {
8 spinlock_t bucket_lock;
9 node_t *list_head;
10 };
11
12 typedef struct node {
13 spinlock_t node_lock;
14 unsigned long key;
15 struct node *next;
16 } node_t;
17
18 int hash_search(struct hash_table *h, long key)
19 {
20 struct bucket *bp;
21 struct node *cur;
22 int retval;
23
24 bp = h->buckets[key % h->nbuckets];
25 spin_lock(&bp->bucket_lock);
26 cur = bp->list_head;
27 while (cur != NULL) {
28 if (cur->key >= key) {
29 spin_lock(&cur->node_lock);
30 spin_unlock(&bp->bucket_lock);
31 retval = (cur->key == key);
32 spin_unlock(&cur->node_lock);
33 return retval;
34 }
35 cur = cur->next;
36 }
37 spin_unlock(&bp->bucket_lock);
38 return 0;
39 }

Figure 5.25: Hierarchical-Locking Hash Table Search
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memory allocation and freeing in the common case and
the need to efficiently distribute memory in face of unfa-
vorable allocation and freeing patterns.

To see this tension, consider a straightforward applica-
tion of data ownership to this problem — simply carve up
memory so that each CPU owns its share. For example,
suppose that a system with two CPUs has two gigabytes
of memory (such as the one that I am typing on right
now). We could simply assign each CPU one gigabyte of
memory, and allow each CPU to access its own private
chunk of memory, without the need for locking and its
complexities and overheads. Unfortunately, this simple
scheme breaks down if an algorithm happens to have CPU
0 allocate all of the memory and CPU 1 the free it, as
would happen in a simple producer-consumer workload.

The other extreme, code locking, suffers from excessive
lock contention and overhead [MS93].

5.4.3.2 Parallel Fastpath for Resource Allocation

The commonly used solution uses parallel fastpath with
each CPU owning a modest cache of blocks, and with a
large code-locked shared pool for additional blocks. To
prevent any given CPU from monopolizing the memory
blocks, we place a limit on the number of blocks that can
be in each CPU’s cache. In a two-CPU system, the flow
of memory blocks will be as shown in Figure 5.26: when
a given CPU is trying to free a block when its pool is full,
it sends blocks to the global pool, and, similarly, when
that CPU is trying to allocate a block when its pool is
empty, it retrieves blocks from the global pool.

5.4.3.3 Data Structures

The actual data structures for a “toy” implementa-
tion of allocator caches are shown in Figure 5.27.
The “Global Pool” of Figure 5.26 is implemented by
globalmem of type struct globalmempool, and
the two CPU pools by the per-CPU variable percpumem
of type percpumempool. Both of these data struc-
tures have arrays of pointers to blocks in their pool
fields, which are filled from index zero upwards. Thus,
if globalmem.pool[3] is NULL, then the remainder
of the array from index 4 up must also be NULL. The
cur fields contain the index of the highest-numbered full
element of the pool array, or -1 if all elements are empty.
All elements from globalmem.pool[0] through
globalmem.pool[globalmem.cur] must be full,
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Figure 5.26: Allocator Cache Schematic

and all the rest must be empty.8

1 #define TARGET_POOL_SIZE 3
2 #define GLOBAL_POOL_SIZE 40
3
4 struct globalmempool {
5 spinlock_t mutex;
6 int cur;
7 struct memblock *pool[GLOBAL_POOL_SIZE];
8 } globalmem;
9
10 struct percpumempool {
11 int cur;
12 struct memblock *pool[2 * TARGET_POOL_SIZE];
13 };
14
15 DEFINE_PER_THREAD(struct percpumempool, percpumem);

Figure 5.27: Allocator-Cache Data Structures

The operation of the pool data structures is illustrated
by Figure 5.28, with the six boxes representing the array
of pointers making up the pool field, and the number pre-
ceding them representing the cur field. The shaded boxes
represent non-NULL pointers, while the empty boxes rep-
resent NULL pointers. An important, though potentially
confusing, invariant of this data structure is that the cur
field is always one smaller than the number of non-NULL
pointers.

8 Both pool sizes (TARGET_POOL_SIZE and GLOBAL_POOL_
SIZE) are unrealistically small, but this small size makes it easier to
single-step the program in order to get a feel for its operation.
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Figure 5.28: Allocator Pool Schematic

5.4.3.4 Allocation Function

The allocation function memblock_alloc() may be
seen in Figure 5.29. Line 7 picks up the current thread’s
per-thread pool, and line 8 check to see if it is empty.

If so, lines 9-16 attempt to refill it from the global pool
under the spinlock acquired on line 9 and released on
line 16. Lines 10-14 move blocks from the global to the
per-thread pool until either the local pool reaches its target
size (half full) or the global pool is exhausted, and line 15
sets the per-thread pool’s count to the proper value.

In either case, line 18 checks for the per-thread pool
still being empty, and if not, lines 19-21 remove a block
and return it. Otherwise, line 23 tells the sad tale of
memory exhaustion.

5.4.3.5 Free Function

Figure 5.30 shows the memory-block free function.
Line 6 gets a pointer to this thread’s pool, and line 7
checks to see if this per-thread pool is full.

If so, lines 8-15 empty half of the per-thread pool into
the global pool, with lines 8 and 14 acquiring and releas-
ing the spinlock. Lines 9-12 implement the loop moving
blocks from the local to the global pool, and line 13 sets
the per-thread pool’s count to the proper value.

In either case, line 16 then places the newly freed block
into the per-thread pool.

1 struct memblock *memblock_alloc(void)
2 {
3 int i;
4 struct memblock *p;
5 struct percpumempool *pcpp;
6
7 pcpp = &__get_thread_var(percpumem);
8 if (pcpp->cur < 0) {
9 spin_lock(&globalmem.mutex);
10 for (i = 0; i < TARGET_POOL_SIZE &&
11 globalmem.cur >= 0; i++) {
12 pcpp->pool[i] = globalmem.pool[globalmem.cur];
13 globalmem.pool[globalmem.cur--] = NULL;
14 }
15 pcpp->cur = i - 1;
16 spin_unlock(&globalmem.mutex);
17 }
18 if (pcpp->cur >= 0) {
19 p = pcpp->pool[pcpp->cur];
20 pcpp->pool[pcpp->cur--] = NULL;
21 return p;
22 }
23 return NULL;
24 }

Figure 5.29: Allocator-Cache Allocator Function

1 void memblock_free(struct memblock *p)
2 {
3 int i;
4 struct percpumempool *pcpp;
5
6 pcpp = &__get_thread_var(percpumem);
7 if (pcpp->cur >= 2 * TARGET_POOL_SIZE - 1) {
8 spin_lock(&globalmem.mutex);
9 for (i = pcpp->cur; i >= TARGET_POOL_SIZE; i--) {
10 globalmem.pool[++globalmem.cur] = pcpp->pool[i];
11 pcpp->pool[i] = NULL;
12 }
13 pcpp->cur = i;
14 spin_unlock(&globalmem.mutex);
15 }
16 pcpp->pool[++pcpp->cur] = p;
17 }

Figure 5.30: Allocator-Cache Free Function
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5.4.3.6 Performance

Rough performance results9 are shown in Figure 5.31,
running on a dual-core Intel x86 running at 1GHz (4300
bogomips per CPU) with at most six blocks allowed in
each CPU’s cache. In this micro-benchmark, each thread
repeatedly allocates a group of blocks and then frees it,
with the size of the group being the “allocation run length”
displayed on the x-axis. The y-axis shows the number of
successful allocation/free pairs per microsecond — failed
allocations are not counted. The “X”s are from a two-
thread run, while the “+”s are from a single-threaded run.
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Figure 5.31: Allocator Cache Performance

Note that run lengths up to six scale linearly and
give excellent performance, while run lengths greater
than six show poor performance and almost always also
show negative scaling. It is therefore quite important
to size TARGET_POOL_SIZE sufficiently large, which
fortunately is usually quite easy to do in actual prac-
tice [MSK01], especially given today’s large memories.
For example, in most systems, it is quite reasonable to
set TARGET_POOL_SIZE to 100, in which case alloca-
tions and frees are guaranteed to be confined to per-thread
pools at least 99% of the time.

9 This data was not collected in a statistically meaningful way, and
therefore should be viewed with great skepticism and suspicion. Good
data-collection and -reduction practice is discussed in Chapter @@@.
That said, repeated runs gave similar results, and these results match
more careful evaluations of similar algorithms.

As can be seen from the figure, the situations where the
common-case data-ownership applies (run lengths up to
six) provide greatly improved performance compared to
the cases where locks must be acquired. Avoiding locking
in the common case will be a recurring theme through
this book.

Quick Quiz 5.15: In Figure 5.31, there is a pattern of
performance rising with increasing run length in groups
of three samples, for example, for run lengths 10, 11, and
12. Why?

Quick Quiz 5.16: Allocation failures were observed
in the two-thread tests at run lengths of 19 and greater.
Given the global-pool size of 40 and the per-CPU target
pool size of three, what is the smallest allocation run
length at which failures can occur?

5.4.3.7 Real-World Design

The toy parallel resource allocator was quite simple, but
real-world designs expand on this approach in a number
of ways.

First, real-world allocators are required to handle a
wide range of allocation sizes, as opposed to the single
size shown in this toy example. One popular way to do
this is to offer a fixed set of sizes, spaced so as to balance
external and internal fragmentation, such as in the late-
1980s BSD memory allocator [MK88]. Doing this would
mean that the “globalmem” variable would need to be
replicated on a per-size basis, and that the associated lock
would similarly be replicated, resulting in data locking
rather than the toy program’s code locking.

Second, production-quality systems must be able to
repurpose memory, meaning that they must be able to coa-
lesce blocks into larger structures, such as pages [MS93].
This coalescing will also need to be protected by a lock,
which again could be replicated on a per-size basis.

Third, coalesced memory must be returned to the un-
derlying memory system, and pages of memory must also
be allocated from the underlying memory system. The
locking required at this level will depend on that of the un-
derlying memory system, but could well be code locking.
Code locking can often be tolerated at this level, because
this level is so infrequently reached in well-designed sys-
tems [MSK01].

Despite this real-world design’s greater complexity, the
underlying idea is the same — repeated application of
parallel fastpath, as shown in Table 5.1.
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Level Locking Purpose
Per-thread pool Data ownership High-speed allocation
Global block pool Data locking Distributing blocks

among threads
Coalescing Data locking Combining blocks into

pages
System memory Code locking Memory from/to system

Table 5.1: Schematic of Real-World Parallel Allocator

5.5 Performance Summary
@@@ summarize performance of the various options.
Forward-reference to the RCU/NBS section.



Chapter 6

Locking

The role of villain in much of the past few decades’ con-
currency research literature is played by locking, which
stands accused of promoting deadlocks, convoying, star-
vation, unfairness, data races, and all manner of other con-
currency sins. Interestingly enough, the role of workhorse
in shared-memory parallel software is played by, you
guessed it, locking.

There are a number of reasons behind this dichotomy:

1. Many of locking’s sins have pragmatic design solu-
tions that work well in most cases, for example:

(a) Lock hierarchies to avoid deadlock.

(b) Deadlock-detection tools, for example, the
Linux kernel’s lockdep facility [Cor06a].

(c) Locking-friendly data structures, such as ar-
rays, hash tables, and radix trees, which will
be covered in Chapter 11.

2. Some of locking’s sins are problems only at high
levels of contention, levels reached only by poorly
designed programs.

3. Some of locking’s sins are avoided by using other
synchronization mechanisms in concert with locking.
These other mechanisms include reference counters,
statistical counters, simple non-blocking data struc-
tures, and RCU.

4. Until quite recently, almost all large shared-memory
parallel programs were developed in secret, so that
it was difficult for most researchers to learn of these
pragmatic solutions.

5. All good stories need a villain, and locking has a long
and honorable history serving as a research-paper
whipping boy.

Figure 6.1: Locking: Villain or Slob?

This chapter will give an overview of a number of ways
to avoid locking’s more serious sins.

6.1 Staying Alive
Given that locking stands accused of deadlock and starva-
tion, one important concern for shared-memory parallel
developers is simply staying alive. The following sections
therefore cover deadlock, livelock, starvation, unfairness,
and inefficiency.

6.1.1 Deadlock
Deadlock occurs when each of a group of threads is hold-
ing at least one lock while at the same time waiting on a

69
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Figure 6.2: Locking: Workhorse or Hero?

lock held by a member of the same group.
Without some sort of external intervention, deadlock

is forever. No thread can acquire the lock it is waiting on
until that lock is released by the thread holding it, but the
thread holding it cannot release it until the holding thread
acquires the lock that it is waiting on.

We can create a directed-graph representation of a dead-
lock scenario with nodes for threads and locks, as shown
in Figure 6.3. An arrow from a lock to a thread indicates
that the thread holds the lock, for example, Thread B
holds Locks 2 and 4. An arrow from a thread to a lock in-
dicates that the thread is waiting on the lock, for example,
Thread B is waiting on Lock 3.

A deadlock scenario will always contain at least one
deadlock cycle. In Figure 6.3, this cycle is Thread B,
Lock 3, Thread C, Lock 4, and back to Thread B.

Quick Quiz 6.1: But the definition of deadlock only
said that each thread was holding at least one lock and
waiting on another lock that was held by some thread.
How do you know that there is a cycle?

Although there are some software environments such
as database systems that can repair an existing deadlock,
this approach requires either that one of the threads be
killed or that a lock be forcibly stolen from one of the
threads. This killing and forcible stealing can be appro-
priate for transactions, but is often problematic for kernel
and application-level use of locking: dealing with the
resulting partially updated structures can be extremely
complex, hazardous, and error-prone.

Lock 1

Thread A Lock 2

Thread BLock 3

Thread C Lock 4

Figure 6.3: Deadlock Cycle

Kernels and applications therefore work to avoid dead-
locks rather than to recover from them. There are
a number of deadlock-avoidance strategies, including
locking hierarchies (Section 6.1.1.1), local locking hi-
erarchies (Section 6.1.1.2), layered locking hierarchies
(Section 6.1.1.3), strategies for dealing with APIs con-
taining pointers to locks (Section 6.1.1.4), conditional
locking (Section 6.1.1.5), acquiring all needed locks
first (Section 6.1.1.6), single-lock-at-a-time designs (Sec-
tion 6.1.1.7), and strategies for signal/interrupt han-
dlers (Section 6.1.1.8). Although there is no deadlock-
avoidance strategy that works perfectly for all situations,
there is a good selection of deadlock-avoidance tools to
choose from.

6.1.1.1 Locking Hierarchies

Locking hierarchies order the locks and prohibit acquiring
locks out of order. In Figure 6.3, we might order the
locks numerically, so that a thread was forbidden from
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1 spin_lock(&lock2);
2 layer_2_processing(pkt);
3 nextlayer = layer_1(pkt);
4 spin_lock(&nextlayer->lock1);
5 layer_1_processing(pkt);
6 spin_unlock(&lock2);
7 spin_unlock(&nextlayer->lock1);

Figure 6.4: Protocol Layering and Deadlock

acquiring a given lock if it already held a lock with the
same or a higher number. Thread B has violated this
hierarchy because it is attempting to acquire Lock 3 while
holding Lock 4, which permitted the deadlock to occur.

Again, to apply a locking hierarchy, order the locks
and prohibit out-of-order lock acquisition. In large pro-
gram, it is wise to use tools to enforce your locking hier-
archy [Cor06a].

6.1.1.2 Local Locking Hierarchies

However, the global nature of locking hierarchies make
them difficult to apply to library functions. After all,
the program using a given library function has not even
been written yet, so how can the poor library-function
implementor possibly hope to adhere to the yet-to-be-
written program’s locking hierarchy?

One special case that is fortunately the common case
is when the library function does not invoke any of the
caller’s code. In this case, the caller’s locks will never be
acquired while holding any of the library’s locks, so that
there cannot be a deadlock cycle containing locks from
both the library and the caller.

Quick Quiz 6.2: Are there any exceptions to this rule,
so that there really could be a deadlock cycle containing
locks from both the library and the caller, even given
that the library code never invokes any of the caller’s
functions?

But suppose that a library function does invoke the
caller’s code. For example, the qsort() function in-
vokes a caller-provided comparison function. A concur-
rent implementation of qsort() likely uses locking,
which might result in deadlock in the perhaps-unlikely
case where the comparison function is a complicated func-
tion involving locking. How can the library function avoid
deadlock?

The golden rule in this case is “release all locks be-
fore invoking unknown code.” To follow this rule, the
qsort() function must release all locks before invoking
the comparison function.

Quick Quiz 6.3: But if qsort() releases all its locks

qsort()

foo() bar() cmp()

Lock B Lock BLock A

Lock C

Application

Library

Figure 6.5: Without Local Locking Hierarchy for qsort()

Lock C
qsort()

foo() bar() cmp()

Lock B Lock BLock A

Application

Library

Figure 6.6: Local Locking Hierarchy for qsort()

before invoking the comparison function, how can it pro-
tect against races with other qsort() threads?

To see the benefits of local locking hierarchies, com-
pare Figures 6.5 and 6.6. In both figures, application func-
tions foo() and bar() invoke qsort() while hold-
ing locks A and B, respectively. Because this is a parallel
implementation of qsort(), it acquires lock C. Func-
tion foo() passes function cmp() to qsort(), and
cmp() acquires lock B. Function bar() passes a simple
integer-comparison function (not shown) to qsort(),
and this simple function does not acquire any locks.

Now, if qsort() holds Lock C while calling cmp()
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qsort()
Lock C

cmp()

Lock D

bar()

Lock B

foo()

Lock A

Application

Library

Figure 6.7: Layered Locking Hierarchy for qsort()

in violation of the golden release-all-locks rule above, as
shown in Figure 6.5, deadlock can occur. To see this,
suppose that one thread invokes foo() while a second
thread concurrently invokes bar(). The first thread will
acquire lock A and the second thread will acquire lock B.
If the first thread’s call to qsort() acquires lock C, then
it will be unable to acquire lock B when it calls cmp().
But the first thread holds lock C, so the second thread’s
call to qsort() will be unable to acquire it, and thus
unable to release lock B, resulting in deadlock.

In contrast, if qsort() releases lock C before invok-
ing the comparison function (which is unknown code
from qsort()’s perspective, then deadlock is avoided
as shown in Figure 6.6.

If each module releases all locks before invoking un-
known code, then deadlock is avoided if each module
separately avoids deadlock. This rule therefore greatly
simplifies deadlock analysis and greatly improves modu-
larity.

6.1.1.3 Layered Locking Hierarchies

Unfortunately, it might not be possible for qsort() to
release all of its locks before invoking the comparison

1 struct locked_list {
2 spinlock_t s;
3 struct list_head h;
4 };
5
6 struct list_head *list_start(struct locked_list *lp)
7 {
8 spin_lock(&lp->s);
9 return list_next(lp, &lp->h);
10 }
11
12 struct list_head *list_next(struct locked_list *lp,
13 struct list_head *np)
14 {
15 struct list_head *ret;
16
17 ret = np->next;
18 if (ret == &lp->h) {
19 spin_unlock(&lp->s);
20 ret = NULL;
21 }
22 return ret;
23 }

Figure 6.8: Concurrent List Iterator

function. In this case, we cannot construct a local locking
hierarchy by releasing all locks before invoking unknown
code. However, we can instead construct a layered lock-
ing hierarchy, as shown in Figure 6.7. Here, the cmp()
function uses a new lock D that is acquired after all of
locks A, B, and C, avoiding deadlock. We therefore have
three layers to the global deadlock hierarchy, the first con-
taining locks A and B, the second containing lock C, and
the third containing lock D.

For another example where releasing all locks before
invoking unknown code is impractical, imagine an intera-
tor over a linked list, as shown in Figure 6.8 (locked_
list.c). The list_start() function acquires a
lock on the list and returns the first element (if there is
one), and list_next() either returns a pointer to the
next element in the list or releases the lock and returns
NULL if the end of the list has been reached.

Figure 6.9 shows how this list iterator may be used.
Lines 1-4 define the list_ints element containing a
single integer, and lines 6-17 show how to iterate over
the list. Line 11 locks the list and fetches a pointer to the
first element, line 13 provides a pointer to our enclosing
list_ints structure, line 14 prints the corresponding
integer, and line 15 moves to the next element. This is
quite simple, and hides all of the locking.

That is, the locking remains hidden as long as the code
processing each list element does not itself acquire a lock
that is held across some other call to list_start()
or list_next(), which results in deadlock. We can
avoid the deadlock by layering the locking hierarchy to
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1 struct list_ints {
2 struct list_head n;
3 int a;
4 };
5
6 void list_print(struct locked_list *lp)
7 {
8 struct list_head *np;
9 struct list_ints *ip;
10
11 np = list_start(lp);
12 while (np != NULL) {
13 ip = list_entry(np, struct list_ints, n);
14 printf("\t%d\n", ip->a);
15 np = list_next(lp, np);
16 }
17 }

Figure 6.9: Concurrent List Iterator Usage

take the list-iterator locking into account.
This layered approach can be extended to an arbitrarily

large number of layers, but each added layer increases
the complexity of the locking design. Such increases in
complexity are particularly inconvenient for some types of
object-oriented designs, in which control passes back and
forth among a large group of objects in an undisciplined
manner. This mismatch between the habits of object-
oriented design and the need to avoid deadlock is an
important reason why parallel programming is perceived
by some to be so difficult.

Some alternatives to highly layered locking hierarchies
are covered in Chapter 8.

6.1.1.4 Locking Hierarchies and Pointers to Locks

Althought there are some exceptions, an external API
containing a pointer to a lock is very often a misdesigned
API. Handing an internal lock to some other software
component is after all the antithesis of information hiding,
which is in turn a key design principle.

Quick Quiz 6.4: Name one common exception where
it is perfectly reasonable to pass a pointer to a lock into a
function.

One exception is functions that hand off some entity,
where the caller’s lock must be held until the handoff
is complete, but where the lock must be released before
the function returns. One example of such a function is
the POSIX pthread_cond_wait() function, where
passing an pointer to a pthread_mutex_t prevents
hangs due to lost wakeups.

Quick Quiz 6.5: Doesn’t the fact that pthread_
cond_wait() first releases the mutex and then re-
acquires it eliminate the possibility of deadlock?

1 retry:
2 spin_lock(&lock2);
3 layer_2_processing(pkt);
4 nextlayer = layer_1(pkt);
5 if (!spin_trylock(&nextlayer->lock1)) {
6 spin_unlock(&lock2);
7 spin_lock(&nextlayer->lock1);
8 spin_lock((&lock2);
9 if (layer_1(pkt) != nextlayer) {
10 spin_unlock(&nextlayer->lock1);
11 spin_unlock((&lock2);
12 goto retry;
13 }
14 }
15 layer_1_processing(pkt);
16 spin_unlock(&lock2);
17 spin_unlock(&nextlayer->lock1);

Figure 6.10: Avoiding Deadlock Via Conditional Locking

In short, if you find yourself exporting an API with a
pointer to a lock as an argument or the return value, do
youself a favor and carefully reconsider your API design.
It might well be the right thing to do, but experience
indicates that this is unlikely.

6.1.1.5 Conditional Locking

But suppose that there is no reasonable locking hierar-
chy. This can happen in real life, for example, in layered
network protocol stacks where packets flow in both di-
rections. In the networking case, it might be necessary
to hold the locks from both layers when passing a packet
from one layer to another. Given that packets travel both
up and down the protocol stack, this is an excellent recipe
for deadlock, as illustrated in Figure 6.4. Here, a packet
moving down the stack towards the wire must acquire the
next layer’s lock out of order. Given that packets moving
up the stack away from the wire are acquiring the locks
in order, the lock acquisition in line 4 of the figure can
result in deadlock.

One way to avoid deadlocks in this case is to impose
a locking hierarchy, but when it is necessary to acquire a
lock out of order, acquire it conditionally, as shown in Fig-
ure 6.10. Instead of unconditionally acquiring the layer-
1 lock, line 5 conditionally acquires the lock using the
spin_trylock() primitive. This primitive acquires
the lock immediately if the lock is available (returning
non-zero), and otherwise returns zero without acquiring
the lock.

If spin_trylock() was successful, line 15 does
the needed layer-1 processing. Otherwise, line 6 releases
the lock, and lines 7 and 8 acquire them in the correct
order. Unfortunately, there might be multiple networking
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devices on the system (e.g., Ethernet and WiFi), so that
the layer_1() function must make a routing decision.
This decision might change at any time, especially if the
system is mobile.1 Therefore, line 9 must recheck the
decision, and if it has changed, must release the locks and
start over.

Quick Quiz 6.6: Can the transformation from Fig-
ure 6.4 to Figure 6.10 be applied universally?

Quick Quiz 6.7: But the complexity in Figure 6.10 is
well worthwhile given that it avoids deadlock, right?

6.1.1.6 Acquire Needed Locks First

In an important special case of conditional locking all
needed locks are acquired before any processing is carried
out. In this case, processing need not be idempotent: if it
turns out to be impossible to acquire a given lock without
first releasing one that was already acquired, just release
all the locks and try again. Only once all needed locks are
held will any processing be carried out.

However, this procedure can result in livelock, which
will be discussed in Section 6.1.2.

6.1.1.7 Single-Lock-at-a-Time Designs

In some cases, it is possible to avoid nesting locks, thus
avoiding deadlock. For example, if a problem is perfectly
partitionable, a single lock may be assigned to each par-
tition. Then a thread working on a given partition need
only acquire the one corresponding lock. Because no
thread ever holds more than one lock at a time, deadlock
is impossible.

However, there must be some mechanism to ensure that
the needed data structures remain in existence during the
time that neither lock is held. One such mechanism is
discussed in Section 6.4 and several others are presented
in Chapter 8.

6.1.1.8 Signal/Interrupt Handlers

Deadlocks involving signal handlers are often quickly dis-
missed by noting that it is not legal to invoke pthread_
mutex_lock() from within a signal handler [Ope97].
However, it is possible (though almost always unwise) to
hand-craft locking primitives that can be invoked from sig-
nal handlers. Besides which, almost all operating-system
kernels permit locks to be acquired from within interrupt
handlers, which are the kernel analog to signal handlers.

1 And, in contrast to the 1900s, mobility is the common case.

The trick is to block signals (or disable interrupts, as
the case may be) when acquiring any lock that might
be acquired within an interrupt handler. Furthermore, if
holding such a lock, it is illegal to attempt to acquire any
lock that is every acquired without block signals outside
of a signal handler.

If a lock is acquired by the handlers for several signals,
then each and every one of these signals must be blocked
whenever that lock is acquired, even when that lock is
acquired within a signal handler.

Quick Quiz 6.8: How can you legally block signals
within a signal handler?

Unfortunately, blocking and unblocking signals can be
expensive in some operating systems, notably including
Linux, so performance concerns often mean that locks
acquired in signal handlers are only acquired in signal
handlers, and that lockless synchronization mechanisms
are used to communicate between application code and
signal handlers.

Or that signal handlers are avoided completely except
for handling fatal errors.

6.1.1.9 Discussion

There are a large number of deadlock-avoidance strategies
available to the shared-memory parallel programmer, but
there are sequential programs for which none of them is a
good fit. This is one of the reasons that expert program-
mers have more than one tool in their toolbox: locking
is a powerful concurrency tool, but there are jobs better
addressed with other tools.

Quick Quiz 6.9: Given an object-oriented application
that passes control freely among a group of objects such
that there is no reasonable locking hierarchy, layered or
otherwise, how can this application be parallelized?

Nevertheless, the strategies described in this section
have proven quite useful in many settings.

6.1.2 Livelock and Starvation

Although conditional locking can be an effective
deadlock-avoidance mechanism, it can be abused. Con-
sider for example the beautifully symmetric example
shown in Figure 6.11. This example’s beauty hides an
ugly livelock. To see this, consider the following sequence
of events:

1. Thread 1 acquires lock1 on line 4, then invokes
do_one_thing().
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1 void thread1(void)
2 {
3 retry:
4 spin_lock(&lock1);
5 do_one_thing();
6 if (!spin_trylock(&lock2)) {
7 spin_unlock(&lock1);
8 goto retry;
9 }
10 do_another_thing();
11 spin_unlock(&lock2);
12 spin_unlock(&lock1);
13 }
14
15 void thread2(void)
16 {
17 retry:
18 spin_lock(&lock2);
19 do_a_third_thing();
20 if (!spin_trylock(&lock1)) {
21 spin_unlock(&lock2);
22 goto retry;
23 }
24 do_a_fourth_thing();
25 spin_unlock(&lock1);
26 spin_unlock(&lock2);
27 }

Figure 6.11: Abusing Conditional Locking

2. Thread 2 acquires lock2 on line 18, then invokes
do_a_third_thing().

3. Thread 1 attempts to acquire lock2, but fails be-
cause Thread 2 holds it.

4. Thread 2 attempts to acquire lock1, but fails be-
cause Thread 1 holds it.

5. Thread 1 releases lock1, and jumps to retry.

6. Thread 2 releases lock2, and jumps to retry.

7. The livelock dance repeats from the beginning.

Quick Quiz 6.10: How can the livelock shown in Fig-
ure 6.11 be avoided?

Starvation is very similar to livelock. Put another way,
livelock is an extreme form of starvation where a group
of threads starve, rather than just one of them.2

Livelock and starvation are serious issues in software
transactional memory implementations, and so the con-
cept of contention manager has been introduced to en-
capsulate these issues. In the case of locking, simple

2 Try not to get too hung up on the exact definitions of terms like
livelock, starvation, and unfairness. Anything that causes a group of
threads to fail to make good forward progress is a problem that needs to
be fixed, regardless of what name you choose for it.

1 void thread1(void)
2 {
3 unsigned int wait = 1;
4 retry:
5 spin_lock(&lock1);
6 do_one_thing();
7 if (!spin_trylock(&lock2)) {
8 spin_unlock(&lock1);
9 sleep(wait);
10 wait = wait << 1;
11 goto retry;
12 }
13 do_another_thing();
14 spin_unlock(&lock2);
15 spin_unlock(&lock1);
16 }
17
18 void thread2(void)
19 {
20 unsigned int wait = 1;
21 retry:
22 spin_lock(&lock2);
23 do_a_third_thing();
24 if (!spin_trylock(&lock1)) {
25 spin_unlock(&lock2);
26 sleep(wait);
27 wait = wait << 1;
28 goto retry;
29 }
30 do_a_fourth_thing();
31 spin_unlock(&lock1);
32 spin_unlock(&lock2);
33 }

Figure 6.12: Conditional Locking and Exponential Back-
off
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Figure 6.13: System Architecture and Lock Unfairness

exponential backoff can often address livelock and star-
vation. The idea is to introduce exponentially increasing
delays before each retry, as shown in Figure 6.12.

Quick Quiz 6.11: What problems can you spot in the
code in Figure 6.12?

6.1.3 Unfairness
Unfairness can be thought of as a less-severe form of star-
vation, where a subset of threads contending for a given
lock are granted the lion’s share of the acquisitions. This
can happen on machines with shared caches or NUMA
characteristics, for example, as shown in Figure 6.13. If
CPU 0 releases a lock that all the other CPUs are attempt-
ing to acquire, the interconnect shared between CPUs 0
and 1 means that CPU 1 will have an advantage over
CPUs 2-7. Therefore CPU 1 will likely acquire the lock.
If CPU 1 hold the lock long enough for CPU 0 to be
requesting the lock by the time CPU 1 releases it and
vice versa, the lock can shuttle between CPUs 1 and 2,
bypassing CPUs 2-7.

Quick Quiz 6.12: Wouldn’t it be better just to use
a good parallel design so that lock contention was low
enough to avoid unfairness?

6.1.4 Inefficiency
Locks are implemented using atomic instructions and
memory barriers, and often involve cache misses. As we
saw in Chapter 2, these instructions are quite expensive,

roughly two orders of magnitude greater overhead than
simple instructions. This can be a serious problem for
locking: If you protect a single instruction with a lock,
you will increase the overhead by a factor of one hundred.
Even assuming perfect scalability, one hundred CPUs
would be required to keep up with a single CPU executing
the same code without locking.

This situation underscores the synchronization-
granularity tradeoff discussed in Section 5.3, especially
Figure 5.21: Too coarse a granularity will limit scalabil-
ity, while too fine a granularity will result in excessive
synchronization overhead.

That said, once a lock is held, the data protected by that
lock can be accessed by the lock holder without interfer-
ence. Acquiring a lock might be expensive, but once held,
the CPU’s caches are an effective performance booster, at
least for large critical sections.

Quick Quiz 6.13: How might the lock holder be inter-
fered with?

6.2 Types of Locks
There are a surprising number of types of locks, more
than this short chapter can possibly do justice to. The
following sections discuss exclusive locks (Section 6.2.1),
reader-writer locks (Section 6.2.2), and multi-role locks
(Section 6.2.3).

6.2.1 Exclusive Locks
Exclusive locks are what they say they are: only one
thread may hold the lock at a time. The holder of such
a lock thus has exclusive access to all data protected by
that lock, hence the name.

Of course, this all assumes that this lock is held across
all accesses to data purportedly protected by the lock.
Although there are some tools that can help, the ultimate
responsibility for ensuring that the lock is acquired in all
necessary code paths rests with the developer.

6.2.2 Reader-Writer Locks
Reader-writer locks [CHP71] permit any number of read-
ers to hold the lock concurrently on the one hand or a
single writer to hold the lock on the other. In theory, then,
reader-writer locks should allow excellent scalability for
data that is read often and written rarely. In practice, the
scalability will depend on the reader-writer lock imple-
mentation.
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Null (Not Held)
Concurrent Read X
Concurrent Write X X X
Protected Read X X X
Protected Write X X X X
Exclusive X X X X X

Table 6.1: VAX/VMS Distributed Lock Manager Policy

The classic reader-writer lock implementation involves
a set of counters and flags that are manipulated atomi-
cally. This type of implementation suffers from the same
problem as does exclusive locking for short critical sec-
tions: The overhead of acquiring and releasing the lock is
about two orders of magnitude greater than the overhead
of a simple instruction. Of course, if the critical section
is long enough, the overhead of acquiring and releasing
the lock becomes negligible. However, because only one
thread at a time can be manipulating the lock, the required
critical-section size increases with the number of CPUs.

It is possible to design a reader-writer lock that is
much more favorable to readers through use of per-
thread exclusive locks [HW92]. To read, a thread ac-
quires only its own lock. To write, a thread acquires all
locks. In the absence of writers, each reader incurs only
atomic-instruction and memory-barrier overhead, with no
cache misses, which is quite good for a locking primi-
tive. Unfortunately, writers must incur cache misses as
well as atomic-instruction and memory-barrier overhead—
multiplied by the number of threads.

In short, reader-writer locks can be quite useful in a
number of situations, but each type of implementation
does have its drawbacks.

6.2.3 Beyond Reader-Writer Locks

Reader-writer locks and exclusive locks differ in their ad-
mission policy: exclusive locks allow at most one holder,
while reader-writer locks permit an arbitrary number of
read-holders (but only one write-holder). There is a very
large number of possible admission policies, one of the
more elaborate being that of the VAX/VMS distributed

lock manager (DLM) [ST87], which is shown in Table 6.1.
Blank cells indicate compatible modes, while cells con-
taining “X” indicate incompatible modes.

The VAX/VMS DLM uses six modes. For purposes
of comparison, exclusive locks use two modes (not held
and held), while reader-writer locks use three modes (not
held, read held, and write held).

The first mode is null, or not held. This mode is com-
patible with all other modes, which is to be expected: If
a thread is not holding a lock, it should not prevent any
other thread from acquiring that lock.

The second mode is concurrent read, which is com-
patible with every other mode except for exclusive. The
concurrent-read mode might be used to accumulate ap-
proximate statistics on a data structure, while permitting
updates to proceed concurrently.

The third mode is concurrent write, which is compati-
ble with null, concurrent read, and concurrent write. The
concurrent-write mode might be used to update approxi-
mate statistics, while still permitting reads and concurrent
updates to proceed concurrently.

The fourth mode is protected read, which is compati-
ble with null, concurrent read, and protected read. The
protected-read mode might be used to obtain a consistent
snapshot of the data structure, while permitting reads but
not updates to proceed concurrently.

The fifth mode is protected write, which is compatible
with null and protected read. The protected-write mode
might be used to carry out updates to a data structure that
could interfere with protected readers but which could be
tolerated by concurrent readers.

The sixth and final mode is exclusive, which is compat-
ible only with null. The exclusive mode is used when it is
necessary to exclude all other accesses.

It is interesting to note that exclusive locks and reader-
writer locks can be emulated by the VAX/VMS DLM. Ex-
clusive locks would use only the null and exclusive modes,
while reader-writer locks might use the null, protected-
read, and protected-write modes.

Quick Quiz 6.14: Is there any other way for the
VAX/VMS DLM to emulate a reader-writer lock?

Although the VAX/VMS DLM policy has seen
widespread production use for distributed databases, it
does not appear to be used much in shared-memory ap-
plications. One possible reason for this is that the greater
communication overheads of distributed databases can
hide the greater overhead of the VAX/VMS DLM’s more-
complex admission policy.

Nevertheless, the VAX/VMS DLM is an interesting il-
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1 typedef int xchglock_t;
2 #define DEFINE_XCHG_LOCK(n) xchglock_t n = 0
3
4 void xchg_lock(xchglock_t *xp)
5 {
6 while (xchg(xp, 1) == 1) {
7 while (*xp == 1)
8 continue;
9 }
10 }
11
12 void xchg_unlock(xchglock_t *xp)
13 {
14 (void)xchg(xp, 0);
15 }

Figure 6.14: Sample Lock Based on Atomic Exchange

lustration of just how flexible the concepts behind locking
can be.

6.3 Locking Implementation Issues
Developers are almost always best-served by using what-
ever locking primitives are provided by the system, for
example, the POSIX pthread mutex locks [Ope97, But97].
Nevertheless, studying sample implementations can be
helpful, as can considering the challenges posed by ex-
treme workloads and environments.

6.3.1 Sample Exclusive-Locking Imple-
mentation Based on Atomic Ex-
change

This section reviews the implementation shown in Fig-
ure 6.14. The data structure for this lock is just an int,
as shown on line 1, but could be any integral type. The
initial value of this lock is zero, meaning “unlocked”, as
shown on line 2.

Lock acquisition is carried out by the xchg_lock()
function shown on lines 4-9. This function uses a nested
loop, with the outer loop repeatedly atomically exchang-
ing the value of the lock with the value one (meaning
l“locked”). If the old value was already the value one (in
other words, someone else already holds the lock), then
the inner loop (lines 7-8) spins until the lock is available,
at which point the outer loop makes another attempt to
acquire the lock.

Quick Quiz 6.15: Why bother with the inner loop on
lines 7-8 of Figure 6.14? Why not simply repeatedly do
the atomic exchange operation on line 6?

Lock release is carried out by the xchg_unlock()

function shown on lines 12-15. Line 14 atomically ex-
changes the value zero (“unlocked”) into the lock, thus
marking it as having been released.

Quick Quiz 6.16: Why not simply store zero into the
lock word on line 14 of Figure 6.14?

This lock is a simple example of a test-and-set
lock [SR84], but very similar mechanisms have been used
extensively as pure spinlocks in production.

6.3.2 Other Exclusive-Locking Implemen-
tations

There are a great many other possible implementations
of locking based on atomic instructions, many of which
are reviewed by Mellor-Crummey and Scott [MCS91].
These implementations represent different points in a
multi-dimensional design tradeoff [McK96b]. For ex-
ample, the atomic-exchange-based test-and-set lock pre-
sented in the previous section works well when contention
is low and has the advantage of small memory footprint.
It avoids giving the lock to threads that cannot use it, but
as a result can suffer from unfairness or even starvation at
high contention levels.

In contrast, ticket lock [MCS91], which is used in the
Linux kernel, avoids unfairness at high contention levels,
but as a consequence of its first-in-first-out discipline can
grant the lock to a thread that is currently unable to use
it, for example, due to being preempted, interrupted, or
otherwise out of action.

All locking implementations where waiters spin on a
single memory location, including both test-and-set locks
and ticket locks, suffer from performance problems at
high contention levels. The problem is that the thread
releasing the lock must update the value of the corre-
sponding memory location. At low contention, this is not
a problem: The corresponding cache line is very likely
still local to and writeable by the thread holding the lock.
In contrast, at high levels of contention, each thread at-
tempting to acquire the lock will have a read-only copy
of the cache line, and the lock holder will need to inval-
idate all such copies before it can carry out the update
that releases the lock. In general, the more CPUs and
threads there are, the greater the overhead incurred when
releasing the lock under conditions of high contention.

This negative scalability has motivated a number of
different queued-lock implementations [And90, GT90,
MCS91, WKS94, Cra94, MLH94, TS93], which assign
different queue elements to each of the threads attempting
to acquire the lock, thus reducing the lock’s memory
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contention.
More recent queued-lock implementations also take the

system’s architecture into account, preferentially grant-
ing locks locally, while also taking steps to avoid starva-
tion [SSVM02, RH03, RH02, JMRR02, MCM02]. Many
of these can be thought of as analogous to the elevator
algorithms traditionally used in scheduling disk I/O.

Unfortunately, the same scheduling logic that improves
the efficiency of queued locks at high contention also in-
creases their overhead at low contention. Beng-hong Lim
and Anant Agarwal therefore combined a simple test-and-
set lock with a queued lock, using the test-and-set lock
at low levels of contention and switching to the queued
lock at high levels of contention [LA94], thus getting low
overhead at low levels of contention and getting fairness
and high throughput at high levels of contention. Brown-
ing et al. took a similar approach, but avoided the use of
a separate flag, so that the test-and-set fast path uses the
same sequence of instructions that would be used in a
simple test-and-set lock [BMMM05]. This approach as
been used in production.

Another issue that arises at high levels of contention
is when the lock holder is delayed, especially when the
delay is due to preemption, which can result in priority
inversion, where a low-priority thread holds a lock, but
is preempted by a medium priority CPU-bound thread,
which results in a high-priority process blocking while
attempting to acquire the lock. The result is that the CPU-
bound medium-priority process is preventing the high-
priority process from running. One solution is priority
inheritance [LR80], which has been widely used for real-
time computing [SRL90, Cor06b], despite some lingering
controversy over this practice [Yod04, Loc02].

Another way to avoid priority inversion is to prevent
preemption while a lock is held [KWS97]. Most pro-
prietary UNIX kernels offer some form of scheduler-
conscious synchronization mechanism, largely due to the
efforts of a large database vendor. These mechanisms
usually take the form of a hint that preemption would
be imappropriate. These hints frequently take the form
of a bit set in a particular machine register, which en-
ables extremely low per-lock-acquisition overhead for
these mechanisms. In contrast, Linux avoids these hints,
instead getting similar results from a mechanism called
futexes [FRK02, Mol06, Ros06].

Interestingly enough, atomic instructions are not
strictly needed to implement locks [Dij65, Lam74]. An
excellent exposition of the issues surrounding locking
implementations based on simple loads and stores may

1 int delete(int key)
2 {
3 int b;
4 struct element *p;
5
6 b = hashfunction(key);
7 p = hashtable[b];
8 if (p == NULL || p->key != key)
9 return 0;
10 spin_lock(&p->lock);
11 hashtable[b] = NULL;
12 spin_unlock(&p->lock);
13 kfree(p);
14 return 1;
15 }

Figure 6.15: Per-Element Locking Without Existence
Guarantees

be found in Herlihy’s and Shavit’s textbook [HS08]. The
main point echoed here is that such implementations cur-
rently have little practical application, although a careful
study of them can be both entertaining and enlightening.
Nevertheless, such study is left as an exercise for the
reader.

6.4 Lock-Based Existence Guaran-
tees

A key challenge in parallel programming is to provide ex-
istence guarantees [GKAS99], so that attempts to access
a given object can rely on that object being in existence
throughout throughout a given access attempt. In some
cases, existence guarantees are implicit:

1. Global variables and static local variables in the base
module will exist as long as the application is run-
ning.

2. Global variables and static local variables in a loaded
module will exist as long as that module remains
loaded.

3. A module will remain loaded as long as at least one
of its functions has an active instance.

4. A given function instance’s on-stack variables will
exist until that instance returns.

5. If you are executing within a given function or have
been called from that function, then the given func-
tion has an active instance.
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1 int delete(int key)
2 {
3 int b;
4 struct element *p;
5 spinlock_t *sp;
6
7 b = hashfunction(key);
8 sp = &locktable[b];
9 spin_lock(sp);
10 p = hashtable[b];
11 if (p == NULL || p->key != key) {
12 spin_unlock(sp);
13 return 0;
14 }
15 hashtable[b] = NULL;
16 spin_unlock(sp);
17 kfree(p);
18 return 1;
19 }

Figure 6.16: Per-Element Locking With Lock-Based Ex-
istence Guarantees

These implicit existence guarantees are straightforward,
though bugs involving implicit existence guarantees really
can happen.

Quick Quiz 6.17: How can relying on implicit exis-
tence guarantees result in a bug?

But the more interesting—and troublesome—guarantee
involves heap memory: A dynamically allocated data
structure will exist until it is freed. The problem to be
solved is to synchronize the freeing of the structure with
concurrent accesses to that same structure. One way to
do this is with explicit guarantees, such as locking. If a
given structure may only be freed while holding a given
lock, then holding that lock guarantees that structure’s
existence.

But this guarantee depends on the existence of the lock
itself. One straightforward way to guarantee the lock’s
existence is to place the lock in a global variable, but
global locking has the disadvantage of limiting scalability.
One way of providing scalability that improves as the size
of the data structure increases is to place a lock in each
element of the structure. Unfortunately, putting the lock
that is to protect a data element in the data element itself is
subject to subtle race conditions, as shown in Figure 6.15.

Quick Quiz 6.18: What if the element we need to
delete is not the first element of the list on line 8 of Fig-
ure 6.15?

Quick Quiz 6.19: What race condition can occur in
Figure 6.15?

One way to fix this example is to use a hashed set of
global locks, so that each hash bucket has its own lock,
as shown in Figure 6.16. This approach allows acquiring
the proper lock (on line 9) before gaining a pointer to

the data element (on line 10). Although this approach
works quite well for elements contained in a single par-
titionable data structure such as the hash table shown in
the figure, it can be problematic if a given data element
can be a member of multiple hash tables or given more-
complex data structures such as trees or graphs. These
problems can be solved, in fact, such solutions form the
basis of lock-based software transactional memory im-
plementations [ST95, DSS06]. However, Chapter 8 de-
scribes simpler—and faster—ways of providing existence
guarantees.

6.5 Locking: Hero or Villain?
As is often the case in real life, locking can be either hero
or villain, depending on how it is used and on the problem
at hand. Locking is perhaps the most widely used and
most generally useful tool, but it should not be the only
tool in your parallel-programming toolbox.

The next few chapters will discuss other tools, and how
they can best be used in concert with locking and with
each other.



Chapter 7

Data Ownership

Per-CPU and per-task/process/thread data.
Function shipping vs. data shipping.
Big question: how much local vs. global processing?

How frequent, how expensive, ... Better to divide or to
centralize?

Relationship to map/reduce? Message passing!
@@@ populate with problems showing benefits of cou-

pling data ownership with other approaches. For example,
work-stealing schedulers. Perhaps also move memory
allocation here, though its current location is quite good.
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Chapter 8

Deferred Processing

The strategy of deferring work probably predates
mankind, but only in the last few decades have work-
ers recognized this strategy’s value in simplifying parallel
algorithms [KL80, Mas92]. General approaches to work
deferral in parallel programming include queuing, refer-
ence counting, and RCU.

8.1 Reference Counting
Reference counting tracks the number of references to a
given object in order to prevent that object from being
prematurely freed. Although this is a conceptually simple
technique, many devils hide in the details. After all, if
the object was not subject to being prematurely freed,
there would be no need for the reference counter. But
if the object is subject to being prematurely freed, what
prevents that object from being freed during the reference-
acquisition process itself?

There are a number of possible answers to this question,
including:

1. A lock residing outside of the object must be held
while manipulating the reference count. Note that
there are a wide variety of types of locks, however,
pretty much any type will suffice.

2. The object is created with a non-zero reference count,
and new references may be acquired only when the
current value of the reference counter is non-zero.
Once acquired, a reference may be handed off to
some other entity.

3. An existence guarantee is provided for the object,
so that it cannot be freed during any time interval
when some entity might be attempting to acquire a
reference. Existence guarantees are often provided

Release Synchronization
Acquisition Reference
Synchronization Locking Counting RCU
Locking - CAM CA
Reference A AM A
Counting
RCU CA MCA CA

Table 8.1: Reference Counting and Synchronization
Mechanisms

by automatic garbage collectors, and, as will be seen
in Section 8.3, they can also be provided by RCU.

4. A type-safety guarantee is provided for the object,
and there is in addition some identity check that can
be performed once the reference is acquired. Type-
safety guarantees can be provided by special-purpose
memory allocators, and can also be provided by
the SLAB_DESTROY_BY_RCU feature within the
Linux kernel, again, as will be seen in Section 8.3.

Of course, any mechanism that provides existence guar-
antees by definition also provides type-safety guarantees.
This section will therefore group the last two answers to-
gether under the rubric of RCU, leaving us with three
general categories of reference-acquisition protection,
namely, locking, reference counting, and RCU.

Quick Quiz 8.1: Why not implement reference-
acquisition using a simple compare-and-swap operation
that only acquires a reference if the reference counter is
non-zero?

Given that the key reference-counting issue is synchro-
nization between acquisition of a reference and freeing
of the object, we have nine possible combinations of
mechanisms, as shown in Table 8.1. This table divides
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reference-counting mechanisms into the following broad
categories:

1. Simple counting with neither atomic operations,
memory barriers, nor alignment constraints (“-”).

2. Atomic counting without memory barriers (“A”).

3. Atomic counting, with memory barriers required
only on release (“AM”).

4. Atomic counting with a check combined with the
atomic acquisition operation, and with memory bar-
riers required only on release (“CAM”).

5. Atomic counting with a check combined with the
atomic acquisition operation (“CA”).

6. Atomic counting with a check combined with the
atomic acquisition operation, and with memory bar-
riers also required on acquisition (“MCA”).

However, because all Linux-kernel atomic operations that
return a value are defined to contain memory barriers,
all release operations contain memory barriers, and all
checked acquisition operations also contain memory bar-
riers. Therefore, cases “CA” and “MCA” are equivalent
to “CAM”, so that there are sections below for only the
first four cases: “-”, “A”, “AM”, and “CAM”. The Linux
primitives that support reference counting are presented
in Section 8.1.2. Later sections cite optimizations that can
improve performance if reference acquisition and release
is very frequent, and the reference count need be checked
for zero only very rarely.

8.1.1 Implementation of Reference-
Counting Categories

Simple counting protected by locking (“-”) is described in
Section 8.1.1.1, atomic counting with no memory barriers
(“A”) is described in Section 8.1.1.2 atomic counting with
acquisition memory barrier (“AM”) is described in Sec-
tion 8.1.1.3, and atomic counting with check and release
memory barrier (“CAM”) is described in Section 8.1.1.4.

8.1.1.1 Simple Counting

Simple counting, with neither atomic operations nor mem-
ory barriers, can be used when the reference-counter ac-
quisition and release are both protected by the same lock.
In this case, it should be clear that the reference count
itself may be manipulated non-atomically, because the

lock provides any necessary exclusion, memory barriers,
atomic instructions, and disabling of compiler optimiza-
tions. This is the method of choice when the lock is
required to protect other operations in addition to the ref-
erence count, but where a reference to the object must be
held after the lock is released. Figure 8.1 shows a simple
API that might be used to implement simple non-atomic
reference counting – although simple reference counting
is almost always open-coded instead.

1 struct sref {
2 int refcount;
3 };
4
5 void sref_init(struct sref *sref)
6 {
7 sref->refcount = 1;
8 }
9
10 void sref_get(struct sref *sref)
11 {
12 sref->refcount++;
13 }
14
15 int sref_put(struct sref *sref,
16 void (*release)(struct sref *sref))
17 {
18 WARN_ON(release == NULL);
19 WARN_ON(release == (void (*)(struct sref *))kfree);
20
21 if (--sref->refcount == 0) {
22 release(sref);
23 return 1;
24 }
25 return 0;
26 }

Figure 8.1: Simple Reference-Count API

8.1.1.2 Atomic Counting

Simple atomic counting may be used in cases where any
CPU acquiring a reference must already hold a reference.
This style is used when a single CPU creates an object
for its own private use, but must allow other CPU, tasks,
timer handlers, or I/O completion handlers that it later
spawns to also access this object. Any CPU that hands
the object off must first acquire a new reference on behalf
of the recipient object. In the Linux kernel, the kref
primitives are used to implement this style of reference
counting, as shown in Figure 8.2.

Atomic counting is required because locking is not used
to protect all reference-count operations, which means
that it is possible for two different CPUs to concurrently
manipulate the reference count. If normal increment and
decrement were used, a pair of CPUs might both fetch
the reference count concurrently, perhaps both obtaining
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the value “3”. If both of them increment their value,
they will both obtain “4”, and both will store this value
back into the counter. Since the new value of the counter
should instead be “5”, one of the two increments has been
lost. Therefore, atomic operations must be used both for
counter increments and for counter decrements.

If releases are guarded by locking or RCU, memory
barriers are not required, but for different reasons. In the
case of locking, the locks provide any needed memory
barriers (and disabling of compiler optimizations), and
the locks also prevent a pair of releases from running con-
currently. In the case of RCU, cleanup must be deferred
until all currently executing RCU read-side critical sec-
tions have completed, and any needed memory barriers or
disabling of compiler optimizations will be provided by
the RCU infrastructure. Therefore, if two CPUs release
the final two references concurrently, the actual cleanup
will be deferred until both CPUs exit their RCU read-side
critical sections.

Quick Quiz 8.2: Why isn’t it necessary to guard
against cases where one CPU acquires a reference just
after another CPU releases the last reference?

1 struct kref {
2 atomic_t refcount;
3 };
4
5 void kref_init(struct kref *kref)
6 {
7 atomic_set(&kref->refcount,1);
8 }
9
10 void kref_get(struct kref *kref)
11 {
12 WARN_ON(!atomic_read(&kref->refcount));
13 atomic_inc(&kref->refcount);
14 }
15
16 int kref_put(struct kref *kref,
17 void (*release)(struct kref *kref))
18 {
19 WARN_ON(release == NULL);
20 WARN_ON(release == (void (*)(struct kref *))kfree);
21
22 if ((atomic_read(&kref->refcount) == 1) ||
23 (atomic_dec_and_test(&kref->refcount))) {
24 release(kref);
25 return 1;
26 }
27 return 0;
28 }

Figure 8.2: Linux Kernel kref API

The kref structure itself, consisting of a single atomic
data item, is shown in lines 1-3 of Figure 8.2. The kref_
init() function on lines 5-8 initializes the counter to
the value “1”. Note that the atomic_set() primitive

is a simple assignment, the name stems from the data
type of atomic_t rather than from the operation. The
kref_init() function must be invoked during object
creation, before the object has been made available to any
other CPU.

The kref_get() function on lines 10-14 uncon-
ditionally atomically increments the counter. The
atomic_inc() primitive does not necessarily explic-
itly disable compiler optimizations on all platforms, but
the fact that the kref primitives are in a separate module
and that the Linux kernel build process does no cross-
module optimizations has the same effect.

The kref_put() function on lines 16-28 checks for
the counter having the value “1” on line 22 (in which case
no concurrent kref_get() is permitted), or if atomi-
cally decrementing the counter results in zero on line 23.
In either of these two cases, kref_put() invokes the
specified release function and returns “1”, telling the
caller that cleanup was performed. Otherwise, kref_
put() returns “0”.

Quick Quiz 8.3: If the check on line 22 of Figure 8.2
fails, how could the check on line 23 possibly succeed?

Quick Quiz 8.4: How can it possibly be safe to non-
atomically check for equality with “1” on line 22 of Fig-
ure 8.2?

8.1.1.3 Atomic Counting With Release Memory
Barrier

This style of reference is used in the Linux kernel’s net-
working layer to track the destination caches that are used
in packet routing. The actual implementation is quite
a bit more involved; this section focuses on the aspects
of struct dst_entry reference-count handling that
matches this use case, shown in Figure 8.3.

1 static inline
2 struct dst_entry * dst_clone(struct dst_entry * dst)
3 {
4 if (dst)
5 atomic_inc(&dst->__refcnt);
6 return dst;
7 }
8
9 static inline
10 void dst_release(struct dst_entry * dst)
11 {
12 if (dst) {
13 WARN_ON(atomic_read(&dst->__refcnt) < 1);
14 smp_mb__before_atomic_dec();
15 atomic_dec(&dst->__refcnt);
16 }
17 }

Figure 8.3: Linux Kernel dst_clone API
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The dst_clone() primitive may be used if the caller
already has a reference to the specified dst_entry,
in which case it obtains another reference that may be
handed off to some other entity within the kernel. Because
a reference is already held by the caller, dst_clone()
need not execute any memory barriers. The act of handing
the dst_entry to some other entity might or might not
require a memory barrier, but if such a memory barrier is
required, it will be embedded in the mechanism used to
hand the dst_entry off.

The dst_release() primitive may be invoked
from any environment, and the caller might well ref-
erence elements of the dst_entry structure immedi-
ately prior to the call to dst_release(). The dst_
release() primitive therefore contains a memory bar-
rier on line 14 preventing both the compiler and the CPU
from misordering accesses.

Please note that the programmer making use of dst_
clone() and dst_release() need not be aware of
the memory barriers, only of the rules for using these two
primitives.

8.1.1.4 Atomic Counting With Check and Release
Memory Barrier

The fact that reference-count acquisition can run concur-
rently with reference-count release adds further complica-
tions. Suppose that a reference-count release finds that the
new value of the reference count is zero, signalling that it
is now safe to clean up the reference-counted object. We
clearly cannot allow a reference-count acquisition to start
after such clean-up has commenced, so the acquisition
must include a check for a zero reference count. This
check must be part of the atomic increment operation, as
shown below.

Quick Quiz 8.5: Why can’t the check for a zero ref-
erence count be made in a simple “if” statement with an
atomic increment in its “then” clause?

The Linux kernel’s fget() and fput() primitives
use this style of reference counting. Simplified versions
of these functions are shown in Figure 8.4.

Line 4 of fget() fetches the pointer to the cur-
rent process’s file-descriptor table, which might well
be shared with other processes. Line 6 invokes rcu_
read_lock(), which enters an RCU read-side criti-
cal section. The callback function from any subsequent
call_rcu() primitive will be deferred until a matching
rcu_read_unlock() is reached (line 10 or 14 in this
example). Line 7 looks up the file structure corresponding
to the file descriptor specified by the fd argument, as will

1 struct file *fget(unsigned int fd)
2 {
3 struct file *file;
4 struct files_struct *files = current->files;
5
6 rcu_read_lock();
7 file = fcheck_files(files, fd);
8 if (file) {
9 if (!atomic_inc_not_zero(&file->f_count)) {
10 rcu_read_unlock();
11 return NULL;
12 }
13 }
14 rcu_read_unlock();
15 return file;
16 }
17
18 struct file *
19 fcheck_files(struct files_struct *files, unsigned int fd)
20 {
21 struct file * file = NULL;
22 struct fdtable *fdt = rcu_dereference((files)->fdt);
23
24 if (fd < fdt->max_fds)
25 file = rcu_dereference(fdt->fd[fd]);
26 return file;
27 }
28
29 void fput(struct file *file)
30 {
31 if (atomic_dec_and_test(&file->f_count))
32 call_rcu(&file->f_u.fu_rcuhead, file_free_rcu);
33 }
34
35 static void file_free_rcu(struct rcu_head *head)
36 {
37 struct file *f;
38
39 f = container_of(head, struct file, f_u.fu_rcuhead);
40 kmem_cache_free(filp_cachep, f);
41 }

Figure 8.4: Linux Kernel fget/fput API
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be described later. If there is an open file correspond-
ing to the specified file descriptor, then line 9 attempts
to atomically acquire a reference count. If it fails to do
so, lines 10-11 exit the RCU read-side critical section
and report failure. Otherwise, if the attempt is successful,
lines 14-15 exit the read-side critical section and return a
pointer to the file structure.

The fcheck_files() primitive is a helper func-
tion for fget(). It uses the rcu_dereference()
primitive to safely fetch an RCU-protected pointer for
later dereferencing (this emits a memory barrier on CPUs
such as DEC Alpha in which data dependencies do
not enforce memory ordering). Line 22 uses rcu_
dereference() to fetch a pointer to this task’s cur-
rent file-descriptor table, and line 24 checks to see if
the specified file descriptor is in range. If so, line 25
fetches the pointer to the file structure, again using the
rcu_dereference() primitive. Line 26 then returns
a pointer to the file structure or NULL in case of failure.

The fput() primitive releases a reference to a file
structure. Line 31 atomically decrements the reference
count, and, if the result was zero, line 32 invokes the
call_rcu() primitives in order to free up the file
structure (via the file_free_rcu() function spec-
ified in call_rcu()’s second argument), but only after
all currently-executing RCU read-side critical sections
complete. The time period required for all currently-
executing RCU read-side critical sections to complete is
termed a “grace period”. Note that the atomic_dec_
and_test() primitive contains a memory barrier. This
memory barrier is not necessary in this example, since the
structure cannot be destroyed until the RCU read-side crit-
ical section completes, but in Linux, all atomic operations
that return a result must by definition contain memory
barriers.

Once the grace period completes, the file_free_
rcu() function obtains a pointer to the file structure on
line 39, and frees it on line 40.

This approach is also used by Linux’s virtual-memory
system, see get_page_unless_zero() and put_
page_testzero() for page structures as well as
try_to_unuse() and mmput() for memory-map
structures.

8.1.2 Linux Primitives Supporting Refer-
ence Counting

The Linux-kernel primitives used in the above examples
are summarized in the following list.

• atomic_t Type definition for 32-bit quantity to be
manipulated atomically.

• void atomic_dec(atomic_t *var);
Atomically decrements the referenced variable
without necessarily issuing a memory barrier or
disabling compiler optimizations.

• int atomic_dec_and_test(atomic_
t *var); Atomically decrements the referenced
variable, returning true if the result is zero.
Issues a memory barrier and disables compiler
optimizations that might otherwise move memory
references across this primitive.

• void atomic_inc(atomic_t *var);
Atomically increments the referenced variable
without necessarily issuing a memory barrier or
disabling compiler optimizations.

• int atomic_inc_not_zero(atomic_
t *var); Atomically increments the referenced
variable, but only if the value is non-zero, and
returning true if the increment occurred. Issues a
memory barrier and disables compiler optimizations
that might otherwise move memory references
across this primitive.

• int atomic_read(atomic_t *var); Re-
turns the integer value of the referenced variable.
This is not an atomic operation, and it neither is-
sues memory barriers nor disables compiler opti-
mizations.

• void atomic_set(atomic_
t *var, int val); Sets the value of the
referenced atomic variable to “val”. This is not
an atomic operation, and it neither issues memory
barriers nor disables compiler optimizations.

• void call_rcu(struct rcu_
head *head, void (*func)(struct rcu_
head *head)); Invokes func(head) some
time after all currently executing RCU read-side
critical sections complete, however, the call_
rcu() primitive returns immediately. Note that
head is normally a field within an RCU-protected
data structure, and that func is normally a function
that frees up this data structure. The time interval
between the invocation of call_rcu() and the
invocation of func is termed a “grace period”. Any
interval of time containing a grace period is itself a
grace period.
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• type *container_of(p, type, f);
Given a pointer “p” to a field “f” within a structure
of the specified type, return a pointer to the structure.

• void rcu_read_lock(void); Marks the be-
ginning of an RCU read-side critical section.

• void rcu_read_unlock(void); Marks the
end of an RCU read-side critical section. RCU read-
side critical sections may be nested.

• void smp_mb__before_atomic_
dec(void); Issues a memory barrier and
disables code-motion compiler optimizations only if
the platform’s atomic_dec() primitive does not
already do so.

• struct rcu_head A data structure used by the
RCU infrastructure to track objects awaiting a grace
period. This is normally included as a field within
an RCU-protected data structure.

8.1.3 Counter Optimizations
In some cases where increments and decrements are com-
mon, but checks for zero are rare, it makes sense to main-
tain per-CPU or per-task counters, as was discussed in
Chapter 4. See Appendix D.1 for an example of this
technique applied to RCU. This approach eliminates the
need for atomic instructions or memory barriers on the
increment and decrement primitives, but still requires that
code-motion compiler optimizations be disabled. In ad-
dition, the primitives such as synchronize_srcu()
that check for the aggregate reference count reaching zero
can be quite slow. This underscores the fact that these
techniques are designed for situations where the refer-
ences are frequently acquired and released, but where it
is rarely necessary to check for a zero reference count.

However, it is often the case that use of reference counts
requires writing (often atomically) to a data structure that
is otherwise read only. In this case, reference counts are
imposing expensive cache misses on readers. It is there-
fore worthwhile to look into synchronization mechanisms
that do not require readers to do writes. One such syn-
chronization mechanism, sequence locks, is covered in
the next section.

8.2 Sequence Locks
Sequence locks are used in the Linux kernel for read-
mostly data that must be seen in a consistent state by

readers. However, unlike reader-writer locking, readers
do not exclude writers. Instead, sequence-lock readers
retry an operation if they detect activity from a concurrent
writer.

Quick Quiz 8.6: Why isn’t this sequence-lock discus-
sion in Chapter 6, you know, the one on locking?

The key component of sequence locking is the sequence
number, which has an even value in the absence of writers
and an odd value if there is an update in progress. Readers
can then snapshot the value before and after each access.
If either snapshot has an odd value, or if the two snap-
shots differ, there has been a concurrent update, and the
reader must discard the results of the access and then retry
it. Readers use the read_seqbegin() and read_
seqretry() functions, as shown in Figure 8.5, when
accessing data protected by a sequence lock. Writers must
increment the value before and after each update, and
only one writer is permitted at a given time. Writers use
the write_seqlock() and write_sequnlock()
functions, as shown in Figure 8.6, when updating data
protected by a sequence lock.

Sequence-lock-protected data can have an arbitrarily
large number of concurrent readers, but only one writer
at a time. Sequence locking is used in the Linux kernel
to protect calibration quantities used for timekeeping. It
is also used in pathname traversal to detect concurrent
rename operations.

Quick Quiz 8.7: Can you use sequence locks as the
only synchronization mechanism protecting a linked list
supporting concurrent addition, deletion, and search?

A simple implementation of sequence locks is shown in
Figure 8.7 (seqlock.h). The seqlock_t data struc-
ture is shown on lines 1-4, and contains the sequence
number along with a lock to serialize writers. Lines 6-10
show seqlock_init(), which, as the name indicates,
initializes a seqlock_t.

Lines 12-22 show read_seqbegin(), which be-

1 do {
2 seq = read_seqbegin(&test_seqlock);
3 /* read-side access. */
4 } while (read_seqretry(&test_seqlock, seq));

Figure 8.5: Sequence-Locking Reader

1 write_seqlock(&test_seqlock);
2 /* Update */
3 write_sequnlock(&test_seqlock);

Figure 8.6: Sequence-Locking Writer
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1 typedef struct {
2 unsigned long seq;
3 spinlock_t lock;
4 } seqlock_t;
5
6 static void seqlock_init(seqlock_t *slp)
7 {
8 slp->seq = 0;
9 spin_lock_init(&slp->lock);
10 }
11
12 static unsigned long read_seqbegin(seqlock_t *slp)
13 {
14 unsigned long s;
15
16 repeat:
17 s = ACCESS_ONCE(slp->seq);
18 smp_mb();
19 if (unlikely(s & 1))
20 goto repeat;
21 return s;
22 }
23
24 static int read_seqretry(seqlock_t *slp,
25 unsigned long oldseq)
26 {
27 unsigned long s;
28
29 smp_mb();
30 s = ACCESS_ONCE(slp->seq);
31 return s != oldseq;
32 }
33
34 static void write_seqlock(seqlock_t *slp)
35 {
36 spin_lock(&slp->lock);
37 ++slp->seq;
38 smp_mb();
39 }
40
41 static void write_sequnlock(seqlock_t *slp)
42 {
43 smp_mb();
44 ++slp->seq;
45 spin_unlock(&slp->lock);
46 }

Figure 8.7: Sequence-Locking Implementation

gins a sequence-lock read-side critical section. Line 17
takes a snapshot of the sequence counter, and line 18 or-
ders this snapshot operation before the caller’s critical
section. Line 19 checks to see if the snapshot is odd, indi-
cating that there is a concurrent writer, and, if so, line 20
jumps back to the beginning. Otherwise, line 21 returns
the value of the snapshot, which the caller will pass to a
later call to read_seqretry().

Quick Quiz 8.8: Why bother with the check on line 19
of read_seqbegin() in Figure 8.7? Given that a new
writer could begin at any time, why not simply incorporate
the check into line 31 of read_seqretry()?

Lines 24-32 show read_seqretry(), which re-
turns true if there were no writers present since the time of
the corresponding call to read_seqbegin(). Line 29
orders the caller’s prior critical section before line 30’s
fetch of the new snapshot of the sequence counter. Finally,
line 30 checks that the sequence counter has not changed,
in other words, that there has been no writer, and returns
true if so.

Quick Quiz 8.9: What prevents sequence-locking up-
daters from starving readers?

Lines 34-39 show write_seqlock(), which sim-
ply acquires the lock, increments the sequence number,
and executes a memory barrier to ensure that this in-
crement is ordered before the caller’s critical section.
Lines 41-46 show write_sequnlock(), which ex-
ecutes a memory barrier to ensure that the caller’s critical
section is ordered before the increment of the sequence
number on line 44, then releases the lock.

Quick Quiz 8.10: What if something else serializes
writers, so that the lock is not needed?

Quick Quiz 8.11: Why isn’t seq on line 2 of Fig-
ure 8.7 unsigned rather than unsigned long? Af-
ter all, if unsigned is good enough for the Linux kernel,
shouldn’t it be good enough for everyone?

Both the read-side and write-side critical sections of
a sequence lock can be thought of as transactions, and
sequence locking therefore can be thought of as a limited
form of transactional memory, which will be discussed in
Section 15.2.

Sequence locks allow writers to defer readers, but not
vice versa. This can result in unfairness and even starva-
tion in writer-heavy workloads. On the other hand, in the
absence of writers, sequence-lock readers are reasonably
fast and scale linearly. It is only human to want the best
of both worlds: fast readers without the possibility of
starvation. In addition, it would also be nice to overcome
sequence locking’s limitations with pointers. The follow-
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ing section presents a synchronization mechanism with
exactly these proporties.

8.3 Read-Copy Update (RCU)
This section covers RCU from a number of different per-
spectives. Section 8.3.1 provides the classic introduction
to RCU, Section 8.3.2 covers fundamental RCU concepts,
Section 8.3.3 introduces some common uses of RCU, Sec-
tion 8.3.4 presents the Linux-kernel API, Section 8.3.5
covers a sequence of “toy” implementations of user-level
RCU, and finally Section 8.3.6 provides some RCU exer-
cises.

8.3.1 Introduction to RCU
Suppose that you are writing a parallel real-time program
that needs to access data that is subject to gradual change,
perhaps due to changes in temperature, humidity, and
barometric pressure. The real-time response constraints
on this program are so severe that it is not permissible
to spin or block, thus ruling out locking, nor is it permis-
sible to use a retry loop, thus ruling out sequence locks.
Fortunately, the temperature and pressure are normally
controlled, so that a default hard-coded set of data is usu-
ally sufficient.

However, the temperature, humidity, and pressure oc-
casionally deviate too far from the defaults, and in such
situations it is necessary to provide data that replaces the
defaults. Because the temperature, humidity, and pres-
sure change gradually, providing the updated values is
not a matter of urgency, though it must happen within
a few minutes. The program is to use a global pointer
imaginatively named gptr that is normally NULL, which
indicates that the default values are to be used. Otherwise,
gptr points to a structure providing values imaginatively
named a, b, and c that are to be used in the real-time
calculations.

How can we safely provide updated values when
needed without impeding real-time readers?

A classic approach is shown in Figure 8.8. The first
row shows the default state, with gptr equal to NULL.
In the second row, we have allocated a structure which
is uninitialized, as indicated by the question marks. In
the third row, we have initialized the structure. Next, we
assign gptr to reference this new element.1 On modern

1 On many computer systems, simple assignment is insufficient due
to interference from both the compiler and the CPU. These issues will
be covered in Section 8.3.2.

gptr

kmalloc()

−>a=?
−>b=?
−>c=?

gptr

initialization

−>a=1
−>b=2
−>c=3

gptr

gptr = p; /*almost*/

−>a=1
−>b=2
−>c=3

gptr

p

p

p

(1)

(2)

(3)

(4)

Figure 8.8: Insertion With Concurrent Readers

general-purpose systems, this assignment is atomic in
the sense that concurrent readers will see either a NULL
pointer or a pointer to the new structure p, but not some
mash-up containing bits from both values. Each reader
is therefore guaranteed to either get the default value of
NULL or to get the newly installed non-default values, but
either way each reader will see a consistent result. Even
better, readers need not use any expensive synchronization
primitives, so this approach is quite suitable for real-time
use.2

But sooner or later, it will be necessary to remove data
that is being referenced by concurrent readers. Let us
move to a more complex example where we are removing
an element from a linked list, as shown in Figure 8.9.
This list initially contains elements A, B, and C, and we
need to remove element B. First, we use list_del()

2 Again, on many computer systems, additional work is required to
prevent interference from the compiler, and, on DEC Alpha systems,
the CPU as well. This will be covered in Section 8.3.2.
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Readers?

A B C(1)

Readers?

1 Version

A CB(2)

Readers?

2 Versions

A CB(3) 1 Versions

A C(4) 1 Versions

wait for readers

free()

list_del() /*almost*/

Figure 8.9: Deletion From Linked List With Concurrent
Readers

to carry out the removal,3 at which point all new readers
will see element B as having been deleted from the list.
However, there might be old readers still referencing this
element. Once all these old readers have finished, we can
safely free element B, resulting in the situation shown at
the bottom of the figure.

But how can we tell when the readers are finished?
It is tempting to consider a reference-counting scheme,

but Figure 4.3 in Chapter 4 shows that this can also re-
sult in long delays, just as can the locking and sequence-
locking approaches that we already rejected.

Let’s consider the logical extreme where the readers
do absolutely nothing to announce their presence. This
approach clearly allows optimal performance for readers
(after all, free is a very good price), but leaves open the
question of how the updater can possibly determine when
all the old readers are done. We clearly need some addi-
tional constraints if we are to provide a reasonable answer
to this question.

3 And yet again, this approximates reality, which will be expanded
on in Section 8.3.2.

One constraint that fits well with some types of real-
time operating systems (as well as some operating-system
kernels) is to consider the case where threads are not
subject to preemption. In such non-preemptible environ-
ments, each thread runs until it explicitly and voluntarily
blocks. This means that an infinite loop without blocking
will render a CPU useless for any other purpose from the
start of the infinite loop onwards.4 Non-preemptibility
also requires that threads be prohibited from blocking
while holding spinlocks. Without this prohibition, all
CPUs might be consumed by threads spinning attempt-
ing to acquire a spinlock held by a blocked thread. The
spinning threads will not relinquish their CPUs until they
acquire the lock, but the thread holding the lock cannot
possibly release it until one of the spinning threads relin-
quishes a CPU. This is a classic deadlock situation.

Let us impose this same constraint on reader threads
traversing the linked list: such threads are not allowed
to block until after completing their traversal. Returning
to the second row of Figure 8.9, where the updater has
just completed executing list_del(), imagine that
CPU 0 executes a context switch. Because readers are
not permitted to block while traversing the linked list,
we are guaranteed that all prior readers that might have
been running on CPU 0 will have completed. Extending
this line of reasoning to the other CPUs, once each CPU
has been observed executing a context switch, we are
guaranteed that all prior readers have completed, and
that there are no longer any reader threads referencing
element B. The updater can then safely free element B,
resulting in the state shown at the bottom of Figure 8.9.

A schematic of this approach is shown in Figure 8.10,
with time advancing from the top of the figure to the
bottom.

Although production-quality implementations of this
approach can be quite complex, a toy implementatoin is
exceedingly simple:

1 for_each_cpu(cpu)
2 run_on(cpu);

The for_online_cpu() primitive iterates over all
CPUs, and the run_on() function causes the current
thread to execute on the specified CPU, which forces the
destination CPU to execute a context switch. Therefore,
once the for_online_cpu() has completed, each
CPU has executed a context switch, which in turn guarna-
tees that all pre-existing reader threads have completed.

4 In contrast, an infinite loop in a preemptible environment might be
preempted. This infinite loop might still waste considerable CPU time,
but the CPU in question would nevertheless be able to do other work.



92 CHAPTER 8. DEFERRED PROCESSING

Context Switch

Reader

G
ra

ce
 P

er
io

d
CPU 1 CPU 2 CPU 3

w
a
it

 f
o

r 
re

a
d

e
rs

li
s
t_

d
e
l(

)
fr

e
e
()

Figure 8.10: Waiting for Pre-Existing Readers

Please note that this approach is not production qual-
ity. Correct handling of a number of corner cases and
the need for a number of powerful optimizations mean
that production-quality implementations have significant
additional complexity. In addition, RCU implementations
for preemptible environments require that readers actually
do something. However, this simple non-preemptible ap-
proach is conceptually complete, and forms a good initial
basis for understanding the RCU fundamentals covered
in the following section.

8.3.2 RCU Fundamentals

Authors: Paul E. McKenney and Jonathan Walpole
Read-copy update (RCU) is a synchronization mech-

anism that was added to the Linux kernel in October of
2002. RCU achieves scalability improvements by allow-
ing reads to occur concurrently with updates. In contrast
with conventional locking primitives that ensure mutual
exclusion among concurrent threads regardless of whether
they be readers or updaters, or with reader-writer locks
that allow concurrent reads but not in the presence of
updates, RCU supports concurrency between a single up-
dater and multiple readers. RCU ensures that reads are
coherent by maintaining multiple versions of objects and
ensuring that they are not freed up until all pre-existing

1 struct foo {
2 int a;
3 int b;
4 int c;
5 };
6 struct foo *gp = NULL;
7
8 /* . . . */
9
10 p = kmalloc(sizeof(*p), GFP_KERNEL);
11 p->a = 1;
12 p->b = 2;
13 p->c = 3;
14 gp = p;

Figure 8.11: Data Structure Publication (Unsafe)

read-side critical sections complete. RCU defines and
uses efficient and scalable mechanisms for publishing and
reading new versions of an object, and also for deferring
the collection of old versions. These mechanisms dis-
tribute the work among read and update paths in such a
way as to make read paths extremely fast. In some cases
(non-preemptible kernels), RCU’s read-side primitives
have zero overhead.

Quick Quiz 8.12: But doesn’t Section 8.2’s seqlock
also permit readers and updaters to get work done concur-
rently?

This leads to the question “what exactly is RCU?”,
and perhaps also to the question “how can RCU possi-
bly work?” (or, not infrequently, the assertion that RCU
cannot possibly work). This document addresses these
questions from a fundamental viewpoint; later install-
ments look at them from usage and from API viewpoints.
This last installment also includes a list of references.

RCU is made up of three fundamental mechanisms,
the first being used for insertion, the second being used
for deletion, and the third being used to allow read-
ers to tolerate concurrent insertions and deletions. Sec-
tion 8.3.2.1 describes the publish-subscribe mechanism
used for insertion, Section 8.3.2.2 describes how waiting
for pre-existing RCU readers enabled deletion, and Sec-
tion 8.3.2.3 discusses how maintaining multiple versions
of recently updated objects permits concurrent insertions
and deletions. Finally, Section 8.3.2.4 summarizes RCU
fundamentals.

8.3.2.1 Publish-Subscribe Mechanism

One key attribute of RCU is the ability to safely scan data,
even though that data is being modified concurrently. To
provide this ability for concurrent insertion, RCU uses
what can be thought of as a publish-subscribe mechanism.
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For example, consider an initially NULL global pointer
gp that is to be modified to point to a newly allocated
and initialized data structure. The code fragment shown
in Figure 8.11 (with the addition of appropriate locking)
might be used for this purpose.

Unfortunately, there is nothing forcing the compiler
and CPU to execute the last four assignment statements
in order. If the assignment to gp happens before the ini-
tialization of p fields, then concurrent readers could see
the uninitialized values. Memory barriers are required
to keep things ordered, but memory barriers are notori-
ously difficult to use. We therefore encapsulate them into
a primitive rcu_assign_pointer() that has publi-
cation semantics. The last four lines would then be as
follows:

1 p->a = 1;
2 p->b = 2;
3 p->c = 3;
4 rcu_assign_pointer(gp, p);

The rcu_assign_pointer() would publish the
new structure, forcing both the compiler and the CPU to
execute the assignment to gp after the assignments to the
fields referenced by p

However, it is not sufficient to only enforce ordering at
the updater, as the reader must enforce proper ordering as
well. Consider for example the following code fragment:

1 p = gp;
2 if (p != NULL) {
3 do_something_with(p->a, p->b, p->c);
4 }

Although this code fragment might well seem im-
mune to misordering, unfortunately, the DEC Alpha
CPU [McK05a, McK05b] and value-speculation com-
piler optimizations can, believe it or not, cause the val-
ues of p->a, p->b, and p->c to be fetched before the
value of p. This is perhaps easiest to see in the case of
value-speculation compiler optimizations, where the com-
piler guesses the value of p fetches p->a, p->b, and
p->c then fetches the actual value of p in order to check
whether its guess was correct. This sort of optimization
is quite aggressive, perhaps insanely so, but does actually
occur in the context of profile-driven optimization.

Clearly, we need to prevent this sort of skulldug-
gery on the part of both the compiler and the CPU.
The rcu_dereference() primitive uses whatever
memory-barrier instructions and compiler directives are
required for this purpose:

next next next next

prev prev prevprev

A B C

Figure 8.12: Linux Circular Linked List

A B C

Figure 8.13: Linux Linked List Abbreviated

1 rcu_read_lock();
2 p = rcu_dereference(gp);
3 if (p != NULL) {
4 do_something_with(p->a, p->b, p->c);
5 }
6 rcu_read_unlock();

The rcu_dereference() primitive can thus be
thought of as subscribing to a given value of the spec-
ified pointer, guaranteeing that subsequent dereference
operations will see any initialization that occurred before
the corresponding publish (rcu_assign_pointer()
operation. The rcu_read_lock() and rcu_read_
unlock() calls are absolutely required: they define
the extent of the RCU read-side critical section. Their
purpose is explained in Section 8.3.2.2, however, they
never spin or block, nor do they prevent the list_add_
rcu() from executing concurrently. In fact, in non-
CONFIG_PREEMPT kernels, they generate absolutely no
code.

Although rcu_assign_pointer() and rcu_
dereference() can in theory be used to construct
any conceivable RCU-protected data structure, in prac-
tice it is often better to use higher-level constructs.
Therefore, the rcu_assign_pointer() and rcu_
dereference() primitives have been embedded in
special RCU variants of Linux’s list-manipulation API.
Linux has two variants of doubly linked list, the cir-
cular struct list_head and the linear struct
hlist_head/struct hlist_node pair. The for-
mer is laid out as shown in Figure 8.12, where the green
boxes represent the list header and the blue boxes repre-
sent the elements in the list. This notation is cumbersome,
and will therefore be abbreviated as shown in Figure 8.13.

Adapting the pointer-publish example for the linked
list results in the code shown in Figure 8.14.
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1 struct foo {
2 struct list_head *list;
3 int a;
4 int b;
5 int c;
6 };
7 LIST_HEAD(head);
8
9 /* . . . */
10
11 p = kmalloc(sizeof(*p), GFP_KERNEL);
12 p->a = 1;
13 p->b = 2;
14 p->c = 3;
15 list_add_rcu(&p->list, &head);

Figure 8.14: RCU Data Structure Publication

next next next

prev prev prev

first

A B C

Figure 8.15: Linux Linear Linked List

Line 15 must be protected by some synchronization
mechanism (most commonly some sort of lock) to prevent
multiple list_add() instances from executing concur-
rently. However, such synchronization does not prevent
this list_add() instance from executing concurrently
with RCU readers.

Subscribing to an RCU-protected list is straightfor-
ward:

1 rcu_read_lock();
2 list_for_each_entry_rcu(p, head, list) {
3 do_something_with(p->a, p->b, p->c);
4 }
5 rcu_read_unlock();

The list_add_rcu() primitive publishes an entry
into the specified list, guaranteeing that the correspond-
ing list_for_each_entry_rcu() invocation will
properly subscribe to this same entry.

Quick Quiz 8.13: What prevents the
list_for_each_entry_rcu() from getting
a segfault if it happens to execute at exactly the same
time as the list_add_rcu()?

Linux’s other doubly linked list, the hlist, is a linear
list, which means that it needs only one pointer for the
header rather than the two required for the circular list,
as shown in Figure8.15. Thus, use of hlist can halve the
memory consumption for the hash-bucket arrays of large
hash tables. As before, this notation is cumbersome, so
hlists will be abbreviated in the same way lists are, as

1 struct foo {
2 struct hlist_node *list;
3 int a;
4 int b;
5 int c;
6 };
7 HLIST_HEAD(head);
8
9 /* . . . */
10
11 p = kmalloc(sizeof(*p), GFP_KERNEL);
12 p->a = 1;
13 p->b = 2;
14 p->c = 3;
15 hlist_add_head_rcu(&p->list, &head);

Figure 8.16: RCU hlist Publication

shown in Figure 8.13.
Publishing a new element to an RCU-protected hlist is

quite similar to doing so for the circular list, as shown in
Figure 8.16.

As before, line 15 must be protected by some sort of
synchronization mechanism, for example, a lock.

Subscribing to an RCU-protected hlist is also similar
to the circular list:

1 rcu_read_lock();
2 hlist_for_each_entry_rcu(p, q, head, list) {
3 do_something_with(p->a, p->b, p->c);
4 }
5 rcu_read_unlock();

Quick Quiz 8.14: Why do we
need to pass two pointers into
hlist_for_each_entry_rcu() when only
one is needed for list_for_each_entry_rcu()?

The set of RCU publish and subscribe primitives are
shown in Table 8.2, along with additional primitives to
“unpublish”, or retract.

Note that the list_replace_rcu(), list_
del_rcu(), hlist_replace_rcu(), and
hlist_del_rcu() APIs add a complication. When
is it safe to free up the data element that was replaced or
removed? In particular, how can we possibly know when
all the readers have released their references to that data
element?

These questions are addressed in the following section.

8.3.2.2 Wait For Pre-Existing RCU Readers to Com-
plete

In its most basic form, RCU is a way of waiting for things
to finish. Of course, there are a great many other ways
of waiting for things to finish, including reference counts,
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Category Publish Retract Subscribe
Pointers rcu_assign_pointer() rcu_assign_pointer(..., NULL) rcu_dereference()

Lists
list_add_rcu()
list_add_tail_rcu()
list_replace_rcu()

list_del_rcu() list_for_each_entry_rcu()

Hlists

hlist_add_after_rcu()
hlist_add_before_rcu()
hlist_add_head_rcu()
hlist_replace_rcu()

hlist_del_rcu() hlist_for_each_entry_rcu()

Table 8.2: RCU Publish and Subscribe Primitives

Reader Reader Reader

ReaderReader

Reader

Reader Reader

Grace Period
Extends as
NeededReader

Removal Reclamation

Time

Figure 8.17: Readers and RCU Grace Period

reader-writer locks, events, and so on. The great advan-
tage of RCU is that it can wait for each of (say) 20,000
different things without having to explicitly track each
and every one of them, and without having to worry about
the performance degradation, scalability limitations, com-
plex deadlock scenarios, and memory-leak hazards that
are inherent in schemes using explicit tracking.

In RCU’s case, the things waited on are called “RCU
read-side critical sections”. An RCU read-side critical
section starts with an rcu_read_lock() primitive,
and ends with a corresponding rcu_read_unlock()
primitive. RCU read-side critical sections can be nested,
and may contain pretty much any code, as long as that
code does not explicitly block or sleep (although a spe-
cial form of RCU called SRCU [McK06b] does permit
general sleeping in SRCU read-side critical sections). If
you abide by these conventions, you can use RCU to wait
for any desired piece of code to complete.

RCU accomplishes this feat by indirectly determin-
ing when these other things have finished [McK07g,
McK07a], as is described in detail in Appendix D.

In particular, as shown in Figure 8.17, RCU is a way of
waiting for pre-existing RCU read-side critical sections to
completely finish, including memory operations executed

1 struct foo {
2 struct list_head *list;
3 int a;
4 int b;
5 int c;
6 };
7 LIST_HEAD(head);
8
9 /* . . . */
10
11 p = search(head, key);
12 if (p == NULL) {
13 /* Take appropriate action, unlock, and return. */
14 }
15 q = kmalloc(sizeof(*p), GFP_KERNEL);
16 *q = *p;
17 q->b = 2;
18 q->c = 3;
19 list_replace_rcu(&p->list, &q->list);
20 synchronize_rcu();
21 kfree(p);

Figure 8.18: Canonical RCU Replacement Example

by those critical sections. However, note that RCU read-
side critical sections that begin after the beginning of a
given grace period can and will extend beyond the end of
that grace period.

The following pseudocode shows the basic form of
algorithms that use RCU to wait for readers:

1. Make a change, for example, replace an element in
a linked list.

2. Wait for all pre-existing RCU read-side critical sec-
tions to completely finish (for example, by using the
synchronize_rcu() primitive). The key obser-
vation here is that subsequent RCU read-side critical
sections have no way to gain a reference to the newly
removed element.

3. Clean up, for example, free the element that was
replaced above.

The code fragment shown in Figure 8.18, adapted from
those in Section 8.3.2.1, demonstrates this process, with
field a being the search key.
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Lines 19, 20, and 21 implement the three steps called
out above. Lines 16-19 gives RCU (“read-copy update”)
its name: while permitting concurrent reads, line 16
copies and lines 17-19 do an update.

As discussed in Section 8.3.1, the synchronize_
rcu() primitive can be quite simple (see Section 8.3.5
for additional “toy” RCU implementations). However,
production-quality implementations must deal with dif-
ficult corner cases and also incorporate powerful opti-
mizations, both of which result in significant complexity.
Although it is good to know that there is a simple concep-
tual implementation of synchronize_rcu(), other
questions remain. For example, what exactly do RCU
readers see when traversing a concurrently updated list?
This question is addressed in the following section.

8.3.2.3 Maintain Multiple Versions of Recently Up-
dated Objects

This section demonstrates how RCU maintains multiple
versions of lists to accommodate synchronization-free
readers. Two examples are presented showing how an el-
ement that might be referenced by a given reader must re-
main intact while that reader remains in its RCU read-side
critical section. The first example demonstrates deletion
of a list element, and the second example demonstrates
replacement of an element.

Example 1: Maintaining Multiple Versions During
Deletion We can now revisit the deletion example from
Section 8.3.1, but now with the benefit of a firm under-
standing of the fundamental concepts underlying RCU.
To begin this new version of the deletion example, we
will modify lines 11-21 in Figure 8.18 to read as follows:

1 p = search(head, key);
2 if (p != NULL) {
3 list_del_rcu(&p->list);
4 synchronize_rcu();
5 kfree(p);
6 }

This code will update the list as shown in Figure 8.19.
The triples in each element represent the values of fields a,
b, and c, respectively. The red-shaded elements indicate
that RCU readers might be holding references to them.
Please note that we have omitted the backwards pointers
and the link from the tail of the list to the head for clarity.

After the list_del_rcu() on line 3 has completed,
the 5,6,7 element has been removed from the list, as
shown in the second row of Figure 8.19. Since readers
do not synchronize directly with updaters, readers might

list_del_rcu()

synchronize_rcu()

kfree()

1,2,3 5,6,7 11,4,8

1,2,3 11,4,8

1,2,3 5,6,7 11,4,8

1,2,3 5,6,7 11,4,8

Figure 8.19: RCU Deletion From Linked List

be concurrently scanning this list. These concurrent read-
ers might or might not see the newly removed element,
depending on timing. However, readers that were de-
layed (e.g., due to interrupts, ECC memory errors, or, in
CONFIG_PREEMPT_RT kernels, preemption) just after
fetching a pointer to the newly removed element might
see the old version of the list for quite some time after the
removal. Therefore, we now have two versions of the list,
one with element 5,6,7 and one without. The 5,6,7 el-
ement is shaded yellow, indicating that old readers might
still be referencing it, but that new readers cannot obtain
a reference to it.

Please note that readers are not permitted to maintain
references to element 5,6,7 after exiting from their
RCU read-side critical sections. Therefore, once the
synchronize_rcu() on line 4 completes, so that all
pre-existing readers are guaranteed to have completed,
there can be no more readers referencing this element,
as indicated by its green shading on the third row of Fig-
ure 8.19. We are thus back to a single version of the
list.

At this point, the 5,6,7 element may safely be freed,
as shown on the final row of Figure 8.19. At this point,
we have completed the deletion of element 5,6,7. The
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following section covers replacement.

Example 2: Maintaining Multiple Versions During
Replacement To start the replacement example, here
are the last few lines of the example shown in Figure 8.18:

1 q = kmalloc(sizeof(*p), GFP_KERNEL);
2 *q = *p;
3 q->b = 2;
4 q->c = 3;
5 list_replace_rcu(&p->list, &q->list);
6 synchronize_rcu();
7 kfree(p);

The initial state of the list, including the pointer p, is
the same as for the deletion example, as shown on the first
row of Figure 8.20.

As before, the triples in each element represent the
values of fields a, b, and c, respectively. The red-shaded
elements might be referenced by readers, and because
readers do not synchronize directly with updaters, read-
ers might run concurrently with this entire replacement
process. Please note that we again omit the backwards
pointers and the link from the tail of the list to the head
for clarity.

The following text describes how to replace the 5,6,7
element with 5,2,3 in such a way that any given reader
sees one of these two values.

Line 1 kmalloc()s a replacement element, as fol-
lows, resulting in the state as shown in the second row
of Figure 8.20. At this point, no reader can hold a refer-
ence to the newly allocated element (as indicated by its
green shading), and it is uninitialized (as indicated by the
question marks).

Line 2 copies the old element to the new one, resulting
in the state as shown in the third row of Figure 8.20. The
newly allocated element still cannot be referenced by
readers, but it is now initialized.

Line 3 updates q->b to the value “2”, and line 4 up-
dates q->c to the value “3”, as shown on the fourth row
of Figure 8.20.

Now, line 5 does the replacement, so that the new el-
ement is finally visible to readers, and hence is shaded
red, as shown on the fifth row of Figure 8.20. At this
point, as shown below, we have two versions of the list.
Pre-existing readers might see the 5,6,7 element (which
is therefore now shaded yellow), but new readers will in-
stead see the 5,2,3 element. But any given reader is
guaranteed to see some well-defined list.

After the synchronize_rcu() on line 6 returns,
a grace period will have elapsed, and so all reads that
started before the list_replace_rcu() will have

1,2,3 5,6,7 11,4,8

Update

5,2,3

5,6,71,2,3 11,4,8

list_replace_rcu()

5,2,3

5,6,71,2,3 11,4,8

5,2,3

5,6,71,2,3 11,4,8

kfree()

1,2,3 5,2,3 11,4,8

Copy

5,6,7

5,6,71,2,3 5,6,7

Allocate

?,?,?

5,6,71,2,3 11,4,8

synchronize_rcu()

Figure 8.20: RCU Replacement in Linked List
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completed. In particular, any readers that might have been
holding references to the 5,6,7 element are guaranteed
to have exited their RCU read-side critical sections, and
are thus prohibited from continuing to hold a reference.
Therefore, there can no longer be any readers holding ref-
erences to the old element, as indicated its green shading
in the sixth row of Figure 8.20. As far as the readers are
concerned, we are back to having a single version of the
list, but with the new element in place of the old.

After the kfree() on line 7 completes, the list will
appear as shown on the final row of Figure 8.20.

Despite the fact that RCU was named after the replace-
ment case, the vast majority of RCU usage within the
Linux kernel relies on the simple deletion case shown in
Section 8.3.2.3.

Discussion These examples assumed that a mutex was
held across the entire update operation, which would
mean that there could be at most two versions of the
list active at a given time.

Quick Quiz 8.15: How would you modify the deletion
example to permit more than two versions of the list to be
active?

Quick Quiz 8.16: How many RCU versions of a given
list can be active at any given time?

This sequence of events shows how RCU updates use
multiple versions to safely carry out changes in presence
of concurrent readers. Of course, some algorithms cannot
gracefully handle multiple versions. There are techniques
for adapting such algorithms to RCU [McK04], but these
are beyond the scope of this section.

8.3.2.4 Summary of RCU Fundamentals

This section has described the three fundamental compo-
nents of RCU-based algorithms:

1. a publish-subscribe mechanism for adding new data,

2. a way of waiting for pre-existing RCU readers to
finish, and

3. a discipline of maintaining multiple versions to per-
mit change without harming or unduly delaying con-
current RCU readers.

Quick Quiz 8.17: How can RCU updaters possibly
delay RCU readers, given that the rcu_read_lock()
and rcu_read_unlock() primitives neither spin nor
block?

Mechanism RCU Replaces Section
Reader-writer locking Section 8.3.3.1
Restricted reference-counting mechanism Section 8.3.3.2
Bulk reference-counting mechanism Section 8.3.3.3
Poor man’s garbage collector Section 8.3.3.4
Existence Guarantees Section 8.3.3.5
Type-Safe Memory Section 8.3.3.6
Wait for things to finish Section 8.3.3.7

Table 8.3: RCU Usage

These three RCU components allow data to be updated
in face of concurrent readers, and can be combined in
different ways to implement a surprising variety of differ-
ent types of RCU-based algorithms, some of which are
described in the following section.

8.3.3 RCU Usage
This section answers the question "what is RCU?" from
the viewpoint of the uses to which RCU can be put. Be-
cause RCU is most frequently used to replace some ex-
isting mechanism, we look at it primarily in terms of its
relationship to such mechanisms, as listed in Table 8.3.
Following the sections listed in this table, Section 8.3.3.8
provides a summary.

8.3.3.1 RCU is a Reader-Writer Lock Replacement

Perhaps the most common use of RCU within the Linux
kernel is as a replacement for reader-writer locking in
read-intensive situations. Nevertheless, this use of RCU
was not immediately apparent to me at the outset, in fact, I
chose to implement something similar to brlock before
implementing a general-purpose RCU implementation
back in the early 1990s. Each and every one of the uses
I envisioned for the proto-brlock primitive was instead
implemented using RCU. In fact, it was more than three
years before the proto-brlock primitive saw its first use.
Boy, did I feel foolish!

The key similarity between RCU and reader-writer
locking is that both have read-side critical sections that
can execute in parallel. In fact, in some cases, it is possible
to mechanically substitute RCU API members for the
corresponding reader-writer lock API members. But first,
why bother?

Advantages of RCU include performance, deadlock
immunity, and realtime latency. There are, of course,
limitations to RCU, including the fact that readers and
updaters run concurrently, that low-priority RCU readers
can block high-priority threads waiting for a grace period
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Figure 8.21: Performance Advantage of RCU Over
Reader-Writer Locking

to elapse, and that grace-period latencies can extend for
many milliseconds. These advantages and limitations are
discussed in the following sections.

Performance The read-side performance advantages of
RCU over reader-writer locking are shown in Figure 8.21.

Quick Quiz 8.18: WTF? How the heck do you expect
me to believe that RCU has a 100-femtosecond overhead
when the clock period at 3GHz is more than 300 picosec-
onds?

Note that reader-writer locking is orders of magnitude
slower than RCU on a single CPU, and is almost two
additional orders of magnitude slower on 16 CPUs. In
contrast, RCU scales quite well. In both cases, the error
bars span a single standard deviation in either direction.

A more moderate view may be obtained from a
CONFIG_PREEMPT kernel, though RCU still beats
reader-writer locking by between one and three orders
of magnitude, as shown in Figure 8.22. Note the high
variability of reader-writer locking at larger numbers of
CPUs. The error bars span a single standard deviation in
either direction.

Of course, the low performance of reader-writer lock-
ing in Figure 8.22 is exaggerated by the unrealistic zero-
length critical sections. The performance advantages of
RCU become less significant as the overhead of the crit-
ical section increases, as shown in Figure 8.23 for a 16-
CPU system, in which the y-axis represents the sum of
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Figure 8.22: Performance Advantage of Preemptible RCU
Over Reader-Writer Locking

the overhead of the read-side primitives and that of the
critical section.

Quick Quiz 8.19: Why does both the variability and
overhead of rwlock decrease as the critical-section over-
head increases?

However, this observation must be tempered by the
fact that a number of system calls (and thus any RCU
read-side critical sections that they contain) can complete
within a few microseconds.

In addition, as is discussed in the next section,
RCU read-side primitives are almost entirely deadlock-
immune.

Deadlock Immunity Although RCU offers significant
performance advantages for read-mostly workloads, one
of the primary reasons for creating RCU in the first place
was in fact its immunity to read-side deadlocks. This im-
munity stems from the fact that RCU read-side primitives
do not block, spin, or even do backwards branches, so
that their execution time is deterministic. It is therefore
impossible for them to participate in a deadlock cycle.

Quick Quiz 8.20: Is there an exception to this dead-
lock immunity, and if so, what sequence of events could
lead to deadlock?

An interesting consequence of RCU’s read-side dead-
lock immunity is that it is possible to unconditionally
upgrade an RCU reader to an RCU updater. Attempting
to do such an upgrade with reader-writer locking results
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Figure 8.23: Comparison of RCU to Reader-Writer Lock-
ing as Function of Critical-Section Duration

in deadlock. A sample code fragment that does an RCU
read-to-update upgrade follows:

1 rcu_read_lock();
2 list_for_each_entry_rcu(p, &head, list_field) {
3 do_something_with(p);
4 if (need_update(p)) {
5 spin_lock(my_lock);
6 do_update(p);
7 spin_unlock(&my_lock);
8 }
9 }
10 rcu_read_unlock();

Note that do_update() is executed under the pro-
tection of the lock and under RCU read-side protection.

Another interesting consequence of RCU’s deadlock
immunity is its immunity to a large class of priority inver-
sion problems. For example, low-priority RCU readers
cannot prevent a high-priority RCU updater from acquir-
ing the update-side lock. Similarly, a low-priority RCU
updater cannot prevent high-priority RCU readers from
entering an RCU read-side critical section.

Realtime Latency Because RCU read-side primitives
neither spin nor block, they offer excellent realtime laten-
cies. In addition, as noted earlier, this means that they are
immune to priority inversion involving the RCU read-side
primitives and locks.

However, RCU is susceptible to more subtle priority-
inversion scenarios, for example, a high-priority process
blocked waiting for an RCU grace period to elapse can be

RCU reader

rwlock reader

rwlock reader
rwlock reader

RCU reader
RCU readerRCU reader

RCU reader
RCU reader

spin rwlock writer

RCU updater

spin
spin

spin

Update Received

rwlock reader
rwlock reader
rwlock reader

RCU reader
RCU reader

RCU reader

Time

Figure 8.24: Response Time of RCU vs. Reader-Writer
Locking

blocked by low-priority RCU readers in -rt kernels. This
can be solved by using RCU priority boosting [McK07d,
GMTW08].

RCU Readers and Updaters Run Concurrently Be-
cause RCU readers never spin nor block, and because
updaters are not subject to any sort of rollback or abort se-
mantics, RCU readers and updaters must necessarily run
concurrently. This means that RCU readers might access
stale data, and might even see inconsistencies, either of
which can render conversion from reader-writer locking
to RCU non-trivial.

However, in a surprisingly large number of situations,
inconsistencies and stale data are not problems. The clas-
sic example is the networking routing table. Because rout-
ing updates can take considerable time to reach a given
system (seconds or even minutes), the system will have
been sending packets the wrong way for quite some time
when the update arrives. It is usually not a problem to con-
tinue sending updates the wrong way for a few additional
milliseconds. Furthermore, because RCU updaters can
make changes without waiting for RCU readers to finish,
the RCU readers might well see the change more quickly
than would batch-fair reader-writer-locking readers, as
shown in Figure 8.24.

Once the update is received, the rwlock writer cannot
proceed until the last reader completes, and subsequent
readers cannot proceed until the writer completes. How-
ever, these subsequent readers are guaranteed to see the
new value, as indicated by the green background. In con-
trast, RCU readers and updaters do not block each other,
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which permits the RCU readers to see the updated values
sooner. Of course, because their execution overlaps that
of the RCU updater, all of the RCU readers might well
see updated values, including the three readers that started
before the update. Nevertheless only the RCU readers
with green backgrounds are guaranteed to see the updated
values, again, as indicated by the green background.

Reader-writer locking and RCU simply provide differ-
ent guarantees. With reader-writer locking, any reader
that begins after the writer begins is guaranteed to see
new values, and any reader that attempts to begin while
the writer is spinning might or might not see new values,
depending on the reader/writer preference of the rwlock
implementation in question. In contrast, with RCU, any
reader that begins after the updater completes is guar-
anteed to see new values, and any reader that completes
after the updater begins might or might not see new values,
depending on timing.

The key point here is that, although reader-writer lock-
ing does indeed guarantee consistency within the confines
of the computer system, there are situations where this
consistency comes at the price of increased inconsistency
with the outside world. In other words, reader-writer lock-
ing obtains internal consistency at the price of silently
stale data with respect to the outside world.

Nevertheless, there are situations where inconsistency
and stale data within the confines of the system can-
not be tolerated. Fortunately, there are a number of ap-
proaches that avoid inconsistency and stale data [McK04,
ACMS03], and some methods based on reference count-
ing are discussed in Section 8.1.

Low-Priority RCU Readers Can Block High-Priority
Reclaimers In Realtime RCU [GMTW08] (see Sec-
tion D.4), SRCU [McK06b] (see Section D.1, or
QRCU [McK07f] (see Section F.6, each of which is
described in the final installment of this series, a pre-
empted reader will prevent a grace period from com-
pleting, even if a high-priority task is blocked waiting
for that grace period to complete. Realtime RCU can
avoid this problem by substituting call_rcu() for
synchronize_rcu() or by using RCU priority boost-
ing [McK07d, GMTW08], which is still in experimental
status as of early 2008. It might become necessary to
augment SRCU and QRCU with priority boosting, but
not before a clear real-world need is demonstrated.

RCU Grace Periods Extend for Many Milliseconds
With the exception of QRCU and several of the “toy”

RCU implementations described in Section 8.3.5, RCU
grace periods extend for multiple milliseconds. Although
there are a number of techniques to render such long
delays harmless, including use of the asynchronous inter-
faces where available (call_rcu() and call_rcu_
bh()), this situation is a major reason for the rule of
thumb that RCU be used in read-mostly situations.

Comparison of Reader-Writer Locking and RCU
Code In the best case, the conversion from reader-writer
locking to RCU is quite simple, as shown in Figures 8.25,
8.26, and 8.27, all taken from Wikipedia [MPA+06].

More-elaborate cases of replacing reader-writer locking
with RCU are beyond the scope of this document.

8.3.3.2 RCU is a Restricted Reference-Counting
Mechanism

Because grace periods are not allowed to complete while
there is an RCU read-side critical section in progress,
the RCU read-side primitives may be used as a restricted
reference-counting mechanism. For example, consider
the following code fragment:

1 rcu_read_lock(); /* acquire reference. */
2 p = rcu_dereference(head);
3 /* do something with p. */
4 rcu_read_unlock(); /* release reference. */

The rcu_read_lock() primitive can be thought of
as acquiring a reference to p, because a grace period start-
ing after the rcu_dereference() assigns to p can-
not possibly end until after we reach the matching rcu_
read_unlock(). This reference-counting scheme is
restricted in that we are not allowed to block in RCU read-
side critical sections, nor are we permitted to hand off an
RCU read-side critical section from one task to another.

Regardless of these restrictions, the following code can
safely delete p:

1 spin_lock(&mylock);
2 p = head;
3 rcu_assign_pointer(head, NULL);
4 spin_unlock(&mylock);
5 /* Wait for all references to be released. */
6 synchronize_rcu();
7 kfree(p);

The assignment to head prevents any future refer-
ences to p from being acquired, and the synchronize_
rcu() waits for any previously acquired references to
be released.

Quick Quiz 8.21: But wait! This is exactly the same
code that might be used when thinking of RCU as a re-
placement for reader-writer locking! What gives?
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1 struct el { 1 struct el {
2 struct list_head lp; 2 struct list_head lp;
3 long key; 3 long key;
4 spinlock_t mutex; 4 spinlock_t mutex;
5 int data; 5 int data;
6 /* Other data fields */ 6 /* Other data fields */
7 }; 7 };
8 DEFINE_RWLOCK(listmutex); 8 DEFINE_SPINLOCK(listmutex);
9 LIST_HEAD(head); 9 LIST_HEAD(head);

Figure 8.25: Converting Reader-Writer Locking to RCU: Data

1 int search(long key, int *result) 1 int search(long key, int *result)
2 { 2 {
3 struct el *p; 3 struct el *p;
4 4
5 read_lock(&listmutex); 5 rcu_read_lock();
6 list_for_each_entry(p, &head, lp) { 6 list_for_each_entry_rcu(p, &head, lp) {
7 if (p->key == key) { 7 if (p->key == key) {
8 *result = p->data; 8 *result = p->data;
9 read_unlock(&listmutex); 9 rcu_read_unlock();

10 return 1; 10 return 1;
11 } 11 }
12 } 12 }
13 read_unlock(&listmutex); 13 rcu_read_unlock();
14 return 0; 14 return 0;
15 } 15 }

Figure 8.26: Converting Reader-Writer Locking to RCU: Search

1 int delete(long key) 1 int delete(long key)
2 { 2 {
3 struct el *p; 3 struct el *p;
4 4
5 write_lock(&listmutex); 5 spin_lock(&listmutex);
6 list_for_each_entry(p, &head, lp) { 6 list_for_each_entry(p, &head, lp) {
7 if (p->key == key) { 7 if (p->key == key) {
8 list_del(&p->lp); 8 list_del_rcu(&p->lp);
9 write_unlock(&listmutex); 9 spin_unlock(&listmutex);

10 synchronize_rcu();
10 kfree(p); 11 kfree(p);
11 return 1; 12 return 1;
12 } 13 }
13 } 14 }
14 write_unlock(&listmutex); 15 spin_unlock(&listmutex);
15 return 0; 16 return 0;
16 } 17 }

Figure 8.27: Converting Reader-Writer Locking to RCU: Deletion
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Figure 8.28: Performance of RCU vs. Reference Count-
ing

Of course, RCU can also be combined with traditional
reference counting, as has been discussed on LKML and
as summarized in Section 8.1.

But why bother? Again, part of the answer is perfor-
mance, as shown in Figure 8.28, again showing data taken
on a 16-CPU 3GHz Intel x86 system.

Quick Quiz 8.22: Why the dip in refcnt overhead near
6 CPUs?

And, as with reader-writer locking, the performance ad-
vantages of RCU are most pronounced for short-duration
critical sections, as shown Figure 8.29 for a 16-CPU sys-
tem. In addition, as with reader-writer locking, many
system calls (and thus any RCU read-side critical sections
that they contain) complete in a few microseconds.

However, the restrictions that go with RCU can be quite
onerous. For example, in many cases, the prohibition
against sleeping while in an RCU read-side critical section
would defeat the entire purpose. The next section looks
at ways of addressing this problem, while also reducing
the complexity of traditional reference counting, at least
in some cases.

8.3.3.3 RCU is a Bulk Reference-Counting Mecha-
nism

As noted in the preceding section, traditional reference
counters are usually associated with a specific data struc-
ture, or perhaps a specific group of data structures. How-
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Figure 8.29: Response Time of RCU vs. Reference Count-
ing

ever, maintaining a single global reference counter for a
large variety of data structures typically results in bounc-
ing the cache line containing the reference count. Such
cache-line bouncing can severely degrade performance.

In contrast, RCU’s light-weight read-side primitives
permit extremely frequent read-side usage with negligible
performance degradation, permitting RCU to be used
as a "bulk reference-counting" mechanism with little or
no performance penalty. Situations where a reference
must be held by a single task across a section of code
that blocks may be accommodated with Sleepable RCU
(SRCU) [McK06b]. This fails to cover the not-uncommon
situation where a reference is "passed" from one task
to another, for example, when a reference is acquired
when starting an I/O and released in the corresponding
completion interrupt handler. (In principle, this could be
handled by the SRCU implementation, but in practice, it
is not yet clear whether this is a good tradeoff.)

Of course, SRCU brings restrictions of its own,
namely that the return value from srcu_read_
lock() be passed into the corresponding srcu_read_
unlock(), and that no SRCU primitives be invoked
from hardware irq handlers or from NMI/SMI handlers.
The jury is still out as to how much of a problem is pre-
sented by these restrictions, and as to how they can best
be handled.
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8.3.3.4 RCU is a Poor Man’s Garbage Collector

A not-uncommon exclamation made by people first learn-
ing about RCU is "RCU is sort of like a garbage collec-
tor!". This exclamation has a large grain of truth, but it
can also be misleading.

Perhaps the best way to think of the relationship be-
tween RCU and automatic garbage collectors (GCs) is
that RCU resembles a GC in that the timing of collection
is automatically determined, but that RCU differs from a
GC in that: (1) the programmer must manually indicate
when a given data structure is eligible to be collected, and
(2) the programmer must manually mark the RCU read-
side critical sections where references might legitimately
be held.

Despite these differences, the resemblance does go
quite deep, and has appeared in at least one theoretical
analysis of RCU. Furthermore, the first RCU-like mecha-
nism I am aware of used a garbage collector to handle the
grace periods. Nevertheless, a better way of thinking of
RCU is described in the following section.

8.3.3.5 RCU is a Way of Providing Existence Guar-
antees

Gamsa et al. [GKAS99] discuss existence guarantees and
describe how a mechanism resembling RCU can be used
to provide these existence guarantees (see section 5 on
page 7 of the PDF), and Section 6.4 discusses how to
guarantee existence via locking, along with the ensuing
disadvantages of doing so. The effect is that if any RCU-
protected data element is accessed within an RCU read-
side critical section, that data element is guaranteed to
remain in existence for the duration of that RCU read-side
critical section.

Figure 8.30 demonstrates how RCU-based existence
guarantees can enable per-element locking via a function
that deletes an element from a hash table. Line 6 computes
a hash function, and line 7 enters an RCU read-side criti-
cal section. If line 9 finds that the corresponding bucket
of the hash table is empty or that the element present is
not the one we wish to delete, then line 10 exits the RCU
read-side critical section and line 11 indicates failure.

Quick Quiz 8.23: What if the element we need to
delete is not the first element of the list on line 9 of Fig-
ure 8.30?

Otherwise, line 13 acquires the update-side spinlock,
and line 14 then checks that the element is still the one
that we want. If so, line 15 leaves the RCU read-side
critical section, line 16 removes it from the table, line 17

1 int delete(int key)
2 {
3 struct element *p;
4 int b;
5 5
6 b = hashfunction(key);
7 rcu_read_lock();
8 p = rcu_dereference(hashtable[b]);
9 if (p == NULL || p->key != key) {
10 rcu_read_unlock();
11 return 0;
12 }
13 spin_lock(&p->lock);
14 if (hashtable[b] == p && p->key == key) {
15 rcu_read_unlock();
16 hashtable[b] = NULL;
17 spin_unlock(&p->lock);
18 synchronize_rcu();
19 kfree(p);
20 return 1;
21 }
22 spin_unlock(&p->lock);
23 rcu_read_unlock();
24 return 0;
25 }

Figure 8.30: Existence Guarantees Enable Per-Element
Locking

releases the lock, line 18 waits for all pre-existing RCU
read-side critical sections to complete, line 19 frees the
newly removed element, and line 20 indicates success. If
the element is no longer the one we want, line 22 releases
the lock, line 23 leaves the RCU read-side critical section,
and line 24 indicates failure to delete the specified key.

Quick Quiz 8.24: Why is it OK to exit the RCU read-
side critical section on line 15 of Figure 8.30 before re-
leasing the lock on line 17?

Quick Quiz 8.25: Why not exit the RCU read-side
critical section on line 23 of Figure 8.30 before releasing
the lock on line 22?

Alert readers will recognize this as only a slight varia-
tion on the original "RCU is a way of waiting for things
to finish" theme, which is addressed in Section 8.3.3.7.
They might also note the deadlock-immunity advantages
over the lock-based existence guarantees discussed in
Section 6.4.

8.3.3.6 RCU is a Way of Providing Type-Safe Mem-
ory

A number of lockless algorithms do not require that a
given data element keep the same identity through a given
RCU read-side critical section referencing it—but only if
that data element retains the same type. In other words,
these lockless algorithms can tolerate a given data element
being freed and reallocated as the same type of structure
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while they are referencing it, but must prohibit a change
in type. This guarantee, called “type-safe memory” in
academic literature [GC96], is weaker than the existence
guarantees in the previous section, and is therefore quite
a bit harder to work with. Type-safe memory algorithms
in the Linux kernel make use of slab caches, specially
marking these caches with SLAB_DESTROY_BY_RCU
so that RCU is used when returning a freed-up slab to
system memory. This use of RCU guarantees that any
in-use element of such a slab will remain in that slab,
thus retaining its type, for the duration of any pre-existing
RCU read-side critical sections.

Quick Quiz 8.26: But what if there is an arbitrarily
long series of RCU read-side critical sections in multi-
ple threads, so that at any point in time there is at least
one thread in the system executing in an RCU read-side
critical section? Wouldn’t that prevent any data from a
SLAB_DESTROY_BY_RCU slab ever being returned to
the system, possibly resulting in OOM events?

These algorithms typically use a validation step that
checks to make sure that the newly referenced data struc-
ture really is the one that was requested [LS86, Section
2.5]. These validation checks require that portions of the
data structure remain untouched by the free-reallocate
process. Such validation checks are usually very hard to
get right, and can hide subtle and difficult bugs.

Therefore, although type-safety-based lockless algo-
rithms can be extremely helpful in a very few difficult
situations, you should instead use existence guarantees
where possible. Simpler is after all almost always better!

8.3.3.7 RCU is a Way of Waiting for Things to Fin-
ish

As noted in Section 8.3.2 an important component of
RCU is a way of waiting for RCU readers to finish. One
of RCU’s great strengths is that it allows you to wait for
each of thousands of different things to finish without
having to explicitly track each and every one of them, and
without having to worry about the performance degrada-
tion, scalability limitations, complex deadlock scenarios,
and memory-leak hazards that are inherent in schemes
that use explicit tracking.

In this section, we will show how synchronize_
sched()’s read-side counterparts (which include any-
thing that disables preemption, along with hardware oper-
ations and primitives that disable irq) permit you to im-
plement interactions with non-maskable interrupt (NMI)
handlers that would be quite difficult if using locking.

1 struct profile_buffer {
2 long size;
3 atomic_t entry[0];
4 };
5 static struct profile_buffer *buf = NULL;
6
7 void nmi_profile(unsigned long pcvalue)
8 {
9 struct profile_buffer *p = rcu_dereference(buf);
10
11 if (p == NULL)
12 return;
13 if (pcvalue >= p->size)
14 return;
15 atomic_inc(&p->entry[pcvalue]);
16 }
17
18 void nmi_stop(void)
19 {
20 struct profile_buffer *p = buf;
21
22 if (p == NULL)
23 return;
24 rcu_assign_pointer(buf, NULL);
25 synchronize_sched();
26 kfree(p);
27 }

Figure 8.31: Using RCU to Wait for NMIs to Finish

This approach has been called "Pure RCU" [McK04], and
it is used in a number of places in the Linux kernel.

The basic form of such "Pure RCU" designs is as fol-
lows:

1. Make a change, for example, to the way that the OS
reacts to an NMI.

2. Wait for all pre-existing read-side critical sections
to completely finish (for example, by using the
synchronize_sched() primitive). The key ob-
servation here is that subsequent RCU read-side crit-
ical sections are guaranteed to see whatever change
was made.

3. Clean up, for example, return status indicating that
the change was successfully made.

The remainder of this section presents example
code adapted from the Linux kernel. In this exam-
ple, the timer_stop function uses synchronize_
sched() to ensure that all in-flight NMI notifications
have completed before freeing the associated resources.
A simplified version of this code is shown Figure 8.31.

Lines 1-4 define a profile_buffer structure, con-
taining a size and an indefinite array of entries. Line 5
defines a pointer to a profile buffer, which is presumably
initialized elsewhere to point to a dynamically allocated
region of memory.
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Lines 7-16 define the nmi_profile() function,
which is called from within an NMI handler. As such,
it cannot be preempted, nor can it be interrupted by a
normal irq handler, however, it is still subject to delays
due to cache misses, ECC errors, and cycle stealing by
other hardware threads within the same core. Line 9
gets a local pointer to the profile buffer using the rcu_
dereference() primitive to ensure memory ordering
on DEC Alpha, and lines 11 and 12 exit from this func-
tion if there is no profile buffer currently allocated, while
lines 13 and 14 exit from this function if the pcvalue ar-
gument is out of range. Otherwise, line 15 increments the
profile-buffer entry indexed by the pcvalue argument.
Note that storing the size with the buffer guarantees that
the range check matches the buffer, even if a large buffer
is suddenly replaced by a smaller one.

Lines 18-27 define the nmi_stop() function, where
the caller is responsible for mutual exclusion (for exam-
ple, holding the correct lock). Line 20 fetches a pointer
to the profile buffer, and lines 22 and 23 exit the func-
tion if there is no buffer. Otherwise, line 24 NULLs
out the profile-buffer pointer (using the rcu_assign_
pointer() primitive to maintain memory ordering on
weakly ordered machines), and line 25 waits for an RCU
Sched grace period to elapse, in particular, waiting for all
non-preemptible regions of code, including NMI handlers,
to complete. Once execution continues at line 26, we are
guaranteed that any instance of nmi_profile() that
obtained a pointer to the old buffer has returned. It is
therefore safe to free the buffer, in this case using the
kfree() primitive.

Quick Quiz 8.27: Suppose that the nmi_
profile() function was preemptible. What would
need to change to make this example work correctly?

In short, RCU makes it easy to dynamically switch
among profile buffers (you just try doing this efficiently
with atomic operations, or at all with locking!). However,
RCU is normally used at a higher level of abstraction, as
was shown in the previous sections.

8.3.3.8 RCU Usage Summary

At its core, RCU is nothing more nor less than an API
that provides:

1. a publish-subscribe mechanism for adding new data,

2. a way of waiting for pre-existing RCU readers to
finish, and

3. a discipline of maintaining multiple versions to per-
mit change without harming or unduly delaying con-
current RCU readers.

That said, it is possible to build higher-level con-
structs on top of RCU, including the reader-writer-locking,
reference-counting, and existence-guarantee constructs
listed in the earlier sections. Furthermore, I have no doubt
that the Linux community will continue to find interesting
new uses for RCU, as well as for any of a number of other
synchronization primitives.

8.3.4 RCU Linux-Kernel API

This section looks at RCU from the viewpoint of its
Linux-kernel API. Section 8.3.4.1 presents RCU’s wait-to-
finish APIs, and Section 8.3.4.2 presents RCU’s publish-
subscribe and version-maintenance APIs. Finally, Sec-
tion 8.3.4.4 presents concluding remarks.

8.3.4.1 RCU has a Family of Wait-to-Finish APIs

The most straightforward answer to “what is RCU” is that
RCU is an API used in the Linux kernel, as summarized
by Tables 8.4 and 8.5, which shows the wait-for-RCU-
readers portions of the non-sleepable and sleepable APIs,
respectively, and by Table 8.6, which shows the publish/-
subscribe portions of the API.

If you are new to RCU, you might consider focusing
on just one of the columns in Table 8.4, each of which
summarizes one member of the Linux kernel’s RCU API
family.. For example, if you are primarily interested in un-
derstanding how RCU is used in the Linux kernel, “RCU
Classic” would be the place to start, as it is used most
frequently. On the other hand, if you want to understand
RCU for its own sake, “SRCU” has the simplest API. You
can always come back for the other columns later.

If you are already familiar with RCU, these tables can
serve as a useful reference.

Quick Quiz 8.28: Why do some of the cells in Ta-
ble 8.4 have exclamation marks (“!”)?

The “RCU Classic” column corresponds to the
original RCU implementation, in which RCU read-
side critical sections are delimited by rcu_read_
lock() and rcu_read_unlock(), which may be
nested. The corresponding synchronous update-side prim-
itives, synchronize_rcu(), along with its synonym
synchronize_net(), wait for any currently execut-
ing RCU read-side critical sections to complete. The



8.3. READ-COPY UPDATE (RCU) 107

Attribute RCU Classic RCU BH RCU Sched Realtime RCU
Purpose Original Prevent DDoS attacks Wait for preempt-disable

regions, hardirqs, &
NMIs

Realtime response

Availability 2.5.43 2.6.9 2.6.12 2.6.26
Read-side primitives rcu_read_lock() !

rcu_read_
unlock() !

rcu_read_lock_bh()
rcu_read_unlock_
bh()

preempt_disable()
preempt_enable()
(and friends)

rcu_read_lock()
rcu_read_unlock()

Update-side primitives (syn-
chronous)

synchronize_rcu()
synchronize_net()

synchronize_
sched()

synchronize_rcu()
synchronize_net()

Update-side primitives
(asynchronous/callback)

call_rcu() ! call_rcu_bh() call_rcu_sched() call_rcu()

Update-side primitives (wait
for callbacks)

rcu_barrier() rcu_barrier_bh() rcu_barrier_
sched()

rcu_barrier()

Type-safe memory SLAB_DESTROY_BY_
RCU

SLAB_DESTROY_BY_
RCU

Read side constraints No blocking No irq enabling No blocking Only preemption and lock
acquisition

Read side overhead Preempt disable/enable
(free on non-PREEMPT)

BH disable/enable Preempt disable/enable
(free on non-PREEMPT)

Simple instructions, irq
disable/enable

Asynchronous update-side
overhead

sub-microsecond sub-microsecond sub-microsecond

Grace-period latency 10s of milliseconds 10s of milliseconds 10s of milliseconds 10s of milliseconds
Non-PREEMPT_RT imple-
mentation

RCU Classic RCU BH RCU Classic Preemptible RCU

PREEMPT_RT implementa-
tion

Preemptible RCU Realtime RCU Forced Schedule on all
CPUs

Realtime RCU

Table 8.4: RCU Wait-to-Finish APIs

Attribute SRCU QRCU
Purpose Sleeping readers Sleeping readers and fast grace periods
Availability 2.6.19
Read-side primitives srcu_read_lock()

srcu_read_unlock()
qrcu_read_lock()
qrcu_read_unlock()

Update-side primitives (syn-
chronous)

synchronize_srcu() synchronize_qrcu()

Update-side primitives
(asynchronous/callback)

N/A N/A

Update-side primitives (wait
for callbacks)

N/A N/A

Type-safe memory
Read side constraints No synchronize_srcu() No synchronize_qrcu()
Read side overhead Simple instructions, preempt dis-

able/enable
Atomic increment and decrement of
shared variable

Asynchronous update-side
overhead

N/A N/A

Grace-period latency 10s of milliseconds 10s of nanoseconds in absence of read-
ers

Non-PREEMPT_RT imple-
mentation

SRCU N/A

PREEMPT_RT implementa-
tion

SRCU N/A

Table 8.5: Sleepable RCU Wait-to-Finish APIs
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length of this wait is known as a “grace period”. The asyn-
chronous update-side primitive, call_rcu(), invokes
a specified function with a specified argument after a sub-
sequent grace period. For example, call_rcu(p,f);
will result in the “RCU callback” f(p) being invoked
after a subsequent grace period. There are situations,
such as when unloading a Linux-kernel module that uses
call_rcu(), when it is necessary to wait for all out-
standing RCU callbacks to complete [McK07e]. The
rcu_barrier() primitive does this job. Note that the
more recent hierarchical RCU [McK08a] implementation
described in Sections D.2 and D.3 also adheres to “RCU
Classic” semantics.

Finally, RCU may be used to provide type-safe mem-
ory [GC96], as described in Section 8.3.3.6. In the con-
text of RCU, type-safe memory guarantees that a given
data element will not change type during any RCU read-
side critical section that accesses it. To make use of
RCU-based type-safe memory, pass SLAB_DESTROY_
BY_RCU to kmem_cache_create(). It is important
to note that SLAB_DESTROY_BY_RCU will in no way
prevent kmem_cache_alloc() from immediately re-
allocating memory that was just now freed via kmem_
cache_free()! In fact, the SLAB_DESTROY_BY_
RCU-protected data structure just returned by rcu_
dereference might be freed and reallocated an ar-
bitrarily large number of times, even when under the
protection of rcu_read_lock(). Instead, SLAB_
DESTROY_BY_RCU operates by preventing kmem_
cache_free() from returning a completely freed-up
slab of data structures to the system until after an RCU
grace period elapses. In short, although the data element
might be freed and reallocated arbitrarily often, at least
its type will remain the same.

Quick Quiz 8.29: How do you prevent a huge num-
ber of RCU read-side critical sections from indefinitely
blocking a synchronize_rcu() invocation?

Quick Quiz 8.30: The synchronize_rcu() API
waits for all pre-existing interrupt handlers to complete,
right?

In the “RCU BH” column, rcu_read_lock_bh()
and rcu_read_unlock_bh() delimit RCU read-
side critical sections, and call_rcu_bh() invokes
the specified function and argument after a subsequent
grace period. Note that RCU BH does not have a syn-
chronous synchronize_rcu_bh() interface, though
one could easily be added if required.

Quick Quiz 8.31: What happens if you mix and
match? For example, suppose you use rcu_read_

lock() and rcu_read_unlock() to delimit RCU
read-side critical sections, but then use call_rcu_
bh() to post an RCU callback?

Quick Quiz 8.32: Hardware interrupt handlers can be
thought of as being under the protection of an implicit
rcu_read_lock_bh(), right?

In the “RCU Sched” column, anything that dis-
ables preemption acts as an RCU read-side critical
section, and synchronize_sched() waits for the
corresponding RCU grace period. This RCU API
family was added in the 2.6.12 kernel, which split
the old synchronize_kernel() API into the cur-
rent synchronize_rcu() (for RCU Classic) and
synchronize_sched() (for RCU Sched). Note that
RCU Sched did not originally have an asynchronous
call_rcu_sched() interface, but one was added in
2.6.26. In accordance with the quasi-minimalist philos-
ophy of the Linux community, APIs are added on an
as-needed basis.

Quick Quiz 8.33: What happens if you mix and match
RCU Classic and RCU Sched?

Quick Quiz 8.34: In general, you cannot rely on
synchronize_sched() to wait for all pre-existing
interrupt handlers, right?

The “Realtime RCU” column has the same API as does
RCU Classic, the only difference being that RCU read-
side critical sections may be preempted and may block
while acquiring spinlocks. The design of Realtime RCU
is described elsewhere [McK07a].

Quick Quiz 8.35: Why do both SRCU and QRCU
lack asynchronous call_srcu() or call_qrcu()
interfaces?

The “SRCU” column in Table 8.5 displays a specialized
RCU API that permits general sleeping in RCU read-side
critical sections (see Appendix D.1 for more details). Of
course, use of synchronize_srcu() in an SRCU
read-side critical section can result in self-deadlock, so
should be avoided. SRCU differs from earlier RCU imple-
mentations in that the caller allocates an srcu_struct
for each distinct SRCU usage. This approach prevents
SRCU read-side critical sections from blocking unrelated
synchronize_srcu() invocations. In addition, in
this variant of RCU, srcu_read_lock() returns a
value that must be passed into the corresponding srcu_
read_unlock().

The “QRCU” column presents an RCU implementation
with the same API structure as SRCU, but optimized for
extremely low-latency grace periods in absence of readers,
as described elsewhere [McK07f]. As with SRCU, use of
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synchronize_qrcu() in a QRCU read-side critical
section can result in self-deadlock, so should be avoided.
Although QRCU has not yet been accepted into the Linux
kernel, it is worth mentioning given that it is the only
kernel-level RCU implementation that can boast deep
sub-microsecond grace-period latencies.

Quick Quiz 8.36: Under what conditions can
synchronize_srcu() be safely used within an
SRCU read-side critical section?

The Linux kernel currently has a surprising number
of RCU APIs and implementations. There is some hope
of reducing this number, evidenced by the fact that a
given build of the Linux kernel currently has at most
three implementations behind four APIs (given that RCU
Classic and Realtime RCU share the same API). However,
careful inspection and analysis will be required, just as
would be required in order to eliminate one of the many
locking APIs.

The various RCU APIs are distinguished by the
forward-progress guarantees that their RCU read-side
critical sections must provide, and also by their scope, as
follows:

1. RCU BH: read-side critical sections must guarantee
forward progress against everything except for NMI
and IRQ handlers, but not including softirq handlers.
RCU BH is global in scope.

2. RCU Sched: read-side critical sections must guaran-
tee forward progress against everything except for
NMI and IRQ handlers, including softirq handlers.
RCU Sched is global in scope.

3. RCU (both classic and real-time): read-side critical
sections must guarantee forward progress against
everything except for NMI handlers, IRQ handlers,
softirq handlers, and (in the real-time case) higher-
priority real-time tasks. RCU is global in scope.

4. SRCU and QRCU: read-side critical sections need
not guarantee forward progress unless some other
task is waiting for the corresponding grace period
to complete, in which case these read-side critical
sections should complete in no more than a few sec-
onds (and preferably much more quickly).5 SRCU’s
and QRCU’s scope is defined by the use of the cor-
responding srcu_struct or qrcu_struct, re-
spectively.

5 Thanks to James Bottomley for urging me to this formulation, as
opposed to simply saying that there are no forward-progress guarantees.

In other words, SRCU and QRCU compensate for their
extremely weak forward-progress guarantees by permit-
ting the developer to restrict their scope.

8.3.4.2 RCU has Publish-Subscribe and Version-
Maintenance APIs

Fortunately, the RCU publish-subscribe and version-
maintenance primitives shown in the following table ap-
ply to all of the variants of RCU discussed above. This
commonality can in some cases allow more code to be
shared, which certainly reduces the API proliferation that
would otherwise occur. The original purpose of the RCU
publish-subscribe APIs was to bury memory barriers into
these APIs, so that Linux kernel programmers could use
RCU without needing to become expert on the memory-
ordering models of each of the 20+ CPU families that
Linux supports [Spr01].

The first pair of categories operate on Linux
struct list_head lists, which are circular, doubly-
linked lists. The list_for_each_entry_rcu()
primitive traverses an RCU-protected list in a type-safe
manner, while also enforcing memory ordering for situ-
ations where a new list element is inserted into the list
concurrently with traversal. On non-Alpha platforms, this
primitive incurs little or no performance penalty com-
pared to list_for_each_entry(). The list_
add_rcu(), list_add_tail_rcu(), and list_
replace_rcu() primitives are analogous to their non-
RCU counterparts, but incur the overhead of an addi-
tional memory barrier on weakly-ordered machines. The
list_del_rcu() primitive is also analogous to its
non-RCU counterpart, but oddly enough is very slightly
faster due to the fact that it poisons only the prev pointer
rather than both the prev and next pointers as list_
del() must do. Finally, the list_splice_init_
rcu() primitive is similar to its non-RCU counterpart,
but incurs a full grace-period latency. The purpose of this
grace period is to allow RCU readers to finish their traver-
sal of the source list before completely disconnecting it
from the list header – failure to do this could prevent such
readers from ever terminating their traversal.

Quick Quiz 8.37: Why doesn’t list_del_rcu()
poison both the next and prev pointers?

The second pair of categories operate on Linux’s
struct hlist_head, which is a linear linked
list. One advantage of struct hlist_head over
struct list_head is that the former requires only a
single-pointer list header, which can save significant mem-
ory in large hash tables. The struct hlist_head



110 CHAPTER 8. DEFERRED PROCESSING

Category Primitives Availability Overhead
List traversal list_for_each_entry_

rcu()
2.5.59 Simple instructions

(memory barrier on
Alpha)

List update list_add_rcu() 2.5.44 Memory barrier
list_add_tail_rcu() 2.5.44 Memory barrier
list_del_rcu() 2.5.44 Simple instructions
list_replace_rcu() 2.6.9 Memory barrier
list_splice_init_rcu() 2.6.21 Grace-period latency

Hlist traversal hlist_for_each_entry_
rcu()

2.6.8 Simple instructions
(memory barrier on
Alpha)

hlist_add_after_rcu() 2.6.14 Memory barrier
hlist_add_before_rcu() 2.6.14 Memory barrier
hlist_add_head_rcu() 2.5.64 Memory barrier
hlist_del_rcu() 2.5.64 Simple instructions
hlist_replace_rcu() 2.6.15 Memory barrier

Pointer traversal rcu_dereference() 2.6.9 Simple instructions
(memory barrier on
Alpha)

Pointer update rcu_assign_pointer() 2.6.10 Memory barrier

Table 8.6: RCU Publish-Subscribe and Version Maintenance APIs

primitives in the table relate to their non-RCU counter-
parts in much the same way as do the struct list_
head primitives.

The final pair of categories operate directly on point-
ers, and are useful for creating RCU-protected non-list
data structures, such as RCU-protected arrays and trees.
The rcu_assign_pointer() primitive ensures that
any prior initialization remains ordered before the assign-
ment to the pointer on weakly ordered machines. Simi-
larly, the rcu_dereference() primitive ensures that
subsequent code dereferencing the pointer will see the
effects of initialization code prior to the corresponding
rcu_assign_pointer() on Alpha CPUs. On non-
Alpha CPUs, rcu_dereference() documents which
pointer dereferences are protected by RCU.

Quick Quiz 8.38: Normally, any pointer subject to
rcu_dereference() must always be updated using
rcu_assign_pointer(). What is an exception to
this rule?

Quick Quiz 8.39: Are there any downsides to the fact
that these traversal and update primitives can be used with
any of the RCU API family members?
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Figure 8.32: RCU API Usage Constraints

8.3.4.3 Where Can RCU’s APIs Be Used?

Figure 8.32 shows which APIs may be used in which
in-kernel environments. The RCU read-side primitives
may be used in any environment, including NMI, the
RCU mutation and asynchronous grace-period primitives
may be used in any environment other than NMI, and, fi-
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nally, the RCU synchronous grace-period primitives may
be used only in process context. The RCU list-traversal
primitives include list_for_each_entry_rcu(),
hlist_for_each_entry_rcu(), etc. Similarly,
the RCU list-mutation primitives include list_add_
rcu(), hlist_del_rcu(), etc.

Note that primitives from other families of RCU may
be substituted, for example, srcu_read_lock() may
be used in any context in which rcu_read_lock()
may be used.

8.3.4.4 So, What is RCU Really?

At its core, RCU is nothing more nor less than an API
that supports publication and subscription for insertions,
waiting for all RCU readers to complete, and mainte-
nance of multiple versions. That said, it is possible to
build higher-level constructs on top of RCU, including the
reader-writer-locking, reference-counting, and existence-
guarantee constructs listed in the companion article. Fur-
thermore, I have no doubt that the Linux community will
continue to find interesting new uses for RCU, just as
they do for any of a number of synchronization primitives
throughout the kernel.

Of course, a more-complete view of RCU would also
include all of the things you can do with these APIs.

However, for many people, a complete view of RCU
must include sample RCU implementations. The next
section therefore presents a series of “toy” RCU imple-
mentations of increasing complexity and capability.

8.3.5 “Toy” RCU Implementations
The toy RCU implementations in this section are designed
not for high performance, practicality, or any kind of
production use,6 but rather for clarity. Nevertheless, you
will need a thorough understanding of Chapters 1, 2, 3,
5, and 8 for even these toy RCU implementations to be
easily understandable.

This section provides a series of RCU implementa-
tions in order of increasing sophistication, from the view-
point of solving the existence-guarantee problem. Sec-
tion 8.3.5.1 presents a rudimentary RCU implementation
based on simple locking, while Section 8.3.5.3 through
8.3.5.9 present a series of simple RCU implementations
based on locking, reference counters, and free-running
counters. Finally, Section 8.3.5.10 provides a summary
and a list of desirable RCU properties.

6 However, production-quality user-level RCU implementations are
available [Des09].

8.3.5.1 Lock-Based RCU

Perhaps the simplest RCU implementation leverages lock-
ing, as shown in Figure 8.33 (rcu_lock.h and rcu_
lock.c). In this implementation, rcu_read_lock()
acquires a global spinlock, rcu_read_unlock() re-
leases it, and synchronize_rcu() acquires it then
immediately releases it.

Because synchronize_rcu() does not return un-
til it has acquired (and released) the lock, it cannot return
until all prior RCU read-side critical sections have com-
pleted, thus faithfully implementing RCU semantics. Of
course, only one RCU reader may be in its read-side
critical section at a time, which almost entirely defeats
the purpose of RCU. In addition, the lock operations in
rcu_read_lock() and rcu_read_unlock() are
extremely heavyweight, with read-side overhead rang-
ing from about 100 nanoseconds on a single Power5
CPU up to more than 17 microseconds on a 64-CPU
system. Worse yet, these same lock operations permit
rcu_read_lock() to participate in deadlock cycles.
Furthermore, in absence of recursive locks, RCU read-
side critical sections cannot be nested, and, finally, al-
though concurrent RCU updates could in principle be
satisfied by a common grace period, this implementation
serializes grace periods, preventing grace-period sharing.

Quick Quiz 8.40: Why wouldn’t any deadlock in the
RCU implementation in Figure 8.33 also be a deadlock
in any other RCU implementation?

Quick Quiz 8.41: Why not simply use reader-writer
locks in the RCU implementation in Figure 8.33 in order
to allow RCU readers to proceed in parallel?

It is hard to imagine this implementation being useful
in a production setting, though it does have the virtue of
being implementable in almost any user-level application.

1 static void rcu_read_lock(void)
2 {
3 spin_lock(&rcu_gp_lock);
4 }
5
6 static void rcu_read_unlock(void)
7 {
8 spin_unlock(&rcu_gp_lock);
9 }
10
11 void synchronize_rcu(void)
12 {
13 spin_lock(&rcu_gp_lock);
14 spin_unlock(&rcu_gp_lock);
15 }

Figure 8.33: Lock-Based RCU Implementation

rcu_lock.h
rcu_lock.c
rcu_lock.c
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Furthermore, similar implementations having one lock
per CPU or using reader-writer locks have been used in
production in the 2.4 Linux kernel.

A modified version of this one-lock-per-CPU approach,
but instead using one lock per thread, is described in the
next section.

8.3.5.2 Per-Thread Lock-Based RCU

Figure 8.34 (rcu_lock_percpu.h and rcu_lock_
percpu.c) shows an implementation based on one lock
per thread. The rcu_read_lock() and rcu_read_
unlock() functions acquire and release, respectively,
the current thread’s lock. The synchronize_rcu()
function acquires and releases each thread’s lock in turn.
Therefore, all RCU read-side critical sections running
when synchronize_rcu() starts must have com-
pleted before synchronize_rcu() can return.

This implementation does have the virtue of permitting
concurrent RCU readers, and does avoid the deadlock
condition that can arise with a single global lock. Further-
more, the read-side overhead, though high at roughly 140
nanoseconds, remains at about 140 nanoseconds regard-
less of the number of CPUs. However, the update-side
overhead ranges from about 600 nanoseconds on a single
Power5 CPU up to more than 100 microseconds on 64
CPUs.

Quick Quiz 8.42: Wouldn’t it be cleaner to acquire
all the locks, and then release them all in the loop from
lines 15-18 of Figure 8.34? After all, with this change,
there would be a point in time when there were no readers,
simplifying things greatly.

Quick Quiz 8.43: Is the implementation shown in Fig-
ure 8.34 free from deadlocks? Why or why not?

Quick Quiz 8.44: Isn’t one advantage of the RCU
algorithm shown in Figure 8.34 that it uses only primi-
tives that are widely available, for example, in POSIX
pthreads?

This approach could be useful in some situations, given
that a similar approach was used in the Linux 2.4 ker-
nel [MM00].

The counter-based RCU implementation described next
overcomes some of the shortcomings of the lock-based
implementation.

8.3.5.3 Simple Counter-Based RCU

A slightly more sophisticated RCU implementation is
shown in Figure 8.35 (rcu_rcg.h and rcu_rcg.c).
This implementation makes use of a global reference

1 static void rcu_read_lock(void)
2 {
3 spin_lock(&__get_thread_var(rcu_gp_lock));
4 }
5
6 static void rcu_read_unlock(void)
7 {
8 spin_unlock(&__get_thread_var(rcu_gp_lock));
9 }
10
11 void synchronize_rcu(void)
12 {
13 int t;
14
15 for_each_running_thread(t) {
16 spin_lock(&per_thread(rcu_gp_lock, t));
17 spin_unlock(&per_thread(rcu_gp_lock, t));
18 }
19 }

Figure 8.34: Per-Thread Lock-Based RCU Implementa-
tion

1 atomic_t rcu_refcnt;
2
3 static void rcu_read_lock(void)
4 {
5 atomic_inc(&rcu_refcnt);
6 smp_mb();
7 }
8
9 static void rcu_read_unlock(void)
10 {
11 smp_mb();
12 atomic_dec(&rcu_refcnt);
13 }
14
15 void synchronize_rcu(void)
16 {
17 smp_mb();
18 while (atomic_read(&rcu_refcnt) != 0) {
19 poll(NULL, 0, 10);
20 }
21 smp_mb();
22 }

Figure 8.35: RCU Implementation Using Single Global
Reference Counter

rcu_rcg.h
rcu_rcg.c
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counter rcu_refcnt defined on line 1. The rcu_
read_lock() primitive atomically increments this
counter, then executes a memory barrier to ensure that
the RCU read-side critical section is ordered after the
atomic increment. Similarly, rcu_read_unlock()
executes a memory barrier to confine the RCU read-side
critical section, then atomically decrements the counter.
The synchronize_rcu() primitive spins waiting for
the reference counter to reach zero, surrounded by mem-
ory barriers. The poll() on line 19 merely provides
pure delay, and from a pure RCU-semantics point of view
could be omitted. Again, once synchronize_rcu()
returns, all prior RCU read-side critical sections are guar-
anteed to have completed.

In happy contrast to the lock-based implementation
shown in Section 8.3.5.1, this implementation allows par-
allel execution of RCU read-side critical sections. In
happy contrast to the per-thread lock-based implementa-
tion shown in Section 8.3.5.2, it also allows them to be
nested. In addition, the rcu_read_lock() primitive
cannot possibly participate in deadlock cycles, as it never
spins nor blocks.

Quick Quiz 8.45: But what if you hold a lock across
a call to synchronize_rcu(), and then acquire that
same lock within an RCU read-side critical section?

However, this implementations still has some seri-
ous shortcomings. First, the atomic operations in rcu_
read_lock() and rcu_read_unlock() are still
quite heavyweight, with read-side overhead ranging from
about 100 nanoseconds on a single Power5 CPU up to al-
most 40 microseconds on a 64-CPU system. This means
that the RCU read-side critical sections have to be ex-
tremely long in order to get any real read-side parallelism.
On the other hand, in the absence of readers, grace periods
elapse in about 40 nanoseconds, many orders of magni-
tude faster than production-quality implementations in
the Linux kernel.

Quick Quiz 8.46: How can the grace period possibly
elapse in 40 nanoseconds when synchronize_rcu()
contains a 10-millisecond delay?

Second, if there are many concurrent rcu_read_
lock() and rcu_read_unlock() operations, there
will be extreme memory contention on rcu_refcnt,
resulting in expensive cache misses. Both of these first
two shortcomings largely defeat a major purpose of RCU,
namely to provide low-overhead read-side synchroniza-
tion primitives.

Finally, a large number of RCU readers with long read-
side critical sections could prevent synchronize_

1 DEFINE_SPINLOCK(rcu_gp_lock);
2 atomic_t rcu_refcnt[2];
3 atomic_t rcu_idx;
4 DEFINE_PER_THREAD(int, rcu_nesting);
5 DEFINE_PER_THREAD(int, rcu_read_idx);

Figure 8.36: RCU Global Reference-Count Pair Data

1 static void rcu_read_lock(void)
2 {
3 int i;
4 int n;
5
6 n = __get_thread_var(rcu_nesting);
7 if (n == 0) {
8 i = atomic_read(&rcu_idx);
9 __get_thread_var(rcu_read_idx) = i;
10 atomic_inc(&rcu_refcnt[i]);
11 }
12 __get_thread_var(rcu_nesting) = n + 1;
13 smp_mb();
14 }
15
16 static void rcu_read_unlock(void)
17 {
18 int i;
19 int n;
20
21 smp_mb();
22 n = __get_thread_var(rcu_nesting);
23 if (n == 1) {
24 i = __get_thread_var(rcu_read_idx);
25 atomic_dec(&rcu_refcnt[i]);
26 }
27 __get_thread_var(rcu_nesting) = n - 1;
28 }

Figure 8.37: RCU Read-Side Using Global Reference-
Count Pair

rcu() from ever completing, as the global counter might
never reach zero. This could result in starvation of RCU
updates, which is of course unacceptable in production
settings.

Quick Quiz 8.47: Why not simply make rcu_read_
lock() wait when a concurrent synchronize_
rcu() has been waiting too long in the RCU im-
plementation in Figure 8.35? Wouldn’t that prevent
synchronize_rcu() from starving?

Therefore, it is still hard to imagine this implementa-
tion being useful in a production setting, though it has
a bit more potential than the lock-based mechanism, for
example, as an RCU implementation suitable for a high-
stress debugging environment. The next section describes
a variation on the reference-counting scheme that is more
favorable to writers.
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8.3.5.4 Starvation-Free Counter-Based RCU

Figure 8.37 (rcu_rcgp.h) shows the read-side primi-
tives of an RCU implementation that uses a pair of refer-
ence counters (rcu_refcnt[]), along with a global in-
dex that selects one counter out of the pair (rcu_idx), a
per-thread nesting counter rcu_nesting, a per-thread
snapshot of the global index (rcu_read_idx), and
a global lock (rcu_gp_lock), which are themselves
shown in Figure 8.36.

The rcu_read_lock() primitive atomically incre-
ments the member of the rcu_refcnt[] pair indexed
by rcu_idx, and keeps a snapshot of this index in
the per-thread variable rcu_read_idx. The rcu_
read_unlock() primitive then atomically decrements
whichever counter of the pair that the corresponding
rcu_read_lock() incremented. However, because
only one value of rcu_idx is remembered per thread, ad-
ditional measures must be taken to permit nesting. These
additional measures use the per-thread rcu_nesting
variable to track nesting.

To make all this work, line 6 of rcu_read_lock()
in Figure 8.37 picks up the current thread’s instance of
rcu_nesting, and if line 7 finds that this is the out-
ermost rcu_read_lock(), then lines 8-10 pick up
the current value of rcu_idx, save it in this thread’s
instance of rcu_read_idx, and atomically increment
the selected element of rcu_refcnt. Regardless of the
value of rcu_nesting, line 12 increments it. Line 13
executes a memory barrier to ensure that the RCU read-
side critical section does not bleed out before the rcu_
read_lock() code.

Similarly, the rcu_read_unlock() function ex-
ecutes a memory barrier at line 21 to ensure that the
RCU read-side critical section does not bleed out af-
ter the rcu_read_unlock() code. Line 22 picks up
this thread’s instance of rcu_nesting, and if line 23
finds that this is the outermost rcu_read_unlock(),
then lines 24 and 25 pick up this thread’s instance of
rcu_read_idx (saved by the outermost rcu_read_
lock()) and atomically decrements the selected element
of rcu_refcnt. Regardless of the nesting level, line 27
decrements this thread’s instance of rcu_nesting.

Figure 8.38 (rcu_rcpg.c) shows the corresponding
synchronize_rcu() implementation. Lines 6 and
19 acquire and release rcu_gp_lock in order to prevent
more than one concurrent instance of synchronize_
rcu(). Lines 7-8 pick up the value of rcu_idx and
complement it, respectively, so that subsequent instances
of rcu_read_lock() will use a different element of

1 void synchronize_rcu(void)
2 {
3 int i;
4
5 smp_mb();
6 spin_lock(&rcu_gp_lock);
7 i = atomic_read(&rcu_idx);
8 atomic_set(&rcu_idx, !i);
9 smp_mb();
10 while (atomic_read(&rcu_refcnt[i]) != 0) {
11 poll(NULL, 0, 10);
12 }
13 smp_mb();
14 atomic_set(&rcu_idx, i);
15 smp_mb();
16 while (atomic_read(&rcu_refcnt[!i]) != 0) {
17 poll(NULL, 0, 10);
18 }
19 spin_unlock(&rcu_gp_lock);
20 smp_mb();
21 }

Figure 8.38: RCU Update Using Global Reference-Count
Pair

rcu_idx that did preceding instances. Lines 10-12 then
wait for the prior element of rcu_idx to reach zero, with
the memory barrier on line 9 ensuring that the check of
rcu_idx is not reordered to precede the complementing
of rcu_idx. Lines 13-18 repeat this process, and line 20
ensures that any subsequent reclamation operations are
not reordered to precede the checking of rcu_refcnt.

Quick Quiz 8.48: Why the memory barrier on line 5 of
synchronize_rcu() in Figure 8.38 given that there
is a spin-lock acquisition immediately after?

Quick Quiz 8.49: Why is the counter flipped twice in
Figure 8.38? Shouldn’t a single flip-and-wait cycle be
sufficient?

This implementation avoids the update-starvation is-
sues that could occur in the single-counter implementation
shown in Figure 8.35.

There are still some serious shortcomings. First, the
atomic operations in rcu_read_lock() and rcu_
read_unlock() are still quite heavyweight. In fact,
they are more complex than those of the single-counter
variant shown in Figure 8.35, with the read-side primitives
consuming about 150 nanoseconds on a single Power5
CPU and almost 40 microseconds on a 64-CPU system.
The updates-side synchronize_rcu() primitive is
more costly as well, ranging from about 200 nanoseconds
on a single Power5 CPU to more than 40 microseconds
on a 64-CPU system. This means that the RCU read-side
critical sections have to be extremely long in order to get
any real read-side parallelism.

Second, if there are many concurrent rcu_read_

rcu_rcgp.h
rcu_rcpg.c
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1 DEFINE_SPINLOCK(rcu_gp_lock);
2 DEFINE_PER_THREAD(int [2], rcu_refcnt);
3 atomic_t rcu_idx;
4 DEFINE_PER_THREAD(int, rcu_nesting);
5 DEFINE_PER_THREAD(int, rcu_read_idx);

Figure 8.39: RCU Per-Thread Reference-Count Pair Data

lock() and rcu_read_unlock() operations, there
will be extreme memory contention on the rcu_refcnt
elements, resulting in expensive cache misses. This fur-
ther extends the RCU read-side critical-section duration
required to provide parallel read-side access. These first
two shortcomings defeat the purpose of RCU in most
situations.

Third, the need to flip rcu_idx twice imposes sub-
stantial overhead on updates, especially if there are large
numbers of threads.

Finally, despite the fact that concurrent RCU updates
could in principle be satisfied by a common grace period,
this implementation serializes grace periods, preventing
grace-period sharing.

Quick Quiz 8.50: Given that atomic increment and
decrement are so expensive, why not just use non-atomic
increment on line 10 and a non-atomic decrement on
line 25 of Figure 8.37?

Despite these shortcomings, one could imagine this
variant of RCU being used on small tightly coupled multi-
processors, perhaps as a memory-conserving implementa-
tion that maintains API compatibility with more complex
implementations. However, it would not not likely scale
well beyond a few CPUs.

The next section describes yet another variation on the
reference-counting scheme that provides greatly improved
read-side performance and scalability.

8.3.5.5 Scalable Counter-Based RCU

Figure 8.40 (rcu_rcpl.h) shows the read-side prim-
itives of an RCU implementation that uses per-thread
pairs of reference counters. This implementation is quite
similar to that shown in Figure 8.37, the only difference
being that rcu_refcnt is now a per-thread variable (as
shown in Figure 8.39), so the rcu_read_lock() and
rcu_read_unlock() primitives no longer perform
atomic operations.

Quick Quiz 8.51: Come off it! We can
see the atomic_read() primitive in rcu_read_
lock()!!! So why are you trying to pretend that rcu_
read_lock() contains no atomic operations???

1 static void rcu_read_lock(void)
2 {
3 int i;
4 int n;
5
6 n = __get_thread_var(rcu_nesting);
7 if (n == 0) {
8 i = atomic_read(&rcu_idx);
9 __get_thread_var(rcu_read_idx) = i;
10 __get_thread_var(rcu_refcnt)[i]++;
11 }
12 __get_thread_var(rcu_nesting) = n + 1;
13 smp_mb();
14 }
15
16 static void rcu_read_unlock(void)
17 {
18 int i;
19 int n;
20
21 smp_mb();
22 n = __get_thread_var(rcu_nesting);
23 if (n == 1) {
24 i = __get_thread_var(rcu_read_idx);
25 __get_thread_var(rcu_refcnt)[i]--;
26 }
27 __get_thread_var(rcu_nesting) = n - 1;
28 }

Figure 8.40: RCU Read-Side Using Per-Thread
Reference-Count Pair

1 static void flip_counter_and_wait(int i)
2 {
3 int t;
4
5 atomic_set(&rcu_idx, !i);
6 smp_mb();
7 for_each_thread(t) {
8 while (per_thread(rcu_refcnt, t)[i] != 0) {
9 poll(NULL, 0, 10);
10 }
11 }
12 smp_mb();
13 }
14
15 void synchronize_rcu(void)
16 {
17 int i;
18
19 smp_mb();
20 spin_lock(&rcu_gp_lock);
21 i = atomic_read(&rcu_idx);
22 flip_counter_and_wait(i);
23 flip_counter_and_wait(!i);
24 spin_unlock(&rcu_gp_lock);
25 smp_mb();
26 }

Figure 8.41: RCU Update Using Per-Thread Reference-
Count Pair

rcu_rcpl.h
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Figure 8.41 (rcu_rcpl.c) shows the implementa-
tion of synchronize_rcu(), along with a helper
function named flip_counter_and_wait(). The
synchronize_rcu() function resembles that shown
in Figure 8.38, except that the repeated counter flip is
replaced by a pair of calls on lines 22 and 23 to the new
helper function.

The new flip_counter_and_wait() function
updates the rcu_idx variable on line 5, executes a mem-
ory barrier on line 6, then lines 7-11 spin on each thread’s
prior rcu_refcnt element, waiting for it to go to zero.
Once all such elements have gone to zero, it executes
another memory barrier on line 12 and returns.

This RCU implementation imposes important new re-
quirements on its software environment, namely, (1) that
it be possible to declare per-thread variables, (2) that these
per-thread variables be accessible from other threads, and
(3) that it is possible to enumerate all threads. These
requirements can be met in almost all software environ-
ments, but often result in fixed upper bounds on the num-
ber of threads. More-complex implementations might
avoid such bounds, for example, by using expandable
hash tables. Such implementations might dynamically
track threads, for example, by adding them on their first
call to rcu_read_lock().

Quick Quiz 8.52: Great, if we have N threads, we
can have 2N ten-millisecond waits (one set per flip_
counter_and_wait() invocation, and even that as-
sumes that we wait only once for each thread. Don’t we
need the grace period to complete much more quickly?

This implementation still has several shortcomings.
First, the need to flip rcu_idx twice imposes substantial
overhead on updates, especially if there are large numbers
of threads.

Second, synchronize_rcu() must now examine
a number of variables that increases linearly with the
number of threads, imposing substantial overhead on ap-
plications with large numbers of threads.

Third, as before, although concurrent RCU updates
could in principle be satisfied by a common grace period,
this implementation serializes grace periods, preventing
grace-period sharing.

Finally, as noted in the text, the need for per-thread
variables and for enumerating threads may be problematic
in some software environments.

That said, the read-side primitives scale very nicely,
requiring about 115 nanoseconds regardless of whether
running on a single-CPU or a 64-CPU Power5 system. As
noted above, the synchronize_rcu() primitive does

1 DEFINE_SPINLOCK(rcu_gp_lock);
2 DEFINE_PER_THREAD(int [2], rcu_refcnt);
3 long rcu_idx;
4 DEFINE_PER_THREAD(int, rcu_nesting);
5 DEFINE_PER_THREAD(int, rcu_read_idx);

Figure 8.42: RCU Read-Side Using Per-Thread
Reference-Count Pair and Shared Update Data

1 static void rcu_read_lock(void)
2 {
3 int i;
4 int n;
5
6 n = __get_thread_var(rcu_nesting);
7 if (n == 0) {
8 i = ACCESS_ONCE(rcu_idx) & 0x1;
9 __get_thread_var(rcu_read_idx) = i;
10 __get_thread_var(rcu_refcnt)[i]++;
11 }
12 __get_thread_var(rcu_nesting) = n + 1;
13 smp_mb();
14 }
15
16 static void rcu_read_unlock(void)
17 {
18 int i;
19 int n;
20
21 smp_mb();
22 n = __get_thread_var(rcu_nesting);
23 if (n == 1) {
24 i = __get_thread_var(rcu_read_idx);
25 __get_thread_var(rcu_refcnt)[i]--;
26 }
27 __get_thread_var(rcu_nesting) = n - 1;
28 }

Figure 8.43: RCU Read-Side Using Per-Thread
Reference-Count Pair and Shared Update

not scale, ranging in overhead from almost a microsecond
on a single Power5 CPU up to almost 200 microseconds
on a 64-CPU system. This implementation could con-
ceivably form the basis for a production-quality user-level
RCU implementation.

The next section describes an algorithm permitting
more efficient concurrent RCU updates.

8.3.5.6 Scalable Counter-Based RCU With Shared
Grace Periods

Figure 8.43 (rcu_rcpls.h) shows the read-side primi-
tives for an RCU implementation using per-thread refer-
ence count pairs, as before, but permitting updates to share
grace periods. The main difference from the earlier imple-
mentation shown in Figure 8.40 is that rcu_idx is now
a long that counts freely, so that line 8 of Figure 8.43
must mask off the low-order bit. We also switched from

rcu_rcpl.c
rcu_rcpls.h
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1 static void flip_counter_and_wait(int ctr)
2 {
3 int i;
4 int t;
5
6 ACCESS_ONCE(rcu_idx) = ctr + 1;
7 i = ctr & 0x1;
8 smp_mb();
9 for_each_thread(t) {
10 while (per_thread(rcu_refcnt, t)[i] != 0) {
11 poll(NULL, 0, 10);
12 }
13 }
14 smp_mb();
15 }
16
17 void synchronize_rcu(void)
18 {
19 int ctr;
20 int oldctr;
21
22 smp_mb();
23 oldctr = ACCESS_ONCE(rcu_idx);
24 smp_mb();
25 spin_lock(&rcu_gp_lock);
26 ctr = ACCESS_ONCE(rcu_idx);
27 if (ctr - oldctr >= 3) {
28 spin_unlock(&rcu_gp_lock);
29 smp_mb();
30 return;
31 }
32 flip_counter_and_wait(ctr);
33 if (ctr - oldctr < 2)
34 flip_counter_and_wait(ctr + 1);
35 spin_unlock(&rcu_gp_lock);
36 smp_mb();
37 }

Figure 8.44: RCU Shared Update Using Per-Thread
Reference-Count Pair

using atomic_read() and atomic_set() to using
ACCESS_ONCE(). The data is also quite similar, as
shown in Figure 8.42, with rcu_idx now being a lock
instead of an atomic_t.

Figure 8.44 (rcu_rcpls.c) shows the implemen-
tation of synchronize_rcu() and its helper func-
tion flip_counter_and_wait(). These are simi-
lar to those in Figure 8.41. The differences in flip_
counter_and_wait() include:

1. Line 6 uses ACCESS_ONCE() instead of
atomic_set(), and increments rather than
complementing.

2. A new line 7 masks the counter down to its bottom
bit.

The changes to synchronize_rcu() are more per-
vasive:

1. There is a new oldctr local variable that cap-
tures the pre-lock-acquisition value of rcu_idx

on line 23.

2. Line 26 uses ACCESS_ONCE() instead of
atomic_read().

3. Lines 27-30 check to see if at least three counter flips
were performed by other threads while the lock was
being acquired, and, if so, releases the lock, does a
memory barrier, and returns. In this case, there were
two full waits for the counters to go to zero, so those
other threads already did all the required work.

4. At lines 33-34, flip_counter_and_wait()
is only invoked a second time if there were fewer
than two counter flips while the lock was being ac-
quired. On the other hand, if there were two counter
flips, some other thread did one full wait for all the
counters to go to zero, so only one more is required.

With this approach, if an arbitrarily large number
of threads invoke synchronize_rcu() concurrently,
with one CPU for each thread, there will be a total of only
three waits for counters to go to zero.

Despite the improvements, this implementation of RCU
still has a few shortcomings. First, as before, the need
to flip rcu_idx twice imposes substantial overhead on
updates, especially if there are large numbers of threads.

Second, each updater still acquires rcu_gp_lock,
even if there is no work to be done. This can result in a
severe scalability limitation if there are large numbers of
concurrent updates. Section D.4 shows one way to avoid
this in a production-quality real-time implementation of
RCU for the Linux kernel.

Third, this implementation requires per-thread vari-
ables and the ability to enumerate threads, which again
can be problematic in some software environments.

Finally, on 32-bit machines, a given update thread
might be preempted long enough for the rcu_idx
counter to overflow. This could cause such a thread to
force an unnecessary pair of counter flips. However, even
if each grace period took only one microsecond, the of-
fending thread would need to be preempted for more than
an hour, in which case an extra pair of counter flips is
likely the least of your worries.

As with the implementation described in Sec-
tion 8.3.5.3, the read-side primitives scale extremely
well, incurring roughly 115 nanoseconds of overhead
regardless of the number of CPUs. The synchronize_
rcu() primitives is still expensive, ranging from about
one microsecond up to about 16 microseconds. This is

rcu_rcpls.c
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1 DEFINE_SPINLOCK(rcu_gp_lock);
2 long rcu_gp_ctr = 0;
3 DEFINE_PER_THREAD(long, rcu_reader_gp);
4 DEFINE_PER_THREAD(long, rcu_reader_gp_snap);

Figure 8.45: Data for Free-Running Counter Using RCU

nevertheless much cheaper than the roughly 200 microsec-
onds incurred by the implementation in Section 8.3.5.5.
So, despite its shortcomings, one could imagine this RCU
implementation being used in production in real-life ap-
plications.

Quick Quiz 8.53: All of these toy RCU im-
plementations have either atomic operations in
rcu_read_lock() and rcu_read_unlock(),
or synchronize_rcu() overhead that increases
linearly with the number of threads. Under what
circumstances could an RCU implementation enjoy
light-weight implementations for all three of these
primitives, all having deterministic (O(1)) overheads and
latencies?

Referring back to Figure 8.43, we see that there is
one global-variable access and no fewer than four ac-
cesses to thread-local variables. Given the relatively high
cost of thread-local accesses on systems implementing
POSIX threads, it is tempting to collapse the three thread-
local variables into a single structure, permitting rcu_
read_lock() and rcu_read_unlock() to access
their thread-local data with a single thread-local-storage
access. However, an even better approach would be to
reduce the number of thread-local accesses to one, as is
done in the next section.

8.3.5.7 RCU Based on Free-Running Counter

Figure 8.46 (rcu.h and rcu.c) show an RCU imple-
mentation based on a single global free-running counter
that takes on only even-numbered values, with data shown
in Figure 8.45. The resulting rcu_read_lock() im-
plementation is extremely straightforward. Line 3 simply
adds one to the global free-running rcu_gp_ctr vari-
able and stores the resulting odd-numbered value into the
rcu_reader_gp per-thread variable. Line 4 executes
a memory barrier to prevent the content of the subsequent
RCU read-side critical section from “leaking out”.

The rcu_read_unlock() implementation is simi-
lar. Line 9 executes a memory barrier, again to prevent the
prior RCU read-side critical section from “leaking out”.
Line 10 then copies the rcu_gp_ctr global variable to
the rcu_reader_gp per-thread variable, leaving this

1 static void rcu_read_lock(void)
2 {
3 __get_thread_var(rcu_reader_gp) = rcu_gp_ctr + 1;
4 smp_mb();
5 }
6
7 static void rcu_read_unlock(void)
8 {
9 smp_mb();
10 __get_thread_var(rcu_reader_gp) = rcu_gp_ctr;
11 }
12
13 void synchronize_rcu(void)
14 {
15 int t;
16
17 smp_mb();
18 spin_lock(&rcu_gp_lock);
19 rcu_gp_ctr += 2;
20 smp_mb();
21 for_each_thread(t) {
22 while ((per_thread(rcu_reader_gp, t) & 0x1) &&
23 ((per_thread(rcu_reader_gp, t) -
24 rcu_gp_ctr) < 0)) {
25 poll(NULL, 0, 10);
26 }
27 }
28 spin_unlock(&rcu_gp_lock);
29 smp_mb();
30 }

Figure 8.46: Free-Running Counter Using RCU

per-thread variable with an even-numbered value so that
a concurrent instance of synchronize_rcu() will
know to ignore it.

Quick Quiz 8.54: If any even value is sufficient to
tell synchronize_rcu() to ignore a given task, why
doesn’t line 10 of Figure 8.46 simply assign zero to rcu_
reader_gp?

Thus, synchronize_rcu() could wait for all of
the per-thread rcu_reader_gp variables to take on
even-numbered values. However, it is possible to do much
better than that because synchronize_rcu() need
only wait on pre-existing RCU read-side critical sections.
Line 17 executes a memory barrier to prevent prior ma-
nipulations of RCU-protected data structures from being
reordered (by either the CPU or the compiler) to follow
the increment on line 17. Line 18 acquires the rcu_gp_
lock (and line 28 releases it) in order to prevent multiple
synchronize_rcu() instances from running concur-
rently. Line 19 then increments the global rcu_gp_
ctr variable by two, so that all pre-existing RCU read-
side critical sections will have corresponding per-thread
rcu_reader_gp variables with values less than that of
rcu_gp_ctr, modulo the machine’s word size. Recall
also that threads with even-numbered values of rcu_
reader_gp are not in an RCU read-side critical section,

rcu.h
rcu.c
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so that lines 21-27 scan the rcu_reader_gp values
until they all are either even (line 22) or are greater than
the global rcu_gp_ctr (lines 23-24). Line 25 blocks
for a short period of time to wait for a pre-existing RCU
read-side critical section, but this can be replaced with a
spin-loop if grace-period latency is of the essence. Finally,
the memory barrier at line 29 ensures that any subsequent
destruction will not be reordered into the preceding loop.

Quick Quiz 8.55: Why are the memory barriers on
lines 17 and 29 of Figure 8.46 needed? Aren’t the memory
barriers inherent in the locking primitives on lines 18 and
28 sufficient?

This approach achieves much better read-side perfor-
mance, incurring roughly 63 nanoseconds of overhead
regardless of the number of Power5 CPUs. Updates incur
more overhead, ranging from about 500 nanoseconds on
a single Power5 CPU to more than 100 microseconds on
64 such CPUs.

Quick Quiz 8.56: Couldn’t the update-side optimiza-
tion described in Section 8.3.5.6 be applied to the imple-
mentation shown in Figure 8.46?

This implementation suffers from some serious short-
comings in addition to the high update-side overhead
noted earlier. First, it is no longer permissible to nest
RCU read-side critical sections, a topic that is taken up
in the next section. Second, if a reader is preempted at
line 3 of Figure 8.46 after fetching from rcu_gp_ctr
but before storing to rcu_reader_gp, and if the rcu_
gp_ctr counter then runs through more than half but
less than all of its possible values, then synchronize_
rcu() will ignore the subsequent RCU read-side critical
section. Third and finally, this implementation requires
that the enclosing software environment be able to enu-
merate threads and maintain per-thread variables.

Quick Quiz 8.57: Is the possibility o readers being
preempted in line 3 of Figure 8.46 a real problem, in other
words, is there a real sequence of events that could lead
to failure? If not, why not? If so, what is the sequence of
events, and how can the failure be addressed?

8.3.5.8 Nestable RCU Based on Free-Running
Counter

Figure 8.48 (rcu_nest.h and rcu_nest.c) show
an RCU implementation based on a single global free-
running counter, but that permits nesting of RCU read-
side critical sections. This nestability is accomplished
by reserving the low-order bits of the global rcu_gp_
ctr to count nesting, using the definitions shown in
Figure 8.47. This is a generalization of the scheme

1 DEFINE_SPINLOCK(rcu_gp_lock);
2 #define RCU_GP_CTR_SHIFT 7
3 #define RCU_GP_CTR_BOTTOM_BIT (1 << RCU_GP_CTR_SHIFT)
4 #define RCU_GP_CTR_NEST_MASK (RCU_GP_CTR_BOTTOM_BIT - 1)
5 long rcu_gp_ctr = 0;
6 DEFINE_PER_THREAD(long, rcu_reader_gp);

Figure 8.47: Data for Nestable RCU Using a Free-
Running Counter

1 static void rcu_read_lock(void)
2 {
3 long tmp;
4 long *rrgp;
5
6 rrgp = &__get_thread_var(rcu_reader_gp);
7 tmp = *rrgp;
8 if ((tmp & RCU_GP_CTR_NEST_MASK) == 0)
9 tmp = rcu_gp_ctr;
10 tmp++;
11 *rrgp = tmp;
12 smp_mb();
13 }
14
15 static void rcu_read_unlock(void)
16 {
17 long tmp;
18
19 smp_mb();
20 __get_thread_var(rcu_reader_gp)--;
21 }
22
23 void synchronize_rcu(void)
24 {
25 int t;
26
27 smp_mb();
28 spin_lock(&rcu_gp_lock);
29 rcu_gp_ctr += RCU_GP_CTR_BOTTOM_BIT;
30 smp_mb();
31 for_each_thread(t) {
32 while (rcu_gp_ongoing(t) &&
33 ((per_thread(rcu_reader_gp, t) -
34 rcu_gp_ctr) < 0)) {
35 poll(NULL, 0, 10);
36 }
37 }
38 spin_unlock(&rcu_gp_lock);
39 smp_mb();
40 }

Figure 8.48: Nestable RCU Using a Free-Running
Counter

rcu_nest.h
rcu_nest.c
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in Section 8.3.5.7, which can be thought of as hav-
ing a single low-order bit reserved for counting nesting
depth. Two C-preprocessor macros are used to arrange
this, RCU_GP_CTR_NEST_MASK and RCU_GP_CTR_
BOTTOM_BIT. These are related: RCU_GP_CTR_
NEST_MASK=RCU_GP_CTR_BOTTOM_BIT-1. The
RCU_GP_CTR_BOTTOM_BIT macro contains a single
bit that is positioned just above the bits reserved for count-
ing nesting, and the RCU_GP_CTR_NEST_MASK has
all one bits covering the region of rcu_gp_ctr used
to count nesting. Obviously, these two C-preprocessor
macros must reserve enough of the low-order bits of the
counter to permit the maximum required nesting of RCU
read-side critical sections, and this implementation re-
serves seven bits, for a maximum RCU read-side critical-
section nesting depth of 127, which should be well in
excess of that needed by most applications.

The resulting rcu_read_lock() implementation
is still reasonably straightforward. Line 6 places a pointer
to this thread’s instance of rcu_reader_gp into the
local variable rrgp, minimizing the number of expen-
sive calls to the pthreads thread-local-state API. Line 7
records the current value of rcu_reader_gp into an-
other local variable tmp, and line 8 checks to see if the
low-order bits are zero, which would indicate that this is
the outermost rcu_read_lock(). If so, line 9 places
the global rcu_gp_ctr into tmp because the current
value previously fetched by line 7 is likely to be obsolete.
In either case, line 10 increments the nesting depth, which
you will recall is stored in the seven low-order bits of
the counter. Line 11 stores the updated counter back into
this thread’s instance of rcu_reader_gp, and, finally,
line 12 executes a memory barrier to prevent the RCU
read-side critical section from bleeding out into the code
preceding the call to rcu_read_lock().

In other words, this implementation of rcu_read_
lock() picks up a copy of the global rcu_gp_ctr
unless the current invocation of rcu_read_lock() is
nested within an RCU read-side critical section, in which
case it instead fetches the contents of the current thread’s
instance of rcu_reader_gp. Either way, it increments
whatever value it fetched in order to record an additional
nesting level, and stores the result in the current thread’s
instance of rcu_reader_gp.

Interestingly enough, the implementation of rcu_
read_unlock() is identical to that shown in Sec-
tion 8.3.5.7. Line 19 executes a memory barrier in or-
der to prevent the RCU read-side critical section from
bleeding out into code following the call to rcu_read_

1 DEFINE_SPINLOCK(rcu_gp_lock);
2 long rcu_gp_ctr = 0;
3 DEFINE_PER_THREAD(long, rcu_reader_qs_gp);

Figure 8.49: Data for Quiescent-State-Based RCU

unlock(), and line 20 decrements this thread’s instance
of rcu_reader_gp, which has the effect of decrement-
ing the nesting count contained in rcu_reader_gp’s
low-order bits. Debugging versions of this primitive
would check (before decrementing!) that these low-order
bits were non-zero.

The implementation of synchronize_rcu() is
quite similar to that shown in Section 8.3.5.7. There are
two differences. The first is that line 29 adds RCU_GP_
CTR_BOTTOM_BIT to the global rcu_gp_ctr instead
of adding the constant “2”, and the second is that the com-
parison on line 32 has been abstracted out to a separate
function, where it checks the bit indicated by RCU_GP_
CTR_BOTTOM_BIT instead of unconditionally checking
the low-order bit.

This approach achieves read-side performance almost
equal to that shown in Section 8.3.5.7, incurring roughly
65 nanoseconds of overhead regardless of the number
of Power5 CPUs. Updates again incur more overhead,
ranging from about 600 nanoseconds on a single Power5
CPU to more than 100 microseconds on 64 such CPUs.

Quick Quiz 8.58: Why not simply maintain a separate
per-thread nesting-level variable, as was done in previ-
ous section, rather than having all this complicated bit
manipulation?

This implementation suffers from the same shortcom-
ings as does that of Section 8.3.5.7, except that nesting
of RCU read-side critical sections is now permitted. In
addition, on 32-bit systems, this approach shortens the
time required to overflow the global rcu_gp_ctr vari-
able. The following section shows one way to greatly
increase the time required for overflow to occur, while
greatly reducing read-side overhead.

Quick Quiz 8.59: Given the algorithm shown in Fig-
ure 8.48, how could you double the time required to over-
flow the global rcu_gp_ctr?

Quick Quiz 8.60: Again, given the algorithm shown
in Figure 8.48, is counter overflow fatal? Why or why
not? If it is fatal, what can be done to fix it?
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1 static void rcu_read_lock(void)
2 {
3 }
4
5 static void rcu_read_unlock(void)
6 {
7 }
8
9 rcu_quiescent_state(void)
10 {
11 smp_mb();
12 __get_thread_var(rcu_reader_qs_gp) =
13 ACCESS_ONCE(rcu_gp_ctr) + 1;
14 smp_mb();
15 }
16
17 static void rcu_thread_offline(void)
18 {
19 smp_mb();
20 __get_thread_var(rcu_reader_qs_gp) =
21 ACCESS_ONCE(rcu_gp_ctr);
22 smp_mb();
23 }
24
25 static void rcu_thread_online(void)
26 {
27 rcu_quiescent_state();
28 }

Figure 8.50: Quiescent-State-Based RCU Read Side

8.3.5.9 RCU Based on Quiescent States

Figure 8.50 (rcu_qs.h) shows the read-side primitives
used to construct a user-level implementation of RCU
based on quiescent states, with the data shown in Fig-
ure 8.49. As can be seen from lines 1-7 in the figure,
the rcu_read_lock() and rcu_read_unlock()
primitives do nothing, and can in fact be expected to be
inlined and optimized away, as they are in server builds
of the Linux kernel. This is due to the fact that quiescent-
state-based RCU implementations approximate the ex-
tents of RCU read-side critical sections using the afore-
mentioned quiescent states, which contains calls to rcu_
quiescent_state(), shown from lines 9-15 in the
figure. Threads entering extended quiescent states (for
example, when blocking) may instead use the thread_
offline() and thread_online() APIs to mark
the beginning and the end, respectively, of such an ex-
tended quiescent state. As such, thread_online()
is analogous to rcu_read_lock() and thread_
offline() is analogous to rcu_read_unlock().
These two functions are shown on lines 17-28 in the fig-
ure. In either case, it is illegal for a quiescent state to
appear within an RCU read-side critical section.

In rcu_quiescent_state(), line 11 executes a
memory barrier to prevent any code prior to the quies-
cent state from being reordered into the quiescent state.

Lines 12-13 pick up a copy of the global rcu_gp_
ctr, using ACCESS_ONCE() to ensure that the com-
piler does not employ any optimizations that would re-
sult in rcu_gp_ctr being fetched more than once, and
then adds one to the value fetched and stores it into the
per-thread rcu_reader_qs_gp variable, so that any
concurrent instance of synchronize_rcu() will see
an odd-numbered value, thus becoming aware that a new
RCU read-side critical section has started. Instances of
synchronize_rcu() that are waiting on older RCU
read-side critical sections will thus know to ignore this
new one. Finally, line 14 executes a memory barrier.

Quick Quiz 8.61: Doesn’t the additional memory bar-
rier shown on line 14 of Figure 8.50, greatly increase the
overhead of rcu_quiescent_state?

Some applications might use RCU only occasion-
ally, but use it very heavily when they do use it.
Such applications might choose to use rcu_thread_
online() when starting to use RCU and rcu_
thread_offline() when no longer using RCU. The
time between a call to rcu_thread_offline() and
a subsequent call to rcu_thread_online() is an
extended quiescent state, so that RCU will not expect
explicit quiescent states to be registered during this time.

The rcu_thread_offline() function simply
sets the per-thread rcu_reader_qs_gp variable to
the current value of rcu_gp_ctr, which has an
even-numbered value. Any concurrent instances of
synchronize_rcu() will thus know to ignore this
thread.

Quick Quiz 8.62: Why are the two memory barriers
on lines 19 and 22 of Figure 8.50 needed?

The rcu_thread_online() function simply in-
vokes rcu_quiescent_state(), thus marking the
end of the extended quiescent state.

Figure 8.51 (rcu_qs.c) shows the implementation of
synchronize_rcu(), which is quite similar to that
of the preceding sections.

This implementation has blazingly fast read-side
primitives, with an rcu_read_lock()-rcu_read_
unlock() round trip incurring an overhead of roughly
50 picoseconds. The synchronize_rcu() overhead
ranges from about 600 nanoseconds on a single-CPU
Power5 system up to more than 100 microseconds on a
64-CPU system.

Quick Quiz 8.63: To be sure, the clock frequencies
of ca-2008 Power systems were quite high, but even a
5GHz clock frequency is insufficient to allow loops to be
executed in 50 picoseconds! What is going on here?

rcu_qs.h
rcu_qs.c
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1 void synchronize_rcu(void)
2 {
3 int t;
4
5 smp_mb();
6 spin_lock(&rcu_gp_lock);
7 rcu_gp_ctr += 2;
8 smp_mb();
9 for_each_thread(t) {
10 while (rcu_gp_ongoing(t) &&
11 ((per_thread(rcu_reader_qs_gp, t) -
12 rcu_gp_ctr) < 0)) {
13 poll(NULL, 0, 10);
14 }
15 }
16 spin_unlock(&rcu_gp_lock);
17 smp_mb();
18 }

Figure 8.51: RCU Update Side Using Quiescent States

However, this implementation requires that each
thread either invoke rcu_quiescent_state() pe-
riodically or to invoke rcu_thread_offline() for
extended quiescent states. The need to invoke these func-
tions periodically can make this implementation difficult
to use in some situations, such as for certain types of
library functions.

Quick Quiz 8.64: Why would the fact that the code
is in a library make any difference for how easy it is to
use the RCU implementation shown in Figures 8.50 and
8.51?

Quick Quiz 8.65: But what if you hold a lock across
a call to synchronize_rcu(), and then acquire that
same lock within an RCU read-side critical section? This
should be a deadlock, but how can a primitive that gener-
ates absolutely no code possibly participate in a deadlock
cycle?

In addition, this implementation does not permit con-
current calls to synchronize_rcu() to share grace
periods. That said, one could easily imagine a production-
quality RCU implementation based on this version of
RCU.

8.3.5.10 Summary of Toy RCU Implementations

If you made it this far, congratulations! You should now
have a much clearer understanding not only of RCU it-
self, but also of the requirements of enclosing software
environments and applications. Those wishing an even
deeper understanding are invited to read Appendix D,
which presents some RCU implementations that have
seen extensive use in production.

The preceding sections listed some desirable properties

of the various RCU primitives. The following list is pro-
vided for easy reference for those wishing to create a new
RCU implementation.

1. There must be read-side primitives (such as rcu_
read_lock() and rcu_read_unlock()) and
grace-period primitives (such as synchronize_
rcu() and call_rcu()), such that any RCU
read-side critical section in existence at the start of a
grace period has completed by the end of the grace
period.

2. RCU read-side primitives should have minimal over-
head. In particular, expensive operations such as
cache misses, atomic instructions, memory barriers,
and branches should be avoided.

3. RCU read-side primitives should have O(1) compu-
tational complexity to enable real-time use. (This
implies that readers run concurrently with updaters.)

4. RCU read-side primitives should be usable in all
contexts (in the Linux kernel, they are permitted
everywhere except in the idle loop). An important
special case is that RCU read-side primitives be us-
able within an RCU read-side critical section, in
other words, that it be possible to nest RCU read-
side critical sections.

5. RCU read-side primitives should be unconditional,
with no failure returns. This property is extremely
important, as failure checking increases complexity
and complicates testing and validation.

6. Any operation other than a quiescent state (and thus
a grace period) should be permitted in an RCU read-
side critical section. In particular, non-idempotent
operations such as I/O should be permitted.

7. It should be possible to update an RCU-protected
data structure while executing within an RCU read-
side critical section.

8. Both RCU read-side and update-side primitives
should be independent of memory allocator design
and implementation, in other words, the same RCU
implementation should be able to protect a given
data structure regardless of how the data elements
are allocated and freed.

9. RCU grace periods should not be blocked by threads
that halt outside of RCU read-side critical sections.
(But note that most quiescent-state-based implemen-
tations violate this desideratum.)
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Quick Quiz 8.66: Given that grace periods are prohib-
ited within RCU read-side critical sections, how can an
RCU data structure possibly be updated while in an RCU
read-side critical section?

8.3.6 RCU Exercises
This section is organized as a series of Quick Quizzes
that invite you to apply RCU to a number of examples
earlier in this book. The answer to each Quick Quiz
gives some hints, and also contains a pointer to a later
section where the solution is explained at length. The
rcu_read_lock(), rcu_read_unlock(), rcu_
dereference(), rcu_assign_pointer(), and
synchronize_rcu() primitives should suffice for
most of these exercises.

Quick Quiz 8.67: The statistical-counter implementa-
tion shown in Figure 4.8 (count_end.c) used a global
lock to guard the summation in read_count(), which
resulted in poor performance and negative scalability.
How could you use RCU to provide read_count()
with excellent performance and good scalability. (Keep in
mind that read_count()’s scalability will necessarily
be limited by its need to scan all threads’ counters.)

Quick Quiz 8.68: Section 4.5 showed a fanciful pair
of code fragments that dealt with counting I/O accesses to
removable devices. These code fragments suffered from
high overhead on the fastpath (starting an I/O) due to the
need to acquire a reader-writer lock. How would you use
RCU to provide excellent performance and scalability?
(Keep in mind that the performance of the common-case
first code fragment that does I/O accesses is much more
important than that of the device-removal code fragment.)

count_end.c
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Chapter 9

Applying RCU

This chapter shows how to apply RCU to some exam-
ples discussed earlier in this book. In some cases, RCU
provides simpler code, in other cases better performance
and scalability, and in still other cases, both.

9.1 RCU and Per-Thread-Variable-
Based Statistical Counters

Section 4.2.4 described an implementation of statistical
counters that provided excellent performance, roughly
that of simple increment (as in the C ++ operator), and
linear scalability — but only for incrementing via inc_
count(). Unfortunately, threads needing to read out the
value via read_count() were required to acquire a
global lock, and thus incurred high overhead and suffered
poor scalability. The code for the lock-based implementa-
tion is shown in Figure 4.8 on Page 33.

Quick Quiz 9.1: Why on earth did we need that global
lock in the first place?

9.1.1 Design

The hope is to use RCU rather than final_mutex to
protect the thread traversal in read_count() in or-
der to obtain excellent performance and scalability from
read_count(), rather than just from inc_count().
However, we do not want to give up any accuracy in the
computed sum. In particular, when a given thread exits,
we absolutely cannot lose the exiting thread’s count, nor
can we double-count it. Such an error could result in inac-
curacies equal to the full precision of the result, in other
words, such an error would make the result completely
useless. And in fact, one of the purposes of final_
mutex is to ensure that threads do not come and go in

the middle of read_count() execution.
Quick Quiz 9.2: Just what is the accuracy of read_

count(), anyway?
Therefore, if we are to dispense with final_mutex,

we will need to come up with some other method for
ensuring consistency. One approach is to place the to-
tal count for all previously exited threads and the ar-
ray of pointers to the per-thread counters into a sin-
gle structure. Such a structure, once made available to
read_count(), is held constant, ensuring that read_
count() sees consistent data.

9.1.2 Implementation

Lines 1-4 of Figure 9.1 show the countarray struc-
ture, which contains a ->total field for the count from
previously exited threads, and a counterp[] array of
pointers to the per-thread counter for each currently
running thread. This structure allows a given execution
of read_count() to see a total that is consistent with
the indicated set of running threads.

Lines 6-8 contain the definition of the per-thread
counter variable, the global pointer countarrayp
referencing the current countarray structure, and the
final_mutex spinlock.

Lines 10-13 show inc_count(), which is un-
changed from Figure 4.8.

Lines 15-29 show read_count(), which has
changed significantly. Lines 21 and 27 substitute rcu_
read_lock() and rcu_read_unlock() for ac-
quisition and release of final_mutex. Line 22
uses rcu_dereference() to snapshot the current
countarray structure into local variable cap. Proper
use of RCU will guarantee that this countarray struc-
ture will remain with us through at least the end of the
current RCU read-side critical section at line 27. Line 23

125
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1 struct countarray {
2 unsigned long total;
3 unsigned long *counterp[NR_THREADS];
4 };
5
6 long __thread counter = 0;
7 struct countarray *countarrayp = NULL;
8 DEFINE_SPINLOCK(final_mutex);
9
10 void inc_count(void)
11 {
12 counter++;
13 }
14
15 long read_count(void)
16 {
17 struct countarray *cap;
18 unsigned long sum;
19 int t;
20
21 rcu_read_lock();
22 cap = rcu_dereference(countarrayp);
23 sum = cap->total;
24 for_each_thread(t)
25 if (cap->counterp[t] != NULL)
26 sum += *cap->counterp[t];
27 rcu_read_unlock();
28 return sum;
29 }
30
31 void count_init(void)
32 {
33 countarrayp = malloc(sizeof(*countarrayp));
34 if (countarrayp == NULL) {
35 fprintf(stderr, "Out of memory\n");
36 exit(-1);
37 }
38 memset(countarrayp, ’\0’, sizeof(*countarrayp));
39 }
40
41 void count_register_thread(void)
42 {
43 int idx = smp_thread_id();
44
45 spin_lock(&final_mutex);
46 countarrayp->counterp[idx] = &counter;
47 spin_unlock(&final_mutex);
48 }
49
50 void count_unregister_thread(int nthreadsexpected)
51 {
52 struct countarray *cap;
53 struct countarray *capold;
54 int idx = smp_thread_id();
55
56 cap = malloc(sizeof(*countarrayp));
57 if (cap == NULL) {
58 fprintf(stderr, "Out of memory\n");
59 exit(-1);
60 }
61 spin_lock(&final_mutex);
62 *cap = *countarrayp;
63 cap->total += counter;
64 cap->counterp[idx] = NULL;
65 capold = countarrayp;
66 rcu_assign_pointer(countarrayp, cap);
67 spin_unlock(&final_mutex);
68 synchronize_rcu();
69 free(capold);
70 }

Figure 9.1: RCU and Per-Thread Statistical Counters

initializes sum to cap->total, which is the sum of the
counts of threads that have previously exited. Lines 24-26
add up the per-thread counters corresponding to currently
running threads, and, finally, line 28 returns the sum.

The initial value for countarrayp is provided by
count_init() on lines 31-39. This function runs
before the first thread is created, and its job is to allo-
cate and zero the initial structure, and then assign it to
countarrayp.

Lines 41-48 show the count_register_
thread() function, which is invoked by each
newly created thread. Line 43 picks up the current
thread’s index, line 45 acquires final_mutex, line 46
installs a pointer to this thread’s counter, and line 47
releases final_mutex.

Quick Quiz 9.3: Hey!!! Line 45 of Figure 9.1 modifies
a value in a pre-existing countarray structure! Didn’t
you say that this structure, once made available to read_
count(), remained constant???

Lines 50-70 shows count_unregister_
thread(), which is invoked by each thread just
before it exits. Lines 56-60 allocate a new countarray
structure, line 61 acquires final_mutex and line 67
releases it. Line 62 copies the contents of the current
countarray into the newly allocated version, line 63
adds the exiting thread’s counter to new structure’s to-
tal, and line 64 NULLs the exiting thread’s counterp[]
array element. Line 65 then retains a pointer to the
current (soon to be old) countarray structure, and
line 66 uses rcu_assign_pointer() to install the
new version of the countarray structure. Line 68
waits for a grace period to elapse, so that any threads
that might be concurrently executing in read_count,
and thus might have references to the old countarray
structure, will be allowed to exit their RCU read-side
critical sections, thus dropping any such references.
Line 69 can then safely free the old countarray
structure.

9.1.3 Discussion

Quick Quiz 9.4: Wow! Figure 9.1 contains 69 lines of
code, compared to only 42 in Figure 4.8. Is this extra
complexity really worth it?

Use of RCU enables exiting threads to wait until
other threads are guaranteed to be done using the exiting
threads’ __thread variables. This allows the read_
count() function to dispense with locking, thereby pro-
viding excellent performance and scalability for both the
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inc_count() and read_count() functions. How-
ever, this performance and scalability come at the cost of
some increase in code complexity. It is hoped that com-
piler and library writers employ user-level RCU [Des09]
to provide safe cross-thread access to __thread vari-
ables, greatly reducing the complexity seen by users of
__thread variables.

9.2 RCU and Counters for Remov-
able I/O Devices

Section 4.5 showed a fanciful pair of code fragments for
dealing with counting I/O accesses to removable devices.
These code fragments suffered from high overhead on
the fastpath (starting an I/O) due to the need to acquire a
reader-writer lock.

This section shows how RCU may be used to avoid this
overhead.

The code for performing an I/O is quite similar to the
original, with an RCU read-side critical section be substi-
tuted for the reader-writer lock read-side critical section
in the original:

1 rcu_read_lock();
2 if (removing) {
3 rcu_read_unlock();
4 cancel_io();
5 } else {
6 add_count(1);
7 rcu_read_unlock();
8 do_io();
9 sub_count(1);

10 }

The RCU read-side primitives have minimal overhead,
thus speeding up the fastpath, as desired.

The updated code fragment removing a device is as
follows:

1 spin_lock(&mylock);
2 removing = 1;
3 sub_count(mybias);
4 spin_unlock(&mylock);
5 synchronize_rcu();
6 while (read_count() != 0) {
7 poll(NULL, 0, 1);
8 }
9 remove_device();

Here we replace the reader-writer lock with an exclu-
sive spinlock and add a synchronize_rcu() to wait
for all of the RCU read-side critical sections to complete.

Because of the synchronize_rcu(), once we reach
line 6, we know that all remaining I/Os have been ac-
counted for.

Of course, the overhead of synchronize_rcu()
can be large, but given that device removal is quite rare,
this is usually a good tradeoff.
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Chapter 10

Validation: Debugging and Analysis

10.1 Tracing

10.2 Assertions

10.3 Static Analysis

10.4 Probability and Heisenbugs
@@@ Basic statistics for determining how many tests
are needed for a given level of confidence that a given bug
has been fixed, etc.

10.5 Profiling

10.6 Differential Profiling
@@@ pull in concepts and methods from http://www.
rdrop.com/users/paulmck/scalability/
paper/profiling.2002.06.04.pdf. Also need
tools work.

10.7 Performance Estimation
@@@ pull in concepts and methods from http://www.
rdrop.com/users/paulmck/scalability/
paper/lockperf_J_DS.2002.05.22b.pdf.
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Chapter 11

Data Structures

11.1 Lists
Lists, double lists, hlists, hashes, trees, rbtrees, radix trees.

11.2 Computational Complexity
and Performance

Complexity, performance, O(N).

11.3 Design Tradeoffs
Trade-offs between memory consumption, performance,
complexity.

11.4 Protection
Compiler (e.g., const) and hardware.

11.5 Bits and Bytes
Bit fields, endianness, packing.

11.6 Hardware Considerations
CPU word alignment, cache alignment.

@@@ pull in material from Orran Kreiger’s 1995
paper (permission granted).
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Chapter 12

Advanced Synchronization

12.1 Avoiding Locks
List the ways: RCU, non-blocking synchronization (no-
tably simpler forms), memory barriers, deferred process-
ing.

@@@ Pull deferral stuff back to this section?

12.2 Memory Barriers
Author: David Howells and Paul McKenney.

Causality and sequencing are deeply intuitive, and hack-
ers often tend to have a much stronger grasp of these con-
cepts than does the general population. These intuitions
can be extremely powerful tools when writing, analyzing,
and debugging both sequential code and parallel code
that makes use of standard mutual-exclusion mechanisms,
such as locking and RCU.

Unfortunately, these intuitions break down completely
in face of code that makes direct use of explicit memory
barriers for data structures in shared memory (driver writ-
ers making use of MMIO registers can place greater trust
in their intuition, but more on this @@@ later). The fol-
lowing sections show exactly where this intuition breaks
down, and then puts forward a mental model of memory
barriers that can help you avoid these pitfalls.

Section 12.2.1 gives a brief overview of memory or-
dering and memory barriers. Once this background is
in place, the next step is to get you to admit that your
intuition has a problem. This painful task is taken up by
Section 12.2.2, which shows an intuitively correct code
fragment that fails miserably on real hardware, and by
Section 12.2.3, which presents some code demonstrating
that scalar variables can take on multiple values simul-
taneously. Once your intuition has made it through the
grieving process, Section 12.2.4 provides the basic rules
that memory barriers follow, rules that we will build upon.

@@@ roadmap...

12.2.1 Memory Ordering and Memory
Barriers

But why are memory barriers needed in the first place?
Can’t CPUs keep track of ordering on their own? Isn’t
that why we have computers in the first place, to keep
track of things?

Many people do indeed expect their computers to keep
track of things, but many also insist that they keep track
of things quickly. One difficulty that modern computer-
system vendors face is that the main memory cannot keep
up with the CPU – modern CPUs can execute hundreds
of instructions in time required to fetch a single variable
from memory. CPUs therefore sport increasingly large
caches, as shown in Figure 12.1. Variables that are heavily
used by a given CPU will tend to remain in that CPU’s
cache, allowing high-speed access to the corresponding
data.

CPU 0 CPU 1

CacheCache

Memory

Interconnect

Figure 12.1: Modern Computer System Cache Structure
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Unfortunately, when a CPU accesses data that is not yet
in its cache will result in an expensive “cache miss”, re-
quiring the data to be fetched from main memory. Doubly
unfortunately, running typical code results in a significant
number of cache misses. To limit the resulting perfor-
mance degradation, CPUs have been designed to execute
other instructions and memory references while waiting
for a cache miss to fetch data from memory. This clearly
causes instructions and memory references to execute
out of order, which could cause serious confusion, as il-
lustrated in Figure 12.2. Compilers and synchronization
primitives (such as locking and RCU) are responsible
for maintaining the illusion of ordering through use of
“memory barriers” (for example, smp_mb() in the Linux
kernel). These memory barriers can be explicit instruc-
tions, as they are on ARM, POWER, Itanium, and Alpha,
or they can be implied by other instructions, as they are
on x86.

Figure 12.2: CPUs Can Do Things Out of Order

Since the standard synchronization primitives preserve
the illusion of ordering, your path of least resistance is to
stop reading this section and simply use these primitives.

However, if you need to implement the synchronization
primitives themselves, or if you are simply interested in
understanding how memory ordering and memory barri-
ers work, read on!

The next sections present counter-intuitive scenarios
that you might encounter when using explicit memory
barriers.

12.2.2 If B Follows A, and C Follows B,
Why Doesn’t C Follow A?

Memory ordering and memory barriers can be extremely
counter-intuitive. For example, consider the functions
shown in Figure 12.3 executing in parallel where variables
A, B, and C are initially zero:

1 thread0(void)
2 {
3 A = 1;
4 smp_wmb();
5 B = 1;
6 }
7
8 thread1(void)
9 {
10 while (B != 1)
11 continue;
12 barrier();
13 C = 1;
14 }
15
16 thread2(void)
17 {
18 while (C != 1)
19 continue;
20 smp_mb();
21 assert(A != 0);
22 }

Figure 12.3: Parallel Hardware is Non-Causal

Intuitively, thread0() assigns to B after it assigns
to A, thread1() waits until thread0() has assigned
to B before assigning to C, and thread2() waits un-
til thread1() has assigned to C before referencing A.
Therefore, again intuitively, the assertion on line 21 can-
not possibly fire.

This line of reasoning, intuitively obvious though it
may be, is completely and utterly incorrect. Please note
that this is not a theoretical assertion: actually running this
code on real-world weakly-ordered hardware (a 1.5GHz
16-CPU POWER 5 system) resulted in the assertion firing
16 times out of 10 million runs. Clearly, anyone who
produces code with explicit memory barriers should do
some extreme testing – although a proof of correctness
might be helpful, the strongly counter-intuitive nature of
the behavior of memory barriers should in turn strongly
limit one’s trust in such proofs. The requirement for
extreme testing should not be taken lightly, given that a
number of dirty hardware-dependent tricks were used to
greatly increase the probability of failure in this run.

Quick Quiz 12.1: How on earth could the assertion on
line 21 of the code in Figure 12.3 on page 134 possibly
fail?

Quick Quiz 12.2: Great... So how do I fix it?
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So what should you do? Your best strategy, if possible,
is to use existing primitives that incorporate any needed
memory barriers, so that you can simply ignore the rest
of this chapter.

Of course, if you are implementing synchronization
primitives, you don’t have this luxury. The following
discussion of memory ordering and memory barriers is
for you.

12.2.3 Variables Can Have More Than One
Value

It is natural to think of a variable as taking on a well-
defined sequence of values in a well-defined, global order.
Unfortunately, it is time to say “goodbye” to this sort of
comforting fiction.

To see this, consider the program fragment shown in
Figure 12.4. This code fragment is executed in parallel
by several CPUs. Line 1 sets a shared variable to the cur-
rent CPU’s ID, line 2 initializes several variables from a
gettb() function that delivers the value of fine-grained
hardware “timebase” counter that is synchronized among
all CPUs (not available from all CPU architectures, unfor-
tunately!), and the loop from lines 3-8 records the length
of time that the variable retains the value that this CPU
assigned to it. Of course, one of the CPUs will “win”,
and would thus never exit the loop if not for the check on
lines 7-8.

Quick Quiz 12.3: What assumption is the code frag-
ment in Figure 12.4 making that might not be valid on
real hardware?

1 state.variable = mycpu;
2 lasttb = oldtb = firsttb = gettb();
3 while (state.variable == mycpu) {
4 lasttb = oldtb;
5 oldtb = gettb();
6 if (lasttb - firsttb > 1000)
7 break;
8 }

Figure 12.4: Software Logic Analyzer

Upon exit from the loop, firsttb will hold a times-
tamp taken shortly after the assignment and lasttb will
hold a timestamp taken before the last sampling of the
shared variable that still retained the assigned value, or
a value equal to firsttb if the shared variable had
changed before entry into the loop. This allows us to plot
each CPU’s view of the value of state.variable
over a 532-nanosecond time period, as shown in Fig-
ure 12.5. This data was collected on 1.5GHz POWER5

system with 8 cores, each containing a pair of hardware
threads. CPUs 1, 2, 3, and 4 recorded the values, while
CPU 0 controlled the test. The timebase counter period
was about 5.32ns, sufficiently fine-grained to allow obser-
vations of intermediate cache states.

1

2

4

2

2

2

100ns 200ns 300ns 400ns 500ns

3

CPU 2

CPU 3

CPU 4

CPU 1

Figure 12.5: A Variable With Multiple Simultaneous Val-
ues

Each horizontal bar represents the observations of a
given CPU over time, with the black regions to the left
indicating the time before the corresponding CPU’s first
measurement. During the first 5ns, only CPU 3 has an
opinion about the value of the variable. During the next
10ns, CPUs 2 and 3 disagree on the value of the variable,
but thereafter agree that the value is “2”, which is in fact
the final agreed-upon value. However, CPU 1 believes
that the value is “1” for almost 300ns, and CPU 4 believes
that the value is “4” for almost 500ns.

Quick Quiz 12.4: How could CPUs possibly have
different views of the value of a single variable at the
same time?

Quick Quiz 12.5: Why do CPUs 2 and 3 come to
agreement so quickly, when it takes so long for CPUs 1
and 4 to come to the party?

We have entered a regime where we must bade a fond
farewell to comfortable intuitions about values of vari-
ables and the passage of time. This is the regime where
memory barriers are needed.

12.2.4 What Can You Trust?

You most definitely cannot trust your intuition.
What can you trust?
It turns out that there are a few reasonably simple rules

that allow you to make good use of memory barriers. This
section derives those rules, for those who wish to get to
the bottom of the memory-barrier story, at least from the
viewpoint of portable code. If you just want to be told
what the rules are rather than suffering through the actual
derivation, please feel free to skip to Section 12.2.6.
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The exact semantics of memory barriers vary wildly
from one CPU to another, so portable code must rely only
on the least-common-denominator semantics of memory
barriers.

Fortunately, all CPUs impose the following rules:

1. All accesses by a given CPU will appear to that CPU
to have occurred in program order.

2. All CPUs’ accesses to a single variable will be con-
sistent with some global ordering of stores to that
variable.

3. Memory barriers will operate in a pair-wise fashion.

4. Operations will be provided from which exclusive
locking primitives may be constructed.

Therefore, if you need to use memory barriers in
portable code, you can rely on all of these properties.1

Each of these properties is described in the following
sections.

12.2.4.1 Self-References Are Ordered

A given CPU will see its own accesses as occurring in
“program order”, as if the CPU was executing only one
instruction at a time with no reordering or speculation.
For older CPUs, this restriction is necessary for binary
compatibility, and only secondarily for the sanity of us
software types. There have been a few CPUs that violate
this rule to a limited extent, but in those cases, the com-
piler has been responsible for ensuring that ordering is
explicitly enforced as needed.

Either way, from the programmer’s viewpoint, the CPU
sees its own accesses in program order.

12.2.4.2 Single-Variable Memory Consistency

If a group of CPUs all do concurrent stores to a single
variable, the series of values seen by all CPUs will be
consistent with at least one global ordering. For example,
in the series of accesses shown in Figure 12.5, CPU 1
sees the sequence {1,2}, CPU 2 sees the sequence {2},
CPU 3 sees the sequence {3,2}, and CPU 4 sees the
sequence {4,2}. This is consistent with the global se-
quence {3,1,4,2}, but also with all five of the other
sequence of these four numbers that end in “2”.

Had the CPUs used atomic operations (such as the
Linux kernel’s atomic_inc_return() primitive)

1 Or, better yet, you can avoid explicit use of memory barriers
entirely. But that would be the subject of other sections.

rather than simple stores of unique values, their observa-
tions would be guaranteed to determine a single globally
consistent sequence of values.

12.2.4.3 Pair-Wise Memory Barriers

Pair-wise memory barriers provide conditional ordering
semantics. For example, in the following set of operations,
CPU 1’s access to A does not unconditionally precede
its access to B from the viewpoint of an external logic
analyzer (see Appendix C for examples). However, if
CPU 2’s access to B sees the result of CPU 1’s access to B,
then CPU 2’s access to A is guaranteed to see the result of
CPU 1’s access to A. Although some CPUs’ memory bar-
riers do in fact provide stronger, unconditional ordering
guarantees, portable code may rely only on this weaker
if-then conditional ordering guarantee.

CPU 1 CPU 2
access(A); access(B);
smp_mb(); smp_mb();
access(B); access(A);

Quick Quiz 12.6: But if the memory barriers do not
unconditionally force ordering, how the heck can a device
driver reliably execute sequences of loads and stores to
MMIO registers?

Of course, accesses must be either loads or stores, and
these do have different properties. Table 12.1 shows all
possible combinations of loads and stores from a pair of
CPUs. Of course, to enforce conditional ordering, there
must be a memory barrier between each CPU’s pair of
operations.

12.2.4.4 Pair-Wise Memory Barriers: Portable
Combinations

The following pairings from Table 12.1, enumerate all the
combinations of memory-barrier pairings that portable
software may depend on.

Pairing 1. In this pairing, one CPU executes a pair of
loads separated by a memory barrier, while a second CPU
executes a pair of stores also separated by a memory bar-
rier, as follows (both A and B are initially equal to zero):
CPU 1 CPU 2
A=1; Y=B;
smp_mb(); smp_mb();
B=1; X=A;

After both CPUs have completed executing these code

sequences, if Y==1, then we must also have X==1. In
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CPU 1 CPU 2 Description
0 load(A) load(B) load(B) load(A) Ears to ears.
1 load(A) load(B) load(B) store(A) Only one store.
2 load(A) load(B) store(B) load(A) Only one store.
3 load(A) load(B) store(B) store(A) Pairing 1.
4 load(A) store(B) load(B) load(A) Only one store.
5 load(A) store(B) load(B) store(A) Pairing 2.
6 load(A) store(B) store(B) load(A) Mouth to mouth, ear to ear.
7 load(A) store(B) store(B) store(A) Pairing 3.
8 store(A) load(B) load(B) load(A) Only one store.
9 store(A) load(B) load(B) store(A) Mouth to mouth, ear to ear.
A store(A) load(B) store(B) load(A) Ears to mouths.
B store(A) load(B) store(B) store(A) Stores “pass in the night”.
C store(A) store(B) load(B) load(A) Pairing 1.
D store(A) store(B) load(B) store(A) Pairing 3.
E store(A) store(B) store(B) load(A) Stores “pass in the night”.
F store(A) store(B) store(B) store(A) Stores “pass in the night”.

Table 12.1: Memory-Barrier Combinations

this case, the fact that Y==1 means that CPU 2’s load
prior to its memory barrier has seen the store following
CPU 1’s memory barrier. Due to the pairwise nature of
memory barriers, CPU 2’s load following its memory bar-
rier must therefore see the store that precedes CPU 1’s
memory barrier, so that Y==1.

On the other hand, if Y==0, the memory-barrier condi-
tion does not hold, and so in this case, X could be either
0 or 1.

Pairing 2. In this pairing, each CPU executes a load
followed by a memory barrier followed by a store,
as follows (both A and B are initially equal to zero):
CPU 1 CPU 2
X=A; Y=B;
smp_mb(); smp_mb();
B=1; A=1;

After both CPUs have completed executing these code se-

quences, if X==1, then we must also have Y==0. In this
case, the fact that X==1 means that CPU 1’s load prior to
its memory barrier has seen the store following CPU 2’s
memory barrier. Due to the pairwise nature of memory
barriers, CPU 1’s store following its memory barrier must
therefore see the results of CPU 2’s load preceding its
memory barrier, so that Y==0.

On the other hand, if X==0, the memory-barrier condi-
tion does not hold, and so in this case, Y could be either

0 or 1.
The two CPUs’ code sequences are symmetric, so if

Y==1 after both CPUs have finished executing these code
sequences, then we must have X==0.

Pairing 3. In this pairing, one CPU executes a
load followed by a memory barrier followed by
a store, while the other CPU executes a pair
of stores separated by a memory barrier, as fol-
lows (both A and B are initially equal to zero):
CPU 1 CPU 2
X=A; B=2;
smp_mb(); smp_mb();
B=1; A=1;

After both CPUs have completed executing these code

sequences, if X==1, then we must also have B==1. In
this case, the fact that X==1 means that CPU 1’s load
prior to its memory barrier has seen the store following
CPU 2’s memory barrier. Due to the pairwise nature of
memory barriers, CPU 1’s store following its memory
barrier must therefore see the results of CPU 2’s store
preceding its memory barrier. This means that CPU 1’s
store to B will overwrite CPU 2’s store to B, resulting in
B==1.

On the other hand, if X==0, the memory-barrier condi-
tion does not hold, and so in this case, B could be either 1
or 2.



138 CHAPTER 12. ADVANCED SYNCHRONIZATION

12.2.4.5 Pair-Wise Memory Barriers: Semi-
Portable Combinations

The following pairings from Table 12.1 can be used on
modern hardware, but might fail on some systems that
were produced in the 1990s. However, these can safely
be used on all mainstream hardware introduced since the
year 2000.

Ears to Mouths. Since the stores cannot see the results
of the loads (again, ignoring MMIO registers for the mo-
ment), it is not always possible to determine whether the
memory-barrier condition has been met. However, recent
hardware would guarantee that at least one of the loads
saw the value stored by the corresponding store (or some
later value for that same variable).

Stores “Pass in the Night”. In the following ex-
ample, after both CPUs have finished executing
their code sequences, it is quite tempting to con-
clude that the result {A==1,B==2} cannot happen.
CPU 1 CPU 2
A=1; B=2;
smp_mb(); smp_mb();
B=1; A=2;

Unfortunately, such a conclusion does not necessarily
hold on all 20th-century systems. Suppose that the cache
line containing A is initially owned by CPU 2, and that
containing B is initially owned by CPU 1. Then, in sys-
tems that have invalidation queues and store buffers, it is
possible for the first assignments to “pass in the night”,
so that the second assignments actually happen first. This
strange (but quite common) effect is explained in Ap-
pendix C.

This same effect can happen in any memory-barrier
pairing where each CPU’s memory barrier is preceded by
a store, including the “ears to mouths” pairing.

However, 21st-century hardware does accommodate
ordering intuitions, and do permit this combination to be
used safely.

12.2.4.6 Pair-Wise Memory Barriers: Non-Portable
Combinations

In the following pairings from Table 12.1, the memory
barriers have no effect that portable code can safely de-
pend on.

Ears to Ears. Since loads do not change the state of
memory (ignoring MMIO registers for the moment), it is
not possible for one of the loads to see the results of the
other load.

Mouth to Mouth, Ear to Ear. One of the variables is
only loaded from, and the other is only stored to. Because
(once again, ignoring MMIO registers) it is not possible
for one load to see the results of the other, it is not possible
to detect the conditional ordering provided by the mem-
ory barrier. (Yes, it is possible to determine which store
happened last, but this does not depend on the memory
barrier.)

Only One Store. Because there is only one store, only
one of the variables permits one CPU to see the results
of the other CPU’s access. Therefore, there is no way to
detect the conditional ordering provided by the memory
barriers. (Yes, it is possible to determine whether or not
the load saw the result of the corresponding store, but this
does not depend on the memory barrier.)

12.2.4.7 Semantics Sufficient to Implement Locking

Suppose we have an exclusive lock (spinlock_t in the
Linux kernel, pthread_mutex_t in pthreads code)
that guards a number of variables (in other words, these
variables are not accessed except from the lock’s critical
sections). The following properties must then hold true:

1. A given CPU or thread must see all of its own loads
and stores as if they had occurred in program order.

2. The lock acquisitions and releases must appear to
have executed in a single global order.2

3. Suppose a given variable has not yet been stored to
in a critical section that is currently executing. Then
any load from a given variable performed in that
critical section must see the last store to that variable
from the last previous critical section that stored to
it.

The difference between the last two properties is a bit
subtle: the second requires that the lock acquisitions and
releases occur in a well-defined order, while the third re-
quires that the critical sections not “bleed out” far enough
to cause difficulties for other critical section.

2 Of course, this order might be different from one run to the next.
On any given run, however, all CPUs and threads must have a consistent
view of the order of critical sections for a given exclusive lock.
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Why are these properties necessary?

Suppose the first property did not hold. Then the asser-
tion in the following code might well fail!

a = 1;
b = 1 + a;
assert(b == 2);

Quick Quiz 12.7: How could the assertion b==2 on
page 139 possibly fail?

Suppose that the second property did not hold. Then
the following code might leak memory!

spin_lock(&mylock);
if (p == NULL)

p = kmalloc(sizeof(*p), GFP_KERNEL);
spin_unlock(&mylock);

Quick Quiz 12.8: How could the code on page 139
possibly leak memory?

Suppose that the third property did not hold. Then the
counter shown in the following code might well count
backwards. This third property is crucial, as it cannot be
strictly with pairwise memory barriers.

spin_lock(&mylock);
ctr = ctr + 1;
spin_unlock(&mylock);

Quick Quiz 12.9: How could the code on page 139
possibly count backwards?

If you are convinced that these rules are necessary, let’s
look at how they interact with a typical locking implemen-
tation.

12.2.5 Review of Locking Implementations

Naive pseudocode for simple lock and unlock opera-
tions are shown below. Note that the atomic_xchg()
primitive implies a memory barrier both before and af-
ter the atomic exchange operation, which eliminates the
need for an explicit memory barrier in spin_lock().
Note also that, despite the names, atomic_read() and
atomic_set() do not execute any atomic instructions,
instead, it merely executes a simple load and store, re-
spectively. This pseudocode follows a number of Linux
implementations for the unlock operation, which is a sim-
ple non-atomic store following a memory barrier. These
minimal implementations must possess all the locking
properties laid out in Section 12.2.4.

1 void spin_lock(spinlock_t *lck)
2 {
3 while (atomic_xchg(&lck->a, 1) != 0)
4 while (atomic_read(&lck->a) != 0)
5 continue;
6 }
7
8 void spin_unlock(spinlock_t lck)
9 {

10 smp_mb();
11 atomic_set(&lck->a, 0);
12 }

The spin_lock() primitive cannot proceed until
the preceding spin_unlock() primitive completes. If
CPU 1 is releasing a lock that CPU 2 is attempting to
acquire, the sequence of operations might be as follows:

CPU 1 CPU 2
(critical section) atomic_xchg(&lck->a, 1)->1
smp_mb(); lck->a->1
lck->a=0; lck->a->1

lck->a->0
(implicit smp_mb()1)
atomic_xchg(&lck->a, 1)->0
(implicit smp_mb()2)
(critical section)

In this particular case, pairwise memory barriers suf-
fice to keep the two critical sections in place. CPU 2’s
atomic_xchg(&lck->a, 1) has seen CPU 1’s
lck->a=0, so therefore everything in CPU 2’s follow-
ing critical section must see everything that CPU 1’s pre-
ceding critical section did. Conversely, CPU 1’s critical
section cannot see anything that CPU 2’s critical section
will do.

@@@

12.2.6 A Few Simple Rules

@@@
Probably the easiest way to understand memory barri-

ers is to understand a few simple rules:

1. Each CPU sees its own accesses in order.

2. If a single shared variable is loaded and stored by
multiple CPUs, then the series of values seen by a
given CPU will be consistent with the series seen
by the other CPUs, and there will be at least one se-
quence consisting of all values stored to that variable
with which each CPUs series will be consistent.3

3. If one CPU does ordered stores to variables A and

3 A given CPU’s series may of course be incomplete, for example, if
a given CPU never loaded or stored the shared variable, then it can have
no opinion about that variable’s value.
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B,4, and if a second CPU does ordered loads from B
and A,5, then if the second CPU’s load from B gives
the value stored by the first CPU, then the second
CPU’s load from A must give the value stored by the
first CPU.

4. If one CPU does a load from A ordered before a
store to B, and if a second CPU does a load from
B ordered before a store from A, and if the second
CPU’s load from B gives the value stored by the first
CPU, then the first CPU’s load from A must not give
the value stored by the second CPU.

5. If one CPU does a load from A ordered before a
store to B, and if a second CPU does a store to B
ordered before a store to A, and if the first CPU’s
load from A gives the value stored by the second
CPU, then the first CPU’s store to B must happen
after the second CPU’s store to B, hence the value
stored by the first CPU persists.6

So what exactly @@@

12.2.7 Abstract Memory Access Model
Consider the abstract model of the system shown in Fig-
ure 12.6.

CPU 1 Memory CPU 2

Device

Figure 12.6: Abstract Memory Access Model

Each CPU executes a program that generates memory
access operations. In the abstract CPU, memory operation
ordering is very relaxed, and a CPU may actually perform

4 For example, by executing the store to A, a memory barrier, and
then the store to B.

5 For example, by executing the load from B, a memory barrier, and
then the load from A.

6 Or, for the more competitively oriented, the first CPU’s store to B
“wins”.

the memory operations in any order it likes, provided
program causality appears to be maintained. Similarly,
the compiler may also arrange the instructions it emits in
any order it likes, provided it doesn’t affect the apparent
operation of the program.

So in the above diagram, the effects of the memory
operations performed by a CPU are perceived by the rest
of the system as the operations cross the interface between
the CPU and rest of the system (the dotted lines).

For example, consider the following sequence of events
given the initial values {A = 1, B = 2}:

CPU 1 CPU 2
A = 3; x = A;
B = 4; y = B;

The set of accesses as seen by the memory system in
the middle can be arranged in 24 different combinations,
with loads denoted by “ld” and stores denoted by “st”:

st A=3, st B=4, x=ld A→3, y=ld B→4
st A=3, st B=4, y=ld B→4, x=ld A→3
st A=3, x=ld A→3, st B=4, y=ld B→4
st A=3, x=ld A→3, y=ld B→2, st B=4
st A=3, y=ld B→2, st B=4, x=ld A→3
st A=3, y=ld B→2, x=ld A→3, st B=4
st B=4, st A=3, x=ld A→3, y=ld B→4
st B=4, ...
...

and can thus result in four different combinations of
values:

x == 1, y == 2
x == 1, y == 4
x == 3, y == 2
x == 3, y == 4

Furthermore, the stores committed by a CPU to the
memory system may not be perceived by the loads made
by another CPU in the same order as the stores were
committed.

As a further example, consider this sequence of events
given the initial values {A = 1, B = 2, C = 3,
P = &A, Q = &C}:

CPU 1 CPU 2
B = 4; Q = P;
P = &B D = *Q;

There is an obvious data dependency here, as the value
loaded into D depends on the address retrieved from P by
CPU 2. At the end of the sequence, any of the following
results are possible:

(Q == &A) and (D == 1)
(Q == &B) and (D == 2)
(Q == &B) and (D == 4)

Note that CPU 2 will never try and load C into D
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because the CPU will load P into Q before issuing the
load of *Q.

12.2.8 Device Operations
Some devices present their control interfaces as collec-
tions of memory locations, but the order in which the
control registers are accessed is very important. For in-
stance, imagine an Ethernet card with a set of internal
registers that are accessed through an address port register
(A) and a data port register (D). To read internal register
5, the following code might then be used:

*A = 5;
x = *D;

but this might show up as either of the following two
sequences:

STORE *A = 5, x = LOAD *D
x = LOAD *D, STORE *A = 5

the second of which will almost certainly result in a
malfunction, since it set the address after attempting to
read the register.

12.2.9 Guarantees
There are some minimal guarantees that may be expected
of a CPU:

1. On any given CPU, dependent memory accesses will
be issued in order, with respect to itself. This means
that for:

Q = P; D = *Q;

the CPU will issue the following memory operations:

Q = LOAD P, D = LOAD *Q

and always in that order.

2. Overlapping loads and stores within a particular
CPU will appear to be ordered within that CPU. This
means that for:

a = *X; *X = b;

the CPU will only issue the following sequence of
memory operations:

a = LOAD *X, STORE *X = b

And for:

*X = c; d = *X;

the CPU will only issue:

STORE *X = c, d = LOAD *X

(Loads and stores overlap if they are targetted at
overlapping pieces of memory).

3. A series of stores to a single variable will appear to
all CPUs to have occurred in a single order, thought
this order might not be predictable from the code,
and in fact the order might vary from one run to
another.

And there are a number of things that must or must not
be assumed:

1. It must not be assumed that independent loads and
stores will be issued in the order given. This means
that for:

X = *A; Y = *B; *D = Z;

we may get any of the following sequences:

X = LOAD *A, Y = LOAD *B, STORE *D = Z
X = LOAD *A, STORE *D = Z, Y = LOAD *B
Y = LOAD *B, X = LOAD *A, STORE *D = Z
Y = LOAD *B, STORE *D = Z, X = LOAD *A
STORE *D = Z, X = LOAD *A, Y = LOAD *B
STORE *D = Z, Y = LOAD *B, X = LOAD *A

2. It must be assumed that overlapping memory ac-
cesses may be merged or discarded. This means that
for:

X = *A; Y = *(A + 4);

we may get any one of the following sequences:

X = LOAD *A; Y = LOAD *(A + 4);
Y = LOAD *(A + 4); X = LOAD *A;
{X, Y} = LOAD {*A, *(A + 4) };

And for:
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*A = X; Y = *A;

we may get either of:

STORE *A = X; Y = LOAD *A;
STORE *A = Y = X;

12.2.10 What Are Memory Barriers?
As can be seen above, independent memory operations
are effectively performed in random order, but this can
be a problem for CPU-CPU interaction and for I/O. What
is required is some way of intervening to instruct the
compiler and the CPU to restrict the order.

Memory barriers are such interventions. They impose
a perceived partial ordering over the memory operations
on either side of the barrier.

Such enforcement is important because the CPUs and
other devices in a system can use a variety of tricks
to improve performance - including reordering, defer-
ral and combination of memory operations; speculative
loads; speculative branch prediction and various types of
caching. Memory barriers are used to override or sup-
press these tricks, allowing the code to sanely control the
interaction of multiple CPUs and/or devices.

12.2.10.1 Explicit Memory Barriers

Memory barriers come in four basic varieties:

1. Write (or store) memory barriers,

2. Data dependency barriers,

3. Read (or load) memory barriers, and

4. General memory barriers.

Each variety is described below.

Write Memory Barriers A write memory barrier gives
a guarantee that all the STORE operations specified before
the barrier will appear to happen before all the STORE
operations specified after the barrier with respect to the
other components of the system.

A write barrier is a partial ordering on stores only; it is
not required to have any effect on loads.

A CPU can be viewed as committing a sequence of
store operations to the memory system as time progresses.

All stores before a write barrier will occur in the sequence
before all the stores after the write barrier.

† Note that write barriers should normally be paired
with read or data dependency barriers; see the "SMP
barrier pairing" subsection.

Data Dependency Barriers A data dependency barrier
is a weaker form of read barrier. In the case where two
loads are performed such that the second depends on the
result of the first (e.g., the first load retrieves the address to
which the second load will be directed), a data dependency
barrier would be required to make sure that the target of
the second load is updated before the address obtained by
the first load is accessed.

A data dependency barrier is a partial ordering on inter-
dependent loads only; it is not required to have any effect
on stores, independent loads or overlapping loads.

As mentioned for write memory barriers, the other
CPUs in the system can be viewed as committing se-
quences of stores to the memory system that the CPU
being considered can then perceive. A data dependency
barrier issued by the CPU under consideration guarantees
that for any load preceding it, if that load touches one of
a sequence of stores from another CPU, then by the time
the barrier completes, the effects of all the stores prior to
that touched by the load will be perceptible to any loads
issued after the data dependency barrier.

See the "Examples of memory barrier sequences" sub-
section for diagrams showing the ordering constraints.

† Note that the first load really has to have a data depen-
dency and not a control dependency. If the address for the
second load is dependent on the first load, but the depen-
dency is through a conditional rather than actually loading
the address itself, then it’s a control dependency and a
full read barrier or better is required. See the "Control
dependencies" subsection for more information.

† Note that data dependency barriers should normally
be paired with write barriers; see the "SMP barrier pair-
ing" subsection.

Read Memory Barriers A read barrier is a data depen-
dency barrier plus a guarantee that all the LOAD opera-
tions specified before the barrier will appear to happen
before all the LOAD operations specified after the barrier
with respect to the other components of the system.

A read barrier is a partial ordering on loads only; it is
not required to have any effect on stores.

Read memory barriers imply data dependency barriers,
and so can substitute for them.
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† Note that read barriers should normally be paired with
write barriers; see the "SMP barrier pairing" subsection.

General Memory Barriers A general memory barrier
gives a guarantee that all the LOAD and STORE opera-
tions specified before the barrier will appear to happen
before all the LOAD and STORE operations specified
after the barrier with respect to the other components of
the system.

A general memory barrier is a partial ordering over
both loads and stores.

General memory barriers imply both read and write
memory barriers, and so can substitute for either.

12.2.10.2 Implicit Memory Barriers

There are a couple of types of implicit memory barriers, so
called because they are embedded into locking primitives:

1. LOCK operations and

2. UNLOCK operations.

LOCK Operations A lock operation acts as a one-way
permeable barrier. It guarantees that all memory opera-
tions after the LOCK operation will appear to happen after
the LOCK operation with respect to the other components
of the system.

Memory operations that occur before a LOCK opera-
tion may appear to happen after it completes.

A LOCK operation should almost always be paired
with an UNLOCK operation.

UNLOCK Operations Unlock operations also act as a
one-way permeable barrier. It guarantees that all memory
operations before the UNLOCK operation will appear to
happen before the UNLOCK operation with respect to
the other components of the system.

Memory operations that occur after an UNLOCK oper-
ation may appear to happen before it completes.

LOCK and UNLOCK operations are guaranteed to
appear with respect to each other strictly in the order
specified.

The use of LOCK and UNLOCK operations generally
precludes the need for other sorts of memory barrier (but
note the exceptions mentioned in the subsection "MMIO
write barrier").

Quick Quiz 12.10: What effect does the following
sequence have on the order of stores to variables “a” and
“b”?

a = 1;
b = 1;
<write barrier>

12.2.10.3 What May Not Be Assumed About Mem-
ory Barriers?

There are certain things that memory barriers cannot guar-
antee outside of the confines of a given architecture:

1. There is no guarantee that any of the memory ac-
cesses specified before a memory barrier will be
complete by the completion of a memory barrier in-
struction; the barrier can be considered to draw a
line in that CPU’s access queue that accesses of the
appropriate type may not cross.

2. There is no guarantee that issuing a memory barrier
on one CPU will have any direct effect on another
CPU or any other hardware in the system. The indi-
rect effect will be the order in which the second CPU
sees the effects of the first CPU’s accesses occur, but
see the next point.

3. There is no guarantee that a CPU will see the correct
order of effects from a second CPU’s accesses, even
if the second CPU uses a memory barrier, unless the
first CPU also uses a matching memory barrier (see
the subsection on "SMP Barrier Pairing").

4. There is no guarantee that some intervening piece of
off-the-CPU hardware7 will not reorder the memory
accesses. CPU cache coherency mechanisms should
propagate the indirect effects of a memory barrier
between CPUs, but might not do so in order.

12.2.10.4 Data Dependency Barriers

The usage requirements of data dependency barriers are
a little subtle, and it’s not always obvious that they’re
needed. To illustrate, consider the following sequence of
events, with initial values {A = 1, B = 2, C = 3,
P = &A, Q = &C}:

CPU 1 CPU 2
B = 4;
<write barrier>
P = &B;

Q = P;
D = *Q;

7 This is of concern primarily in operating-system kernels. For
more information on hardware operations and memory ordering, see
the files pci.txt, DMA-mapping.txt, and DMA-API.txt in the
Documentation directory in the Linux source tree [Tor03c].

pci.txt
DMA-mapping.txt
DMA-API.txt
Documentation
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There’s a clear data dependency here, and it would
seem intuitively obvious that by the end of the sequence,
Q must be either &A or &B, and that:

(Q == &A) implies (D == 1)
(Q == &B) implies (D == 4)

Counter-intuitive though it might be, it is quite possible
that CPU 2’s perception of P might be updated before its
perception of B, thus leading to the following situation:

(Q == &B) and (D == 2) ????

Whilst this may seem like a failure of coherency or
causality maintenance, it isn’t, and this behaviour can be
observed on certain real CPUs (such as the DEC Alpha).

To deal with this, a data dependency barrier must be
inserted between the address load and the data load (again
with initial values of {A = 1, B = 2, C = 3, P
= &A, Q = &C}):

CPU 1 CPU 2
B = 4;
<write barrier>
P = &B;

Q = P;
<data dependency barrier>
D = *Q;

This enforces the occurrence of one of the two implica-
tions, and prevents the third possibility from arising.

Note that this extremely counterintuitive situation
arises most easily on machines with split caches, so that,
for example, one cache bank processes even-numbered
cache lines and the other bank processes odd-numbered
cache lines. The pointer P might be stored in an odd-
numbered cache line, and the variable Bmight be stored in
an even-numbered cache line. Then, if the even-numbered
bank of the reading CPU’s cache is extremely busy while
the odd-numbered bank is idle, one can see the new value
of the pointer P (which is &B), but the old value of the
variable B (which is 1).

Another example of where data dependency barriers
might by required is where a number is read from memory
and then used to calculate the index for an array access
with initial values {M[0] = 1, M[1] = 2, M[3]
= 3, P = 0, Q = 3}:

CPU 1 CPU 2
M[1] = 4;
<write barrier>
P = 1;

Q = P;
<data dependency barrier>
D = M[Q];

The data dependency barrier is very important to the

Linux kernel’s RCU system, for example, see rcu_
dereference() in include/linux/rcupdate.
h. This permits the current target of an RCU’d pointer
to be replaced with a new modified target, without the re-
placement target appearing to be incompletely initialised.

See also the subsection on @@@"Cache Coherency"
for a more thorough example.

12.2.10.5 Control Dependencies

A control dependency requires a full read memory barrier,
not simply a data dependency barrier to make it work
correctly. Consider the following bit of code:

1 q = &a;
2 if (p)
3 q = &b;
4 <data dependency barrier>
5 x = *q;

This will not have the desired effect because there is no
actual data dependency, but rather a control dependency
that the CPU may short-circuit by attempting to predict
the outcome in advance. In such a case what’s actually
required is:

1 q = &a;
2 if (p)
3 q = &b;
4 <read barrier>
5 x = *q;

12.2.10.6 SMP Barrier Pairing

When dealing with CPU-CPU interactions, certain types
of memory barrier should always be paired. A lack of
appropriate pairing is almost certainly an error.

A write barrier should always be paired with a data de-
pendency barrier or read barrier, though a general barrier
would also be viable. Similarly a read barrier or a data
dependency barrier should always be paired with at least
an write barrier, though, again, a general barrier is viable:

CPU 1 CPU 2
a = 1;
<write barrier>
b = 2;

x = b;
<read barrier>
y = a;

Or:
CPU 1 CPU 2
a = 1;
<write barrier>
b = &a;

x = b;
<data dependency barrier>
y = *x;

include/linux/rcupdate.h
include/linux/rcupdate.h
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One way or another, the read barrier must always be
present, even though it might be of a weaker type.8

Note that the stores before the write barrier would nor-
mally be expected to match the loads after the read barrier
or data dependency barrier, and vice versa:

x = a;
y = b;

c = 3;
d = 4;

v = ca = 1;
b = 2;

CPU 2CPU 1

<write barrier>
w = d
<read barrier>

12.2.10.7 Examples of Memory Barrier Pairings

Firstly, write barriers act as a partial orderings on store
operations. Consider the following sequence of events:

STORE A = 1
STORE B = 2
STORE C = 3
<write barrier>
STORE D = 4
STORE E = 5

This sequence of events is committed to the memory
coherence system in an order that the rest of the system
might perceive as the unordered set of {A=1,B=2,C=3}
all occurring before the unordered set of {D=4,E=5},
as shown in Figure 12.7.

Secondly, data dependency barriers act as a partial or-
derings on data-dependent loads. Consider the following
sequence of events with initial values {B = 7, X =
9, Y = 8, C = &Y}:

CPU 1 CPU 2
a = 1;
b = 2;
<write barrier>
c = &b; LOAD X
d = 4; LOAD C (gets &B)

LOAD *C (reads B)

Without intervention, CPU 2 may perceive the events
on CPU 1 in some effectively random order, despite the
write barrier issued by CPU 1:

In the above example, CPU 2 perceives that B is 7,
despite the load of *C (which would be B) coming after
the LOAD of C.

If, however, a data dependency barrier were to be
placed between the load of C and the load of *C (i.e.:
B) on CPU 2, again with initial values of {B = 7, X
= 9, Y = 8, C = &Y}:

8 By “weaker”, we mean "makes fewer ordering guarantees". A
weaker barrier is usually also lower-overhead than is a stronger barrier.

CPU 1 CPU 2
a = 1;
b = 2;
<write barrier>
c = &b; LOAD X
d = 4; LOAD C (gets &B)

<data dependency barrier>
LOAD *C (reads B)

then ordering will be as intuitively expected, as shown
in Figure 12.9.

And thirdly, a read barrier acts as a partial order on
loads. Consider the following sequence of events, with
initial values {A = 0, B = 9}:

CPU 1 CPU 2
a = 1;
<write barrier>
b = 2;

LOAD B
LOAD A

Without intervention, CPU 2 may then choose to per-
ceive the events on CPU 1 in some effectively random
order, despite the write barrier issued by CPU 1:

If, however, a read barrier were to be placed between
the load of B and the load of A on CPU 2, again with
initial values of {A = 0, B = 9}:

CPU 1 CPU 2
a = 1;
<write barrier>
b = 2;

LOAD B
<read barrier>
LOAD A

then the partial ordering imposed by CPU 1’s write
barrier will be perceived correctly by CPU 2, as shown in
Figure 12.11.

To illustrate this more completely, consider what could
happen if the code contained a load of A either side of the
read barrier, once again with the same initial values of {A
= 0, B = 9}:

CPU 1 CPU 2
a = 1;
<write barrier>
b = 2;

LOAD B
LOAD A (1st)
<read barrier>
LOAD A (2nd)

Even though the two loads of A both occur after the
load of B, they may both come up with different values,
as shown in Figure 12.12.

Of course, it may well be that CPU 1’s update to A
becomes perceptible to CPU 2 before the read barrier
completes, as shown in Figure 12.13.

The guarantee is that the second load will always come
up with A == 1 if the load of B came up with B == 2.
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Figure 12.7: Write Barrier Ordering Semantics

����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

wwwwwwwwwwwwwwww

CPU 2

CPU 1

Y−>8

C−>&Y

C−>&B

B−>7

X−>9

B−>2

B=2

A=1

C=&B

D=4

The load of X holds
up the maintenance
of coherence of B

Apparently incorrect
perception of B (!)
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Figure 12.8: Data Dependency Barrier Omitted

No such guarantee exists for the first load of A; that may
come up with either A == 0 or A == 1.

12.2.10.8 Read Memory Barriers vs. Load Specula-
tion

Many CPUs speculate with loads: that is, they see that
they will need to load an item from memory, and they
find a time where they’re not using the bus for any other
loads, and then do the load in advance — even though
they haven’t actually got to that point in the instruction
execution flow yet. Later on, this potentially permits the
actual load instruction to complete immediately because
the CPU already has the value on hand.

It may turn out that the CPU didn’t actually need the

value (perhaps because a branch circumvented the load)
in which case it can discard the value or just cache it for
later use. For example, consider the following:

CPU 1 CPU 2
LOAD B
DIVIDE
DIVIDE
LOAD A

On some CPUs, divide instructions can take a long time
to complete, which means that CPU 2’s bus might go idle
during that time. CPU 2 might therefore speculatively
load A before the divides complete. In the (hopefully)
unlikely event of an exception from one of the dividees,
this speculative load will have been wasted, but in the
(again, hopefully) common case, overlapping the load
with the divides will permit the load to complete more
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Figure 12.10: Read Barrier Needed

quickly, as illustrated by Figure 12.14.

Placing a read barrier or a data dependency barrier just
before the second load:

CPU 1 CPU 2
LOAD B
DIVIDE
DIVIDE
<read barrier>
LOAD A

will force any value speculatively obtained to be recon-
sidered to an extent dependent on the type of barrier used.
If there was no change made to the speculated memory
location, then the speculated value will just be used, as
shown in Figure 12.15. On the other hand, if there was
an update or invalidation to A from some other CPU, then
the speculation will be cancelled and the value of A will
be reloaded, as shown in Figure 12.16.

12.2.11 Locking Constraints
As noted earlier, locking primitives contain implicit mem-
ory barriers. These implicit memory barriers provide the
following guarantees:

1. LOCK operation guarantee:

• Memory operations issued after the LOCK will
be completed after the LOCK operation has
completed.

• Memory operations issued before the LOCK
may be completed after the LOCK operation
has completed.

2. UNLOCK operation guarantee:

• Memory operations issued before the UN-
LOCK will be completed before the UNLOCK
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Figure 12.12: Read Barrier Supplied, Double Load

operation has completed.

• Memory operations issued after the UNLOCK
may be completed before the UNLOCK opera-
tion has completed.

3. LOCK vs LOCK guarantee:

• All LOCK operations issued before another
LOCK operation will be completed before that
LOCK operation.

4. LOCK vs UNLOCK guarantee:

• All LOCK operations issued before an UN-
LOCK operation will be completed before the
UNLOCK operation.

• All UNLOCK operations issued before a
LOCK operation will be completed before the
LOCK operation.

5. Failed conditional LOCK guarantee:

• Certain variants of the LOCK operation may
fail, either due to being unable to get the lock
immediately, or due to receiving an unblocked
signal or exception whilst asleep waiting for
the lock to become available. Failed locks do
not imply any sort of barrier.

12.2.12 Memory-Barrier Examples
12.2.12.1 Locking Examples

LOCK Followed by UNLOCK: A LOCK followed
by an UNLOCK may not be assumed to be full memory
barrier because it is possible for an access preceding the
LOCK to happen after the LOCK, and an access following
the UNLOCK to happen before the UNLOCK, and the
two accesses can themselves then cross. For example, the
following:
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Figure 12.13: Read Barrier Supplied, Take Two
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Figure 12.14: Speculative Load

1 *A = a;
2 LOCK
3 UNLOCK
4 *B = b;

might well execute in the following order:

2 LOCK
4 *B = b;
1 *A = a;
3 UNLOCK

Again, always remember that both LOCK and UN-
LOCK are permitted to let preceding operations “bleed
in” to the critical section.

Quick Quiz 12.11: What sequence of LOCK-
UNLOCK operations would act as a full memory barrier?

Quick Quiz 12.12: What (if any) CPUs have memory-
barrier instructions from which these semi-permeable
locking primitives might be constructed?

LOCK-Based Critical Sections: Although a LOCK-
UNLOCK pair does not act as a full memory barrier,

these operations do affect memory ordering.
Consider the following code:

1 *A = a;
2 *B = b;
3 LOCK
4 *C = c;
5 *D = d;
6 UNLOCK
7 *E = e;
8 *F = f;

This could legitimately execute in the following order,
where pairs of operations on the same line indicate that
the CPU executed those operations concurrently:

3 LOCK
1 *A = a; *F = f;
7 *E = e;
4 *C = c; *D = d;
2 *B = b;
6 UNLOCK

Quick Quiz 12.13: Given that operations grouped in
curly braces are executed concurrently, which of the rows
of Table 12.2 are legitimate reorderings of the assignments
to variables “A” through “F” and the LOCK/UNLOCK
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# Ordering: legitimate or not?
1 *A; *B; LOCK; *C; *D; UNLOCK; *E; *F;
2 *A; *B; LOCK; *C; *D; UNLOCK; *E; *F;
3 *F; *A; *B; LOCK; *C; *D; UNLOCK; *E;
4 *A; *B; LOCK; *C; *D; UNLOCK; *E; *F;
5 *B; LOCK; *C; *D; *A; UNLOCK; *E; *F;
6 *A; *B; *C; LOCK; *D; UNLOCK; *E; *F;
7 *A; *B; LOCK; *C; UNLOCK; *D; *E; *F;
8 *B; *A; LOCK; *D; *C; UNLOCK; *F; *E;
9 *B; LOCK; *C; *D; UNLOCK; *F; *A; *E;

Table 12.2: Lock-Based Critical Sections

operations? (The order in the code is A, B, LOCK, C, D,
UNLOCK, E, F.) Why or why not?

Ordering with Multiple Locks: Code containing mul-
tiple locks still sees ordering constraints from those locks,
but one must be careful to keep track of which lock is
which. For example, consider the code shown in Ta-
ble 12.2, which uses a pair of locks named “M” and “Q”.

In this example, there are no guarantees as to what
order the assignments to variables “A” through “H” will
appear in, other than the constraints imposed by the locks

CPU 1 CPU 2
A = a; E = e;
LOCK M; LOCK Q;
B = b; F = f;
C = c; G = g;

UNLOCK M; UNLOCK Q;
D = d; H = h;

Table 12.3: Ordering With Multiple Locks

themselves, as described in the previous section.
Quick Quiz 12.14: What are the constraints for Ta-

ble 12.2?

Ordering with Multiple CPUs on One Lock: Sup-
pose, instead of the two different locks as shown in Ta-
ble 12.2, both CPUs acquire the same lock, as shown in
Table 12.4?

In this case, either CPU 1 acquires M before CPU 2
does, or vice versa. In the first case, the assignments
to A, B, and C must precede those to F, G, and H. On
the other hand, if CPU 2 acquires the lock first, then the
assignments to E, F, and G must precede those to B, C,
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CPU 1 CPU 2
A = a; E = e;
LOCK M; LOCK M;
B = b; F = f;
C = c; G = g;

UNLOCK M; UNLOCK M;
D = d; H = h;

Table 12.4: Ordering With Multiple CPUs on One Lock

and D.

12.2.13 The Effects of the CPU Cache

The perceived ordering of memory operations is affected
by the caches that lie between the CPUs and memory, as
well as by the cache coherence protocol that maintains
memory consistency and ordering. From a software view-
point, these caches are for all intents and purposes part of
memory. Memory barriers can be thought of as acting on
the vertical dotted line in Figure 12.17, ensuring that the
CPU present its values to memory in the proper order, as
well as ensuring that it see changes made by other CPUs
in the proper order.

Although the caches can “hide” a given CPU’s memory
accesses from the rest of the system, the cache-coherence
protocol ensures that all other CPUs see any effects of
these hidden accesses, migrating and invalidating cache-
lines as required. Furthermore, the CPU core may execute
instructions in any order, restricted only by the require-
ment that program causality and memory ordering appear
to be maintained. Some of these instructions may gener-
ate memory accesses that must be queued in the CPU’s
memory access queue, but execution may nonetheless
continue until the CPU either fills up its internal resources
or until it must wait for some queued memory access to
complete.

12.2.13.1 Cache Coherency

Although cache-coherence protocols guarantee that a
given CPU sees its own accesses in order, and that all
CPUs agree on the order of modifications to a single
variable contained within a single cache line, there is no
guarantee that modifications to different variables will be
seen in the same order by all CPUs — although some com-
puter systems do make some such guarantees, portable
software cannot rely on them.

To see why reordering can occur, consider the two-CPU
system shown in Figure 12.18, in which each CPU has a
split cache. This system has the following properties:

1. An odd-numbered cache line may be in cache A,
cache C, in memory, or some combination of the
above.

2. An even-numbered cache line may be in cache B,
cache D, in memory, or some combination of the
above.

3. While the CPU core is interrogating one of its
caches,9 its other cache is not necessarily quiescent.
This other cache may instead be responding to an
invalidation request, writing back a dirty cache line,
processing elements in the CPU’s memory-access
queue, and so on.

4. Each cache has queues of operations that need to
be applied to that cache in order to maintain the
required coherence and ordering properties.

5. These queues are not necessarily flushed by loads
from or stores to cache lines affected by entries in
those queues.

In short, if cache A is busy, but cache B is idle, then
CPU 1’s stores to odd-numbered cache lines may be de-
layed compared to CPU 2’s stores to even-numbered
cache lines. In not-so-extreme cases, CPU 2 may see
CPU 1’s operations out of order.

Much more detail on memory ordering in hardware and
software may be found in Appendix C.

12.2.14 Where Are Memory Barriers
Needed?

Memory barriers are only required where there’s a possi-
bility of interaction between two CPUs or between a CPU
and a device. If it can be guaranteed that there won’t be
any such interaction in any particular piece of code, then
memory barriers are unnecessary in that piece of code.

Note that these are the minimum guarantees. Different
architectures may give more substantial guarantees, as
discussed in Appendix C, but they may not be relied upon
outside of code specifically designed to run only on the
corresponding architecture.

However, primitives that implement atomic operations,
such as locking primitives and atomic data-structure ma-
nipulation and traversal primitives, will normally include
any needed memory barriers in their definitions. However,

9 But note that in “superscalar” systems, the CPU might well be ac-
cessing both halves of its cache at once, and might in fact be performing
multiple concurrent accesses to each of the halves.
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there are some exceptions, such as atomic_inc() in
the Linux kernel, so be sure to review the documenta-
tion, and, if possible, the actual implementations, for your
software environment.

One final word of advice: use of raw memory-barrier
primitives should be a last resort. It is almost always better
to use an existing primitive that takes care of memory
barriers.

12.3 Non-Blocking Synchroniza-
tion

12.3.1 Simple NBS

12.3.2 Hazard Pointers

@@@ combination of hazard pointers and RCU to elimi-
nate memory barriers?

12.3.3 Atomic Data Structures

Queues and stacks — avoiding full-race non-blocking
properties often yields great simplifications.
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12.3.4 “Macho” NBS
Cite Herlihy and his crowd.

Describe constraints (X-freedom, linearizability, ...)
and show examples breaking them.
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Chapter 13

Ease of Use

“Creating a perfect API is like committing the perfect
crime. There are at least fifty things that can go wrong,
and if you are a genius, you might be able to anticipate
twenty-five of them.”

13.1 Rusty Scale for API Design
1. It is impossible to get wrong. dwim()

2. The compiler or linker won’t let you get it wrong.

3. The compiler or linker will warn you if you get it
wrong.

4. The simplest use is the correct one.

5. The name tells you how to use it.

6. Do it right or it will always break at runtime.

7. Follow common convention and you will get it right.
malloc()

8. Read the documentation and you will get it right.

9. Read the implementation and you will get it right.

10. Read the right mailing-list archive and you will get
it right.

11. Read the right mailing-list archive and you will get
it wrong.

12. Read the implementation and you will get it wrong.
The non-CONFIG_PREEMPT implementation of
rcu_read_lock().

13. Read the documentation and you will get it wrong.
DEC Alpha wmb instruction.

14. Follow common convention and you will get it
wrong. printf() (failing to check for error return).

15. Do it right and it will break at runtime.

16. The name tells you how not to use it.

17. The obvious use is wrong. smp_mb().

18. The compiler or linker will warn you if you get it
right.

19. The compiler or linker won’t let you get it right.

20. It is impossible to get right. gets().

13.2 Shaving the Mandelbrot Set
The set of useful programs resembles the Mandelbrot set
(shown in Figure 13.1) in that it does not have a clear-
cut smooth boundary — if it did, the halting problem
would be solvable. But we need APIs that real people
can use, not ones that require a Ph.D. dissertation be
completed for each and every potential use. So, we “shave
the Mandelbrot set”,1 restricting the use of the API to an
easily described subset of the full set of potential uses.

Such shaving may seem counterproductive. After all,
if an algorithm works, why shouldn’t it be used?

To see why at least some shaving is absolutely neces-
sary, consider a locking design that avoids deadlock, but
in perhaps the worst possible way. This design uses a
circular doubly linked list, which contains one element
for each thread in the system along with a header element.
When a new thread is spawned, the parent thread must
insert a new element into this list, which requires some
sort of synchronization.

1 Due to Josh Triplett.
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Figure 13.1: Mandelbrot Set (Courtesy of Wikipedia)

One way to protect the list is to use a global lock.
However, this might be a bottleneck if threads were being
created and deleted frequently.2 Another approach would
be to use a hash table and to lock the individual hash
buckets, but this can perform poorly when scanning the
list in order.

A third approach is to lock the individual list elements,
and to require the locks for both the predecessor and
successor to be held during the insertion. Since both
locks must be acquired, we need to decide which order to
acquire them in. Two conventional approaches would be
to acquire the locks in address order, or to acquire them
in the order that they appear in the list, so that the header
is always acquired first when it is one of the two elements
being locked. However, both of these methods require
special checks and branches.

The to-be-shaven solution is to unconditionally acquire
the locks in list order. But what about deadlock?

Deadlock cannot occur.
To see this, number the elements in the list starting

with zero for the header up to N for the last element in
the list (the one preceding the header, given that the list
is circular). Similarly, number the threads from zero to
N−1. If each thread attempts to lock some consecutive
pair of elements, at least one of the threads is guaranteed
to be able to acquire both locks.

Why?
Because there are not enough threads to reach all the

2 Those of you with strong operating-system backgrounds, please
suspend disbelief. If you are unable to suspend disbelief, send us a
better example.

way around the list. Suppose thread 0 acquires element 0’s
lock. To be blocked, some other thread must have already
acquired element 1’s lock, so let us assume that thread 1
has done so. Similarly, for thread 1 to be blocked, some
other thread must have acquired element 2’s lock, and so
on, up through thread N−1, who acquires element N−1’s
lock. For thread N−1 to be blocked, some other thread
must have acquired element N’s lock. But there are no
more threads, and so thread N − 1 cannot be blocked.
Therefore, deadlock cannot occur.

So why should we prohibit use of this delightful little
algorithm?

The fact is that if you really want to use it, we cannot
stop you. We can, however, recommend against such
code being included in any project that we care about.

But, before you use this algorithm, please think through
the following Quick Quiz.

Quick Quiz 13.1: Can a similar algorithm be used
when deleting elements?

The fact is that this algorithm is extremely specialized
(it only works on certain sized lists), and also quite fragile.
Any bug that accidentally failed to add a node to the list
could result in deadlock. In fact, simply adding the node
a bit too late could result in deadlock.

In addition, the other algorithms described above are
“good and sufficient”. For example, simply acquiring the
locks in address order is fairly simple and quick, while
allowing the use of lists of any size. Just be careful of the
special cases presented by empty lists and lists containing
only one element!

Quick Quiz 13.2: Yetch! What ever possessed some-
one to come up with an algorithm that deserves to be
shaved as much as this one does???

In summary, we do not use algorithms simply because
they happen to work. We instead restrict ourselves to
algorithms that are useful enough to make it worthwhile
learning about them. The more difficult and complex
the algorithm, the more generally useful it must be in
order for the pain of learning it and fixing its bugs to be
worthwhile.

Quick Quiz 13.3: Give an exception to this rule.
Exceptions aside, we must continue to shave the soft-

ware “Mandelbrot set” so that our programs remain main-
tainable, as shown in Figure 13.2.
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Figure 13.2: Shaving the Mandelbrot Set
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Chapter 14

Time Management

Scheduling ticks
Tickless operation
Timers
Current time, monotonic operation
The many ways in which time can appear to go back-

wards
Causality, the only real time in SMP (or distributed)

systems
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Chapter 15

Conflicting Visions of the Future

This chapter presents some conflicting visions of the
future of parallel programming. It is not clear which of
these will come to pass, in fact, it is not clear that any of
them will. They are nevertheless important because each
vision has its devoted adherents, and if enough people
believe in something fervently enough, you will need to
deal with at least the shadow of that thing’s existence in
the form of its influence on the thoughts, words, and deeds
of its adherents. Besides which, it is entirely possible that
one or more of these visions will actually come to pass.
But most are bogus. Tell which is which and you’ll be
rich [Spi77]!

Therefore, the following sections give an overview of
transactional memory, shared-memory parallel functional
programming, and process-based parallel functional pro-
gramming. But first, a cautionary tale on prognostication
taken from the early 2000s.

15.1 The Future of CPU Technol-
ogy Ain’t What it Used to Be

Years past always seem so simple and innocent when
viewed through the lens of many years of experience.
And the early 2000s were for the most part innocent of
the impending failure of Moore’s Law to continue deliver-
ing the then-traditional increases in CPU clock frequency.
Oh, there were the occasional warnings about the lim-
its of technology, but such warnings had be sounded for
decades. With that in mind, consider the following sce-
narios:

1. Uniprocessor Über Alles (Figure 15.1),

2. Multithreaded Mania (Figure 15.2),

3. More of the Same (Figure 15.3), and

Figure 15.1: Uniprocessor Über Alles

4. Crash Dummies Slamming into the Memory Wall
(Figure 15.4).

Each of these scenarios are covered in the following
sections, first with a quote from a 2004 source [McK04].

15.1.1 Uniprocessor Über Alles
In this scenario, the combination of Moore’s-
Law increases in CPU clock rate and continued
progress in horizontally scaled computing ren-
der SMMP systems irrelevant. This scenario is
therefore dubbed “Uniprocessor Über Alles”,
literally, uniprocessors above all else.

These uniprocessor systems would be subject
only to instruction overhead, since memory bar-
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Figure 15.2: Multithreaded Mania

Figure 15.3: More of the Same

riers, cache thrashing, and contention do not
affect single-CPU systems. In this scenario,
RCU is useful only for niche applications, such
as interacting with NMIs. It is not clear that
an operating system lacking RCU would see
the need to adopt it, although operating systems
that already implement RCU might continue to
do so.

However, recent progress with multithreaded
CPUs seems to indicate that this scenario is
quite unlikely.

Figure 15.4: Crash Dummies Slamming into the Memory
Wall Mania

Unlikely indeed! But the larger software community
was reluctant to accept the fact that they would need to
embrace parallelism, and so it was some time before this
community concluded that the “free lunch” of Moore’s-
Law-induced CPU core-clock frequency increases was
well and truly finished. Never forget: belief is an emotion,
not necessarily the result of a rational technical thought
process!

15.1.2 Multithreaded Mania
A less-extreme variant of Uniprocessor Über
Alles features uniprocessors with hardware mul-
tithreading, and in fact multithreaded CPUs are
now standard for many desktop and laptop com-
puter systems. The most aggressively multi-
threaded CPUs share all levels of cache hier-
archy, thereby eliminating CPU-to-CPU mem-
ory latency, in turn greatly reducing the perfor-
mance penalty for traditional synchronization
mechanisms. However, a multithreaded CPU
would still incur overhead due to contention
and to pipeline stalls caused by memory barri-
ers. Furthermore, because all hardware threads
share all levels of cache, the cache available to
a given hardware thread is a fraction of what
it would be on an equivalent single-threaded
CPU, which can degrade performance for ap-
plications with large cache footprints. There is
also some possibility that the restricted amount
of cache available will cause RCU-based algo-
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rithms to incur performance penalties due to
their grace-period-induced additional memory
consumption. Investigating this possibility is
future work.

However, in order to avoid such performance
degradation, a number of multithreaded CPUs
and multi-CPU chips partition at least some of
the levels of cache on a per-hardware-thread
basis. This increases the amount of cache avail-
able to each hardware thread, but re-introduces
memory latency for cachelines that are passed
from one hardware thread to another.

And we all know how this story has played out, with
multiple multi-threaded cores on a single die plugged into
a single socket. The question then becomes whether or
not future shared-memory systems will always fit into a
single socket.

15.1.3 More of the Same
The More-of-the-Same scenario assumes that
the memory-latency ratios will remain roughly
where they are today.

This scenario actually represents a change,
since to have more of the same, interconnect
performance must begin keeping up with the
Moore’s-Law increases in core CPU perfor-
mance. In this scenario, overhead due to
pipeline stalls, memory latency, and contention
remains significant, and RCU retains the high
level of applicability that it enjoys today.

And the change has been the ever-increasing levels of
integration that Moore’s Law is still providing. But longer
term, which will it be? More CPUs per die? Or more I/O,
cache, and memory?

Servers seem to be choosing the former, while em-
bedded systems on a chip (SoCs) continue choosing the
latter.

15.1.4 Crash Dummies Slamming into the
Memory Wall

If the memory-latency trends shown in Fig-
ure 15.5 continue, then memory latency
will continue to grow relative to instruction-
execution overhead. Systems such as Linux that
have significant use of RCU will find additional
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use of RCU to be profitable, as shown in Fig-
ure 15.6 As can be seen in this figure, if RCU
is heavily used, increasing memory-latency ra-
tios give RCU an increasing advantage over
other synchronization mechanisms. In contrast,
systems with minor use of RCU will require in-
creasingly high degrees of read intensity for use
of RCU to pay off, as shown in Figure 15.7. As
can be seen in this figure, if RCU is lightly used,
increasing memory-latency ratios put RCU at
an increasing disadvantage compared to other
synchronization mechanisms. Since Linux has
been observed with over 1,600 callbacks per
grace period under heavy load [SM04], it seems
safe to say that Linux falls into the former cate-
gory.

On the one hand, this passage failed to anticipate the
cache-warmth issues that RCU can suffer from in work-
loads with significant update intensity, in part because it
seemed unlikely that RCU would really be used in such
cases. In the event, the SLAB_DESTROY_BY_RCU has
been pressed into service in a number of instances where
these cache-warmth issues would otherwise be problem-
atic, as has sequence locking. On the other hand, this
passage also failed to anticipate that RCU would be used
to reduce scheduling latency or for security.

In short, beware of prognostications, including those in
the remainder of this chapter.

15.2 Transactional Memory

The idea of using transactions outside of databases goes
back many decades [Lom77], with the key difference
between database and non-database transactions being
that non-database transactions drop the “D” in the “ACID”
properties defining database transactions. The idea of
supporting memory-based transactions, or “transactional
memory” (TM), in hardware is more recent [HM93], but
unfortunately, support for such transactions in commodity
hardware was not immediately forthcoming, despite other
somewhat similar proposals being put forward [SSHT93].
Not long after, Shavit and Touitou proposed a software-
only implementation of transactional memory (STM) that
was capable of running on commodity hardware, give or
take memory-ordering issues. This proposal languished
for many years, perhaps due to the fact that the research
community’s attention was absorbed by non-blocking
synchronization (see Section 12.3).

But by the turn of the century, TM started receiving
more attention [MT01, RG01], and by the middle of the
decade, the level of interest can only be termed “incan-
descent” [Her05, Gro07], despite a few voices of cau-
tion [BLM05, MMW07].

The basic idea behind TM is to execute a section of
code atomically, so that other threads see no intermediate
state. As such, the semantics of TM could be implemented
by simply replacing each transaction with a recursively
acquirable global lock acquisition and release, albeit with
abysmal performance and scalability. Much of the com-
plexity inherent in TM implementations, whether hard-
ware or software, is efficiently detecting when concurrent
transactions can safely run in parallel. Because this detec-
tion is done dynamically, conflicting transactions can be
aborted or “rolled back”, and in some implementations,
this failure mode is visible to the programmer.

Because transaction roll-back is increasingly unlikely
as transaction size decreases, TM might become quite
attractive for small memory-based operations, such as
linked-list manipulations used for stacks, queues, hash
tables, and search trees. However, it is currently much
more difficult to make the case for large transactions, par-
ticularly those containing non-memory operations such
as I/O and process creation. The following sections look
at current challenges to the grand vision of “Transactional
Memory Everywhere” [McK09d].
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15.2.1 I/O Operations
One can execute I/O operations within a lock-based crit-
ical section, and, at least in principle, from within an
RCU read-side critical section. What happens when you
attempt to execute an I/O operation from within a transac-
tion?

The underlying problem is that transactions may be
rolled back, for example, due to conflicts. Roughly speak-
ing, this requires that all operations within any given
transaction be idempotent, so that executing the operation
twice has the same effect as executing it once. Unfortu-
nately, I/O is in general the prototypical non-idempotent
operation, making it difficult to include general I/O oper-
ations in transactions.

Here are some options for handling of I/O within trans-
actions:

1. Restrict I/O within transactions to buffered I/O with
in-memory buffers. These buffers may then be in-
cluded in the transaction in the same way that any
other memory location might be included. This
seems to be the mechanism of choice, and it does
work well in many common cases of situations such
as stream I/O and mass-storage I/O. However, spe-
cial handling is required in cases where multiple
record-oriented output streams are merged onto a sin-
gle file from multiple processes, as might be done us-
ing the “a+” option to fopen() or the O_APPEND
flag to open(). In addition, as will be seen in the
next section, common networking operations cannot
be handled via buffering.

2. Prohibit I/O within transactions, so that any attempt
to execute an I/O operation aborts the enclosing
transaction (and perhaps multiple nested transac-
tions). This approach seems to be the conventional
TM approach for unbuffered I/O, but requires that
TM interoperate with other synchronization primi-
tives that do tolerate I/O.

3. Prohibit I/O within transactions, but enlist the com-
piler’s aid in enforcing this prohibition.

4. Permit only one special “inevitable” transac-
tion [SMS08] to proceed at any given time, thus
allowing inevitable transactions to contain I/O oper-
ations. This works in general, but severely limits the
scalability and performance of I/O operations. Given
that scalability and performance is a first-class goal
of parallelism, this approach’s generality seems a bit

self-limiting. Worse yet, use of inevitability to toler-
ate I/O operations seems to prohibit use of manual
transaction-abort operations.1

5. Create new hardware and protocols such that I/O op-
erations can be pulled into the transactional substrate.
In the case of input operations, the hardware would
need to correctly predict the result of the operation,
and to abort the transaction if the prediction failed.

I/O operations are a well-known weakness of TM, and
it is not clear that the problem of supporting I/O in trans-
actions has a reasonable general solution, at least if “rea-
sonable” is to include usable performance and scalability.
Nevertheless, continued time and attention to this problem
will likely produce additional progress.

15.2.2 RPC Operations

One can execute RPCs within a lock-based critical section,
as well as from within an RCU read-side critical section.
What happens when you attempt to execute an RPC from
within a transaction?

If both the RPC request and its response are to be con-
tained within the transaction, and if some part of the trans-
action depends on the result returned by the response, then
it is not possible to use the memory-buffer tricks that can
be used in the case of buffered I/O. Any attempt to take
this buffering approach would deadlock the transaction, as
the request could not be transmitted until the transaction
was guaranteed to succeed, but the transaction’s success
might not be knowable until after the response is received,
as is the case in the following example:

1 begin_trans();
2 rpc_request();
3 i = rpc_response();
4 a[i]++;
5 end_trans();

The transaction’s memory footprint cannot be deter-
mined until after the RPC response is received, and until
the transaction’s memory footprint can be determined, it
is impossible to determine whether the transaction can be
allowed to commit. The only action consistent with trans-
actional semantics is therefore to unconditionally abort
the transaction, which is, to say the least, unhelpful.

Here are some options available to TM:

1 This difficulty was pointed out by Michael Factor.
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1. Prohibit RPC within transactions, so that any at-
tempt to execute an RPC operation aborts the enclos-
ing transaction (and perhaps multiple nested transac-
tions). Alternatively, enlist the compiler to enforce
RPC-free transactions. This approach does works,
but will require TM to interact with other synchro-
nization primitives.

2. Permit only one special “inevitable” transac-
tion [SMS08] to proceed at any given time, thus
allowing inevitable transactions to contain RPC op-
erations. This works in general, but severely limits
the scalability and performance of RPC operations.
Given that scalability and performance is a first-class
goal of parallelism, this approach’s generality seems
a bit self-limiting. Furthermore, use of inevitable
transactions to permit RPC operations rules out man-
ual transaction-abort operations once the RPC oper-
ation has started.

3. Identify special cases where the success of the trans-
action may be determined before the RPC response
is received, and automatically convert these to in-
evitable transactions immediately before sending the
RPC request. Of course, if several concurrent trans-
actions attempt RPC calls in this manner, it might be
necessary to roll all but one of them back, with con-
sequent degradation of performance and scalability.
This approach nevertheless might be valuable given
long-running transactions ending with an RPC. This
approach still has problems with manual transaction-
abort operations.

4. Identify special cases where the RPC response may
be moved out of the transaction, and then proceed
using techniques similar to those used for buffered
I/O.

5. Extend the transactional substrate to include the RPC
server as well as its client. This is in theory possible,
as has been demonstrated by distributed databases.
However, it is unclear whether the requisite perfor-
mance and scalability requirements can be met by
distributed-database techniques, given that memory-
based TM cannot hide such latencies behind those
of slow disk drives. Of course, given the advent of
solid-state disks, it is also unclear how much longer
databases will be permitted to hide their latencies
behind those of disks drives.

As noted in the prior section, I/O is a known weakness

of TM, and RPC is simply an especially problematic case
of I/O.

15.2.3 Memory-Mapping Operations
It is perfectly legal to execute memory-mapping
operations (including mmap(), shmat(), and
munmap() [Gro01]) within a lock-based critical section,
and, at least in principle, from within an RCU read-side
critical section. What happens when you attempt to
execute such an operation from within a transaction?
More to the point, what happens if the memory region
being remapped contains some variables participating in
the current thread’s transaction? And what if this memory
region contains variables participating in some other
thread’s transaction?

It should not be necessary to consider cases where the
TM system’s metadata is remapped, given that most lock-
ing primitives do not define the outcome of remapping
their lock variables.

Here are some memory-mapping options available to
TM:

1. Memory remapping is illegal within a transaction,
and will result in all enclosing transactions being
aborted. This does simplify things somewhat, but
also requires that TM interoperate with synchro-
nization primitives that do tolerate remapping from
within their critical sections.

2. Memory remapping is illegal within a transaction,
and the compiler is enlisted to enforce this prohibi-
tion.

3. Memory mapping is legal within a transaction, but
aborts all other transactions having variables in the
region mapped over.

4. Memory mapping is legal within a transaction, but
the mapping operation will fail if the region being
mapped overlaps with the current transaction’s foot-
print.

5. All memory-mapping operations, whether within or
outside a transaction, check the region being mapped
against the memory footprint of all transactions in
the system. If there is overlap, then the memory-
mapping operation fails.

6. The effect of memory-mapping operations that over-
lap the memory footprint of any transaction in the
system is determined by the TM conflict manager,
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which might dynamically determine whether to fail
the memory-mapping operation or abort any conflict-
ing transactions.

In is interesting to note that munmap() leaves the
relevant region of memory unmapped, which could have
additional interesting implications.2

15.2.4 Multithreaded Transactions
It is perfectly legal to create processes and threads while
holding a lock or, for that matter, from within an RCU
read-side critical section. Not only is it legal, but it is quite
simple, as can be seen from the following code fragment:

1 pthread_mutex_lock(...);
2 for (i = 0; i < ncpus; i++)
3 tid[i] = pthread_create(...);
4 for (i = 0; i < ncpus; i++)
5 pthread_join(tid[i], ...)
6 pthread_mutex_unlock(...);

This pseudo-code fragment uses pthread_
create() to spawn one thread per CPU, then uses
pthread_join() to wait for each to complete, all un-
der the protection of pthread_mutex_lock(). The
effect is to execute a lock-based critical section in parallel,
and one could obtain a similar effect using fork() and
wait(). Of course, the critical section would need to
be quite large to justify the thread-spawning overhead,
but there are many examples of large critical sections in
production software.

What might TM do about thread spawning within a
transaction?

1. Declare pthread_create() to be illegal within
transactions, resulting in transaction abort (preferred)
or undefined behavior. Alternatively, enlist the com-
piler to enforce pthread_create()-free trans-
actions.

2. Permit pthread_create() to be executed
within a transaction, but only the parent thread will
be considered to be part of the transaction. This
approach seems to be reasonably compatible with
existing and posited TM implementations, but seems
to be a trap for the unwary. This approach raises
further questions, such as how to handle conflicting
child-thread accesses.

2 This difference between mapping and unmapping was noted by
Josh Triplett.

3. Convert the pthread_create()s to function
calls. This approach is also an attractive nuisance, as
it does not handle the not-uncommon cases where
the child threads communicate with one another. In
addition, it does not permit parallel execution of the
body of the transaction.

4. Extend the transaction to cover the parent and all
child threads. This approach raises interesting ques-
tions about the nature of conflicting accesses, given
that the parent and children are presumably permit-
ted to conflict with each other, but not with other
threads. It also raises interesting questions as to
what should happen if the parent thread does not
wait for its children before committing the transac-
tion. Even more interesting, what happens if the
parent conditionally executes pthread_join()
based on the values of variables participating in the
transaction? The answers to these questions are rea-
sonably straightforward in the case of locking. The
answers for TM are left as an exercise for the reader.

Given that parallel execution of transactions is com-
monplace in the database world, it is perhaps surprising
that current TM proposals do not provide for it. On the
other hand, the example above is a fairly sophisticated
use of locking that is not normally found in simple text-
book examples, so perhaps its omission is to be expected.
That said, there are rumors that some TM researchers
are investigating fork/join parallelism within transactions,
so perhaps this topic will soon be addressed more thor-
oughly.

15.2.5 Extra-Transactional Accesses

Within a lock-based critical section, it is perfectly legal
to manipulate variables that are concurrently accessed or
even modified outside that lock’s critical section, with one
common example being statistical counters. The same
thing is possible within RCU read-side critical sections,
and is in fact the common case.

Given mechanisms such as the so-called “dirty reads”
that are prevalent in production database systems, it is not
surprising that extra-transactional accesses have received
serious attention from the proponents of TM, with the
concepts of weak and strong atomicity [BLM06] being
but one case in point.

Here are some extra-transactional options available to
TM:
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1. Conflicts due to extra-transactional accesses always
abort transactions. This is strong atomicity.

2. Conflicts due to extra-transactional accesses are ig-
nored, so only conflicts among transactions can abort
transactions. This is weak atomicity.

3. Transactions are permitted to carry out non-
transactional operations in special cases, such as
when allocating memory or interacting with lock-
based critical sections.

4. Produce hardware extensions that permit some op-
erations (for example, addition) to be carried out
concurrently on a single variable by multiple trans-
actions.

It appears that transactions were conceived as stand-
ing alone, with no interaction required with any other
synchronization mechanism. If so, it is no surprise that
much confusion and complexity arises when combining
transactions with non-transactional accesses. But unless
transactions are to be confined to small updates to iso-
lated data structures, or alternatively to be confined to
new programs that do not interact with the huge body of
existing parallel code, then transactions absolutely must
be so combined if they are to have large-scale practical
impact in the near term.

15.2.6 Time Delays
An important special case of interaction with extra-
transactional accesses involves explicit time delays within
a transaction. Of course, the idea of a time delay within
a transaction flies in the face of TM’s atomicity property,
but one can argue that this sort of thing is what weak
atomicity is all about. Furthermore, correct interaction
with memory-mapped I/O sometimes requires carefully
controlled timing, and applications often use time delays
for varied purposes.

So, what can TM do about time delays within transac-
tions?

1. Ignore time delays within transactions. This has
an appearance of elegance, but like too many other
“elegant” solutions, fails to survive first contact with
legacy code. Such code, which might well have
important time delays in critical sections, would fail
upon being transactionalized.

2. Abort transactions upon encountering a time-delay
operation. This is attractive, but it is unfortunately

not always possible to automatically detect a time-
delay operation. Is that tight loop computing some-
thing important, or is it instead waiting for time to
elapse?

3. Enlist the compiler to prohibit time delays within
transactions.

4. Let the time delays execute normally. Unfortunately,
some TM implementations publish modifications
only at commit time, which would in many cases
defeat the purpose of the time delay.

It is not clear that there is a single correct answer. TM
implementations featuring weak atomicity that publish
changes immediately within the transaction (rolling these
changes back upon abort) might be reasonably well served
by the last alternative. Even in this case, the code at the
other end of the transaction may require a substantial
redesign to tolerate aborted transactions.

15.2.7 Locking
It is commonplace to acquire locks while holding other
locks, which works quite well, at least as long as the
usual well-known software-engineering techniques are
employed to avoid deadlock. It is not unusual to acquire
locks from within RCU read-side critical sections, which
eases deadlock concerns because RCU read-side primi-
tives cannot participated in lock-based deadlock cycles.
But happens when you attempt to acquire a lock from
within a transaction?

In theory, the answer is trivial: simply manipulate the
data structure representing the lock as part of the trans-
action, and everything works out perfectly. In practice, a
number of non-obvious complications [VGS08] can arise,
depending on implementation details of the TM system.
These complications can be resolved, but at the cost of a
45% increase in overhead for locks acquired outside of
transactions and a 300% increase in overhead for locks
acquired within transactions. Although these overheads
might be acceptable for transactional programs contain-
ing small amounts of locking, they are often completely
unacceptable for production-quality lock-based programs
wishing to use the occasional transaction.

1. Use only locking-friendly TM implementations. Un-
fortunately, the locking-unfriendly implementations
have some attractive properties, including low over-
head for successful transactions and the ability to
accommodate extremely large transactions.
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2. Use TM only “in the small” when introducing TM
to lock-based programs, thereby accommodating the
limitations of locking-friendly TM implementations.

3. Set aside locking-based legacy systems entirely, re-
implementing everything in terms of transactions.
This approach has no shortage of advocates, but this
requires that all the issues described in this series be
resolved. During the time it takes to resolve these
issues, competing synchronization mechanisms will
of course also have the opportunity to improve.

4. Use TM strictly as an optimization in lock-based
systems, as was done by the TxLinux [RHP+07]
group. This approach seems sound, but leaves the
locking design constraints (such as the need to avoid
deadlock) firmly in place.

5. Strive to reduce the overhead imposed on locking
primitives.

The fact that there could possibly a problem interfacing
TM and locking came as a surprise to many, which under-
scores the need to try out new mechanisms and primitives
in real-world production software. Fortunately, the ad-
vent of open source means that a huge quantity of such
software is now freely available to everyone, including
researchers.

15.2.8 Reader-Writer Locking
It is commonplace to read-acquire reader-writer locks
while holding other locks, which just works, at least as
long as the usual well-known software-engineering tech-
niques are employed to avoid deadlock. Read-acquiring
reader-writer locks from within RCU read-side critical
sections also works, and doing so eases deadlock concerns
because RCU read-side primitives cannot participated in
lock-based deadlock cycles. But what happens when you
attempt to read-acquire a reader-writer lock from within a
transaction?

Unfortunately, the straightforward approach to read-
acquiring the traditional counter-based reader-writer lock
within a transaction defeats the purpose of the reader-
writer lock. To see this, consider a pair of transactions
concurrently attempting to read-acquire the same reader-
writer lock. Because read-acquisition involves modifying
the reader-writer lock’s data structures, a conflict will
result, which will roll back one of the two transactions.
This behavior is completely inconsistent with the reader-
writer lock’s goal of allowing concurrent readers.

Here are some options available to TM:

1. Use per-CPU or per-thread reader-writer lock-
ing [HW92], which allows a given CPU (or thread,
respectively) to manipulate only local data when
read-acquiring the lock. This would avoid the con-
flict between the two transactions concurrently read-
acquiring the lock, permitting both to proceed, as in-
tended. Unfortunately, (1) the write-acquisition over-
head of per-CPU/thread locking can be extremely
high, (2) the memory overhead of per-CPU/thread
locking can be prohibitive, and (3) this transforma-
tion is available only when you have access to the
source code in question. Other more-recent scalable
reader-writer locks [LLO09] might avoid some or
all of these problems.

2. Use TM only “in the small” when introducing
TM to lock-based programs, thereby avoiding read-
acquiring reader-writer locks from within transac-
tions.

3. Set aside locking-based legacy systems entirely, re-
implementing everything in terms of transactions.
This approach has no shortage of advocates, but this
requires that all the issues described in this series be
resolved. During the time it takes to resolve these
issues, competing synchronization mechanisms will
of course also have the opportunity to improve.

4. Use TM strictly as an optimization in lock-based sys-
tems, as was done by the TxLinux [RHP+07] group.
This approach seems sound, but leaves the locking
design constraints (such as the need to avoid dead-
lock) firmly in place. Furthermore, this approach can
result in unnecessary transaction rollbacks when mul-
tiple transactions attempt to read-acquire the same
lock.

Of course, there might well be other non-obvious issues
surrounding combining TM with reader-writer locking,
as there in fact were with exclusive locking.

15.2.9 Persistence
There are many different types of locking primitives.
One interesting distinction is persistence, in other words,
whether the lock can exist independently of the address
space of the process using the lock.

Non-persistent locks include pthread_mutex_
lock(), pthread_rwlock_rdlock(), and most
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kernel-level locking primitives. If the memory locations
instantiating a non-persistent lock’s data structures dis-
appear, so does the lock. For typical use of pthread_
mutex_lock(), this means that when the process exits,
all of its locks vanish. This property can be exploited in
order to trivialize lock cleanup at program shutdown time,
but makes it more difficult for unrelated applications to
share locks, as such sharing requires the applications to
share memory.

Persistent locks help avoid the need to share memory
among unrelated applications. Persistent locking APIs in-
clude the flock family, lockf(), System V semaphores,
or the O_CREAT flag to open(). These persistent APIs
can be used to protect large-scale operations spanning
runs of multiple applications, and, in the case of O_
CREAT even surviving operating-system reboot. If need
be, locks can span multiple computer systems via dis-
tributed lock managers.

Persistent locks can be used by any application, in-
cluding applications written using multiple languages and
software environments. In fact, a persistent lock might
well be acquired by an application written in C and re-
leased by an application written in Python.

How could a similar persistent functionality be pro-
vided for TM?

1. Restrict persistent transactions to special-purpose
environments designed to support them, for example,
SQL. This clearly works, given the decades-long
history of database systems, but does not provide
the same degree of flexibility provided by persistent
locks.

2. Use snapshot facilities provided by some storage de-
vices and/or filesystems. Unfortunately, this does not
handle network communication, nor does it handle
I/O to devices that do not provide snapshot capabili-
ties, for example, memory sticks.

3. Build a time machine.

Of course, the fact that it is called transactional memory
should give us pause, as the name itself conflicts with
the concept of a persistent transaction. It is nevertheless
worthwhile to consider this possibility as an important
test case probing the inherent limitations of transactional
memory.

15.2.10 Dynamic Linking and Loading
Both lock-based critical sections and RCU read-side criti-
cal sections can legitimately contain code that invokes dy-

namically linked and loaded functions, including C/C++
shared libraries and Java class libraries. Of course, the
code contained in these libraries is by definition unknow-
able at compile time. So, what happens if a dynamically
loaded function is invoked within a transaction?

This question has two parts: (a) how do you dynam-
ically link and load a function within a transaction and
(b) what do you do about the unknowable nature of the
code within this function? To be fair, item (b) poses some
challenges for locking and RCU as well, at least in the-
ory. For example, the dynamically linked function might
introduce a deadlock for locking or might (erroneously)
introduce a quiescent state into an RCU read-side critical
section. The difference is that while the class of opera-
tions permitted in locking and RCU critical sections is
well-understood, there appears to still be considerable
uncertainty in the case of TM. In fact, different implemen-
tations of TM seem to have different restrictions.

So what can TM do about dynamically linked and
loaded library functions? Options for part (a), the ac-
tual loading of the code, include the following:

1. Treat the dynamic linking and loading in a manner
similar to a page fault, so that the function is loaded
and linked, possibly aborting the transaction in the
process. If the transaction is aborted, the retry will
find the function already present, and the transaction
can thus be expected to proceed normally.

2. Disallow dynamic linking and loading of functions
from within transactions.

Options for part (b), the inability to detect TM-
unfriendly operations in a not-yet-loaded function, possi-
bilities include the following:

1. Just execute the code: if there are any TM-unfriendly
operations in the function, simply abort the transac-
tion. Unfortunately, this approach makes it impos-
sible for the compiler to determine whether a given
group of transactions may be safely composed. One
way to permit composability regardless is inevitable
transactions, however, current implementations per-
mit only a single inevitable transaction to proceed
at any given time, which can severely limit perfor-
mance and scalability. Inevitable transactions also
seem to rule out use of manual transaction-abort
operations.

2. Decorate the function declarations indicating which
functions are TM-friendly. These decorations can
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then be enforced by the compiler’s type system.
Of course, for many languages, this requires lan-
guage extensions to be proposed, standardized, and
implemented, with the corresponding time delays.
That said, the standardization effort is already in
progress [ATS09].

3. As above, disallow dynamic linking and loading of
functions from within transactions.

I/O operations are of course a known weakness of TM,
and dynamic linking and loading can be thought of as yet
another special case of I/O. Nevertheless, the proponents
of TM must either solve this problem, or resign them-
selves to a world where TM is but one tool of several in
the parallel programmer’s toolbox. (To be fair, a number
of TM proponents have long since resigned themselves to
a world containing more than just TM.)

15.2.11 Debugging
The usual debugging operations such as breakpoints
work normally within lock-based critical sections and
from RCU read-side critical sections. However,
in initial transactional-memory hardware implementa-
tions [DLMN09] an exception within a transaction will
abort that transaction, which in turn means that break-
points abort all enclosing transactions

So how can transactions be debugged?

1. Use software emulation techniques within transac-
tions containing breakpoints. Of course, it might
be necessary to emulate all transactions any time a
breakpoint is set within the scope of any transaction.
If the runtime system is unable to determine whether
or not a given breakpoint is within the scope of a
transaction, then it might be necessary to emulate all
transactions just to be on the safe side. However, this
approach might impose significant overhead, which
might in turn obscure the bug being pursued.

2. Use only hardware TM implementations that are
capable of handling breakpoint exceptions. Unfortu-
nately, as of this writing (September 2008), all such
implementations are strictly research prototypes.

3. Use only software TM implementations, which are
(very roughly speaking) more tolerant of exceptions
than are the simpler of the hardware TM implemen-
tations. Of course, software TM tends to have higher
overhead than hardware TM, so this approach may
not be acceptable in all situations.

4. Program more carefully, so as to avoid having bugs
in the transactions in the first place. As soon as you
figure out how to do this, please do let everyone
know the secret!

There is some reason to believe that transactional mem-
ory will deliver productivity improvements compared to
other synchronization mechanisms, but it does seem quite
possible that these improvements could easily be lost if
traditional debugging techniques cannot be applied to
transactions. This seems especially true if transactional
memory is to be used by novices on large transactions. In
contrast, macho “top-gun” programmers might be able to
dispense with such debugging aids, especially for small
transactions.

Therefore, if transactional memory is to deliver on its
productivity promises to novice programmers, the debug-
ging problem does need to be solved.

15.2.12 The exec() System Call

One can execute an exec() system call while holding
a lock, and also from within an RCU read-side critical
section. The exact semantics depends on the type of
primitive.

In the case of non-persistent primitives (including
pthread_mutex_lock(), pthread_rwlock_
rdlock(), and RCU), if the exec() succeeds, the
whole address space vanishes, along with any locks being
held. Of course, if the exec() fails, the address space
still lives, so any associated locks would also still live. A
bit strange perhaps, but reasonably well defined.

On the other hand, persistent primitives (including the
flock family, lockf(), System V semaphores, and the
O_CREAT flag to open()) would survive regardless of
whether the exec() succeeded or failed, so that the
exec()ed program might well release them.

Quick Quiz 15.1: What about non-persistent primi-
tives represented by data structures in mmap() regions of
memory? What happens when their is an exec() within
a critical section of such a primitive?

What happens when you attempt to execute an exec()
system call from within a transaction?

1. Disallow exec() within transactions, so that the
enclosing transactions abort upon encountering the
exec(). This is well defined, but clearly requires
non-TM synchronization primitives for use in con-
junction with exec().
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2. Disallow exec()within transactions, with the com-
piler enforcing this prohibition. There is a draft
specification for TM in C++ that takes this ap-
proach, allowing functions to be decorated with
the transaction_safe and transaction_
unsafe attributes.3 This approach has some advan-
tages over aborting the transaction at runtime, but
again requires non-TM synchronization primitives
for use in conjunction with exec().

3. Treat the transaction in a manner similar to non-
persistent Locking primitives, so that the transac-
tion survives if exec() fails, and silently commits
if the exec() succeeds. The case were some of
the variables affected by the transaction reside in
mmap()ed memory (and thus could survive a suc-
cessful exec() system call) is left as an exercise
for the reader.

4. Abort the transaction (and the exec() system call)
if the exec() system call would have succeeded,
but allow the transaction to continue if the exec()
system call would fail. This is in some sense the
“correct” approach, but it would require considerable
work for a rather unsatisfying result.

The exec() system call is perhaps the strangest ex-
ample of an obstacle to universal TM applicability, as it
is not completely clear what approach makes sense, and
some might argue that this is merely a reflection of the
perils of interacting with execs in real life. That said, the
two options prohibiting exec() within transactions are
perhaps the most logical of the group.

15.2.13 RCU
Because read-copy update (RCU) finds its main use in
the Linux kernel, one might be forgiven for assuming that
there had been no academic work on combining RCU and
TM. However, the TxLinux group from the University of
Texas at Austin had no choice [RHP+07]. The fact that
they applied TM to the Linux 2.6 kernel, which uses RCU,
forced them to integrate TM and RCU, with TM taking
the place of locking for RCU updates. Unfortunately,
although the paper does state that the RCU implemen-
tation’s locks (e.g., rcu_ctrlblk.lock) were con-
verted to transactions, it is silent about what happened to
locks used in RCU-based updates (e.g., dcache_lock).

3 Thanks to Mark Moir for pointing me at this spec, and to Michael
Wong for having pointed me at an earlier revision some time back.

It is important to note that RCU permits readers and
updaters to run concurrently, further permitting RCU read-
ers to access data that is in the act of being updated. Of
course, this property of RCU, whatever its performance,
scalability, and real-time-response benefits might be, flies
in the face of the underlying atomicity properties of TM.

So how should TM-based updates interact with concur-
rent RCU readers? Some possibilities are as follows:

1. RCU readers abort concurrent conflicting TM up-
dates. This is in fact the approach taken by the
TxLinux project. This approach does preserve RCU
semantics, and also preserves RCU’s read-side per-
formance, scalability, and real-time-response prop-
erties, but it does have the unfortunate side-effect of
unnecessarily aborting conflicting updates. In the
worst case, a long sequence of RCU readers could
potentially starve all updaters, which could in theory
result in system hangs. In addition, not all TM im-
plementations offer the strong atomicity required to
implement this approach.

2. RCU readers that run concurrently with conflicting
TM updates get old (pre-transaction) values from any
conflicting RCU loads. This preserves RCU seman-
tics and performance, and also prevents RCU-update
starvation. However, not all TM implementations
can provide timely access to old values of variables
that have been tentatively updated by an in-flight
transaction. In particular, log-based TM implementa-
tions that maintain old values in the log (thus making
for excellent TM commit performance) are not likely
to be happy with this approach. Perhaps the rcu_
dereference() primitive can be leveraged to
permit RCU to access the old values within a greater
range of TM implementations, though performance
might still be an issue.

3. If an RCU reader executes an access that conflicts
with an in-flight transaction, then that RCU access is
delayed until the conflicting transaction either com-
mits or aborts. This approach preserves RCU se-
mantics, but not RCU’s performance or real-time
response, particularly in presence of long-running
transactions. In addition, not all TM implementa-
tions are capable of delaying conflicting accesses.
That said, this approach seems eminently reasonable
for hardware TM implementations that support only
small transactions.

4. RCU readers are converted to transactions. This ap-
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proach pretty much guarantees that RCU is compati-
ble with any TM implementation, but it also imposes
TM’s rollbacks on RCU read-side critical sections,
destroying RCU’s real-time response guarantees, and
also degrading RCU’s read-side performance. Fur-
thermore, this approach is infeasible in cases where
any of the RCU read-side critical sections contains
operations that the TM implementation in question
is incapable of handling.

5. Many update-side uses of RCU modify a single
pointer to publish a new data structure. In some these
cases, RCU can safely be permitted to see a trans-
actional pointer update that is subsequently rolled
back, as long as the transaction respects memory
ordering and as long as the roll-back process uses
call_rcu() to free up the corresponding struc-
ture. Unfortunately, not all TM implementations
respect memory barriers within a transaction. Ap-
parently, the thought is that because transactions are
supposed to be atomic, the ordering of the accesses
within the transaction is not supposed to matter.

6. Prohibit use of TM in RCU updates. This is guaran-
teed to work, but seems a bit restrictive.

It seems likely that additional approaches will be un-
covered, especially given the advent of user-level RCU
implementations.4

15.2.14 Discussion
The obstacles to universal TM adoption lead to the fol-
lowing conclusions:

1. One interesting property of TM is the fact that trans-
actions are subject to rollback and retry. This prop-
erty underlies TM’s difficulties with irreversible op-
erations, including unbuffered I/O, RPCs, memory-
mapping operations, time delays, and the exec()
system call. This property also has the unfortunate
consequence of introducing all the complexities in-
herent in the possibility of failure into synchroniza-
tion primitives, often in a developer-visible manner.

2. Another interesting property of TM, noted by Sh-
peisman et al. [SATG+09], is that TM intertwines
the synchronization with the data it protects. This

4 Kudos to the TxLinux group, Maged Michael, and Josh Triplett for
coming up with a number of the above alternatives.

property underlies TM’s issues with I/O, memory-
mapping operations, extra-transactional accesses,
and debugging breakpoints. In contrast, conven-
tional synchronization primitives, including locking
and RCU, maintain a clear separation between the
synchronization primitives and the data that they
protect.

3. One of the stated goals of many workers in the TM
area is to ease parallelization of large sequential pro-
grams. As such, individual transactions are com-
monly expected to execute serially, which might
do much to explain TM’s issues with multithreaded
transactions.

What should TM researchers and developers do about
all of this?

One approach is to focus on TM in the small, focusing
on situations where hardware assist potentially provides
substantial advantages over other synchronization primi-
tives. This is in fact the approach Sun took with its Rock
research CPU [DLMN09]. Some TM researchers seem to
agree with this approach, while others have much higher
hopes for TM.

Of course, it is quite possible that TM will be able to
take on larger problems, and this section lists a few of the
issues that must be resolved if TM is to achieve this lofty
goal.

Of course, everyone involved should treat this as a
learning experience. It would seem that TM researchers
have great deal to learn from practitioners who have suc-
cessfully built large software systems using traditional
synchronization primitives.

And vice versa.

15.3 Shared-Memory Parallel
Functional Programming

15.4 Process-Based Parallel Func-
tional Programming
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Appendix A

Important Questions

The following sections discuss some important ques-
tions relating to SMP programming. Each section also
shows how to avoid having to worry about the correspond-
ing question, which can be extremely important if your
goal is to simply get your SMP code working as quickly
and painlessly as possible — which is an excellent goal,
by the way!

Although the answers to these questions are often quite
a bit less intuitive than they would be in a single-threaded
setting, with a bit of work, they are not that difficult to
understand. If you managed to master recursion, there is
nothing in here that should pose an overwhelming chal-
lenge.

A.1 What Does “After” Mean?

“After” is an intuitive, but surprisingly difficult concept.
An important non-intuitive issue is that code can be de-
layed at any point for any amount of time. Consider
a producing and a consuming thread that communicate
using a global struct with a timestamp “t” and integer
fields “a”, “b”, and “c”. The producer loops recording
the current time (in seconds since 1970 in decimal), then
updating the values of “a”, “b”, and “c”, as shown in
Figure A.1. The consumer code loops, also recording the
current time, but also copying the producer’s timestamp
along with the fields “a”, “b”, and “c”, as shown in Fig-
ure A.2. At the end of the run, the consumer outputs a list
of anomalous recordings, e.g., where time has appeared
to go backwards.

Quick Quiz A.1: What SMP coding errors can you
see in these examples? See time.c for full code.

One might intuitively expect that the difference be-
tween the producer and consumer timestamps would be
quite small, as it should not take much time for the pro-

1 /* WARNING: BUGGY CODE. */
2 void *producer(void *ignored)
3 {
4 int i = 0;
5
6 producer_ready = 1;
7 while (!goflag)
8 sched_yield();
9 while (goflag) {
10 ss.t = dgettimeofday();
11 ss.a = ss.c + 1;
12 ss.b = ss.a + 1;
13 ss.c = ss.b + 1;
14 i++;
15 }
16 printf("producer exiting: %d samples\n", i);
17 producer_done = 1;
18 return (NULL);
19 }

Figure A.1: “After” Producer Function

ducer to record the timestamps or the values. An excerpt
of some sample output on a dual-core 1GHz x86 is shown
in Table A.1. Here, the “seq” column is the number of
times through the loop, the “time” column is the time of
the anomaly in seconds, the “delta” column is the num-
ber of seconds the consumer’s timestamp follows that of
the producer (where a negative value indicates that the
consumer has collected its timestamp before the producer
did), and the columns labelled “a”, “b”, and “c” show
the amount that these variables increased since the prior
snapshot collected by the consumer.

seq time (seconds) delta a b c
17563: 1152396.251585 (-16.928) 27 27 27
18004: 1152396.252581 (-12.875) 24 24 24
18163: 1152396.252955 (-19.073) 18 18 18
18765: 1152396.254449 (-148.773) 216 216 216
19863: 1152396.256960 (-6.914) 18 18 18
21644: 1152396.260959 (-5.960) 18 18 18
23408: 1152396.264957 (-20.027) 15 15 15

Table A.1: “After” Program Sample Output
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1 /* WARNING: BUGGY CODE. */
2 void *consumer(void *ignored)
3 {
4 struct snapshot_consumer curssc;
5 int i = 0;
6 int j = 0;
7
8 consumer_ready = 1;
9 while (ss.t == 0.0) {
10 sched_yield();
11 }
12 while (goflag) {
13 curssc.tc = dgettimeofday();
14 curssc.t = ss.t;
15 curssc.a = ss.a;
16 curssc.b = ss.b;
17 curssc.c = ss.c;
18 curssc.sequence = curseq;
19 curssc.iserror = 0;
20 if ((curssc.t > curssc.tc) ||
21 modgreater(ssc[i].a, curssc.a) ||
22 modgreater(ssc[i].b, curssc.b) ||
23 modgreater(ssc[i].c, curssc.c) ||
24 modgreater(curssc.a, ssc[i].a + maxdelta) ||
25 modgreater(curssc.b, ssc[i].b + maxdelta) ||
26 modgreater(curssc.c, ssc[i].c + maxdelta)) {
27 i++;
28 curssc.iserror = 1;
29 } else if (ssc[i].iserror)
30 i++;
31 ssc[i] = curssc;
32 curseq++;
33 if (i + 1 >= NSNAPS)
34 break;
35 }
36 printf("consumer exited, collected %d items of %d\n",
37 i, curseq);
38 if (ssc[0].iserror)
39 printf("0/%d: %.6f %.6f (%.3f) %d %d %d\n",
40 ssc[0].sequence, ssc[j].t, ssc[j].tc,
41 (ssc[j].tc - ssc[j].t) * 1000000,
42 ssc[j].a, ssc[j].b, ssc[j].c);
43 for (j = 0; j <= i; j++)
44 if (ssc[j].iserror)
45 printf("%d: %.6f (%.3f) %d %d %d\n",
46 ssc[j].sequence,
47 ssc[j].t, (ssc[j].tc - ssc[j].t) * 1000000,
48 ssc[j].a - ssc[j - 1].a,
49 ssc[j].b - ssc[j - 1].b,
50 ssc[j].c - ssc[j - 1].c);
51 consumer_done = 1;
52 }

Figure A.2: “After” Consumer Function

Why is time going backwards? The number in paren-
theses is the difference in microseconds, with a large
number exceeding 10 microseconds, and one exceeding
even 100 microseconds! Please note that this CPU can
potentially execute about more than 100,000 instructions
in that time.

One possible reason is given by the following sequence
of events:

1. Consumer obtains timestamp (Figure A.2, line 13).

2. Consumer is preempted.

3. An arbitrary amount of time passes.

4. Producer obtains timestamp (Figure A.1, line 10).

5. Consumer starts running again, and picks up the
producer’s timestamp (Figure A.2, line 14).

In this scenario, the producer’s timestamp might be an
arbitrary amount of time after the consumer’s timestamp.

How do you avoid agonizing over the meaning of “after”
in your SMP code?

Simply use SMP primitives as designed.
In this example, the easiest fix is to use locking, for

example, acquire a lock in the producer before line 10
in Figure A.1 and in the consumer before line 13 in Fig-
ure A.2. This lock must also be released after line 13 in
Figure A.1 and after line 17 in Figure A.2. These locks
cause the code segments in line 10-13 of Figure A.1 and
in line 13-17 of Figure A.2 to exclude each other, in other
words, to run atomically with respect to each other. This
is represented in Figure A.3: the locking prevents any of
the boxes of code from overlapping in time, so that the
consumer’s timestamp must be collected after the prior
producer’s timestamp. The segments of code in each box
in this figure are termed “critical sections”; only one such
critical section may be executing at a given time.

This addition of locking results in output as shown in
Figure A.2. Here there are no instances of time going
backwards, instead, there are only cases with more than
1,000 counts different between consecutive reads by the
consumer.

seq time (seconds) delta a b c
58597: 1156521.556296 (3.815) 1485 1485 1485

403927: 1156523.446636 (2.146) 2583 2583 2583

Table A.2: Locked “After” Program Sample Output

Quick Quiz A.2: How could there be such a large gap
between successive consumer reads? See timelocked.
c for full code.

timelocked.c
timelocked.c
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ss.t = dgettimeofday();

ss.b = ss.a + 1;
ss.c = ss.b + 1;

ss.a = ss.c + 1;

curssc.c = ss.c;

curssc.tc = gettimeofday();
curssc.t = ss.t;
curssc.a = ss.a;
curssc.b = ss.b;

ss.t = dgettimeofday();

ss.b = ss.a + 1;
ss.c = ss.b + 1;

ss.a = ss.c + 1;

Time

Producer

Consumer

Producer

Figure A.3: Effect of Locking on Snapshot Collection

In summary, if you acquire an exclusive lock, you know
that anything you do while holding that lock will appear
to happen after anything done by any prior holder of that
lock. No need to worry about which CPU did or did not
execute a memory barrier, no need to worry about the
CPU or compiler reordering operations – life is simple.
Of course, the fact that this locking prevents these two
pieces of code from running concurrently might limit
the program’s ability to gain increased performance on
multiprocessors, possibly resulting in a “safe but slow” sit-
uation. Chapter 5 describes ways of gaining performance
and scalability in many situations.

However, in most cases, if you find yourself worrying
about what happens before or after a given piece of code,
you should take this as a hint to make better use of the
standard primitives. Let these primitives do the worrying
for you.
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Appendix B

Synchronization Primitives

All but the simplest parallel programs require synchro-
nization primitives. This appendix gives a quick overview
of a set of primitives based loosely on those in the Linux
kernel.

Why Linux? Because it is one of the well-known,
largest, and easily obtained bodies of parallel code avail-
able. We believe that reading code is, if anything, more
important to learning than is writing code, so by using
examples similar to real code in the Linux kernel, we are
enabling you to use Linux to continue your learning as
you progress beyond the confines of this book.

Why based loosely rather than following the Linux ker-
nel API exactly? First, the Linux API changes with time,
so any attempt to track it exactly would likely end in total
frustration for all involved. Second, many of the mem-
bers of the Linux kernel API are specialized for use in a
production-quality operating-system kernel. This special-
ization introduces complexities that, though absolutely
necessary in the Linux kernel itself, are often more trouble
than they are worth in the “toy” programs that we will be
using to demonstrate SMP and realtime design principles
and practices. For example, properly checking for error
conditions such as memory exhaustion is a “must” in the
Linux kernel, however, in “toy” programs it is perfectly
acceptable to simply abort() the program, correct the
problem, and rerun.

Finally, it should be possible to implement a
trivial mapping layer between this API and most
production-level APIs. A pthreads implementa-
tion is available (CodeSamples/api-pthreads/
api-pthreads.h), and a Linux-kernel-module API
would not be difficult to create.

Quick Quiz B.1: Give an example of a parallel pro-
gram that could be written without synchronization primi-
tives.

The following sections describe commonly used classes

of synchronization primitives. @@@ More esoteric prim-
itives will be introduced in later revision.

Section B.1 covers organization/initialization primi-
tives; Section B.2 presents thread creation, destruction,
and control primitives; Section B.3 presents locking prim-
itives; Section B.4 presents per-thread and per-CPU vari-
able primitives; and Section B.5 gives an overview of the
relative performance of the various primitives.

B.1 Organization and Initialization
@@@ currently include ../api.h, and there is only
pthreads. Expand and complete once the CodeSamples
structure settles down.

B.1.1 smp_init():
You must invoke smp_init() before invoking any
other primitives.

B.2 Thread Creation, Destruction,
and Control

This API focuses on “threads”, which are a locus of con-
trol.1 Each such thread has an identifier of type thread_
id_t, and no two threads running at a given time will
have the same identifier. Threads share everything ex-
cept for per-thread local state,2 which includes program
counter and stack.

The thread API is shown in Figure B.1, and members
are described in the following sections.

1 There are many other names for similar software constructs, in-
cluding “process”, “task”, “fiber”, “event”, and so on. Similar design
principles apply to all of them.

2 How is that for a circular definition?
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int smp_thread_id(void)
thread_id_t create_thread(void *(*func)(void *), void *arg)
for_each_thread(t)
for_each_running_thread(t)
void *wait_thread(thread_id_t tid)
void wait_all_threads(void)

Figure B.1: Thread API

B.2.1 create_thread()

The create_thread primitive creates a new thread,
starting the new thread’s execution at the function
func specified by create_thread()’s first argu-
ment, and passing it the argument specified by create_
thread()’s second argument. This newly created
thread will terminate when it returns from the starting
function specified by func. The create_thread()
primitive returns the thread_id_t corresponding to
the newly created child thread.

This primitive will abort the program if more than NR_
THREADS threads are created, counting the one implic-
itly created by running the program. NR_THREADS is
a compile-time constant that may be modified, though
some systems may have an upper bound for the allowable
number of threads.

B.2.2 smp_thread_id()

Because the thread_id_t returned from create_
thread() is system-dependent, the smp_thread_
id() primitive returns a thread index corresponding to
the thread making the request. This index is guaranteed
to be less than the maximum number of threads that have
been in existence since the program started, and is there-
fore useful for bitmasks, array indices, and the like.

B.2.3 for_each_thread()

The for_each_thread() macro loops through all
threads that exist, including all threads that would exist
if created. This macro is useful for handling per-thread
variables as will be seen in Section B.4.

B.2.4 for_each_running_thread()

The for_each_running_thread() macro loops
through only those threads that currently exist. It is the
caller’s responsibility to synchronize with thread creation
and deletion if required.

B.2.5 wait_thread()
The wait_thread() primitive waits for completion
of the thread specified by the thread_id_t passed to
it. This in no way interferes with the execution of the
specified thread; instead, it merely waits for it. Note that
wait_thread() returns the value that was returned by
the corresponding thread.

B.2.6 wait_all_threads()
The wait_all_thread() primitive waits for com-
pletion of all currently running threads. It is the caller’s
responsibility to synchronize with thread creation and
deletion if required. However, this primitive is normally
used to clean up and the end of a run, so such synchro-
nization is normally not needed.

B.2.7 Example Usage
Figure B.2 shows an example hello-world-like child
thread. As noted earlier, each thread is allocated its own
stack, so each thread has its own private arg argument
and myarg variable. Each child simply prints its argu-
ment and its smp_thread_id() before exiting. Note
that the return statement on line 7 terminates the thread,
returning a NULL to whoever invokes wait_thread()
on this thread.

1 void *thread_test(void *arg)
2 {
3 int myarg = (int)arg;
4
5 printf("child thread %d: smp_thread_id() = %d\n",
6 myarg, smp_thread_id());
7 return NULL;
8 }

Figure B.2: Example Child Thread

The parent program is shown in Figure B.3. It invokes
smp_init() to initialize the threading system on line 6,
parse arguments on lines 7-14, and announces its presence
on line 15. It creates the specified number of child threads
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on lines 16-17, and waits for them to complete on line 18.
Note that wait_all_threads() discards the threads
return values, as in this case they are all NULL, which is
not very interesting.

1 int main(int argc, char *argv[])
2 {
3 int i;
4 int nkids = 1;
5
6 smp_init();
7 if (argc > 1) {
8 nkids = strtoul(argv[1], NULL, 0);
9 if (nkids > NR_THREADS) {
10 fprintf(stderr, "nkids=%d too big, max=%d\n",
11 nkids, NR_THREADS);
12 usage(argv[0]);
13 }
14 }
15 printf("Parent spawning %d threads.\n", nkids);
16 for (i = 0; i < nkids; i++)
17 create_thread(thread_test, (void *)i);
18 wait_all_threads();
19 printf("All threads completed.\n", nkids);
20 exit(0);
21 }

Figure B.3: Example Parent Thread

B.3 Locking
The locking API is shown in Figure B.4, each API element
being described in the following sections.

void spin_lock_init(spinlock_t *sp);
void spin_lock(spinlock_t *sp);
int spin_trylock(spinlock_t *sp);
void spin_unlock(spinlock_t *sp);

Figure B.4: Locking API

B.3.1 spin_lock_init()
The spin_lock_init() primitive initializes the spec-
ified spinlock_t variable, and must be invoked before
this variable is passed to any other spinlock primitive.

B.3.2 spin_lock()
The spin_lock() primitive acquires the specified spin-
lock, if necessary, waiting until the spinlock becomes
available. In some environments, such as pthreads, this
waiting will involve “spinning”, while in others, such as
the Linux kernel, it will involve blocking.

The key point is that only one thread may hold a spin-
lock at any given time.

B.3.3 spin_trylock()

The spin_trylock() primitive acquires the specified
spinlock, but only if it is immediately available. It returns
true if it was able to acquire the spinlock and false
otherwise.

B.3.4 spin_unlock()

The spin_unlock() primitive releases the specified
spinlock, allowing other threads to acquire it.

@@@ likely need to add reader-writer locking.

B.3.5 Example Usage

A spinlock named mutex may be used to protect a vari-
able counter as follows:

spin_lock(&mutex);
counter++;
spin_unlock(&mutex);

Quick Quiz B.2: What problems could occur if the
variable counter were incremented without the protec-
tion of mutex?

However, the spin_lock() and spin_unlock()
primitives do have performance consequences, as will be
seen in Section B.5.

B.4 Per-Thread Variables
Figure B.5 shows the per-thread-variable API. This API
provides the per-thread equivalent of global variables.
Although this API is, strictly speaking, not necessary, it
can greatly simply coding.

DEFINE_PER_THREAD(type, name)
DECLARE_PER_THREAD(type, name)
per_thread(name, thread)
__get_thread_var(name)
init_per_thread(name, v)

Figure B.5: Per-Thread-Variable API

Quick Quiz B.3: How could you work around the
lack of a per-thread-variable API on systems that do not
provide it?
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B.4.1 DEFINE_PER_THREAD()
The DEFINE_PER_THREAD() primitive defines a per-
thread variable. Unfortunately, it is not possible to pro-
vide an initializer in the way permitted by the Linux ker-
nel’s DEFINE_PER_THREAD() primitive, but there is
an init_per_thread() primitive that permits easy
runtime initialization.

B.4.2 DECLARE_PER_THREAD()
The DECLARE_PER_THREAD() primitive is a declara-
tion in the C sense, as opposed to a definition. Thus, a
DECLARE_PER_THREAD() primitive may be used to
access a per-thread variable defined in some other file.

B.4.3 per_thread()
The per_thread() primitive accesses the specified
thread’s variable.

B.4.4 __get_thread_var()
The __get_thread_var() primitive accesses the
current thread’s variable.

B.4.5 init_per_thread()
The init_per_thread() primitive sets all threads’
instances of the specified variable to the specified value.

B.4.6 Usage Example
Suppose that we have a counter that is incremented very
frequently but read out quite rarely. As will become clear
in Section B.5, it is helpful to implement such a counter
using a per-CPU variable. Such a variable can be defined
as follows:

DEFINE_PER_THREAD(int, counter);

The counter must be initialized as follows:

init_per_thread(counter, 0);

A thread can increment its instance of this counter as
follows:

__get_thread_var(counter)++;

The value of the counter is then the sum of its instances.
A snapshot of the value of the counter can thus be col-
lected as follows:

for_each_thread(i)
sum += per_thread(counter, i);

Again, it is possible to gain a similar effect using other
mechanisms, but per-thread variables combine conve-
nience and high performance.

B.5 Performance
It is instructive to compare the performance of the locked
increment shown in Section B.3 to that of per-thread vari-
ables (see Section B.4), as well as to conventional incre-
ment (as in “counter++”).

@@@ need parable on cache thrashing.
@@@ more here using performance results from a

modest multiprocessor.
@@@ Also work in something about critical-section

size? Or put later?
The difference in performance is quite large, to put it

mildly. The purpose of this book is to help you write
SMP programs, perhaps with realtime response, while
avoiding such performance pitfalls. The next section
starts this process by describing some of the reasons for
this performance shortfall.
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Why Memory Barriers?

So what possessed CPU designers to cause them to in-
flict memory barriers on poor unsuspecting SMP software
designers?

In short, because reordering memory references allows
much better performance, and so memory barriers are
needed to force ordering in things like synchronization
primitives whose correct operation depends on ordered
memory references.

Getting a more detailed answer to this question requires
a good understanding of how CPU caches work, and
especially what is required to make caches really work
well. The following sections:

1. present the structure of a cache,

2. describe how cache-coherency protocols ensure that
CPUs agree on the value of each location in memory,
and, finally,

3. outline how store buffers and invalidate queues help
caches and cache-coherency protocols achieve high
performance.

We will see that memory barriers are a necessary evil that
is required to enable good performance and scalability,
an evil that stems from the fact that CPUs are orders of
magnitude faster than are both the interconnects between
them and the memory they are attempting to access.

C.1 Cache Structure
Modern CPUs are much faster than are modern memory
systems. A 2006 CPU might be capable of executing ten
instructions per nanosecond, but will require many tens of
nanoseconds to fetch a data item from main memory. This
disparity in speed — more than two orders of magnitude
— has resulted in the multi-megabyte caches found on

modern CPUs. These caches are associated with the CPUs
as shown in Figure C.1, and can typically be accessed in
a few cycles.1

CPU 0 CPU 1

CacheCache

Memory

Interconnect

Figure C.1: Modern Computer System Cache Structure

Data flows among the CPUs’ caches and memory in
fixed-length blocks called “cache lines”, which are nor-
mally a power of two in size, ranging from 16 to 256
bytes. When a given data item is first accessed by a given
CPU, it will be absent from that CPU’s cache, mean-
ing that a “cache miss” (or, more specifically, a “startup”
or “warmup” cache miss) has occurred. The cache miss
means that the CPU will have to wait (or be “stalled”) for
hundreds of cycles while the item is fetched from memory.
However, the item will be loaded into that CPU’s cache,
so that subsequent accesses will find it in the cache and
therefore run at full speed.

1 It is standard practice to use multiple levels of cache, with a small
level-one cache close to the CPU with single-cycle access time, and a
larger level-two cache with a longer access time, perhaps roughly ten
clock cycles. Higher-performance CPUs often have three or even four
levels of cache.
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0xF
0xE
0xD
0xC
0xB
0xA
0x9
0x8
0x7
0x6
0x5
0x4
0x3
0x2
0x1
0x0

Way 0

0x12345E00
0x12345D00
0x12345C00
0x12345B00
0x12345A00
0x12345900
0x12345800
0x12345700
0x12345600
0x12345500
0x12345400
0x12345300
0x12345200
0x12345100
0x12345000

Way 1

0x43210E00

Figure C.2: CPU Cache Structure

After some time, the CPU’s cache will fill, and subse-
quent misses will likely need to eject an item from the
cache in order to make room for the newly fetched item.
Such a cache miss is termed a “capacity miss”, because it
is caused by the cache’s limited capacity. However, most
caches can be forced to eject an old item to make room
for a new item even when they are not yet full. This is due
to the fact that large caches are implemented as hardware
hash tables with fixed-size hash buckets (or “sets”, as
CPU designers call them) and no chaining, as shown in
Figure C.2.

This cache has sixteen “sets” and two “ways” for a
total of 32 “lines”, each entry containing a single 256-byte
“cache line”, which is a 256-byte-aligned block of memory.
This cache line size is a little on the large size, but makes
the hexadecimal arithmetic much simpler. In hardware
parlance, this is a two-way set-associative cache, and is
analogous to a software hash table with sixteen buckets,
where each bucket’s hash chain is limited to at most two
elements. The size (32 cache lines in this case) and the
associativity (two in this case) are collectively called the
cache’s “geometry”. Since this cache is implemented in
hardware, the hash function is extremely simple: extract
four bits from the memory address.

In Figure C.2, each box corresponds to a cache entry,
which can contain a 256-byte cache line. However, a
cache entry can be empty, as indicated by the empty boxes
in the figure. The rest of the boxes are flagged with the
memory address of the cache line that they contain. Since
the cache lines must be 256-byte aligned, the low eight
bits of each address are zero, and the choice of hardware

hash function means that the next-higher four bits match
the hash line number.

The situation depicted in the figure might arise if the
program’s code were located at address 0x43210E00
through 0x43210EFF, and this program accessed data
sequentially from 0x12345000 through 0x12345EFF. Sup-
pose that the program were now to access location
0x12345F00. This location hashes to line 0xF, and both
ways of this line are empty, so the corresponding 256-
byte line can be accommodated. If the program were to
access location 0x1233000, which hashes to line 0x0, the
corresponding 256-byte cache line can be accommodated
in way 1. However, if the program were to access location
0x1233E00, which hashes to line 0xE, one of the existing
lines must be ejected from the cache to make room for the
new cache line. If this ejected line were accessed later, a
cache miss would result. Such a cache miss is termed an
“associativity miss”.

Thus far, we have been considering only cases where
a CPU reads a data item. What happens when it does
a write? Because it is important that all CPUs agree on
the value of a given data item, before a given CPU writes
to that data item, it must first cause it to be removed,
or “invalidated”, from other CPUs’ caches. Once this
invalidation has completed, the CPU may safely modify
the data item. If the data item was present in this CPU’s
cache, but was read-only, this process is termed a “write
miss”. Once a given CPU has completed invalidating a
given data item from other CPUs’ caches, that CPU may
repeatedly write (and read) that data item.

Later, if one of the other CPUs attempts to access the
data item, it will incur a cache miss, this time because
the first CPU invalidated the item in order to write to
it. This type of cache miss is termed a “communication
miss”, since it is usually due to several CPUs using the
data items to communicate (for example, a lock is a data
item that is used to communicate among CPUs using a
mutual-exclusion algorithm).

Clearly, much care must be taken to ensure that all
CPUs maintain a coherent view of the data. With all this
fetching, invalidating, and writing, it is easy to imagine
data being lost or (perhaps worse) different CPUs having
conflicting values for the same data item in their respec-
tive caches. These problems are prevented by “cache-
coherency protocols”, described in the next section.
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C.2 Cache-Coherence Protocols
Cache-coherency protocols manage cache-line states so
as to prevent inconsistent or lost data. These protocols
can be quite complex, with many tens of states,2 but for
our purposes we need only concern ourselves with the
four-state MESI cache-coherence protocol.

C.2.1 MESI States
MESI stands for “modified”, “exclusive”, “shared”, and
“invalid”, the four states a given cache line can take on
using this protocol. Caches using this protocol therefore
maintain a two-bit state “tag” on each cache line in addi-
tion to that line’s physical address and data.

A line in the “modified” state has been subject to a
recent memory store from the corresponding CPU, and
the corresponding memory is guaranteed not to appear
in any other CPU’s cache. Cache lines in the “modified”
state can thus be said to be “owned” by the CPU. Because
this cache holds the only up-to-date copy of the data, this
cache is ultimately responsible for either writing it back
to memory or handing it off to some other cache, and
must do so before reusing this line to hold other data.

The “exclusive” state is very similar to the “modified”
state, the single exception being that the cache line has
not yet been modified by the corresponding CPU, which
in turn means that the copy of the cache line’s data that
resides in memory is up-to-date. However, since the CPU
can store to this line at any time, without consulting other
CPUs, a line in the “exclusive” state can still be said to be
owned by the corresponding CPU. That said, because the
corresponding value in memory is up to date, this cache
can discard this data without writing it back to memory
or handing it off to some other CPU.

A line in the “shared” state might be replicated in at
least one other CPU’s cache, so that this CPU is not
permitted to store to the line without first consulting with
other CPUs. As with the “exclusive” state, because the
corresponding value in memory is up to date, this cache
can discard this data without writing it back to memory
or handing it off to some other CPU.

A line in the “invalid” state is empty, in other words,
it holds no data. When new data enters the cache, it is
placed into a cache line that was in the “invalid” state if
possible. This approach is preferred because replacing a

2 See Culler et al. [CSG99] pages 670 and 671 for the nine-state
and 26-state diagrams for SGI Origin2000 and Sequent (now IBM)
NUMA-Q, respectively. Both diagrams are significantly simpler than
real life.

line in any other state could result in an expensive cache
miss should the replaced line be referenced in the future.

Since all CPUs must maintain a coherent view of the
data carried in the cache lines, the cache-coherence proto-
col provides messages that coordinate the movement of
cache lines through the system.

C.2.2 MESI Protocol Messages
Many of the transitions described in the previous section
require communication among the CPUs. If the CPUs are
on a single shared bus, the following messages suffice:

• Read: The “read” message contains the physical
address of the cache line to be read.

• Read Response: The “read response” message con-
tains the data requested by an earlier “read” message.
This “read response” message might be supplied ei-
ther by memory or by one of the other caches. For
example, if one of the caches has the desired data
in “modified” state, that cache must supply the “read
response” message.

• Invalidate: The “invalidate” message contains the
physical address of the cache line to be invalidated.
All other caches must remove the corresponding data
from their caches and respond.

• Invalidate Acknowledge: A CPU receiving an “in-
validate” message must respond with an “invalidate
acknowledge” message after removing the specified
data from its cache.

• Read Invalidate: The “read invalidate” message con-
tains the physical address of the cache line to be
read, while at the same time directing other caches
to remove the data. Hence, it is a combination of a
“read” and an “invalidate”, as indicated by its name.
A “read invalidate” message requires both a “read
response” and a set of “invalidate acknowledge” mes-
sages in reply.

• Writeback: The “writeback” message contains both
the address and the data to be written back to mem-
ory (and perhaps “snooped” into other CPUs’ caches
along the way). This message permits caches to eject
lines in the “modified” state as needed to make room
for other data.

Interestingly enough, a shared-memory multiprocessor
system really is a message-passing computer under the
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covers. This means that clusters of SMP machines that
use distributed shared memory are using message passing
to implement shared memory at two different levels of
the system architecture.

Quick Quiz C.1: What happens if two CPUs attempt
to invalidate the same cache line concurrently?

Quick Quiz C.2: When an “invalidate” message ap-
pears in a large multiprocessor, every CPU must give an
“invalidate acknowledge” response. Wouldn’t the result-
ing “storm” of “invalidate acknowledge” responses totally
saturate the system bus?

Quick Quiz C.3: If SMP machines are really using
message passing anyway, why bother with SMP at all?

C.2.3 MESI State Diagram
A given cache line’s state changes as protocol messages
are sent and received, as shown in Figure C.3.
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Figure C.3: MESI Cache-Coherency State Diagram

The transition arcs in this figure are as follows:

• Transition (a): A cache line is written back to mem-
ory, but the CPU retains it in its cache and further
retains the right to modify it. This transition requires
a “writeback” message.

• Transition (b): The CPU writes to the cache line that
it already had exclusive access to. This transition
does not require any messages to be sent or received.

• Transition (c): The CPU receives a “read invalidate”
message for a cache line that it has modified. The
CPU must invalidate its local copy, then respond

with both a “read response” and an “invalidate ac-
knowledge” message, both sending the data to the
requesting CPU and indicating that it no longer has
a local copy.

• Transition (d): The CPU does an atomic read-
modify-write operation on a data item that was not
present in its cache. It transmits a “read invalidate”,
receiving the data via a “read response”. The CPU
can complete the transition once it has also received
a full set of “invalidate acknowledge” responses.

• Transition (e): The CPU does an atomic read-
modify-write operation on a data item that was pre-
viously read-only in its cache. It must transmit “in-
validate” messages, and must wait for a full set of
“invalidate acknowledge” responses before complet-
ing the transition.

• Transition (f): Some other CPU reads the cache line,
and it is supplied from this CPU’s cache, which re-
tains a read-only copy, possibly also writing it back
to memory. This transition is initiated by the recep-
tion of a “read” message, and this CPU responds
with a “read response” message containing the re-
quested data.

• Transition (g): Some other CPU reads a data item
in this cache line, and it is supplied either from this
CPU’s cache or from memory. In either case, this
CPU retains a read-only copy. This transition is
initiated by the reception of a “read” message, and
this CPU responds with a “read response” message
containing the requested data.

• Transition (h): This CPU realizes that it will soon
need to write to some data item in this cache line,
and thus transmits an “invalidate” message. The
CPU cannot complete the transition until it receives
a full set of “invalidate acknowledge” responses. Al-
ternatively, all other CPUs eject this cache line from
their caches via “writeback” messages (presumably
to make room for other cache lines), so that this CPU
is the last CPU caching it.

• Transition (i): Some other CPU does an atomic read-
modify-write operation on a data item in a cache line
held only in this CPU’s cache, so this CPU invali-
dates it from its cache. This transition is initiated
by the reception of a “read invalidate” message, and
this CPU responds with both a “read response” and
an “invalidate acknowledge” message.
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• Transition (j): This CPU does a store to a data item
in a cache line that was not in its cache, and thus
transmits a “read invalidate” message. The CPU can-
not complete the transition until it receives the “read
response” and a full set of “invalidate acknowledge”
messages. The cache line will presumably transition
to “modified” state via transition (b) as soon as the
actual store completes.

• Transition (k): This CPU loads a data item in a cache
line that was not in its cache. The CPU transmits a
“read” message, and completes the transition upon
receiving the corresponding “read response”.

• Transition (l): Some other CPU does a store to a
data item in this cache line, but holds this cache
line in read-only state due to its being held in other
CPUs’ caches (such as the current CPU’s cache).
This transition is initiated by the reception of an
“invalidate” message, and this CPU responds with an
“invalidate acknowledge” message.

Quick Quiz C.4: How does the hardware handle the
delayed transitions described above?

C.2.4 MESI Protocol Example
Let’s now look at this from the perspective of a cache
line’s worth of data, initially residing in memory at ad-
dress 0, as it travels through the various single-line direct-
mapped caches in a four-CPU system. Table C.1 shows
this flow of data, with the first column showing the se-
quence of operations, the second the CPU performing the
operation, the third the operation being performed, the
next four the state of each CPU’s cache line (memory ad-
dress followed by MESI state), and the final two columns
whether the corresponding memory contents are up to
date (“V”) or not (“I”).

Initially, the CPU cache lines in which the data would
reside are in the “invalid” state, and the data is valid in
memory. When CPU 0 loads the data at address 0, it
enters the “shared” state in CPU 0’s cache, and is still
valid in memory. CPU 3 also loads the data at address 0,
so that it is in the “shared” state in both CPUs’ caches,
and is still valid in memory. Next CPU 0 loads some
other cache line (at address 8), which forces the data at
address 0 out of its cache via an invalidation, replacing it
with the data at address 8. CPU 2 now does a load from
address 0, but this CPU realizes that it will soon need
to store to it, and so it uses a “read invalidate” message
in order to gain an exclusive copy, invalidating it from

CPU 3’s cache (though the copy in memory remains up to
date). Next CPU 2 does its anticipated store, changing the
state to “modified”. The copy of the data in memory is
now out of date. CPU 1 does an atomic increment, using
a “read invalidate” to snoop the data from CPU 2’s cache
and invalidate it, so that the copy in CPU 1’s cache is in
the “modified” state (and the copy in memory remains out
of date). Finally, CPU 1 reads the cache line at address 8,
which uses a “writeback” message to push address 0’s
data back out to memory.

Note that we end with data in some of the CPU’s
caches.

Quick Quiz C.5: What sequence of operations would
put the CPUs’ caches all back into the “invalid” state?

C.3 Stores Result in Unnecessary
Stalls

Although the cache structure shown in Figure C.1 pro-
vides good performance for repeated reads and writes
from a given CPU to a given item of data, its performance
for the first write to a given cache line is quite poor. To
see this, consider Figure C.4, which shows a timeline of
a write by CPU 0 to a cacheline held in CPU 1’s cache.
Since CPU 0 must wait for the cache line to arrive before
it can write to it, CPU 0 must stall for an extended period
of time.3

But there is no real reason to force CPU 0 to stall for
so long — after all, regardless of what data happens to be
in the cache line that CPU 1 sends it, CPU 0 is going to
unconditionally overwrite it.

C.3.1 Store Buffers

One way to prevent this unnecessary stalling of writes is
to add “store buffers” between each CPU and its cache,
as shown in Figure C.5. With the addition of these store
buffers, CPU 0 can simply record its write in its store
buffer and continue executing. When the cache line does
finally make its way from CPU 1 to CPU 0, the data will
be moved from the store buffer to the cache line.

However, there are complications that must be ad-
dressed, which are covered in the next two sections.

3 The time required to transfer a cache line from one CPU’s cache to
another’s is typically a few orders of magnitude more than that required
to execute a simple register-to-register instruction.
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CPU Cache Memory
Sequence # CPU # Operation 0 1 2 3 0 8

0 Initial State -/I -/I -/I -/I V V
1 0 Load 0/S -/I -/I -/I V V
2 3 Load 0/S -/I -/I 0/S V V
3 0 Invalidation 8/S -/I -/I 0/S V V
4 2 RMW 8/S -/I 0/E -/I V V
5 2 Store 8/S -/I 0/M -/I I V
6 1 Atomic Inc 8/S 0/M -/I -/I I V
7 1 Writeback 8/S 8/S -/I -/I V V

Table C.1: Cache Coherence Example
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Figure C.4: Writes See Unnecessary Stalls

C.3.2 Store Forwarding
To see the first complication, a violation of self-
consistency, consider the following code with variables
“a” and “b” both initially zero, and with the cache line
containing variable “a” initially owned by CPU 1 and that
containing “b” initially owned by CPU 0:

1 a = 1;
2 b = a + 1;
3 assert(b == 2);

One would not expect the assertion to fail. However, if
one were foolish enough to use the very simple architec-
ture shown in Figure C.5, one would be surprised. Such
a system could potentially see the following sequence of
events:

1. CPU 0 starts executing the a = 1.
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Figure C.5: Caches With Store Buffers

2. CPU 0 looks “a” up in the cache, and finds that it is
missing.

3. CPU 0 therefore sends a “read invalidate” message
in order to get exclusive ownership of the cache line
containing “a”.

4. CPU 0 records the store to “a” in its store buffer.

5. CPU 1 receives the “read invalidate” message, and
responds by transmitting the cache line and remov-
ing that cacheline from its cache.

6. CPU 0 starts executing the b = a + 1.

7. CPU 0 receives the cache line from CPU 1, which
still has a value of zero for “a”.
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8. CPU 0 loads “a” from its cache, finding the value
zero.

9. CPU 0 applies the entry from its store queue to the
newly arrived cache line, setting the value of “a” in
its cache to one.

10. CPU 0 adds one to the value zero loaded for “a”
above, and stores it into the cache line containing “b”
(which we will assume is already owned by CPU 0).

11. CPU 0 executes assert(b == 2), which fails.

The problem is that we have two copies of “a”, one in
the cache and the other in the store buffer.

This example breaks a very important guarantee,
namely that each CPU will always see its own opera-
tions as if they happened in program order. Breaking
this guarantee is violently counter-intuitive to software
types, so much so that the hardware guys took pity and
implemented “store forwarding”, where each CPU refers
to (or “snoops”) its store buffer as well as its cache when
performing loads, as shown in Figure C.6. In other words,
a given CPU’s stores are directly forwarded to its subse-
quent loads, without having to pass through the cache.
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Figure C.6: Caches With Store Forwarding

With store forwarding in place, item 8 in the above
sequence would have found the correct value of 1 for “a”
in the store buffer, so that the final value of “b” would
have been 2, as one would hope.

C.3.3 Store Buffers and Memory Barriers
To see the second complication, a violation of global
memory ordering, consider the following code sequences
with variables “a” and “b” initially zero:

1 void foo(void)
2 {
3 a = 1;
4 b = 1;
5 }
6
7 void bar(void)
8 {
9 while (b == 0) continue;

10 assert(a == 1);
11 }

Suppose CPU 0 executes foo() and CPU 1 executes
bar(). Suppose further that the cache line containing “a”
resides only in CPU 1’s cache, and that the cache line
containing “b” is owned by CPU 0. Then the sequence of
operations might be as follows:

1. CPU 0 executes a = 1. The cache line is not in
CPU 0’s cache, so CPU 0 places the new value of
“a” in its store buffer and transmits a “read invalidate”
message.

2. CPU 1 executes while (b == 0) continue,
but the cache line containing “b” is not in its cache.
It therefore transmits a “read” message.

3. CPU 0 executes b = 1. It already owns this cache
line (in other words, the cache line is already in either
the “modified” or the “exclusive” state), so it stores
the new value of “b” in its cache line.

4. CPU 0 receives the “read” message, and transmits
the cache line containing the now-updated value of
“b” to CPU 1, also marking the line as “shared” in its
own cache.

5. CPU 1 receives the cache line containing “b” and
installs it in its cache.

6. CPU 1 can now finish executing
while (b == 0) continue, and since
it finds that the value of “b” is 1, it proceeds to the
next statement.

7. CPU 1 executes the assert(a == 1), and, since
CPU 1 is working with the old value of “a”, this
assertion fails.
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8. CPU 1 receives the “read invalidate” message, and
transmits the cache line containing “a” to CPU 0 and
invalidates this cache line from its own cache. But it
is too late.

9. CPU 0 receives the cache line containing “a” and
applies the buffered store just in time to fall victim
to CPU 1’s failed assertion.

Quick Quiz C.6: In step 1 above, why does CPU 0
need to issue a “read invalidate” rather than a simple
“invalidate”?

The hardware designers cannot help directly here, since
the CPUs have no idea which variables are related, let
alone how they might be related. Therefore, the hardware
designers provide memory-barrier instructions to allow
the software to tell the CPU about such relations. The
program fragment must be updated to contain the memory
barrier:

1 void foo(void)
2 {
3 a = 1;
4 smp_mb();
5 b = 1;
6 }
7
8 void bar(void)
9 {

10 while (b == 0) continue;
11 assert(a == 1);
12 }

The memory barrier smp_mb() will cause the CPU
to flush its store buffer before applying each subsequent
store to its variable’s cache line. The CPU could either
simply stall until the store buffer was empty before pro-
ceeding, or it could use the store buffer to hold subsequent
stores until all of the prior entries in the store buffer had
been applied.

With this latter approach the sequence of operations
might be as follows:

1. CPU 0 executes a = 1. The cache line is not in
CPU 0’s cache, so CPU 0 places the new value of
“a” in its store buffer and transmits a “read invalidate”
message.

2. CPU 1 executes while (b == 0) continue,
but the cache line containing “b” is not in its cache.
It therefore transmits a “read” message.

3. CPU 0 executes smp_mb(), and marks all current
store-buffer entries (namely, the a = 1).

4. CPU 0 executes b = 1. It already owns this cache
line (in other words, the cache line is already in
either the “modified” or the “exclusive” state), but
there is a marked entry in the store buffer. Therefore,
rather than store the new value of “b” in the cache
line, it instead places it in the store buffer (but in an
unmarked entry).

5. CPU 0 receives the “read” message, and transmits
the cache line containing the original value of “b” to
CPU 1. It also marks its own copy of this cache line
as “shared”.

6. CPU 1 receives the cache line containing “b” and
installs it in its cache.

7. CPU 1 can now load the value of “b”, but since it
finds that the value of “b” is still 0, it repeats the
while statement. The new value of “b” is safely
hidden in CPU 0’s store buffer.

8. CPU 1 receives the “read invalidate” message, and
transmits the cache line containing “a” to CPU 0 and
invalidates this cache line from its own cache.

9. CPU 0 receives the cache line containing “a” and
applies the buffered store, placing this line into the
“modified” state.

10. Since the store to “a” was the only entry in the store
buffer that was marked by the smp_mb(), CPU 0
can also store the new value of “b” — except for
the fact that the cache line containing “b” is now in
“shared” state.

11. CPU 0 therefore sends an “invalidate” message to
CPU 1.

12. CPU 1 receives the “invalidate” message, invalidates
the cache line containing “b” from its cache, and
sends an “acknowledgement” message to CPU 0.

13. CPU 1 executes while (b == 0) continue,
but the cache line containing “b” is not in its cache.
It therefore transmits a “read” message to CPU 0.

14. CPU 0 receives the “acknowledgement” message,
and puts the cache line containing “b” into the “ex-
clusive” state. CPU 0 now stores the new value of
“b” into the cache line.

15. CPU 0 receives the “read” message, and transmits
the cache line containing the new value of “b” to
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CPU 1. It also marks its own copy of this cache line
as “shared”.

16. CPU 1 receives the cache line containing “b” and
installs it in its cache.

17. CPU 1 can now load the value of “b”, and since it
finds that the value of “b” is 1, it exits the while
loop and proceeds to the next statement.

18. CPU 1 executes the assert(a == 1), but the
cache line containing “a” is no longer in its cache.
Once it gets this cache from CPU 0, it will be work-
ing with the up-to-date value of “a”, and the assertion
therefore passes.

As you can see, this process involves no small amount
of bookkeeping. Even something intuitively simple, like
“load the value of a” can involve lots of complex steps in
silicon.

C.4 Store Sequences Result in Un-
necessary Stalls

Unfortunately, each store buffer must be relatively small,
which means that a CPU executing a modest sequence
of stores can fill its store buffer (for example, if all of
them result in cache misses). At that point, the CPU must
once again wait for invalidations to complete in order
to drain its store buffer before it can continue executing.
This same situation can arise immediately after a memory
barrier, when all subsequent store instructions must wait
for invalidations to complete, regardless of whether or not
these stores result in cache misses.

This situation can be improved by making invalidate
acknowledge messages arrive more quickly. One way of
accomplishing this is to use per-CPU queues of invalidate
messages, or “invalidate queues”.

C.4.1 Invalidate Queues
One reason that invalidate acknowledge messages can
take so long is that they must ensure that the correspond-
ing cache line is actually invalidated, and this invalidation
can be delayed if the cache is busy, for example, if the
CPU is intensively loading and storing data, all of which
resides in the cache. In addition, if a large number of
invalidate messages arrive in a short time period, a given
CPU might fall behind in processing them, thus possibly
stalling all the other CPUs.

However, the CPU need not actually invalidate the
cache line before sending the acknowledgement. It could
instead queue the invalidate message with the understand-
ing that the message will be processed before the CPU
sends any further messages regarding that cache line.

C.4.2 Invalidate Queues and Invalidate Ac-
knowledge

Figure C.7 shows a system with invalidate queues. A
CPU with an invalidate queue may acknowledge an in-
validate message as soon as it is placed in the queue,
instead of having to wait until the corresponding line is
actually invalidated. Of course, the CPU must refer to its
invalidate queue when preparing to transmit invalidation
messages — if an entry for the corresponding cache line
is in the invalidate queue, the CPU cannot immediately
transmit the invalidate message; it must instead wait until
the invalidate-queue entry has been processed.
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Figure C.7: Caches With Invalidate Queues

Placing an entry into the invalidate queue is essentially
a promise by the CPU to process that entry before trans-
mitting any MESI protocol messages regarding that cache
line. As long as the corresponding data structures are not
highly contended, the CPU will rarely be inconvenienced
by such a promise.
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However, the fact that invalidate messages can be
buffered in the invalidate queue provides additional op-
portunity for memory-misordering, as discussed in the
next section.

C.4.3 Invalidate Queues and Memory Bar-
riers

Let us suppose that CPUs queue invalidation requests, but
respond to them immediately. This approach minimizes
the cache-invalidation latency seen by CPUs doing stores,
but can defeat memory barriers, as seen in the following
example.

Suppose the values of “a” and “b” are initially zero, that
“a” is replicated read-only (MESI “shared” state), and that
“b” is owned by CPU 0 (MESI “exclusive” or “modified”
state). Then suppose that CPU 0 executes foo() while
CPU 1 executes function bar() in the following code
fragment:

1 void foo(void)
2 {
3 a = 1;
4 smp_mb();
5 b = 1;
6 }
7
8 void bar(void)
9 {

10 while (b == 0) continue;
11 assert(a == 1);
12 }

Then the sequence of operations might be as follows:

1. CPU 0 executes a = 1. The corresponding cache
line is read-only in CPU 0’s cache, so CPU 0 places
the new value of “a” in its store buffer and trans-
mits an “invalidate” message in order to flush the
corresponding cache line from CPU 1’s cache.

2. CPU 1 executes while (b == 0) continue,
but the cache line containing “b” is not in its cache.
It therefore transmits a “read” message.

3. CPU 1 receives CPU 0’s “invalidate” message,
queues it, and immediately responds to it.

4. CPU 0 receives the response from CPU 1, and is
therefore free to proceed past the smp_mb() on
line 4 above, moving the value of “a” from its store
buffer to its cache line.

5. CPU 0 executes b = 1. It already owns this cache
line (in other words, the cache line is already in either
the “modified” or the “exclusive” state), so it stores
the new value of “b” in its cache line.

6. CPU 0 receives the “read” message, and transmits
the cache line containing the now-updated value of
“b” to CPU 1, also marking the line as “shared” in its
own cache.

7. CPU 1 receives the cache line containing “b” and
installs it in its cache.

8. CPU 1 can now finish executing
while (b == 0) continue, and since
it finds that the value of “b” is 1, it proceeds to the
next statement.

9. CPU 1 executes the assert(a == 1), and, since
the old value of “a” is still in CPU 1’s cache, this
assertion fails.

10. Despite the assertion failure, CPU 1 processes the
queued “invalidate” message, and (tardily) invali-
dates the cache line containing “a” from its own
cache.

Quick Quiz C.7: In step 1 of the first scenario in Sec-
tion C.4.3, why is an “invalidate” sent instead of a ”read
invalidate” message? Doesn’t CPU 0 need the values of
the other variables that share this cache line with “a”?

There is clearly not much point in accelerating invali-
dation responses if doing so causes memory barriers to
effectively be ignored. However, the memory-barrier in-
structions can interact with the invalidate queue, so that
when a given CPU executes a memory barrier, it marks
all the entries currently in its invalidate queue, and forces
any subsequent load to wait until all marked entries have
been applied to the CPU’s cache. Therefore, we can add
a memory barrier to function bar as follows:

1 void foo(void)
2 {
3 a = 1;
4 smp_mb();
5 b = 1;
6 }
7
8 void bar(void)
9 {

10 while (b == 0) continue;
11 smp_mb();
12 assert(a == 1);
13 }
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Quick Quiz C.8: Say what??? Why do we need a
memory barrier here, given that the CPU cannot possi-
bly execute the assert() until after the while loop
completes?

With this change, the sequence of operations might be
as follows:

1. CPU 0 executes a = 1. The corresponding cache
line is read-only in CPU 0’s cache, so CPU 0 places
the new value of “a” in its store buffer and trans-
mits an “invalidate” message in order to flush the
corresponding cache line from CPU 1’s cache.

2. CPU 1 executes while (b == 0) continue,
but the cache line containing “b” is not in its cache.
It therefore transmits a “read” message.

3. CPU 1 receives CPU 0’s “invalidate” message,
queues it, and immediately responds to it.

4. CPU 0 receives the response from CPU 1, and is
therefore free to proceed past the smp_mb() on
line 4 above, moving the value of “a” from its store
buffer to its cache line.

5. CPU 0 executes b = 1. It already owns this cache
line (in other words, the cache line is already in either
the “modified” or the “exclusive” state), so it stores
the new value of “b” in its cache line.

6. CPU 0 receives the “read” message, and transmits
the cache line containing the now-updated value of
“b” to CPU 1, also marking the line as “shared” in its
own cache.

7. CPU 1 receives the cache line containing “b” and
installs it in its cache.

8. CPU 1 can now finish executing
while (b == 0) continue, and since
it finds that the value of “b” is 1, it proceeds to the
next statement, which is now a memory barrier.

9. CPU 1 must now stall until it processes all pre-
existing messages in its invalidation queue.

10. CPU 1 now processes the queued “invalidate” mes-
sage, and invalidates the cache line containing “a”
from its own cache.

11. CPU 1 executes the assert(a == 1), and, since
the cache line containing “a” is no longer in CPU 1’s
cache, it transmits a “read” message.

12. CPU 0 responds to this “read” message with the
cache line containing the new value of “a”.

13. CPU 1 receives this cache line, which contains a
value of 1 for “a”, so that the assertion does not
trigger.

With much passing of MESI messages, the CPUs arrive
at the correct answer. This section illustrates why CPU
designers must be extremely careful with their cache-
coherence optimizations.

C.5 Read and Write Memory Bar-
riers

In the previous section, memory barriers were used to
mark entries in both the store buffer and the invalidate
queue. But in our code fragment, foo() had no reason
to do anything with the invalidate queue, and bar()
similarly had no reason to do anything with the store
queue.

Many CPU architectures therefore provide weaker
memory-barrier instructions that do only one or the other
of these two. Roughly speaking, a “read memory barrier”
marks only the invalidate queue and a “write memory
barrier” marks only the store buffer, while a full-fledged
memory barrier does both.

The effect of this is that a read memory barrier orders
only loads on the CPU that executes it, so that all loads
preceding the read memory barrier will appear to have
completed before any load following the read memory
barrier. Similarly, a write memory barrier orders only
stores, again on the CPU that executes it, and again so
that all stores preceding the write memory barrier will
appear to have completed before any store following the
write memory barrier. A full-fledged memory barrier
orders both loads and stores, but again only on the CPU
executing the memory barrier.

If we update foo and bar to use read and write mem-
ory barriers, they appear as follows:
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1 void foo(void)
2 {
3 a = 1;
4 smp_wmb();
5 b = 1;
6 }
7
8 void bar(void)
9 {

10 while (b == 0) continue;
11 smp_rmb();
12 assert(a == 1);
13 }

Some computers have even more flavors of memory
barriers, but understanding these three variants will pro-
vide a good introduction to memory barriers in general.

C.6 Example Memory-Barrier Se-
quences

This section presents some seductive but subtly broken
uses of memory barriers. Although many of them will
work most of the time, and some will work all the time
on some specific CPUs, these uses must be avoided if the
goal is to produce code that works reliably on all CPUs.
To help us better see the subtle breakage, we first need to
focus on an ordering-hostile architecture.

C.6.1 Ordering-Hostile Architecture

Paul has come across a number of ordering-hostile com-
puter systems, but the nature of the hostility has always
been extremely subtle, and understanding it has required
detailed knowledge of the specific hardware. Rather than
picking on a specific hardware vendor, and as a presum-
ably attractive alternative to dragging the reader through
detailed technical specifications, let us instead design a
mythical but maximally memory-ordering-hostile com-
puter architecture.4

This hardware must obey the following ordering con-
straints [McK05a, McK05b]:

1. Each CPU will always perceive its own memory
accesses as occurring in program order.

4 Readers preferring a detailed look at real hardware architectures are
encouraged to consult CPU vendors’ manuals [SW95, Adv02, Int02b,
IBM94, LSH02, SPA94, Int04b, Int04a, Int04c], Gharachorloo’s disser-
tation [Gha95], or Peter Sewell’s work [Sew].

2. CPUs will reorder a given operation with a store
only if the two operations are referencing different
locations.

3. All of a given CPU’s loads preceding a read memory
barrier (smp_rmb()) will be perceived by all CPUs
to precede any loads following that read memory
barrier.

4. All of a given CPU’s stores preceding a write mem-
ory barrier (smp_wmb()) will be perceived by all
CPUs to precede any stores following that write
memory barrier.

5. All of a given CPU’s accesses (loads and stores)
preceding a full memory barrier (smp_mb()) will
be perceived by all CPUs to precede any accesses
following that memory barrier.

Quick Quiz C.9: Does the guarantee that each CPU
sees its own memory accesses in order also guarantee that
each user-level thread will see its own memory accesses
in order? Why or why not?

Imagine a large non-uniform cache architecture
(NUCA) system that, in order to provide fair allocation of
interconnect bandwidth to CPUs in a given node, provided
per-CPU queues in each node’s interconnect interface, as
shown in Figure C.8. Although a given CPU’s accesses
are ordered as specified by memory barriers executed by
that CPU, however, the relative order of a given pair of
CPUs’ accesses could be severely reordered, as we will
see.5

C.6.2 Example 1
Table C.2 shows three code fragments, executed concur-
rently by CPUs 0, 1, and 2. Each of “a”, “b”, and “c” are
initially zero.

Suppose CPU 0 recently experienced many cache
misses, so that its message queue is full, but that CPU 1
has been running exclusively within the cache, so that its
message queue is empty. Then CPU 0’s assignment to
“a” and “b” will appear in Node 0’s cache immediately
(and thus be visible to CPU 1), but will be blocked behind
CPU 0’s prior traffic. In contrast, CPU 1’s assignment
to “c” will sail through CPU 1’s previously empty queue.

5 Any real hardware architect or designer will no doubt be loudly
calling for Ralph on the porcelain intercom, as they just might be just a
bit upset about the prospect of working out which queue should handle a
message involving a cache line that both CPUs accessed, to say nothing
of the many races that this example poses. All I can say is “Give me a
better example”.
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CPU 0 CPU 1 CPU 2
a = 1;
smp_wmb(); while (b == 0);
b = 1; c = 1; z = c;

smp_rmb();
x = a;
assert(z == 0 || x == 1);

Table C.2: Memory Barrier Example 1
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Figure C.8: Example Ordering-Hostile Architecture

Therefore, CPU 2 might well see CPU 1’s assignment to
“c” before it sees CPU 0’s assignment to “a”, causing the
assertion to fire, despite the memory barriers.

In theory, portable code cannot rely on this example
code sequence, however, in practice it actually does work
on all mainstream computer systems.

Quick Quiz C.10: Could this code be fixed by in-
serting a memory barrier between CPU 1’s “while” and
assignment to “c”? Why or why not?

C.6.3 Example 2

Table C.3 shows three code fragments, executed concur-
rently by CPUs 0, 1, and 2. Both “a” and “b” are initially
zero.

Again, suppose CPU 0 recently experienced many
cache misses, so that its message queue is full, but that
CPU 1 has been running exclusively within the cache, so
that its message queue is empty. Then CPU 0’s assign-
ment to “a” will appear in Node 0’s cache immediately

(and thus be visible to CPU 1), but will be blocked behind
CPU 0’s prior traffic. In contrast, CPU 1’s assignment
to “b” will sail through CPU 1’s previously empty queue.
Therefore, CPU 2 might well see CPU 1’s assignment to
“b” before it sees CPU 0’s assignment to “a”, causing the
assertion to fire, despite the memory barriers.

In theory, portable code should not rely on this example
code fragment, however, as before, in practice it actually
does work on most mainstream computer systems.

C.6.4 Example 3

Table C.4 shows three code fragments, executed concur-
rently by CPUs 0, 1, and 2. All variables are initially
zero.

Note that neither CPU 1 nor CPU 2 can proceed to
line 5 until they see CPU 0’s assignment to “b” on line 3.
Once CPU 1 and 2 have executed their memory barriers on
line 4, they are both guaranteed to see all assignments by
CPU 0 preceding its memory barrier on line 2. Similarly,
CPU 0’s memory barrier on line 8 pairs with those of
CPUs 1 and 2 on line 4, so that CPU 0 will not execute
the assignment to “e” on line 9 until after its assignment
to “a” is visible to both of the other CPUs. Therefore,
CPU 2’s assertion on line 9 is guaranteed not to fire.

Quick Quiz C.11: Suppose that lines 3-5 for CPUs 1
and 2 in Table C.4 are in an interrupt handler, and that the
CPU 2’s line 9 is run at process level. What changes, if
any, are required to enable the code to work correctly, in
other words, to prevent the assertion from firing?

Quick Quiz C.12: If CPU 2 executed an
assert(e==0||c==1) in the example in Table C.4,
would this assert ever trigger?

The Linux kernel’s synchronize_rcu() primitive
uses an algorithm similar to that shown in this example.
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CPU 0 CPU 1 CPU 2
a = 1; while (a == 0);

smp_mb(); y = b;
b = 1; smp_rmb();

x = a;
assert(y == 0 || x == 1);

Table C.3: Memory Barrier Example 2

CPU 0 CPU 1 CPU 2
1 a = 1;
2 smb_wmb();
3 b = 1; while (b == 0); while (b == 0);
4 smp_mb(); smp_mb();
5 c = 1; d = 1;
6 while (c == 0);
7 while (d == 0);
8 smp_mb();
9 e = 1; assert(e == 0 || a == 1);

Table C.4: Memory Barrier Example 3

C.7 Memory-Barrier Instructions
For Specific CPUs

Each CPU has its own peculiar memory-barrier instruc-
tions, which can make portability a challenge, as indicated
by Table C.5. In fact, many software environments, in-
cluding pthreads and Java, simply prohibit direct use of
memory barriers, restricting the programmer to mutual-
exclusion primitives that incorporate them to the extent
that they are required. In the table, the first four columns
indicate whether a given CPU allows the four possible
combinations of loads and stores to be reordered. The
next two columns indicate whether a given CPU allows
loads and stores to be reordered with atomic instructions.

The seventh column, data-dependent reads reordered,
requires some explanation, which is undertaken in the
following section covering Alpha CPUs. The short ver-
sion is that Alpha requires memory barriers for readers
as well as updaters of linked data structures. Yes, this
does mean that Alpha can in effect fetch the data pointed
to before it fetches the pointer itself, strange but true.
Please see: http://www.openvms.compaq.com/
wizard/wiz_2637.html if you think that I am just
making this up. The benefit of this extremely weak mem-
ory model is that Alpha can use simpler cache hardware,
which in turn permitted higher clock frequency in Alpha’s
heyday.

The last column indicates whether a given CPU has a
incoherent instruction cache and pipeline. Such CPUs

require special instructions be executed for self-modifying
code.

Parenthesized CPU names indicate modes that are ar-
chitecturally allowed, but rarely used in practice.

The common "just say no" approach to memory barri-
ers can be eminently reasonable where it applies, but there
are environments, such as the Linux kernel, where direct
use of memory barriers is required. Therefore, Linux pro-
vides a carefully chosen least-common-denominator set
of memory-barrier primitives, which are as follows:

• smp_mb(): “memory barrier” that orders both
loads and stores. This means that loads and stores
preceding the memory barrier will be committed to
memory before any loads and stores following the
memory barrier.

• smp_rmb(): “read memory barrier” that orders
only loads.

• smp_wmb(): “write memory barrier” that orders
only stores.

• smp_read_barrier_depends() that forces
subsequent operations that depend on prior oper-
ations to be ordered. This primitive is a no-op on all
platforms except Alpha.

• mmiowb() that forces ordering on MMIO writes
that are guarded by global spinlocks. This primitive
is a no-op on all platforms on which the memory bar-
riers in spinlocks already enforce MMIO ordering.

http://www.openvms.compaq.com/wizard/wiz_2637.html
http://www.openvms.compaq.com/wizard/wiz_2637.html
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Alpha Y Y Y Y Y Y Y Y
AMD64 Y
ARMv7-A/R Y Y Y Y Y Y Y
IA64 Y Y Y Y Y Y Y
(PA-RISC) Y Y Y Y
PA-RISC CPUs
POWER™ Y Y Y Y Y Y Y
(SPARC RMO) Y Y Y Y Y Y Y
(SPARC PSO) Y Y Y Y
SPARC TSO Y Y
x86 Y Y
(x86 OOStore) Y Y Y Y Y
zSeries® Y Y

Table C.5: Summary of Memory Ordering

The platforms with a non-no-op mmiowb() defini-
tion include some (but not all) IA64, FRV, MIPS,
and SH systems. This primitive is relatively new, so
relatively few drivers take advantage of it.

The smp_mb(), smp_rmb(), and smp_wmb() prim-
itives also force the compiler to eschew any op-
timizations that would have the effect of reorder-
ing memory optimizations across the barriers. The
smp_read_barrier_depends() primitive has a
similar effect, but only on Alpha CPUs. See Section 12.2
for more information on use of these primitives.These
primitives generate code only in SMP kernels, however,
each also has a UP version (mb(), rmb(), wmb(), and
read_barrier_depends(), respectively) that gen-
erate a memory barrier even in UP kernels. The smp_
versions should be used in most cases. However, these
latter primitives are useful when writing drivers, because
MMIO accesses must remain ordered even in UP kernels.
In absence of memory-barrier instructions, both CPUs
and compilers would happily rearrange these accesses,
which at best would make the device act strangely, and
could crash your kernel or, in some cases, even damage
your hardware.

So most kernel programmers need not worry about the
memory-barrier peculiarities of each and every CPU, as
long as they stick to these interfaces. If you are work-
ing deep in a given CPU’s architecture-specific code, of
course, all bets are off.

Furthermore, all of Linux’s locking primitives (spin-
locks, reader-writer locks, semaphores, RCU, ...) include
any needed barrier primitives. So if you are working with
code that uses these primitives, you don’t even need to
worry about Linux’s memory-ordering primitives.

That said, deep knowledge of each CPU’s memory-
consistency model can be very helpful when debugging,
to say nothing of when writing architecture-specific code
or synchronization primitives.

Besides, they say that a little knowledge is a very dan-
gerous thing. Just imagine the damage you could do with
a lot of knowledge! For those who wish to understand
more about individual CPUs’ memory consistency mod-
els, the next sections describes those of the most popular
and prominent CPUs. Although nothing can replace actu-
ally reading a given CPU’s documentation, these sections
give a good overview.
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1 struct el *insert(long key, long data)
2 {
3 struct el *p;
4 p = kmalloc(sizeof(*p), GFP_ATOMIC);
5 spin_lock(&mutex);
6 p->next = head.next;
7 p->key = key;
8 p->data = data;
9 smp_wmb();
10 head.next = p;
11 spin_unlock(&mutex);
12 }
13
14 struct el *search(long key)
15 {
16 struct el *p;
17 p = head.next;
18 while (p != &head) {
19 /* BUG ON ALPHA!!! */
20 if (p->key == key) {
21 return (p);
22 }
23 p = p->next;
24 };
25 return (NULL);
26 }

Figure C.9: Insert and Lock-Free Search

C.7.1 Alpha

It may seem strange to say much of anything about a CPU
whose end of life has been announced, but Alpha is inter-
esting because, with the weakest memory ordering model,
it reorders memory operations the most aggressively. It
therefore has defined the Linux-kernel memory-ordering
primitives, which must work on all CPUs, including Al-
pha. Understanding Alpha is therefore surprisingly im-
portant to the Linux kernel hacker.

The difference between Alpha and the other CPUs
is illustrated by the code shown in Figure C.9. This
smp_wmb() on line 9 of this figure guarantees that the
element initialization in lines 6-8 is executed before the
element is added to the list on line 10, so that the lock-free
search will work correctly. That is, it makes this guarantee
on all CPUs except Alpha.

Alpha has extremely weak memory ordering such that
the code on line 20 of Figure C.9 could see the old garbage
values that were present before the initialization on lines
6-8.

Figure C.10 shows how this can happen on an aggres-
sively parallel machine with partitioned caches, so that
alternating caches lines are processed by the different par-
titions of the caches. Assume that the list header head
will be processed by cache bank 0, and that the new ele-
ment will be processed by cache bank 1. On Alpha, the
smp_wmb() will guarantee that the cache invalidates

(w)mb Sequencing

Cache
Bank 0

Cache
Bank 1

(r)mb Sequencing

Writing CPU Core

(w)mb Sequencing

Cache
Bank 0

Cache
Bank 1

(r)mb Sequencing

Reading CPU Core

6
Interconnect

Figure C.10: Why smp_read_barrier_depends() is Re-
quired

performed by lines 6-8 of Figure C.9 will reach the inter-
connect before that of line 10 does, but makes absolutely
no guarantee about the order in which the new values
will reach the reading CPU’s core. For example, it is
possible that the reading CPU’s cache bank 1 is very busy,
but cache bank 0 is idle. This could result in the cache
invalidates for the new element being delayed, so that the
reading CPU gets the new value for the pointer, but sees
the old cached values for the new element. See the Web
site called out earlier for more information, or, again, if
you think that I am just making all this up.6

One could place an smp_rmb() primitive between
the pointer fetch and dereference. However, this imposes
unneeded overhead on systems (such as i386, IA64, PPC,
and SPARC) that respect data dependencies on the read
side. A smp_read_barrier_depends() primitive
has been added to the Linux 2.6 kernel to eliminate over-
head on these systems. This primitive may be used as
shown on line 19 of Figure C.11.

It is also possible to implement a software barrier that
could be used in place of smp_wmb(), which would
force all reading CPUs to see the writing CPU’s writes in
order. However, this approach was deemed by the Linux
community to impose excessive overhead on extremely
weakly ordered CPUs such as Alpha. This software bar-
rier could be implemented by sending inter-processor in-
terrupts (IPIs) to all other CPUs. Upon receipt of such an
IPI, a CPU would execute a memory-barrier instruction,

6 Of course, the astute reader will have already recognized that
Alpha is nowhere near as mean and nasty as it could be, the (thankfully)
mythical architecture in Section C.6.1 being a case in point.
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1 struct el *insert(long key, long data)
2 {
3 struct el *p;
4 p = kmalloc(sizeof(*p), GFP_ATOMIC);
5 spin_lock(&mutex);
6 p->next = head.next;
7 p->key = key;
8 p->data = data;
9 smp_wmb();
10 head.next = p;
11 spin_unlock(&mutex);
12 }
13
14 struct el *search(long key)
15 {
16 struct el *p;
17 p = head.next;
18 while (p != &head) {
19 smp_read_barrier_depends();
20 if (p->key == key) {
21 return (p);
22 }
23 p = p->next;
24 };
25 return (NULL);
26 }

Figure C.11: Safe Insert and Lock-Free Search

implementing a memory-barrier shootdown. Additional
logic is required to avoid deadlocks. Of course, CPUs that
respect data dependencies would define such a barrier to
simply be smp_wmb(). Perhaps this decision should be
revisited in the future as Alpha fades off into the sunset.

The Linux memory-barrier primitives took
their names from the Alpha instructions, so
smp_mb() is mb, smp_rmb() is rmb, and
smp_wmb() is wmb. Alpha is the only CPU where
smp_read_barrier_depends() is an smp_mb()
rather than a no-op.

Quick Quiz C.13: Why is Alpha’s smp_read_
barrier_depends() an smp_mb() rather than
smp_rmb()?

For more detail on Alpha, see the reference man-
ual [SW95].

C.7.2 AMD64

AMD64 is compatible with x86, and has recently updated
its memory model [Adv07] to enforce the tighter ordering
that actual implementations have provided for some time.
The AMD64 implementation of the Linux smp_mb()
primitive is mfence, smp_rmb() is lfence, and
smp_wmb() is sfence. In theory, these might be re-
laxed, but any such relaxation must take SSE and 3DNOW
instructions into account.

C.7.3 ARMv7-A/R

The ARM family of CPUs is extremely popular in em-
bedded applications, particularly for power-constrained
applications such as cellphones. There have nevertheless
been multiprocessor implementations of ARM for more
than five years. Its memory model is similar to that of
Power (see Section C.7.6, but ARM uses a different set
of memory-barrier instructions [ARM10]:

1. DMB (data memory barrier) causes the specified type
of operations to appear to have completed before
any subsequent operations of the same type. The
“type” of operations can be all operations or can be
restricted to only writes (similar to the Alpha wmb
and the POWER eieio instructions). In addition,
ARM allows cache coherence to have one of three
scopes: single processor, a subset of the processors
(“inner”) and global (“outer”).

2. DSB (data synchronization barrier) causes the speci-
fied type of operations to actually complete before
any subsequent operations (of any type) are executed.
The “type” of operations is the same as that of DMB.
The DSB instruction was called DWB (drain write
buffer or data write barrier, your choice) in early
versions of the ARM architecture.

3. ISB (instruction synchronization barrier) flushes the
CPU pipeline, so that all instructions following the
ISB are fetched only after the ISB completes. For
example, if you are writing a self-modifying program
(such as a JIT), you should execute an ISB after
between generating the code and executing it.

None of these instructions exactly match the semantics
of Linux’s rmb() primitive, which must therefore be im-
plemented as a full DMB. The DMB and DSB instructions
have a recursive definition of accesses ordered before and
after the barrier, which has an effect similar to that of
POWER’s cumulativity.

ARM also implements control dependencies, so that
if a conditional branch depends on a load, then any store
executed after that conditional branch will be ordered
after the load. However, loads following the conditional
branch will not be guaranteed to be ordered unless there
is an ISB instruction between the branch and the load.
Consider the following example:
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1 r1 = x;
2 if (r1 == 0)
3 nop();
4 y = 1;
5 r2 = z;
6 ISB();
7 r3 = z;

In this example, load-store control dependency order-
ing causes the load from x on line 1 to be ordered before
the store to y on line 4. However, ARM does not respect
load-load control dependencies, so that the load on line 1
might well happen after the load on line 5. On the other
hand, the combination of the conditional branch on line 2
and the ISB instruction on line 6 ensures that the load on
line 7 happens after the load on line 1. Note that inserting
an additional ISB instruction somewhere between lines 3
and 4 would enforce ordering between lines 1 and 5.

C.7.4 IA64

IA64 offers a weak consistency model, so that in absence
of explicit memory-barrier instructions, IA64 is within its
rights to arbitrarily reorder memory references [Int02b].
IA64 has a memory-fence instruction named mf, but also
has “half-memory fence” modifiers to loads, stores, and
to some of its atomic instructions [Int02a]. The acq mod-
ifier prevents subsequent memory-reference instructions
from being reordered before the acq, but permits prior
memory-reference instructions to be reordered after the
acq, as fancifully illustrated by Figure C.12. Similarly,
the rel modifier prevents prior memory-reference in-
structions from being reordered after the rel, but allows
subsequent memory-reference instructions to be reordered
before the rel.

These half-memory fences are useful for critical sec-
tions, since it is safe to push operations into a critical
section, but can be fatal to allow them to bleed out. How-
ever, as one of the only CPUs with this property, IA64
defines Linux’s semantics of memory ordering associated
with lock acquisition and release.

The IA64 mf instruction is used for the smp_rmb(),
smp_mb(), and smp_wmb() primitives in the Linux
kernel. Oh, and despite rumors to the contrary, the “mf”
mnemonic really does stand for “memory fence”.

Finally, IA64 offers a global total order for “release”
operations, including the “mf” instruction. This provides
the notion of transitivity, where if a given code fragment
sees a given access as having happened, any later code
fragment will also see that earlier access as having hap-

Figure C.12: Half Memory Barrier

pened. Assuming, that is, that all the code fragments
involved correctly use memory barriers.

C.7.5 PA-RISC
Although the PA-RISC architecture permits full reorder-
ing of loads and stores, actual CPUs run fully or-
dered [Kan96]. This means that the Linux kernel’s
memory-ordering primitives generate no code, however,
they do use the gcc memory attribute to disable compiler
optimizations that would reorder code across the memory
barrier.

C.7.6 POWER / Power PC
The POWER and Power PC® CPU families have a wide
variety of memory-barrier instructions [IBM94, LSH02]:

1. sync causes all preceding operations to appear to
have completed before any subsequent operations
are started. This instruction is therefore quite expen-
sive.

2. lwsync (light-weight sync) orders loads with re-
spect to subsequent loads and stores, and also orders
stores. However, it does not order stores with re-
spect to subsequent loads. Interestingly enough, the
lwsync instruction enforces the same ordering as
does zSeries, and coincidentally, SPARC TSO.

3. eieio (enforce in-order execution of I/O, in case
you were wondering) causes all preceding cacheable
stores to appear to have completed before all subse-
quent stores. However, stores to cacheable memory
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are ordered separately from stores to non-cacheable
memory, which means that eieio will not force an
MMIO store to precede a spinlock release.

4. isync forces all preceding instructions to appear
to have completed before any subsequent instruc-
tions start execution. This means that the preceding
instructions must have progressed far enough that
any traps they might generate have either happened
or are guaranteed not to happen, and that any side-
effects of these instructions (for example, page-table
changes) are seen by the subsequent instructions.

Unfortunately, none of these instructions line up ex-
actly with Linux’s wmb() primitive, which requires all
stores to be ordered, but does not require the other high-
overhead actions of the sync instruction. But there is
no choice: ppc64 versions of wmb() and mb() are de-
fined to be the heavyweight sync instruction. However,
Linux’s smp_wmb() instruction is never used for MMIO
(since a driver must carefully order MMIOs in UP as
well as SMP kernels, after all), so it is defined to be the
lighter weight eieio instruction. This instruction may
well be unique in having a five-vowel mnemonic. The
smp_mb() instruction is also defined to be the sync in-
struction, but both smp_rmb() and rmb() are defined
to be the lighter-weight lwsync instruction.

Power features “cumulativity”, which can be used to
obtain transitivity. When used properly, any code see-
ing the results of an earlier code fragment will also see
the accesses that this earlier code fragment itself saw.
Much more detail is available from McKenney and Sil-
vera [MS09].

Power respects control dependencies in much the same
way that ARM does, with the exception that the Power
isync instruction is substituted for the ARM ISB in-
struction.

Many members of the POWER architecture have in-
coherent instruction caches, so that a store to memory
will not necessarily be reflected in the instruction cache.
Thankfully, few people write self-modifying code these
days, but JITs and compilers do it all the time. Fur-
thermore, recompiling a recently run program looks just
like self-modifying code from the CPU’s viewpoint. The
icbi instruction (instruction cache block invalidate) in-
validates a specified cache line from the instruction cache,
and may be used in these situations.

C.7.7 SPARC RMO, PSO, and TSO
Solaris on SPARC uses TSO (total-store order), as does
Linux when built for the “sparc” 32-bit architecture.
However, a 64-bit Linux kernel (the “sparc64” archi-
tecture) runs SPARC in RMO (relaxed-memory order)
mode [SPA94]. The SPARC architecture also offers an
intermediate PSO (partial store order). Any program that
runs in RMO will also run in either PSO or TSO, and
similarly, a program that runs in PSO will also run in
TSO. Moving a shared-memory parallel program in the
other direction may require careful insertion of memory
barriers, although, as noted earlier, programs that make
standard use of synchronization primitives need not worry
about memory barriers.

SPARC has a very flexible memory-barrier instruc-
tion [SPA94] that permits fine-grained control of order-
ing:

• StoreStore: order preceding stores before sub-
sequent stores. (This option is used by the Linux
smp_wmb() primitive.)

• LoadStore: order preceding loads before subse-
quent stores.

• StoreLoad: order preceding stores before subse-
quent loads.

• LoadLoad: order preceding loads before subse-
quent loads. (This option is used by the Linux
smp_rmb() primitive.)

• Sync: fully complete all preceding operations be-
fore starting any subsequent operations.

• MemIssue: complete preceding memory opera-
tions before subsequent memory operations, impor-
tant for some instances of memory-mapped I/O.

• Lookaside: same as MemIssue, but only applies
to preceding stores and subsequent loads, and even
then only for stores and loads that access the same
memory location.

The Linux smp_mb() primitive uses the first four
options together, as in membar #LoadLoad |
#LoadStore | #StoreStore | #StoreLoad,
thus fully ordering memory operations.

So, why is membar #MemIssue needed? Because a
membar #StoreLoad could permit a subsequent load
to get its value from a write buffer, which would be disas-
trous if the write was to an MMIO register that induced
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side effects on the value to be read. In contrast, membar
#MemIssue would wait until the write buffers were
flushed before permitting the loads to execute, thereby en-
suring that the load actually gets its value from the MMIO
register. Drivers could instead use membar #Sync, but
the lighter-weight membar #MemIssue is preferred in
cases where the additional function of the more-expensive
membar #Sync are not required.

The membar #Lookaside is a lighter-weight ver-
sion of membar #MemIssue, which is useful when
writing to a given MMIO register affects the value that
will next be read from that register. However, the heavier-
weight membar #MemIssue must be used when a
write to a given MMIO register affects the value that
will next be read from some other MMIO register.

It is not clear why SPARC does not define wmb()
to be membar #MemIssue and smb_wmb() to be
membar #StoreStore, as the current definitions
seem vulnerable to bugs in some drivers. It is quite
possible that all the SPARC CPUs that Linux runs on
implement a more conservative memory-ordering model
than the architecture would permit.

SPARC requires a flush instruction be used be-
tween the time that an instruction is stored and exe-
cuted [SPA94]. This is needed to flush any prior value for
that location from the SPARC’s instruction cache. Note
that flush takes an address, and will flush only that ad-
dress from the instruction cache. On SMP systems, all
CPUs’ caches are flushed, but there is no convenient way
to determine when the off-CPU flushes complete, though
there is a reference to an implementation note.

C.7.8 x86

Since the x86 CPUs provide “process ordering” so that
all CPUs agree on the order of a given CPU’s writes to
memory, the smp_wmb() primitive is a no-op for the
CPU [Int04b]. However, a compiler directive is required
to prevent the compiler from performing optimizations
that would result in reordering across the smp_wmb()
primitive.

On the other hand, x86 CPUs have traditionally given
no ordering guarantees for loads, so the smp_mb() and
smp_rmb() primitives expand to lock;addl. This
atomic instruction acts as a barrier to both loads and
stores.

More recently, Intel has published a memory model for
x86 [Int07]. It turns out that Intel’s actual CPUs enforced
tighter ordering than was claimed in the previous specifi-

cations, so this model is in effect simply mandating the
earlier de-facto behavior. Even more recently, Intel pub-
lished an updated memory model for x86 [Int11, Section
8.2], which mandates a total global order for stores, al-
though individual CPUs are still permitted to see their own
stores as having happened earlier than this total global
order would indicate. This exception to the total order-
ing is needed to allow important hardware optimizations
involving store buffers. In addition, memory ordering
obeys causality, so that if CPU 0 sees a store by CPU 1,
then CPU 0 is guaranteed to see all stores that CPU 1 saw
prior to its store. Software may use atomic operations
to override these hardware optimizations, which is one
reason that atomic operations tend to be more expensive
than their non-atomic counterparts. This total store order
is not guaranteed on older processors.

It is also important to note that atomic instructions
operating on a given memory location should all be of
the same size [Int11, Section 8.1.2.2]. For example, if
you write a program where one CPU atomically incre-
ments a byte while another CPU executes a 4-byte atomic
increment on that same location, you are on your own.

However, note that some SSE instructions are weakly
ordered (clflush and non-temporal move instruc-
tions [Int04a]). CPUs that have SSE can use mfence for
smp_mb(), lfence for smp_rmb(), and sfence
for smp_wmb().

A few versions of the x86 CPU have a mode bit
that enables out-of-order stores, and for these CPUs,
smp_wmb() must also be defined to be lock;addl.

Although many older x86 implementations accommo-
dated self-modifying code without the need for any spe-
cial instructions, newer revisions of the x86 architecture
no longer requires x86 CPUs to be so accommodating.
Interestingly enough, this relaxation comes just in time to
inconvenience JIT implementors.

C.7.9 zSeries

The zSeries machines make up the IBM™ mainframe fam-
ily, previously known as the 360, 370, and 390 [Int04c].
Parallelism came late to zSeries, but given that these main-
frames first shipped in the mid 1960s, this is not saying
much. The bcr 15,0 instruction is used for the Linux
smp_mb(), smp_rmb(), and smp_wmb() primitives.
It also has comparatively strong memory-ordering se-
mantics, as shown in Table C.5, which should allow the
smp_wmb() primitive to be a nop (and by the time you
read this, this change may well have happened). The table
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actually understates the situation, as the zSeries memory
model is otherwise sequentially consistent, meaning that
all CPUs will agree on the order of unrelated stores from
different CPUs.

As with most CPUs, the zSeries architecture does not
guarantee a cache-coherent instruction stream, hence, self-
modifying code must execute a serializing instruction be-
tween updating the instructions and executing them. That
said, many actual zSeries machines do in fact accommo-
date self-modifying code without serializing instructions.
The zSeries instruction set provides a large set of seri-
alizing instructions, including compare-and-swap, some
types of branches (for example, the aforementioned bcr
15,0 instruction), and test-and-set, among others.

C.8 Are Memory Barriers For-
ever?

There have been a number of recent systems that are sig-
nificantly less aggressive about out-of-order execution
in general and re-ordering memory references in particu-
lar. Will this trend continue to the point where memory
barriers are a thing of the past?

The argument in favor would cite proposed massively
multi-threaded hardware architectures, so that each thread
would wait until memory was ready, with tens, hundreds,
or even thousands of other threads making progress in
the meantime. In such an architecture, there would be no
need for memory barriers, because a given thread would
simply wait for all outstanding operations to complete
before proceeding to the next instruction. Because there
would be potentially thousands of other threads, the CPU
would be completely utilized, so no CPU time would be
wasted.

The argument against would cite the extremely lim-
ited number of applications capable of scaling up to a
thousand threads, as well as increasingly severe realtime
requirements, which are in the tens of microseconds for
some applications. The realtime-response requirements
are difficult enough to meet as is, and would be even more
difficult to meet given the extremely low single-threaded
throughput implied by the massive multi-threaded scenar-
ios.

Another argument in favor would cite increasingly so-
phisticated latency-hiding hardware implementation tech-
niques that might well allow the CPU to provide the illu-
sion of fully sequentially consistent execution while still
providing almost all of the performance advantages of

out-of-order execution. A counter-argument would cite
the increasingly severe power-efficiency requirements pre-
sented both by battery-operated devices and by environ-
mental responsibility.

Who is right? We have no clue, so are preparing to live
with either scenario.

C.9 Advice to Hardware Designers
There are any number of things that hardware designers
can do to make the lives of software people difficult. Here
is a list of a few such things that we have encountered
in the past, presented here in the hope that it might help
prevent future such problems:

1. I/O devices that ignore cache coherence.

This charming misfeature can result in DMAs from
memory missing recent changes to the output buffer,
or, just as bad, cause input buffers to be overwritten
by the contents of CPU caches just after the DMA
completes. To make your system work in face of
such misbehavior, you must carefully flush the CPU
caches of any location in any DMA buffer before
presenting that buffer to the I/O device. And even
then, you need to be very careful to avoid pointer
bugs, as even a misplaced read to an input buffer can
result in corrupting the data input!

2. External busses that fail to transmit cache-coherence
data.

This is an even more painful variant of the above
problem, but causes groups of devices—and even
memory itself—to fail to respect cache coherence. It
is my painful duty to inform you that as embedded
systems move to multicore architectures, we will
no doubt see a fair number of such problems arise.
Hopefully these problems will clear up by the year
2015.

3. Device interrupts that ignore cache coherence.

This might sound innocent enough — after all, in-
terrupts aren’t memory references, are they? But
imagine a CPU with a split cache, one bank of which
is extremely busy, therefore holding onto the last
cacheline of the input buffer. If the corresponding
I/O-complete interrupt reaches this CPU, then that
CPU’s memory reference to the last cache line of
the buffer could return old data, again resulting in
data corruption, but in a form that will be invisible
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in a later crash dump. By the time the system gets
around to dumping the offending input buffer, the
DMA will most likely have completed.

4. Inter-processor interrupts (IPIs) that ignore cache
coherence.

This can be problematic if the IPI reaches its destina-
tion before all of the cache lines in the corresponding
message buffer have been committed to memory.

5. Context switches that get ahead of cache coherence.

If memory accesses can complete too wildly out of
order, then context switches can be quite harrowing.
If the task flits from one CPU to another before all
the memory accesses visible to the source CPU make
it to the destination CPU, then the task could easily
see the corresponding variables revert to prior values,
which can fatally confuse most algorithms.

6. Overly kind simulators and emulators.

It is difficult to write simulators or emulators that
force memory re-ordering, so software that runs just
fine in these these environments can get a nasty sur-
prise when it first runs on the real hardware. Unfor-
tunately, it is still the rule that the hardware is more
devious than are the simulators and emulators, but
we hope that this situation changes.

Again, we encourage hardware designers to avoid these
practices!



Appendix D

Read-Copy Update Implementations

This appendix describes several fully functional
production-quality RCU implementations. Understanding
of these implementations requires a thorough understand-
ing of the material in Chapters 1 and 8, as well as a
reasonably good understanding of the Linux kernel, the
latter of which may be found in several textbooks and
websites [BC05, CRKH05, Cor08, Lov05].

If you are new to RCU implementations, you should
start with the simpler “toy” RCU implementations that
may be found in Section 8.3.5.

Section D.1 presents “Sleepable RCU”, or SRCU,
which allows SRCU readers to sleep arbitrarily. This
is a simple implementation, as production-quality RCU
implementations go, and a good place to start learning
about such implementations.

Section D.2 gives an overview of a highly scalable im-
plementation of Classic RCU, designed for SMP systems
sporting thousands of CPUs. Section D.3 takes the reader
on a code walkthrough of this same implementation (as
of late 2008).

Finally, Section D.4 provides a detailed view of the pre-
emptible RCU implementation used in real-time systems.

D.1 Sleepable RCU Implementa-
tion

Classic RCU requires that read-side critical sections obey
the same rules obeyed by the critical sections of pure
spinlocks: blocking or sleeping of any sort is strictly pro-
hibited. This has frequently been an obstacle to the use
of RCU, and Paul has received numerous requests for a
“sleepable RCU” (SRCU) that permits arbitrary sleeping
(or blocking) within RCU read-side critical sections. Paul
had previously rejected all such requests as unworkable,
since arbitrary sleeping in RCU read-side could indefi-

Figure D.1: Sleeping While RCU Reading Considered
Harmful

nitely extend grace periods, which in turn could result
in arbitrarily large amounts of memory awaiting the end
of a grace period, which finally would result in disaster,
as fancifully depicted in Figure D.1, with the most likely
disaster being hangs due to memory exhaustion. After
all, any concurrency-control primitive that could result
in system hangs — even when used correctly – does not
deserve to exist.

However, the realtime kernels that require spinlock
critical sections be preemptible [Mol05] also require that
RCU read-side critical sections be preemptible [MS05].
Preemptible critical sections in turn require that lock-
acquisition primitives block in order to avoid deadlock,
which in turns means that both RCU’s and spinlocks’
critical sections be able to block awaiting a lock. However,
these two forms of sleeping have the special property that
priority boosting and priority inheritance may be used to
awaken the sleeping tasks in short order.

Nevertheless, use of RCU in realtime kernels was the
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first crack in the tablets of stone on which were inscribed
“RCU read-side critical sections can never sleep”. That
said, indefinite sleeping, such as blocking waiting for an
incoming TCP connection, is strictly verboten even in
realtime kernels.

Quick Quiz D.1: Why is sleeping prohibited within
Classic RCU read-side critical sections?

Quick Quiz D.2: Why not permit sleeping in Classic
RCU read-side critical sections by eliminating context
switch as a quiescent state, leaving user-mode execution
and idle loop as the remaining quiescent states?

D.1.1 SRCU Implementation Strategy

The primary challenge in designing an SRCU is to pre-
vent any given task sleeping in an RCU read-side critical
section from blocking an unbounded number of RCU
callbacks. SRCU uses two strategies to achieve this goal:

1. refusing to provide asynchronous grace-period in-
terfaces, such as the Classic RCU’s call_rcu()
API, and

2. isolating grace-period detection within each subsys-
tem using SRCU.

The rationale for these strategies are discussed in the
following sections.

D.1.1.1 Abolish Asynchronous Grace-Period APIs

The problem with the call_rcu() API is that a single
thread can generate an arbitrarily large number of blocks
of memory awaiting a grace period, as illustrated by the
following:

1 while (p = kmalloc(sizeof(*p), GFP_ATOMIC))
2 call_rcu(&p->rcu, f);

In contrast, the analogous code using
synchronize_rcu() can have at most a single
block of memory per thread awaiting a grace period:

1 while (p = kmalloc(sizeof(*p),
2 GFP_ATOMIC)) {
3 synchronize_rcu();
4 kfree(&p->rcu, f);
5 }

Therefore, SRCU provides an equivalent to
synchronize_rcu(), but not to call_rcu().

D.1.1.2 Isolate Grace-Period Detection

In Classic RCU, a single read-side critical section could
indefinitely delay all RCU callbacks, for example, as
follows:

1 /* BUGGY: Do not use!! */
2 rcu_read_lock();
3 schedule_timeout_interruptible(longdelay);
4 rcu_read_unlock();

This sort of behavior might be tolerated if RCU were
used only within a single subsystem that was carefully
designed to withstand long-term delay of grace periods. It
is the fact that a single RCU read-side bug in one isolated
subsystem can delay all users of RCU that forced these
long-term RCU read-side delays to be abolished.

One way around this issue is for grace-period detection
to be performed on a subsystem-by-subsystem basis, so
that a lethargic RCU reader will delay grace periods only
within that reader’s subsystem. Since each subsystem can
have only a bounded number of memory blocks awaiting
a grace period, and since the number of subsystems is also
presumably bounded, the total amount of memory await-
ing a grace period will also be bounded. The designer
of a given subsystem is responsible for: (1) ensuring
that SRCU read-side sleeping is bounded and (2) limit-
ing the amount of memory waiting for synchronize_
srcu().1

This is precisely the approach that SRCU takes, as
described in the following section.

D.1.2 SRCU API and Usage
The SRCU API is shown in Figure D.2. The following
sections describe how to use it.

int init_srcu_struct(struct srcu_struct *sp);
void cleanup_srcu_struct(struct srcu_struct *sp);
int srcu_read_lock(struct srcu_struct *sp);
void srcu_read_unlock(struct srcu_struct *sp, int idx);
void synchronize_srcu(struct srcu_struct *sp);
long srcu_batches_completed(struct srcu_struct *sp);

Figure D.2: SRCU API

D.1.2.1 Initialization and Cleanup

Each subsystem using SRCU must create an struct
srcu_struct, either by declaring a variable of this

1 For example, an SRCU-protected hash table might have a lock per
hash chain, thus allowing at most one block per hash chain to be waiting
for synchronize_srcu().
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type or by dynamically allocating the memory, for exam-
ple, via kmalloc(). Once this structure is in place, it
must be initialized via init_srcu_struct(), which
returns zero for success or an error code for failure (for
example, upon memory exhaustion).

If the struct srcu_struct is dynamically al-
located, then cleanup_srcu_struct() must be
called before it is freed. Similarly, if the struct srcu_
struct is a variable declared within a Linux kernel mod-
ule, then cleanup_srcu_struct() must be called
before the module is unloaded. Either way, the caller must
take care to ensure that all SRCU read-side critical sec-
tions have completed (and that no more will commence)
before calling cleanup_srcu_struct(). One way
to accomplish this is described in Section D.1.2.4.

D.1.2.2 Read-Side Primitives

The read-side srcu_read_lock() and srcu_
read_unlock() primitives are used as shown:

1 idx = srcu_read_lock(&ss);
2 /* read-side critical section. */
3 srcu_read_unlock(&ss, idx);

The ss variable is the struct srcu_struct
whose initialization was described in Section D.1.2.1, and
the idx variable is an integer that in effect tells srcu_
read_unlock() the grace period during which the
corresponding srcu_read_lock() started.

This carrying of an index is a departure from the RCU
API, which, when required, stores the equivalent infor-
mation in the task structure. However, since a given task
could potentially occupy an arbitrarily large number of
nested SRCU read-side critical sections, SRCU cannot
reasonably store this index in the task structure.

D.1.2.3 Update-Side Primitives

The synchronize_srcu() primitives may be used
as shown below:

1 list_del_rcu(p);
2 synchronize_srcu(&ss);
3 kfree(p);

As one might expect by analogy with Classic RCU,
this primitive blocks until until after the completion of
all SRCU read-side critical sections that started before
the synchronize_srcu() started, as shown in Ta-
ble D.1. Here, CPU 1 need only wait for the completion
of CPU 0’s SRCU read-side critical section. It need not

wait for the completion of CPU 2’s SRCU read-side criti-
cal section, because CPU 2 did not start this critical sec-
tion until after CPU 1 began executing synchronize_
srcu(). Finally, CPU 1’s synchronize_srcu()
need not wait for CPU 3’s SRCU read-side critical section,
because CPU 3 is using s2 rather than s1 as its struct
srcu_struct. CPU 3’s SRCU read-side critical sec-
tion is thus related to a different set of grace periods than
those of CPUs 0 and 2.

The srcu_batches_completed() primitive
may be used to monitor the progress of a given struct
srcu_struct’s grace periods. This primitive is used
in “torture tests” that validate SRCU’s operation.

D.1.2.4 Cleaning Up Safely

Cleaning up SRCU safely can be a challenge, but fortu-
nately many uses need not do so. For example, uses in
operating-system kernels that are initialized at boot time
need not be cleaned up. However, uses within loadable
modules must clean up if the corresponding module is to
be safely unloaded.

In some cases, such as the RCU torture module, only a
small known set of threads are using the SRCU read-side
primitives against a particular struct srcu_struct.
In these cases, the module-exit code need only kill that
set of threads, wait for them to exit, and then clean up.

In other cases, for example, for device drivers, any
thread in the system might be using the SRCU read-side
primitives. Although one could apply the method of the
previous paragraph, this ends up being equivalent to a full
reboot, which can be unattractive. Figure D.3 shows one
way that cleanup could be accomplished without a reboot.

The readside() function overlaps an RCU and an
SRCU read-side critical section, with the former run-
ning from lines 5-11 and the latter running from lines
10-13. The RCU read-side critical section uses Pure
RCU [McK04] to guard the value of the nomoresrcu
variable. If this variable is set, we are cleaning up, and
therefore must not enter the SRCU read-side critical sec-
tion, so we return -EINVAL instead. On the other hand,
if we are not yet cleaning up, we proceed into the SRCU
read-side critical section.

The cleanup() function first sets the nomoresrcu
variable on line 19, but then must wait for all currently
executing RCU read-side critical sections to complete
via the synchronize_rcu() primitive on line 20.
Once the cleanup() function reaches line 21, all
calls to readside() that could possibly have seen
nomorersrcu equal to zero must have already reached
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CPU 0 CPU 1 CPU 2 CPU 3
1 i0 = srcu_read_lock(&s1) i3 = srcu_read_lock(&s2)
2 synchronize_srcu(&s1)enter
3 i2 = srcu_read_lock(&s1)
4 srcu_read_unlock(&s1, i0)
5 synchronize_srcu(&s1)exit
6 srcu_read_unlock(&s1, i2)

Table D.1: SRCU Update and Read-Side Critical Sections

1 int readside(void)
2 {
3 int idx;
4
5 rcu_read_lock();
6 if (nomoresrcu) {
7 rcu_read_unlock();
8 return -EINVAL;
9 }
10 idx = srcu_read_lock(&ss);
11 rcu_read_unlock();
12 /* SRCU read-side critical section. */
13 srcu_read_unlock(&ss, idx);
14 return 0;
15 }
16
17 void cleanup(void)
18 {
19 nomoresrcu = 1;
20 synchronize_rcu();
21 synchronize_srcu(&ss);
22 cleanup_srcu_struct(&ss);
23 }

Figure D.3: SRCU Safe Cleanup

line 11, and therefore already must have entered their
SRCU read-side critical section. All future calls to
readside() will exit via line 8, and will thus refrain
from entering the read-side critical section.

Therefore, once cleanup() completes its call to
synchronize_srcu() on line 21, all SRCU read-
side critical sections will have completed, and no new
ones will be able to start. It is therefore safe on line 22 to
call cleanup_srcu_struct() to clean up.

D.1.3 Implementation
This section describes SRCU’s data structures, initial-
ization and cleanup primitives, read-side primitives, and
update-side primitives.

D.1.3.1 Data Structures

SRCU’s data structures are shown in Figure D.4, and are
depicted schematically in Figure D.5. The completed
field is a count of the number of grace periods since the

struct srcu was initialized, and as shown in the di-
agram, its low-order bit is used to index the struct
srcu_struct_array. The per_cpu_ref field
points to the array, and the mutex field is used to permit
but one synchronize_srcu() at a time to proceed.

1 struct srcu_struct_array {
2 int c[2];
3 };
4 struct srcu_struct {
5 int completed;
6 struct srcu_struct_array *per_cpu_ref;
7 struct mutex mutex;
8 };

Figure D.4: SRCU Data Structures
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Figure D.5: SRCU Data-Structure Diagram

D.1.3.2 Initialization Implementation

SRCU’s initialization function, init_srcu_
struct(), is shown in Figure D.6. This function
simply initializes the fields in the struct srcu_
struct, returning zero if initialization succeeds or
-ENOMEM otherwise.



D.1. SLEEPABLE RCU IMPLEMENTATION 209

1 int init_srcu_struct(struct srcu_struct *sp)
2 {
3 sp->completed = 0;
4 mutex_init(&sp->mutex);
5 sp->per_cpu_ref =
6 alloc_percpu(struct srcu_struct_array);
7 return (sp->per_cpu_ref ? 0 : -ENOMEM);
8 }

Figure D.6: SRCU Initialization

SRCU’s cleanup functions are shown in Fig-
ure D.7. The main cleanup function, cleanup_
srcu_struct() is shown on lines 19-29 of this fig-
ure, however, it immediately invokes srcu_readers_
active(), shown on lines 13-17 of this figure, to verify
that there are no readers currently using this struct
srcu_struct.

The srcu_readers_active() function simply
returns the sum of srcu_readers_active_idx()
on both possible indexes, while srcu_readers_
active_idx(), as shown on lines 1-11, sums up the
per-CPU counters corresponding to the specified index,
returning the result.

If the value returned from srcu_readers_
active() is non-zero, then cleanup_srcu_
struct() issues a warning on line 24 and simply re-
turns on lines 25 and 26, declining to destroy a struct
srcu_struct that is still in use. Such a warning al-
ways indicates a bug, and given that the bug has been
reported, it is better to allow the system to continue with
a modest memory leak than to introduce possible memory
corruption.

Otherwise, cleanup_srcu_struct() frees the
array of per-CPU counters and NULLs the pointer on
lines 27 and 28.

D.1.3.3 Read-Side Implementation

The code implementing srcu_read_lock() is shown
in Figure D.8. This function has been carefully con-
structed to avoid the need for memory barriers and atomic
instructions.

Lines 5 and 11 disable and re-enable preemption, in or-
der to force the sequence of code to execute unpreempted
on a single CPU. Line 6 picks up the bottom bit of the
grace-period counter, which will be used to select which
rank of per-CPU counters is to be used for this SRCU
read-side critical section. The barrier() call on line 7
is a directive to the compiler that ensures that the index is

1 int srcu_readers_active_idx(struct srcu_struct *sp,
2 int idx)
3 {
4 int cpu;
5 int sum;
6
7 sum = 0;
8 for_each_possible_cpu(cpu)
9 sum += per_cpu_ptr(sp->per_cpu_ref, cpu)->c[idx];
10 return sum;
11 }
12
13 int srcu_readers_active(struct srcu_struct *sp)
14 {
15 return srcu_readers_active_idx(sp, 0) +
16 srcu_readers_active_idx(sp, 1);
17 }
18
19 void cleanup_srcu_struct(struct srcu_struct *sp)
20 {
21 int sum;
22
23 sum = srcu_readers_active(sp);
24 WARN_ON(sum);
25 if (sum != 0)
26 return;
27 free_percpu(sp->per_cpu_ref);
28 sp->per_cpu_ref = NULL;
29 }

Figure D.7: SRCU Cleanup

fetched but once,2 so that the index used on line 9 is the
same one returned on line 12. Lines 8-9 increment the se-
lected counter for the current CPU.3 Line 10 forces subse-
quent execution to occur after lines 8-9, in order to prevent
to misordering of any code in a non-CONFIG_PREEMPT
build, but only from the perspective of an intervening
interrupt handler. However, in a CONFIG_PREEMPT
kernel, the required barrier() call is embedded in
the preempt_enable() on line 11, so the srcu_
barrier() is a no-op in that case. Finally, line 12
returns the index so that it may be passed in to the corre-
sponding srcu_read_unlock().

The code for srcu_read_unlock() is shown in
Figure D.9. Again, lines 3 and 7 disable and re-enable
preemption so that the whole code sequence executes
unpreempted on a single CPU. In CONFIG_PREEMPT
kernels, the preempt_disable() on line 3 contains
a barrier() primitive, otherwise, the barrier()
is supplied by line 4. Again, this directive forces the

2 Please note that, despite the name, barrier() has absolutely
no effect on the CPU’s ability to reorder execution of both code and of
memory accesses.

3 It is important to note that the smp_processor_id() primitive
has long-term meaning only if preemption is disabled. In absence of
preemption disabling, a potential preemption immediately following
execution of this primitive could cause the subsequent code to execute
on some other CPU.
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1 int srcu_read_lock(struct srcu_struct *sp)
2 {
3 int idx;
4
5 preempt_disable();
6 idx = sp->completed & 0x1;
7 barrier();
8 per_cpu_ptr(sp->per_cpu_ref,
9 smp_processor_id())->c[idx]++;
10 srcu_barrier();
11 preempt_enable();
12 return idx;
13 }

Figure D.8: SRCU Read-Side Acquisition

subsequent code to execute after the critical section from
the perspective of intervening interrupt handlers. Lines 5
and 6 decrement the counter for this CPU, but with the
same index as was used by the corresponding srcu_
read_lock().

1 void srcu_read_unlock(struct srcu_struct *sp, int idx)
2 {
3 preempt_disable();
4 srcu_barrier();
5 per_cpu_ptr(sp->per_cpu_ref,
6 smp_processor_id())->c[idx]--;
7 preempt_enable();
8 }

Figure D.9: SRCU Read-Side Release

The key point is that a given CPU’s counters can be
observed by other CPUs only in cooperation with that
CPU’s interrupt handlers. These interrupt handlers are
responsible for ensuring that any needed memory barriers
are executed prior to observing the counters.

D.1.3.4 Update-Side Implementation

The key point behind SRCU is that synchronize_
sched() blocks until all currently-executing preempt-
disabled regions of code complete. The synchronize_
srcu() primitive makes heavy use of this effect, as can
be seen in Figure D.10.

Line 5 takes a snapshot of the grace-period counter.
Line 6 acquires the mutex, and lines 7-10 check to see
whether at least two grace periods have elapsed since
the snapshot, and, if so, releases the lock and returns
— in this case, someone else has done our work for us.
Otherwise, line 11 guarantees that any other CPU that
sees the incremented value of the grace period counter
in srcu_read_lock() also sees any changes made
by this CPU prior to entering synchronize_srcu().

This guarantee is required to make sure that any SRCU
read-side critical sections not blocking the next grace
period have seen any prior changes.

Line 12 fetches the bottom bit of the grace-period
counter for later use as an index into the per-CPU counter
arrays, and then line 13 increments the grace-period
counter. Line 14 then waits for any currently-executing
srcu_read_lock() to complete, so that by the time
that we reach line 15, all extant instances of srcu_
read_lock() will be using the updated value from
sp->completed. Therefore, the counters sampled in
by srcu_readers_active_idx() on line 15 are
guaranteed to be monotonically decreasing, so that once
their sum reaches zero, it is guaranteed to stay there.

However, there are no memory barriers in the srcu_
read_unlock() primitive, so the CPU is within its
rights to reorder the counter decrement up into the
SRCU critical section, so that references to an SRCU-
protected data structure could in effect “bleed out” of
the SRCU critical section. This scenario is addressed
by the synchronize_sched() on line 17, which
blocks until all other CPUs executing in preempt_
disable() code sequences (such as that in srcu_
read_unlock()) complete these sequences. Because
completion of a given preempt_disable() code se-
quence is observed from the CPU executing that sequence,
completion of the sequence implies completion of any
prior SRCU read-side critical section. Any required mem-
ory barriers are supplied by the code making the observa-
tion.

At this point, it is therefore safe to release the mutex
as shown on line 18 and return to the caller, who can
now be assured that all SRCU read-side critical sections
sharing the same struct srcu_struct will observe
any update made prior to the call to synchronize_
srcu().

Quick Quiz D.3: Why is it OK to assume that up-
dates separated by synchronize_sched() will be
performed in order?

Quick Quiz D.4: Why must line 17 in
synchronize_srcu() (Figure D.10) precede
the release of the mutex on line 18? What would have
to change to permit these two lines to be interchanged?
Would such a change be worthwhile? Why or why not?

D.1.4 SRCU Summary

SRCU provides an RCU-like set of primitives that permit
general sleeping in the SRCU read-side critical sections.
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1 void synchronize_srcu(struct srcu_struct *sp)
2 {
3 int idx;
4
5 idx = sp->completed;
6 mutex_lock(&sp->mutex);
7 if ((sp->completed - idx) >= 2) {
8 mutex_unlock(&sp->mutex);
9 return;
10 }
11 synchronize_sched();
12 idx = sp->completed & 0x1;
13 sp->completed++;
14 synchronize_sched();
15 while (srcu_readers_active_idx(sp, idx))
16 schedule_timeout_interruptible(1);
17 synchronize_sched();
18 mutex_unlock(&sp->mutex);
19 }

Figure D.10: SRCU Update-Side Implementation

However, it is important to note that SRCU has been used
only in prototype code, though it has passed the RCU
torture test. It will be very interesting to see what use, if
any, SRCU sees in the future.

D.2 Hierarchical RCU Overview
Although Classic RCU’s read-side primitives enjoy excel-
lent performance and scalability, the update-side primi-
tives, which determine when pre-existing read-side criti-
cal sections have finished, were designed with only a few
tens of CPUs in mind. Their scalability is limited by a
global lock that must be acquired by each CPU at least
once during each grace period. Although Classic RCU
actually scales to a couple of hundred CPUs, and can be
tweaked to scale to roughly a thousand CPUs (but at the
expense of extending grace periods), emerging multicore
systems will require it to scale better.

In addition, Classic RCU has a sub-optimal dynticks
interface, with the result that Classic RCU will wake up
every CPU at least once per grace period. To see the
problem with this, consider a 16-CPU system that is suf-
ficiently lightly loaded that it is keeping only four CPUs
busy. In a perfect world, the remaining twelve CPUs
could be put into deep sleep mode in order to conserve
energy. Unfortunately, if the four busy CPUs are fre-
quently performing RCU updates, those twelve idle CPUs
will be awakened frequently, wasting significant energy.
Thus, any major change to Classic RCU should also leave
sleeping CPUs lie.

Both the classic and the hierarchical implementations
have have Classic RCU semantics and identical APIs,

however, the old implementation will be called “classic
RCU” and the new implementation will be called “hierar-
chical RCU”.

@@@ roadmap @@@

D.2.1 Review of RCU Fundamentals

In its most basic form, RCU is a way of waiting for things
to finish. Of course, there are a great many other ways
of waiting for things to finish, including reference counts,
reader-writer locks, events, and so on. The great advan-
tage of RCU is that it can wait for each of (say) 20,000
different things without having to explicitly track each
and every one of them, and without having to worry about
the performance degradation, scalability limitations, com-
plex deadlock scenarios, and memory-leak hazards that
are inherent in schemes using explicit tracking.

In RCU’s case, the things waited on are called "RCU
read-side critical sections". An RCU read-side critical
section starts with an rcu_read_lock() primitive,
and ends with a corresponding rcu_read_unlock()
primitive. RCU read-side critical sections can be nested,
and may contain pretty much any code, as long as that
code does not explicitly block or sleep (although a special
form of RCU called SRCU, described in Section D.1
does permit general sleeping in SRCU read-side critical
sections). If you abide by these conventions, you can use
RCU to wait for any desired piece of code to complete.

RCU accomplishes this feat by indirectly determin-
ing when these other things have finished, as has been
described elsewhere [MS98] for classic RCU and Sec-
tion D.4 for preemptible RCU.

In particular, as shown in the Figure 8.17 on page 8.17,
RCU is a way of waiting for pre-existing RCU read-side
critical sections to completely finish, also including the
memory operations executed by those critical sections.

However, note that RCU read-side critical sections that
begin after the beginning of a given grace period can and
will extend beyond the end of that grace period.

The following section gives a very high-level view of
how the Classic RCU implementation operates.

D.2.2 Brief Overview of Classic RCU Im-
plementation

The key concept behind the Classic RCU implementation
is that Classic RCU read-side critical sections are confined
to kernel code and are not permitted to block. This means
that any time a given CPU is seen either blocking, in the
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idle loop, or exiting the kernel, we know that all RCU
read-side critical sections that were previously running
on that CPU must have completed. Such states are called
“quiescent states”, and after each CPU has passed through
at least one quiescent state, the RCU grace period ends.

rcp−>cpumask

CPU 0

Record Quiescent State

struct rcu_ctrlblk Protected by rcp−>lock

Figure D.11: Flat Classic RCU State

Classic RCU’s most important data structure is
the rcu_ctrlblk structure, which contains the
->cpumask field, which contains one bit per CPU, as
shown in Figure D.11. Each CPU’s bit is set to one at the
beginning of each grace period, and each CPU must clear
its bit after it passes through a quiescent state. Because
multiple CPUs might want to clear their bits concurrently,
which would corrupt the ->cpumask field, a ->lock
spinlock is used to protect ->cpumask, preventing any
such corruption. Unfortunately, this spinlock can also
suffer extreme contention if there are more than a few
hundred CPUs, which might soon become quite common
if multicore trends continue. Worse yet, the fact that all
CPUs must clear their own bit means that CPUs are not
permitted to sleep through a grace period, which limits
Linux’s ability to conserve power.

The next section lays out what we need from a new
non-real-time RCU implementation.

D.2.3 RCU Desiderata

The list of real-time RCU desiderata [MS05] is a very
good start:

1. Deferred destruction, so that an RCU grace period
cannot end until all pre-existing RCU read-side criti-
cal sections have completed.

2. Reliable, so that RCU supports 24x7 operation for
years at a time.

3. Callable from irq handlers.

4. Contained memory footprint, so that mechanisms
exist to expedite grace periods if there are too many
callbacks. (This is weakened from the LCA2005
list.)

5. Independent of memory blocks, so that RCU can
work with any conceivable memory allocator.

6. Synchronization-free read side, so that only normal
non-atomic instructions operating on CPU- or task-
local memory are permitted. (This is strengthened
from the LCA2005 list.)

7. Unconditional read-to-write upgrade, which is used
in several places in the Linux kernel where the
update-side lock is acquired within the RCU read-
side critical section.

8. Compatible API.

9. Because this is not to be a real-time RCU, the require-
ment for preemptible RCU read-side critical sections
can be dropped. However, we need to add the follow-
ing new requirements to account for changes over
the past few years.

10. Scalability with extremely low internal-to-RCU lock
contention. RCU must support at least 1,024 CPUs
gracefully, and preferably at least 4,096.

11. Energy conservation: RCU must be able to avoid
awakening low-power-state dynticks-idle CPUs, but
still determine when the current grace period ends.
This has been implemented in real-time RCU, but
needs serious simplification.

12. RCU read-side critical sections must be permitted
in NMI handlers as well as irq handlers. Note that
preemptible RCU was able to avoid this requirement
due to a separately implemented synchronize_
sched().

13. RCU must operate gracefully in face of repeated
CPU-hotplug operations. This is simply carrying
forward a requirement met by both classic and real-
time.

14. It must be possible to wait for all previously reg-
istered RCU callbacks to complete, though this is
already provided in the form of rcu_barrier().



D.2. HIERARCHICAL RCU OVERVIEW 213

15. Detecting CPUs that are failing to respond is desir-
able, to assist diagnosis both of RCU and of various
infinite loop bugs and hardware failures that can pre-
vent RCU grace periods from ending.

16. Extreme expediting of RCU grace periods is desir-
able, so that an RCU grace period can be forced to
complete within a few hundred microseconds of the
last relevant RCU read-side critical second complet-
ing. However, such an operation would be expected
to incur severe CPU overhead, and would be pri-
marily useful when carrying out a long sequence
of operations that each needed to wait for an RCU
grace period.

The most pressing of the new requirements is the first
one, scalability. The next section therefore describes how
to make order-of-magnitude reductions in contention on
RCU’s internal locks.

D.2.4 Towards a More Scalable RCU Im-
plementation

struct rcu_state

CPU 0

CPU 1

CPU 2

CPU 3

CPU 4

CPU 5

struct
rcu_node

struct
rcu_node rcu_node

struct

struct
rcu_node

Figure D.12: Hierarchical RCU State

One effective way to reduce lock contention is to create
a hierarchy, as shown in Figure D.12. Here, each of the
four rcu_node structures has its own lock, so that only
CPUs 0 and 1 will acquire the lower left rcu_node’s
lock, only CPUs 2 and 3 will acquire the lower middle
rcu_node’s lock, and only CPUs 4 and 5 will acquire

the lower right rcu_node’s lock. During any given
grace period, only one of the CPUs accessing each of the
lower rcu_node structures will access the upper rcu_
node, namely, the last of each pair of CPUs to record a
quiescent state for the corresponding grace period.

This results in a significant reduction in lock contention:
instead of six CPUs contending for a single lock each
grace period, we have only three for the upper rcu_
node’s lock (a reduction of 50%) and only two for each
of the lower rcu_nodes’ locks (a reduction of 67%).

0:7  4:7  0:1  2:3  4:5  6:7  0:3  

struct rcu_state

Figure D.13: Mapping rcu_node Hierarchy Into Array

The tree of rcu_node structures is embedded into a
linear array in the rcu_state structure, with the root
of the tree in element zero, as shown in Figure D.13 for
an eight-CPU system with a three-level hierarchy. Each
arrow links a given rcu_node structure to its parent,
representing the rcu_node’s ->parent field. Each
rcu_node indicates the range of CPUs covered, so that
the root node covers all of the CPUs, each node in the
second level covers half of the CPUs, and each node in
the leaf level covering a pair of CPUs. This array is
allocated statically at compile time based on the value of
NR_CPUS.

The sequence of diagrams in Figure D.14 shows how
grace periods are detected. In the first figure, no CPU has
yet passed through a quiescent state, as indicated by the
red rectangles. Suppose that all six CPUs simultaneously
try to tell RCU that they have passed through a quies-
cent state. Only one of each pair will be able to acquire
the lock on the corresponding lower rcu_node, and so
the second figure shows the result if the lucky CPUs are
numbers 0, 3, and 5, as indicated by the green rectan-
gles. Once these lucky CPUs have finished, then the other
CPUs will acquire the lock, as shown in the third figure.
Each of these CPUs will see that they are the last in their
group, and therefore all three will attempt to move to the
upper rcu_node. Only one at a time can acquire the
upper rcu_node structure’s lock, and the fourth, fifth,
and sixth figures show the sequence of states assuming
that CPU 1, CPU 2, and CPU 4 acquire the lock in that
order. The sixth and final figure in the group shows that
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Figure D.14: Hierarchical RCU Grace Period

all CPUs have passed through a quiescent state, so that
the grace period has ended.

struct rcu_state

struct
rcu_node rcu_node

struct

struct
rcu_node

CPU 4095

CPU 4032

CPU 63

CPU 0

Figure D.15: Hierarchical RCU State 4,096 CPUs

In the above sequence, there were never more than three
CPUs contending for any one lock, in happy contrast to
Classic RCU, where all six CPUs might contend. How-
ever, even more dramatic reductions in lock contention are
possible with larger numbers of CPUs. Consider a hier-
archy of rcu_node structures, with 64 lower structures
and 64*64=4,096 CPUs, as shown in Figure D.15.

Here each of the lower rcu_node structures’ locks
are acquired by 64 CPUs, a 64-times reduction from the
4,096 CPUs that would acquire Classic RCU’s single
global lock. Similarly, during a given grace period, only
one CPU from each of the lower rcu_node structures
will acquire the upper rcu_node structure’s lock, which
is again a 64x reduction from the contention level that
would be experienced by Classic RCU running on a 4,096-
CPU system.

Quick Quiz D.5: Wait a minute! With all those new
locks, how do you avoid deadlock?

Quick Quiz D.6: Why stop at a 64-times reduction?
Why not go for a few orders of magnitude instead?

Quick Quiz D.7: But I don’t care about McKenney’s
lame excuses in the answer to Quick Quiz 2!!! I want
to get the number of CPUs contending on a single lock
down to something reasonable, like sixteen or so!!!
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rcu_node rcu_node
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rcu_data
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rcu_data

struct
rcu_data

struct
rcu_data

struct rcu_state

rcu

Figure D.16: Hierarchical RCU State With BH

The implementation maintains some per-CPU data,
such as lists of RCU callbacks, organized into rcu_
data structures. In addition, rcu (as in call_rcu())
and rcu_bh (as in call_rcu_bh()) each maintain their
own hierarchy, as shown in Figure D.16.

Quick Quiz D.8: OK, so what is the story with the
colors?
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The next section discusses energy conservation.

D.2.5 Towards a Greener RCU Implemen-
tation

As noted earlier, an important goal of this effort is to leave
sleeping CPUs lie in order to promote energy conserva-
tion. In contrast, classic RCU will happily awaken each
and every sleeping CPU at least once per grace period in
some cases, which is suboptimal in the case where a small
number of CPUs are busy doing RCU updates and the ma-
jority of the CPUs are mostly idle. This situation occurs
frequently in systems sized for peak loads, and we need
to be able to accommodate it gracefully. Furthermore, we
need to fix a long-standing bug in Classic RCU where
a dynticks-idle CPU servicing an interrupt containing a
long-running RCU read-side critical section will fail to
prevent an RCU grace period from ending.

Quick Quiz D.9: Given such an egregious bug, why
does Linux run at all?

This is accomplished by requiring that all CPUs ma-
nipulate counters located in a per-CPU rcu_dynticks
structure. Loosely speaking, these counters have even-
numbered values when the corresponding CPU is in
dynticks idle mode, and have odd-numbered values other-
wise. RCU thus needs to wait for quiescent states only for
those CPUs whose rcu_dynticks counters are odd,
and need not wake up sleeping CPUs, whose counters
will be even. As shown in Figure D.17, each per-CPU
rcu_dynticks structure is shared by the “rcu” and
“rcu_bh” implementations.

The following section presents a high-level view of the
RCU state machine.

D.2.6 State Machine

At a sufficiently high level, Linux-kernel RCU implemen-
tations can be thought of as high-level state machines as
shown in Figure D.18. The common-case path through
this state machine on a busy system goes through the
two uppermost loops, initializing at the beginning of each
grace period (GP), waiting for quiescent states (QS), and
noting when each CPU passes through its first quiescent
state for a given grace period. On such a system, quies-
cent states will occur on each context switch, or, for CPUs
that are either idle or executing user-mode code, each
scheduling-clock interrupt. CPU-hotplug events will take
the state machine through the “CPU Offline” box, while
the presence of “holdout” CPUs that fail to pass through
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Figure D.17: Hierarchical RCU State With Dynticks

quiescent states quickly enough will exercise the path
through the “Send resched IPIs to Holdout CPUs” box.
RCU implementations that avoid unnecessarily awaken-
ing dyntick-idle CPUs will mark those CPUs as being
in an extended quiescent state, taking the “Y” branch
out of the “CPUs in dyntick-idle Mode?” decision dia-
mond (but note that CPUs in dyntick-idle mode will not
be sent resched IPIs). Finally, if CONFIG_RCU_CPU_
STALL_DETECTOR is enabled, truly excessive delays
in reaching quiescent states will exercise the “Complain
About Holdout CPUs” path.

Quick Quiz D.10: But doesn’t this state diagram indi-
cate that dyntick-idle CPUs will get hit with reschedule
IPIs? Won’t that wake them up?

The events in the above state schematic interact with
different data structures, as shown in Figure D.19. How-
ever, the state schematic does not directly translate into
C code for any of the RCU implementations. Instead,
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Figure D.19: RCU State Machine and Hierarchical RCU
Data Structures

these implementations are coded as an event-driven sys-
tem within the kernel. Therefore, the following section
describes some “use cases”, or ways in which the RCU
algorithm traverses the above state schematic as well as
the relevant data structures.

D.2.7 Use Cases
This section gives an overview of several “use cases”
within the RCU implementation, listing the data struc-
tures touched and the functions invoked. The use cases
are as follows:

1. Start a New Grace Period (Section D.2.7.1)

2. Pass Through a Quiescent State (Section D.2.7.2)
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3. Announce a Quiescent State to RCU (Sec-
tion D.2.7.3)

4. Enter and Leave Dynticks Idle Mode (Sec-
tion D.2.7.4)

5. Interrupt from Dynticks Idle Mode (Section D.2.7.5)

6. NMI from Dynticks Idle Mode (Section D.2.7.6)

7. Note That a CPU is in Dynticks Idle Mode (Sec-
tion D.2.7.7)

8. Offline a CPU (Section D.2.7.8)

9. Online a CPU (Section D.2.7.9)

10. Detect a Too-Long Grace Period (Section D.2.7.10)

Each of these use cases is described in the following
sections.

D.2.7.1 Start a New Grace Period

The rcu_start_gp() function starts a new grace pe-
riod. This function is invoked when a CPU having call-
backs waiting for a grace period notices that no grace
period is in progress.

The rcu_start_gp() function updates state in
the rcu_state and rcu_data structures to note
the newly started grace period, acquires the ->onoff
lock (and disables irqs) to exclude any concurrent CPU-
hotplug operations, sets the bits in all of the rcu_node
structures to indicate that all CPUs (including this one)
must pass through a quiescent state, and finally releases
the ->onoff lock.

The bit-setting operation is carried out in two phases.
First, the non-leaf rcu_node structures’ bits are set with-
out holding any additional locks, and then finally each leaf
rcu_node structure’s bits are set in turn while holding
that structure’s ->lock.

Quick Quiz D.11: But what happens if a CPU tries to
report going through a quiescent state (by clearing its bit)
before the bit-setting CPU has finished?

Quick Quiz D.12: And what happens if all CPUs try
to report going through a quiescent state before the bit-
setting CPU has finished, thus ending the new grace pe-
riod before it starts?

D.2.7.2 Pass Through a Quiescent State

The rcu and rcu_bh flavors of RCU have different sets
of quiescent states. Quiescent states for rcu are context
switch, idle (either dynticks or the idle loop), and user-
mode execution, while quiescent states for rcu_bh are
any code outside of softirq with interrupts enabled. Note
that an quiescent state for rcu is also a quiescent state
for rcu_bh. Quiescent states for rcu are recorded by
invoking rcu_qsctr_inc(), while quiescent states
for rcu_bh are recorded by invoking rcu_bh_qsctr_
inc(). These two functions record their state in the
current CPU’s rcu_data structure.

These functions are invoked from the scheduler,
from __do_softirq(), and from rcu_check_
callbacks(). This latter function is invoked from
the scheduling-clock interrupt, and analyzes state to de-
termine whether this interrupt occurred within a quies-
cent state, invoking rcu_qsctr_inc() and/or rcu_
bh_qsctr_inc(), as appropriate. It also raises
RCU_SOFTIRQ, which results in rcu_process_
callbacks() being invoked on the current CPU at
some later time from softirq context.

D.2.7.3 Announce a Quiescent State to RCU

The afore-mentioned rcu_process_callbacks()
function has several duties:

1. Determining when to take measures to end an
over-long grace period (via force_quiescent_
state()).

2. Taking appropriate action when some other CPU
detected the end of a grace period (via rcu_
process_gp_end()). “Appropriate action“ in-
cludes advancing this CPU’s callbacks and recording
the new grace period. This same function updates
state in response to some other CPU starting a new
grace period.

3. Reporting the current CPU’s quiescent states to
the core RCU mechanism (via rcu_check_
quiescent_state(), which in turn invokes
cpu_quiet()). This of course might mark the
end of the current grace period.

4. Starting a new grace period if there is no grace pe-
riod in progress and this CPU has RCU callbacks
still waiting for a grace period (via cpu_needs_
another_gp() and rcu_start_gp()).
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5. Invoking any of this CPU’s callbacks whose grace
period has ended (via rcu_do_batch()).

These interactions are carefully orchestrated in order to
avoid buggy behavior such as reporting a quiescent state
from the previous grace period against the current grace
period.

D.2.7.4 Enter and Leave Dynticks Idle Mode

The scheduler invokes rcu_enter_nohz() to enter
dynticks-idle mode, and invokes rcu_exit_nohz()
to exit it. The rcu_enter_nohz() function incre-
ments a per-CPU dynticks_nesting variable and
also a per-CPU dynticks counter, the latter of which
which must then have an even-numbered value. The rcu_
exit_nohz() function decrements this same per-CPU
dynticks_nesting variable, and again increments
the per-CPU dynticks counter, the latter of which must
then have an odd-numbered value.

The dynticks counter can be sampled by other
CPUs. If the value is even, the first CPU is in an extended
quiescent state. Similarly, if the counter value changes
during a given grace period, the first CPU must have been
in an extended quiescent state at some point during the
grace period. However, there is another dynticks_
nmi per-CPU variable that must also be sampled, as will
be discussed below.

D.2.7.5 Interrupt from Dynticks Idle Mode

Interrupts from dynticks idle mode are handled by
rcu_irq_enter() and rcu_irq_exit(). The
rcu_irq_enter() function increments the per-CPU
dynticks_nesting variable, and, if the prior value
was zero, also increments the dynticks per-CPU vari-
able (which must then have an odd-numbered value).

The rcu_irq_exit() function decrements the per-
CPU dynticks_nesting variable, and, if the new
value is zero, also increments the dynticks per-CPU
variable (which must then have an even-numbered value).

Note that entering an irq handler exits dynticks idle
mode and vice versa. This enter/exit anti-correspondence
can cause much confusion. You have been warned.

D.2.7.6 NMI from Dynticks Idle Mode

NMIs from dynticks idle mode are handled by rcu_
nmi_enter() and rcu_nmi_exit(). These func-
tions both increment the dynticks_nmi counter, but

only if the aforementioned dynticks counter is even.
In other words, NMI’s refrain from manipulating the
dynticks_nmi counter if the NMI occurred in non-
dynticks-idle mode or within an interrupt handler.

The only difference between these two functions is
the error checks, as rcu_nmi_enter() must leave
the dynticks_nmi counter with an odd value, and
rcu_nmi_exit()must leave this counter with an even
value.

D.2.7.7 Note That a CPU is in Dynticks Idle Mode

The force_quiescent_state() function imple-
ments a three-phase state machine. The first phase
(RCU_INITIALIZING) waits for rcu_start_gp()
to complete grace-period initialization. This state is not
exited by force_quiescent_state(), but rather
by rcu_start_gp().

In the second phase (RCU_SAVE_DYNTICK), the
dyntick_save_progress_counter() function
scans the CPUs that have not yet reported a quiescent state,
recording their per-CPU dynticks and dynticks_
nmi counters. If these counters both have even-numbered
values, then the corresponding CPU is in dynticks-idle
state, which is therefore noted as an extended quiescent
state (reported via cpu_quiet_msk()).

In the third phase (RCU_FORCE_QS), the rcu_
implicit_dynticks_qs() function again scans
the CPUs that have not yet reported a quiescent
state (either explicitly or implicitly during the RCU_
SAVE_DYNTICK phase), again checking the per-CPU
dynticks and dynticks_nmi counters. If each of
these has either changed in value or is now even, then the
corresponding CPU has either passed through or is now
in dynticks idle, which as before is noted as an extended
quiescent state.

If rcu_implicit_dynticks_qs() finds that a
given CPU has neither been in dynticks idle mode nor
reported a quiescent state, it invokes rcu_implicit_
offline_qs(), which checks to see if that CPU is of-
fline, which is also reported as an extended quiescent state.
If the CPU is online, then rcu_implicit_offline_
qs() sends it a reschedule IPI in an attempt to remind it
of its duty to report a quiescent state to RCU.

Note that force_quiescent_state() does not
directly invoke either dyntick_save_progress_
counter() or rcu_implicit_dynticks_qs(),
instead passing these functions to an intervening rcu_
process_dyntick() function that abstracts out the
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common code involved in scanning the CPUs and report-
ing extended quiescent states.

Quick Quiz D.13: And what happens if one CPU
comes out of dyntick-idle mode and then passed through
a quiescent state just as another CPU notices that the first
CPU was in dyntick-idle mode? Couldn’t they both at-
tempt to report a quiescent state at the same time, resulting
in confusion?

Quick Quiz D.14: But what if all the CPUs end up
in dyntick-idle mode? Wouldn’t that prevent the current
RCU grace period from ever ending?

Quick Quiz D.15: Given that force_quiescent_
state() is a three-phase state machine, don’t we have
triple the scheduling latency due to scanning all the CPUs?

D.2.7.8 Offline a CPU

CPU-offline events cause rcu_cpu_notify() to in-
voke rcu_offline_cpu(), which in turn invokes __
rcu_offline_cpu() on both the rcu and the rcu_bh
instances of the data structures. This function clears the
outgoing CPU’s bits so that future grace periods will not
expect this CPU to announce quiescent states, and further
invokes cpu_quiet() in order to announce the offline-
induced extended quiescent state. This work is performed
with the global ->onofflock held in order to prevent
interference with concurrent grace-period initialization.

Quick Quiz D.16: But the other reason to hold
->onofflock is to prevent multiple concurrent on-
line/offline operations, right?

D.2.7.9 Online a CPU

CPU-online events cause rcu_cpu_notify() to in-
voke rcu_online_cpu(), which initializes the in-
coming CPU’s dynticks state, and then invokes rcu_
init_percpu_data() to initialize the incoming
CPU’s rcu_data structure, and also to set this CPU’s
bits (again protected by the global ->onofflock) so
that future grace periods will wait for a quiescent state
from this CPU. Finally, rcu_online_cpu() sets up
the RCU softirq vector for this CPU.

Quick Quiz D.17: Given all these acquisitions of the
global ->onofflock, won’t there be horrible lock con-
tention when running with thousands of CPUs?

Quick Quiz D.18: Why not simplify the code by merg-
ing the detection of dyntick-idle CPUs with that of offline
CPUs?

D.2.7.10 Detect a Too-Long Grace Period

When the CONFIG_RCU_CPU_STALL_DETECTOR
kernel parameter is specified, the record_gp_stall_
check_time() function records the time and also a
timestamp set three seconds into the future. If the current
grace period still has not ended by that time, the check_
cpu_stall() function will check for the culprit, in-
voking print_cpu_stall() if the current CPU is
the holdout, or print_other_cpu_stall() if it is
some other CPU. A two-jiffies offset helps ensure that
CPUs report on themselves when possible, taking advan-
tage of the fact that a CPU can normally do a better job of
tracing its own stack than it can tracing some other CPU’s
stack.

D.2.8 Testing
RCU is fundamental synchronization code, so any failure
of RCU results in random, difficult-to-debug memory
corruption. It is therefore extremely important that RCU
be highly reliable. Some of this reliability stems from
careful design, but at the end of the day we must also rely
on heavy stress testing, otherwise known as torture.

Fortunately, although there has been some debate as to
exactly what populations are covered by the provisions of
the Geneva Convention it is still the case that it does not
apply to software. Therefore, it is still legal to torture your
software. In fact, it is strongly encouraged, because if you
don’t torture your software, it will end up torturing you
by crashing at the most inconvenient times imaginable.

Therefore, we torture RCU quite vigorously using the
rcutorture module.

However, it is not sufficient to torture the common-case
uses of RCU. It is also necessary to torture it in unusual
situations, for example, when concurrently onlining and
offlining CPUs and when CPUs are concurrently entering
and exiting dynticks idle mode. I use a script @@@
move to CodeSamples, ref @@@ and use the test_no_
idle_hz module parameter to rcutorture to stress-test
dynticks idle mode. Just to be fully paranoid, I sometimes
run a kernbench workload in parallel as well. Ten hours of
this sort of torture on a 128-way machine seems sufficient
to shake out most bugs.

Even this is not the complete story. As Alexey Do-
briyan and Nick Piggin demonstrated in early 2008, it is
also necessary to torture RCU with all relevant combina-
tions of kernel parameters. The relevant kernel parameters
may be identified using yet another script @@@ move to
CodeSamples, ref @@@



220 APPENDIX D. READ-COPY UPDATE IMPLEMENTATIONS

1. CONFIG_CLASSIC_RCU: Classic RCU.

2. CONFIG_PREEMPT_RCU: Preemptible (real-time)
RCU.

3. CONFIG_TREE_RCU: Classic RCU for huge SMP
systems.

4. CONFIG_RCU_FANOUT: Number of children for
each rcu_node.

5. CONFIG_RCU_FANOUT_EXACT: Balance the
rcu_node tree.

6. CONFIG_HOTPLUG_CPU: Allow CPUs to be of-
flined and onlined.

7. CONFIG_NO_HZ: Enable dyntick-idle mode.

8. CONFIG_SMP: Enable multi-CPU operation.

9. CONFIG_RCU_CPU_STALL_DETECTOR: En-
able RCU to detect when CPUs go on extended
quiescent-state vacations.

10. CONFIG_RCU_TRACE: Generate RCU trace files
in debugfs.

We ignore the CONFIG_DEBUG_LOCK_ALLOC con-
figuration variable under the perhaps-naive assumption
that hierarchical RCU could not have broken lockdep.
There are still 10 configuration variables, which would
result in 1,024 combinations if they were independent
boolean variables. Fortunately the first three are mutually
exclusive, which reduces the number of combinations
down to 384, but CONFIG_RCU_FANOUT can take on
values from 2 to 64, increasing the number of combina-
tions to 12,096. This is an infeasible number of combina-
tions.

One key observation is that only CONFIG_NO_HZ and
CONFIG_PREEMPT can be expected to have changed be-
havior if either CONFIG_CLASSIC_RCU or CONFIG_
PREEMPT_RCU are in effect, as only these portions of
the two pre-existing RCU implementations were changed
during this effort. This cuts out almost two thirds of the
possible combinations.

Furthermore, not all of the possible values of CONFIG_
RCU_FANOUT produce significantly different results, in
fact only a few cases really need to be tested separately:

1. Single-node “tree”.

2. Two-level balanced tree.

3. Three-level balanced tree.

4. Autobalanced tree, where CONFIG_RCU_FANOUT
specifies an unbalanced tree, but such that it is auto-
balanced in absence of CONFIG_RCU_FANOUT_
EXACT.

5. Unbalanced tree.

Looking further, CONFIG_HOTPLUG_CPU makes
sense only given CONFIG_SMP, and CONFIG_RCU_
CPU_STALL_DETECTOR is independent, and really
only needs to be tested once (though someone even more
paranoid than am I might decide to test it both with
and without CONFIG_SMP). Similarly, CONFIG_RCU_
TRACE need only be tested once, but the truly paranoid
(such as myself) will choose to run it both with and with-
out CONFIG_NO_HZ.

This allows us to obtain excellent coverage of RCU
with only 15 test cases. All test cases specify the follow-
ing configuration parameters in order to run rcutorture
and so that CONFIG_HOTPLUG_CPU=n actually takes
effect:

CONFIG_RCU_TORTURE_TEST=m
CONFIG_MODULE_UNLOAD=y
CONFIG_SUSPEND=n
CONFIG_HIBERNATION=n

The 15 test cases are as follows:

1. Force single-node “tree” for small systems:

CONFIG_NR_CPUS=8
CONFIG_RCU_FANOUT=8
CONFIG_RCU_FANOUT_EXACT=n
CONFIG_RCU_TRACE=y
CONFIG_PREEMPT_RCU=n
CONFIG_CLASSIC_RCU=n
CONFIG_TREE_RCU=y

2. Force two-level tree for large systems:

CONFIG_NR_CPUS=8
CONFIG_RCU_FANOUT=4
CONFIG_RCU_FANOUT_EXACT=n
CONFIG_RCU_TRACE=n
CONFIG_PREEMPT_RCU=n
CONFIG_CLASSIC_RCU=n
CONFIG_TREE_RCU=y

3. Force three-level tree for huge systems:

CONFIG_NR_CPUS=8
CONFIG_RCU_FANOUT=2
CONFIG_RCU_FANOUT_EXACT=n
CONFIG_RCU_TRACE=y
CONFIG_PREEMPT_RCU=n
CONFIG_CLASSIC_RCU=n
CONFIG_TREE_RCU=y
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4. Test autobalancing to a balanced tree:

CONFIG_NR_CPUS=8
CONFIG_RCU_FANOUT=6
CONFIG_RCU_FANOUT_EXACT=n
CONFIG_RCU_TRACE=y
CONFIG_PREEMPT_RCU=n
CONFIG_CLASSIC_RCU=n
CONFIG_TREE_RCU=y

5. Test unbalanced tree:

CONFIG_NR_CPUS=8
CONFIG_RCU_FANOUT=6
CONFIG_RCU_FANOUT_EXACT=y
CONFIG_RCU_CPU_STALL_DETECTOR=y
CONFIG_RCU_TRACE=y
CONFIG_PREEMPT_RCU=n
CONFIG_CLASSIC_RCU=n
CONFIG_TREE_RCU=y

6. Disable CPU-stall detection:

CONFIG_SMP=y
CONFIG_NO_HZ=y
CONFIG_RCU_CPU_STALL_DETECTOR=n
CONFIG_HOTPLUG_CPU=y
CONFIG_RCU_TRACE=y
CONFIG_PREEMPT_RCU=n
CONFIG_CLASSIC_RCU=n
CONFIG_TREE_RCU=y

7. Disable CPU-stall detection and dyntick idle mode:

CONFIG_SMP=y
CONFIG_NO_HZ=n
CONFIG_RCU_CPU_STALL_DETECTOR=n
CONFIG_HOTPLUG_CPU=y
CONFIG_RCU_TRACE=y
CONFIG_PREEMPT_RCU=n
CONFIG_CLASSIC_RCU=n
CONFIG_TREE_RCU=y

8. Disable CPU-stall detection and CPU hotplug:

CONFIG_SMP=y
CONFIG_NO_HZ=y
CONFIG_RCU_CPU_STALL_DETECTOR=n
CONFIG_HOTPLUG_CPU=n
CONFIG_RCU_TRACE=y
CONFIG_PREEMPT_RCU=n
CONFIG_CLASSIC_RCU=n
CONFIG_TREE_RCU=y

9. Disable CPU-stall detection, dyntick idle mode, and
CPU hotplug:

CONFIG_SMP=y
CONFIG_NO_HZ=n
CONFIG_RCU_CPU_STALL_DETECTOR=n
CONFIG_HOTPLUG_CPU=n
CONFIG_RCU_TRACE=y
CONFIG_PREEMPT_RCU=n
CONFIG_CLASSIC_RCU=n
CONFIG_TREE_RCU=y

10. Disable SMP, CPU-stall detection, dyntick idle
mode, and CPU hotplug:

CONFIG_SMP=n
CONFIG_NO_HZ=n
CONFIG_RCU_CPU_STALL_DETECTOR=n
CONFIG_HOTPLUG_CPU=n
CONFIG_RCU_TRACE=y
CONFIG_PREEMPT_RCU=n
CONFIG_CLASSIC_RCU=n
CONFIG_TREE_RCU=y

This combination located a number of compiler
warnings.

11. Disable SMP and CPU hotplug:

CONFIG_SMP=n
CONFIG_NO_HZ=y
CONFIG_RCU_CPU_STALL_DETECTOR=y
CONFIG_HOTPLUG_CPU=n
CONFIG_RCU_TRACE=y
CONFIG_PREEMPT_RCU=n
CONFIG_CLASSIC_RCU=n
CONFIG_TREE_RCU=y

12. Test Classic RCU with dynticks idle but without
preemption:

CONFIG_NO_HZ=y
CONFIG_PREEMPT=n
CONFIG_RCU_TRACE=y
CONFIG_PREEMPT_RCU=n
CONFIG_CLASSIC_RCU=y
CONFIG_TREE_RCU=n

13. Test Classic RCU with preemption but without
dynticks idle:

CONFIG_NO_HZ=n
CONFIG_PREEMPT=y
CONFIG_RCU_TRACE=y
CONFIG_PREEMPT_RCU=n
CONFIG_CLASSIC_RCU=y
CONFIG_TREE_RCU=n

14. Test Preemptible RCU with dynticks idle:

CONFIG_NO_HZ=y
CONFIG_PREEMPT=y
CONFIG_RCU_TRACE=y
CONFIG_PREEMPT_RCU=y
CONFIG_CLASSIC_RCU=n
CONFIG_TREE_RCU=n

15. Test Preemptible RCU without dynticks idle:
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CONFIG_NO_HZ=n
CONFIG_PREEMPT=y
CONFIG_RCU_TRACE=y
CONFIG_PREEMPT_RCU=y
CONFIG_CLASSIC_RCU=n
CONFIG_TREE_RCU=n

For a large change that affects RCU core code, one
should run rcutorture for each of the above combina-
tions, and concurrently with CPU offlining and onlin-
ing for cases with CONFIG_HOTPLUG_CPU. For small
changes, it may suffice to run kernbench in each case. Of
course, if the change is confined to a particular subset of
the configuration parameters, it may be possible to reduce
the number of test cases.

Torturing software: the Geneva Convention does not
(yet) prohibit it, and I strongly recommend it!

D.2.9 Conclusion

This hierarchical implementation of RCU reduces lock
contention, avoids unnecessarily awakening dyntick-idle
sleeping CPUs, while helping to debug Linux’s hotplug-
CPU code paths. This implementation is designed to
handle single systems with thousands of CPUs, and on
64-bit systems has an architectural limitation of a quarter
million CPUs, a limit I expect to be sufficient for at least
the next few years.

This RCU implementation of course has some limita-
tions:

1. The force_quiescent_state() can scan the
full set of CPUs with irqs disabled. This would be
fatal in a real-time implementation of RCU, so if
hierarchy ever needs to be introduced to preemptible
RCU, some other approach will be required. It is
possible that it will be problematic on 4,096-CPU
systems, but actual testing on such systems is re-
quired to prove this one way or the other.

On busy systems, the force_quiescent_
state() scan would not be expected to happen,
as CPUs should pass through quiescent states within
three jiffies of the start of a quiescent state. On
semi-busy systems, only the CPUs in dynticks-idle
mode throughout would need to be scanned. In some
cases, for example when a dynticks-idle CPU is han-
dling an interrupt during a scan, subsequent scans
are required. However, each such scan is performed
separately, so scheduling latency is degraded by the
overhead of only one such scan.

If this scan proves problematic, one straightforward
solution would be to do the scan incrementally. This
would increase code complexity slightly and would
also increase the time required to end a grace period,
but would nonetheless be a likely solution.

2. The rcu_node hierarchy is created at compile time,
and is therefore sized for the worst-case NR_CPUS
number of CPUs. However, even for 4,096 CPUs,
the rcu_node hierarchy consumes only 65 cache
lines on a 64-bit machine (and just you try accommo-
dating 4,096 CPUs on a 32-bit machine!). Of course,
a kernel built with NR_CPUS=4096 running on a
16-CPU machine would use a two-level tree when
a single-node tree would work just fine. Although
this configuration would incur added locking over-
head, this does not affect hot-path read-side code, so
should not be a problem in practice.

3. This patch does increase kernel text and data some-
what: the old Classic RCU implementation con-
sumes 1,757 bytes of kernel text and 456 bytes of
kernel data for a total of 2,213 bytes, while the new
hierarchical RCU implementation consumes 4,006
bytes of kernel text and 624 bytes of kernel data for a
total of 4,630 bytes on a NR_CPUS=4 system. This
is a non-problem even for most embedded systems,
which often come with hundreds of megabytes of
main memory. However, if this is a problem for tiny
embedded systems, it may be necessary to provide
both “scale up” and “scale down” implementations
of RCU.

This hierarchical RCU implementation should never-
theless be a vast improvement over Classic RCU for ma-
chines with hundreds of CPUs. After all, Classic RCU
was designed for systems with only 16-32 CPUs.

At some point, it may be necessary to also apply hier-
archy to the preemptible RCU implementation. This will
be challenging due to the modular arithmetic used on the
per-CPU counter pairs, but should be doable.

D.3 Hierarchical RCU Code Walk-
through

This section walks through selected sections of the Linux-
kernel hierarchical RCU code. As such, this section is
intended for hard-core hackers who wish to understand
hierarchical RCU at a very low level, and such hackers
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should first read Section D.2. Hard-core masochists might
also be interested in reading this section. Of course really
hard-core masochists will read this section before reading
Section D.2.

Section D.3.1 describes data structures and kernel pa-
rameters, Section D.3.2 covers external function inter-
faces, Section D.3.3 presents the initialization process,
Section D.3.4 explains the CPU-hotplug interface, Sec-
tion D.3.5 covers miscellaneous utility functions, Sec-
tion D.3.6 describes the mechanics of grace-period detec-
tion, Section D.3.7 presents the dynticks-idle interface,
Section D.3.8 covers the functions that handle holdout
CPUs (including offline and dynticks-idle CPUs), and
Section D.3.9 presents functions that report on stalled
CPUs, namely those spinning in kernel mode for many
seconds. Finally, Section D.3.10 reports on possible de-
sign flaws and fixes.

D.3.1 Data Structures and Kernel Parame-
ters

A full understanding of the Hierarchical RCU data struc-
tures is critically important to understanding the algo-
rithms. To this end, Section D.3.1.1 describes the data
structures used to track each CPU’s dyntick-idle state, Sec-
tion D.3.1.2 describes the fields in the per-node data struc-
ture making up the rcu_node hierarchy, Section D.3.1.3
describes per-CPU rcu_data structure, Section D.3.1.4
describes the field in the global rcu_state structure,
and Section D.3.1.5 describes the kernel parameters that
control Hierarchical RCU’s operation.

Figure D.17 on Page 215 and Figure D.26 on Page 233
can be very helpful in keeping one’s place through the
following detailed data-structure descriptions.

D.3.1.1 Tracking Dyntick State

The per-CPU rcu_dynticks structure tracks dynticks
state using the following fields:

• dynticks_nesting: This int counts the num-
ber of reasons that the corresponding CPU should
be monitored for RCU read-side critical sections. If
the CPU is in dynticks-idle mode, then this counts
the irq nesting level, otherwise it is one greater than
the irq nesting level.

• dynticks: This int counter’s value is even if
the corresponding CPU is in dynticks-idle mode and
there are no irq handlers currently running on that

CPU, otherwise the counter’s value is odd. In other
words, if this counter’s value is odd, then the corre-
sponding CPU might be in an RCU read-side critical
section.

• dynticks_nmi: This int counter’s value is odd
if the corresponding CPU is in an NMI handler,
but only if the NMI arrived while this CPU was
in dyntick-idle mode with no irq handlers running.
Otherwise, the counter’s value will be even.

This state is shared between the rcu and rcu_bh imple-
mentations.

D.3.1.2 Nodes in the Hierarchy

As noted earlier, the rcu_node hierarchy is flattened
into the rcu_state structure as shown in Figure D.13
on page 213. Each rcu_node in this hierarchy has fields
as follows:

• lock: This spinlock guards the non-constant fields
in this structure. This lock is acquired from softirq
context, so must disable irqs.

Quick Quiz D.19: Why not simply disable bot-
tom halves (softirq) when acquiring the rcu_data
structure’s lock? Wouldn’t this be faster?

The lock field of the root rcu_node has addi-
tional responsibilities:

1. Serializes CPU-stall checking, so that a given
stall is reported by only one CPU. This can be
important on systems with thousands of CPUs!

2. Serializes starting a new grace period, so that
multiple CPUs don’t start conflicting grace pe-
riods concurrently.

3. Prevents new grace periods from starting in
code that needs to run within the confines of a
single grace period.

4. Serializes the state machine forcing quiescent
states (in force_quiescent_state())
in order to keep the number of reschedule IPIs
down to a dull roar.

• qsmask: This bitmask tracks which CPUs (for leaf
rcu_node structures) or groups of CPUs (for non-
leaf rcu_node structures) still need to pass through
a quiescent state in order for the current grace period
to end.
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• qsmaskinit: This bitmask tracks which CPUs
or groups of CPUs will need to pass through a
quiescent state for subsequent grace periods to
end. The online/offline code manipulates the
qsmaskinit fields, which are copied to the cor-
responding qsmask fields at the beginning of each
grace period. This copy operation is one reason why
grace period initialization must exclude online/of-
fline operations.

• grpmask: This bitmask has a single bit set, and that
is the bit corresponding to the this rcu_node struc-
ture’s position in the parent rcu_node structure’s
qsmask and qsmaskinit fields. Use of this field
simplifies quiescent-state processing, as suggested
by Manfred Spraul.

Quick Quiz D.20: How about the qsmask and
qsmaskinit fields for the leaf rcu_node struc-
tures? Doesn’t there have to be some way to work
out which of the bits in these fields corresponds to
each CPU covered by the rcu_node structure in
question?

• grplo: This field contains the number of the lowest-
numbered CPU covered by this rcu_node struc-
ture.

• grphi: This field contains the number of the
highest-numbered CPU covered by this rcu_node
structure.

• grpnum: This field contains the bit num-
ber in the parent rcu_node structure’s
qsmask and qsmaskinit fields that this
rcu_node structure corresponds to. In other
words, given a pointer rnp to a given rcu_
node structure, it will always be the case that
1UL << rnp->grpnum == rnp->grpmask.
The grpnum field is used only for tracing output.

• level: This field contains zero for the root rcu_
node structure, one for the rcu_node structures
that are children of the root, and so on down the
hierarchy.

• parent: This field is a pointer to the parent rcu_
node structure, or NULL for the root rcu_node
structure.

D.3.1.3 Per-CPU Data

The rcu_data structure contains RCU’s per-CPU
state. It contains control variables governing
grace periods and quiescent states (completed,
gpnum, passed_quiesc_completed, passed_
quiesc, qs_pending, beenonline, mynode, and
grpmask). The rcu_data structure also contains con-
trol variables pertaining to RCU callbacks (nxtlist,
nxttail, qlen, and blimit). Kernels with dynticks
enabled will have relevant control variables in the rcu_
data structure (dynticks, dynticks_snap, and
dynticks_nmi_snap). The rcu_data structure
contains event counters used by tracing (dynticks_
fqs given dynticks, offline_fqs, and resched_
ipi). Finally, a pair of fields count calls to rcu_
pending() in order to determine when to force quies-
cent states (n_rcu_pending and n_rcu_pending_
force_qs), and a cpu field indicates which CPU to
which a given rcu_data structure corresponds.

Each of these fields is described below.

• completed: This field contains the number of the
most recent grace period that this CPU is aware of
having completed.

• gpnum: This field contains the number of the most
recent grace period that this CPU is aware of having
started.

• passed_quiesc_completed: This field con-
tains the number of the grace period that had most re-
cently completed when this CPU last passed through
a quiescent state. The "most recently completed"
will be from the viewpoint of the CPU passing
through the quiescent state: if the CPU is not yet
aware that grace period (say) 42 has completed, it
will still record the old value of 41. This is OK,
because the only way that the grace period can com-
plete is if this CPU has already passed through a
quiescent state. This field is initialized to a (possibly
mythical) past grace period number to avoid race
conditions when booting and when onlining a CPU.

• passed_quiesc: This field indicates whether
this CPU has passed through a quiescent state
since the grace period number stored in passed_
quiesc_completed completed. This field is
cleared each time the corresponding CPU becomes
aware of the start of a new grace period.
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• qs_pending: This field indicates that this CPU is
aware that the core RCU mechanism is waiting for
it to pass through a quiescent state. This field is set
to one when the CPU detects a new grace period or
when a CPU is coming online.

Quick Quiz D.21: But why bother setting qs_
pending to one when a CPU is coming online,
given that being offline is an extended quiescent
state that should cover any ongoing grace period?

Quick Quiz D.22: Why record the last com-
pleted grace period number in passed_quiesc_
completed? Doesn’t that cause this RCU imple-
mentation to be vulnerable to quiescent states seen
while no grace period was in progress being incor-
rectly applied to the next grace period that starts?

• beenonline: This field, initially zero, is set to
one whenever the corresponding CPU comes online.
This is used to avoid producing useless tracing out-
put for CPUs that never have been online, which is
useful in kernels where NR_CPUS greatly exceeds
the actual number of CPUs.

Quick Quiz D.23: What is the point of running a
system with NR_CPUS way bigger than the actual
number of CPUs?

• mynode: This field is a pointer to the leaf rcu_
node structure that handles the corresponding CPU.

• grpmask: This field is a bitmask that has
the single bit set that indicates which bit in
mynode->qsmask signifies the corresponding
CPU.

• nxtlist: This field is a pointer to the oldest
RCU callback (rcu_head structure) residing on
this CPU, or NULL if this CPU currently has no such
callbacks. Additional callbacks may be chained via
their next pointers.

• nxttail: This field is an array of double-indirect
tail pointers into the nxtlist callback list. If
nxtlist is empty, then all of the nxttail point-
ers directly reference the nxtlist field. Each ele-
ment of the nxttail array has meaning as follows:

– RCU_DONE_TAIL=0: This element refer-
ences the ->next field of the last callback
that has passed through its grace period and is

ready to invoke, or references the nxtlist
field if there is no such callback.

– RCU_WAIT_TAIL=1: This element refer-
ences the next field of the last callback that
is waiting for the current grace period to end,
or is equal to the RCU_DONE_TAIL element
if there is no such callback.

– RCU_NEXT_READY_TAIL=2: This element
references the next field of the last callback
that is ready to wait for the next grace period,
or is equal to the RCU_WAIT_TAIL element
if there is no such callback.

– RCU_NEXT_TAIL=3: This element refer-
ences the next field of the last callback in
the list, or references the nxtlist field if the
list is empty.

Quick Quiz D.24: Why not simply have multiple
lists rather than this funny multi-tailed list?

• qlen: This field contains the number of callbacks
queued on nxtlist.

• blimit: This field contains the maximum number
of callbacks that may be invoked at a time. This lim-
itation improves system responsiveness under heavy
load.

• dynticks: This field references the rcu_
dynticks structure for the corresponding CPU,
which is described in Section D.3.1.1.

• dynticks_snap: This field contains a past value
of dynticks->dynticks, which is used to de-
tect when a CPU passes through a dynticks idle state
when this CPU happens to be in an irq handler each
time that force_quiescent_state() checks
it.

• dynticks_nmi_snap: This field contains a past
value of dynticks->dynticks_nmi, which is
used to detect when a CPU passes through a dynticks
idle state when this CPU happens to be in an
NMI handler each time that force_quiescent_
state() checks it.

• dynticks_fqs: This field counts the number of
times that some other CPU noted a quiescent state on
behalf of the CPU corresponding to this rcu_data
structure due to its being in dynticks-idle mode.
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• offline_fqs: This field counts the number of
times that some other CPU noted a quiescent state
on behalf of the CPU corresponding to this rcu_
data structure due to its being offline.

Quick Quiz D.25: So some poor CPU has to note
quiescent states on behalf of each and every offline
CPU? Yecch! Won’t that result in excessive over-
heads in the not-uncommon case of a system with
a small number of CPUs but a large value for NR_
CPUS?

• resched_ipi: This field counts the number of
times that a reschedule IPI is sent to the correspond-
ing CPU. Such IPIs are sent to CPUs that fail to
report passing through a quiescent states in a timely
manner, but are neither offline nor in dynticks idle
state.

• n_rcu_pending: This field counts the number of
calls to rcu_pending(), which is called once per
jiffy on non-dynticks-idle CPUs.

• n_rcu_pending_force_qs: This field holds a
threshold value for n_rcu_pending. If n_rcu_
pending reaches this threshold, that indicates that
the current grace period has extended too long, so
force_quiescent_state() is invoked to ex-
pedite it.

D.3.1.4 RCU Global State

The rcu_state structure contains RCU’s global state
for each instance of RCU (rcu and rcu_bh). It includes
fields relating to the hierarchy of rcu_node structures,
including the node array itself, the level array that
contains pointers to the levels of the hierarchy, the
levelcnt array that contains the count of nodes at
each level of the hierarchy, the levelspread array
that contains the number of children per node for each
level of the hierarchy, and the rda array of pointer to
each of the CPU’s rcu_data structures. The rcu_
state structure also contains a number of fields coordi-
nating various details of the current grace period and its
interaction with other mechanisms (signaled, gpnum,
completed, onofflock, fqslock, jiffies_
force_qs, n_force_qs, n_force_qs_lh, n_
force_qs_ngp, gp_start, jiffies_stall, and
dynticks_completed).

Each of these fields are described below.

• node: This field is the array of rcu_node struc-
tures, with the root node of the hierarchy be-
ing located at ->node[0]. The size of this
array is specified by the NUM_RCU_NODES C-
preprocessor macro, which is computed from NR_
CPUS and CONFIG_RCU_FANOUT as described in
Section D.3.1.5. Note that traversing the ->node
array starting at element zero has the effect of doing
a breadth-first search of the rcu_node hierarchy.

• level: This field is an array of pointers into the
node array. The root node of the hierarchy is ref-
erenced by ->level[0], the first node of the
second level of the hierarchy (if there is one) by
->level[1], and so on. The first leaf node is ref-
erenced by ->level[NUM_RCU_LVLS-1], and
the size of the level array is thus specified by
NUM_RCU_LVLS, which is computed as described
in Section D.3.1.5. The ->level field is often used
in combination with ->node to scan a level of the
rcu_node hierarchy, for example, all of the leaf
nodes. The elements of ->level are filled in by
the boot-time rcu_init_one() function.

• levelcnt: This field is an array containing the
number of rcu_node structures in each level
of the hierarchy, including the number of rcu_
data structures referencing the leaf rcu_node
structures, so that this array has one more ele-
ment than does the ->level array. Note that
->levelcnt[0] will always contain a value of
one, corresponding to the single root rcu_node at
the top of the hierarchy. This array is initialized with
the values NUM_RCU_LVL_0, NUM_RCU_LVL_1,
NUM_RCU_LVL_2, and NUM_RCU_LVL_3, which
are C-preprocessor macros computed as described
in Section D.3.1.5. The ->levelcnt field is used
to initialize other parts of the hierarchy and for de-
bugging purposes.

• levelspread: Each element of this field contains
the desired number of children for the corresponding
level of the rcu_node hierarchy. This array’s ele-
ment’s values are computed at runtime by one of the
two rcu_init_levelspread() functions, se-
lected by the CONFIG_RCU_FANOUT_EXACT ker-
nel parameter.

• rda: Each element of this field contains a pointer
to the corresponding CPU’s rcu_data structure.
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This array is initialized at boot time by the RCU_
DATA_PTR_INIT() macro.

• signaled: This field is used to maintain state used
by the force_quiescent_state() function,
as described in Section D.3.8. This field takes on
values as follows:

– RCU_GP_INIT: This value indicates that
the current grace period is still in the pro-
cess of being initialized, so that force_
quiescent_state() should take no ac-
tion. Of course, grace-period initialization
would need to stretch out for three jiffies be-
fore this race could arise, but if you have a
very large number of CPUs, this race could
in fact occur. Once grace-period initializa-
tion is complete, this value is set to either
RCU_SAVE_DYNTICK (if CONFIG_NO_HZ)
or RCU_FORCE_QS otherwise.

– RCU_SAVE_DYNTICK: This value indicates
that force_quiescent_state() should
check the dynticks state of any CPUs that have
not yet reported quiescent states for the current
grace period. Quiescent states will be reported
on behalf of any CPUs that are in dyntick-idle
mode.

– RCU_FORCE_QS: This value indicates
that force_quiescent_state() should
recheck dynticks state along with the online/of-
fline state of any CPUs that have not yet re-
ported quiescent states for the current grace
period. The rechecking of dynticks states al-
lows the implementation to handle cases where
a given CPU might be in dynticks-idle state,
but have been in an irq or NMI handler both
times it was checked. If all else fails, a resched-
ule IPI will be sent to the laggard CPU.

This field is guarded by the root rcu_node struc-
ture’s lock.

Quick Quiz D.26: So what guards the earlier fields
in this structure?

• gpnum: This field contains the number of the cur-
rent grace period, or that of the last grace period if
no grace period is currently in effect. This field is
guarded by the root rcu_node structure’s lock, but
is frequently accessed (but never modified) without
holding this lock.

• completed: This field contains the number of the
last completed grace period. As such, it is equal to
->gpnum when there is no grace period in progress,
or one less than ->gpnum when there is a grace
period in progress. In principle, one could replace
this pair of fields with a single boolean, as is done in
Classic RCU in some versions of Linux, but in prac-
tice race resolution is much simpler given the pair
of numbers. This field is guarded by the root rcu_
node structure’s lock, but is frequently accessed
(but never modified) without holding this lock.

• onofflock: This field prevents online/offline pro-
cessing from running concurrently with grace-period
initialization. There is one exception to this: if the
rcu_node hierarchy consists of but a single struc-
ture, then that single structure’s ->lock field will
instead take on this job.

• fqslock: This field prevents more than one
task from forcing quiescent states with force_
quiescent_state().

• jiffies_force_qs: This field contains the
time, in jiffies, when force_quiescent_
state() should be invoked in order to force CPUs
into quiescent states and/or report extended quies-
cent states. This field is guarded by the root rcu_
node structure’s lock, but is frequently accessed
(but never modified) without holding this lock.

• n_force_qs: This field counts the number of
calls to force_quiescent_state() that actu-
ally do work, as opposed to leaving early due to the
grace period having already completed, some other
CPU currently running force_quiescent_
state(), or force_quiescent_state()
having run too recently. This field is used for tracing
and debugging, and is guarded by ->fqslock.

• n_force_qs_lh: This field holds an approxi-
mate count of the number of times that force_
quiescent_state() returned early due to the
->fqslock being held by some other CPU. This
field is used for tracing and debugging, and is not
guarded by any lock, hence its approximate nature.

• n_force_qs_ngp: This field counts the number
of times that force_quiescent_state() that
successfully acquire ->fqslock, but then find that
there is no grace period in progress. This field is
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used for tracing and debugging, and is guarded by
->fqslock.

• gp_start: This field records the time at which
the most recent grace period began, in jiffies. This
is used to detect stalled CPUs, but only when
the CONFIG_RCU_CPU_STALL_DETECTOR ker-
nel parameter is selected. This field is guarded by
the root rcu_node’s ->lock, but is sometimes
accessed (but not modified) outside of this lock.

• jiffies_stall: This field holds the time, in
jiffies, at which the current grace period will have ex-
tended for so long that it will be appropriate to check
for CPU stalls. As with ->gp_start, this field ex-
ists only when the CONFIG_RCU_CPU_STALL_
DETECTOR kernel parameter is selected. This field
is guarded by the root rcu_node’s ->lock, but
is sometimes accessed (but not modified) outside of
this lock.

• dynticks_completed: This field records the
value of ->completed at the time when force_
quiescent_state() snapshots dyntick state,
but is also initialized to an earlier grace period at
the beginning of each grace period. This field is
used to prevent dyntick-idle quiescent states from a
prior grace period from being applied to the current
grace period. As such, this field exists only when the
CONFIG_NO_HZ kernel parameter is selected. This
field is guarded by the root rcu_node’s ->lock,
but is sometimes accessed (but not modified) outside
of this lock.

D.3.1.5 Kernel Parameters

The following kernel parameters affect this variant of
RCU:

• NR_CPUS, the maximum number of CPUs in the
system.

• CONFIG_RCU_FANOUT, the desired number of
children for each node in the rcu_node hierarchy.

• CONFIG_RCU_FANOUT_EXACT, a boolean pre-
venting rebalancing of the rcu_node hierarchy.

• CONFIG_HOTPLUG_CPU, permitting CPUs to
come online and go offline.

• CONFIG_NO_HZ, indicating that dynticks-idle
mode is supported.

• CONFIG_SMP, indicating that multiple CPUs may
be present.

• CONFIG_RCU_CPU_STALL_DETECTOR, indi-
cating that RCU should check for stalled CPUs
when RCU grace periods extend too long.

• CONFIG_RCU_TRACE, indicating that RCU
should provide tracing information in debugfs.

The CONFIG_RCU_FANOUT and NR_CPUS parame-
ters are used to determine the shape of the rcu_node hi-
erarchy at compile time, as shown in Figure D.20. Line 1
defines the maximum depth of the rcu_node hierarchy,
currently three. Note that increasing the maximum per-
mitted depth requires changes elsewhere, for example,
adding another leg to the #if statement running from
lines 6-26. Lines 2-4 compute the fanout, the square of
the fanout, and the cube of the fanout, respectively.

Then these values are compared to NR_CPUS to de-
termine the required depth of the rcu_node hierarchy,
which is placed into NUM_RCU_LVLS, which is used to
size a number of arrays in the rcu_state structure.
There is always one node at the root level, and there are
always NUM_CPUS number of rcu_data structures be-
low the leaf level. If there is more than just the root level,
the number of nodes at the leaf level is computed by di-
viding NR_CPUS by RCU_FANOUT, rounding up. The
number of nodes at other levels is computed in a simi-
lar manner, but using (for example) RCU_FANOUT_SQ
instead of RCU_FANOUT.

Line 28 then sums up all of the levels, resulting in
the number of rcu_node structures plus the number
of rcu_data structures. Finally, line 29 subtracts NR_
CPUS (which is the number of rcu_data structures)
from the sum, resulting in the number of rcu_node
structures, which is retained in NUM_RCU_NODES. This
value is then used to size the ->nodes array in the rcu_
state structure.

D.3.2 External Interfaces

RCU’s external interfaces include not just the standard
RCU API, but also the internal interfaces to the rest of
the kernel that are required for the RCU implementa-
tion itself. The interfaces are rcu_read_lock()),
rcu_read_unlock()), rcu_read_lock_bh()),
rcu_read_unlock_bh()), call_rcu() (which
is a wrapper around __call_rcu()), call_
rcu_bh() (ditto), rcu_check_callbacks(),
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1 #define MAX_RCU_LVLS 3
2 #define RCU_FANOUT (CONFIG_RCU_FANOUT)
3 #define RCU_FANOUT_SQ (RCU_FANOUT * RCU_FANOUT)
4 #define RCU_FANOUT_CUBE (RCU_FANOUT_SQ * RCU_FANOUT)
5
6 #if NR_CPUS <= RCU_FANOUT
7 # define NUM_RCU_LVLS 1
8 # define NUM_RCU_LVL_0 1
9 # define NUM_RCU_LVL_1 (NR_CPUS)
10 # define NUM_RCU_LVL_2 0
11 # define NUM_RCU_LVL_3 0
12 #elif NR_CPUS <= RCU_FANOUT_SQ
13 # define NUM_RCU_LVLS 2
14 # define NUM_RCU_LVL_0 1
15 # define NUM_RCU_LVL_1 (((NR_CPUS) + RCU_FANOUT - 1) / RCU_FANOUT)
16 # define NUM_RCU_LVL_2 (NR_CPUS)
17 # define NUM_RCU_LVL_3 0
18 #elif NR_CPUS <= RCU_FANOUT_CUBE
19 # define NUM_RCU_LVLS 3
20 # define NUM_RCU_LVL_0 1
21 # define NUM_RCU_LVL_1 (((NR_CPUS) + RCU_FANOUT_SQ - 1) / RCU_FANOUT_SQ)
22 # define NUM_RCU_LVL_2 (((NR_CPUS) + (RCU_FANOUT) - 1) / (RCU_FANOUT))
23 # define NUM_RCU_LVL_3 NR_CPUS
24 #else
25 # error "CONFIG_RCU_FANOUT insufficient for NR_CPUS"
26 #endif /* #if (NR_CPUS) <= RCU_FANOUT */
27
28 #define RCU_SUM (NUM_RCU_LVL_0 + NUM_RCU_LVL_1 + NUM_RCU_LVL_2 + NUM_RCU_LVL_3)
29 #define NUM_RCU_NODES (RCU_SUM - NR_CPUS)

Figure D.20: Determining Shape of RCU Hierarchy

rcu_process_callbacks() (which is a wrap-
per around __rcu_process_callbacks(),
rcu_pending() (which is a wrapper around
__rcu_pending()), rcu_needs_cpu(), rcu_
cpu_notify(), and __rcu_init(). Note that
synchronize_rcu() and rcu_barrier() are
common to all RCU implementations, and are defined
in terms of call_rcu(). Similarly, rcu_barrier_
bh() is common to all RCU implementations and is
defined in terms of call_rcu_bh().

These external APIs are each described in the following
sections.

D.3.2.1 Read-Side Critical Sections

Figure D.21 shows the functions that demark RCU read-
side critical sections. Lines 1-6 show __rcu_read_
lock(), which begins an “rcu” read-side critical sec-
tion. line 3 disables preemption, line 4 is a sparse
marker noting the beginning of an RCU read-side crit-
ical section, and line 5 updates lockdep state. Lines 8-
13 show __rcu_read_unlock(), which is the in-
verse of __rcu_read_lock(). Lines 15-20 show
__rcu_read_lock_bh() and lines 22-27 show _
_rcu_read_unlock_bh(), which are analogous to
the previous two functions, but disable and enable bottom-

1 void __rcu_read_lock(void)
2 {
3 preempt_disable();
4 __acquire(RCU);
5 rcu_read_acquire();
6 }
7
8 void __rcu_read_unlock(void)
9 {
10 rcu_read_release();
11 __release(RCU);
12 preempt_enable();
13 }
14
15 void __rcu_read_lock_bh(void)
16 {
17 local_bh_disable();
18 __acquire(RCU_BH);
19 rcu_read_acquire();
20 }
21
22 void __rcu_read_unlock_bh(void)
23 {
24 rcu_read_release();
25 __release(RCU_BH);
26 local_bh_enable();
27 }

Figure D.21: RCU Read-Side Critical Sections
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1 static void
2 __call_rcu(struct rcu_head *head,
3 void (*func)(struct rcu_head *rcu),
4 struct rcu_state *rsp)
5 {
6 unsigned long flags;
7 struct rcu_data *rdp;
8
9 head->func = func;
10 head->next = NULL;
11 smp_mb();
12 local_irq_save(flags);
13 rdp = rsp->rda[smp_processor_id()];
14 rcu_process_gp_end(rsp, rdp);
15 check_for_new_grace_period(rsp, rdp);
16 *rdp->nxttail[RCU_NEXT_TAIL] = head;
17 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
18 if (ACCESS_ONCE(rsp->completed) ==
19 ACCESS_ONCE(rsp->gpnum)) {
20 unsigned long nestflag;
21 struct rcu_node *rnp_root = rcu_get_root(rsp);
22
23 spin_lock_irqsave(&rnp_root->lock, nestflag);
24 rcu_start_gp(rsp, nestflag);
25 }
26 if (unlikely(++rdp->qlen > qhimark)) {
27 rdp->blimit = LONG_MAX;
28 force_quiescent_state(rsp, 0);
29 } else if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) -
30 jiffies) < 0 ||
31 (rdp->n_rcu_pending_force_qs -
32 rdp->n_rcu_pending) < 0)
33 force_quiescent_state(rsp, 1);
34 local_irq_restore(flags);
35 }
36
37 void call_rcu(struct rcu_head *head,
38 void (*func)(struct rcu_head *rcu))
39 {
40 __call_rcu(head, func, &rcu_state);
41 }
42
43 void call_rcu_bh(struct rcu_head *head,
44 void (*func)(struct rcu_head *rcu))
45 {
46 __call_rcu(head, func, &rcu_bh_state);
47 }

Figure D.22: call_rcu() Code

half processing rather than preemption.
Quick Quiz D.27: I thought that RCU read-side pro-

cessing was supposed to be fast! The functions shown
in Figure D.21 have so much junk in them that they just
have to be slow! What gives here?

D.3.2.2 call_rcu()

Figure D.22 shows the code for __call_rcu(),
call_rcu(), and call_rcu_bh(). Note that
call_rcu() and call_rcu_bh() are simple wrap-
pers for call_rcu(), and thus will not be considered
further here.

Turning attention to __call_rcu(), lines 9-10 ini-

tialize the specified rcu_head, and line 11 ensures that
updates to RCU-protected data structures carried out prior
to invoking __call_rcu() are seen prior to callback
registry. Lines 12 and 34 disable and re-enable inter-
rupts to prevent destructive interference by any calls to
__call_rcu() from an interrupt handler. Line 13 ob-
tains a reference to the current CPU’s rcu_data struc-
ture, line 14 invokes rcu_process_gp_end() in or-
der to advance callbacks if the current grace period has
now ended, while line 15 invokes check_for_new_
grace_period() to record state if a new grace period
has started.

Quick Quiz D.28: Why not simply use __get_cpu_
var() to pick up a reference to the current CPU’s rcu_
data structure on line 13 in Figure D.22?

Lines 16 and 17 enqueue the new callback. Lines 18
and 19 check to see there is a grace period in progress, and,
if not, line 23 acquires the root rcu_node structure’s
lock and line 24 invokes rcu_start_gp() to start a
new grace period (and also to release the lock).

Line 26 checks to see if too many RCU callbacks
are waiting on this CPU, and, if so, line 27 increases
->blimit in order to increase the rate at which call-
backs are processed, while line 28 invokes force_
quiescent_state() urgently in order to try to con-
vince holdout CPUs to pass through quiescent states.
Otherwise, lines 29-32 check to see if it has been too
long since the grace period started (or since the last call
to force_quiescent_state(), as the case may
be), and, if so, line 33 invokes force_quiescent_
state() non-urgently, again to convince holdout CPUs
to pass through quiescent states.

D.3.2.3 rcu_check_callbacks()

Figure D.23 shows the code that is called from the
scheduling-clock interrupt handler once per jiffy from
each CPU. The rcu_pending() function (which is
a wrapper for __rcu_pending()) is invoked, and if
it returns non-zero, then rcu_check_callbacks()
is invoked. (Note that there is some thought being
given to merging rcu_pending() into rcu_check_
callbacks().)

Starting with __rcu_pending(), line 4 counts this
call to rcu_pending() for use in deciding when to
force quiescent states. Line 6 invokes check_cpu_
stall() in order to report on CPUs that are spinning
in the kernel, or perhaps that have hardware problems,
if CONFIG_RCU_CPU_STALL_DETECTOR is selected.
Lines 7-23 perform a series of checks, returning non-zero
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1 static int __rcu_pending(struct rcu_state *rsp,
2 struct rcu_data *rdp)
3 {
4 rdp->n_rcu_pending++;
5
6 check_cpu_stall(rsp, rdp);
7 if (rdp->qs_pending)
8 return 1;
9 if (cpu_has_callbacks_ready_to_invoke(rdp))
10 return 1;
11 if (cpu_needs_another_gp(rsp, rdp))
12 return 1;
13 if (ACCESS_ONCE(rsp->completed) != rdp->completed)
14 return 1;
15 if (ACCESS_ONCE(rsp->gpnum) != rdp->gpnum)
16 return 1;
17 if (ACCESS_ONCE(rsp->completed) !=
18 ACCESS_ONCE(rsp->gpnum) &&
19 ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) -
20 jiffies) < 0 ||
21 (rdp->n_rcu_pending_force_qs -
22 rdp->n_rcu_pending) < 0))
23 return 1;
24 return 0;
25 }
26
27 int rcu_pending(int cpu)
28 {
29 return __rcu_pending(&rcu_state,
30 &per_cpu(rcu_data, cpu)) ||
31 __rcu_pending(&rcu_bh_state,
32 &per_cpu(rcu_bh_data, cpu));
33 }
34
35 void rcu_check_callbacks(int cpu, int user)
36 {
37 if (user ||
38 (idle_cpu(cpu) && !in_softirq() &&
39 hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
40 rcu_qsctr_inc(cpu);
41 rcu_bh_qsctr_inc(cpu);
42 } else if (!in_softirq()) {
43 rcu_bh_qsctr_inc(cpu);
44 }
45 raise_softirq(RCU_SOFTIRQ);
46 }

Figure D.23: rcu_check_callbacks() Code

if RCU needs the current CPU to do something. Line 7
checks to see if the current CPU owes RCU a quiescent
state for the current grace period, line 9 invokes cpu_
has_callbacks_ready_to_invoke() to see if
the current CPU has callbacks whose grace period has
ended, thus being ready to invoke, line 11 invokes cpu_
needs_another_gp() to see if the current CPU has
callbacks that need another RCU grace period to elapse,
line 13 checks to see if the current grace period has ended,
line 15 checks to see if a new grace period has started,
and, finally, lines 17-22 check to see if it is time to at-
tempt to force holdout CPUs to pass through a quies-
cent state. This latter check breaks down as follows:
(1) lines 17-18 check to see if there is a grace period
in progress, and, if so, lines 19-22 check to see if suffi-
cient jiffies (lines 19-20) or calls to rcu_pending()
(lines 21-22) have elapsed that force_quiescent_
state() should be invoked. If none of the checks in the
series triggers, then line 24 returns zero, indicating that
rcu_check_callbacks() need not be invoked.

Lines 27-33 show rcu_pending(), which simply
invokes __rcu_pending() twice, once for “rcu” and
again for “rcu_bh”.

Quick Quiz D.29: Given that rcu_pending() is al-
ways called twice on lines 29-32 of Figure D.23, shouldn’t
there be some way to combine the checks of the two struc-
tures?

Lines 35-48 show rcu_check_callbacks(),
which checks to see if the scheduling-clock inter-
rupt interrupted an extended quiescent state, and then
initiates RCU’s softirq processing (rcu_process_
callbacks()). Lines 37-41 perform this check for
“rcu”, while lines 42-43 perform the check for “rcu_bh”.

Lines 37-39 check to see if the scheduling clock inter-
rupt came from user-mode execution (line 37) or directly
from the idle loop (line 38’s idle_cpu() invocation)
with no intervening levels of interrupt (the remainder of
line 38 and all of line 39). If this check succeeds, so that
the scheduling clock interrupt did come from an extended
quiescent state, then because any quiescent state for “rcu”
is also a quiescent state for “rcu_bh”, lines 40 and 41
report the quiescent state for both flavors of RCU.

Similarly for “rcu_bh”, line 42 checks to see if the
scheduling-clock interrupt came from a region of code
with softirqs enabled, and, if so line 43 reports the quies-
cent state for “rcu_bh” only.

Quick Quiz D.30: Shouldn’t line 42 of Figure D.23
also check for in_hardirq()?

In either case, line 45 invokes an RCU softirq, which
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1 static void
2 __rcu_process_callbacks(struct rcu_state *rsp,
3 struct rcu_data *rdp)
4 {
5 unsigned long flags;
6
7 if ((long)(ACCESS_ONCE(rsp->jiffies_force_qs) -
8 jiffies) < 0 ||
9 (rdp->n_rcu_pending_force_qs -
10 rdp->n_rcu_pending) < 0)
11 force_quiescent_state(rsp, 1);
12 rcu_process_gp_end(rsp, rdp);
13 rcu_check_quiescent_state(rsp, rdp);
14 if (cpu_needs_another_gp(rsp, rdp)) {
15 spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
16 rcu_start_gp(rsp, flags);
17 }
18 rcu_do_batch(rdp);
19 }
20
21 static void
22 rcu_process_callbacks(struct softirq_action *unused)
23 {
24 smp_mb();
25 __rcu_process_callbacks(&rcu_state,
26 &__get_cpu_var(rcu_data));
27 __rcu_process_callbacks(&rcu_bh_state,
28 &__get_cpu_var(rcu_bh_data));
29 smp_mb();
30 }

Figure D.24: rcu_process_callbacks() Code

will result in rcu_process_callbacks() being
called on this CPU at some future time (like when in-
terrupts are re-enabled after exiting the scheduler-clock
interrupt).

D.3.2.4 rcu_process_callbacks()

Figure D.24 shows the code for rcu_process_
callbacks(), which is a wrapper around __rcu_
process_callbacks(). These functions are in-
voked as a result of a call to raise_softirq(RCU_
SOFTIRQ), for example, line 47 of Figure D.23, which
is normally done if there is reason to believe that the RCU
core needs this CPU to do something.

Lines 7-10 check to see if it has been awhile since the
current grace period started, and, if so, line 11 invokes
force_quiescent_state() in order to try to con-
vince holdout CPUs to pass through a quiescent state for
this grace period.

Quick Quiz D.31: But don’t we also need to check
that a grace period is actually in progress in __rcu_
process_callbacks in Figure D.24?

In any case, line 12 invokes rcu_process_gp_
end(), which checks to see if some other CPU ended
the last grace period that this CPU was aware of, and,

if so, notes the end of the grace period and advances
this CPU’s RCU callbacks accordingly. Line 13 invokes
rcu_check_quiescent_state(), which checks
to see if some other CPU has started a new grace period,
and also whether the current CPU has passed through
a quiescent state for the current grace period, updating
state appropriately if so. Line 14 checks to see if there
is no grace period in progress and whether the current
CPU has callbacks that need another grace period. If
so, line 15 acquires the root rcu_node structure’s lock,
and line 17 invokes rcu_start_gp(), which starts a
new grace period (and also releases the root rcu_node
structure’s lock). In either case, line 18 invokes rcu_do_
batch(), which invokes any of this CPU’s callbacks
whose grace period has completed.

Quick Quiz D.32: What happens if two CPUs attempt
to start a new grace period concurrently in Figure D.24?

Lines 21-30 are rcu_process_callbacks(),
which is again a wrapper for __rcu_process_
callbacks(). Line 24 executes a memory barrier to
ensure that any prior RCU read-side critical sections are
seen to have ended before any subsequent RCU process-
ing. Lines 25-26 and 27-28 invoke __rcu_process_
callbacks() for “rcu” and “rcu_bh”, respectively,
and, finally, line 29 executes a memory barrier to en-
sure that any RCU processing carried out by __rcu_
process_callbacks() is seen prior to any subse-
quent RCU read-side critical sections.

D.3.2.5 rcu_needs_cpu() and
rcu_cpu_notify()

Figure D.25 shows the code for rcu_needs_cpu()
and rcu_cpu_notify(), which are invoked by the
Linux kernel to check on switching to dynticks-idle mode
and to handle CPU hotplug, respectively.

Lines 1-5 show rcu_needs_cpu(), which simply
checks if the specified CPU has either “rcu” (line 3) or
“rcu_bh” (line 4) callbacks.

Lines 7-28 show rcu_cpu_notify(), which is a
very typical CPU-hotplug notifier function with the typi-
cal switch statement. Line 16 invokes rcu_online_
cpu() if the specified CPU is going to be coming online,
and line 22 invokes rcu_offline_cpu() if the spec-
ified CPU has gone to be going offline. It is important
to note that CPU-hotplug operations are not atomic, but
rather happen in stages that can extend for multiple grace
periods. RCU must therefore gracefully handle CPUs that
are in the process of coming or going.
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Figure D.26: Initialized RCU Data Layout

1 int rcu_needs_cpu(int cpu)
2 {
3 return per_cpu(rcu_data, cpu).nxtlist ||
4 per_cpu(rcu_bh_data, cpu).nxtlist;
5 }
6
7 static int __cpuinit
8 rcu_cpu_notify(struct notifier_block *self,
9 unsigned long action, void *hcpu)
10 {
11 long cpu = (long)hcpu;
12
13 switch (action) {
14 case CPU_UP_PREPARE:
15 case CPU_UP_PREPARE_FROZEN:
16 rcu_online_cpu(cpu);
17 break;
18 case CPU_DEAD:
19 case CPU_DEAD_FROZEN:
20 case CPU_UP_CANCELED:
21 case CPU_UP_CANCELED_FROZEN:
22 rcu_offline_cpu(cpu);
23 break;
24 default:
25 break;
26 }
27 return NOTIFY_OK;
28 }

Figure D.25: rcu_needs_cpu() and
rcu_cpu_notify Code

D.3.3 Initialization

This section walks through the initialization code, which
links the main data structures together as shown in Fig-
ure D.26. The yellow region represents fields in the rcu_
state data structure, including the ->node array, in-
dividual elements of which are shown in pink, matching
the convention used in Section D.2. The blue boxes each
represent one rcu_data structure, and the group of blue
boxes makes up a set of per-CPU rcu_data structures.

The ->levelcnt[] array is initialized at compile
time, as is ->level[0], but the rest of the values and
pointers are filled in by the functions described in the fol-
lowing sections. The figure shows a two-level hierarchy,
but one-level and three-level hierarchies are possible as
well. Each element of the ->levelspread[] array
gives the number of children per node at the correspond-
ing level of the hierarchy. In the figure, therefore, the root
node has two children and the nodes at the leaf level each
have three children. Each element of the levelcnt[]
array indicates how many nodes there are on the corre-
sponding level of the hierarchy: 1 at the root level, 2 at the
leaf level, and 6 at the rcu_data level—and any extra
elements are unused and left as zero. Each element of
the ->level[] array references the first node of the cor-
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1 #ifdef CONFIG_RCU_FANOUT_EXACT
2 static void __init
3 rcu_init_levelspread(struct rcu_state *rsp)
4 {
5 int i;
6
7 for (i = NUM_RCU_LVLS - 1; i >= 0; i--)
8 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
9 }
10 #else
11 static void __init
12 rcu_init_levelspread(struct rcu_state *rsp)
13 {
14 int ccur;
15 int cprv;
16 int i;
17
18 cprv = NR_CPUS;
19 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
20 ccur = rsp->levelcnt[i];
21 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
22 cprv = ccur;
23 }
24 }
25 #endif

Figure D.27: rcu_init_levelspread() Code

responding level of the rcu_node hierarchy, and each
element of the ->rda[] array references the correspond-
ing CPU’s rcu_data structure. The ->parent field
of each rcu_node structure references its parent, ex-
cept for the root rcu_node structure, which has a NULL
->parent pointer. Finally, the ->mynode field of each
rcu_data structure references its parent rcu_node
structure.

Quick Quiz D.33: How does the code traverse a
given path through the rcu_node hierarchy from root
to leaves?

Again, the following sections walk through the code
that builds this structure.

D.3.3.1 rcu_init_levelspread()

Figure D.27 shows the code for the rcu_init_
levelspread() function, which controls the fanout,
or the number of children per parent, in the rcu_node
hierarchy. There are two versions of this function, one
shown on lines 2-9 that enforces the exact fanout (spec-
ified by CONFIG_RCU_FANOUT), and the other on
lines 11-25 that determines the number of child nodes
based indirectly on the specified fanout, but then balances
the tree. The CONFIG_RCU_FANOUT_EXACT kernel
parameter selects which version to use for a given kernel
build.

The exact-fanout version simply assigns all of the
elements of the specified rcu_state structure’s

->levelspread array to the CONFIG_RCU_FANOUT
kernel parameter, as shown by the loop on lines 7 and 8.

The hierarchy-balancing version on lines 11-24 uses
a pair of local variables ccur and cprv which track
the number of rcu_node structures on the current and
previous levels, respectively. This function works from
the leaf level up the hierarchy, so cprv is initialized
by line 18 to NR_CPUS, which corresponds to the num-
ber of rcu_data structures that feed into the leaf level.
Lines 19-23 iterate from the leaf to the root. Within
this loop, line 20 picking up the number of rcu_node
structures for the current level into ccur. Line 21 then
rounds up the ratio of the number of nodes on the previ-
ous (lower) level (be they rcu_node or rcu_data) to
the number of rcu_node structures on the current level,
placing the result in the specified rcu_state structure’s
->levelspread array. Line 22 then sets up for the next
pass through the loop.

After a call to either function, the ->levelspread
array contains the number of children for each level of
the rcu_node hierarchy.

D.3.3.2 rcu_init_one()

Figure D.28 shows the code for rcu_init_one(),
which does boot-time initialization for the specified rcu_
state structure.

Recall from Section D.3.1.4 that the ->levelcnt[]
array in the rcu_state structure is compile-time ini-
tialized to the number of nodes at each level of the hier-
archy starting from the root, with an additional element
in the array initialized to the maximum possible num-
ber of CPUs, NR_CPUS. In addition, the first element of
the ->level[] array is compile-time initialized to refer-
ence to the root rcu_node structure, which is in turn the
first element of the ->node[] array in the rcu_state
structure. This array is further laid out in breadth-first
order. Keeping all of this in mind, the loop at lines 8-10
initializes the rest of the ->level[] array to reference
the first rcu_node structure of each level of the rcu_
node hierarchy.

Line 11 then invokes rcu_init_levelspread(),
which fills in the ->levelspread[] array, as was de-
scribed in Section D.3.3.1. The auxiliary arrays are then
fully initialized, and thus ready for the loop from lines 15-
35, each pass through which initializes one level of the
rcu_node hierarchy, starting from the leaves.

Line 13 computes the number of CPUs per rcu_node
structure for the current level of the hierarchy, and line 14
obtains a pointer to the first rcu_node structure on the
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1 static void __init rcu_init_one(struct rcu_state *rsp)
2 {
3 int cpustride = 1;
4 int i;
5 int j;
6 struct rcu_node *rnp;
7
8 for (i = 1; i < NUM_RCU_LVLS; i++)
9 rsp->level[i] = rsp->level[i - 1] +
10 rsp->levelcnt[i - 1];
11 rcu_init_levelspread(rsp);
12 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
13 cpustride *= rsp->levelspread[i];
14 rnp = rsp->level[i];
15 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
16 spin_lock_init(&rnp->lock);
17 rnp->qsmask = 0;
18 rnp->qsmaskinit = 0;
19 rnp->grplo = j * cpustride;
20 rnp->grphi = (j + 1) * cpustride - 1;
21 if (rnp->grphi >= NR_CPUS)
22 rnp->grphi = NR_CPUS - 1;
23 if (i == 0) {
24 rnp->grpnum = 0;
25 rnp->grpmask = 0;
26 rnp->parent = NULL;
27 } else {
28 rnp->grpnum = j % rsp->levelspread[i - 1];
29 rnp->grpmask = 1UL << rnp->grpnum;
30 rnp->parent = rsp->level[i - 1] +
31 j / rsp->levelspread[i - 1];
32 }
33 rnp->level = i;
34 }
35 }
36 }

Figure D.28: rcu_init_one() Code

current level of the hierarchy, in preparation for the loop
from lines 15-34, each pass through which initializes one
rcu_node structure.

Lines 16-18 initialize the rcu_node structure’s spin-
lock and its CPU masks. The qsmaskinit field will
have bits set as CPUs come online later in boot, and the
qsmask field will have bits set when the first grace period
starts. Line 19 sets the ->grplo field to the number of
the this rcu_node structure’s first CPU and line 20 sets
the ->grphi to the number of this rcu_node struc-
ture’s last CPU. If the last rcu_node structure on a
given level of the hierarchy is only partially full, lines 21
and 22 set its ->grphi field to the number of the last
possible CPU in the system.

Lines 24-26 initialize the ->grpnum, ->grpmask,
and ->parent fields for the root rcu_node struc-
ture, which has no parent, hence the zeroes and NULL.
Lines 28-31 initialize these same fields for the rest of
the rcu_node structures in the hierarchy. Line 28 com-
putes the ->grpnum field as the index of this rcu_
node structure within the set having the same parent,
and line 29 sets the corresponding bit in the ->grpmask
field. Finally, lines 30-31 places a pointer to the parent
node into the ->parent field. These three fields will
used to propagate quiescent states up the hierarchy.

Finally, line 33 records the hierarchy level in
->level, which is used for tracing when traversing the
full hierarchy.

D.3.3.3 __rcu_init()

Figure D.29 shows the __rcu_init() function and its
RCU_DATA_PTR_INIT() helper macro. The __rcu_
init() function is invoked during early boot, before the
scheduler has initialized, and before more than one CPU
is running.

The RCU_DATA_PTR_INIT() macro takes as argu-
ments a pointer to an rcu_state structure and the name
of a set of rcu_data per-CPU variables. This macro
scans the per-CPU rcu_data structures, assigning the
->mynode pointer of each rcu_data structure to point
to the corresponding leaf rcu_node structure. It also
fills out the specified rcu_state structure’s ->rda[]
array entries to each point to the corresponding rcu_
data structure. Line 3 picks up a pointer to the first leaf
rcu_node structure in local variable rnp (which must
be declared by the invoker of this macro), and line 4 sets
local variable j to the corresponding leaf-node number
of zero. Each pass through the loop spanning lines 5-
10 performs initialization for the corresponding potential



236 APPENDIX D. READ-COPY UPDATE IMPLEMENTATIONS

1 #define RCU_DATA_PTR_INIT(rsp, rcu_data) \
2 do { \
3 rnp = (rsp)->level[NUM_RCU_LVLS - 1]; \
4 j = 0; \
5 for_each_possible_cpu(i) { \
6 if (i > rnp[j].grphi) \
7 j++; \
8 per_cpu(rcu_data, i).mynode = &rnp[j]; \
9 (rsp)->rda[i] = &per_cpu(rcu_data, i); \
10 } \
11 } while (0)
12
13 void __init __rcu_init(void)
14 {
15 int i;
16 int j;
17 struct rcu_node *rnp;
18
19 rcu_init_one(&rcu_state);
20 RCU_DATA_PTR_INIT(&rcu_state, rcu_data);
21 rcu_init_one(&rcu_bh_state);
22 RCU_DATA_PTR_INIT(&rcu_bh_state, rcu_bh_data);
23
24 for_each_online_cpu(i)
25 rcu_cpu_notify(&rcu_nb, CPU_UP_PREPARE,
26 (void *)(long)i);
27 register_cpu_notifier(&rcu_nb);
28 }

Figure D.29: __rcu_init() Code

CPU (as specified by NR_CPUS). Within this loop, line 6
checks to see if we have moved beyond the bounds of
the current leaf rcu_node structure, and, if so, line 7
advances to the next structure. Then, still within the
loop, line 8 sets the ->mynode pointer of the current
CPU’s rcu_data structure to reference the current leaf
rcu_node structure, and line 9 sets the current CPU’s
->rda[] element (within the rcu_state structure) to
reference the current CPU’s rcu_data structure.

Quick Quiz D.34: C-preprocessor macros are so
1990s! Why not get with the times and convert RCU_
DATA_PTR_INIT() in Figure D.29 to be a function?

The __rcu_init() function first invokes rcu_
init_one() on the rcu_state structure on line 19,
then invokes RCU_DATA_PTR_INIT() on the rcu_
state structure and the rcu_data set of per-CPU vari-
ables. It then repeats this for rcu_bh_state and rcu_
bh_data on lines 21-22. The loop spanning lines 24-26
invokes rcu_cpu_notify() for each CPU that is cur-
rently online (which should be only the boot CPU), and
line 27 registers a notifier so that rcu_cpu_notify()
will be invoked each time a CPU comes online, in order
to inform RCU of its presence.

Quick Quiz D.35: What happens if a CPU comes on-
line between the time that the last online CPU is no-

1 static void
2 rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3 {
4 unsigned long flags;
5 int i;
6 long lastcomp;
7 unsigned long mask;
8 struct rcu_data *rdp = rsp->rda[cpu];
9 struct rcu_node *rnp = rcu_get_root(rsp);
10
11 spin_lock_irqsave(&rnp->lock, flags);
12 lastcomp = rsp->completed;
13 rdp->completed = lastcomp;
14 rdp->gpnum = lastcomp;
15 rdp->passed_quiesc = 0;
16 rdp->qs_pending = 1;
17 rdp->beenonline = 1;
18 rdp->passed_quiesc_completed = lastcomp - 1;
19 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
20 rdp->nxtlist = NULL;
21 for (i = 0; i < RCU_NEXT_SIZE; i++)
22 rdp->nxttail[i] = &rdp->nxtlist;
23 rdp->qlen = 0;
24 rdp->blimit = blimit;
25 #ifdef CONFIG_NO_HZ
26 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
27 #endif /* #ifdef CONFIG_NO_HZ */
28 rdp->cpu = cpu;
29 spin_unlock(&rnp->lock);
30 spin_lock(&rsp->onofflock);
31 rnp = rdp->mynode;
32 mask = rdp->grpmask;
33 do {
34 spin_lock(&rnp->lock);
35 rnp->qsmaskinit |= mask;
36 mask = rnp->grpmask;
37 spin_unlock(&rnp->lock);
38 rnp = rnp->parent;
39 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
40 spin_unlock(&rsp->onofflock);
41 cpu_quiet(cpu, rsp, rdp, lastcomp);
42 local_irq_restore(flags);
43 }

Figure D.30: rcu_init_percpu_data() Code

tified on lines 25-26 of Figure D.29 and the time that
register_cpu_notifier() is invoked on line 27?

The rcu_cpu_notify() and related functions are
discussed in Section D.3.4 below.

D.3.4 CPU Hotplug
The CPU-hotplug functions described in the following
sections allow RCU to track which CPUs are and are not
present, but also complete initialization of each CPU’s
rcu_data structure as that CPU comes online.

D.3.4.1 rcu_init_percpu_data()

Figure D.30 shows the code for rcu_init_percpu_
data(), which initializes the specified CPU’s rcu_
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data structure in response to booting up or to that CPU
coming online. It also sets up the rcu_node hierarchy
so that this CPU will participate in future grace periods.

Line 8 gets a pointer to this CPU’s rcu_data struc-
ture, based on the specified rcu_state structure, and
places this pointer into the local variable rdp. Line 9 gets
a pointer to the root rcu_node structure for the spec-
ified rcu_state structure, placing it in local variable
rnp.

Lines 11-29 initialize the fields of the rcu_data
structure under the protection of the root rcu_node
structure’s lock in order to ensure consistent values.
Line 17 is important for tracing, due to the fact that many
Linux distributions set NR_CPUS to a very large number,
which could result in excessive output when tracing rcu_
data structures. The ->beenonline field is used to
solve this problem, as it will be set to the value one on any
rcu_data structure corresponding to a CPU that has
ever been online, and set to zero for all other rcu_data
structures. This allows the tracing code to easily ignore
irrelevant CPUs.

Lines 30-40 propagate the onlining CPU’s bit up the
rcu_node hierarchy, proceeding until either the root
rcu_node is reached or until the corresponding bit is
already set, whichever comes first. This bit-setting is
done under the protection of ->onofflock in order
to exclude initialization of a new grace period, and, in
addition, each rcu_node structure is initialized under
the protection of its lock. Line 41 then invokes cpu_
quiet() to signal RCU that this CPU has been in an
extended quiescent state, and finally, line 42 re-enables
irqs.

Quick Quiz D.36: Why call cpu_quiet() on
line 41 of Figure D.30, given that we are excluding grace
periods with various locks, and given that any earlier grace
periods would not have been waiting on this previously-
offlined CPU?

It is important to note that rcu_init_percpu_
data() is invoked not only at boot time, but also every
time that a given CPU is brought online.

D.3.4.2 rcu_online_cpu()

Figure D.31 shows the code for rcu_online_cpu(),
which informs RCU that the specified CPU is coming
online.

When dynticks (CONFIG_NO_HZ) is enabled, line 6
obtains a reference to the specified CPU’s rcu_
dynticks structure, which is shared between the “rcu”
and “rcu_bh” implementations of RCU. Line 7 sets the

1 static void __cpuinit rcu_online_cpu(int cpu)
2 {
3 #ifdef CONFIG_NO_HZ
4 struct rcu_dynticks *rdtp;
5
6 rdtp = &per_cpu(rcu_dynticks, cpu);
7 rdtp->dynticks_nesting = 1;
8 rdtp->dynticks |= 1;
9 rdtp->dynticks_nmi = (rdtp->dynticks_nmi + 1) & ~0x1;
10 #endif /* #ifdef CONFIG_NO_HZ */
11 rcu_init_percpu_data(cpu, &rcu_state);
12 rcu_init_percpu_data(cpu, &rcu_bh_state);
13 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
14 }

Figure D.31: rcu_online_cpu() Code

->dynticks_nesting field to the value one, reflect-
ing the fact that a newly onlined CPU is not in dynticks-
idle mode (recall that the ->dynticks_nesting field
tracks the number of reasons that the corresponding CPU
needs to be tracked for RCU read-side critical sections, in
this case because it can run process-level code). Line 8
forces the ->dynticks field to an odd value that is
at least as large as the last value it had when previ-
ously online, again reflecting the fact that newly onlined
CPUs are not in dynticks-idle mode, and line 9 forces the
->dynticks_nmi field to an even value that is at least
as large as the last value it had when previously online,
reflecting the fact that this CPU is not currently executing
in an NMI handler.

Lines 11-13 are executed regardless of the value of
the CONFIG_NO_HZ kernel parameter. Line 11 initial-
izes the specified CPU’s rcu_data structure for “rcu”,
and line 12 does so for “rcu_bh”. Finally, line 13 regis-
ters the rcu_process_callbacks() to be invoked
by subsequent raise_softirq() invocations on this
CPU.

D.3.4.3 rcu_offline_cpu()

Figure D.32 shows the code for __rcu_offline_
cpu() and its wrapper function, rcu_offline_
cpu(). The purpose of this wrapper function (shown
in lines 43-47 of the figure) is simply to invoke __rcu_
offline_cpu() twice, once for “rcu” and again for
“rcu_bh”. The purpose of the __rcu_offline_cpu()
function is to prevent future grace periods from waiting
on the CPU being offlined, to note the extended quiescent
state, and to find a new home for any RCU callbacks in
process on this CPU.

Turning to __rcu_offline_cpu(), shown on
lines 1-41 of the figure, line 12 acquires the speci-
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1 static void
2 __rcu_offline_cpu(int cpu, struct rcu_state *rsp)
3 {
4 int i;
5 unsigned long flags;
6 long lastcomp;
7 unsigned long mask;
8 struct rcu_data *rdp = rsp->rda[cpu];
9 struct rcu_data *rdp_me;
10 struct rcu_node *rnp;
11
12 spin_lock_irqsave(&rsp->onofflock, flags);
13 rnp = rdp->mynode;
14 mask = rdp->grpmask;
15 do {
16 spin_lock(&rnp->lock);
17 rnp->qsmaskinit &= ~mask;
18 if (rnp->qsmaskinit != 0) {
19 spin_unlock(&rnp->lock);
20 break;
21 }
22 mask = rnp->grpmask;
23 spin_unlock(&rnp->lock);
24 rnp = rnp->parent;
25 } while (rnp != NULL);
26 lastcomp = rsp->completed;
27 spin_unlock(&rsp->onofflock);
28 cpu_quiet(cpu, rsp, rdp, lastcomp);
29 rdp_me = rsp->rda[smp_processor_id()];
30 if (rdp->nxtlist != NULL) {
31 *rdp_me->nxttail[RCU_NEXT_TAIL] = rdp->nxtlist;
32 rdp_me->nxttail[RCU_NEXT_TAIL] =
33 rdp->nxttail[RCU_NEXT_TAIL];
34 rdp->nxtlist = NULL;
35 for (i = 0; i < RCU_NEXT_SIZE; i++)
36 rdp->nxttail[i] = &rdp->nxtlist;
37 rdp_me->qlen += rdp->qlen;
38 rdp->qlen = 0;
39 }
40 local_irq_restore(flags);
41 }
42
43 static void rcu_offline_cpu(int cpu)
44 {
45 __rcu_offline_cpu(cpu, &rcu_state);
46 __rcu_offline_cpu(cpu, &rcu_bh_state);
47 }

Figure D.32: rcu_offline_cpu() Code

fied rcu_state structure’s ->onofflock, excluding
grace-period initialization for multi-rcu_node hierar-
chies.

Quick Quiz D.37: But what if the rcu_node hierar-
chy has only a single structure, as it would on a small
system? What prevents concurrent grace-period initializa-
tion in that case, given the code in Figure D.32?

Line 13 picks up a pointer to the leaf rcu_node struc-
ture corresponding to this CPU, using the ->mynode
pointer in this CPU’s rcu_data structure (see Fig-
ure D.26). Line 14 picks up a mask with this CPU’s bit
set for use on the leaf rcu_node structure’s qsmask
field.

The loop spanning lines 15-25 then clears this CPU’s
bits up the rcu_node hierarchy, starting with this CPU’s
leaf rcu_node structure. Line 16 acquires the current
rcu_node structure’s ->lock field, and line 17 clears
the bit corresponding to this CPU (or group, higher up
in the hierarchy) from the ->qsmaskinit field, so that
future grace periods will not wait on quiescent states
from this CPU. If the resulting ->qsmaskinit value
is non-zero, as checked by line 18, then the current rcu_
node structure has other online CPUs that it must track,
so line 19 releases the current rcu_node structure’s
->lock and line 20 exits the loop. Otherwise, we need
to continue walking up the rcu_node hierarchy. In this
case, line 22 picks up the mask to apply to the next level
up, line 23 releases the current rcu_node structure’s
->lock, and line 24 advances up to the next level of the
hierarchy. Line 25 exits the loop should we exit out the
top of the hierarchy.

Quick Quiz D.38: But does line 25 of Figure D.32
ever really exit the loop? Why or why not?

Line 26 picks up the specified rcu_state structure’s
->completed field into the local variable lastcomp,
line 27 releases ->onofflock (but leaves irqs dis-
abled), and line 28 invokes cpu_quiet() in order to
note that the CPU being offlined is now in an extended
quiescent state, passing in lastcomp to avoid reporting
this quiescent state against a different grace period than it
occurred in.

Quick Quiz D.39: Suppose that line 26 got executed
seriously out of order in Figure D.32, so that lastcomp
is set to some prior grace period, but so that the current
grace period is still waiting on the now-offline CPU? In
this case, won’t the call to cpu_quiet() fail to report
the quiescent state, thus causing the grace period to wait
forever for this now-offline CPU?

Quick Quiz D.40: Given that an offline CPU is in an
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extended quiescent state, why does line 28 of Figure D.32
need to care which grace period it is dealing with?

Lines 29-39 move any RCU callbacks from the CPU
going offline to the currently running CPU. This operation
must avoid reordering the callbacks being moved, as other-
wise rcu_barrier() will not work correctly. Line 29
puts a pointer to the currently running CPU’s rcu_
data structure into local variable rdp_me. Line 30
then checks to see if the CPU going offline has any RCU
callbacks. If so, lines 31-38 move them. Line 31 splices
the list of callbacks onto the end of the running CPU’s list.
Lines 32-33 sets the running CPU’s callback tail pointer
to that of the CPU going offline, and then lines 34-36
initialize the going-offline CPU’s list to be empty. Line 37
adds the length of the going-offline CPU’s callback list
to that of the currently running CPU, and, finally, line 38
zeroes the going-offline CPU’s list length.

Quick Quiz D.41: But this list movement in Fig-
ure D.32 makes all of the going-offline CPU’s callbacks
go through another grace period, even if they were ready
to invoke. Isn’t that inefficient? Furthermore, couldn’t
an unfortunate pattern of CPUs going offline then com-
ing back online prevent a given callback from ever being
invoked?

Finally, line 40 re-enables irqs.

D.3.5 Miscellaneous Functions
This section describes the miscellaneous utility functions:

1. rcu_batches_completed

2. rcu_batches_completed_bh

3. cpu_has_callbacks_ready_to_invoke

4. cpu_needs_another_gp

5. rcu_get_root

Figure D.33 shows a number of miscellaneous
functions. Lines 1-9 shown rcu_batches_
completed() and rcu_batches_completed_
bh(), which are used by the rcutorture test suite.
Lines 11-15 show cpu_has_callbacks_ready_
to_invoke(), which indicates whether the specified
rcu_data structure has RCU callbacks that have passed
through their grace period, which is indicated by the
“done” tail pointer no longer pointing to the head of the
list. Lines 17-24 show cpu_needs_another_gp(),
which indicates whether the CPU corresponding to the
specified rcu_data structure requires an additional

1 long rcu_batches_completed(void)
2 {
3 return rcu_state.completed;
4 }
5
6 long rcu_batches_completed_bh(void)
7 {
8 return rcu_bh_state.completed;
9 }
10
11 static int
12 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
13 {
14 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
15 }
16
17 static int
18 cpu_needs_another_gp(struct rcu_state *rsp,
19 struct rcu_data *rdp)
20 {
21 return *rdp->nxttail[RCU_DONE_TAIL] &&
22 ACCESS_ONCE(rsp->completed) ==
23 ACCESS_ONCE(rsp->gpnum);
24 }
25
26 static struct rcu_node
27 *rcu_get_root(struct rcu_state *rsp)
28 {
29 return &rsp->node[0];
30 }

Figure D.33: Miscellaneous Functions

grace period during a time when no grace period is in
progress. Note that the specified rcu_data structure is
required to be associated with the specified rcu_state
structure. Finally, lines 26-30 show rcu_get_root(),
which returns the root rcu_node structure associated
with the specified rcu_state structure.

D.3.6 Grace-Period-Detection Functions

This section covers functions that are directly involved in
detecting beginnings and ends of grace periods. This of
course includes actually starting and ending grace periods,
but also includes noting when other CPUs have started or
ended grace periods.

D.3.6.1 Noting New Grace Periods

The main purpose of Hierarchical RCU is to detect grace
periods, and the functions more directly involved in this
task are described in this section. Section D.3.6.1 covers
functions that allow CPUs to note that a new grace period
has begun, Section D.3.6.2 covers functions that allow
CPUs to note that an existing grace period has ended,
Section D.3.6.3 covers rcu_start_gp(), which starts
a new grace period, and Section D.3.6.4 covers functions
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1 static void note_new_gpnum(struct rcu_state *rsp,
2 struct rcu_data *rdp)
3 {
4 rdp->qs_pending = 1;
5 rdp->passed_quiesc = 0;
6 rdp->gpnum = rsp->gpnum;
7 rdp->n_rcu_pending_force_qs = rdp->n_rcu_pending +
8 RCU_JIFFIES_TILL_FORCE_QS;
9 }
10
11 static int
12 check_for_new_grace_period(struct rcu_state *rsp,
13 struct rcu_data *rdp)
14 {
15 unsigned long flags;
16 int ret = 0;
17
18 local_irq_save(flags);
19 if (rdp->gpnum != rsp->gpnum) {
20 note_new_gpnum(rsp, rdp);
21 ret = 1;
22 }
23 local_irq_restore(flags);
24 return ret;
25 }

Figure D.34: Noting New Grace Periods

involved in reporting CPUs’ quiescent states to the RCU
core.

Figure D.34 shows the code for note_new_
gpnum(), which updates state to reflect a new
grace period, as well as check_for_new_grace_
period(), which is used by CPUs to detect when other
CPUs have started a new grace period.

Line 4 of note_new_gpnum() sets the ->qs_
pending flag is the current CPU’s rcu_data struc-
ture to indicate that RCU needs a quiescent state from
this CPU, line 5 clears the ->passed_quiesc flag
to indicate that this CPU has not yet passed through
such a quiescent state, line 6 copies the grace-period
number from the global rcu_state structure to this
CPU’s rcu_data structure so that this CPU will re-
member that it has already noted the beginning of this new
grace period. Finally, lines 7-8 record the time in jiffies
at which this CPU will attempt to force holdout CPUs
to pass through quiescent states (by invoking force_
quiescent_state() on or after that future time),
assuming that the grace period does not end beforehand.

Lines 18 and 23 of check_for_new_grace_
period() disable and re-enable interrupts, respectively.
Line 19 checks to see if there is a new grace period that
the current CPU has not yet noted, and, if so, line 20
invokes note_new_gpnum() in order to note the new
grace period, and line 21 sets the return value accordingly.
Either way, line 24 returns status: non-zero if a new grace

1 static void
2 rcu_process_gp_end(struct rcu_state *rsp,
3 struct rcu_data *rdp)
4 {
5 long completed_snap;
6 unsigned long flags;
7
8 local_irq_save(flags);
9 completed_snap = ACCESS_ONCE(rsp->completed);
10 if (rdp->completed != completed_snap) {
11 rdp->nxttail[RCU_DONE_TAIL] =
12 rdp->nxttail[RCU_WAIT_TAIL];
13 rdp->nxttail[RCU_WAIT_TAIL] =
14 rdp->nxttail[RCU_NEXT_READY_TAIL];
15 rdp->nxttail[RCU_NEXT_READY_TAIL] =
16 rdp->nxttail[RCU_NEXT_TAIL];
17 rdp->completed = completed_snap;
18 }
19 local_irq_restore(flags);
20 }

Figure D.35: Noting End of Old Grace Periods
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Figure D.36: RCU Callback List

period has started, and zero otherwise.
Quick Quiz D.42: Why not just expand note_new_

gpnum() inline into check_for_new_grace_
period() in Figure D.34?

D.3.6.2 Noting End of Old Grace Periods

Figure D.35 shows rcu_process_gp_end(), which
is invoked when a CPU suspects that a grace period might
have ended (possibly because the CPU in question in
fact ended the grace period). If a grace period really
has ended, then this function advances the current CPU’s
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RCU callbacks, which are managed as a singly linked list
with multiple tail pointers, as shown in Figure D.36. This
multiple tail pointer layout, spearheaded by Lai Jiangshan,
simplifies list handling [Jia08]. In this figure, the blue
box represents one CPU’s rcu_data structure, with the
six white boxes at the bottom of the diagram representing
a list of six RCU callbacks (rcu_head structures). In
this list, the first three callbacks have passed through
their grace period and are thus waiting to be invoked, the
fourth callback (the first on the second line) is waiting
for the current grace period to complete, and the last two
are waiting for the next grace period. The last two tail
pointers reference the last element, so that the final sublist,
which would comprise callbacks that had not yet been
associated with a specific grace period, is empty.

Lines 8 and 19 of Figure D.35 suppress and re-enable
interrupts, respectively. Line 9 picks up a snapshot of the
rcu_state structure’s ->completed field, storing it
in the local variable completed_snap. Line 10 checks
to see if the current CPU is not yet aware of the end of a
grace period, and if it is not aware, lines 11-16 advance
this CPU’s RCU callbacks by manipulating the tail point-
ers. Line 17 then records the most recently completed
grace period number in this CPU’s rcu_data structure
in the ->completed field.

D.3.6.3 Starting a Grace Period

Figure D.37 shows rcu_start_gp(), which starts a
new grace period, also releasing the root rcu_node
structure’s lock, which must be acquired by the caller.

Line 4 is annotation for the sparse utility, indicating
that rcu_start_gp() releases the root rcu_node
structure’s lock. Local variable rdp references the run-
ning CPU’s rcu_data structure, rnp references the
root rcu_node structure, and rnp_cur and rnp_end
are used as cursors in traversing the rcu_node hierar-
chy.

Line 10 invokes cpu_needs_another_gp() to
see if this CPU really needs another grace period to be
started, and if not, line 11 releases the root rcu_node
structure’s lock and line 12 returns. This code path can be
executed due to multiple CPUs concurrently attempting
to start a grace period. In this case, the winner will start
the grace period, and the losers will exit out via this code
path.

Otherwise, line 14 increments the specified rcu_
state structure’s ->gpnum field, officially marking
the start of a new grace period.

Quick Quiz D.43: But there has been no initialization

1 static void
2 rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
3 __releases(rcu_get_root(rsp)->lock)
4 {
5 struct rcu_data *rdp = rsp->rda[smp_processor_id()];
6 struct rcu_node *rnp = rcu_get_root(rsp);
7 struct rcu_node *rnp_cur;
8 struct rcu_node *rnp_end;
9
10 if (!cpu_needs_another_gp(rsp, rdp)) {
11 spin_unlock_irqrestore(&rnp->lock, flags);
12 return;
13 }
14 rsp->gpnum++;
15 rsp->signaled = RCU_GP_INIT;
16 rsp->jiffies_force_qs = jiffies +
17 RCU_JIFFIES_TILL_FORCE_QS;
18 rdp->n_rcu_pending_force_qs = rdp->n_rcu_pending +
19 RCU_JIFFIES_TILL_FORCE_QS;
20 record_gp_stall_check_time(rsp);
21 dyntick_record_completed(rsp, rsp->completed - 1);
22 note_new_gpnum(rsp, rdp);
23 rdp->nxttail[RCU_NEXT_READY_TAIL] =
24 rdp->nxttail[RCU_NEXT_TAIL];
25 rdp->nxttail[RCU_WAIT_TAIL] =
26 rdp->nxttail[RCU_NEXT_TAIL];
27 if (NUM_RCU_NODES == 1) {
28 rnp->qsmask = rnp->qsmaskinit;
29 spin_unlock_irqrestore(&rnp->lock, flags);
30 return;
31 }
32 spin_unlock(&rnp->lock);
33 spin_lock(&rsp->onofflock);
34 rnp_end = rsp->level[NUM_RCU_LVLS - 1];
35 rnp_cur = &rsp->node[0];
36 for (; rnp_cur < rnp_end; rnp_cur++)
37 rnp_cur->qsmask = rnp_cur->qsmaskinit;
38 rnp_end = &rsp->node[NUM_RCU_NODES];
39 rnp_cur = rsp->level[NUM_RCU_LVLS - 1];
40 for (; rnp_cur < rnp_end; rnp_cur++) {
41 spin_lock(&rnp_cur->lock);
42 rnp_cur->qsmask = rnp_cur->qsmaskinit;
43 spin_unlock(&rnp_cur->lock);
44 }
45 rsp->signaled = RCU_SIGNAL_INIT;
46 spin_unlock_irqrestore(&rsp->onofflock, flags);
47 }

Figure D.37: Starting a Grace Period
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yet at line 15 of Figure D.37! What happens if a CPU
notices the new grace period and immediately attempts to
report a quiescent state? Won’t it get confused?

Line 15 sets the ->signaled field to RCU_GP_
INIT in order to prevent any other CPU from attempt-
ing to force an end to the new grace period before its
initialization completes. Lines 16-18 schedule the next
attempt to force an end to the new grace period, first in
terms of jiffies and second in terms of the number of
calls to rcu_pending. Of course, if the grace period
ends naturally before that time, there will be no need to at-
tempt to force it. Line 20 invokes record_gp_stall_
check_time() to schedule a longer-term progress
check—if the grace period extends beyond this time, it
should be considered to be an error. Line 22 invokes
note_new_gpnum() in order to initialize this CPU’s
rcu_data structure to account for the new grace period.

Lines 23-26 advance all of this CPU’s callbacks so that
they will be eligible to be invoked at the end of this new
grace period. This represents an acceleration of callbacks,
as other CPUs would only be able to move the RCU_
NEXT_READY_TAIL batch to be serviced by the current
grace period; the RCU_NEXT_TAIL would instead need
to be advanced to the RCU_NEXT_READY_TAIL batch.
The reason that this CPU can accelerate the RCU_NEXT_
TAIL batch is that it knows exactly when this new grace
period started. In contrast, other CPUs would be unable
to correctly resolve the race between the start of a new
grace period and the arrival of a new RCU callback.

Line 27 checks to see if there is but one rcu_node
structure in the hierarchy, and if so, line 28 sets the
->qsmask bits corresponding to all online CPUs, in
other words, corresponding to those CPUs that must pass
through a quiescent state for the new grace period to end.
Line 29 releases the root rcu_node structure’s lock and
line 30 returns. In this case, gcc’s dead-code elimination
is expected to dispense with lines 32-46.

Otherwise, the rcu_node hierarchy has multiple
structures, requiring a more involved initialization scheme.
Line 32 releases the root rcu_node structure’s lock,
but keeps interrupts disabled, and then line 33 acquires
the specified rcu_state structure’s ->onofflock,
preventing any concurrent CPU-hotplug operations from
manipulating RCU-specific state.

Line 34 sets the rnp_end local variable to reference
the first leaf rcu_node structure, which also happens to
be the rcu_node structure immediately following the
last non-leaf rcu_node structure in the ->node array.
Line 35 sets the rnp_cur local variable to reference the

root rcu_node structure, which also happens to be first
such structure in the ->node array. Lines 36 and 37 then
traverse all of the non-leaf rcu_node structures, setting
the bits corresponding to lower-level rcu_node struc-
tures that have CPUs that must pass through quiescent
states in order for the new grace period to end.

Quick Quiz D.44: Hey! Shouldn’t we hold the non-
leaf rcu_node structures’ locks when munging their
state in line 37 of Figure D.37???

Line 38 sets local variable rnp_end to one past the
last leaf rcu_node structure, and line 39 sets local vari-
able rnp_cur to the first leaf rcu_node structure, so
that the loop spanning lines 40-44 traverses all leaves of
the rcu_node hierarchy. During each pass through this
loop, line 41 acquires the current leaf rcu_node struc-
ture’s lock, line 42 sets the bits corresponding to online
CPUs (each of which must pass through a quiescent state
before the new grace period can end), and line 43 releases
the lock.

Quick Quiz D.45: Why can’t we merge the loop span-
ning lines 36-37 with the loop spanning lines 40-44 in
Figure D.37?

Line 45 then sets the specified rcu_state structure’s
->signaled field to permit forcing of quiescent states,
and line 46 releases the ->onofflock to permit CPU-
hotplug operations to manipulate RCU state.

D.3.6.4 Reporting Quiescent States

This hierarchical RCU implementation implements a lay-
ered approach to reporting quiescent states, using the
following functions:

1. rcu_qsctr_inc() and rcu_bh_qsctr_
inc() are invoked when a given CPU passes
through a quiescent state for “rcu” and “rcu_bh”,
respectively. Note that the dynticks-idle and
CPU-offline quiescent states are handled specially,
due to the fact that such a CPU is not executing, and
thus is unable to report itself as being in a quiescent
state.

2. rcu_check_quiescent_state() checks to
see if the current CPU has passed through a qui-
escent state, invoking cpu_quiet() if so.

3. cpu_quiet() reports the specified CPU as having
passed through a quiescent state by invoking cpu_
quiet_msk(). The specified CPU must either be
the current CPU or an offline CPU.
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1 void rcu_qsctr_inc(int cpu)
2 {
3 struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
4 rdp->passed_quiesc = 1;
5 rdp->passed_quiesc_completed = rdp->completed;
6 }
7
8 void rcu_bh_qsctr_inc(int cpu)
9 {
10 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
11 rdp->passed_quiesc = 1;
12 rdp->passed_quiesc_completed = rdp->completed;
13 }

Figure D.38: Code for Recording Quiescent States

1 static void
2 rcu_check_quiescent_state(struct rcu_state *rsp,
3 struct rcu_data *rdp)
4 {
5 if (check_for_new_grace_period(rsp, rdp))
6 return;
7 if (!rdp->qs_pending)
8 return;
9 if (!rdp->passed_quiesc)
10 return;
11 cpu_quiet(rdp->cpu, rsp, rdp,
12 rdp->passed_quiesc_completed);
13 }

Figure D.39: Code for
rcu_check_quiescent_state()

4. cpu_quiet_msk() reports the specified vector
of CPUs as having passed through a quiescent state.
The CPUs in the vector need not be the current CPU,
nor must they be offline.

Each of these functions is described below.
Figure D.38 shows the code for rcu_qsctr_inc()

and rcu_bh_qsctr_inc(), which note the current
CPU’s passage through a quiescent state.

Line 3 of rcu_qsctr_inc() obtains a pointer to
the specified CPU’s rcu_data structure (which cor-
responds to “rcu” as opposed to “rcu_bh”). Line 4
sets the ->passed_quiesc field, recording the qui-
escent state. Line 5 sets the ->passed_quiesc_
completed field to the number of the last completed
grace period that this CPU knows of (which is stored in
the ->completed field of the rcu_data structure).

The rcu_bh_qsctr_inc() function operates in
the same manner, the only difference being that line 10
obtains the rcu_data pointer from the rcu_bh_data
per-CPU variable rather than the rcu_data per-CPU
variable.

Figure D.39 shows the code for rcu_check_
quiescent_state(), which is invoked from

1 static void
2 cpu_quiet(int cpu, struct rcu_state *rsp,
3 struct rcu_data *rdp, long lastcomp)
4 {
5 unsigned long flags;
6 unsigned long mask;
7 struct rcu_node *rnp;
8
9 rnp = rdp->mynode;
10 spin_lock_irqsave(&rnp->lock, flags);
11 if (lastcomp != ACCESS_ONCE(rsp->completed)) {
12 rdp->passed_quiesc = 0;
13 spin_unlock_irqrestore(&rnp->lock, flags);
14 return;
15 }
16 mask = rdp->grpmask;
17 if ((rnp->qsmask & mask) == 0) {
18 spin_unlock_irqrestore(&rnp->lock, flags);
19 } else {
20 rdp->qs_pending = 0;
21 rdp = rsp->rda[smp_processor_id()];
22 rdp->nxttail[RCU_NEXT_READY_TAIL] =
23 rdp->nxttail[RCU_NEXT_TAIL];
24 cpu_quiet_msk(mask, rsp, rnp, flags);
25 }
26 }

Figure D.40: Code for cpu_quiet()

rcu_process_callbacks() (described in Sec-
tion D.3.2.4) in order to determine when other CPUs
have started a new grace period and to inform RCU of
recent quiescent states for this CPU.

Line 5 invokes check_for_new_grace_
period() to check for a new grace period having been
started by some other CPU, and also updating this CPU’s
local state to account for that new grace period. If a new
grace period has just started, line 6 returns. Line 7 checks
to see if RCU is still expecting a quiescent state from
the current CPU, and line 8 returns if not. Line 9 checks
to see if this CPU has passed through a quiescent state
since the start of the current grace period (in other words,
if rcu_qsctr_inc() or rcu_bh_qsctr_inc()
have been invoked for “rcu” and “rcu_bh”, respectively),
and line 10 returns if not.

Therefore, execution reaches line 11 only if a previ-
ously noted grace period is still in effect, if this CPU
needs to pass through a quiescent state in order to al-
low this grace period to end, and if this CPU has passed
through such a quiescent state. In this case, lines 11-12
invoke cpu_quiet() in order to report this quiescent
state to RCU.

Quick Quiz D.46: What prevents lines 11-12 of Fig-
ure D.39 from reporting a quiescent state from a prior
grace period against the current grace period?

Figure D.40 shows cpu_quiet, which is used to re-
port a quiescent state for the specified CPU. As noted



244 APPENDIX D. READ-COPY UPDATE IMPLEMENTATIONS

earlier, this must either be the currently running CPU or a
CPU that is guaranteed to remain offline throughout.

Line 9 picks up a pointer to the leaf rcu_node struc-
ture responsible for this CPU. Line 10 acquires this
leaf rcu_node structure’s lock and disables interrupts.
Line 11 checks to make sure that the specified grace pe-
riod is still in effect, and, if not, line 11 clears the indica-
tion that this CPU passed through a quiescent state (since
it belongs to a defunct grace period), line 13 releases the
lock and re-enables interrupts, and line 14 returns to the
caller.

Otherwise, line 16 forms a mask with the specified
CPU’s bit set. Line 17 checks to see if this bit is still set in
the leaf rcu_node structure, and, if not, line 18 releases
the lock and re-enables interrupts.

On the other hand, if the CPU’s bit is still set, line 20
clears ->qs_pending, reflecting that this CPU has
passed through its quiescent state for this grace period.
Line 21 then overwrites local variable rdp with a pointer
to the running CPU’s rcu_data structure, and lines 22-
23 updates the running CPU’s RCU callbacks so that
all those not yet associated with a specific grace period
be serviced by the next grace period. Finally, line 24
clears bits up the rcu_node hierarchy, ending the cur-
rent grace period if appropriate and perhaps even starting
a new one. Note that cpu_quiet() releases the lock
and re-enables interrupts.

Quick Quiz D.47: How do lines 22-23 of Figure D.40
know that it is safe to promote the running CPU’s RCU
callbacks?

Figure D.41 shows cpu_quiet_msk(), which up-
dates the rcu_node hierarchy to reflect the passage of
the CPUs indicated by argument mask through their re-
spective quiescent states. Note that argument rnp is the
leaf rcu_node structure corresponding to the specified
CPUs.

Quick Quiz D.48: Given that argument mask on line
2 of Figure D.41 is an unsigned long, how can it possibly
deal with systems with more than 64 CPUs?

Line 4 is annotation for the sparse utility, indicating
that cpu_quiet_msk() releases the leaf rcu_node
structure’s lock.

Each pass through the loop spanning lines 6-23 does
the required processing for one level of the rcu_node
hierarchy, traversing the data structures as shown by the
blue arrow in Figure D.42.

Line 7 checks to see if all of the bits in mask have
already been cleared in the current rcu_node structure’s
->qsmask field, and, if so, line 8 releases the lock and

1 static void
2 cpu_quiet_msk(unsigned long mask, struct rcu_state *rsp,
3 struct rcu_node *rnp, unsigned long flags)
4 __releases(rnp->lock)
5 {
6 for (;;) {
7 if (!(rnp->qsmask & mask)) {
8 spin_unlock_irqrestore(&rnp->lock, flags);
9 return;
10 }
11 rnp->qsmask &= ~mask;
12 if (rnp->qsmask != 0) {
13 spin_unlock_irqrestore(&rnp->lock, flags);
14 return;
15 }
16 mask = rnp->grpmask;
17 if (rnp->parent == NULL) {
18 break;
19 }
20 spin_unlock_irqrestore(&rnp->lock, flags);
21 rnp = rnp->parent;
22 spin_lock_irqsave(&rnp->lock, flags);
23 }
24 rsp->completed = rsp->gpnum;
25 rcu_process_gp_end(rsp, rsp->rda[smp_processor_id()]);
26 rcu_start_gp(rsp, flags);
27 }

Figure D.41: Code for cpu_quiet_msk()

re-enables interrupts, and line 9 returns to the caller. If
not, line 11 clears the bits specified by mask from the
current rcu_node structure’s qsmask field. Line 12
then checks to see if there are more bits remaining in
->qsmask, and, if so, line 13 releases the lock and re-
enables interrupts, and line 14 returns to the caller.

Otherwise, it is necessary to advance up to the next
level of the rcu_node hierarchy. In preparation for
this next level, line 16 places a mask with the single bit
set corresponding to the current rcu_node structure
within its parent. Line 17 checks to see if there in fact
is a parent for the current rcu_node structure, and, if
not, line 18 breaks from the loop. On the other hand, if
there is a parent rcu_node structure, line 20 releases the
current rcu_node structure’s lock, line 21 advances the
rnp local variable to the parent, and line 22 acquires the
parent’s lock. Execution then continues at the beginning
of the loop on line 7.

If line 18 breaks from the loop, we know that the cur-
rent grace period has ended, as the only way that all
bits can be cleared in the root rcu_node structure is
if all CPUs have passed through quiescent states. In
this case, line 24 updates the rcu_state structure’s
->completed field to match the number of the newly
ended grace period, indicating that the grace period has in
fact ended. Line 24 then invokes rcu_process_gp_
end() to advance the running CPU’s RCU callbacks,
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Figure D.42: Scanning rcu_node Structures When Applying Quiescent States

and, finally, line 26 invokes rcu_start_gp() in order
to start a new grace period should any remaining callbacks
on the currently running CPU require one.

Figure D.43 shows rcu_do_batch(), which in-
vokes RCU callbacks whose grace periods have ended.
Only callbacks on the running CPU will be invoked—
other CPUs must invoke their own callbacks.

Quick Quiz D.49: How do RCU callbacks on dynticks-
idle or offline CPUs get invoked?

Line 7 invokes cpu_has_callbacks_ready_
to_invoke() to see if this CPU has any RCU call-
backs whose grace period has completed, and, if not,
line 8 returns. Lines 9 and 18 disable and re-enable in-
terrupts, respectively. Lines 11-13 remove the ready-
to-invoke callbacks from ->nxtlist, and lines 14-17
make any needed adjustments to the tail pointers.

Quick Quiz D.50: Why would lines 14-17 in Fig-
ure D.43 need to adjust the tail pointers?

Line 19 initializes local variable count to zero in
preparation for counting the number of callbacks that will
actually be invoked. Each pass through the loop spanning
lines 20-27 invokes and counts a callback, with lines 25-
26 exiting the loop if too many callbacks are to be invoked
at a time (thus preserving responsiveness). The remainder
of the function then requeues any callbacks that could not

be invoked due to this limit.
Lines 28 and 41 disable and re-enable interrupts, re-

spectively. Line 29 updates the ->qlen field, which
maintains a count of the total number of RCU callbacks
for this CPU. Line 30 checks to see if there were any
ready-to-invoke callbacks that could not be invoked at
the moment due to the limit on the number that may
be invoked at a given time. If such callbacks remain,
lines 30-38 requeue them, again adjusting the tail pointers
as needed. Lines 39-40 restore the batch limit if it was
increased due to excessive callback backlog, and lines 42-
43 cause additional RCU processing to be scheduled if
there are any ready-to-invoke callbacks remaining.

D.3.7 Dyntick-Idle Functions
The functions in this section are defined only in CONFIG_
NO_HZ builds of the Linux kernel, though in some cases,
extended-no-op versions are present otherwise. These
functions control whether or not RCU pays attention to
a given CPU. CPUs in dynticks-idle mode are ignored,
but only if they are not currently in an interrupt or NMI
handler. The functions in this section communicate this
CPU state to RCU.

This set of functions is greatly simplified from that used
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1 static void rcu_do_batch(struct rcu_data *rdp)
2 {
3 unsigned long flags;
4 struct rcu_head *next, *list, **tail;
5 int count;
6
7 if (!cpu_has_callbacks_ready_to_invoke(rdp))
8 return;
9 local_irq_save(flags);
10 list = rdp->nxtlist;
11 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
12 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
13 tail = rdp->nxttail[RCU_DONE_TAIL];
14 for (count = RCU_NEXT_SIZE - 1; count >= 0; count--)
15 if (rdp->nxttail[count] ==
16 rdp->nxttail[RCU_DONE_TAIL])
17 rdp->nxttail[count] = &rdp->nxtlist;
18 local_irq_restore(flags);
19 count = 0;
20 while (list) {
21 next = list->next;
22 prefetch(next);
23 list->func(list);
24 list = next;
25 if (++count >= rdp->blimit)
26 break;
27 }
28 local_irq_save(flags);
29 rdp->qlen -= count;
30 if (list != NULL) {
31 *tail = rdp->nxtlist;
32 rdp->nxtlist = list;
33 for (count = 0; count < RCU_NEXT_SIZE; count++)
34 if (&rdp->nxtlist == rdp->nxttail[count])
35 rdp->nxttail[count] = tail;
36 else
37 break;
38 }
39 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
40 rdp->blimit = blimit;
41 local_irq_restore(flags);
42 if (cpu_has_callbacks_ready_to_invoke(rdp))
43 raise_softirq(RCU_SOFTIRQ);
44 }

Figure D.43: Code for rcu_do_batch()

1 void rcu_enter_nohz(void)
2 {
3 unsigned long flags;
4 struct rcu_dynticks *rdtp;
5
6 smp_mb();
7 local_irq_save(flags);
8 rdtp = &__get_cpu_var(rcu_dynticks);
9 rdtp->dynticks++;
10 rdtp->dynticks_nesting--;
11 local_irq_restore(flags);
12 }
13
14 void rcu_exit_nohz(void)
15 {
16 unsigned long flags;
17 struct rcu_dynticks *rdtp;
18
19 local_irq_save(flags);
20 rdtp = &__get_cpu_var(rcu_dynticks);
21 rdtp->dynticks++;
22 rdtp->dynticks_nesting++;
23 local_irq_restore(flags);
24 smp_mb();
25 }

Figure D.44: Entering and Exiting Dyntick-Idle Mode

in preemptible RCU, see Section F.7 for a description of
the earlier more-complex model. Manfred Spraul put
forth the idea for this simplified interface in one of his
state-based RCU patches [Spr08b, Spr08a].

Section D.3.7.1 describes the functions that enter
and exit dynticks-idle mode from process context, Sec-
tion D.3.7.2 describes the handling of NMIs from
dynticks-idle mode, Section D.3.7.3 covers handling of
interrupts from dynticks-idle mode, and Section D.3.7.4
presents functions that check whether some other CPU is
currently in dynticks-idle mode.

D.3.7.1 Entering and Exiting Dyntick-Idle Mode

Figure D.44 shows the rcu_enter_nohz() and
rcu_exit_nohz() functions that allow the scheduler
to transition to and from dynticks-idle mode. Therefore,
after rcu_enter_nohz() has been call, RCU will ig-
nore it, at least until the next rcu_exit_nohz(), the
next interrupt, or the next NMI.

Line 6 of rcu_enter_nohz() executes a memory
barrier to ensure that any preceding RCU read-side criti-
cal sections are seen to have occurred before the following
code that tells RCU to ignore this CPU. Lines 7 and 11
disable and restore interrupts in order to avoid interfer-
ence with the state change. Line 8 picks up a pointer
to the running CPU’s rcu_dynticks structure, line 9
increments the ->dynticks field (which now must be
even to indicate that this CPU may be ignored), and fi-
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1 void rcu_nmi_enter(void)
2 {
3 struct rcu_dynticks *rdtp;
4
5 rdtp = &__get_cpu_var(rcu_dynticks);
6 if (rdtp->dynticks & 0x1)
7 return;
8 rdtp->dynticks_nmi++;
9 smp_mb();
10 }
11
12 void rcu_nmi_exit(void)
13 {
14 struct rcu_dynticks *rdtp;
15
16 rdtp = &__get_cpu_var(rcu_dynticks);
17 if (rdtp->dynticks & 0x1)
18 return;
19 smp_mb();
20 rdtp->dynticks_nmi++;

Figure D.45: NMIs from Dyntick-Idle Mode

nally line 10 decrements the ->dynticks_nesting
field (which now must be zero to indicate that there is no
reason to pay attention to this CPU).

Lines 19 and 23 of rcu_exit_nohz() disable and
re-enable interrupts, again to avoid interference. Line 20
obtains a pointer to this CPU’s rcu_dynticks struc-
ture, line 21 increments the ->dynticks field (which
now must be odd in order to indicate that RCU must
once again pay attention to this CPU), and line 22 incre-
ments the ->dynticks_nesting field (which now
must have the value 1 to indicate that there is one reason
to pay attention to this CPU).

D.3.7.2 NMIs from Dyntick-Idle Mode

Figure D.45 shows rcu_nmi_enter() and rcu_
nmi_exit(), which handle NMI entry and exit, re-
spectively. It is important to keep in mind that entering an
NMI handler exits dyntick-idle mode and vice versa, in
other words, RCU must pay attention to CPUs that claim
to be in dyntick-idle mode while they are executing NMI
handlers, due to the fact that NMI handlers can contain
RCU read-side critical sections. This reversal of roles can
be quite confusing: you have been warned.

Line 5 of rcu_nmi_enter() obtains a pointer to
this CPU’s rcu_dynticks structure, and line 6 checks
to see if this CPU is already under scrutiny by RCU,
with line 7 silently returning if so. Otherwise, line 8
increments the ->dynticks_nmi field, which must
now have an odd-numbered value. Finally, line 9 executes
a memory barrier to ensure that the prior increment of
->dynticks_nmi is see by all CPUs to happen before

1 void rcu_irq_enter(void)
2 {
3 struct rcu_dynticks *rdtp;
4
5 rdtp = &__get_cpu_var(rcu_dynticks);
6 if (rdtp->dynticks_nesting++)
7 return;
8 rdtp->dynticks++;
9 smp_mb();
10 }
11
12 void rcu_irq_exit(void)
13 {
14 struct rcu_dynticks *rdtp;
15
16 rdtp = &__get_cpu_var(rcu_dynticks);
17 if (--rdtp->dynticks_nesting)
18 return;
19 smp_mb();
20 rdtp->dynticks++;
21 if (__get_cpu_var(rcu_data).nxtlist ||
22 __get_cpu_var(rcu_bh_data).nxtlist)
23 set_need_resched();
24 }

Figure D.46: Interrupts from Dyntick-Idle Mode

any subsequent RCU read-side critical section.
Line 16 of rcu_nmi_exit() again fetches a pointer

to this CPU’s rcu_dynticks structure, and line 17
checks to see if RCU would be paying attention to this
CPU even if it were not in an NMI, with line 18 silently
returning if so. Otherwise, line 19 executes a memory
barrier to ensure that any RCU read-side critical sections
within the handler are seen by all CPUs to happen before
the increment of the ->dynticks_nmi field on line 20.
The new value of this field must now be even.

Quick Quiz D.51: But how does the code in Fig-
ure D.45 handle nested NMIs?

D.3.7.3 Interrupts from Dyntick-Idle Mode

Figure D.46 shows rcu_irq_enter() and rcu_
irq_exit(), which handle interrupt entry and exit,
respectively. As with NMIs, it is important to note that
entering an interrupt handler exits dyntick-idle mode and
vice versa, due to the fact that RCU read-side critical
sections can appear in interrupt handlers.

Line 5 of rcu_irq_enter() once again acquires a
reference to the current CPU’s rcu_dynticks struc-
ture. Line 6 increments the ->dynticks_nesting
field, and if the original value was already non-zero (in
other words, RCU was already paying attention to this
CPU), line 7 silently returns. Otherwise, line 8 increments
the ->dynticks field, which then must have an odd-
numbered value. Finally, line 9 executes a memory barrier
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so that this increment is seen by all CPUs as happening
before any RCU read-side critical sections that might be
in the interrupt handler.

Line 16 of rcu_irq_exit() does the by-now tradi-
tional acquisition of a reference to the currently running
CPU’s rcu_dynticks structure. Line 17 decrements
the ->dynticks_nesting field, and, if the result is
non-zero (in other words, RCU must still pay attention
to this CPU despite exiting this interrupt handler), then
line 18 silently returns. Otherwise, line 19 executes a
memory barrier so that any RCU read-side critical sec-
tions that might have been in the interrupt handler are seen
by all CPUs as having happened before the increment on
line 20 of the ->dynticks field (which must now have
an even-numbered value). Lines 21 and 22 check to see if
the interrupt handler posted any “rcu” or “rcu_bh” call-
backs, and, if so, line 23 forces this CPU to reschedule,
which has the side-effect of forcing it out of dynticks-idle
mode, as is required to allow RCU to handle the grace
period required by these callbacks.

D.3.7.4 Checking for Dyntick-Idle Mode

The dyntick_save_progress_counter() and
rcu_implicit_dynticks_qs() functions are
used to check whether a CPU is in dynticks-idle mode.
The dyntick_save_progress_counter()
function is invoked first, and returns non-zero if the
CPU is currently in dynticks-idle mode. If the CPU
was not in dynticks-idle mode, for example, because
it is currently handling an interrupt or NMI, then the
rcu_implicit_dynticks_qs() function is called
some jiffies later. This function looks at the current state
in conjunction with state stored away by the earlier call
to dyntick_save_progress_counter(), again
returning non-zero if the CPU either is in dynticks-idle
mode or was in dynticks-idle mode during the interven-
ing time. The rcu_implicit_dynticks_qs()
function may be invoked repeatedly, if need be, until is
returns true.

Figure D.47 shows the code for dyntick_save_
progress_counter(), which is passed a given CPU-
rcu_state pair’s rcu_data structure. Lines 8 and 9
take snapshots of the CPU’s rcu_dynticks structure’s
->dynticks and ->dynticks_nmi fields, and then
line 10 executes a memory barrier to ensure that the snap-
shot is seen by all CPUs to have happened before any
later processing depending on these values. This memory
barrier pairs up with those in rcu_enter_nohz(),
rcu_exit_nohz(), rcu_nmi_enter(), rcu_

1 static int
2 dyntick_save_progress_counter(struct rcu_data *rdp)
3 {
4 int ret;
5 int snap;
6 int snap_nmi;
7
8 snap = rdp->dynticks->dynticks;
9 snap_nmi = rdp->dynticks->dynticks_nmi;
10 smp_mb();
11 rdp->dynticks_snap = snap;
12 rdp->dynticks_nmi_snap = snap_nmi;
13 ret = ((snap & 0x1) == 0) && ((snap_nmi & 0x1) == 0);
14 if (ret)
15 rdp->dynticks_fqs++;
16 return ret;
17 }

Figure D.47: Code for dyntick_save_progress_-
counter()

nmi_exit(), rcu_irq_enter(), and rcu_irq_
exit(). Lines 11 and 12 store these two snapshots
away so that they can be accessed by a later call to rcu_
implicit_dynticks_qs(). Line 13 checks to see
if both snapshots have even-numbered values, indicat-
ing that the CPU in question was in neither non-idle
process state, an interrupt handler, nor an NMI handler.
If so, lines 14 and 15 increment the statistical counter
->dynticks_fqs, which is used only for tracing. Ei-
ther way, line 16 returns the indication of whether the
CPU was in dynticks-idle mode.

Quick Quiz D.52: Why isn’t there a memory barrier
between lines 8 and 9 of Figure D.47? Couldn’t this
cause the code to fetch even-numbered values from both
the ->dynticks and ->dynticks_nmi fields, even
though these two fields never were zero at the same time?

Figure D.48 shows the code for rcu_implicit_
dynticks_qs(). Lines 9-12 pick up both new
values for the CPU’s rcu_dynticks structure’s
->dynticks and ->dynticks_nmi fields, as well as
the snapshots taken by the last call to dyntick_save_
progress_counter(). Line 13 then executes a
memory barrier to ensure that the values are seen by
other CPUs to be gathered prior to subsequent RCU
processing. As with dyntick_save_progress_
counter(), this memory barrier pairs with those
in rcu_enter_nohz(), rcu_exit_nohz(),
rcu_nmi_enter(), rcu_nmi_exit(), rcu_
irq_enter(), and rcu_irq_exit(). Lines 14-15
then check to make sure that this CPU is either currently
in dynticks-idle mode ((curr & 0x1) == 0 and
(curr_nmi & 0x1) == 0) or has passed through
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1 static int
2 rcu_implicit_dynticks_qs(struct rcu_data *rdp)
3 {
4 long curr;
5 long curr_nmi;
6 long snap;
7 long snap_nmi;
8
9 curr = rdp->dynticks->dynticks;
10 snap = rdp->dynticks_snap;
11 curr_nmi = rdp->dynticks->dynticks_nmi;
12 snap_nmi = rdp->dynticks_nmi_snap;
13 smp_mb();
14 if ((curr != snap || (curr & 0x1) == 0) &&
15 (curr_nmi != snap_nmi || (curr_nmi & 0x1) == 0)) {
16 rdp->dynticks_fqs++;
17 return 1;
18 }
19 return rcu_implicit_offline_qs(rdp);
20 }

Figure D.48: Code for rcu_implicit_dynticks_-
qs()

dynticks-idle mode since the last call to dyntick_
save_progress_counter() (curr != snap
and curr_nmi != snap_nmi). If so, line 16
increments the ->dynticks_fqs statistical counter
(again, used only for tracing) and line 17 returns
non-zero to indicate that the specified CPU has passed
through a quiescent state. Otherwise, line 19 invokes
rcu_implicit_offline_qs() (described in
Section D.3.8) to check whether the specified CPU is
currently offline.

D.3.8 Forcing Quiescent States
Normally, CPUs pass through quiescent states which are
duly recorded, so that grace periods end in a timely man-
ner. However, any of the following three conditions can
prevent CPUs from passing through quiescent states:

1. The CPU is in dyntick-idle state, and is sleeping in
a low-power mode. Although such a CPU is offi-
cially in an extended quiescent state, because it is
not executing instructions, it cannot do anything on
its own.

2. The CPU is in the process of coming online, and
RCU has been informed that it is online, but this
CPU is not yet actually executing code, nor is it
marked as online in cpu_online_map. The cur-
rent grace period will therefore wait on it, but it
cannot yet pass through quiescent states on its own.

3. The CPU is running user-level code, but has avoided
entering the scheduler for an extended time period.

1 static void
2 dyntick_record_completed(struct rcu_state *rsp,
3 long comp)
4 {
5 rsp->dynticks_completed = comp;
6 }
7
8 static long
9 dyntick_recall_completed(struct rcu_state *rsp)
10 {
11 return rsp->dynticks_completed;
12 }

Figure D.49: Recording and Recalling Dynticks-Idle
Grace Period

In each of these cases, RCU needs to take action on
behalf of the non-responding CPU. The following sec-
tions describe the functions that take such action. Sec-
tion D.3.8.1 describes the functions that record and recall
the dynticks-idle grace-period number (in order to avoid
incorrectly applying a dynticks-idle quiescent state to the
wrong grace period), Section D.3.8.2 describes functions
that detect offline and holdout CPUs, Section D.3.8.3
covers rcu_process_dyntick(), which scans for
holdout CPUs, and Section D.3.8.4 describes force_
quiescent_state(), which drives the process of
detecting extended quiescent states and forcing quiescent
states on holdout CPUs.

D.3.8.1 Recording and Recalling Dynticks-Idle
Grace Period

Figure D.49 shows the code for dyntick_
record_completed() and dyntick_recall_
completed(). These functions are defined as shown
only if dynticks is enabled (in other words, the CONFIG_
NO_HZ kernel parameter is selected), otherwise they are
essentially no-ops. The purpose of these functions is to
ensure that a given observation of a CPU in dynticks-idle
mode is associated with the correct grace period in face
of races between reporting this CPU in dynticks-idle
mode and this CPU coming out of dynticks-idle mode
and reporting a quiescent state on its own.

Lines 1-6 show dyntick_record_
completed(), which stores the value specified
by its comp argument into the specified rcu_state
structure’s ->dynticks_completed field. Lines 8-
12 show dyntick_recall_completed(), which
returns the value stored by the most recent call to
dyntick_record_completed() for this combina-
tion of CPU and rcu_state structure.
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1 static int rcu_implicit_offline_qs(struct rcu_data *rdp)
2 {
3 if (cpu_is_offline(rdp->cpu)) {
4 rdp->offline_fqs++;
5 return 1;
6 }
7 if (rdp->cpu != smp_processor_id())
8 smp_send_reschedule(rdp->cpu);
9 else
10 set_need_resched();
11 rdp->resched_ipi++;
12 return 0;
13 }

Figure D.50: Handling Offline and Holdout CPUs

D.3.8.2 Handling Offline and Holdout CPUs

Figure D.50 shows the code for rcu_implicit_
offline_qs(), which checks for offline CPUs and
forcing online holdout CPUs to enter a quiescent state.

Line 3 checks to see if the specified CPU is offline, and,
if so, line 4 increments statistical counter ->offline_
fqs (which is used only for tracing), and line 5 returns
non-zero to indicate that the CPU is in an extended quies-
cent state.

Otherwise, the CPU is online, not in dynticks-idle mode
(or this function would not have been called in the first
place), and has not yet passed through a quiescent state for
this grace period. Line 7 checks to see if the holdout CPU
is the current running CPU, and, if not, line 8 sends the
holdout CPU a reschedule IPI. Otherwise, line 10 sets the
TIF_NEED_RESCHED flag for the current task, forcing
the current CPU into the scheduler. In either case, the
CPU should then quickly enter a quiescent state. Line 11
increments statistical counter resched_ipi, which is
again used only for tracing. Finally, line 12 returns zero
to indicate that the holdout CPU is still refusing to pass
through a quiescent state.

D.3.8.3 Scanning for Holdout CPUs

Figure D.51 shows the code for rcu_process_
dyntick(), which scans the leaf rcu_node struc-
tures in search of holdout CPUs, as illustrated by the
blue arrow in Figure D.52. It invokes the function passed
in through argument f on each such CPU’s rcu_data
structure, and returns non-zero if the grace period speci-
fied by the lastcomp argument has ended.

Lines 13 and 14 acquire references to the first and the
last leaf rcu_node structures, respectively. Each pass
through the loop spanning lines 15-38 processes one of
the leaf rcu_node structures.

1 static int
2 rcu_process_dyntick(struct rcu_state *rsp,
3 long lastcomp,
4 int (*f)(struct rcu_data *))
5 {
6 unsigned long bit;
7 int cpu;
8 unsigned long flags;
9 unsigned long mask;
10 struct rcu_node *rnp_cur;
11 struct rcu_node *rnp_end;
12
13 rnp_cur = rsp->level[NUM_RCU_LVLS - 1];
14 rnp_end = &rsp->node[NUM_RCU_NODES];
15 for (; rnp_cur < rnp_end; rnp_cur++) {
16 mask = 0;
17 spin_lock_irqsave(&rnp_cur->lock, flags);
18 if (rsp->completed != lastcomp) {
19 spin_unlock_irqrestore(&rnp_cur->lock, flags);
20 return 1;
21 }
22 if (rnp_cur->qsmask == 0) {
23 spin_unlock_irqrestore(&rnp_cur->lock, flags);
24 continue;
25 }
26 cpu = rnp_cur->grplo;
27 bit = 1;
28 for (; cpu <= rnp_cur->grphi; cpu++, bit <<= 1) {
29 if ((rnp_cur->qsmask & bit) != 0 &&
30 f(rsp->rda[cpu]))
31 mask |= bit;
32 }
33 if (mask != 0 && rsp->completed == lastcomp) {
34 cpu_quiet_msk(mask, rsp, rnp_cur, flags);
35 continue;
36 }
37 spin_unlock_irqrestore(&rnp_cur->lock, flags);
38 }
39 return 0;
40 }

Figure D.51: Scanning for Holdout CPUs
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Figure D.52: Scanning Leaf rcu_node Structures

Line 16 sets the local variable mask to zero. This
variable will be used to accumulate the CPUs within the
current leaf rcu_node structure that are in extended qui-
escent states, and can thus be reported as such. Line 17
acquires the current leaf rcu_node structure’s lock, and
line 18 checks to see if the current grace period has com-
pleted, and, if so, line 19 releases the lock and line 20
returns non-zero. Otherwise, line 22 checks for holdout
CPUs associated with this rcu_node structure, and, if
there are none, line 23 releases the lock and line 24 restarts
the loop from the beginning on the next lead rcu_node
structure.

Execution reaches line 26 if there is at least one
holdout CPU associated with this rcu_node structure.
Lines 26 and 27 set local variables cpu and bit to
reference the lowest-numbered CPU associated with
this rcu_node structure. Each pass through the loop
spanning lines 28-32 checks one of the CPUs associ-
ated with the current rcu_node structure. Line 29
checks to see if the this CPU is still holding out or if
it has already passed through a quiescent state. If it
is still a holdout, line 30 invokes the specified function
(either dyntick_save_progress_counter() or
rcu_implicit_dynticks_qs(), as specified by
the caller), and if that function returns non-zero (indi-

cating that the current CPU is in an extended quiescent
state), then line 31 sets the current CPU’s bit in mask.

Line 33 then checks to see if any CPUs were identified
as being in extended quiescent states and if the current
grace period is still in force, and, if so, line 34 invokes
cpu_quiet_msk() to report that the grace period need
no longer wait for those CPUs and then line 35 restarts
the loop with the next rcu_node structure. (Note that
cpu_quiet_msk() releases the current rcu_node
structure’s lock, and might well end the current grace
period.) Otherwise, if all holdout CPUs really are still
holding out, line 37 releases the current rcu_node struc-
ture’s lock.

Once all of the leaf rcu_node structures have been
processed, the loop exits, and line 39 returns zero to
indicate that the current grace period is still in full force.
(Recall that line 20 returns non-zero should the current
grace period come to an end.)

D.3.8.4 Code for force_quiescent_state()

Figure D.53 shows the code for force_quiescent_
state() for CONFIG_SMP,4 which is invoked when

4 For non-CONFIG_SMP, force_quiescent_state is a sim-
ple wrapper around set_need_resched().
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1 static void
2 force_quiescent_state(struct rcu_state *rsp, int relaxed)
3 {
4 unsigned long flags;
5 long lastcomp;
6 struct rcu_data *rdp = rsp->rda[smp_processor_id()];
7 struct rcu_node *rnp = rcu_get_root(rsp);
8 u8 signaled;
9
10 if (ACCESS_ONCE(rsp->completed) ==
11 ACCESS_ONCE(rsp->gpnum))
12 return;
13 if (!spin_trylock_irqsave(&rsp->fqslock, flags)) {
14 rsp->n_force_qs_lh++;
15 return;
16 }
17 if (relaxed &&
18 (long)(rsp->jiffies_force_qs - jiffies) >= 0 &&
19 (rdp->n_rcu_pending_force_qs -
20 rdp->n_rcu_pending) >= 0)
21 goto unlock_ret;
22 rsp->n_force_qs++;
23 spin_lock(&rnp->lock);
24 lastcomp = rsp->completed;
25 signaled = rsp->signaled;
26 rsp->jiffies_force_qs =
27 jiffies + RCU_JIFFIES_TILL_FORCE_QS;
28 rdp->n_rcu_pending_force_qs =
29 rdp->n_rcu_pending +
30 RCU_JIFFIES_TILL_FORCE_QS;
31 if (lastcomp == rsp->gpnum) {
32 rsp->n_force_qs_ngp++;
33 spin_unlock(&rnp->lock);
34 goto unlock_ret;
35 }
36 spin_unlock(&rnp->lock);
37 switch (signaled) {
38 case RCU_GP_INIT:
39 break;
40 case RCU_SAVE_DYNTICK:
41 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
42 break;
43 if (rcu_process_dyntick(rsp, lastcomp,
44 dyntick_save_progress_counter))
45 goto unlock_ret;
46 spin_lock(&rnp->lock);
47 if (lastcomp == rsp->completed) {
48 rsp->signaled = RCU_FORCE_QS;
49 dyntick_record_completed(rsp, lastcomp);
50 }
51 spin_unlock(&rnp->lock);
52 break;
53 case RCU_FORCE_QS:
54 if (rcu_process_dyntick(rsp,
55 dyntick_recall_completed(rsp),
56 rcu_implicit_dynticks_qs))
57 goto unlock_ret;
58 break;
59 }
60 unlock_ret:
61 spin_unlock_irqrestore(&rsp->fqslock, flags);
62 }

Figure D.53: force_quiescent_state() Code

RCU feels the need to expedite the current grace period
by forcing CPUs through quiescent states. RCU feels this
need when either:

1. the current grace period has gone on for more than
three jiffies (or as specified by the compile-time
value of RCU_JIFFIES_TILL_FORCE_QS), or

2. a CPU enqueuing an RCU callback via either
call_rcu() or call_rcu_bh() sees more
than 10,000 callbacks enqueued (or as specified by
the boot-time parameter qhimark).

Lines 10-12 check to see if there is a grace period in
progress, silently exiting if not. Lines 13-16 attempt to ac-
quire ->fqslock, which prevents concurrent attempts
to expedite a grace period. The ->n_force_qs_lh
counter is incremented when this lock is already held, and
is visible via the fqlh= field in the rcuhier debugfs
file when the CONFIG_RCU_TRACE kernel parameter is
enabled. Lines 17-21 check to see if it is really necessary
to expedite the current grace period, in other words, if
(1) the current CPU has 10,000 RCU callbacks waiting,
or (2) at least three jiffies have passed since either the
beginning of the current grace period or since the last
attempt to expedite the current grace period, measured
either by the jiffies counter or by the number of calls
to rcu_pending. Line 22 then counts the number of
attempts to expedite grace periods.

Lines 23-36 are executed with the root rcu_node
structure’s lock held in order to prevent confusion should
the current grace period happen to end just as we try to ex-
pedite it. Lines 24 and 25 snapshot the ->completed
and ->signaled fields, lines 26-30 set the soonest time
that a subsequent non-relaxed force_quiescent_
state() will be allowed to actually do any expediting,
and lines 31-35 check to see if the grace period ended
while we were acquiring the rcu_node structure’s lock,
releasing this lock and returning if so.

Lines 37-59 drive the force_quiescent_
state() state machine. If the grace period is still in
the midst of initialization, lines 41 and 42 simply return,
allowing force_quiescent_state() to be called
again at a later time, presumably after initialization has
completed. If dynticks are enabled (via the CONFIG_
NO_HZ kernel parameter), the first post-initialization call
to force_quiescent_state() in a given grace
period will execute lines 40-52, and the second and
subsequent calls will execute lines 53-59. On the other
hand, if dynticks is not enabled, then all post-initialization
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calls to force_quiescent_state() will execute
lines 53-59.

The purpose of lines 40-52 is to record the current
dynticks-idle state of all CPUs that have not yet passed
through a quiescent state, and to record a quiescent state
for any that are currently in dynticks-idle state (but not
currently in an irq or NMI handler). Lines 41-42 serve to
inform gcc that this branch of the switch statement is dead
code for non-CONFIG_NO_HZ kernels. Lines 43-45 in-
voke rcu_process_dyntick() in order to invoke
dyntick_save_progress_counter() for each
CPU that has not yet passed through a quiescent state for
the current grace period, exiting force_quiescent_
state() if the grace period ends in the meantime (possi-
bly due to having found that all the CPUs that had not yet
passed through a quiescent state were sleeping in dyntick-
idle mode). Lines 46 and 51 acquire and release the root
rcu_node structure’s lock, again to avoid possible con-
fusion with a concurrent end of the current grace period.
Line 47 checks to see if the current grace period is still
in force, and, if so, line 48 advances the state machine to
the RCU_FORCE_QS state and line 49 saves the current
grace-period number for the benefit of the next invoca-
tion of force_quiescent_state(). The reason
for saving the current grace-period number is to correctly
handle race conditions involving the current grace period
ending concurrently with the next invocation of force_
quiescent_state().

As noted earlier, lines 53-58 handle the second and sub-
sequent invocations of force_quiescent_state()
in CONFIG_NO_HZ kernels, and all invocations in non-
CONFIG_NO_HZ kernels. Lines 54 and 58 invoke
rcu_process_dyntick(), which cycles through
the CPUs that have still not passed through a qui-
escent state, invoking rcu_implicit_dynticks_
qs() on them, which in turn checks to see if any of
these CPUs have passed through dyntick-idle state (if
CONFIG_NO_HZ is enabled), checks to see if we are
waiting on any offline CPUs, and finally sends a resched-
ule IPI to any remaining CPUs not in the first two groups.

D.3.9 CPU-Stall Detection

RCU checks for stalled CPUs when the CONFIG_RCU_
CPU_STALL_DETECTOR kernel parameter is selected.
“Stalled CPUs” are those spinning in the kernel with pre-
emption disabled, which degrades response time. These
checks are implemented via the record_gp_stall_
check_time(), check_cpu_stall(), print_

1 static void
2 record_gp_stall_check_time(struct rcu_state *rsp)
3 {
4 rsp->gp_start = jiffies;
5 rsp->jiffies_stall =
6 jiffies + RCU_SECONDS_TILL_STALL_CHECK;
7 }

Figure D.54: record_gp_stall_check_time()
Code

1 static void
2 check_cpu_stall(struct rcu_state *rsp,
3 struct rcu_data *rdp)
4 {
5 long delta;
6 struct rcu_node *rnp;
7
8 delta = jiffies - rsp->jiffies_stall;
9 rnp = rdp->mynode;
10 if ((rnp->qsmask & rdp->grpmask) && delta >= 0) {
11 print_cpu_stall(rsp);
12 } else if (rsp->gpnum != rsp->completed &&
13 delta >= RCU_STALL_RAT_DELAY) {
14 print_other_cpu_stall(rsp);
15 }
16 }

Figure D.55: check_cpu_stall() Code

cpu_stall(), and print_other_cpu_stall()
functions, each of which is described below. All of these
functions are no-ops when the CONFIG_RCU_CPU_
STALL_DETECTOR kernel parameter is not selected.

Figure D.54 shows the code for record_gp_
stall_check_time(). Line 4 records the current
time (of the start of the grace period) in jiffies, and lines 5-
6 record the time at which CPU stalls should be checked
for, should the grace period run on that long.

Figure D.55 shows the code for check_cpu_stall,
which checks to see if the grace period has stretched
on too long, invoking either print_cpu_stall()
or print_other_cpu_stall() in order to print a
CPU-stall warning message if so.

Line 8 computes the number of jiffies since the time
at which stall warnings should be printed, which will be
negative if it is not yet time to print warnings. Line 9
obtains a pointer to the leaf rcu_node structure corre-
sponding to the current CPU, and line 10 checks to see if
the current CPU has not yet passed through a quiescent
state and if the grace period has extended too long (in
other words, if the current CPU is stalled), with line 11
invoking print_cpu_stall() if so.

Otherwise, lines 12-13 check to see if the grace period
is still in effect and if it has extended a couple of jiffies
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1 static void print_cpu_stall(struct rcu_state *rsp)
2 {
3 unsigned long flags;
4 struct rcu_node *rnp = rcu_get_root(rsp);
5
6 printk(KERN_ERR
7 "INFO: RCU detected CPU %d stall "
8 "(t=%lu jiffies)\n",
9 smp_processor_id(),
10 jiffies - rsp->gp_start);
11 dump_stack();
12 spin_lock_irqsave(&rnp->lock, flags);
13 if ((long)(jiffies - rsp->jiffies_stall) >= 0)
14 rsp->jiffies_stall =
15 jiffies + RCU_SECONDS_TILL_STALL_RECHECK;
16 spin_unlock_irqrestore(&rnp->lock, flags);
17 set_need_resched();
18 }

Figure D.56: print_cpu_stall() Code

past the CPU-stall warning duration, with line 14 invoking
print_other_cpu_stall() if so.

Quick Quiz D.53: Why wait the extra couple jiffies on
lines 12-13 in Figure D.55?

Figure D.56 shows the code for print_cpu_
stall().

Line 6-11 prints a console message and dumps the
current CPU’s stack, while lines 12-17 compute the time
to the next CPU stall warning, should the grace period
stretch on that much additional time.

Quick Quiz D.54: What prevents the grace period
from ending before the stall warning is printed in Fig-
ure D.56?

Figure D.57 shows the code for print_other_
cpu_stall(), which prints out stall warnings for
CPUs other than the currently running CPU.

Lines 10 and 11 pick up references to the first leaf
rcu_node structure and one past the last leaf rcu_
node structure, respectively. Line 12 acquires the root
rcu_node structure’s lock, and also disables interrupts.
Line 13 calculates the how long ago the CPU-stall warn-
ing time occurred (which will be negative if it has not
yet occurred), and lines 14 and 15 check to see if the
CPU-stall warning time has passed and if the grace period
has not yet ended, with line 16 releasing the lock (and
re-enabling interrupts) and line 17 returning if so.

Quick Quiz D.55: Why does print_other_cpu_
stall() in Figure D.57 need to check for the grace
period ending when print_cpu_stall() did not?

Otherwise, lines 19 and 20 compute the next time
that CPU stall warnings should be printed (if the grace
period extends that long) and line 21 releases the lock
and re-enables interrupts. Lines 23-33 print a list of

1 static void print_other_cpu_stall(struct rcu_state *rsp)
2 {
3 int cpu;
4 long delta;
5 unsigned long flags;
6 struct rcu_node *rnp = rcu_get_root(rsp);
7 struct rcu_node *rnp_cur;
8 struct rcu_node *rnp_end;
9
10 rnp_cur = rsp->level[NUM_RCU_LVLS - 1];
11 rnp_end = &rsp->node[NUM_RCU_NODES];
12 spin_lock_irqsave(&rnp->lock, flags);
13 delta = jiffies - rsp->jiffies_stall;
14 if (delta < RCU_STALL_RAT_DELAY ||
15 rsp->gpnum == rsp->completed) {
16 spin_unlock_irqrestore(&rnp->lock, flags);
17 return;
18 }
19 rsp->jiffies_stall = jiffies +
20 RCU_SECONDS_TILL_STALL_RECHECK;
21 spin_unlock_irqrestore(&rnp->lock, flags);
22 printk(KERN_ERR "INFO: RCU detected CPU stalls:");
23 for (; rnp_cur < rnp_end; rnp_cur++) {
24 if (rnp_cur->qsmask == 0)
25 continue;
26 cpu = 0;
27 for (; cpu <= rnp_cur->grphi - rnp_cur->grplo; cpu++)
28 if (rnp_cur->qsmask & (1UL << cpu))
29 printk(" %d", rnp_cur->grplo + cpu);
30 }
31 printk(" (detected by %d, t=%ld jiffies)\n",
32 smp_processor_id(),
33 (long)(jiffies - rsp->gp_start));
34 force_quiescent_state(rsp, 0);
35 }

Figure D.57: print_other_cpu_stall() Code
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the stalled CPUs, and, finally, line 34 invokes force_
quiescent_state() in order to nudge the offending
CPUs into passing through a quiescent state.

D.3.10 Possible Flaws and Changes

The biggest possible issue with Hierarchical RCU put
forward as of this writing is the fact that force_
quiescent_state() involves a potential walk
through all CPUs’ rcu_data structures. On a machine
with thousands of CPUs, this could potentially represent
an excessive impact on scheduling latency, given that this
scan is conducted with interrupts disabled.

Should this become a problem in real life, one fix is
to maintain separate force_quiescent_state()
sequencing on a per-leaf-rcu_node basis as well as
the current per-rcu_state ->signaled state vari-
able. This would allow incremental forcing of quiescent
states on a per-leaf-rcu_node basis, greatly reducing
the worst-case degradation of scheduling latency.

In the meantime, those caring deeply about scheduling
latency can limit the number of CPUs in the system or
use the preemptible RCU implementation.

D.4 Preemptible RCU

The preemptible RCU implementation is unusual in that it
permits read-side critical sections to be preempted and to
be blocked waiting for locks. However, it does not handle
general blocking (for example, via the wait_event()
primitive): if you need that, you should instead use SRCU,
which is described in Appendix D.1. In contrast to SRCU,
preemptible RCU only permits blocking within primi-
tives that are both subject to priority inheritance and non-
blocking in a non-CONFIG_PREEMPT kernel. This abil-
ity to acquire blocking locks and to be preempted within
RCU read-side critical sections is required for the aggres-
sive real-time capabilities provided by Ingo Molnar’s -rt
patchset. However, the initial preemptible RCU imple-
mentation [McK05c] had some limitations, including:

1. Its read-side primitives cannot be called from
within non-maskable interrupt (NMI) or systems-
management interrupt handlers.

2. Its read-side primitives use both atomic instructions
and memory barriers, both of which have excessive
overhead.

3. It does no priority boosting of RCU read-side critical
sections [McK07d].

The new preemptible RCU implementation that ac-
cepted into the 2.6.26 Linux kernel removes these limita-
tions, and this appendix describes its design, serving as
an update to the LWN article [McK07a]. However, please
note that this implementation was replaced with a faster
and simpler implementation in the 2.6.32 Linux kernel.
This description nevertheless remains to bear witness to
the most complex RCU implementation ever devised.

Quick Quiz D.56: Why is it important that blocking
primitives called from within a preemptible-RCU read-
side critical section be subject to priority inheritance?

Quick Quiz D.57: Could the prohibition against using
primitives that would block in a non-CONFIG_PREEMPT
kernel be lifted, and if so, under what conditions?

D.4.1 Conceptual RCU

Understanding and validating an RCU implementation
is much easier given a view of RCU at the lowest pos-
sible level. This section gives a very brief overview of
the most basic concurrency requirements that an RCU
implementation must support. For more detail, please see
Section 8.3.2.

RCU implementations must obey the following rule: if
any statement in a given RCU read-side critical section
precedes a grace period, then all statements in that RCU
read-side critical section must complete before that grace
period ends.

Reader Reader Reader

ReaderReader

Reader

Reader Reader

Reader

Removal Reclamation

Forbidden!

Figure D.58: Buggy Grace Period From Broken RCU

This is illustrated by Figure D.58, where time advances
from left to right. The red "Removal" box represents
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the update-side critical section that modifies the RCU-
protected data structure, for example, via list_del_
rcu(); the large yellow "Grace Period" box represents
a grace period (surprise!) which might be invoked via
synchronize_rcu(), and the green "Reclamation"
box represents freeing the affected data element, perhaps
via kfree(). The blue "Reader" boxes each represent
an RCU read-side critical section, for example, begin-
ning with rcu_read_lock() and ending with rcu_
read_unlock(). The red-rimmed "Reader" box is
an example of an illegal situation: any so-called RCU
implementation that permits a read-side critical section
to completely overlap a grace period is buggy, since the
updater might free up memory that this reader is still
using.

So, what is the poor RCU implementation to do in this
situation?

Reader Reader Reader

ReaderReader

Reader

Reader Reader

Grace Period
Extends as
NeededReader

Removal Reclamation

Time

Figure D.59: Good Grace Period From Correct RCU

It must extend the grace period, perhaps as shown in
Figure D.59. In short, the RCU implementation must en-
sure that any RCU read-side critical sections in progress at
the start of a given grace period have completely finished,
memory operations and all, before that grace period is
permitted to complete. This fact allows RCU validation to
be extremely focused: simply demonstrate that any RCU
read-side critical section in progress at the beginning of a
grace period must terminate before that grace period ends,
along with sufficient barriers to prevent either the com-
piler or the CPU from undoing the RCU implementation’s
work.

D.4.2 Overview of Preemptible RCU Algo-
rithm

This section focuses on a specific implementation of pre-
emptible RCU. Many other implementations are possible,
and are described elsewhere [MSMB06, MS05]. This
article focuses on this specific implementation’s general
approach, the data structures, the grace-period state ma-
chine, and a walk through the read-side primitives.

D.4.2.1 General Approach

call_rcu()

waittailwaitlist

nextlist nexttail

call_rcu()

rcu_process_callbacks()

waitlist[1] waittail[1]

waittail[0]waitlist[0]

nextlist nexttail

donetaildonelist
rcu_process_callbacks()

donetaildonelist

Classic RCU Preemptible RCU

Figure D.60: Classic vs. Preemptible RCU Callback
Processing

Because this implementation of preemptible RCU does
not require memory barriers in rcu_read_lock()
and rcu_read_unlock(), a multi-stage grace-period
detection algorithm is required. Instead of using a single
wait queue of callbacks (which has sufficed for earlier
RCU implementations), this implementation uses an array
of wait queues, so that RCU callbacks are enqueued on
each element of this array in turn. This difference in call-
back flow is shown in Figure D.60 for a preemptible RCU
implementation with two waitlist stages per grace period
(in contrast, the September 10 2007 patch to -rt [McK07c]
uses four waitlist stages).



D.4. PREEMPTIBLE RCU 257

Given two stages per grace period, any pair of stages
forms a full grace period. Similarly, in an implementation
with four stages per grace period, any sequence of four
stages would form a full grace period.
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Figure D.61: Preemptible RCU Counter Flip Operation

To determine when a grace-period stage can end,
preemptible RCU uses a per-CPU two-element rcu_
flipctr array that tracks in-progress RCU read-side
critical sections. One element of a given CPU’s rcu_
flipctr array tracks old RCU read-side critical sec-
tions, in other words, critical sections that started before
the current grace-period stage. The other element tracks
new RCU read-side critical sections, namely those starting
during the current grace-period stage. The array elements
switch roles at the beginning of each new grace-period
stage, as shown in Figure D.61.

During the first stage on the left-hand side of the above
figure, rcu_flipctr[0] tracks the new RCU read-
side critical sections, and is therefore incremented by
rcu_read_lock() and decremented by rcu_read_
unlock(). Similarly, rcu_flipctr[1] tracks the
old RCU read-side critical sections (those that started
during earlier stages), and is therefore decremented by
rcu_read_unlock() and never incremented at all.

Because each CPU’s old rcu_flipctr[1] ele-
ments are never incremented, their sum across all CPUs
must eventually go to zero, although preemption in the
midst of an RCU read-side critical section might cause
any individual counter to remain non-zero or even to go
negative. For example, suppose that a task calls rcu_
read_lock() on one CPU, is preempted, resumes on
another CPU, and then calls rcu_read_unlock().

The first CPU’s counter will then be +1 and the second
CPU’s counter will be -1, however, they will still sum to
zero. Regardless of possible preemption, when the sum of
the old counter elements does go to zero, it is safe to move
to the next grace-period stage, as shown on the right-hand
side of the above figure.

In this second stage, the elements of each CPU’s
rcu_flipctr counter array switch roles. The
rcu_flipctr[0] counter now tracks the old RCU
read-side critical sections, in other words, the ones
that started during grace period stage 0. Similarly,
the rcu_flipctr[1] counter now tracks the new
RCU read-side critical sections that start in grace pe-
riod stage 1. Therefore, rcu_read_lock() now
increments rcu_flipctr[1], while rcu_read_
unlock() still might decrement either counter. Specif-
ically, if the matching rcu_read_lock() executed
during grace-period stage 0 (the old stage at this
point), then rcu_read_unlock() must decrement
rcu_flipctr[0], but if the matching rcu_read_
lock() executed during grace-period stage 1 (the new
stage), then rcu_read_unlock() must instead decre-
ment rcu_flipctr[1].

The critical point is that all rcu_flipctr elements
tracking the old RCU read-side critical sections must
strictly decrease. Therefore, once the sum of these old
counters reaches zero, it cannot change.

The rcu_read_lock() primitive uses the bot-
tom bit of the current grace-period counter (rcu_
ctrlblk.completed & 0x1) to index the rcu_
flipctr array, and records this index in the task struc-
ture. The matching rcu_read_unlock() uses this
recorded value to ensure that it decrements a counter cor-
responding to the one that the matching rcu_read_
lock() incremented. Of course, if the RCU read-
side critical section has been preempted, rcu_read_
lock() might be decrementing the counter belonging
to a different CPU than the one whose counter was incre-
mented by the matching rcu_read_lock().

Each CPU also maintains rcu_flip_flag and
rcu_mb_flag per-CPU variables. The rcu_flip_
flag variable is used to synchronize the start of each
grace-period stage: once a given CPU has responded to
its rcu_flip_flag, it must refrain from increment-
ing the rcu_flip array element that now corresponds
to the old grace-period stage. The CPU that advances
the counter (rcu_ctrlblk.completed) changes the
value of each CPU’s rcu_mb_flag to rcu_flipped,
but a given rcu_mb_flag may be changed back to
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rcu_flip_seen only by the corresponding CPU.
The rcu_mb_flag variable is used to force each

CPU to execute a memory barrier at the end of each
grace-period stage. These memory barriers are required to
ensure that memory accesses from RCU read-side critical
sections ending in a given grace-period stage are ordered
before the end of that stage. This approach gains the ben-
efits memory barriers at the beginning and end of each
RCU read-side critical section without having to actually
execute all those costly barriers. The rcu_mb_flag is
set to rcu_mb_needed by the CPU that detects that the
sum of the old counters is zero, but a given rcu_mb_
flag is changed back to rcu_mb_done only by the
corresponding CPU, and even then only after executing a
memory barrier.

D.4.2.2 Data Structures

This section describes preemptible RCU’s major
data structures, including rcu_ctrlblk, rcu_
data, rcu_flipctr, rcu_try_flip_state,
rcu_try_flip_flag, and rcu_mb_flag.

rcu_ctrlblk The rcu_ctrlblk structure is
global, and holds the lock that protects grace-period pro-
cessing (fliplock) as well as holding the global grace-
period counter (completed). The least-significant bit
of completed is used by rcu_read_lock() to se-
lect which set of counters to increment.

rcu_data The rcu_data structure is a per-CPU
structure, and contains the following fields:

• lock guards the remaining fields in this structure.

• completed is used to synchronize CPU-local ac-
tivity with the global counter in rcu_ctrlblk.

• waitlistcount is used to maintain a count of
the number of non-empty wait-lists. This field is
used by rcu_pending() to help determine if this
CPU has any RCU-related work left to be done.

• nextlist, nextail, waitlist, waittail,
donelist, and donetail form lists containing
RCU callbacks that are waiting for invocation at the
end of a grace period. Each list has a tail pointer,
allowing O(1) appends. The RCU callbacks flow
through these lists as shown below.

• rcupreempt_trace accumulates statistics.

nextlist nexttail

waitlist[0] waittail[0]

waitlist[1] waittail[1]

donelist donetail

call_rcu()

rcu_process_callbacks()

Figure D.62: Preemptible RCU Callback Flow

Figure D.62 shows how RCU callbacks flow through
a given rcu_data structure’s lists, from creation by
call_rcu() through invocation by rcu_process_
callbacks(). Each blue arrow represents one pass by
the grace-period state machine, which is described in a
later section.

rcu_flipctr As noted earlier, the rcu_flipctr
per-CPU array of counters contains the counter pairs that
track outstanding RCU read-side critical sections. Any
given counter in this array can go negative, for example,
when a task is migrated to a different CPU in the middle
of an RCU read-side critical section. However, the sum
of the counters will still remain positive throughout the
corresponding grace period, and will furthermore go to
zero at the end of that grace period.

rcu_try_flip_state The rcu_try_flip_
state variable tracks the current state of the
grace-period state machine, as described in the next
section.

rcu_try_flip_flag The rcu_try_flip_
flag per-CPU variable alerts the corresponding CPU
that the grace-period counter has recently been incre-
mented, and also records that CPU’s acknowledgment.
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Once a given CPU has acknowledged the counter flip,
all subsequent actions taken by rcu_read_lock()
on that CPU must account for the new value of the
grace-period counter, in particular, when incrementing
rcu_flipctr in rcu_read_lock().

rcu_mb_flag The rcu_mb_flag per-CPU vari-
able alerts the corresponding CPU that it must execute
a memory barrier in order for the grace-period state ma-
chine to proceed, and also records that CPU’s acknowl-
edgment. Once a given CPU has executed its memory
barrier, the memory operations of all prior RCU read-side
critical will be visible to any code sequenced after the
corresponding grace period.

D.4.2.3 Grace-Period State Machine

This section gives an overview of the states executed by
the grace-period state machine, and then walks through
the relevant code.

Grace-Period State Machine Overview The state
(recorded in rcu_try_flip_state) can take on the
following values:

• rcu_try_flip_idle_state: the grace-
period state machine is idle due to there being
no RCU grace-period activity. The rcu_
ctrlblk.completed grace-period counter is
incremented upon exit from this state, and all of
the per-CPU rcu_flip_flag variables are set to
rcu_flipped.

• rcu_try_flip_waitack_state: waiting for
all CPUs to acknowledge that they have seen the
previous state’s increment, which they do by setting
their rcu_flip_flag variables to rcu_flip_
seen. Once all CPUs have so acknowledged, we
know that the old set of counters can no longer be
incremented.

• rcu_try_flip_waitzero_state: waiting
for the old counters to sum to zero. Once the coun-
ters sum to zero, all of the per-CPU rcu_mb_flag
variables are set to rcu_mb_needed.

• rcu_try_flip_waitmb_state: waiting for
all CPUs to execute a memory-barrier instruction,
which they signify by setting their rcu_mb_flag
variables to rcu_mb_done. Once all CPUs have
done so, all CPUs are guaranteed to see the changes

made by any RCU read-side critical section that
started before the beginning of the corresponding
grace period, even on weakly ordered machines.

Figure D.63: Preemptible RCU State Machine

The grace period state machine cycles through these
states sequentially, as shown in Figure D.63.

Figure D.64 shows how the state machine operates over
time. The states are shown along the figure’s left-hand
side and the relevant events are shown along the timeline,
with time proceeding in the downward direction. We will
elaborate on this figure when we validate the algorithm in
a later section.

In the meantime, here are some important things to
note:

1. The increment of the rcu_
ctrlblk.completed counter might be
observed at different times by different CPUs, as
indicated by the blue oval. However, after a given
CPU has acknowledged the increment, it is required
to use the new counter. Therefore, once all CPUs
have acknowledged, the old counter can only be
decremented.

2. A given CPU advances its callback lists just before
acknowledging the counter increment.
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Figure D.64: Preemptible RCU State Machine Timeline

3. The blue oval represents the fact that memory re-
ordering might cause different CPUs to see the in-
crement at different times. This means that a given
CPU might believe that some other CPU has jumped
the gun, using the new value of the counter before
the counter was actually incremented. In fact, in
theory, a given CPU might see the next increment of
the rcu_ctrlblk.completed counter as early
as the last preceding memory barrier. (Note well
that this sentence is very imprecise. If you intend
to do correctness proofs involving memory barriers,
please see Appendix D.4.3.3.

4. Because rcu_read_lock() does not contain any
memory barriers, the corresponding RCU read-side
critical sections might be reordered by the CPU to
follow the rcu_read_unlock(). Therefore, the
memory barriers are required to ensure that the ac-
tions of the RCU read-side critical sections have in
fact completed.

5. As we will see, the fact that different CPUs can see
the counter flip happening at different times means
that a single trip through the state machine is not suf-
ficient for a grace period: multiple trips are required.

1 void rcu_check_callbacks(int cpu, int user)
2 {
3 unsigned long flags;
4 struct rcu_data *rdp = RCU_DATA_CPU(cpu);
5
6 rcu_check_mb(cpu);
7 if (rcu_ctrlblk.completed == rdp->completed)
8 rcu_try_flip();
9 spin_lock_irqsave(&rdp->lock, flags);
10 RCU_TRACE_RDP(rcupreempt_trace_check_callbacks, rdp);
11 __rcu_advance_callbacks(rdp);
12 spin_unlock_irqrestore(&rdp->lock, flags);
13 }

Figure D.65: rcu_check_callbacks() Implemen-
tation

1 static void rcu_check_mb(int cpu)
2 {
3 if (per_cpu(rcu_mb_flag, cpu) == rcu_mb_needed) {
4 smp_mb();
5 per_cpu(rcu_mb_flag, cpu) = rcu_mb_done;
6 }
7 }

Figure D.66: rcu_check_mb() Implementation

Grace-Period State Machine Walkthrough This sec-
tion walks through the C code that implements the RCU
grace-period state machine, which is invoked from the
scheduling-clock interrupt, which invokes rcu_check_
callbacks() with irqs (and thus also preemption) dis-
abled. This function is implemented as shown in Fig-
ure D.65. Line 4 selects the rcu_data structure cor-
responding to the current CPU, and line 6 checks to see
if this CPU needs to execute a memory barrier to ad-
vance the state machine out of the rcu_try_flip_
waitmb_state state. Line 7 checks to see if this CPU
is already aware of the current grace-period stage number,
and line 8 attempts to advance the state machine if so.
Lines 9 and 12 hold the rcu_data’s lock, and line 11
advances callbacks if appropriate. Line 10 updates RCU
tracing statistics, if enabled via CONFIG_RCU_TRACE.

The rcu_check_mb() function executes a memory
barrier as needed as shown in Figure D.66. Line 3 checks
to see if this CPU needs to execute a memory barrier,
and, if so, line 4 executes one and line 5 informs the state
machine. Note that this memory barrier ensures that any
CPU that sees the new value of rcu_mb_flag will also
see the memory operations executed by this CPU in any
prior RCU read-side critical section.

The rcu_try_flip() function implements the top
level of the RCU grace-period state machine, as shown
in Figure D.67. Line 6 attempts to acquire the global
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1 static void rcu_try_flip(void)
2 {
3 unsigned long flags;
4
5 RCU_TRACE_ME(rcupreempt_trace_try_flip_1);
6 if (!spin_trylock_irqsave(&rcu_ctrlblk.fliplock, flags)) {
7 RCU_TRACE_ME(rcupreempt_trace_try_flip_e1);
8 return;
9 }
10 switch (rcu_try_flip_state) {
11 case rcu_try_flip_idle_state:
12 if (rcu_try_flip_idle())
13 rcu_try_flip_state = rcu_try_flip_waitack_state;
14 break;
15 case rcu_try_flip_waitack_state:
16 if (rcu_try_flip_waitack())
17 rcu_try_flip_state = rcu_try_flip_waitzero_state;
18 break;
19 case rcu_try_flip_waitzero_state:
20 if (rcu_try_flip_waitzero())
21 rcu_try_flip_state = rcu_try_flip_waitmb_state;
22 break;
23 case rcu_try_flip_waitmb_state:
24 if (rcu_try_flip_waitmb())
25 rcu_try_flip_state = rcu_try_flip_idle_state;
26 }
27 spin_unlock_irqrestore(&rcu_ctrlblk.fliplock, flags);
28 }

Figure D.67: rcu_try_flip() Implementation

1 static int rcu_try_flip_idle(void)
2 {
3 int cpu;
4
5 RCU_TRACE_ME(rcupreempt_trace_try_flip_i1);
6 if (!rcu_pending(smp_processor_id())) {
7 RCU_TRACE_ME(rcupreempt_trace_try_flip_ie1);
8 return 0;
9 }
10 RCU_TRACE_ME(rcupreempt_trace_try_flip_g1);
11 rcu_ctrlblk.completed++;
12 smp_mb();
13 for_each_cpu_mask(cpu, rcu_cpu_online_map)
14 per_cpu(rcu_flip_flag, cpu) = rcu_flipped;
15 return 1;
16 }

Figure D.68: rcu_try_flip_idle() Implementa-
tion

RCU state-machine lock, and returns if unsuccessful.
Lines; 5 and 7 accumulate RCU-tracing statistics (again,
if CONFIG_RCU_TRACE is enabled). Lines 10 through
26 execute the state machine, each invoking a function
specific to that state. Each such function returns 1 if the
state needs to be advanced and 0 otherwise. In princi-
ple, the next state could be executed immediately, but in
practice we choose not to do so in order to reduce latency.
Finally, line 27 releases the global RCU state-machine
lock that was acquired by line 6.

The rcu_try_flip_idle() function is called

1 static int rcu_try_flip_waitack(void)
2 {
3 int cpu;
4
5 RCU_TRACE_ME(rcupreempt_trace_try_flip_a1);
6 for_each_cpu_mask(cpu, rcu_cpu_online_map)
7 if (per_cpu(rcu_flip_flag, cpu) != rcu_flip_seen) {
8 RCU_TRACE_ME(rcupreempt_trace_try_flip_ae1);
9 return 0;
10 }
11 smp_mb();
12 RCU_TRACE_ME(rcupreempt_trace_try_flip_a2);
13 return 1;
14 }

Figure D.69: rcu_try_flip_waitack() Imple-
mentation

when the RCU grace-period state machine is idle, and
is thus responsible for getting it started when needed. Its
code is shown in Figure D.68. Line 6 checks to see if
there is any RCU grace-period work pending for this CPU,
and if not, line 8 leaves, telling the top-level state machine
to remain in the idle state. If instead there is work to do,
line 11 increments the grace-period stage counter, line 12
does a memory barrier to ensure that CPUs see the new
counter before they see the request to acknowledge it, and
lines 13 and 14 set all of the online CPUs’ rcu_flip_
flag. Finally, line 15 tells the top-level state machine to
advance to the next state.

The rcu_try_flip_waitack() function, shown
in Figure D.69, checks to see if all online CPUs have
acknowledged the counter flip (AKA "increment", but
called "flip" because the bottom bit, which rcu_read_
lock() uses to index the rcu_flipctr array, does
flip). If they have, it tells the top-level grace-period state
machine to move to the next state.

Line 6 cycles through all of the online CPUs, and line 7
checks to see if the current such CPU has acknowledged
the last counter flip. If not, line 9 tells the top-level grace-
period state machine to remain in this state. Otherwise, if
all online CPUs have acknowledged, then line 11 does a
memory barrier to ensure that we don’t check for zeroes
before the last CPU acknowledges. This may seem du-
bious, but CPU designers have sometimes done strange
things. Finally, line 13 tells the top-level grace-period
state machine to advance to the next state.

The rcu_try_flip_waitzero() function,
shown in Figure D.70, checks to see if all pre-existing
RCU read-side critical sections have completed, telling
the state machine to advance if so. Lines 8 and 9 sum the
counters, and line 10 checks to see if the result is zero,
and, if not, line 12 tells the state machine to stay right
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1 static int rcu_try_flip_waitzero(void)
2 {
3 int cpu;
4 int lastidx = !(rcu_ctrlblk.completed & 0x1);
5 int sum = 0;
6
7 RCU_TRACE_ME(rcupreempt_trace_try_flip_z1);
8 for_each_possible_cpu(cpu)
9 sum += per_cpu(rcu_flipctr, cpu)[lastidx];
10 if (sum != 0) {
11 RCU_TRACE_ME(rcupreempt_trace_try_flip_ze1);
12 return 0;
13 }
14 smp_mb();
15 for_each_cpu_mask(cpu, rcu_cpu_online_map)
16 per_cpu(rcu_mb_flag, cpu) = rcu_mb_needed;
17 RCU_TRACE_ME(rcupreempt_trace_try_flip_z2);
18 return 1;
19 }

Figure D.70: rcu_try_flip_waitzero() Imple-
mentation

1 static int rcu_try_flip_waitmb(void)
2 {
3 int cpu;
4
5 RCU_TRACE_ME(rcupreempt_trace_try_flip_m1);
6 for_each_cpu_mask(cpu, rcu_cpu_online_map)
7 if (per_cpu(rcu_mb_flag, cpu) != rcu_mb_done) {
8 RCU_TRACE_ME(rcupreempt_trace_try_flip_me1);
9 return 0;
10 }
11 smp_mb();
12 RCU_TRACE_ME(rcupreempt_trace_try_flip_m2);
13 return 1;
14 }

Figure D.71: rcu_try_flip_waitmb() Implemen-
tation

where it is. Otherwise, line 14 executes a memory barrier
to ensure that no CPU sees the subsequent call for a
memory barrier before it has exited its last RCU read-side
critical section. This possibility might seem remote, but
again, CPU designers have done stranger things, and
besides, this is anything but a fastpath. Lines 15 and
16 set all online CPUs’ rcu_mb_flag variables, and
line 18 tells the state machine to advance to the next state.

The rcu_try_flip_waitmb() function, shown
in Figure D.71, checks to see if all online CPUs have
executed the requested memory barrier, telling the state
machine to advance if so. Lines 6 and 7 check each online
CPU to see if it has done the needed memory barrier,
and if not, line 9 tells the state machine not to advance.
Otherwise, if all CPUs have executed a memory barrier,
line 11 executes a memory barrier to ensure that any RCU
callback invocation follows all of the memory barriers,
and line 13 tells the state machine to advance.

1 static void __rcu_advance_callbacks(struct rcu_data *rdp)
2 {
3 int cpu;
4 int i;
5 int wlc = 0;
6
7 if (rdp->completed != rcu_ctrlblk.completed) {
8 if (rdp->waitlist[GP_STAGES - 1] != NULL) {
9 *rdp->donetail = rdp->waitlist[GP_STAGES - 1];
10 rdp->donetail = rdp->waittail[GP_STAGES - 1];
11 RCU_TRACE_RDP(rcupreempt_trace_move2done, rdp);
12 }
13 for (i = GP_STAGES - 2; i >= 0; i--) {
14 if (rdp->waitlist[i] != NULL) {
15 rdp->waitlist[i + 1] = rdp->waitlist[i];
16 rdp->waittail[i + 1] = rdp->waittail[i];
17 wlc++;
18 } else {
19 rdp->waitlist[i + 1] = NULL;
20 rdp->waittail[i + 1] =
21 &rdp->waitlist[i + 1];
22 }
23 }
24 if (rdp->nextlist != NULL) {
25 rdp->waitlist[0] = rdp->nextlist;
26 rdp->waittail[0] = rdp->nexttail;
27 wlc++;
28 rdp->nextlist = NULL;
29 rdp->nexttail = &rdp->nextlist;
30 RCU_TRACE_RDP(rcupreempt_trace_move2wait, rdp);
31 } else {
32 rdp->waitlist[0] = NULL;
33 rdp->waittail[0] = &rdp->waitlist[0];
34 }
35 rdp->waitlistcount = wlc;
36 rdp->completed = rcu_ctrlblk.completed;
37 }
38 cpu = raw_smp_processor_id();
39 if (per_cpu(rcu_flip_flag, cpu) == rcu_flipped) {
40 smp_mb();
41 per_cpu(rcu_flip_flag, cpu) = rcu_flip_seen;
42 smp_mb();
43 }
44 }

Figure D.72: __rcu_advance_callbacks() Im-
plementation
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1 void __rcu_read_lock(void)
2 {
3 int idx;
4 struct task_struct *t = current;
5 int nesting;
6
7 nesting = ACCESS_ONCE(t->rcu_read_lock_nesting);
8 if (nesting != 0) {
9 t->rcu_read_lock_nesting = nesting + 1;
10 } else {
11 unsigned long flags;
12
13 local_irq_save(flags);
14 idx = ACCESS_ONCE(rcu_ctrlblk.completed) & 0x1;
15 ACCESS_ONCE(__get_cpu_var(rcu_flipctr)[idx])++;
16 ACCESS_ONCE(t->rcu_read_lock_nesting) = nesting + 1;
17 ACCESS_ONCE(t->rcu_flipctr_idx) = idx;
18 local_irq_restore(flags);
19 }
20 }

Figure D.73: __rcu_read_lock() Implementation

The __rcu_advance_callbacks() function,
shown in Figure D.72, advances callbacks and acknowl-
edges the counter flip. Line 7 checks to see if the
global rcu_ctrlblk.completed counter has ad-
vanced since the last call by the current CPU to this func-
tion. If not, callbacks need not be advanced (lines 8-37).
Otherwise, lines 8 through 37 advance callbacks through
the lists (while maintaining a count of the number of non-
empty lists in the wlc variable). In either case, lines 38
through 43 acknowledge the counter flip if needed.

Quick Quiz D.58: How is it possible for lines 38-43
of __rcu_advance_callbacks() to be executed
when lines 7-37 have not? Won’t they both be executed
just after a counter flip, and never at any other time?

D.4.2.4 Read-Side Primitives

This section examines the rcu_read_lock() and
rcu_read_unlock() primitives, followed by a dis-
cussion of how this implementation deals with the fact
that these two primitives do not contain memory barriers.

rcu_read_lock() The implementation of rcu_
read_lock() is as shown in Figure D.73. Line 7
fetches this task’s RCU read-side critical-section nest-
ing counter. If line 8 finds that this counter is non-zero,
then we are already protected by an outer rcu_read_
lock(), in which case line 9 simply increments this
counter.

However, if this is the outermost rcu_read_
lock(), then more work is required. Lines 13 and 18
suppress and restore irqs to ensure that the intervening

code is neither preempted nor interrupted by a scheduling-
clock interrupt (which runs the grace period state ma-
chine). Line 14 fetches the grace-period counter, line 15
increments the current counter for this CPU, line 16 incre-
ments the nesting counter, and line 17 records the old/new
counter index so that rcu_read_unlock() can decre-
ment the corresponding counter (but on whatever CPU it
ends up running on).

The ACCESS_ONCE() macros force the compiler to
emit the accesses in order. Although this does not prevent
the CPU from reordering the accesses from the viewpoint
of other CPUs, it does ensure that NMI and SMI handlers
running on this CPU will see these accesses in order. This
is critically important:

1. In absence of the ACCESS_ONCE() in the assign-
ment to idx, the compiler would be within its rights
to: (a) eliminate the local variable idx and (b) com-
pile the increment on line 16 as a fetch-increment-
store sequence, doing separate accesses to rcu_
ctrlblk.completed for the fetch and the store.
If the value of rcu_ctrlblk.completed had
changed in the meantime, this would corrupt the
rcu_flipctr values.

2. If the assignment to rcu_read_lock_nesting
(line 17) were to be reordered to precede the incre-
ment of rcu_flipctr (line 16), and if an NMI
occurred between these two events, then an rcu_
read_lock() in that NMI’s handler would incor-
rectly conclude that it was already under the protec-
tion of rcu_read_lock().

3. If the assignment to rcu_read_lock_nesting
(line 17) were to be reordered to follow the assign-
ment to rcu_flipctr_idx (line 18), and if an
NMI occurred between these two events, then an
rcu_read_lock() in that NMI’s handler would
clobber rcu_flipctr_idx, possibly causing the
matching rcu_read_unlock() to decrement
the wrong counter. This in turn could result in pre-
mature ending of a grace period, indefinite extension
of a grace period, or even both.

It is not clear that the ACCESS_ONCE on the assign-
ment to nesting (line 7) is required. It is also un-
clear whether the smp_read_barrier_depends()
(line 15) is needed: it was added to ensure that changes to
index and value remain ordered.

The reasons that irqs must be disabled from line 13
through line 19 are as follows:
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1. Suppose one CPU loaded rcu_
ctrlblk.completed (line 14), then a second
CPU incremented this counter, and then the first
CPU took a scheduling-clock interrupt. The first
CPU would then see that it needed to acknowledge
the counter flip, which it would do. This acknowl-
edgment is a promise to avoid incrementing the
newly old counter, and this CPU would break this
promise. Worse yet, this CPU might be preempted
immediately upon return from the scheduling-clock
interrupt, and thus end up incrementing the counter
at some random point in the future. Either situation
could disrupt grace-period detection.

2. Disabling irqs has the side effect of disabling pre-
emption. If this code were to be preempted between
fetching rcu_ctrlblk.completed (line 14)
and incrementing rcu_flipctr (line 16), it might
well be migrated to some other CPU. This would re-
sult in it non-atomically incrementing the counter
from that other CPU. If this CPU happened to be
executing in rcu_read_lock() or rcu_read_
unlock() just at that time, one of the increments
or decrements might be lost, again disrupting grace-
period detection. The same result could happen on
RISC machines if the preemption occurred in the
middle of the increment (after the fetch of the old
counter but before the store of the newly incremented
counter).

3. Permitting preemption in the midst of line 16, be-
tween selecting the current CPU’s copy of the rcu_
flipctr array and the increment of the element
indicated by rcu_flipctr_idx, can result in a
similar failure. Execution might well resume on
some other CPU. If this resumption happened con-
currently with an rcu_read_lock() or rcu_
read_unlock() running on the original CPU, an
increment or decrement might be lost, resulting in
either premature termination of a grace period, in-
definite extension of a grace period, or even both.

4. Failing to disable preemption can also defeat RCU
priority boosting, which relies on rcu_read_
lock_nesting to determine when a given task
is in an RCU read-side critical section. So, for ex-
ample, if a given task is indefinitely preempted just
after incrementing rcu_flipctr, but before up-
dating rcu_read_lock_nesting, then it will
stall RCU grace periods for as long as it is preempted.
However, because rcu_read_lock_nesting

1 void __rcu_read_unlock(void)
2 {
3 int idx;
4 struct task_struct *t = current;
5 int nesting;
6
7 nesting = ACCESS_ONCE(t->rcu_read_lock_nesting);
8 if (nesting > 1) {
9 t->rcu_read_lock_nesting = nesting - 1;
10 } else {
11 unsigned long flags;
12
13 local_irq_save(flags);
14 idx = ACCESS_ONCE(t->rcu_flipctr_idx);
15 ACCESS_ONCE(t->rcu_read_lock_nesting) = nesting - 1;
16 ACCESS_ONCE(__get_cpu_var(rcu_flipctr)[idx])--;
17 local_irq_restore(flags);
18 }
19 }

Figure D.74: __rcu_read_unlock() Implementa-
tion

has not yet been incremented, the RCU priority
booster has no way to tell that boosting is needed.
Therefore, in the presence of CPU-bound realtime
threads, the preempted task might stall grace periods
indefinitely, eventually causing an OOM event.

The last three reasons could of course be addressed
by disabling preemption rather than disabling of irqs, but
given that the first reason requires disabling irqs in any
case, there is little reason to separately disable preemp-
tion. It is entirely possible that the first reason might be
tolerated by requiring an additional grace-period stage,
however, it is not clear that disabling preemption is much
faster than disabling interrupts on modern CPUs.

rcu_read_unlock() The implementation of
rcu_read_unlock() is shown in Figure D.74.
Line 7 fetches the rcu_read_lock_nesting
counter, which line 8 checks to see if we are under
the protection of an enclosing rcu_read_lock()
primitive. If so, line 9 simply decrements the counter.

However, as with rcu_read_lock(), we otherwise
must do more work. Lines 13 and 17 disable and restore
irqs in order to prevent the scheduling-clock interrupt
from invoking the grace-period state machine while in the
midst of rcu_read_unlock() processing. Line 14
picks up the rcu_flipctr_idx that was saved by
the matching rcu_read_lock(), line 15 decrements
rcu_read_lock_nesting so that irq and NMI/SMI
handlers will henceforth update rcu_flipctr, line 16
decrements the counter (with the same index as, but pos-
sibly on a different CPU than, that incremented by the
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matching rcu_read_lock().
The ACCESS_ONCE() macros and irq disabling are

required for similar reasons that they are in rcu_read_
lock().

Quick Quiz D.59: What problems could arise if
the lines containing ACCESS_ONCE() in rcu_read_
unlock() were reordered by the compiler?

Quick Quiz D.60: What problems could arise if
the lines containing ACCESS_ONCE() in rcu_read_
unlock() were reordered by the CPU?

Quick Quiz D.61: What problems could arise in rcu_
read_unlock() if irqs were not disabled?
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Figure D.75: Preemptible RCU with Read-Side Memory
Barriers

Memory-Barrier Considerations Note that these two
primitives contains no memory barriers, so there is noth-
ing to stop the CPU from executing the critical section
before executing the rcu_read_lock() or after ex-
ecuting the rcu_read_unlock(). The purpose of
the rcu_try_flip_waitmb_state is to account
for this possible reordering, but only at the beginning
or end of a grace period. To see why this approach is help-
ful, consider Figure D.75, which shows the wastefulness

of the conventional approach of placing a memory barrier
at the beginning and end of each RCU read-side critical
section [MSMB06].
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Figure D.76: Preemptible RCU with Grace-Period Mem-
ory Barriers

The "MB"s represent memory barriers, and only the
emboldened barriers are needed, namely the first and last
on a given CPU for each grace period. This preemptible
RCU implementation therefore associates the memory
barriers with the grace period, as shown in Figure D.76.

Given that the Linux kernel can execute literally mil-
lions of RCU read-side critical sections per grace period,
this latter approach can result in substantial read-side
savings, due to the fact that it amortizes the cost of the
memory barrier over all the read-side critical sections in
a grace period.

D.4.3 Validation of Preemptible RCU
D.4.3.1 Testing

The preemptible RCU algorithm was tested with a two-
stage grace period on weakly ordered POWER4 and
POWER5 CPUs using rcutorture running for more than 24
hours on each machine, with 15M and 20M grace periods,
respectively, and with no errors. Of course, this in no way
proves that this algorithm is correct. At most, it shows
either that these two machines were extremely lucky or
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that any bugs remaining in preemptible RCU have an
extremely low probability of occurring. We therefore re-
quired additional assurance that this algorithm works, or,
alternatively, identification of remaining bugs.

This task requires a conceptual approach, which is
taken in the next section.

D.4.3.2 Conceptual Validation

Because neither rcu_read_lock() nor rcu_read_
unlock() contain memory barriers, the RCU read-side
critical section can bleed out on weakly ordered machines.
In addition, the relatively loose coupling of this RCU im-
plementation permits CPUs to disagree on when a given
grace period starts and ends. This leads to the question
as to how long a given RCU read-side critical section can
possibly extend relative to the grace-period state machine.
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Figure D.77: Preemptible RCU Worst-Case Scenario

The worst-case scenario is shown in Figure D.77. Here,
CPU 0 is executing the shortest possible removal and
reclamation sequence, while CPU 1 executes the longest
possible RCU read-side critical section. Because the
callback queues are advanced just before acknowledg-

ing a counter flip, the latest that CPU 0 can execute its
list_del_rcu() and call_rcu() is just before its
scheduling-clock interrupt that acknowledges the counter
flip. The call_rcu() invocation places the callback
on CPU 0’s next list, and the interrupt will move the
callback from the next list to the wait[0] list. This
callback will move again (from the wait[0] list to the
wait[1] list) at CPU 0’s first scheduling-clock interrupt
following the next counter flip. Similarly, the callback
will move from the wait[1] list to the done list at
CPU 0’s first scheduling-clock interrupt following the
counter flip resulting in the value 3. The callback might
be invoked immediately afterward.

Meanwhile, CPU 1 is executing an RCU read-side criti-
cal section. Let us assume that the rcu_read_lock()
follows the first counter flip (the one resulting in the value
1), so that the rcu_read_lock() increments CPU 1’s
rcu_flipctr[1] counter. Note that because rcu_
read_lock() does not contain any memory barriers,
the contents of the critical section might be executed early
by the CPU. However, this early execution cannot precede
the last memory barrier executed by CPU 1, as shown on
the diagram. This is nevertheless sufficiently early that
an rcu_dereference() could fetch a pointer to the
item being deleted by CPU 0’s list_del_rcu().

Because the rcu_read_lock() incremented
an index-1 counter, the corresponding rcu_read_
unlock() must precede the "old counters zero" event
for index 1. However, because rcu_read_unlock()
contains no memory barriers, the contents of the
corresponding RCU read-side critical section (possibly
including a reference to the item deleted by CPU 0)
can be executed late by CPU 1. However, it cannot be
executed after CPU 1’s next memory barrier, as shown
on the diagram. Because the latest possible reference by
CPU 1 precedes the earliest possible callback invocation
by CPU 0, two passes through the grace-period state
machine suffice to constitute a full grace period, and
hence it is safe to do:

#define GP_STAGES 2

Quick Quiz D.62: Suppose that the irq disabling in
rcu_read_lock() was replaced by preemption dis-
abling. What effect would that have on GP_STAGES?

Quick Quiz D.63: Why can’t the rcu_
dereference() precede the memory barrier?
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D.4.3.3 Formal Validation

Formal validation of this algorithm is quite important, but
remains as future work. One tool for doing this validation
is described in Appendix F.

Quick Quiz D.64: What is a more precise way to say
"CPU 0 might see CPU 1’s increment as early as CPU 1’s
last previous memory barrier"?
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Appendix E

Read-Copy Update in Linux

This chapter gives a history of RCU in the Linux kernel
from mid-2008 onwards. Earlier history of RCU may be
found elsewhere [McK04, MW08]. Section E.1 gives an
overview of the growth of RCU usage in Linux and Sec-
tion E.2 presents a detailed view of recent RCU evolution.

E.1 RCU Usage Within Linux

The Linux kernel’s usage of RCU has increased over the
years, as can be seen from Figure E.1 [McK06a]. RCU
has replaced other synchronization mechanisms in exist-
ing code (for example, brlock in the networking proto-
col stacks [MM00, Tor03a, Tor03b]), and it has also been
introduced with code implementing new functionality
(for example, the audit system within SELinux [Mor04]).
However, RCU remains a niche technology compared to
locking, as shown in Figure E.2. If locking is the ham-
mer in the kernel hacker’s concurrency toolbox, perhaps
RCU is the screwdriver. If so, it is an rapidly evolving
screwdriver, as can be seen in Figure E.3.

E.2 RCU Evolution

This section presents ongoing experience with RCU since
mid-2008.

E.2.1 2.6.27 Linux Kernel

This release added the call_rcu_sched(), rcu_
barrier_sched(), and rcu_barrier_bh()
RCU API members.
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E.2.2 2.6.28 Linux Kernel
One welcome change involved an actual reduction in the
size of RCU’s API with the removal of the list_for_
each_rcu() primitive. This primitive is superseded
by list_for_each_entry_rcu(), which has the
advantage of iterating over structures rather than iterating
over the pointer pairs making up a list_head structure
(which, confusingly, acts as a list element as well as a list
header). This change was accepted into the 2.6.28 Linux
kernel.

Unfortunately, the 2.6.28 Linux kernel also added
rcu_read_lock_sched() and rcu_read_
unlock_sched() RCU API members. These APIs
were added to promote readability. In the past, primitives
to disable interrupts or preemption were used to mark
the RCU read-side critical sections corresponding to
synchronize_sched(). However, this practice led
to bugs when developers removed the need to disable
preemption or interrupts, but failed to notice the need for
RCU protection. Use of rcu_read_lock_sched()
will help prevent such bugs in the future.

E.2.3 2.6.29 Linux Kernel
A new more-scalable implementation, dubbed “Tree
RCU”, replaces the flat bitmap with a combining tree, and
was accepted into the 2.6.29 Linux kernel. This imple-
mentation was inspired by the ever-growing core counts
of modern multiprocessors, and is designed for many hun-
dreds of CPUs. Its current architectural limit is 262,144
CPUs, which the developer (perhaps naïvely) believes to
be sufficient for quite some time. This implementation
also adopts preemptible RCU’s improved dynamic-tick
interface.

Mathieu Desnoyers added rcu_read_lock_
sched_notrace() and rcu_read_unlock_
sched_notrace(), which are required to permit the
tracing code in the Linux kernel to use RCU. Without
these APIs, attempts to trace RCU read-side critical
sections lead to infinite recursion.

Eric Dumazet added a new type of RCU-protected
list that allows single-bit markers to be stored in the
list pointers. This type of list enables a number of
lockless algorithms, including some reported on by
Maged Michael [Mic04]. Eric’s work adds the hlist_
nulls_add_head_rcu(), hlist_nulls_del_
rcu(), hlist_nulls_del_init_rcu(), and
hlist_nulls_for_each_entry_rcu(). It also
adds a new structure named hlist_nulls_node.
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Although it is strictly speaking not part of the Linux
kernel, at about this same time, Mathieu Desnoyers an-
nounced his user-space RCU implementation [Des09].
This is an important first step towards a real-time user-
level RCU implementation.

E.2.4 2.6.31 Linux Kernel
Jiri Pirko added list_entry_rcu and list_
first_entry_rcu() primitives that encapsulate the
rcu_dereference() RCU-subscription primitive
into higher-level list-access primitives, which will hope-
fully eliminate a class of bugs.

In addition, the “Tree RCU” implementation was up-
graded from “experimental” status.

E.2.5 2.6.32 Linux Kernel
Perhaps the largest change in this version of the Linux
kernel is the removal of the old “Classic RCU” implemen-
tation. This implementation is superseded by the “Tree
RCU” implementation.

This version saw a number of other changes, including:

1. The appearance of synchronize_rcu_
expedited(), synchronize_sched_
expedited(), and synchronize_rcu_
bh_expedited() RCU API members. These
primitives are equivalent to their non-expedited
counterparts, except that they take measures to
expedite the grace period.

2. Add preemptible-RCU functionality to the “Tree
RCU” implementation, thus removing one obstacle
to real-time response from large multiprocessor ma-
chines running Linux.

3. This new “Tree Preemptible RCU” implementation
obsoletes the old preemptible RCU implementation,
which was removed from the Linux kernel.

E.2.6 2.6.33 Linux Kernel
Perhaps the most dramatic addition to this release was
a day-one bug in Tree RCU [McK09a]. Other changes
include:

1. “Tiny RCU”, also known as “RCU: The Bloatwatch
Edition” [McK09b].

2. Expedited SRCU in the form of synchronize_
srcu_expedited().

3. A cleanup of Tree RCU synchronization prompted
by the afore-mentioned bug.

4. Add expedited implementation for Tree Preemptible
RCU (in earlier releases, “expedited” support had
simply mapped to synchronize_rcu(), which
is semantically correct if somewhat unhelpful from
a performance viewpoint.)

5. Add a fourth level to Tree RCU, which improves
stress testing. Therefore, if someone ever wants
to run Linux on a system with 16,777,216 CPUs,
RCU is ready for them! Give or take the response-
time implications of scanning through 16 million
per-CPU data elements...

E.2.7 2.6.34 Linux Kernel
The most visible addition for this release was CONFIG_
PROVE_RCU, which allows rcu_dereference() to
check for correct locking conditions [McK10]. Other
changes include:

1. Simplifying Tree RCU’s interactions between forc-
ing an old grace period and starting a new one.

2. Rework counters so that free-running counters are
unsigned. (You simply cannot imagine the glee on
the faces of certain C-compiler hackers while they
discussed optimizations that would break code that
naively overflowed signed integers!!!)

3. Update Tree Preemptible RCU’s stall detection to
print out any tasks preempted for excessive time
periods while in an RCU read-side critical section.

4. Other bug fixes and improvements to Tree RCU’s
CPU-stall-detection code. This code checks for
CPUs being locked up, for example, in infinite loops
with interrupts disabled.

5. Prototype some code to accelerate grace periods
when the last CPU goes idle in battery-powered mul-
tiprocessor systems. There were people who were
quite unhappy about RCU taking a few extra mil-
liseconds to get the system in a state where all CPUs
could be powered down!

E.2.8 2.6.35 Linux Kernel
This release includes a number of bug fixes and cleanups.
The major change is the first installment of Mathieu
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Desnoyers’s patch to check for misuse of RCU callbacks,
for example, passing a rcu_head structure to call_
rcu() a second time within a single grace period.

E.2.9 2.6.36 Linux Kernel
The core of Mathieu Desnoyers’s debugobjects work ap-
peared in 2.6.36, with some cleanups deferred to 2.6.37
due to dependencies on commits flowing up other main-
tainer trees. A key piece of Arnd Bergmann’s sparse RCU
checking appeared in 2.6.36, with the remainder deferred
to 2.6.37, again due to dependencies on commits flowing
up other maintainer trees. Finally, a patch from Eric Du-
mazet fixed an error in rcu_dereference_bh()’s
error checking.

E.2.10 2.6.37 Linux Kernel
The final cleanups from Mathieu Desnoyers’s debugob-
jects work appeared in 2.6.37, as did the remainder of
Arnd Bergmann’s sparse-based checking work. Lai Jiang-
shan added some preemption nastiness to rcutorture and
made some simplifications to Tree RCU’s handling of
per-CPU data. Tetsuo Handa fixed an RCU lockdep splat,
Christian Dietrich removed a redundant #ifdef, and
Dongdong Deng added an ACCESS_ONCE() that help
call out lockless accesses to some Tree RCU control data.

Paul’s implementation of preemptible Tiny RCU also
appeared in 2.6.37, as did a number of enhancements to
the RCU CPU stall-warning code, docbook fixes, coalesc-
ing of duplicate code, Tree RCU speedups, added tracing
to support queuing models on RCU callback flow, and
several miscellaneous fixes and cleanups.

E.2.11 2.6.38 Linux Kernel
Lai Jiangshan moved synchronize_sched_
expedited() out of kernel/sched.c and into
kernel/rcutree.c and kernel/rcu_tiny.c
where it belongs. He also simplified RCU-callback
handling during CPU-hotplug operations by eliminating
the orphan_cbs_list, so that RCU callbacks
orphaned by a CPU that is going offline are immediately
adopted by the CPU that is orchestrating the offlining
sequence. Tejun Heo improved synchronize_
sched_expedited()’s batching capabilities, which
in turn improves performance and scalability for
workloads with many concurrent synchronize_
sched_expedited operations. Frederic Weisbecker
provided a couple of subtle changes to the RCU core

code that make RCU more power-efficient when idle.
Mariusz Kozlowski fixed an embarrassing syntax
error in __list_for_each_rcu(), which was
then removed. (But the fixed version is there in the
git tree should it be needed.) Nick Piggin added
the hlist_bl_set_first_rcu(), hlist_bl_
first_rcu(), hlist_bl_del_init_rcu(),
hlist_bl_del_rcu(), hlist_bl_add_head_
rcu(), and hlist_bl_for_each_entry_rcu()
primitives for RCU-protected use of bit-locked
doubly-linked lists. Christoph Lameter implemented
__this_cpu_read(), which is an optimized variant
of __get_cpu_var() for use in cases where the
variable is accessed directly.

In addition, TINY_RCU gained priority boost-
ing, a race condition in synchronize_sched_
expedited() was fixed, synchronize_srcu_
expedited() was modified to retain its expedited
nature in the face of concurrent readers, grace-period
begin/end checks were improved, and the TREE_RCU
leaf-level fanout was limited to 16 in order to fix lock-
contention problems. This last change reduces the max-
imum number of CPUs that TREE_RCU and TREE_
PREEMPT_RCU can support down to 4,194,304, which
is (again, perhaps naïvely) believed to be sufficient.

E.2.12 2.6.39 Linux Kernel

Lai Jiangshan made TINY_RCU’s exit_rcu() invoke
__rcu_read_unlock() rather than rcu_read_
unlock() in case of a task exiting while in an RCU
read-side critical section in order to preserve debug-
ging state, Jesper Juhl removed a duplicate include of
sched.h from rcutorture, and Amerigo Wang removed
some dead code from rcu_fixup_free().

In addition, a new rcu_access_index() was cre-
ated for use in the MCE subsystem.

E.2.13 What Comes After 2.6.39?

At long last, priority boosting for Tree RCU should appear
in 2.6.40.

Mathieu Desnoyers enabled DEBUG_OBJECTS_
RCU_HEAD checking to be carried out in non-preemptible
RCU implementations. Lai Jiangshan created a fire-
and-forget kfree_rcu() (and applied it throughout
the kernel), and also made TREE_RCU’s exit_rcu()
invoke __rcu_read_unlock() rather than rcu_
read_unlock() in case of a task exiting while in an
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RCU read-side critical section in order to preserve de-
bugging state. Eric Dumazet further shrunk TINY_RCU
and applied the new kthread_create_on_node()
primitive to ensure that RCU’s kthreads have memory
placed optimally on NUMA systems. Gleb Natapov
added RCU hooks to allow virtualization to call RCU’s
attention to quiescent states that occur when switching
context to and from a guest OS. Peter Zijlstra streamlined
RCU kthread blocking and wakeup.

The design for pulling SRCU into the Tree RCU im-
plementation is still looking reasonably good, aside from
interactions with the soft-lockup code. However, it will
still likely be a few releases before SRCU is pulled into
Tree RCU and Tiny RCU.

There has been an initial request for rcu_barrier_
expedited(), but given that the requester found an-
other way to solve this problem, this has relatively low
priority.
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Appendix F

Formal Verification

Parallel algorithms can be hard to write, and even
harder to debug. Testing, though essential, is insufficient,
as fatal race conditions can have extremely low probabili-
ties of occurrence. Proofs of correctness can be valuable,
but in the end are just as prone to human error as is the
original algorithm.

It would be very helpful to have a tool that could some-
how locate all race conditions. A number of such tools
exist, for example, the language Promela and its compiler
Spin, which are described in this chapter. Section F.1
provide an introduction to Promela and Spin, Section F.2
demonstrates use of Promela and Spin to find a race in a
non-atomic increment example, Section F.3 uses Promela
and Spin to validate a similar atomic-increment example,
Section F.4 gives an overview of using Promela and Spin,
Section F.5 demonstrates a Promela model of a spinlock,
Section F.6 applies Promela and spin to validate a sim-
ple RCU implementation, Section F.7 applies Promela to
validate an interface between preemptible RCU and the
dyntick-idle energy-conservation feature in the Linux ker-
nel, Section F.8 presents a simpler interface that does not
require formal verification, and finally Section F.9 sums
up use of formal-verification tools for verifying parallel
algorithms.

F.1 What are Promela and Spin?
Promela is a language designed to help verify protocols,
but which can also be used to verify small parallel al-
gorithms. You recode your algorithm and correctness
constraints in the C-like language Promela, and then use
Spin to translate it into a C program that you can compile
and run. The resulting program conducts a full state-
space search of your algorithm, either verifying or finding
counter-examples for assertions that you can include in
your Promela program.

This full-state search can extremely powerful, but can
also be a two-edged sword. If your algorithm is too com-
plex or your Promela implementation is careless, there
might be more states than fit in memory. Furthermore,
even given sufficient memory, the state-space search
might well run for longer than the expected lifetime of
the universe. Therefore, use this tool for compact but
complex parallel algorithms. Attempts to naively apply
it to even moderate-scale algorithms (let alone the full
Linux kernel) will end badly.

Promela and Spin may be downloaded from http:
//spinroot.com/spin/whatispin.html.

The above site also gives links to Gerard Holzmann’s
excellent book [Hol03] on Promela and Spin, as well as
searchable online references starting at: http://www.
spinroot.com/spin/Man/index.html.

The remainder of this article describes how to use
Promela to debug parallel algorithms, starting with simple
examples and progressing to more complex uses.

F.2 Promela Example: Non-Atomic
Increment

Figure F.1 demonstrates the textbook race condition re-
sulting from non-atomic increment. Line 1 defines the
number of processes to run (we will vary this to see the
effect on state space), line 3 defines the counter, and line
4 is used to implement the assertion that appears on lines
29-39.

Lines 6-13 define a process that increments the counter
non-atomically. The argument me is the process number,
set by the initialization block later in the code. Because
simple Promela statements are each assumed atomic, we
must break the increment into the two statements on lines
10-11. The assignment on line 12 marks the process’s
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1 #define NUMPROCS 2
2
3 byte counter = 0;
4 byte progress[NUMPROCS];
5
6 proctype incrementer(byte me)
7 {
8 int temp;
9
10 temp = counter;
11 counter = temp + 1;
12 progress[me] = 1;
13 }
14
15 init {
16 int i = 0;
17 int sum = 0;
18
19 atomic {
20 i = 0;
21 do
22 :: i < NUMPROCS ->
23 progress[i] = 0;
24 run incrementer(i);
25 i++
26 :: i >= NUMPROCS -> break
27 od;
28 }
29 atomic {
30 i = 0;
31 sum = 0;
32 do
33 :: i < NUMPROCS ->
34 sum = sum + progress[i];
35 i++
36 :: i >= NUMPROCS -> break
37 od;
38 assert(sum < NUMPROCS || counter == NUMPROCS)
39 }
40 }

Figure F.1: Promela Code for Non-Atomic Increment

completion. Because the Spin system will fully search
the state space, including all possible sequences of states,
there is no need for the loop that would be used for con-
ventional testing.

Lines 15-40 are the initialization block, which is ex-
ecuted first. Lines 19-28 actually do the initialization,
while lines 29-39 perform the assertion. Both are atomic
blocks in order to avoid unnecessarily increasing the state
space: because they are not part of the algorithm proper,
we loose no verification coverage by making them atomic.

The do-od construct on lines 21-27 implements a
Promela loop, which can be thought of as a C for (;;)
loop containing a switch statement that allows expres-
sions in case labels. The condition blocks (prefixed by
::) are scanned non-deterministically, though in this case
only one of the conditions can possibly hold at a given
time. The first block of the do-od from lines 22-25 ini-
tializes the i-th incrementer’s progress cell, runs the i-th
incrementer’s process, and then increments the variable i.
The second block of the do-od on line 26 exits the loop
once these processes have been started.

The atomic block on lines 29-39 also contains a simi-
lar do-od loop that sums up the progress counters. The
assert() statement on line 38 verifies that if all pro-
cesses have been completed, then all counts have been
correctly recorded.

You can build and run this program as follows:

spin -a increment.spin # Translate the model to C
cc -DSAFETY -o pan pan.c # Compile the model
./pan # Run the model

This will produce output as shown in Figure F.2. The
first line tells us that our assertion was violated (as ex-
pected given the non-atomic increment!). The second
line that a trail file was written describing how the
assertion was violated. The “Warning” line reiterates that
all was not well with our model. The second paragraph
describes the type of state-search being carried out, in
this case for assertion violations and invalid end states.
The third paragraph gives state-size statistics: this small
model had only 45 states. The final line shows memory
usage.

The trail file may be rendered human-readable as
follows:

spin -t -p increment.spin

This gives the output shown in Figure F.3. As can
be seen, the first portion of the init block created both
incrementer processes, both of which first fetched the
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pan: assertion violated ((sum<2)||(counter==2)) (at depth 20)
pan: wrote increment.spin.trail
(Spin Version 4.2.5 -- 2 April 2005)
Warning: Search not completed

+ Partial Order Reduction

Full statespace search for:
never claim - (none specified)
assertion violations +
cycle checks - (disabled by -DSAFETY)
invalid end states +

State-vector 40 byte, depth reached 22, errors: 1
45 states, stored
13 states, matched
58 transitions (= stored+matched)
51 atomic steps

hash conflicts: 0 (resolved)

2.622 memory usage (Mbyte)

Figure F.2: Non-Atomic Increment spin Output

Starting :init: with pid 0
1: proc 0 (:init:) line 20 "increment.spin" (state 1) [i = 0]
2: proc 0 (:init:) line 22 "increment.spin" (state 2) [((i<2))]
2: proc 0 (:init:) line 23 "increment.spin" (state 3) [progress[i] = 0]

Starting incrementer with pid 1
3: proc 0 (:init:) line 24 "increment.spin" (state 4) [(run incrementer(i))]
3: proc 0 (:init:) line 25 "increment.spin" (state 5) [i = (i+1)]
4: proc 0 (:init:) line 22 "increment.spin" (state 2) [((i<2))]
4: proc 0 (:init:) line 23 "increment.spin" (state 3) [progress[i] = 0]

Starting incrementer with pid 2
5: proc 0 (:init:) line 24 "increment.spin" (state 4) [(run incrementer(i))]
5: proc 0 (:init:) line 25 "increment.spin" (state 5) [i = (i+1)]
6: proc 0 (:init:) line 26 "increment.spin" (state 6) [((i>=2))]
7: proc 0 (:init:) line 21 "increment.spin" (state 10) [break]
8: proc 2 (incrementer) line 10 "increment.spin" (state 1) [temp = counter]
9: proc 1 (incrementer) line 10 "increment.spin" (state 1) [temp = counter]

10: proc 2 (incrementer) line 11 "increment.spin" (state 2) [counter = (temp+1)]
11: proc 2 (incrementer) line 12 "increment.spin" (state 3) [progress[me] = 1]
12: proc 2 terminates
13: proc 1 (incrementer) line 11 "increment.spin" (state 2) [counter = (temp+1)]
14: proc 1 (incrementer) line 12 "increment.spin" (state 3) [progress[me] = 1]
15: proc 1 terminates
16: proc 0 (:init:) line 30 "increment.spin" (state 12) [i = 0]
16: proc 0 (:init:) line 31 "increment.spin" (state 13) [sum = 0]
17: proc 0 (:init:) line 33 "increment.spin" (state 14) [((i<2))]
17: proc 0 (:init:) line 34 "increment.spin" (state 15) [sum = (sum+progress[i])]
17: proc 0 (:init:) line 35 "increment.spin" (state 16) [i = (i+1)]
18: proc 0 (:init:) line 33 "increment.spin" (state 14) [((i<2))]
18: proc 0 (:init:) line 34 "increment.spin" (state 15) [sum = (sum+progress[i])]
18: proc 0 (:init:) line 35 "increment.spin" (state 16) [i = (i+1)]
19: proc 0 (:init:) line 36 "increment.spin" (state 17) [((i>=2))]
20: proc 0 (:init:) line 32 "increment.spin" (state 21) [break]
spin: line 38 "increment.spin", Error: assertion violated
spin: text of failed assertion: assert(((sum<2)||(counter==2)))
21: proc 0 (:init:) line 38 "increment.spin" (state 22) [assert(((sum<2)||(counter==2)))]

spin: trail ends after 21 steps
#processes: 1

counter = 1
progress[0] = 1
progress[1] = 1

21: proc 0 (:init:) line 40 "increment.spin" (state 24) <valid end state>
3 processes created

Figure F.3: Non-Atomic Increment Error Trail
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counter, then both incremented and stored it, losing a
count. The assertion then triggered, after which the global
state is displayed.

F.3 Promela Example: Atomic In-
crement

1 proctype incrementer(byte me)
2 {
3 int temp;
4
5 atomic {
6 temp = counter;
7 counter = temp + 1;
8 }
9 progress[me] = 1;
10 }

Figure F.4: Promela Code for Atomic Increment

(Spin Version 4.2.5 -- 2 April 2005)
+ Partial Order Reduction

Full statespace search for:
never claim - (none specified)
assertion violations +
cycle checks - (disabled by -DSAFETY)
invalid end states +

State-vector 40 byte, depth reached 20, errors: 0
52 states, stored
21 states, matched
73 transitions (= stored+matched)
66 atomic steps

hash conflicts: 0 (resolved)

2.622 memory usage (Mbyte)

unreached in proctype incrementer
(0 of 5 states)

unreached in proctype :init:
(0 of 24 states)

Figure F.5: Atomic Increment spin Output

It is easy to fix this example by placing the body of
the incrementer processes in an atomic blocks as shown
in Figure F.4. One could also have simply replaced the
pair of statements with counter = counter + 1,
because Promela statements are atomic. Either way, run-
ning this modified model gives us an error-free traversal
of the state space, as shown in Figure F.5.

F.3.1 Combinatorial Explosion
Table F.1 shows the number of states and memory con-
sumed as a function of number of incrementers modeled

# incrementers # states megabytes
1 11 2.6
2 52 2.6
3 372 2.6
4 3,496 2.7
5 40,221 5.0
6 545,720 40.5
7 8,521,450 652.7

Table F.1: Memory Usage of Increment Model

(by redefining NUMPROCS):
Running unnecessarily large models is thus subtly dis-

couraged, although 652MB is well within the limits of
modern desktop and laptop machines.

With this example under our belt, let’s take a closer
look at the commands used to analyze Promela models
and then look at more elaborate examples.

F.4 How to Use Promela
Given a source file qrcu.spin, one can use the follow-
ing commands:

• spin -a qrcu.spin Create a file pan.c that
fully searches the state machine.

• cc -DSAFETY -o pan pan.c Compile the
generated state-machine search. The -DSAFETY
generates optimizations that are appropriate if you
have only assertions (and perhaps never state-
ments). If you have liveness, fairness, or forward-
progress checks, you may need to compile without
-DSAFETY. If you leave off -DSAFETY when you
could have used it, the program will let you know.

The optimizations produced by -DSAFETY greatly
speed things up, so you should use it when you
can. An example situation where you cannot use
-DSAFETY is when checking for livelocks (AKA
“non-progress cycles”) via -DNP.

• ./pan This actually searches the state space. The
number of states can reach into the tens of millions
with very small state machines, so you will need a
machine with large memory. For example, qrcu.spin
with 3 readers and 2 updaters required 2.7GB of
memory.

qrcu.spin
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If you aren’t sure whether your machine has enough
memory, run top in one window and ./pan in
another. Keep the focus on the ./pan window so
that you can quickly kill execution if need be. As
soon as CPU time drops much below 100%, kill
./pan. If you have removed focus from the window
running ./pan, you may wait a long time for the
windowing system to grab enough memory to do
anything for you.

Don’t forget to capture the output, especially if you
are working on a remote machine,

If your model includes forward-progress checks, you
will likely need to enable “weak fairness” via the -f
command-line argument to ./pan. If your forward-
progress checks involve accept labels, you will
also need the -a argument.

• spin -t -p qrcu.spin Given trail file
output by a run that encountered an error, output
the sequence of steps leading to that error. The -g
flag will also include the values of changed global
variables, and the -l flag will also include the values
of changed local variables.

F.4.1 Promela Peculiarities
Although all computer languages have underlying similar-
ities, Promela will provide some surprises to people used
to coding in C, C++, or Java.

1. In C, “;” terminates statements. In Promela it sep-
arates them. Fortunately, more recent versions of
Spin have become much more forgiving of “extra”
semicolons.

2. Promela’s looping construct, the do statement, takes
conditions. This do statement closely resembles a
looping if-then-else statement.

3. In C’s switch statement, if there is no matching
case, the whole statement is skipped. In Promela’s
equivalent, confusingly called if, if there is no
matching guard expression, you get an error without
a recognizable corresponding error message. So, if
the error output indicates an innocent line of code,
check to see if you left out a condition from an if
or do statement.

4. When creating stress tests in C, one usually races
suspect operations against each other repeatedly. In
Promela, one instead sets up a single race, because

Promela will search out all the possible outcomes
from that single race. Sometimes you do need to
loop in Promela, for example, if multiple operations
overlap, but doing so greatly increases the size of
your state space.

5. In C, the easiest thing to do is to maintain a loop
counter to track progress and terminate the loop. In
Promela, loop counters must be avoided like the
plague because they cause the state space to explode.
On the other hand, there is no penalty for infinite
loops in Promela as long as the none of the variables
monotonically increase or decrease – Promela will
figure out how many passes through the loop really
matter, and automatically prune execution beyond
that point.

6. In C torture-test code, it is often wise to keep per-
task control variables. They are cheap to read, and
greatly aid in debugging the test code. In Promela,
per-task control variables should be used only when
there is no other alternative. To see this, consider
a 5-task verification with one bit each to indicate
completion. This gives 32 states. In contrast, a
simple counter would have only six states, more
than a five-fold reduction. That factor of five might
not seem like a problem, at least not until you are
struggling with a verification program possessing
more than 150 million states consuming more than
10GB of memory!

7. One of the most challenging things both in C torture-
test code and in Promela is formulating good asser-
tions. Promela also allows never claims that act
sort of like an assertion replicated between every line
of code.

8. Dividing and conquering is extremely helpful in
Promela in keeping the state space under control.
Splitting a large model into two roughly equal halves
will result in the state space of each half being
roughly the square root of the whole. For exam-
ple, a million-state combined model might reduce
to a pair of thousand-state models. Not only will
Promela handle the two smaller models much more
quickly with much less memory, but the two smaller
algorithms are easier for people to understand.
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1 i = 0;
2 sum = 0;
3 do
4 :: i < N_QRCU_READERS ->
5 sum = sum + (readerstart[i] == 1 &&
6 readerprogress[i] == 1);
7 i++
8 :: i >= N_QRCU_READERS ->
9 assert(sum == 0);
10 break
11 od

Figure F.6: Complex Promela Assertion

1 atomic {
2 i = 0;
3 sum = 0;
4 do
5 :: i < N_QRCU_READERS ->
6 sum = sum + (readerstart[i] == 1 &&
7 readerprogress[i] == 1);
8 i++
9 :: i >= N_QRCU_READERS ->
10 assert(sum == 0);
11 break
12 od
13 }

Figure F.7: Atomic Block for Complex Promela Assertion

F.4.2 Promela Coding Tricks
Promela was designed to analyze protocols, so using it on
parallel programs is a bit abusive. The following tricks
can help you to abuse Promela safely:

1. Memory reordering. Suppose you have a pair of
statements copying globals x and y to locals r1 and
r2, where ordering matters (e.g., unprotected by
locks), but where you have no memory barriers. This
can be modeled in Promela as follows:

1 if
2 :: 1 -> r1 = x;
3 r2 = y
4 :: 1 -> r2 = y;
5 r1 = x
6 fi

The two branches of the if statement will be se-
lected nondeterministically, since they both are avail-
able. Because the full state space is searched, both
choices will eventually be made in all cases.

Of course, this trick will cause your state space to
explode if used too heavily. In addition, it requires
you to anticipate possible reorderings.

2. State reduction. If you have complex assertions,
evaluate them under atomic. After all, they are not

1 #define spin_lock(mutex) \
2 do \
3 :: 1 -> atomic { \
4 if \
5 :: mutex == 0 -> \
6 mutex = 1; \
7 break \
8 :: else -> skip \
9 fi \
10 } \
11 od
12
13 #define spin_unlock(mutex) \
14 mutex = 0

Figure F.8: Promela Code for Spinlock

part of the algorithm. One example of a complex
assertion (to be discussed in more detail later) is as
shown in Figure F.6.

There is no reason to evaluate this assertion non-
atomically, since it is not actually part of the algo-
rithm. Because each statement contributes to state,
we can reduce the number of useless states by enclos-
ing it in an atomic block as shown in Figure F.7

3. Promela does not provide functions. You must in-
stead use C preprocessor macros. However, you
must use them carefully in order to avoid combina-
torial explosion.

Now we are ready for more complex examples.

F.5 Promela Example: Locking
Since locks are generally useful, spin_lock() and
spin_unlock() macros are provided in lock.h,
which may be included from multiple Promela models,
as shown in Figure F.8. The spin_lock() macro con-
tains an infinite do-od loop spanning lines 2-11, courtesy
of the single guard expression of “1” on line 3. The body
of this loop is a single atomic block that contains an if-fi
statement. The if-fi construct is similar to the do-od con-
struct, except that it takes a single pass rather than looping.
If the lock is not held on line 5, then line 6 acquires it and
line 7 breaks out of the enclosing do-od loop (and also
exits the atomic block). On the other hand, if the lock is
already held on line 8, we do nothing (skip), and fall
out of the if-fi and the atomic block so as to take another
pass through the outer loop, repeating until the lock is
available.

The spin_unlock() macro simply marks the lock
as no longer held.
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Note that memory barriers are not needed because
Promela assumes full ordering. In any given Promela
state, all processes agree on both the current state and
the order of state changes that caused us to arrive at the
current state. This is analogous to the “sequentially con-
sistent” memory model used by a few computer systems
(such as MIPS and PA-RISC). As noted earlier, and as
will be seen in a later example, weak memory ordering
must be explicitly coded.

1 #include "lock.h"
2
3 #define N_LOCKERS 3
4
5 bit mutex = 0;
6 bit havelock[N_LOCKERS];
7 int sum;
8
9 proctype locker(byte me)
10 {
11 do
12 :: 1 ->
13 spin_lock(mutex);
14 havelock[me] = 1;
15 havelock[me] = 0;
16 spin_unlock(mutex)
17 od
18 }
19
20 init {
21 int i = 0;
22 int j;
23
24 end: do
25 :: i < N_LOCKERS ->
26 havelock[i] = 0;
27 run locker(i);
28 i++
29 :: i >= N_LOCKERS ->
30 sum = 0;
31 j = 0;
32 atomic {
33 do
34 :: j < N_LOCKERS ->
35 sum = sum + havelock[j];
36 j = j + 1
37 :: j >= N_LOCKERS ->
38 break
39 od
40 }
41 assert(sum <= 1);
42 break
43 od
44 }

Figure F.9: Promela Code to Test Spinlocks

These macros are tested by the Promela code shown
in Figure F.9. This code is similar to that used to test
the increments, with the number of locking processes
defined by the N_LOCKERS macro definition on line 3.
The mutex itself is defined on line 5, an array to track the
lock owner on line 6, and line 7 is used by assertion code
to verify that only one process holds the lock.

The locker process is on lines 9-18, and simply loops
forever acquiring the lock on line 13, claiming it on line
14, unclaiming it on line 15, and releasing it on line 16.

The init block on lines 20-44 initializes the current
locker’s havelock array entry on line 26, starts the current
locker on line 27, and advances to the next locker on line
28. Once all locker processes are spawned, the do-od
loop moves to line 29, which checks the assertion. Lines
30 and 31 initialize the control variables, lines 32-40
atomically sum the havelock array entries, line 41 is the
assertion, and line 42 exits the loop.

We can run this model by placing the above two code
fragments into files named lock.h and lock.spin,
respectively, and then running the following commands:

spin -a lock.spin
cc -DSAFETY -o pan pan.c
./pan

(Spin Version 4.2.5 -- 2 April 2005)
+ Partial Order Reduction

Full statespace search for:
never claim - (none specified)
assertion violations +
cycle checks - (disabled by -DSAFETY)
invalid end states +

State-vector 40 byte, depth reached 357, errors: 0
564 states, stored
929 states, matched
1493 transitions (= stored+matched)
368 atomic steps

hash conflicts: 0 (resolved)

2.622 memory usage (Mbyte)

unreached in proctype locker
line 18, state 20, "-end-"
(1 of 20 states)

unreached in proctype :init:
(0 of 22 states)

Figure F.10: Output for Spinlock Test

The output will look something like that shown in Fig-
ure F.10. As expected, this run has no assertion failures
(“errors: 0”).

Quick Quiz F.1: Why is there an unreached statement
in locker? After all, isn’t this a full state-space search?

Quick Quiz F.2: What are some Promela code-style
issues with this example?

F.6 Promela Example: QRCU
This final example demonstrates a real-world use of
Promela on Oleg Nesterov’s QRCU [Nes06a, Nes06b],

lock.h
lock.spin
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but modified to speed up the synchronize_qrcu()
fastpath.

But first, what is QRCU?
QRCU is a variant of SRCU [McK06b] that trades

somewhat higher read overhead (atomic increment and
decrement on a global variable) for extremely low grace-
period latencies. If there are no readers, the grace period
will be detected in less than a microsecond, compared to
the multi-millisecond grace-period latencies of most other
RCU implementations.

1. There is a qrcu_struct that defines a QRCU do-
main. Like SRCU (and unlike other variants of RCU)
QRCU’s action is not global, but instead focused on
the specified qrcu_struct.

2. There are qrcu_read_lock() and qrcu_
read_unlock() primitives that delimit QRCU
read-side critical sections. The correspond-
ing qrcu_struct must be passed into these
primitives, and the return value from rcu_
read_lock() must be passed to rcu_read_
unlock().

For example:

idx = qrcu_read_lock(&my_qrcu_struct);
/* read-side critical section. */
qrcu_read_unlock(&my_qrcu_struct, idx);

3. There is a synchronize_qrcu() primi-
tive that blocks until all pre-existing QRCU
read-side critical sections complete, but, like
SRCU’s synchronize_srcu(), QRCU’s
synchronize_qrcu() need wait only for those
read-side critical sections that are using the same
qrcu_struct.

For example, synchronize_qrcu(&your_
qrcu_struct) would not need to wait on
the earlier QRCU read-side critical section.
In contrast, synchronize_qrcu(&my_qrcu_
struct) would need to wait, since it shares the
same qrcu_struct.

A Linux-kernel patch for QRCU has been pro-
duced [McK07b], but has not yet been included in the
Linux kernel as of April 2008.

Returning to the Promela code for QRCU, the global
variables are as shown in Figure F.11. This example uses
locking, hence including lock.h. Both the number of
readers and writers can be varied using the two #define

1 #include "lock.h"
2
3 #define N_QRCU_READERS 2
4 #define N_QRCU_UPDATERS 2
5
6 bit idx = 0;
7 byte ctr[2];
8 byte readerprogress[N_QRCU_READERS];
9 bit mutex = 0;

Figure F.11: QRCU Global Variables

statements, giving us not one but two ways to create com-
binatorial explosion. The idx variable controls which
of the two elements of the ctr array will be used by
readers, and the readerprogress variable allows to
assertion to determine when all the readers are finished
(since a QRCU update cannot be permitted to complete
until all pre-existing readers have completed their QRCU
read-side critical sections). The readerprogress array ele-
ments have values as follows, indicating the state of the
corresponding reader:

1. 0: not yet started.

2. 1: within QRCU read-side critical section.

3. 2: finished with QRCU read-side critical section.

Finally, the mutex variable is used to serialize up-
daters’ slowpaths.

1 proctype qrcu_reader(byte me)
2 {
3 int myidx;
4
5 do
6 :: 1 ->
7 myidx = idx;
8 atomic {
9 if
10 :: ctr[myidx] > 0 ->
11 ctr[myidx]++;
12 break
13 :: else -> skip
14 fi
15 }
16 od;
17 readerprogress[me] = 1;
18 readerprogress[me] = 2;
19 atomic { ctr[myidx]-- }
20 }

Figure F.12: QRCU Reader Process

QRCU readers are modeled by the qrcu_reader()
process shown in Figure F.12. A do-od loop spans lines
5-16, with a single guard of “1” on line 6 that makes it
an infinite loop. Line 7 captures the current value of the

lock.h
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global index, and lines 8-15 atomically increment it (and
break from the infinite loop) if its value was non-zero
(atomic_inc_not_zero()). Line 17 marks entry
into the RCU read-side critical section, and line 18 marks
exit from this critical section, both lines for the benefit
of the assert() statement that we shall encounter later.
Line 19 atomically decrements the same counter that we
incremented, thereby exiting the RCU read-side critical
section.

1 #define sum_unordered \
2 atomic { \
3 do \
4 :: 1 -> \
5 sum = ctr[0]; \
6 i = 1; \
7 break \
8 :: 1 -> \
9 sum = ctr[1]; \
10 i = 0; \
11 break \
12 od; \
13 } \
14 sum = sum + ctr[i]

Figure F.13: QRCU Unordered Summation

The C-preprocessor macro shown in Figure F.13 sums
the pair of counters so as to emulate weak memory or-
dering. Lines 2-13 fetch one of the counters, and line 14
fetches the other of the pair and sums them. The atomic
block consists of a single do-od statement. This do-od
statement (spanning lines 3-12) is unusual in that it con-
tains two unconditional branches with guards on lines
4 and 8, which causes Promela to non-deterministically
choose one of the two (but again, the full state-space
search causes Promela to eventually make all possible
choices in each applicable situation). The first branch
fetches the zero-th counter and sets i to 1 (so that line 14
will fetch the first counter), while the second branch does
the opposite, fetching the first counter and setting i to 0
(so that line 14 will fetch the second counter).

Quick Quiz F.3: Is there a more straightforward way
to code the do-od statement?

With the sum_unordered macro in place, we
can now proceed to the update-side process shown
in Figure. The update-side process repeats indefi-
nitely, with the corresponding do-od loop ranging over
lines 7-57. Each pass through the loop first snap-
shots the global readerprogress array into the lo-
cal readerstart array on lines 12-21. This snapshot
will be used for the assertion on line 53. Line 23 in-
vokes sum_unordered, and then lines 24-27 re-invoke
sum_unordered if the fastpath is potentially usable.

1 proctype qrcu_updater(byte me)
2 {
3 int i;
4 byte readerstart[N_QRCU_READERS];
5 int sum;
6
7 do
8 :: 1 ->
9
10 /* Snapshot reader state. */
11
12 atomic {
13 i = 0;
14 do
15 :: i < N_QRCU_READERS ->
16 readerstart[i] = readerprogress[i];
17 i++
18 :: i >= N_QRCU_READERS ->
19 break
20 od
21 }
22
23 sum_unordered;
24 if
25 :: sum <= 1 -> sum_unordered
26 :: else -> skip
27 fi;
28 if
29 :: sum > 1 ->
30 spin_lock(mutex);
31 atomic { ctr[!idx]++ }
32 idx = !idx;
33 atomic { ctr[!idx]-- }
34 do
35 :: ctr[!idx] > 0 -> skip
36 :: ctr[!idx] == 0 -> break
37 od;
38 spin_unlock(mutex);
39 :: else -> skip
40 fi;
41
42 /* Verify reader progress. */
43
44 atomic {
45 i = 0;
46 sum = 0;
47 do
48 :: i < N_QRCU_READERS ->
49 sum = sum + (readerstart[i] == 1 &&
50 readerprogress[i] == 1);
51 i++
52 :: i >= N_QRCU_READERS ->
53 assert(sum == 0);
54 break
55 od
56 }
57 od
58 }

Figure F.14: QRCU Updater Process
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Lines 28-40 execute the slowpath code if need be, with
lines 30 and 38 acquiring and releasing the update-side
lock, lines 31-33 flipping the index, and lines 34-37 wait-
ing for all pre-existing readers to complete.

Lines 44-56 then compare the current values in the
readerprogress array to those collected in the
readerstart array, forcing an assertion failure should
any readers that started before this update still be in
progress.

Quick Quiz F.4: Why are there atomic blocks at lines
12-21 and lines 44-56, when the operations within those
atomic blocks have no atomic implementation on any
current production microprocessor?

Quick Quiz F.5: Is the re-summing of the counters on
lines 24-27 really necessary?

1 init {
2 int i;
3
4 atomic {
5 ctr[idx] = 1;
6 ctr[!idx] = 0;
7 i = 0;
8 do
9 :: i < N_QRCU_READERS ->
10 readerprogress[i] = 0;
11 run qrcu_reader(i);
12 i++
13 :: i >= N_QRCU_READERS -> break
14 od;
15 i = 0;
16 do
17 :: i < N_QRCU_UPDATERS ->
18 run qrcu_updater(i);
19 i++
20 :: i >= N_QRCU_UPDATERS -> break
21 od
22 }
23 }

Figure F.15: QRCU Initialization Process

All that remains is the initialization block shown in
Figure F.15. This block simply initializes the counter pair
on lines 5-6, spawns the reader processes on lines 7-14,
and spawns the updater processes on lines 15-21. This is
all done within an atomic block to reduce state space.

F.6.1 Running the QRCU Example

To run the QRCU example, combine the code fragments in
the previous section into a single file named qrcu.spin,
and place the definitions for spin_lock() and spin_
unlock() into a file named lock.h. Then use the
following commands to build and run the QRCU model:

updaters readers # states MB
1 1 376 2.6
1 2 6,177 2.9
1 3 82,127 7.5
2 1 29,399 4.5
2 2 1,071,180 75.4
2 3 33,866,700 2,715.2
3 1 258,605 22.3
3 2 169,533,000 14,979.9

Table F.2: Memory Usage of QRCU Model

spin -a qrcu.spin
cc -DSAFETY -o pan pan.c
./pan

The resulting output shows that this model passes all of
the cases shown in Table F.2. Now, it would be nice to run
the case with three readers and three updaters, however,
simple extrapolation indicates that this will require on the
order of a terabyte of memory best case. So, what to do?
Here are some possible approaches:

1. See whether a smaller number of readers and up-
daters suffice to prove the general case.

2. Manually construct a proof of correctness.

3. Use a more capable tool.

4. Divide and conquer.

The following sections discuss each of these ap-
proaches.

F.6.2 How Many Readers and Updaters
Are Really Needed?

One approach is to look carefully at the Promela code for
qrcu_updater() and notice that the only global state
change is happening under the lock. Therefore, only one
updater at a time can possibly be modifying state visible
to either readers or other updaters. This means that any
sequences of state changes can be carried out serially by
a single updater due to the fact that Promela does a full
state-space search. Therefore, at most two updaters are
required: one to change state and a second to become
confused.

The situation with the readers is less clear-cut, as each
reader does only a single read-side critical section then
terminates. It is possible to argue that the useful number

qrcu.spin
lock.h
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of readers is limited, due to the fact that the fastpath must
see at most a zero and a one in the counters. This is a
fruitful avenue of investigation, in fact, it leads to the full
proof of correctness described in the next section.

F.6.3 Alternative Approach: Proof of Cor-
rectness

An informal proof [McK07b] follows:

1. For synchronize_qrcu() to exit too early,
then by definition there must have been at least one
reader present during synchronize_qrcu()’s
full execution.

2. The counter corresponding to this reader will have
been at least 1 during this time interval.

3. The synchronize_qrcu() code forces at least
one of the counters to be at least 1 at all times.

4. Therefore, at any given point in time, either one of
the counters will be at least 2, or both of the counters
will be at least one.

5. However, the synchronize_qrcu() fastpath
code can read only one of the counters at a given
time. It is therefore possible for the fastpath code to
fetch the first counter while zero, but to race with a
counter flip so that the second counter is seen as one.

6. There can be at most one reader persisting through
such a race condition, as otherwise the sum would
be two or greater, which would cause the updater to
take the slowpath.

7. But if the race occurs on the fastpath’s first read of
the counters, and then again on its second read, there
have to have been two counter flips.

8. Because a given updater flips the counter only once,
and because the update-side lock prevents a pair of
updaters from concurrently flipping the counters, the
only way that the fastpath code can race with a flip
twice is if the first updater completes.

9. But the first updater will not complete until after all
pre-existing readers have completed.

10. Therefore, if the fastpath races with a counter flip
twice in succession, all pre-existing readers must
have completed, so that it is safe to take the fastpath.

Of course, not all parallel algorithms have such simple
proofs. In such cases, it may be necessary to enlist more
capable tools.

F.6.4 Alternative Approach: More Capa-
ble Tools

Although Promela and Spin are quite useful, much more
capable tools are available, particularly for verifying hard-
ware. This means that if it is possible to translate your
algorithm to the hardware-design VHDL language, as
it often will be for low-level parallel algorithms, then it
is possible to apply these tools to your code (for exam-
ple, this was done for the first realtime RCU algorithm).
However, such tools can be quite expensive.

Although the advent of commodity multiprocessing
might eventually result in powerful free-software model-
checkers featuring fancy state-space-reduction capabili-
ties, this does not help much in the here and now.

As an aside, there are Spin features that support ap-
proximate searches that require fixed amounts of memory,
however, I have never been able to bring myself to trust
approximations when verifying parallel algorithms.

Another approach might be to divide and conquer.

F.6.5 Alternative Approach: Divide and
Conquer

It is often possible to break down a larger parallel al-
gorithm into smaller pieces, which can then be proven
separately. For example, a 10-billion-state model might
be broken into a pair of 100,000-state models. Taking
this approach not only makes it easier for tools such as
Promela to verify your algorithms, it can also make your
algorithms easier to understand.

F.7 Promela Parable: dynticks and
Preemptible RCU

In early 2008, a preemptible variant of RCU was accepted
into mainline Linux in support of real-time workloads,
a variant similar to the RCU implementations in the -rt
patchset [Mol05] since August 2005. Preemptible RCU
is needed for real-time workloads because older RCU im-
plementations disable preemption across RCU read-side
critical sections, resulting in excessive real-time latencies.

However, one disadvantage of the older -rt implemen-
tation (described in Appendix D.4) was that each grace
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period requires work to be done on each CPU, even if
that CPU is in a low-power “dynticks-idle” state, and
thus incapable of executing RCU read-side critical sec-
tions. The idea behind the dynticks-idle state is that idle
CPUs should be physically powered down in order to
conserve energy. In short, preemptible RCU can disable
a valuable energy-conservation feature of recent Linux
kernels. Although Josh Triplett and Paul McKenney had
discussed some approaches for allowing CPUs to remain
in low-power state throughout an RCU grace period (thus
preserving the Linux kernel’s ability to conserve energy),
matters did not come to a head until Steve Rostedt inte-
grated a new dyntick implementation with preemptible
RCU in the -rt patchset.

This combination caused one of Steve’s systems to
hang on boot, so in October, Paul coded up a dynticks-
friendly modification to preemptible RCU’s grace-period
processing. Steve coded up rcu_irq_enter() and
rcu_irq_exit() interfaces called from the irq_
enter() and irq_exit() interrupt entry/exit func-
tions. These rcu_irq_enter() and rcu_irq_
exit() functions are needed to allow RCU to reliably
handle situations where a dynticks-idle CPUs is momen-
tarily powered up for an interrupt handler containing RCU
read-side critical sections. With these changes in place,
Steve’s system booted reliably, but Paul continued inspect-
ing the code periodically on the assumption that we could
not possibly have gotten the code right on the first try.

Paul reviewed the code repeatedly from October 2007
to February 2008, and almost always found at least one
bug. In one case, Paul even coded and tested a fix before
realizing that the bug was illusory, and in fact in all cases,
the “bug” turned out to be illusory.

Near the end of February, Paul grew tired of this game.
He therefore decided to enlist the aid of Promela and
spin [Hol03], as described in Appendix F. The following
presents a series of seven increasingly realistic Promela
models, the last of which passes, consuming about 40GB
of main memory for the state space.

More important, Promela and Spin did find a very sub-
tle bug for me!

Quick Quiz F.6: Yeah, that’s just great! Now, just
what am I supposed to do if I don’t happen to have a
machine with 40GB of main memory???

Still better would be to come up with a simpler and
faster algorithm that has a smaller state space. Even better
would be an algorithm so simple that its correctness was
obvious to the casual observer!

Section F.7.1 gives an overview of preemptible RCU’s

dynticks interface, Section F.7.2, and Section F.7.3 lists
lessons (re)learned during this effort.

F.7.1 Introduction to Preemptible RCU
and dynticks

The per-CPU dynticks_progress_counter vari-
able is central to the interface between dynticks and pre-
emptible RCU. This variable has an even value whenever
the corresponding CPU is in dynticks-idle mode, and an
odd value otherwise. A CPU exits dynticks-idle mode for
the following three reasons:

1. to start running a task,

2. when entering the outermost of a possibly nested set
of interrupt handlers, and

3. when entering an NMI handler.

Preemptible RCU’s grace-period machinery samples
the value of the dynticks_progress_counter
variable in order to determine when a dynticks-idle CPU
may safely be ignored.

The following three sections give an overview of the
task interface, the interrupt/NMI interface, and the use of
the dynticks_progress_counter variable by the
grace-period machinery.

F.7.1.1 Task Interface

When a given CPU enters dynticks-idle mode because
it has no more tasks to run, it invokes rcu_enter_
nohz():

1 static inline void rcu_enter_nohz(void)
2 {
3 mb();
4 __get_cpu_var(dynticks_progress_counter)++;
5 WARN_ON(__get_cpu_var(dynticks_progress_counter) & 0x1);
6 }

This function simply increments dynticks_
progress_counter and checks that the result is
even, but first executing a memory barrier to ensure that
any other CPU that sees the new value of dynticks_
progress_counter will also see the completion of
any prior RCU read-side critical sections.

Similarly, when a CPU that is in dynticks-idle mode
prepares to start executing a newly runnable task, it in-
vokes rcu_exit_nohz:
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1 static inline void rcu_exit_nohz(void)
2 {
3 __get_cpu_var(dynticks_progress_counter)++;
4 mb();
5 WARN_ON(!(__get_cpu_var(dynticks_progress_counter) &
6 0x1));
7 }

This function again increments dynticks_
progress_counter, but follows it with a memory
barrier to ensure that if any other CPU sees the result
of any subsequent RCU read-side critical section, then
that other CPU will also see the incremented value of
dynticks_progress_counter. Finally, rcu_
exit_nohz() checks that the result of the increment
is an odd value.

The rcu_enter_nohz() and rcu_exit_nohz
functions handle the case where a CPU enters and exits
dynticks-idle mode due to task execution, but does not
handle interrupts, which are covered in the following
section.

F.7.1.2 Interrupt Interface

The rcu_irq_enter() and rcu_irq_exit()
functions handle interrupt/NMI entry and exit, respec-
tively. Of course, nested interrupts must also be prop-
erly accounted for. The possibility of nested interrupts is
handled by a second per-CPU variable, rcu_update_
flag, which is incremented upon entry to an interrupt
or NMI handler (in rcu_irq_enter()) and is decre-
mented upon exit (in rcu_irq_exit()). In addition,
the pre-existing in_interrupt() primitive is used to
distinguish between an outermost or a nested interrup-
t/NMI.

Interrupt entry is handled by the rcu_irq_enter
shown below:

1 void rcu_irq_enter(void)
2 {
3 int cpu = smp_processor_id();
4
5 if (per_cpu(rcu_update_flag, cpu))
6 per_cpu(rcu_update_flag, cpu)++;
7 if (!in_interrupt() &&
8 (per_cpu(dynticks_progress_counter,
9 cpu) & 0x1) == 0) {
10 per_cpu(dynticks_progress_counter, cpu)++;
11 smp_mb();
12 per_cpu(rcu_update_flag, cpu)++;
13 }
14 }

Line 3 fetches the current CPU’s number, while
lines 5 and 6 increment the rcu_update_flag nest-
ing counter if it is already non-zero. Lines 7-9 check to
see whether we are the outermost level of interrupt, and, if

so, whether dynticks_progress_counter needs
to be incremented. If so, line 10 increments dynticks_
progress_counter, line 11 executes a memory bar-
rier, and line 12 increments rcu_update_flag. As
with rcu_exit_nohz(), the memory barrier ensures
that any other CPU that sees the effects of an RCU read-
side critical section in the interrupt handler (following
the rcu_irq_enter() invocation) will also see the
increment of dynticks_progress_counter.

Quick Quiz F.7: Why not simply increment rcu_
update_flag, and then only increment dynticks_
progress_counter if the old value of rcu_
update_flag was zero???

Quick Quiz F.8: But if line 7 finds that we are the out-
ermost interrupt, wouldn’t we always need to increment
dynticks_progress_counter?

Interrupt exit is handled similarly by rcu_irq_
exit():

1 void rcu_irq_exit(void)
2 {
3 int cpu = smp_processor_id();
4
5 if (per_cpu(rcu_update_flag, cpu)) {
6 if (--per_cpu(rcu_update_flag, cpu))
7 return;
8 WARN_ON(in_interrupt());
9 smp_mb();
10 per_cpu(dynticks_progress_counter, cpu)++;
11 WARN_ON(per_cpu(dynticks_progress_counter,
12 cpu) & 0x1);
13 }
14 }

Line 3 fetches the current CPU’s number, as before.
Line 5 checks to see if the rcu_update_flag is non-
zero, returning immediately (via falling off the end of
the function) if not. Otherwise, lines 6 through 12 come
into play. Line 6 decrements rcu_update_flag, re-
turning if the result is not zero. Line 8 verifies that we
are indeed leaving the outermost level of nested inter-
rupts, line 9 executes a memory barrier, line 10 incre-
ments dynticks_progress_counter, and lines 11
and 12 verify that this variable is now even. As with
rcu_enter_nohz(), the memory barrier ensures that
any other CPU that sees the increment of dynticks_
progress_counter will also see the effects of an
RCU read-side critical section in the interrupt handler
(preceding the rcu_irq_exit() invocation).

These two sections have described how the
dynticks_progress_counter variable is
maintained during entry to and exit from dynticks-idle
mode, both by tasks and by interrupts and NMIs. The
following section describes how this variable is used by
preemptible RCU’s grace-period machinery.
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F.7.1.3 Grace-Period Interface

Of the four preemptible RCU grace-period states shown
in Figure D.63 on page 259 in Appendix D.4, only
the rcu_try_flip_waitack_state() and rcu_
try_flip_waitmb_state() states need to wait for
other CPUs to respond.

Of course, if a given CPU is in dynticks-idle state, we
shouldn’t wait for it. Therefore, just before entering one
of these two states, the preceding state takes a snapshot of
each CPU’s dynticks_progress_counter vari-
able, placing the snapshot in another per-CPU variable,
rcu_dyntick_snapshot. This is accomplished
by invoking dyntick_save_progress_counter,
shown below:

1 static void dyntick_save_progress_counter(int cpu)
2 {
3 per_cpu(rcu_dyntick_snapshot, cpu) =
4 per_cpu(dynticks_progress_counter, cpu);
5 }

The rcu_try_flip_waitack_state() state
invokes rcu_try_flip_waitack_needed(),
shown below:

1 static inline int
2 rcu_try_flip_waitack_needed(int cpu)
3 {
4 long curr;
5 long snap;
6
7 curr = per_cpu(dynticks_progress_counter, cpu);
8 snap = per_cpu(rcu_dyntick_snapshot, cpu);
9 smp_mb();
10 if ((curr == snap) && ((curr & 0x1) == 0))
11 return 0;
12 if ((curr - snap) > 2 || (snap & 0x1) == 0)
13 return 0;
14 return 1;
15 }

Lines 7 and 8 pick up current and snapshot versions of
dynticks_progress_counter, respectively. The
memory barrier on line ensures that the counter checks in
the later rcu_try_flip_waitzero_state follow
the fetches of these counters. Lines 10 and 11 return zero
(meaning no communication with the specified CPU is
required) if that CPU has remained in dynticks-idle state
since the time that the snapshot was taken. Similarly,
lines 12 and 13 return zero if that CPU was initially in
dynticks-idle state or if it has completely passed through
a dynticks-idle state. In both these cases, there is no
way that that CPU could have retained the old value of
the grace-period counter. If neither of these conditions
hold, line 14 returns one, meaning that the CPU needs to
explicitly respond.

For its part, the rcu_try_flip_waitmb_state
state invokes rcu_try_flip_waitmb_needed(),
shown below:

1 static inline int
2 rcu_try_flip_waitmb_needed(int cpu)
3 {
4 long curr;
5 long snap;
6
7 curr = per_cpu(dynticks_progress_counter, cpu);
8 snap = per_cpu(rcu_dyntick_snapshot, cpu);
9 smp_mb();
10 if ((curr == snap) && ((curr & 0x1) == 0))
11 return 0;
12 if (curr != snap)
13 return 0;
14 return 1;
15 }

This is quite similar to rcu_try_flip_waitack_
needed, the difference being in lines 12 and 13, be-
cause any transition either to or from dynticks-idle state
executes the memory barrier needed by the rcu_try_
flip_waitmb_state() state.

We now have seen all the code involved in the inter-
face between RCU and the dynticks-idle state. The next
section builds up the Promela model used to verify this
code.

Quick Quiz F.9: Can you spot any bugs in any of the
code in this section?

F.7.2 Validating Preemptible RCU and
dynticks

This section develops a Promela model for the interface
between dynticks and RCU step by step, with each of
the following sections illustrating one step, starting with
the process-level code, adding assertions, interrupts, and
finally NMIs.

F.7.2.1 Basic Model

This section translates the process-level dynticks en-
try/exit code and the grace-period processing into
Promela [Hol03]. We start with rcu_exit_nohz()
and rcu_enter_nohz() from the 2.6.25-rc4 kernel,
placing these in a single Promela process that models exit-
ing and entering dynticks-idle mode in a loop as follows:

1 proctype dyntick_nohz()
2 {
3 byte tmp;
4 byte i = 0;
5
6 do
7 :: i >= MAX_DYNTICK_LOOP_NOHZ -> break;
8 :: i < MAX_DYNTICK_LOOP_NOHZ ->
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9 tmp = dynticks_progress_counter;
10 atomic {
11 dynticks_progress_counter = tmp + 1;
12 assert((dynticks_progress_counter & 1) == 1);
13 }
14 tmp = dynticks_progress_counter;
15 atomic {
16 dynticks_progress_counter = tmp + 1;
17 assert((dynticks_progress_counter & 1) == 0);
18 }
19 i++;
20 od;
21 }

Lines 6 and 20 define a loop. Line 7 exits the loop
once the loop counter i has exceeded the limit MAX_
DYNTICK_LOOP_NOHZ. Line 8 tells the loop con-
struct to execute lines 9-19 for each pass through the
loop. Because the conditionals on lines 7 and 8 are ex-
clusive of each other, the normal Promela random se-
lection of true conditions is disabled. Lines 9 and 11
model rcu_exit_nohz()’s non-atomic increment of
dynticks_progress_counter, while line 12 mod-
els the WARN_ON(). The atomic construct simply re-
duces the Promela state space, given that the WARN_ON()
is not strictly speaking part of the algorithm. Lines 14-
18 similarly models the increment and WARN_ON() for
rcu_enter_nohz(). Finally, line 19 increments the
loop counter.

Each pass through the loop therefore models a CPU ex-
iting dynticks-idle mode (for example, starting to execute
a task), then re-entering dynticks-idle mode (for example,
that same task blocking).

Quick Quiz F.10: Why isn’t the memory barrier in
rcu_exit_nohz() and rcu_enter_nohz() mod-
eled in Promela?

Quick Quiz F.11: Isn’t it a bit strange to model rcu_
exit_nohz() followed by rcu_enter_nohz()?
Wouldn’t it be more natural to instead model entry before
exit?

The next step is to model the interface to RCU’s grace-
period processing. For this, we need to model dyntick_
save_progress_counter(), rcu_try_flip_
waitack_needed(), rcu_try_flip_waitmb_
needed(), as well as portions of rcu_try_flip_
waitack() and rcu_try_flip_waitmb(), all
from the 2.6.25-rc4 kernel. The following grace_
period() Promela process models these functions as
they would be invoked during a single pass through pre-
emptible RCU’s grace-period processing.

1 proctype grace_period()
2 {
3 byte curr;
4 byte snap;
5

6 atomic {
7 printf("MDLN = %d\n", MAX_DYNTICK_LOOP_NOHZ);
8 snap = dynticks_progress_counter;
9 }
10 do
11 :: 1 ->
12 atomic {
13 curr = dynticks_progress_counter;
14 if
15 :: (curr == snap) && ((curr & 1) == 0) ->
16 break;
17 :: (curr - snap) > 2 || (snap & 1) == 0 ->
18 break;
19 :: 1 -> skip;
20 fi;
21 }
22 od;
23 snap = dynticks_progress_counter;
24 do
25 :: 1 ->
26 atomic {
27 curr = dynticks_progress_counter;
28 if
29 :: (curr == snap) && ((curr & 1) == 0) ->
30 break;
31 :: (curr != snap) ->
32 break;
33 :: 1 -> skip;
34 fi;
35 }
36 od;
37 }

Lines 6-9 print out the loop limit (but only into the .trail
file in case of error) and models a line of code from rcu_
try_flip_idle() and its call to dyntick_save_
progress_counter(), which takes a snapshot of the
current CPU’s dynticks_progress_counter vari-
able. These two lines are executed atomically to reduce
state space.

Lines 10-22 model the relevant code in rcu_try_
flip_waitack() and its call to rcu_try_flip_
waitack_needed(). This loop is modeling the grace-
period state machine waiting for a counter-flip acknowl-
edgement from each CPU, but only that part that interacts
with dynticks-idle CPUs.

Line 23 models a line from rcu_try_flip_
waitzero() and its call to dyntick_save_
progress_counter(), again taking a snapshot of
the CPU’s dynticks_progress_counter vari-
able.

Finally, lines 24-36 model the relevant code in rcu_
try_flip_waitack() and its call to rcu_try_
flip_waitack_needed(). This loop is modeling
the grace-period state-machine waiting for each CPU to
execute a memory barrier, but again only that part that
interacts with dynticks-idle CPUs.

Quick Quiz F.12: Wait a minute! In the Linux
kernel, both dynticks_progress_counter and
rcu_dyntick_snapshot are per-CPU variables. So
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why are they instead being modeled as single global vari-
ables?

The resulting model (dyntickRCU-base.spin),
when run with the runspin.sh script, generates 691
states and passes without errors, which is not at all sur-
prising given that it completely lacks the assertions that
could find failures. The next section therefore adds safety
assertions.

F.7.2.2 Validating Safety

A safe RCU implementation must never permit a grace
period to complete before the completion of any RCU
readers that started before the start of the grace period.
This is modeled by a grace_period_state variable
that can take on three states as follows:

1 #define GP_IDLE 0
2 #define GP_WAITING 1
3 #define GP_DONE 2
4 byte grace_period_state = GP_DONE;

The grace_period() process sets this variable as
it progresses through the grace-period phases, as shown
below:

1 proctype grace_period()
2 {
3 byte curr;
4 byte snap;
5
6 grace_period_state = GP_IDLE;
7 atomic {
8 printf("MDLN = %d\n", MAX_DYNTICK_LOOP_NOHZ);
9 snap = dynticks_progress_counter;
10 grace_period_state = GP_WAITING;
11 }
12 do
13 :: 1 ->
14 atomic {
15 curr = dynticks_progress_counter;
16 if
17 :: (curr == snap) && ((curr & 1) == 0) ->
18 break;
19 :: (curr - snap) > 2 || (snap & 1) == 0 ->
20 break;
21 :: 1 -> skip;
22 fi;
23 }
24 od;
25 grace_period_state = GP_DONE;
26 grace_period_state = GP_IDLE;
27 atomic {
28 snap = dynticks_progress_counter;
29 grace_period_state = GP_WAITING;
30 }
31 do
32 :: 1 ->
33 atomic {
34 curr = dynticks_progress_counter;
35 if
36 :: (curr == snap) && ((curr & 1) == 0) ->
37 break;
38 :: (curr != snap) ->

39 break;
40 :: 1 -> skip;
41 fi;
42 }
43 od;
44 grace_period_state = GP_DONE;
45 }

Lines 6, 10, 25, 26, 29, and 44 update this variable
(combining atomically with algorithmic operations where
feasible) to allow the dyntick_nohz() process to ver-
ify the basic RCU safety property. The form of this
verification is to assert that the value of the grace_
period_state variable cannot jump from GP_IDLE
to GP_DONE during a time period over which RCU read-
ers could plausibly persist.

Quick Quiz F.13: Given there are a pair of back-to-
back changes to grace_period_state on lines 25
and 26, how can we be sure that line 25’s changes won’t
be lost?

The dyntick_nohz() Promela process implements
this verification as shown below:

1 proctype dyntick_nohz()
2 {
3 byte tmp;
4 byte i = 0;
5 bit old_gp_idle;
6
7 do
8 :: i >= MAX_DYNTICK_LOOP_NOHZ -> break;
9 :: i < MAX_DYNTICK_LOOP_NOHZ ->
10 tmp = dynticks_progress_counter;
11 atomic {
12 dynticks_progress_counter = tmp + 1;
13 old_gp_idle = (grace_period_state == GP_IDLE);
14 assert((dynticks_progress_counter & 1) == 1);
15 }
16 atomic {
17 tmp = dynticks_progress_counter;
18 assert(!old_gp_idle ||
19 grace_period_state != GP_DONE);
20 }
21 atomic {
22 dynticks_progress_counter = tmp + 1;
23 assert((dynticks_progress_counter & 1) == 0);
24 }
25 i++;
26 od;
27 }

Line 13 sets a new old_gp_idle flag if the value
of the grace_period_state variable is GP_IDLE
at the beginning of task execution, and the assertion at
lines 18 and 19 fire if the grace_period_state vari-
able has advanced to GP_DONE during task execution,
which would be illegal given that a single RCU read-side
critical section could span the entire intervening time
period.

The resulting model (dyntickRCU-base-s.
spin), when run with the runspin.sh script,

dyntickRCU-base.spin
runspin.sh
dyntickRCU-base-s.spin
dyntickRCU-base-s.spin
runspin.sh
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generates 964 states and passes without errors, which
is reassuring. That said, although safety is critically
important, it is also quite important to avoid indefinitely
stalling grace periods. The next section therefore covers
verifying liveness.

F.7.2.3 Validating Liveness

Although liveness can be difficult to prove, there is
a simple trick that applies here. The first step is to
make dyntick_nohz() indicate that it is done via
a dyntick_nohz_done variable, as shown on line 27
of the following:

1 proctype dyntick_nohz()
2 {
3 byte tmp;
4 byte i = 0;
5 bit old_gp_idle;
6
7 do
8 :: i >= MAX_DYNTICK_LOOP_NOHZ -> break;
9 :: i < MAX_DYNTICK_LOOP_NOHZ ->
10 tmp = dynticks_progress_counter;
11 atomic {
12 dynticks_progress_counter = tmp + 1;
13 old_gp_idle = (grace_period_state == GP_IDLE);
14 assert((dynticks_progress_counter & 1) == 1);
15 }
16 atomic {
17 tmp = dynticks_progress_counter;
18 assert(!old_gp_idle ||
19 grace_period_state != GP_DONE);
20 }
21 atomic {
22 dynticks_progress_counter = tmp + 1;
23 assert((dynticks_progress_counter & 1) == 0);
24 }
25 i++;
26 od;
27 dyntick_nohz_done = 1;
28 }

With this variable in place, we can add assertions to
grace_period() to check for unnecessary blockage
as follows:

1 proctype grace_period()
2 {
3 byte curr;
4 byte snap;
5 bit shouldexit;
6
7 grace_period_state = GP_IDLE;
8 atomic {
9 printf("MDLN = %d\n", MAX_DYNTICK_LOOP_NOHZ);
10 shouldexit = 0;
11 snap = dynticks_progress_counter;
12 grace_period_state = GP_WAITING;
13 }
14 do
15 :: 1 ->
16 atomic {
17 assert(!shouldexit);
18 shouldexit = dyntick_nohz_done;
19 curr = dynticks_progress_counter;

20 if
21 :: (curr == snap) && ((curr & 1) == 0) ->
22 break;
23 :: (curr - snap) > 2 || (snap & 1) == 0 ->
24 break;
25 :: else -> skip;
26 fi;
27 }
28 od;
29 grace_period_state = GP_DONE;
30 grace_period_state = GP_IDLE;
31 atomic {
32 shouldexit = 0;
33 snap = dynticks_progress_counter;
34 grace_period_state = GP_WAITING;
35 }
36 do
37 :: 1 ->
38 atomic {
39 assert(!shouldexit);
40 shouldexit = dyntick_nohz_done;
41 curr = dynticks_progress_counter;
42 if
43 :: (curr == snap) && ((curr & 1) == 0) ->
44 break;
45 :: (curr != snap) ->
46 break;
47 :: else -> skip;
48 fi;
49 }
50 od;
51 grace_period_state = GP_DONE;
52 }

We have added the shouldexit variable on line 5,
which we initialize to zero on line 10. Line 17 as-
serts that shouldexit is not set, while line 18 sets
shouldexit to the dyntick_nohz_done variable
maintained by dyntick_nohz(). This assertion will
therefore trigger if we attempt to take more than one pass
through the wait-for-counter-flip-acknowledgement loop
after dyntick_nohz() has completed execution. Af-
ter all, if dyntick_nohz() is done, then there cannot
be any more state changes to force us out of the loop, so
going through twice in this state means an infinite loop,
which in turn means no end to the grace period.

Lines 32, 39, and 40 operate in a similar manner for
the second (memory-barrier) loop.

However, running this model
(dyntickRCU-base-sl-busted.spin) results in
failure, as line 23 is checking that the wrong variable
is even. Upon failure, spin writes out a “trail” file
(dyntickRCU-base-sl-busted.spin.trail)
file, which records the sequence of states that lead
to the failure. Use the spin -t -p -g -l
dyntickRCU-base-sl-busted.spin command
to cause spin to retrace this sequence of state, printing
the statements executed and the values of variables
(dyntickRCU-base-sl-busted.spin.trail.
txt). Note that the line numbers do not match the listing
above due to the fact that spin takes both functions in a

dyntickRCU-base-sl-busted.spin
dyntickRCU-base-sl-busted.spin.trail
dyntickRCU-base-sl-busted.spin.trail.txt
dyntickRCU-base-sl-busted.spin.trail.txt
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single file. However, the line numbers do match the full
model (dyntickRCU-base-sl-busted.spin).

We see that the dyntick_nohz() process com-
pleted at step 34 (search for “34:”), but that the grace_
period() process nonetheless failed to exit the loop.
The value of curr is 6 (see step 35) and that the value of
snap is 5 (see step 17). Therefore the first condition on
line 21 above does not hold because curr != snap,
and the second condition on line 23 does not hold ei-
ther because snap is odd and because curr is only one
greater than snap.

So one of these two conditions has to be incorrect.
Referring to the comment block in rcu_try_flip_
waitack_needed() for the first condition:

If the CPU remained in dynticks mode for the
entire time and didn’t take any interrupts, NMIs,
SMIs, or whatever, then it cannot be in the mid-
dle of an rcu_read_lock(), so the next
rcu_read_lock() it executes must use the
new value of the counter. So we can safely pre-
tend that this CPU already acknowledged the
counter.

The first condition does match this, because if
curr == snap and if curr is even, then the corre-
sponding CPU has been in dynticks-idle mode the entire
time, as required. So let’s look at the comment block for
the second condition:

If the CPU passed through or entered a dynticks
idle phase with no active irq handlers, then, as
above, we can safely pretend that this CPU
already acknowledged the counter.

The first part of the condition is correct, because if
curr and snap differ by two, there will be at least one
even number in between, corresponding to having passed
completely through a dynticks-idle phase. However, the
second part of the condition corresponds to having started
in dynticks-idle mode, not having finished in this mode.
We therefore need to be testing curr rather than snap
for being an even number.

The corrected C code is as follows:

1 static inline int
2 rcu_try_flip_waitack_needed(int cpu)
3 {
4 long curr;
5 long snap;
6
7 curr = per_cpu(dynticks_progress_counter, cpu);
8 snap = per_cpu(rcu_dyntick_snapshot, cpu);
9 smp_mb();

10 if ((curr == snap) && ((curr & 0x1) == 0))
11 return 0;
12 if ((curr - snap) > 2 || (curr & 0x1) == 0)
13 return 0;
14 return 1;
15 }

Lines 10-13 can now be combined and simplified, re-
sulting in the following. A similar simplification can be
applied to rcu_try_flip_waitmb_needed.

1 static inline int
2 rcu_try_flip_waitack_needed(int cpu)
3 {
4 long curr;
5 long snap;
6
7 curr = per_cpu(dynticks_progress_counter, cpu);
8 snap = per_cpu(rcu_dyntick_snapshot, cpu);
9 smp_mb();
10 if ((curr - snap) >= 2 || (curr & 0x1) == 0)
11 return 0;
12 return 1;
13 }

Making the corresponding correction in the model
(dyntickRCU-base-sl.spin) results in a correct
verification with 661 states that passes without errors.
However, it is worth noting that the first version of the
liveness verification failed to catch this bug, due to a
bug in the liveness verification itself. This liveness-
verification bug was located by inserting an infinite loop
in the grace_period() process, and noting that the
liveness-verification code failed to detect this problem!

We have now successfully verified both safety and live-
ness conditions, but only for processes running and block-
ing. We also need to handle interrupts, a task taken up in
the next section.

F.7.2.4 Interrupts

There are a couple of ways to model interrupts in Promela:

1. using C-preprocessor tricks to insert the interrupt
handler between each and every statement of the
dynticks_nohz() process, or

2. modeling the interrupt handler with a separate pro-
cess.

A bit of thought indicated that the second approach
would have a smaller state space, though it requires that
the interrupt handler somehow run atomically with respect
to the dynticks_nohz() process, but not with respect
to the grace_period() process.

Fortunately, it turns out that Promela permits you
to branch out of atomic statements. This trick allows
us to have the interrupt handler set a flag, and recode

dyntickRCU-base-sl-busted.spin
dyntickRCU-base-sl.spin
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dynticks_nohz() to atomically check this flag and
execute only when the flag is not set. This can be accom-
plished with a C-preprocessor macro that takes a label
and a Promela statement as follows:

1 #define EXECUTE_MAINLINE(label, stmt) \
2 label: skip; \
3 atomic { \
4 if \
5 :: in_dyntick_irq -> goto label; \
6 :: else -> stmt; \
7 fi; \
8 } \

One might use this macro as follows:

EXECUTE_MAINLINE(stmt1,
tmp = dynticks_progress_counter)

Line 2 of the macro creates the specified statement
label. Lines 3-8 are an atomic block that tests the in_
dyntick_irq variable, and if this variable is set (indi-
cating that the interrupt handler is active), branches out
of the atomic block back to the label. Otherwise, line 6
executes the specified statement. The overall effect is that
mainline execution stalls any time an interrupt is active,
as required.

F.7.2.5 Validating Interrupt Handlers

The first step is to convert dyntick_nohz() to
EXECUTE_MAINLINE() form, as follows:

1 proctype dyntick_nohz()
2 {
3 byte tmp;
4 byte i = 0;
5 bit old_gp_idle;
6
7 do
8 :: i >= MAX_DYNTICK_LOOP_NOHZ -> break;
9 :: i < MAX_DYNTICK_LOOP_NOHZ ->
10 EXECUTE_MAINLINE(stmt1,
11 tmp = dynticks_progress_counter)
12 EXECUTE_MAINLINE(stmt2,
13 dynticks_progress_counter = tmp + 1;
14 old_gp_idle = (grace_period_state == GP_IDLE);
15 assert((dynticks_progress_counter & 1) == 1))
16 EXECUTE_MAINLINE(stmt3,
17 tmp = dynticks_progress_counter;
18 assert(!old_gp_idle ||
19 grace_period_state != GP_DONE))
20 EXECUTE_MAINLINE(stmt4,
21 dynticks_progress_counter = tmp + 1;
22 assert((dynticks_progress_counter & 1) == 0))
23 i++;
24 od;
25 dyntick_nohz_done = 1;
26 }

It is important to note that when a group of statements
is passed to EXECUTE_MAINLINE(), as in lines 11-14,
all statements in that group execute atomically.

Quick Quiz F.14: But what would you do if

you needed the statements in a single EXECUTE_
MAINLINE() group to execute non-atomically?

Quick Quiz F.15: But what if the dynticks_
nohz() process had “if” or “do” statements with con-
ditions, where the statement bodies of these constructs
needed to execute non-atomically?

The next step is to write a dyntick_irq() process
to model an interrupt handler:

1 proctype dyntick_irq()
2 {
3 byte tmp;
4 byte i = 0;
5 bit old_gp_idle;
6
7 do
8 :: i >= MAX_DYNTICK_LOOP_IRQ -> break;
9 :: i < MAX_DYNTICK_LOOP_IRQ ->
10 in_dyntick_irq = 1;
11 if
12 :: rcu_update_flag > 0 ->
13 tmp = rcu_update_flag;
14 rcu_update_flag = tmp + 1;
15 :: else -> skip;
16 fi;
17 if
18 :: !in_interrupt &&
19 (dynticks_progress_counter & 1) == 0 ->
20 tmp = dynticks_progress_counter;
21 dynticks_progress_counter = tmp + 1;
22 tmp = rcu_update_flag;
23 rcu_update_flag = tmp + 1;
24 :: else -> skip;
25 fi;
26 tmp = in_interrupt;
27 in_interrupt = tmp + 1;
28 old_gp_idle = (grace_period_state == GP_IDLE);
29 assert(!old_gp_idle || grace_period_state != GP_DONE);
30 tmp = in_interrupt;
31 in_interrupt = tmp - 1;
32 if
33 :: rcu_update_flag != 0 ->
34 tmp = rcu_update_flag;
35 rcu_update_flag = tmp - 1;
36 if
37 :: rcu_update_flag == 0 ->
38 tmp = dynticks_progress_counter;
39 dynticks_progress_counter = tmp + 1;
40 :: else -> skip;
41 fi;
42 :: else -> skip;
43 fi;
44 atomic {
45 in_dyntick_irq = 0;
46 i++;
47 }
48 od;
49 dyntick_irq_done = 1;
50 }

The loop from line 7-48 models up to MAX_
DYNTICK_LOOP_IRQ interrupts, with lines 8 and 9
forming the loop condition and line 45 incrementing
the control variable. Line 10 tells dyntick_nohz()
that an interrupt handler is running, and line 45 tells
dyntick_nohz() that this handler has completed.
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Line 49 is used for liveness verification, much as is the
corresponding line of dyntick_nohz().

Quick Quiz F.16: Why are lines 45 and 46 (the in_
dyntick_irq = 0; and the i++;) executed atomi-
cally?

Lines 11-25 model rcu_irq_enter(), and lines 26
and 27 model the relevant snippet of __irq_enter().
Lines 28 and 29 verifies safety in much the same manner
as do the corresponding lines of dynticks_nohz().
Lines 30 and 31 model the relevant snippet of __irq_
exit(), and finally lines 32-43 model rcu_irq_
exit().

Quick Quiz F.17: What property of interrupts is this
dynticks_irq() process unable to model?

The grace_period process then becomes as fol-
lows:

1 proctype grace_period()
2 {
3 byte curr;
4 byte snap;
5 bit shouldexit;
6
7 grace_period_state = GP_IDLE;
8 atomic {
9 printf("MDLN = %d\n", MAX_DYNTICK_LOOP_NOHZ);
10 printf("MDLI = %d\n", MAX_DYNTICK_LOOP_IRQ);
11 shouldexit = 0;
12 snap = dynticks_progress_counter;
13 grace_period_state = GP_WAITING;
14 }
15 do
16 :: 1 ->
17 atomic {
18 assert(!shouldexit);
19 shouldexit = dyntick_nohz_done && dyntick_irq_done;
20 curr = dynticks_progress_counter;
21 if
22 :: (curr - snap) >= 2 || (curr & 1) == 0 ->
23 break;
24 :: else -> skip;
25 fi;
26 }
27 od;
28 grace_period_state = GP_DONE;
29 grace_period_state = GP_IDLE;
30 atomic {
31 shouldexit = 0;
32 snap = dynticks_progress_counter;
33 grace_period_state = GP_WAITING;
34 }
35 do
36 :: 1 ->
37 atomic {
38 assert(!shouldexit);
39 shouldexit = dyntick_nohz_done && dyntick_irq_done;
40 curr = dynticks_progress_counter;
41 if
42 :: (curr != snap) || ((curr & 1) == 0) ->
43 break;
44 :: else -> skip;
45 fi;
46 }
47 od;
48 grace_period_state = GP_DONE;
49 }

The implementation of grace_period() is very
similar to the earlier one. The only changes are the addi-
tion of line 10 to add the new interrupt-count parameter,
changes to lines 19 and 39 to add the new dyntick_
irq_done variable to the liveness checks, and of course
the optimizations on lines 22 and 42.

This model (dyntickRCU-irqnn-ssl.spin) re-
sults in a correct verification with roughly half a million
states, passing without errors. However, this version of
the model does not handle nested interrupts. This topic is
taken up in the nest section.

F.7.2.6 Validating Nested Interrupt Handlers

Nested interrupt handlers may be modeled by splitting
the body of the loop in dyntick_irq() as follows:

1 proctype dyntick_irq()
2 {
3 byte tmp;
4 byte i = 0;
5 byte j = 0;
6 bit old_gp_idle;
7 bit outermost;
8
9 do
10 :: i >= MAX_DYNTICK_LOOP_IRQ &&
11 j >= MAX_DYNTICK_LOOP_IRQ -> break;
12 :: i < MAX_DYNTICK_LOOP_IRQ ->
13 atomic {
14 outermost = (in_dyntick_irq == 0);
15 in_dyntick_irq = 1;
16 }
17 if
18 :: rcu_update_flag > 0 ->
19 tmp = rcu_update_flag;
20 rcu_update_flag = tmp + 1;
21 :: else -> skip;
22 fi;
23 if
24 :: !in_interrupt &&
25 (dynticks_progress_counter & 1) == 0 ->
26 tmp = dynticks_progress_counter;
27 dynticks_progress_counter = tmp + 1;
28 tmp = rcu_update_flag;
29 rcu_update_flag = tmp + 1;
30 :: else -> skip;
31 fi;
32 tmp = in_interrupt;
33 in_interrupt = tmp + 1;
34 atomic {
35 if
36 :: outermost ->
37 old_gp_idle = (grace_period_state == GP_IDLE);
38 :: else -> skip;
39 fi;
40 }
41 i++;
42 :: j < i ->
43 atomic {
44 if
45 :: j + 1 == i ->
46 assert(!old_gp_idle ||
47 grace_period_state != GP_DONE);
48 :: else -> skip;
49 fi;
50 }

dyntickRCU-irqnn-ssl.spin
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51 tmp = in_interrupt;
52 in_interrupt = tmp - 1;
53 if
54 :: rcu_update_flag != 0 ->
55 tmp = rcu_update_flag;
56 rcu_update_flag = tmp - 1;
57 if
58 :: rcu_update_flag == 0 ->
59 tmp = dynticks_progress_counter;
60 dynticks_progress_counter = tmp + 1;
61 :: else -> skip;
62 fi;
63 :: else -> skip;
64 fi;
65 atomic {
66 j++;
67 in_dyntick_irq = (i != j);
68 }
69 od;
70 dyntick_irq_done = 1;
71 }

This is similar to the earlier dynticks_irq() pro-
cess. It adds a second counter variable j on line 5, so
that i counts entries to interrupt handlers and j counts
exits. The outermost variable on line 7 helps deter-
mine when the grace_period_state variable needs
to be sampled for the safety checks. The loop-exit check
on lines 10 and 11 is updated to require that the spec-
ified number of interrupt handlers are exited as well as
entered, and the increment of i is moved to line 41, which
is the end of the interrupt-entry model. Lines 13-16 set
the outermost variable to indicate whether this is the
outermost of a set of nested interrupts and to set the in_
dyntick_irq variable that is used by the dyntick_
nohz() process. Lines 34-40 capture the state of the
grace_period_state variable, but only when in the
outermost interrupt handler.

Line 42 has the do-loop conditional for interrupt-exit
modeling: as long as we have exited fewer interrupts
than we have entered, it is legal to exit another inter-
rupt. Lines 43-50 check the safety criterion, but only
if we are exiting from the outermost interrupt level. Fi-
nally, lines 65-68 increment the interrupt-exit count j
and, if this is the outermost interrupt level, clears in_
dyntick_irq.

This model (dyntickRCU-irq-ssl.spin) re-
sults in a correct verification with a bit more than half
a million states, passing without errors. However, this
version of the model does not handle NMIs, which are
taken up in the nest section.

F.7.2.7 Validating NMI Handlers

We take the same general approach for NMIs as we do for
interrupts, keeping in mind that NMIs do not nest. This
results in a dyntick_nmi() process as follows:

1 proctype dyntick_nmi()
2 {
3 byte tmp;
4 byte i = 0;
5 bit old_gp_idle;
6
7 do
8 :: i >= MAX_DYNTICK_LOOP_NMI -> break;
9 :: i < MAX_DYNTICK_LOOP_NMI ->
10 in_dyntick_nmi = 1;
11 if
12 :: rcu_update_flag > 0 ->
13 tmp = rcu_update_flag;
14 rcu_update_flag = tmp + 1;
15 :: else -> skip;
16 fi;
17 if
18 :: !in_interrupt &&
19 (dynticks_progress_counter & 1) == 0 ->
20 tmp = dynticks_progress_counter;
21 dynticks_progress_counter = tmp + 1;
22 tmp = rcu_update_flag;
23 rcu_update_flag = tmp + 1;
24 :: else -> skip;
25 fi;
26 tmp = in_interrupt;
27 in_interrupt = tmp + 1;
28 old_gp_idle = (grace_period_state == GP_IDLE);
29 assert(!old_gp_idle || grace_period_state != GP_DONE);
30 tmp = in_interrupt;
31 in_interrupt = tmp - 1;
32 if
33 :: rcu_update_flag != 0 ->
34 tmp = rcu_update_flag;
35 rcu_update_flag = tmp - 1;
36 if
37 :: rcu_update_flag == 0 ->
38 tmp = dynticks_progress_counter;
39 dynticks_progress_counter = tmp + 1;
40 :: else -> skip;
41 fi;
42 :: else -> skip;
43 fi;
44 atomic {
45 i++;
46 in_dyntick_nmi = 0;
47 }
48 od;
49 dyntick_nmi_done = 1;
50 }

Of course, the fact that we have NMIs requires ad-
justments in the other components. For example, the
EXECUTE_MAINLINE()macro now needs to pay atten-
tion to the NMI handler (in_dyntick_nmi) as well as
the interrupt handler (in_dyntick_irq) by checking
the dyntick_nmi_done variable as follows:

1 #define EXECUTE_MAINLINE(label, stmt) \
2 label: skip; \
3 atomic { \
4 if \
5 :: in_dyntick_irq || \
6 in_dyntick_nmi -> goto label; \
7 :: else -> stmt; \
8 fi; \
9 } \

We will also need to introduce an EXECUTE_IRQ()
macro that checks in_dyntick_nmi in order to allow

dyntickRCU-irq-ssl.spin
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dyntick_irq() to exclude dyntick_nmi():

1 #define EXECUTE_IRQ(label, stmt) \
2 label: skip; \
3 atomic { \
4 if \
5 :: in_dyntick_nmi -> goto label; \
6 :: else -> stmt; \
7 fi; \
8 } \

It is further necessary to convert dyntick_irq() to
EXECUTE_IRQ() as follows:

1 proctype dyntick_irq()
2 {
3 byte tmp;
4 byte i = 0;
5 byte j = 0;
6 bit old_gp_idle;
7 bit outermost;
8
9 do
10 :: i >= MAX_DYNTICK_LOOP_IRQ &&
11 j >= MAX_DYNTICK_LOOP_IRQ -> break;
12 :: i < MAX_DYNTICK_LOOP_IRQ ->
13 atomic {
14 outermost = (in_dyntick_irq == 0);
15 in_dyntick_irq = 1;
16 }
17 stmt1: skip;
18 atomic {
19 if
20 :: in_dyntick_nmi -> goto stmt1;
21 :: !in_dyntick_nmi && rcu_update_flag ->
22 goto stmt1_then;
23 :: else -> goto stmt1_else;
24 fi;
25 }
26 stmt1_then: skip;
27 EXECUTE_IRQ(stmt1_1, tmp = rcu_update_flag)
28 EXECUTE_IRQ(stmt1_2, rcu_update_flag = tmp + 1)
29 stmt1_else: skip;
30 stmt2: skip; atomic {
31 if
32 :: in_dyntick_nmi -> goto stmt2;
33 :: !in_dyntick_nmi &&
34 !in_interrupt &&
35 (dynticks_progress_counter & 1) == 0 ->
36 goto stmt2_then;
37 :: else -> goto stmt2_else;
38 fi;
39 }
40 stmt2_then: skip;
41 EXECUTE_IRQ(stmt2_1, tmp = dynticks_progress_counter)
42 EXECUTE_IRQ(stmt2_2,
43 dynticks_progress_counter = tmp + 1)
44 EXECUTE_IRQ(stmt2_3, tmp = rcu_update_flag)
45 EXECUTE_IRQ(stmt2_4, rcu_update_flag = tmp + 1)
46 stmt2_else: skip;
47 EXECUTE_IRQ(stmt3, tmp = in_interrupt)
48 EXECUTE_IRQ(stmt4, in_interrupt = tmp + 1)
49 stmt5: skip;
50 atomic {
51 if
52 :: in_dyntick_nmi -> goto stmt4;
53 :: !in_dyntick_nmi && outermost ->
54 old_gp_idle = (grace_period_state == GP_IDLE);
55 :: else -> skip;
56 fi;
57 }
58 i++;
59 :: j < i ->

60 stmt6: skip;
61 atomic {
62 if
63 :: in_dyntick_nmi -> goto stmt6;
64 :: !in_dyntick_nmi && j + 1 == i ->
65 assert(!old_gp_idle ||
66 grace_period_state != GP_DONE);
67 :: else -> skip;
68 fi;
69 }
70 EXECUTE_IRQ(stmt7, tmp = in_interrupt);
71 EXECUTE_IRQ(stmt8, in_interrupt = tmp - 1);
72
73 stmt9: skip;
74 atomic {
75 if
76 :: in_dyntick_nmi -> goto stmt9;
77 :: !in_dyntick_nmi && rcu_update_flag != 0 ->
78 goto stmt9_then;
79 :: else -> goto stmt9_else;
80 fi;
81 }
82 stmt9_then: skip;
83 EXECUTE_IRQ(stmt9_1, tmp = rcu_update_flag)
84 EXECUTE_IRQ(stmt9_2, rcu_update_flag = tmp - 1)
85 stmt9_3: skip;
86 atomic {
87 if
88 :: in_dyntick_nmi -> goto stmt9_3;
89 :: !in_dyntick_nmi && rcu_update_flag == 0 ->
90 goto stmt9_3_then;
91 :: else -> goto stmt9_3_else;
92 fi;
93 }
94 stmt9_3_then: skip;
95 EXECUTE_IRQ(stmt9_3_1,
96 tmp = dynticks_progress_counter)
97 EXECUTE_IRQ(stmt9_3_2,
98 dynticks_progress_counter = tmp + 1)
99 stmt9_3_else:

100 stmt9_else: skip;
101 atomic {
102 j++;
103 in_dyntick_irq = (i != j);
104 }
105 od;
106 dyntick_irq_done = 1;
107 }

Note that we have open-coded the “if” statements (for
example, lines 17-29). In addition, statements that process
strictly local state (such as line 58) need not exclude
dyntick_nmi().

Finally, grace_period() requires only a few
changes:

1 proctype grace_period()
2 {
3 byte curr;
4 byte snap;
5 bit shouldexit;
6
7 grace_period_state = GP_IDLE;
8 atomic {
9 printf("MDLN = %d\n", MAX_DYNTICK_LOOP_NOHZ);
10 printf("MDLI = %d\n", MAX_DYNTICK_LOOP_IRQ);
11 printf("MDLN = %d\n", MAX_DYNTICK_LOOP_NMI);
12 shouldexit = 0;
13 snap = dynticks_progress_counter;
14 grace_period_state = GP_WAITING;
15 }
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16 do
17 :: 1 ->
18 atomic {
19 assert(!shouldexit);
20 shouldexit = dyntick_nohz_done &&
21 dyntick_irq_done &&
22 dyntick_nmi_done;
23 curr = dynticks_progress_counter;
24 if
25 :: (curr - snap) >= 2 || (curr & 1) == 0 ->
26 break;
27 :: else -> skip;
28 fi;
29 }
30 od;
31 grace_period_state = GP_DONE;
32 grace_period_state = GP_IDLE;
33 atomic {
34 shouldexit = 0;
35 snap = dynticks_progress_counter;
36 grace_period_state = GP_WAITING;
37 }
38 do
39 :: 1 ->
40 atomic {
41 assert(!shouldexit);
42 shouldexit = dyntick_nohz_done &&
43 dyntick_irq_done &&
44 dyntick_nmi_done;
45 curr = dynticks_progress_counter;
46 if
47 :: (curr != snap) || ((curr & 1) == 0) ->
48 break;
49 :: else -> skip;
50 fi;
51 }
52 od;
53 grace_period_state = GP_DONE;
54 }

We have added the printf() for the new MAX_
DYNTICK_LOOP_NMI parameter on line 11 and added
dyntick_nmi_done to the shouldexit assign-
ments on lines 22 and 44.

The model (dyntickRCU-irq-nmi-ssl.spin)
results in a correct verification with several hundred mil-
lion states, passing without errors.

Quick Quiz F.18: Does Paul always write his code in
this painfully incremental manner?

F.7.3 Lessons (Re)Learned

This effort provided some lessons (re)learned:

1. Promela and spin can verify interrupt/NMI-
handler interactions.

2. Documenting code can help locate bugs. In
this case, the documentation effort located a mis-
placed memory barrier in rcu_enter_nohz()
and rcu_exit_nohz(), as shown by the patch
in Figure F.16.

static inline void rcu_enter_nohz(void)
{

+ mb();
__get_cpu_var(dynticks_progress_counter)++;

- mb();
}

static inline void rcu_exit_nohz(void)
{

- mb();
__get_cpu_var(dynticks_progress_counter)++;

+ mb();
}

Figure F.16: Memory-Barrier Fix Patch

- if ((curr - snap) > 2 || (snap & 0x1) == 0)
+ if ((curr - snap) > 2 || (curr & 0x1) == 0)

Figure F.17: Variable-Name-Typo Fix Patch

3. Validate your code early, often, and up to the
point of destruction. This effort located one subtle
bug in rcu_try_flip_waitack_needed()
that would have been quite difficult to test or debug,
as shown by the patch in Figure F.17.

4. Always verify your verification code. The usual
way to do this is to insert a deliberate bug and ver-
ify that the verification code catches it. Of course,
if the verification code fails to catch this bug, you
may also need to verify the bug itself, and so on,
recursing infinitely. However, if you find yourself in
this position, getting a good night’s sleep can be an
extremely effective debugging technique.

5. Use of atomic instructions can simplify verifica-
tion. Unfortunately, use of the cmpxchg atomic
instruction would also slow down the critical irq
fastpath, so they are not appropriate in this case.

6. The need for complex formal verification often
indicates a need to re-think your design. In fact
the design verified in this section turns out to have
a much simpler solution, which is presented in the
next section.

F.8 Simplicity Avoids Formal Verifi-
cation

The complexity of the dynticks interface for preemptible
RCU is primarily due to the fact that both irqs and NMIs
use the same code path and the same state variables. This

dyntickRCU-irq-nmi-ssl.spin
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1 struct rcu_dynticks {
2 int dynticks_nesting;
3 int dynticks;
4 int dynticks_nmi;
5 };
6
7 struct rcu_data {
8 ...
9 int dynticks_snap;
10 int dynticks_nmi_snap;
11 ...
12 };

Figure F.18: Variables for Simple Dynticks Interface

leads to the notion of providing separate code paths and
variables for irqs and NMIs, as has been done for hierar-
chical RCU [McK08a] as indirectly suggested by Man-
fred Spraul [Spr08b].

F.8.1 State Variables for Simplified
Dynticks Interface

Figure F.18 shows the new per-CPU state variables. These
variables are grouped into structs to allow multiple inde-
pendent RCU implementations (e.g., rcu and rcu_bh)
to conveniently and efficiently share dynticks state. In
what follows, they can be thought of as independent per-
CPU variables.

The dynticks_nesting, dynticks, and
dynticks_snap variables are for the irq code paths,
and the dynticks_nmi and dynticks_nmi_snap
variables are for the NMI code paths, although the
NMI code path will also reference (but not modify) the
dynticks_nesting variable. These variables are
used as follows:

• dynticks_nesting: This counts the number of
reasons that the corresponding CPU should be mon-
itored for RCU read-side critical sections. If the
CPU is in dynticks-idle mode, then this counts the
irq nesting level, otherwise it is one greater than the
irq nesting level.

• dynticks: This counter’s value is even if the cor-
responding CPU is in dynticks-idle mode and there
are no irq handlers currently running on that CPU,
otherwise the counter’s value is odd. In other words,
if this counter’s value is odd, then the corresponding
CPU might be in an RCU read-side critical section.

• dynticks_nmi: This counter’s value is odd if the
corresponding CPU is in an NMI handler, but only if

1 void rcu_enter_nohz(void)
2 {
3 unsigned long flags;
4 struct rcu_dynticks *rdtp;
5
6 smp_mb();
7 local_irq_save(flags);
8 rdtp = &__get_cpu_var(rcu_dynticks);
9 rdtp->dynticks++;
10 rdtp->dynticks_nesting--;
11 WARN_ON_RATELIMIT(rdtp->dynticks & 0x1, &rcu_rs);
12 local_irq_restore(flags);
13 }
14
15 void rcu_exit_nohz(void)
16 {
17 unsigned long flags;
18 struct rcu_dynticks *rdtp;
19
20 local_irq_save(flags);
21 rdtp = &__get_cpu_var(rcu_dynticks);
22 rdtp->dynticks++;
23 rdtp->dynticks_nesting++;
24 WARN_ON_RATELIMIT(!(rdtp->dynticks & 0x1), &rcu_rs);
25 local_irq_restore(flags);
26 smp_mb();
27 }

Figure F.19: Entering and Exiting Dynticks-Idle Mode

the NMI arrived while this CPU was in dyntick-idle
mode with no irq handlers running. Otherwise, the
counter’s value will be even.

• dynticks_snap: This will be a snapshot of the
dynticks counter, but only if the current RCU
grace period has extended for too long a duration.

• dynticks_nmi_snap: This will be a snapshot
of the dynticks_nmi counter, but again only if
the current RCU grace period has extended for too
long a duration.

If both dynticks and dynticks_nmi have taken
on an even value during a given time interval, then the
corresponding CPU has passed through a quiescent state
during that interval.

Quick Quiz F.19: But what happens if an NMI handler
starts running before an irq handler completes, and if that
NMI handler continues running until a second irq handler
starts?

F.8.2 Entering and Leaving Dynticks-Idle
Mode

Figure F.19 shows the rcu_enter_nohz() and rcu_
exit_nohz(), which enter and exit dynticks-idle
mode, also known as “nohz” mode. These two functions
are invoked from process context.
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1 void rcu_nmi_enter(void)
2 {
3 struct rcu_dynticks *rdtp;
4
5 rdtp = &__get_cpu_var(rcu_dynticks);
6 if (rdtp->dynticks & 0x1)
7 return;
8 rdtp->dynticks_nmi++;
9 WARN_ON_RATELIMIT(!(rdtp->dynticks_nmi & 0x1),
10 &rcu_rs);
11 smp_mb();
12 }
13
14 void rcu_nmi_exit(void)
15 {
16 struct rcu_dynticks *rdtp;
17
18 rdtp = &__get_cpu_var(rcu_dynticks);
19 if (rdtp->dynticks & 0x1)
20 return;
21 smp_mb();
22 rdtp->dynticks_nmi++;
23 WARN_ON_RATELIMIT(rdtp->dynticks_nmi & 0x1, &rcu_rs);
24 }

Figure F.20: NMIs From Dynticks-Idle Mode

Line 6 ensures that any prior memory accesses (which
might include accesses from RCU read-side critical sec-
tions) are seen by other CPUs before those marking entry
to dynticks-idle mode. Lines 7 and 12 disable and reen-
able irqs. Line 8 acquires a pointer to the current CPU’s
rcu_dynticks structure, and line 9 increments the
current CPU’s dynticks counter, which should now be
even, given that we are entering dynticks-idle mode in
process context. Finally, line 10 decrements dynticks_
nesting, which should now be zero.

The rcu_exit_nohz() function is quite similar,
but increments dynticks_nesting rather than decre-
menting it and checks for the opposite dynticks polar-
ity.

F.8.3 NMIs From Dynticks-Idle Mode

Figure F.20 show the rcu_nmi_enter() and rcu_
nmi_exit() functions, which inform RCU of NMI
entry and exit, respectively, from dynticks-idle mode.
However, if the NMI arrives during an irq handler, then
RCU will already be on the lookout for RCU read-side
critical sections from this CPU, so lines 6 and 7 of rcu_
nmi_enter and lines 19 and 20 of rcu_nmi_exit
silently return if dynticks is odd. Otherwise, the two
functions increment dynticks_nmi, with rcu_nmi_
enter() leaving it with an odd value and rcu_nmi_
exit() leaving it with an even value. Both functions
execute memory barriers between this increment and pos-

1 void rcu_irq_enter(void)
2 {
3 struct rcu_dynticks *rdtp;
4
5 rdtp = &__get_cpu_var(rcu_dynticks);
6 if (rdtp->dynticks_nesting++)
7 return;
8 rdtp->dynticks++;
9 WARN_ON_RATELIMIT(!(rdtp->dynticks & 0x1), &rcu_rs);
10 smp_mb();
11 }
12
13 void rcu_irq_exit(void)
14 {
15 struct rcu_dynticks *rdtp;
16
17 rdtp = &__get_cpu_var(rcu_dynticks);
18 if (--rdtp->dynticks_nesting)
19 return;
20 smp_mb();
21 rdtp->dynticks++;
22 WARN_ON_RATELIMIT(rdtp->dynticks & 0x1, &rcu_rs);
23 if (__get_cpu_var(rcu_data).nxtlist ||
24 __get_cpu_var(rcu_bh_data).nxtlist)
25 set_need_resched();
26 }

Figure F.21: Interrupts From Dynticks-Idle Mode

sible RCU read-side critical sections on lines 11 and 21,
respectively.

F.8.4 Interrupts From Dynticks-Idle Mode

Figure F.21 shows rcu_irq_enter() and rcu_
irq_exit(), which inform RCU of entry to and exit
from, respectively, irq context. Line 6 of rcu_irq_
enter() increments dynticks_nesting, and if
this variable was already non-zero, line 7 silently returns.
Otherwise, line 8 increments dynticks, which will then
have an odd value, consistent with the fact that this CPU
can now execute RCU read-side critical sections. Line 10
therefore executes a memory barrier to ensure that the
increment of dynticks is seen before any RCU read-
side critical sections that the subsequent irq handler might
execute.

Line 18 of rcu_irq_exit decrements dynticks_
nesting, and if the result is non-zero, line 19 silently
returns. Otherwise, line 20 executes a memory barrier
to ensure that the increment of dynticks on line 21 is
seen after any RCU read-side critical sections that the
prior irq handler might have executed. Line 22 verifies
that dynticks is now even, consistent with the fact
that no RCU read-side critical sections may appear in
dynticks-idle mode. Lines 23-25 check to see if the prior
irq handlers enqueued any RCU callbacks, forcing this
CPU out of dynticks-idle mode via an reschedule IPI if
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1 static int
2 dyntick_save_progress_counter(struct rcu_data *rdp)
3 {
4 int ret;
5 int snap;
6 int snap_nmi;
7
8 snap = rdp->dynticks->dynticks;
9 snap_nmi = rdp->dynticks->dynticks_nmi;
10 smp_mb();
11 rdp->dynticks_snap = snap;
12 rdp->dynticks_nmi_snap = snap_nmi;
13 ret = ((snap & 0x1) == 0) && ((snap_nmi & 0x1) == 0);
14 if (ret)
15 rdp->dynticks_fqs++;
16 return ret;
17 }

Figure F.22: Saving Dyntick Progress Counters

so.

F.8.5 Checking For Dynticks Quiescent
States

Figure F.22 shows dyntick_save_progress_
counter(), which takes a snapshot of the speci-
fied CPU’s dynticks and dynticks_nmi counters.
Lines 8 and 9 snapshot these two variables to locals,
line 10 executes a memory barrier to pair with the mem-
ory barriers in the functions in Figures F.19, F.20, and
F.21. Lines 11 and 12 record the snapshots for later calls
to rcu_implicit_dynticks_qs, and 13 checks to
see if the CPU is in dynticks-idle mode with neither irqs
nor NMIs in progress (in other words, both snapshots
have even values), hence in an extended quiescent state.
If so, lines 14 and 15 count this event, and line 16 returns
true if the CPU was in a quiescent state.

Figure F.23 shows dyntick_save_progress_
counter, which is called to check whether a
CPU has entered dyntick-idle mode subsequent to a
call to dynticks_save_progress_counter().
Lines 9 and 11 take new snapshots of the correspond-
ing CPU’s dynticks and dynticks_nmi variables,
while lines 10 and 12 retrieve the snapshots saved ear-
lier by dynticks_save_progress_counter().
Line 13 then executes a memory barrier to pair with
the memory barriers in the functions in Figures F.19,
F.20, and F.21. Lines 14 and 15 then check to see if
the CPU is either currently in a quiescent state (curr and
curr_nmi having even values) or has passed through a
quiescent state since the last call to dynticks_save_
progress_counter() (the values of dynticks
and dynticks_nmi having changed). If these checks

1 static int
2 rcu_implicit_dynticks_qs(struct rcu_data *rdp)
3 {
4 long curr;
5 long curr_nmi;
6 long snap;
7 long snap_nmi;
8
9 curr = rdp->dynticks->dynticks;
10 snap = rdp->dynticks_snap;
11 curr_nmi = rdp->dynticks->dynticks_nmi;
12 snap_nmi = rdp->dynticks_nmi_snap;
13 smp_mb();
14 if ((curr != snap || (curr & 0x1) == 0) &&
15 (curr_nmi != snap_nmi || (curr_nmi & 0x1) == 0)) {
16 rdp->dynticks_fqs++;
17 return 1;
18 }
19 return rcu_implicit_offline_qs(rdp);
20 }

Figure F.23: Checking Dyntick Progress Counters

confirm that the CPU has passed through a dyntick-idle
quiescent state, then line 16 counts that fact and line 16 re-
turns an indication of this fact. Either way, line 19 checks
for race conditions that can result in RCU waiting for a
CPU that is offline.

Quick Quiz F.20: This is still pretty complicated. Why
not just have a cpumask_t that has a bit set for each
CPU that is in dyntick-idle mode, clearing the bit when
entering an irq or NMI handler, and setting it upon exit?

F.8.6 Discussion

A slight shift in viewpoint resulted in a substantial simpli-
fication of the dynticks interface for RCU. The key change
leading to this simplification was minimizing of sharing
between irq and NMI contexts. The only sharing in this
simplified interface is references from NMI context to irq
variables (the dynticks variable). This type of sharing
is benign, because the NMI functions never update this
variable, so that its value remains constant through the
lifetime of the NMI handler. This limitation of sharing
allows the individual functions to be understood one at a
time, in happy contrast to the situation described in Sec-
tion F.7, where an NMI might change shared state at any
point during execution of the irq functions.

Verification can be a good thing, but simplicity is even
better.



F.9. SUMMARY 301

F.9 Summary
Promela is a very powerful tool for validating small par-
allel algorithms. It is a useful tool in the parallel kernel
hacker’s toolbox, but it should not be the only tool. The
QRCU experience is a case in point: given the Promela
validation, the proof of correctness, and several rcutorture
runs, I now feel reasonably confident in the QRCU algo-
rithm and its implementation. But I would certainly not
feel so confident given only one of the three!

Nevertheless, if your code is so complex that you
find yourself relying too heavily on validation tools, you
should carefully rethink your design. For example, a
complex implementation of the dynticks interface for pre-
emptible RCU that was presented in Section F.7 turned
out to have a much simpler alternative implementation, as
discussed in Section F.8. All else being equal, a simpler
implementation is much better than a mechanical proof
for a complex implementation!
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Appendix G

Answers to Quick Quizzes

G.1 Introduction

Quick Quiz 1.1:
Come on now!!! Parallel programming has been known
to be exceedingly hard for many decades. You seem to be
hinting that it is not so hard. What sort of game are you
playing?

Answer:
If you really believe that parallel programming is
exceedingly hard, then you should have a ready answer to
the question “Why is parallel programming hard?” One
could list any number of reasons, ranging from deadlocks
to race conditions to testing coverage, but the real answer
is that it is not really all that hard. After all, if parallel
programming was really so horribly difficult, how could
a large number of open-source projects, ranging from
Apache to MySQL to the Linux kernel, have managed to
master it?

A better question might be: ”Why is parallel program-
ming perceived to be so difficult?” To see the answer, let’s
go back to the year 1991. Paul McKenney was walking
across the parking lot to Sequent’s benchmarking center
carrying six dual-80486 Sequent Symmetry CPU boards,
when he suddenly realized that he was carrying several
times the price of the house he had just purchased.1 This
high cost of parallel systems meant that parallel program-
ming was restricted to a privileged few who worked for

1 Yes, this sudden realization did cause him to walk quite a bit more
carefully. Why do you ask?

an employer who either manufactured or could afford to
purchase machines costing upwards of $100,000 — in
1991 dollars US.

In contrast, in 2006, Paul finds himself typing these
words on a dual-core x86 laptop. Unlike the dual-80486
CPU boards, this laptop also contains 2GB of main mem-
ory, a 60GB disk drive, a display, Ethernet, USB ports,
wireless, and Bluetooth. And the laptop is more than
an order of magnitude cheaper than even one of those
dual-80486 CPU boards, even before taking inflation into
account.

Parallel systems have truly arrived. They are no longer
the sole domain of a privileged few, but something avail-
able to almost everyone.

The earlier restricted availability of parallel hardware is
the real reason that parallel programming is considered so
difficult. After all, it is quite difficult to learn to program
even the simplest machine if you have no access to it.
Since the age of rare and expensive parallel machines is
for the most part behind us, the age during which parallel
programming is perceived to be mind-crushingly difficult
is coming to a close.2

Quick Quiz 1.2:
How could parallel programming ever be as easy as
sequential programming?

Answer:
It depends on the programming environment. SQL [Int92]
is an underappreciated success story, as it permits pro-
grammers who know nothing about parallelism to keep a
large parallel system productively busy. We can expect

2 Parallel programming is in some ways more difficult than sequen-
tial programming, for example, parallel validation is more difficult. But
no longer mind-crushingly difficult.

303
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more variations on this theme as parallel computers
continue to become cheaper and more readily available.
For example, one possible contender in the scientific
and technical computing arena is MATLAB*P, which is
an attempt to automatically parallelize common matrix
operations.

Finally, on Linux and UNIX systems, consider the
following shell command:
get_input | grep "interesting" |

sort

This shell pipeline runs the get_input, grep, and
sort processes in parallel. There, that wasn’t so hard,
now was it?

Quick Quiz 1.3:
Oh, really??? What about correctness, maintainability,
robustness, and so on?

Answer:
These are important goals, but they are just as important
for sequential programs as they are for parallel programs.
Therefore, important though they are, they do not belong
on a list specific to parallel programming.

Quick Quiz 1.4:
And if correctness, maintainability, and robustness don’t
make the list, why do productivity and generality?

Answer:
Given that parallel programming is perceived to be much
harder than is sequential programming, productivity
is tantamount and therefore must not be omitted.
Furthermore, high-productivity parallel-programming
environments such as SQL have been special purpose,
hence generality must also be added to the list.

Quick Quiz 1.5:
Given that parallel programs are much harder to prove
correct than are sequential programs, again, shouldn’t
correctness really be on the list?

Answer:
From an engineering standpoint, the difficulty in proving
correctness, either formally or informally, would be
important insofar as it impacts the primary goal of
productivity. So, in cases where correctness proofs are

important, they are subsumed under the “productivity”
rubric.

Quick Quiz 1.6:
What about just having fun?

Answer:
Having fun is important as well, but, unless you are a
hobbyist, would not normally be a primary goal. On the
other hand, if you are a hobbyist, go wild!

Quick Quiz 1.7:
Are there no cases where parallel programming is about
something other than performance?

Answer:
There are certainly cases where the problem to be solved
is inherently parallel, for example, Monte Carlo methods
and some numerical computations. Even in these cases,
however, there will be some amount of extra work
managing the parallelism.

Quick Quiz 1.8:
Why all this prattling on about non-technical issues???
And not just any non-technical issue, but productivity of
all things? Who cares?

Answer:
If you are a pure hobbyist, perhaps you don’t need to
care. But even pure hobbyists will often care about how
much they can get done, and how quickly. After all, the
most popular hobbyist tools are usually those that are
the best suited for the job, and an important part of the
definition of “best suited” involves productivity. And if
someone is paying you to write parallel code, they will
very likely care deeply about your productivity. And if
the person paying you cares about something, you would
be most wise to pay at least some attention to it!

Besides, if you really didn’t care about productivity,
you would be doing it by hand rather than using a com-
puter!

Quick Quiz 1.9:
Given how cheap parallel hardware has become, how can
anyone afford to pay people to program it?
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Answer:
There are a number of answers to this question:

1. Given a large computational cluster of parallel ma-
chines, the aggregate cost of the cluster can easily
justify substantial developer effort, because the de-
velopment cost can be spread over the large number
of machines.

2. Popular software that is run by tens of millions of
users can easily justify substantial developer effort,
as the cost of this development can be spread over
the tens of millions of users. Note that this includes
things like kernels and system libraries.

3. If the low-cost parallel machine is controlling the
operation of a valuable piece of equipment, then the
cost of this piece of equipment might easily justify
substantial developer effort.

4. If the software for the low-cost parallel produces an
extremely valuable result (e.g., mineral exploration),
then the valuable result might again justify substan-
tial developer cost.

5. Safety-critical systems protect lives, which can
clearly justify very large developer effort.

6. Hobbyists and researchers might seek knowledge,
experience, fun, or glory rather than mere money.

So it is not the case that the decreasing cost of hardware
renders software worthless, but rather that it is no longer
possible to “hide” the cost of software development within
the cost of the hardware, at least not unless there are
extremely large quantities of hardware.

Quick Quiz 1.10:
This is a ridiculously unachievable ideal! Why not focus
on something that is achievable in practice?

Answer:
This is eminently achievable. The cellphone is a computer
that can be used to make phone calls and to send and
receive text messages with little or no programming or
configuration on the part of the end user.

This might seem to be a trivial example at first glance,
but if you consider it carefully you will see that it is both
simple and profound. When we are willing to sacrifice
generality, we can achieve truly astounding increases in

productivity. Those who cling to generality will therefore
fail to set the productivity bar high enough to succeed in
production environments.

Quick Quiz 1.11:
What other bottlenecks might prevent additional CPUs
from providing additional performance?

Answer:
There are any number of potential bottlenecks:

1. Main memory. If a single thread consumes all avail-
able memory, additional threads will simply page
themselves silly.

2. Cache. If a single thread’s cache footprint com-
pletely fills any shared CPU cache(s), then adding
more threads will simply thrash the affected caches.

3. Memory bandwidth. If a single thread consumes all
available memory bandwidth, additional threads will
simply result in additional queuing on the system
interconnect.

4. I/O bandwidth. If a single thread is I/O bound,
adding more threads will simply result in them all
waiting in line for the affected I/O resource.

Specific hardware systems may have any number of
additional bottlenecks.

Quick Quiz 1.12:
What besides CPU cache capacity might require limiting
the number of concurrent threads?

Answer:
There are any number of potential limits on the number
of threads:

1. Main memory. Each thread consumes some mem-
ory (for its stack if nothing else), so that excessive
numbers of threads can exhaust memory, resulting
in excessive paging or memory-allocation failures.

2. I/O bandwidth. If each thread initiates a given
amount of mass-storage I/O or networking traffic,
excessive numbers of threads can result in excessive
I/O queuing delays, again degrading performance.
Some networking protocols may be subject to time-
outs or other failures if there are so many threads
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that networking events cannot be responded to in a
timely fashion.

3. Synchronization overhead. For many synchroniza-
tion protocols, excessive numbers of threads can
result in excessive spinning, blocking, or rollbacks,
thus degrading performance.

Specific applications and platforms may have any num-
ber of additional limiting factors.

Quick Quiz 1.13:
Are there any other obstacles to parallel programming?

Answer:
There are a great many other potential obstacles to
parallel programming. Here are a few of them:

1. The only known algorithms for a given project might
be inherently sequential in nature. In this case, either
avoid parallel programming (there being no law say-
ing that your project has to run in parallel) or invent
a new parallel algorithm.

2. The project allows binary-only plugins that share
the same address space, such that no one developer
has access to all of the source code for the project.
Because many parallel bugs, including deadlocks,
are global in nature, such binary-only plugins pose
a severe challenge to current software development
methodologies. This might well change, but for the
time being, all developers of parallel code sharing a
given address space need to be able to see all of the
code running in that address space.

3. The project contains heavily used APIs that were
designed without regard to parallelism. Some of
the more ornate features of the System V message-
queue API form a case in point. Of course, if your
project has been around for a few decades, and if its
developers did not have access to parallel hardware,
your project undoubtedly has at least its share of
such APIs.

4. The project was implemented without regard to paral-
lelism. Given that there are a great many techniques
that work extremely well in a sequential environ-
ment, but that fail miserably in parallel environments,
if your project ran only on sequential hardware for
most of its lifetime, then your project undoubtably
has at least its share of parallel-unfriendly code.

5. The project was implemented without regard to good
software-development practice. The cruel truth is
that shared-memory parallel environments are often
much less forgiving of sloppy development practices
than are sequential environments. You may be well-
served to clean up the existing design and code prior
to attempting parallelization.

6. The people who originally did the development on
your project have since moved on, and the people
remaining, while well able to maintain it or add small
features, are unable to make “big animal” changes.
In this case, unless you can work out a very simple
way to parallelize your project, you will probably be
best off leaving it sequential. That said, there are a
number of simple approaches that you might use to
parallelize your project, including running multiple
instances of it, using a parallel implementation of
some heavily used library function, or making use
of some other parallel project, such as a database.

One can argue that many of these obstacles are non-
technical in nature, but that does not make them any less
real. In short, parallelization can be a large and complex
effort. As with any large and complex effort, it makes
sense to do your homework beforehand.

Quick Quiz 1.14:
Where are the answers to the Quick Quizzes found?

Answer:
In Appendix G starting on page 303.

Hey, I thought I owed you an easy one!

Quick Quiz 1.15:
Some of the Quick Quiz questions seem to be from the
viewpoint of the reader rather than the author. Is that
really the intent?

Answer:
Indeed it is! Many are modeled after Paul—just ask
anyone who has had the misfortune of being assigned to
teach him. Others are quite similar to actual questions
that have been asked during conference presentations and
lectures covering the material in this book. Still others
are from the viewpoint of the author.
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Quick Quiz 1.16:
These Quick Quizzes just are not my cup of tea. What do
you recommend?

Answer:
There are a number of alternatives available to you:

1. Just ignore the Quick Quizzes and read the rest of the
book. You might miss out on the interesting material
in some of the Quick Quizzes, but the rest of the
book has lots of good material as well.

2. If you prefer a more academic and rigorous treat-
ment of parallel programming, you might like Her-
lihy’s and Shavit’s textbook [HS08]. This book starts
with an interesting combination of low-level primi-
tives at high levels of abstraction from the hardware,
and works its way through locking and simple data
structures including lists, queues, hash tables, and
counters, culminating with transactional memory.

3. If you would like an academic treatment of par-
allel programming from a programming-language-
pragmatics viewpoint, you might be interested in the
concurrency chapter from Scott’s textbook [Sco06]
on programming languages.

4. If you are interested in an object-oriented patternist
treatment of parallel programming focussing on C++,
you might try Volumes 2 and 4 of Schmidt’s POSA
series [SSRB00, BHS07]. Volume 4 in particular
has some interesting chapters applying this work to a
warehouse application. The realism of this example
is attested to by the section entitled “Partitioning the
Big Ball of Mud”, wherein the problems inherent in
parallelism often take a back seat to the problems
inherent in getting one’s head around a real-world
application.

5. If your primary focus is scientific and technical com-
puting, and you prefer a patternist approach, you
might try Mattson et al.’s textbook [MSM05]. It cov-
ers Java, C/C++, OpenMP, and MPI. Its patterns are
admirably focused first on design, then on implemen-
tation.

6. If you are interested in POSIX Threads, you might
take a look at David R. Butenhof’s book [But97].

7. If you are interested in C++, but in a Windows en-
vironment, you might try Herb Sutter’s “Effective
Concurrency” series in Dr. Dobbs Journal [Sut08].

This series does a reasonable job of presenting a
commonsense approach to parallelism.

8. If you want to try out Intel Threading Building
Blocks, then perhaps James Reinders’s book [Rei07]
is what you are looking for.

9. Finally, those preferring to work in Java might
be well-served by Doug Lea’s textbooks [Lea97,
GPB+07].

In contrast, this book meshes real-world machines with
real-world algorithms. If your sole goal is to find an
optimal parallel queue, you might be better served by
one of the above books. However, if you are interested
in principles of parallel design that allow multiple such
queues to operate in parallel, read on!

G.2 Hardware and its Habits

Quick Quiz 2.1:
Why should parallel programmers bother learning
low-level properties of the hardware? Wouldn’t it be
easier, better, and more general to remain at a higher level
of abstraction?

Answer:
It might well be easier to ignore the detailed properties
of the hardware, but in most cases it would be quite
foolish to do so. If you accept that the only purpose of
parallelism is to increase performance, and if you further
accept that performance depends on detailed properties
of the hardware, then it logically follows that parallel
programmers are going to need to know at least a few
hardware properties.

This is the case in most engineering disciplines. Would
you want to use a bridge designed by an engineer who
did not understand the properties of the concrete and steel
making up that bridge? If not, why would you expect
a parallel programmer to be able to develop competent
parallel software without at least some understanding of
the underlying hardware?

Quick Quiz 2.2:
What types of machines would allow atomic operations
on multiple data elements?
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Answer:
One answer to this question is that it is often possible
to pack multiple elements of data into a single machine
word, which can then be manipulated atomically.

A more trendy answer would be machines support-
ing transactional memory [Lom77]. However, such ma-
chines are still (as of 2008) research curiosities. The
jury is still out on the applicability of transactional mem-
ory [MMW07, PW07, RHP+07].

Quick Quiz 2.3:
This is a simplified sequence of events? How could it
possibly be any more complex?

Answer:
This sequence ignored a number of possible complica-
tions, including:

1. Other CPUs might be concurrently attempting to per-
form CAS operations involving this same cacheline.

2. The cacheline might have been replicated read-only
in several CPUs’ caches, in which case, it would
need to be flushed from their caches.

3. CPU 7 might have been operating on the cache line
when the request for it arrived, in which case CPU 7
would need to hold of the request until its own oper-
ation completed.

4. CPU 7 might have ejected the cacheline from its
cache (for example, in order to make room for other
data), so that by the time that the request arrived, the
cacheline was on its way to memory.

5. A correctable error might have occurred in the cache-
line, which would then need to be corrected at some
point before the data was used.

Production-quality cache-coherence mechanisms are
extremely complicated due to these sorts of considera-
tions.

Quick Quiz 2.4:
Why is it necessary to flush the cacheline from CPU 7’s
cache?

Answer:
If the cacheline was not flushed from CPU 7’s cache,

Operation Cost (ns) Ratio
Clock period 0.4 1.0
“Best-case” CAS 12.2 33.8
Best-case lock 25.6 71.2
Single cache miss 12.9 35.8
CAS cache miss 7.0 19.4
Off-Core
Single cache miss 31.2 86.6
CAS cache miss 31.2 86.5
Off-Socket
Single cache miss 92.4 256.7
CAS cache miss 95.9 266.4
Comms Fabric 4,500 7,500
Global Comms 195,000,000 324,000,000

Table G.1: Performance of Synchronization Mechanisms
on 16-CPU 2.8GHz Intel X5550 (Nehalem) System

then CPUs 0 and 7 might have different values for the
same set of variables in the cacheline. This sort of
incoherence would greatly complicate parallel software,
and so hardware architects have been convinced to avoid
it.

Quick Quiz 2.5:
Surely the hardware designers could be persuaded to
improve this situation! Why have they been content with
such abysmal performance for these single-instruction
operations?

Answer:
The hardware designers have been working on this
problem, and have consulted with no less a luminary
than the physicist Stephen Hawking. Hawking’s
observation was that the hardware designers have two
basic problems [Gar07]:

1. the finite speed of light, and

2. the atomic nature of matter.

The first problem limits raw speed, and the second lim-
its miniaturization, which in turn limits frequency. And
even this sidesteps the power-consumption issue that is
currently holding production frequencies to well below
10 GHz.

Nevertheless, some progress is being made, as may be
seen by comparing Table G.1 with Table 2.1 on page 2.1.
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Integration of hardware threads in a single core and multi-
ple cores on a die have improved latencies greatly, at least
within the confines of a single core or single die. There
has been some improvement in overall system latency, but
only by about a factor of two. Unfortunately, neither the
speed of light nor the atomic nature of matter has changed
much in the past few years.

Section 2.3 looks at what else hardware designers might
be able to do to ease the plight of parallel programmers.

Quick Quiz 2.6:
These numbers are insanely large! How can I possibly
get my head around them?

Answer:
Get a roll of toilet paper. In the USA, each roll will
normally have somewhere around 350-500 sheets. Tear
off one sheet to represent a single clock cycle, setting it
aside. Now unroll the rest of the roll.

The resulting pile of toilet paper will likely represent a
single CAS cache miss.

For the more-expensive inter-system communications
latencies, use several rolls (or multiple cases) of toilet
paper to represent the communications latency.

Important safety tip: make sure to account for the needs
of those you live with when appropriating toilet paper!

Quick Quiz 2.7:
Given that distributed-systems communication is so
horribly expensive, why does anyone bother with them?

Answer:
There are a number of reasons:

1. Shared-memory multiprocessor systems have strict
size limits. If you need more than a few thousand
CPUs, you have no choice but to use a distributed
system.

2. Extremely large shared-memory systems tend to
be quite expensive and to have even longer cache-
miss latencies than does the small four-CPU system
shown in Table 2.1.

3. The distributed-systems communications latencies
do not necessarily consume the CPU, which can
often allow computation to proceed in parallel with
message transfer.

4. Many important problems are “embarrassingly paral-
lel”, so that extremely large quantities of processing
may be enabled by a very small number of messages.
SETI@HOME [aCB08] is but one example of such
an application. These sorts of applications can make
good use of networks of computers despite extremely
long communications latencies.

It is likely that continued work on parallel applications
will increase the number of embarrassingly parallel ap-
plications that can run well on machines and/or clusters
having long communications latencies. That said, greatly
reduced hardware latencies would be an extremely wel-
come development.

G.3 Tools of the Trade

Quick Quiz 3.1:
But this silly shell script isn’t a real parallel program!
Why bother with such trivia???

Answer:
Because you should never forget the simple stuff!

Please keep in mind that the title of this book is “Is
Parallel Programming Hard, And, If So, What Can You
Do About It?”. One of the most effective things you can
do about it is to avoid forgetting the simple stuff! After
all, if you choose to do parallel programming the hard
way, you have no one but yourself to blame for it being
hard.

Quick Quiz 3.2:
Is there a simpler way to create a parallel shell script? If
so, how? If not, why not?

Answer:
One straightforward approach is the shell pipeline:
grep $pattern1 | sed -e ’s/a/b/’ | sort

For a sufficiently large input file, grep will pattern-

match in parallel with sed editing and with the input
processing of sort. See the file parallel.sh for a
demonstration of shell-script parallelism and pipelining.

Quick Quiz 3.3:
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But if script-based parallel programming is so easy, why
bother with anything else?

Answer:
In fact, it is quite likely that a very large fraction of
parallel programs in use today are script-based. However,
script-based parallelism does have its limitations:

1. Creation of new processes is usually quite heavy-
weight, involving the expensive fork() and
exec() system calls.

2. Sharing of data, including pipelining, typically in-
volves expensive file I/O.

3. The reliable synchronization primitives available to
scripts also typically involve expensive file I/O.

These limitations require that script-based parallelism
use coarse-grained parallelism, with each unit of work
having execution time of at least tens of milliseconds, and
preferably much longer.

Those requiring finer-grained parallelism are well ad-
vised to think hard about their problem to see if it can be
expressed in a coarse-grained form. If not, they should
consider using other parallel-programming environments,
such as those discussed in Section 3.2.

Quick Quiz 3.4:
Why does this wait() primitive need to be so compli-
cated? Why not just make it work like the shell-script
wait does?

Answer:
Some parallel applications need to take special action
when specific children exit, and therefore need to wait
for each child individually. In addition, some parallel
applications need to detect the reason that the child
died. As we saw in Figure 3.3, it is not hard to build
a waitall() function out of the wait() function,
but it would be impossible to do the reverse. Once the
information about a specific child is lost, it is lost.

Quick Quiz 3.5:
Isn’t there a lot more to fork() and wait() than
discussed here?

Answer:
Indeed there is, and it is quite possible that this section

will be expanded in future versions to include messaging
features (such as UNIX pipes, TCP/IP, and shared
file I/O) and memory mapping (such as mmap() and
shmget()). In the meantime, there are any number of
textbooks that cover these primitives in great detail, and
the truly motivated can read manpages, existing parallel
applications using these primitives, as well as the source
code of the Linux-kernel implementations themselves.

Quick Quiz 3.6:
If the mythread() function in Figure 3.5 can simply
return, why bother with pthread_exit()?

Answer:
In this simple example, there is no reason whatsoever.
However, imagine a more complex example, where
mythread() invokes other functions, possibly sepa-
rately compiled. In such a case, pthread_exit()
allows these other functions to end the thread’s execution
without having to pass some sort of error return all the
way back up to mythread().

Quick Quiz 3.7:
If the C language makes no guarantees in presence of
a data race, then why does the Linux kernel have so
many data races? Are you trying to tell me that the Linux
kernel is completely broken???

Answer:
Ah, but the Linux kernel is written in a carefully selected
superset of the C language that includes special gcc
extensions, such as asms, that permit safe execution
even in presence of data races. In addition, the Linux
kernel does not run on a number of platforms where data
races would be especially problematic. For an example,
consider embedded systems with 32-bit pointers and
16-bit busses. On such a system, a data race involving
a store to and a load from a given pointer might well
result in the load returning the low-order 16 bits of the
old value of the pointer concatenated with the high-order
16 bits of the new value of the pointer.

Quick Quiz 3.8:
What if I want several threads to hold the same lock at
the same time?
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Answer:
The first thing you should do is to ask yourself why you
would want to do such a thing. If the answer is “because
I have a lot of data that is read by many threads, and only
occasionally updated”, then POSIX reader-writer locks
might be what you are looking for. These are introduced
in Section 3.2.4.

Another way to get the effect of multiple threads hold-
ing the same lock is for one thread to acquire the lock,
and then use pthread_create() to create the other
threads. The question of why this would ever be a good
idea is left to the reader.

Quick Quiz 3.9:
Why not simply make the argument to lock_reader()
on line 5 of Figure 3.6 be a pointer to a pthread_
mutex_t?

Answer:
Because we will need to pass lock_reader() to
pthread_create(). Although we could cast the
function when passing it to pthread_create(),
function casts are quite a bit uglier and harder to get right
than are simple pointer casts.

Quick Quiz 3.10:
Writing four lines of code for each acquisition and release
of a pthread_mutex_t sure seems painful! Isn’t
there a better way?

Answer:
Indeed! And for that reason, the pthread_mutex_
lock() and pthread_mutex_unlock() primi-
tives are normally wrapped in functions that do this error
checking. Later on, we will wrapper them with the Linux
kernel spin_lock() and spin_unlock() APIs.

Quick Quiz 3.11:
Is “x = 0” the only possible output from the code
fragment shown in Figure 3.7? If so, why? If not, what
other output could appear, and why?

Answer:
No. The reason that “x = 0” was output was that
lock_reader() acquired the lock first. Had lock_
writer() instead acquired the lock first, then the

output would have been “x = 3”. However, because
the code fragment started lock_reader() first and
because this run was performed on a multiprocessor, one
would normally expect lock_reader() to acquire the
lock first. However, there are no guarantees, especially
on a busy system.

Quick Quiz 3.12:
Using different locks could cause quite a bit of confusion,
what with threads seeing each others’ intermediate
states. So should well-written parallel programs restrict
themselves to using a single lock in order to avoid this
kind of confusion?

Answer:
Although it is sometimes possible to write a program
using a single global lock that both performs and scales
well, such programs are exceptions to the rule. You
will normally need to use multiple locks to attain good
performance and scalability.

One possible exception to this rule is “transac-
tional memory”, which is currently a research topic.
Transactional-memory semantics can be thought of as
those of a single global lock with optimizations permitted
and with the addition of rollback [Boe09].

Quick Quiz 3.13:
In the code shown in Figure 3.8, is lock_reader()
guaranteed to see all the values produced by lock_
writer()? Why or why not?

Answer:
No. On a busy system, lock_reader() might be
preempted for the entire duration of lock_writer()’s
execution, in which case it would not see any of
lock_writer()’s intermediate states for x.

Quick Quiz 3.14:
Wait a minute here!!! Figure 3.7 didn’t initialize shared
variable x, so why does it need to be initialized in
Figure 3.8?

Answer:
See line 3 of Figure 3.6. Because the code in Figure 3.7
ran first, it could rely on the compile-time initialization
of x. The code in Figure 3.8 ran next, so it had to



312 APPENDIX G. ANSWERS TO QUICK QUIZZES

re-initialize x.

Quick Quiz 3.15:
Isn’t comparing against single-CPU throughput a bit
harsh?

Answer:
Not at all. In fact, this comparison was, if anything,
overly lenient. A more balanced comparison would
be against single-CPU throughput with the locking
primitives commented out.

Quick Quiz 3.16:
But 1,000 instructions is not a particularly small size for
a critical section. What do I do if I need a much smaller
critical section, for example, one containing only a few
tens of instructions?

Answer:
If the data being read never changes, then you do not
need to hold any locks while accessing it. If the data
changes sufficiently infrequently, you might be able to
checkpoint execution, terminate all threads, change the
data, then restart at the checkpoint.

Another approach is to keep a single exclusive lock per
thread, so that a thread read-acquires the larger aggregate
reader-writer lock by acquiring its own lock, and write-
acquires by acquiring all the per-thread locks [HW92].
This can work quite well for readers, but causes writers
to incur increasingly large overheads as the number of
threads increases.

Some other ways of handling very small critical sec-
tions are described in Section 8.3.

Quick Quiz 3.17:
In Figure 3.10, all of the traces other than the 100M trace
deviate gently from the ideal line. In contrast, the 100M
trace breaks sharply from the ideal line at 64 CPUs. In
addition, the spacing between the 100M trace and the
10M trace is much smaller than that between the 10M
trace and the 1M trace. Why does the 100M trace behave
so much differently than the other traces?

Answer:
Your first clue is that 64 CPUs is exactly half of the 128
CPUs on the machine. The difference is an artifact of

hardware threading. This system has 64 cores with two
hardware threads per core. As long as fewer than 64
threads are running, each can run in its own core. But
as soon as there are more than 64 threads, some of the
threads must share cores. Because the pair of threads
in any given core share some hardware resources, the
throughput of two threads sharing a core is not quite as
high as that of two threads each in their own core. So
the performance of the 100M trace is limited not by the
reader-writer lock, but rather by the sharing of hardware
resources between hardware threads in a single core.

This can also be seen in the 10M trace, which deviates
gently from the ideal line up to 64 threads, then breaks
sharply down, parallel to the 100M trace. Up to 64 threads,
the 10M trace is limited primarily by reader-writer lock
scalability, and beyond that, also by sharing of hardware
resources between hardware threads in a single core.

Quick Quiz 3.18:
Power 5 is several years old, and new hardware should be
faster. So why should anyone worry about reader-writer
locks being slow?

Answer:
In general, newer hardware is improving. However, it
will need to improve more than two orders of magnitude
to permit reader-writer lock to achieve idea performance
on 128 CPUs. Worse yet, the greater the number of
CPUs, the larger the required performance improvement.
The performance problems of reader-writer locking are
therefore very likely to be with us for quite some time to
come.

Quick Quiz 3.19:
Is it really necessary to have both sets of primitives?

Answer:
Strictly speaking, no. One could implement any
member of the second set using the corresponding
member of the first set. For example, one could
implement __sync_nand_and_fetch() in terms
of __sync_fetch_and_nand() as follows:

tmp = v;
ret = __sync_fetch_and_nand(p, tmp);
ret = ~ret & tmp;

It is similarly possible to implement __sync_
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fetch_and_add(), __sync_fetch_and_
sub(), and __sync_fetch_and_xor() in terms
of their post-value counterparts.

However, the alternative forms can be quite convenient,
both for the programmer and for the compiler/library
implementor.

Quick Quiz 3.20:
Given that these atomic operations will often be able
to generate single atomic instructions that are directly
supported by the underlying instruction set, shouldn’t
they be the fastest possible way to get things done?

Answer:
Unfortunately, no. See Chapter 4 for some stark
counterexamples.

Quick Quiz 3.21:
What happened to the Linux-kernel equivalents to
fork() and join()?

Answer:
They don’t really exist. All tasks executing within the
Linux kernel share memory, at least unless you want to
do a huge amount of memory-mapping work by hand.

G.4 Counting

Quick Quiz 4.1:
Why on earth should efficient and scalable counting be
hard? After all, computers have special hardware for the
sole purpose of doing counting, addition, subtraction, and
lots more besides, don’t they???

Answer:
Because the straightforward counting algorithms, for
example, atomic operations on a shared counter, are slow
and scale badly, as will be seen in Section 4.1.

Quick Quiz 4.2:
Network-packet counting problem. Suppose that you
need to collect statistics on the number of networking
packets (or total number of bytes) transmitted and/or
received. Packets might be transmitted or received by

any CPU on the system. Suppose further that this large
machine is capable of handling a million packets per
second, and that there is a systems-monitoring package
that reads out the count every five seconds. How would
you implement this statistical counter?

Answer:
Hint: the act of updating the counter must be blazingly
fast, but because the counter is read out only about
once in five million updates, the act of reading out the
counter can be quite slow. In addition, the value read out
normally need not be all that accurate—after all, since
the counter is updated a thousand times per millisecond,
we should be able to work with a value that is within a
few thousand counts of the “true value”, whatever “true
value” might mean in this context. However, the value
read out should maintain roughly the same absolute error
over time. For example, a 1% error might be just fine
when the count is on the order of a million or so, but
might be absolutely unacceptable once the count reaches
a trillion. See Section 4.2.

Quick Quiz 4.3:
Approximate structure-allocation limit problem.
Suppose that you need to maintain a count of the number
of structures allocated in order to fail any allocations
once the number of structures in use exceeds a limit
(say, 10,000). Suppose further that these structures are
short-lived, that the limit is rarely exceeded, and that a
“sloppy” approximate limit is acceptable.

Answer:
Hint: the act of updating the counter must be blazingly
fast, but the counter is read out each time that the counter
is increased. However, the value read out need not
be accurate except that it absolutely must distinguish
perfectly between values below the limit and values
greater than or equal to the limit. See Section 4.3.

Quick Quiz 4.4:
Exact structure-allocation limit problem. Suppose
that you need to maintain a count of the number of
structures allocated in order to fail any allocations once
the number of structures in use exceeds an exact limit
(say, 10,000). Suppose further that these structures are
short-lived, and that the limit is rarely exceeded, that
there is almost always at least one structure in use, and
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suppose further still that it is necessary to know exactly
when this counter reaches zero, for example, in order to
free up some memory that is not required unless there is
at least one structure in use.

Answer:
Hint: the act of updating the counter must be blazingly
fast, but the counter is read out each time that the counter
is increased. However, the value read out need not
be accurate except that it absolutely must distinguish
perfectly between values between the limit and zero on
the one hand, and values that either are less than or equal
to zero or are greater than or equal to the limit on the
other hand. See Section 4.4.

Quick Quiz 4.5:
Removable I/O device access-count problem. Sup-
pose that you need to maintain a reference count on a
heavily used removable mass-storage device, so that you
can tell the user when it is safe to removed the device.
This device follows the usual removal procedure where
the user indicates a desire to remove the device, and the
system tells the user when it is safe to do so.

Answer:
Hint: the act of updating the counter must be blazingly
fast and scalable in order to avoid slowing down I/O
operations, but because the counter is read out only when
the user wishes to remove the device, the counter read-out
operation can be extremely slow. Furthermore, there is
no need to be able to read out the counter at all unless the
user has already indicated a desire to remove the device.
In addition, the value read out need not be accurate except
that it absolutely must distinguish perfectly between
non-zero and zero values. However, once it has read out
a zero value, it must act to keep the value at zero until
it has taken some action to prevent subsequent threads
from gaining access to the device being removed. See
Section 4.5.

Quick Quiz 4.6:
But doesn’t the ++ operator produce an x86 add-to-
memory instruction? And won’t the CPU cache cause
this to be atomic?

Answer:
Although the ++ operator could be atomic, there is no

requirement that it be so. Furthermore, the ACCESS_
ONCE() primitive forces most version of gcc to load the
value to a register, increment the register, then store the
value to memory, which is decidedly non-atomic.

Quick Quiz 4.7:
The 8-figure accuracy on the number of failures indicates
that you really did test this. Why would it be necessary to
test such a trivial program, especially when the bug is
easily seen by inspection?

Answer:
There are no trivial parallel programs, and most days I
am not so sure that there are trivial sequential programs,
either.

No matter how small or simple the program, if you
haven’t tested it, it does not work. And even if you have
tested it, Murphy says there are at least a few bugs still
lurking.

Furthermore, while proofs of correctness certainly do
have their place, they never will replace testing, including
the counttorture.h test setup used here. After all,
proofs can have bugs just as easily has can programs!

Quick Quiz 4.8:
Why doesn’t the dashed line on the x axis meet the
diagonal line at y = 1?

Answer:
Because of the overhead of the atomic operation. The
dashed line on the x axis represents the overhead of a
single non-atomic increment. After all, an ideal algorithm
would not only scale linearly, it would also incur no
performance penalty compared to single-threaded code.

This level of idealism may seem severe, but if it is good
enough for Linus Torvalds, it is good enough for you.

Quick Quiz 4.9:
But atomic increment is still pretty fast. And incre-
menting a single variable in a tight loop sounds pretty
unrealistic to me, after all, most of the program’s
execution should be devoted to actually doing work, not
accounting for the work it has done! Why should I care
about making this go faster?

Answer:

counttorture.h
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In many cases, atomic increment will in fact be fast
enough for you. In those cases, you should by all
means use atomic increment. That said, there are many
real-world situations where more elaborate counting
algorithms are required. The canonical example of
such a situation is counting packets and bytes in highly
optimized networking stacks, where it is all too easy to
find much of the execution time going into these sorts of
accounting tasks, especially on large multiprocessors.

In addition, counting provides an excellent view of the
issues encountered in shared-memory parallel programs.

Quick Quiz 4.10:
But why can’t CPU designers simply ship the operation
to the data, avoiding the need to circulate the cache line
containing the global variable being incremented?

Answer:
It might well be possible to do this in some cases.
However, there are a few complications:

1. If the value of the variable is required, then the thread
will be forced to wait for the operation to be shipped
to the data, and then for the result to be shipped back.

2. If the atomic increment must be ordered with respect
to prior and/or subsequent operations, then the thread
will be forced to wait for the operation to be shipped
to the data, and for an indication that the operation
completed to be shipped back.

3. Shipping operations among CPUs will likely require
more signals, which will consume more die area and
more electrical power.

But what if neither of the first two conditions holds? Then
you should think carefully about the algorithms discussed
in Section 4.2, which achieve near-ideal performance on
commodity hardware.

If either or both of the first two conditions hold, there
is some hope for improvement. One could imagine the
hardware implementing a combining tree, so that the in-
crement requests from multiple CPUs are combined by
the hardware into a single addition when the combined
request reaches the hardware. The hardware could also
apply an order to the requests, thus returning to each CPU
the return value corresponding to its particular atomic
increment. This results in instruction latency that varies
as O(logN), where N is the number of CPUs, as shown
in Figure G.1.
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Figure G.1: Data Flow For Global Combining-Tree
Atomic Increment

This is a great improvement over the O(N) perfor-
mance of current hardware shown in Figure 4.4, and it is
possible that hardware latencies might decrease somewhat
if innovations such as three-D fabrication prove practical.
Nevertheless, we will see that in some important special
cases, software can do much better.

Quick Quiz 4.11:
But doesn’t the fact that C’s “integers” are limited in size
complicate things?

Answer:
No, because modulo addition is still commutative and
associative. At least as long as you use unsigned integer.
Recall that in the C standard, overflow of signed integers
results in undefined behavior (never mind the fact that
machines that do anything other than wrap on overflow
are quite rare these days.

That said, one potential source of additional complexity
arises when attempting to gather (say) a 64-bit sum from
32-bit per-thread counters. For the moment, dealing with
this added complexity is left as an exercise for the reader.

Quick Quiz 4.12:
An array??? But doesn’t that limit the number of threads?

Answer:
It can, and in this toy implementation, it does. But it is not
that hard to come up with an alternative implementation
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that permits an arbitrary number of threads. However,
this is left as an exercise for the reader.

Quick Quiz 4.13:
What other choice does gcc have, anyway???

Answer:
According to the C standard, the effects of fetching a
variable that might be concurrently modified by some
other thread are undefined. It turns out that the C standard
really has no other choice, given that C must support (for
example) eight-bit architectures which are incapable of
atomically loading a long. An upcoming version of the
C standard aims to fill this gap, but until then, we depend
on the kindness of the gcc developers.

Quick Quiz 4.14:
How does the per-thread counter variable in Figure 4.5
get initialized?

Answer:
The C standard specifies that the initial value of global
variables is zero, unless they are explicitly initialized. So
the initial value of all the instances of counter will be
zero.

That said, one often takes differences of consecutive
reads from statistical counters, in which case the initial
value is irrelevant.

Quick Quiz 4.15:
How is the code in Figure 4.5 supposed to permit more
than one counter?

Answer:
Indeed, this toy example does not support more than one
counter. Modifying it so that it can provide multiple
counters is left as an exercise to the reader.

Quick Quiz 4.16:
Why does inc_count() in Figure 4.7 need to use
atomic instructions?

Answer:
If non-atomic instructions were used, counts could be

lost.

Quick Quiz 4.17:
Won’t the single global thread in the function
eventual() of Figure 4.7 be just as severe a
bottleneck as a global lock would be?

Answer:
In this case, no. What will happen instead is that the esti-
mate of the counter value returned by read_count()
will become more inaccurate.

Quick Quiz 4.18:
Won’t the estimate returned by read_count() in
Figure 4.7 become increasingly inaccurate as the number
of threads rises?

Answer:
Yes. If this proves problematic, one fix is to provide
multiple eventual() threads, each covering its own
subset of the other threads. In even more extreme cases,
a tree-like hierarchy of eventual() threads might be
required.

Quick Quiz 4.19:
Why do we need an explicit array to find the other threads’
counters? Why doesn’t gcc provide a per_thread()
interface, similar to the Linux kernel’s per_cpu()
primitive, to allow threads to more easily access each
others’ per-thread variables?

Answer:
Why indeed?

To be fair, gcc faces some challenges that the Linux
kernel gets to ignore. When a user-level thread exits, its
per-thread variables all disappear, which complicates the
problem of per-thread-variable access, particularly before
the advent of user-level RCU. In contrast, in the Linux
kernel, when a CPU goes offline, that CPU’s per-CPU
variables remain mapped and accessible.

Similarly, when a new user-level thread is created, its
per-thread variables suddenly come into existence. In
contrast, in the Linux kernel, all per-CPU variables are
mapped and initialized at boot time, regardless of whether
the corresponding CPU exists yet, or indeed, whether the
corresponding CPU will ever exist.
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A key limitation that the Linux kernel imposes is a
compile-time maximum limit on the number of CPUs,
namely, CONFIG_NR_CPUS. In contrast, in user space,
there is no hard-coded upper limit on the number of
threads.

Of course, both environments must deal with dynami-
cally loaded code (dynamic libraries in user space, kernel
modules in the Linux kernel), which increases the com-
plexity of per-thread variables in both environments.

These complications make it significantly harder for
user-space environments to provide access to other
threads’ per-thread variables. Nevertheless, such access is
highly useful, and it is hoped that it will someday appear.

Quick Quiz 4.20:
Why on earth do we need something as heavyweight
as a lock guarding the summation in the function
read_count() in Figure 4.8?

Answer:
Remember, when a thread exits, its per-thread variables
disappear. Therefore, if we attempt to access a given
thread’s per-thread variables after that thread exits, we
will get a segmentation fault. The lock coordinates
summation and thread exit, preventing this scenario.

Of course, we could instead read-acquire a reader-
writer lock, but Chapter 8 will introduce even lighter-
weight mechanisms for implementing the required coor-
dination.

Quick Quiz 4.21:
Why on earth do we need to acquire the lock in count_
register_thread() in Figure 4.8? It is a single
properly aligned machine-word store to a location that no
other thread is modifying, so it should be atomic anyway,
right?

Answer:
This lock could in fact be omitted, but better safe than
sorry, especially given that this function is executed only
at thread startup, and is therefore not on any critical path.
Now, if we were testing on machines with thousands of
CPUs, we might need to omit the lock, but on machines
with “only” a hundred or so CPUs, no need to get fancy.

Quick Quiz 4.22:

1 long __thread counter = 0;
2 long *counterp[NR_THREADS] = { NULL };
3 int finalthreadcount = 0;
4 DEFINE_SPINLOCK(final_mutex);
5
6 void inc_count(void)
7 {
8 counter++;
9 }
10
11 long read_count(void)
12 {
13 int t;
14 long sum = 0;
15
16 for_each_thread(t)
17 if (counterp[t] != NULL)
18 sum += *counterp[t];
19 return sum;
20 }
21
22 void count_init(void)
23 {
24 }
25
26 void count_register_thread(void)
27 {
28 counterp[smp_thread_id()] = &counter;
29 }
30
31 void count_unregister_thread(int nthreadsexpected)
32 {
33 spin_lock(&final_mutex);
34 finalthreadcount++;
35 spin_unlock(&final_mutex);
36 while (finalthreadcount < nthreadsexpected)
37 poll(NULL, 0, 1);
38 }

Figure G.2: Per-Thread Statistical Counters With Lock-
less Summation

Fine, but the Linux kernel doesn’t have to acquire a
lock when reading out the aggregate value of per-CPU
counters. So why should user-space code need to do
this???

Answer:
Remember, the Linux kernel’s per-CPU variables are
always accessible, even if the corresponding CPU is
offline — even if the corresponding CPU never existed
and never will exist.

One workaround is to ensure that each thread sticks
around until all threads are finished, as shown in Fig-
ure G.2. Analysis of this code is left as an exercise to
the reader, however, please note that it does not fit well
into the counttorture.h counter-evaluation scheme.
(Why not?) Chapter 8 will introduce synchronization
mechanisms that handle this situation in a much more
graceful manner.

counttorture.h
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Quick Quiz 4.23:
What fundamental difference is there between counting
packets and counting the total number of bytes in the
packets, given that the packets vary in size?

Answer:
When counting packets, the counter is only incremented
by the value one. On the other hand, when counting bytes,
the counter might be incremented by largish numbers.

Why does this matter? Because in the increment-by-
one case, the value returned will be exact in the sense that
the counter must necessarily have taken on that value at
some point in time, even if it is impossible to say precisely
when that point occurred. In contrast, when counting
bytes, two different threads might return values that are
inconsistent with any global ordering of operations.

To see this, suppose that thread 0 adds the value three to
its counter, thread 1 adds the value five to its counter, and
threads 2 and 3 sum the counters. If the system is “weakly
ordered” or if the compiler uses aggressive optimizations,
thread 2 might find the sum to be three and thread 3 might
find the sum to be five. The only possible global orders of
the sequence of values of the counter are 0,3,8 and 0,5,8,
and neither order is consistent with the results obtained.

If you missed this one, you are not alone. Michael
Scott used this question to stump Paul McKenney during
Paul’s Ph.D. defense.

Quick Quiz 4.24:
Given that the reader must sum all the threads’ counters,
this could take a long time given large numbers of threads.
Is there any way that the increment operation can remain
fast and scalable while allowing readers to also enjoy
reasonable performance and scalability?

Answer:
One approach would be to maintain a global approx-
imation to the value. Readers would increment their
per-thread variable, but when it reached some predefined
limit, atomically add it to a global variable, then zero
their per-thread variable. This would permit a tradeoff
between average increment overhead and accuracy of the
value read out.

The reader is encouraged to think up and try out other
approaches, for example, using a combining tree.

Quick Quiz 4.25:
What is with the strange form of the condition on line 3
of Figure 4.11? Why not the following more intuitive
form of the fastpath?

3 if (counter + delta <= countermax){
4 counter += delta;
5 return 1;
6 }

Answer:
Two words. “Integer overflow.”

Try the above formulation with counter equal to 10
and delta equal to ULONG_MAX. Then try it again with
the code shown in Figure 4.11.

A good understanding of integer overflow will be re-
quired for the rest of this example, so if you have never
dealt with integer overflow before, please try several ex-
amples to get the hang of it. Integer overflow can some-
times be more difficult to get right than parallel algo-
rithms!

Quick Quiz 4.26:
Why do globalize_count() to zero the per-thread
variables, only to later call balance_count() to refill
them in Figure 4.11? Why not just leave the per-thread
variables non-zero?

Answer:
That is in fact what an earlier version of this code
did. But addition and subtraction are extremely cheap,
and handling all of the special cases that arise is quite
complex. Again, feel free to try it yourself, but beware of
integer overflow!

Quick Quiz 4.27:
Given that globalreserve counted against us
in add_count(), why doesn’t it count for us in
sub_count() in Figure 4.11?

Answer:
The globalreserve variable tracks the sum of all
threads’ countermax variables. The sum of these
threads’ counter variables might be anywhere from
zero to globalreserve. We must therefore take
a conservative approach, assuming that all threads’
counter variables are full in add_count() and that
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they are all empty in sub_count().
But remember this question, as we will come back to it

later.

Quick Quiz 4.28:
Why have both add_count() and sub_count() in
Figure 4.11? Why not simply pass a negative number to
add_count()?

Answer:
Given that add_count() takes an unsigned long
as its argument, it is going to be a bit tough to pass it a
negative number. And unless you have some anti-matter
memory, there is little point in allowing negative numbers
when counting the number of structures in use!

Quick Quiz 4.29:
In what way does line 7 of Figure 4.15 violate the C
standard?

Answer:
It assumes eight bits per byte. This assumption does hold
for all current commodity microprocessors that can be
easily assembled into shared-memory multiprocessors,
but certainly does not hold for all computer systems that
have ever run C code. (What could you do instead in
order to comply with the C standard? What drawbacks
would it have?)

Quick Quiz 4.30:
Given that there is only one counterandmax variable,
why bother passing in a pointer to it on line 18 of
Figure 4.15?

Answer:
There is only one counterandmax variable per
thread. Later, we will see code that needs to pass
other threads’ counterandmax variables to split_
counterandmax().

Quick Quiz 4.31:
Why does merge_counterandmax() in Figure 4.15
return an int rather than storing directly into an
atomic_t?

Answer:
Later, we will see that we need the int return to pass to
the atomic_cmpxchg() primitive.

Quick Quiz 4.32:
Yecch! Why the ugly goto on line 11 of Figure 4.16?
Haven’t you heard of the break statement???

Answer:
Replacing the goto with a break would require
keeping a flag to determine whether or not line 15 should
return, which is not the sort of thing you want on a
fastpath. If you really hate the goto that much, your best
bet would be to pull the fastpath into a separate function
that returned success or failure, with “failure” indicating
a need for the slowpath. This is left as an exercise for
goto-hating readers.

Quick Quiz 4.33:
Why would the atomic_cmpxchg() primitive at
lines 13-14 of Figure 4.16 ever fail? After all, we picked
up its old value on line 9 and have not changed it!

Answer:
Later, we will see how the flush_local_count()
function in Figure 4.18 might update this thread’s
counterandmax variable concurrently with the
execution of the fastpath on lines 8-14 of Figure 4.16.

Quick Quiz 4.34:
What stops a thread from simply refilling its
counterandmax variable immediately after flush_
local_count() on line 14 of Figure 4.18 empties it?

Answer:
This other thread cannot refill its counterandmax
until the caller of flush_local_count() releases
the gblcnt_mutex. By that time, the caller of
flush_local_count() will have finished making
use of the counts, so there will be no problem with
this other thread refilling — assuming that the value of
globalcount is large enough to permit a refill.

Quick Quiz 4.35:
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What prevents concurrent execution of the fastpath
of either atomic_add() or atomic_sub() from
interfering with the counterandmax variable while
flush_local_count() is accessing it on line 27 of
Figure 4.18 empties it?

Answer:
Nothing. Consider the following three cases:

1. If flush_local_count()’s atomic_
xchg() executes before the split_
counterandmax() of either fastpath, then
the fastpath will see a zero counter and
countermax, and will thus transfer to the
slowpath (unless of course delta is zero).

2. If flush_local_count()’s atomic_
xchg() executes after the split_
counterandmax() of either fastpath, but
before that fastpath’s atomic_cmpxchg(), then
the atomic_cmpxchg() will fail, causing the
fastpath to restart, which reduces to case 1 above.

3. If flush_local_count()’s atomic_
xchg() executes after the atomic_cmpxchg()
of either fastpath, then the fastpath will (most likely)
complete successfully before flush_local_
count() zeroes the thread’s counterandmax
variable.

Either way, the race is resolved correctly.

Quick Quiz 4.36:
Given that the atomic_set() primitive does a simple
store to the specified atomic_t, how can line 53 of
balance_count() in Figure 4.18 work correctly in
face of concurrent flush_local_count() updates
to this variable?

Answer:
The caller of both balance_count() and flush_
local_count() hold gblcnt_mutex, so only one
may be executing at a given time.

Quick Quiz 4.37:
But signal handlers can be migrated to some other CPU
while running. Doesn’t this possibility require that atomic
instructions and memory barriers are required to reliably
communicate between a thread and a signal handler that

interrupts that thread?

Answer:
No. If the signal handler is migrated to another CPU,
then the interrupted thread is also migrated along with it.

Quick Quiz 4.38:
In Figure 4.19, why is the REQ theft state colored
blue?

Answer:
To indicate that only the fastpath is permitted to change
the theft state.

Quick Quiz 4.39:
In Figure 4.19, what is the point of having separate REQ
and ACK theft states? Why not simplify the state
machine by collapsing them into a single state? Then
whichever of the signal handler or the fastpath gets there
first could set the state to READY.

Answer:
Reasons why collapsing the REQ and ACK states would
be a very bad idea include:

1. The slowpath uses the REQ and ACK states to deter-
mine whether the signal should be retransmitted. If
the states were collapsed, the slowpath would have
no choice but to send redundant signals, which would
have the unhelpful effect of slowing down the fast-
path.

2. The following race would result:

(a) The slowpath sets a given thread’s state to RE-
QACK.

(b) That thread has just finished its fastpath, and
notes the REQACK state.

(c) The thread receives the signal, which also notes
the REQACK state, and, because there is no
fastpath in effect, sets the state to READY.

(d) The slowpath notes the READY state, steals
the count, and sets the state to IDLE, and com-
pletes.

(e) The fastpath sets the state to READY, disabling
further fastpath execution for this thread.
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The basic problem here is that the combined RE-
QACK state can be referenced by both the signal
handler and the fastpath. The clear separation main-
tained by the four-state setup ensures orderly state
transitions.

That said, you might well be able to make a three-state
setup work correctly. If you do succeed, compare care-
fully to the four-state setup. Is the three-state solution
really preferable, and why or why not?

Quick Quiz 4.40:
In Figure 4.21 function flush_local_count_
sig(), why are there ACCESS_ONCE() wrappers
around the uses of the theft per-thread variable?

Answer:
The first one (on line 11) can be argued to be
unnecessary. The last two (lines 14 and 16) are
important. If these are removed, the compiler would
be within its rights to rewrite lines 14-17 as follows:
14 theft = THEFT_READY;
15 if (counting) {
16 theft = THEFT_ACK;
17 }

This would be fatal, as the slowpath might see the

transient value of THEFT_READY, and start stealing
before the corresponding thread was ready.

Quick Quiz 4.41:
In Figure 4.21, why is it safe for line 28 to directly access
the other thread’s countermax variable?

Answer:
Because the other thread is not permitted to change the
value of its countermax variable unless it holds the
gblcnt_mutex lock. But the caller has acquired this
lock, so it is not possible for the other thread to hold it,
and therefore the other thread is not permitted to change
its countermax variable. We can therefore safely
access it — but not change it.

Quick Quiz 4.42:
In Figure 4.21, why doesn’t line 33 check for the current
thread sending itself a signal?

Answer:

There is no need for an additional check. The caller
of flush_local_count() has already invoked
globalize_count(), so the check on line 28 will
have succeeded, skipping the later pthread_kill().

Quick Quiz 4.43:
The code in Figure 4.21, works with gcc and POSIX.
What would be required to make it also conform to the
ISO C standard?

Answer:
The theft variable must be of type sig_atomic_t
to guarantee that it can be safely shared between the
signal handler and the code interrupted by the signal.

Quick Quiz 4.44:
In Figure 4.21, why does line 41 resend the signal?

Answer:
Because many operating systems over several decades
have had the property of losing the occasional signal.
Whether this is a feature or a bug is debatable, but
irrelevant. The obvious symptom from the user’s
viewpoint will not be a kernel bug, but rather a user
application hanging.

Your user application hanging!

Quick Quiz 4.45:
What if you want an exact limit counter to be exact only
for its lower limit?

Answer:
One simple solution is to overstate the upper limit by the
desired amount. The limiting case of such overstatement
results in the upper limit being set to the largest value that
the counter is capable of representing.

Quick Quiz 4.46:
What else had you better have done when using a biased
counter?

Answer:
You had better have set the upper limit to be large enough
accommodate the bias, the expected maximum number
of accesses, and enough “slop” to allow the counter to
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work efficiently even when the number of accesses is at
its maximum.

Quick Quiz 4.47:
This is ridiculous! We are read-acquiring a reader-writer
lock to update the counter? What are you playing at???

Answer:
Strange, perhaps, but true! Almost enough to make you
think that the name “reader-writer lock” was poorly
chosen, isn’t it?

Quick Quiz 4.48:
What other issues would need to be accounted for in a
real system?

Answer:
A huge number!

Here are a few to start with:

1. There could be any number of devices, so that the
global variables are inappropriate, as are the lack of
arguments to functions like do_io().

2. Polling loops can be problematic in real systems. In
many cases, it is far better to have the last completing
I/O wake up the device-removal thread.

3. The I/O might fail, and so do_io()will likely need
a return value.

4. If the device fails, the last I/O might never complete.
In such cases, there might need to be some sort of
timeout to allow error recovery.

5. Both add_count() and sub_count() can fail,
but their return values are not checked.

6. Reader-writer locks do not scale well. One way of
avoiding the high read-acquisition costs of reader-
writer locks is presented in Chapter 8.

Quick Quiz 4.49:
On the count_stat.c row of Table 4.1, we see that
the update side scales linearly with the number of threads.
How is that possible given that the more threads there are,
the more per-thread counters must be summed up?

Answer:
The read-side code must scan the entire fixed-size array,
regardless of the number of threads, so there is no
difference in performance. In contrast, in the last two
algorithms, readers must do more work when there
are more threads. In addition, the last two algorithms
interpose an additional level of indirection because
they map from integer thread ID to the corresponding
__thread variable.

Quick Quiz 4.50:
Even on the last row of Table 4.1, the read-side perfor-
mance of these statistical counter implementations is
pretty horrible. So why bother with them?

Answer:
“Use the right tool for the job.”

As can be seen from Figure 4.3, single-variable atomic
increment need not apply for any job involving heavy use
of parallel updates. In contrast, the algorithms shown in
Table 4.1 do an excellent job of handling update-heavy
situations. Of course, if you have a read-mostly situation,
you should use something else, for example, a single
atomically incremented variable that can be read out using
a single load.

Quick Quiz 4.51:
Given the performance data shown in Table 4.2, we
should always prefer update-side signals over read-side
atomic operations, right?

Answer:
That depends on the workload. Note that you need a
million readers (with roughly a 40-nanosecond perfor-
mance gain) to make up for even one writer (with almost
a 40-millisecond performance loss). Although there are
no shortage of workloads with far greater read intensity,
you will need to consider your particular workload.

In addition, although memory barriers have historically
been expensive compared to ordinary instructions, you
should check this on the specific hardware you will be
running. The properties of computer hardware do change
over time, and algorithms must change accordingly.

Quick Quiz 4.52:
Can advanced techniques be applied to address the lock

count_stat.c


G.5. PARTITIONING AND SYNCHRONIZATION DESIGN 323

contention for readers seen in Table 4.2?

Answer:
There are a number of ways one might go about this, and
these are left as exercises for the reader.

Quick Quiz 4.53:
The ++ operator works just fine for 1,000-digit numbers!
Haven’t you heard of operator overloading???

Answer:
In the C++ language, you might well be able to use ++
on a 1,000-digit number, assuming that you had access to
a class implementing such numbers. But as of 2010, the
C language does not permit operator overloading.

Quick Quiz 4.54:
But if we are going to have to partition everything, why
bother with shared-memory multithreading? Why not
just partition the problem completely and run as multiple
processes, each in its own address space?

Answer:
Indeed, multiple processes with separate address spaces
can be an excellent way to exploit parallelism, as the
proponents of the fork-join methodology and the Erlang
language would be very quick to tell you. However, there
are also some advantages to shared-memory parallelism:

1. Only the most performance-critical portions of the
application must be partitioned, and such portions
are usually a small fraction of the application.

2. Although cache misses are quite slow compared
to individual register-to-register instructions, they
are typically considerably faster than inter-process-
communication primitives, which in turn are consid-
erably faster than things like TCP/IP networking.

3. Shared-memory multiprocessors are readily avail-
able and quite inexpensive, so, in stark contrast to
the 1990s, there is little cost penalty for use of shared-
memory parallelism.

As always, use the right tool for the job!

P1

P2

P3P4

P5

Figure G.3: Dining Philosophers Problem, Fully Parti-
tioned

G.5 Partitioning and Synchroniza-
tion Design

Quick Quiz 5.1:
Is there a better solution to the Dining Philosophers
Problem?

Answer:

One such improved solution is shown in Figure G.3,
where the philosophers are simply provided with an ad-
ditional five forks. All five philosophers may now eat
simultaneously, and there is never any need for philoso-
phers to wait on one another. In addition, the improved
disease control provided by this approach should not be
underestimated.

This solution can seem like cheating to some, but such
“cheating” is key to finding good solutions to many con-
currency problems.

Quick Quiz 5.2:
And in just what sense can this “horizontal parallelism”
be said to be “horizontal”?

Answer:
Inman was working with protocol stacks, which are
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normally depicted vertically, with the application on
top and the hardware interconnect on the bottom. Data
flows up and down this stack. “Horizontal parallelism”
processes packets from different network connections in
parallel, while “vertical parallelism” handles different
protocol-processing steps for a given packet in parallel.

“Vertical parallelism” is also called “pipelining”.

Quick Quiz 5.3:
In this compound double-ended queue implementation,
what should be done if the queue has become non-empty
while releasing and reacquiring the lock?

Answer:
In this case, simply dequeue an item from the now-
nonempty queue, release both locks, and return.

Quick Quiz 5.4:
Is the hashed double-ended queue a good solution? Why
or why not?

Answer:
The best way to answer this is to run lockhdeq.c on
a number of different multiprocessor systems, and you
are encouraged to do so in the strongest possible terms.
One reason for concern is that each operation on this
implementation must acquire not one but two locks.

The first well-designed performance study will be cited.
Do not forget to compare to a sequential implementation!

Quick Quiz 5.5:
Move all the elements to the queue that became empty?
In what possible universe is this braindead solution in any
way optimal???

Answer:
It is optimal in the case where data flow switches
direction only rarely. It would of course be an extremely
poor choice if the double-ended queue was being emptied
from both ends concurrently. This of course raises the
question as to what possible universe emptying from both
ends concurrently would be a reasonable thing to do...

Quick Quiz 5.6:
Why can’t the compound parallel double-ended queue

implementation be symmetric?

Answer:
The need to avoid deadlock by imposing a lock hi-
erarchy forces the asymmetry, just as it does in the
fork-numbering solution to the Dining Philosophers
Problem.

Quick Quiz 5.7:
Why is it necessary to retry the right-dequeue operation
on line 29 of Figure 5.11?

Answer:
This retry is necessary because some other thread might
have enqueued an element between the time that this
thread dropped the lock and the time that it reacquired
the lock.

Quick Quiz 5.8:
Surely the left-hand lock must sometimes be available!!!
So why is it necessary that line 26 of Figure 5.11
unconditionally release the right-hand lock?

Answer:
It would be possible to use spin_trylock() to
attempt to acquire the left-hand lock when it was
available. However, the failure case would still need to
drop the right-hand lock and then re-acquire the two locks
in order. Making this transformation (and determining
whether or not it is worthwhile) is left as an exercise for
the reader.

Quick Quiz 5.9:
The tandem double-ended queue runs about twice as fast
as the hashed double-ended queue, even when I increase
the size of the hash table to an insanely large number.
Why is that?

Answer:
The hashed double-ended queue’s locking design only
permits one thread at a time at each end, and further
requires two lock acquisitions for each operation. The
tandem double-ended queue also permits one thread at a
time at each end, and in the common case requires only
one lock acquisition per operation. Therefore, the tandem
double-ended queue should be expected to outperform

lockhdeq.c
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the hashed double-ended queue.
Can you created a double-ended queue that allows mul-

tiple concurrent operations at each end? If so, how? If
not, why not?

Quick Quiz 5.10:
Is there a significantly better way of handling concurrency
for double-ended queues?

Answer:
Transform the problem to be solved so that multiple
double-ended queues can be used in parallel, allowing
the simpler single-lock double-ended queue to be used,
and perhaps also replace each double-ended queue with
a pair of conventional single-ended queues. Without
such “horizontal scaling”, the speedup is limited to
2.0. In contrast, horizontal-scaling designs can enable
very large speedups, and are especially attractive if
there are multiple threads working either end of the
queue, because in this multiple-thread case the deque
simply cannot provide strong ordering guarantees. And
if there are no guarantees, we may as well obtain the
performance benefits that come with refusing to provide
the guarantees, right?

Quick Quiz 5.11:
What are some ways of preventing a structure from being
freed while its lock is being acquired?

Answer:
Here are a few possible solutions to this existence
guarantee problem:

1. Provide a statically allocated lock that is held while
the per-structure lock is being acquired, which is an
example of hierarchical locking (see Section 5.4.2).
Of course, using a single global lock for this pur-
pose can result in unacceptably high levels of lock
contention, dramatically reducing performance and
scalability.

2. Provide an array of statically allocated locks, hash-
ing the structure’s address to select the lock to be
acquired, as described in Chapter 6. Given a hash
function of sufficiently high quality, this avoids the
scalability limitations of the single global lock, but in
read-mostly situations, the lock-acquisition overhead
can result in unacceptably degraded performance.

3. Use a garbage collector, in software environments
providing them, so that a structure cannot be deallo-
cated while being referenced. This works very well,
removing the existence-guarantee burden (and much
else besides) from the developer’s shoulders, but im-
poses the overhead of garbage collection on the pro-
gram. Although garbage-collection technology has
advanced considerably in the past few decades, its
overhead may be unacceptably high for some appli-
cations. In addition, some applications require that
the developer exercise more control over the layout
and placement of data structures than is permitted
by most garbage collected environments.

4. As a special case of a garbage collector, use a global
reference counter, or a global array of reference coun-
ters.

5. Use hazard pointers [Mic04], which can be thought
of as an inside-out reference count. Hazard-pointer-
based algorithms maintain a per-thread list of point-
ers, so that the appearance of a given pointer on any
of these lists acts as a reference to the corresponding
structure. Hazard pointers are an interesting research
direction, but have not yet seen much use in produc-
tion (written in 2008).

6. Use transactional memory (TM) [HM93, Lom77,
ST95], so that each reference and modification to
the data structure in question is performed atomi-
cally. Although TM has engendered much excite-
ment in recent years, and seems likely to be of some
use in production software, developers should ex-
ercise some caution [BLM05, BLM06, MMW07],
particularly in performance-critical code. In particu-
lar, existence guarantees require that the transaction
cover the full path from a global reference to the data
elements being updated.

7. Use RCU, which can be thought of as an extremely
lightweight approximation to a garbage collector.
Updaters are not permitted to free RCU-protected
data structures that RCU readers might still be refer-
encing. RCU is most heavily used for read-mostly
data structures, and is discussed at length in Chap-
ter 8.

For more on providing existence guarantees, see Chap-
ters 6 and 8.
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Quick Quiz 5.12:
How can a single-threaded 64-by-64 matrix multiple
possibly have an efficiency of less than 1.0? Shouldn’t all
of the traces in Figure 5.22 have efficiency of exactly 1.0
when running on only one thread?

Answer:
The matmul.c program creates the specified number
of worker threads, so even the single-worker-thread case
incurs thread-creation overhead. Making the changes
required to optimize away thread-creation overhead in
the single-worker-thread case is left as an exercise to the
reader.

Quick Quiz 5.13:
How are data-parallel techniques going to help with
matrix multiply? It is already data parallel!!!

Answer:
I am glad that you are paying attention! This example
serves to show that although data parallelism can be a
very good thing, it is not some magic wand that automati-
cally wards off any and all sources of inefficiency. Linear
scaling at full performance, even to “only” 64 threads,
requires care at all phases of design and implementation.

In particular, you need to pay careful attention to the
size of the partitions. For example, if you split a 64-by-64
matrix multiply across 64 threads, each thread gets only
64 floating-point multiplies. The cost of a floating-point
multiply is miniscule compared to the overhead of thread
creation.

Moral: If you have a parallel program with variable
input, always include a check for the input size being too
small to be worth parallelizing. And when it is not helpful
to parallelize, it is not helpful to spawn a single thread,
now is it?

Quick Quiz 5.14:
In what situation would hierarchical locking work well?

Answer:
If the comparison on line 31 of Figure 5.25 were replaced
by a much heavier-weight operation, then releasing
bp->bucket_lock might reduce lock contention
enough to outweigh the overhead of the extra acquisition
and release of cur->node_lock.

Quick Quiz 5.15:
In Figure 5.31, there is a pattern of performance rising
with increasing run length in groups of three samples, for
example, for run lengths 10, 11, and 12. Why?

Answer:
This is due to the per-CPU target value being three. A
run length of 12 must acquire the global-pool lock twice,
while a run length of 13 must acquire the global-pool
lock three times.

Quick Quiz 5.16:
Allocation failures were observed in the two-thread tests
at run lengths of 19 and greater. Given the global-pool
size of 40 and the per-CPU target pool size of three, what
is the smallest allocation run length at which failures can
occur?

Answer:
The exact solution to this problem is left as an exercise
to the reader. The first solution received will be credited
to its submitter. As a rough rule of thumb, the global
pool size should be at least m+ 2sn, where “m” is the
maximum number of elements allocated at a given time,
“s” is the per-CPU pool size, and “n” is the number of
CPUs.

G.6 Locking

Quick Quiz 6.1:
But the definition of deadlock only said that each thread
was holding at least one lock and waiting on another lock
that was held by some thread. How do you know that
there is a cycle?

Answer:
Suppose that there is not cycle in the graph. We would
then have a directed acyclic graph (DAG), which would
have at least one leaf node.

If this leaf node was a lock, then we would have a
thread that was waiting on a lock that wasn’t held by any
thread, which violates the definition. (And in this case the
thread would immediately acquire the lock.)

On the other hand, if this leaf node was a thread, then
we would have a thread that was not waiting on any lock,
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again violating the definition. (And in this case, the thread
would either be running or blocked on something that is
not a lock.)

Therefore, given this definition of deadlock, there must
be a cycle in the corresponding graph.

Quick Quiz 6.2:
Are there any exceptions to this rule, so that there
really could be a deadlock cycle containing locks
from both the library and the caller, even given that the
library code never invokes any of the caller’s functions?

Answer:
Indeed there can! Here are a few of them:

1. If one of the library function’s arguments is a pointer
to a lock that this library function acquires, and if the
library function holds one if its locks while acquiring
the caller’s lock, then we could have a deadlock cycle
involving both caller and library locks.

2. If one of the library functions returns a pointer to a
lock that is acquired by the caller, and if the caller
acquires one if its locks while holding the library’s
lock, we could again have a deadlock cycle involving
both caller and library locks.

3. If one of the library functions acquires a lock and
then returns while still holding it, and if the caller
acquires one of its locks, we have yet another way
to create a deadlock cycle involving both caller and
library locks.

4. If the caller has a signal handler that acquires locks,
then the deadlock cycle can involve both caller and li-
brary locks. In this case, however, the library’s locks
are innocent bystanders in the deadlock cycle. That
said, please note that acquiring a lock from within a
signal handler is a no-no in most environments—it
is not just a bad idea, it is unsupported.

Quick Quiz 6.3:
But if qsort() releases all its locks before invoking the
comparison function, how can it protect against races
with other qsort() threads?

Answer:
By privatizing the data elements being compared (as

discussed in Chapter 7) or through use of deferral
mechanisms such as reference counting (as discussed in
Chapter 8).

Quick Quiz 6.4:
Name one common exception where it is perfectly
reasonable to pass a pointer to a lock into a function.

Answer:
Locking primitives, of course!

Quick Quiz 6.5:
Doesn’t the fact that pthread_cond_wait() first
releases the mutex and then re-acquires it eliminate the
possibility of deadlock?

Answer:
Absolutely not!

Consider the a program that acquires mutex_a, and
then mutex_b, in that order, and then passes mutex_
a to pthread_cond_wait. Now, pthread_cond_
wait will release mutex_a, but will re-acquire it before
returning. If some other thread acquires mutex_a in the
meantime and then blocks on mutex_b, the program
will deadlock.

Quick Quiz 6.6:
Can the transformation from Figure 6.4 to Figure 6.10 be
applied universally?

Answer:
Absolutely not!

This transformation assumes that the layer_2_
processing() function is idempotent, given that it
might be executed multiple times on the same packet
when the layer_1() routing decision changes. There-
fore, in real life, this transformation can become arbitrar-
ily complex.

Quick Quiz 6.7:
But the complexity in Figure 6.10 is well worthwhile
given that it avoids deadlock, right?

Answer:
Maybe.
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If the routing decision in layer_1() changes often
enough, the code will always retry, never making forward
progress. This is termed “livelock” if no thread makes any
forward progress or “starvation” if some threads make
forward progress but other do not (see Section 6.1.2).

Quick Quiz 6.8:
How can you legally block signals within a signal
handler?

Answer:
One of the simplest and fastest ways to do so is to use the
sa_mask field of the struct sigaction that you
pass to sigaction() when setting up the signal.

Quick Quiz 6.9:
Given an object-oriented application that passes control
freely among a group of objects such that there is no
reasonable locking hierarchy, layered or otherwise, how
can this application be parallelized?

Answer:
There are a number of approaches:

1. In the case of parametric search via simulation,
where a large number of simulations will be run
in order to converge on (for example) a good design
for a mechanical or electrical device, leave the sim-
ulation single-threaded, but run many instances of
the simulation in parallel. This retains the object-
oriented design, and gains parallelism at a higher
level.

2. Partition the objects into groups such that there is no
need to operate on objects in more than one group at
a given time. Then associate a lock with each group.
This is an example of a single-lock-at-a-time design,
which discussed in Section 6.1.1.7.

3. Partition the objects into groups such that threads can
all operate on objects in the groups in some group-
wise ordering. Then associate a lock with each group,
and impose a locking hierarchy over the groups.

4. Impose an arbitrarily selected hierarchy on the locks,
and then use conditional locking if it is necessary
to acquire a lock out of order, as was discussed in
Section 6.1.1.5.

5. Before carrying out a given group of operations, pre-
dict which locks will be acquired, and attempt to
acquire them before actually carrying out any up-
dates. If the prediction turns out to be incorrect, drop
all the locks and retry with an updated prediction that
includes the benefit of experience. This approach
was discussed in Section 6.1.1.6.

6. Use transactional memory. This approach has a num-
ber of advantages and disadvantages which will be
discussed in Section 15.2.

7. Refactor the application to be more concurrency-
friendly. This would likely also have the side ef-
fect of making the application run faster even when
single-threaded, but might also make it more difficult
to modify the application.

8. Use techniques from later chapters in addition to
locking.

Quick Quiz 6.10:
How can the livelock shown in Figure 6.11 be avoided?

Answer:
This is left as an exercise to the reader. Figure 6.10
provides some good hints. In many cases, livelocks are a
hint that you should revisit your locking design. Or visit
it in the first place if your locking design “just grew”.

Quick Quiz 6.11:
What problems can you spot in the code in Figure 6.12?

Answer:
Here are a couple:

1. A one-second wait is way too long for most uses.
Wait intervals should begin with roughly the time
required to execute the critical section, which will
normally be in the microsecond or millisecond range.

2. The code does not check for overflow. On the other
hand, this bug is nullified by the previous bug: 32
bits worth of seconds is more than 50 years.

Quick Quiz 6.12:
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Wouldn’t it be better just to use a good parallel design so
that lock contention was low enough to avoid unfairness?

Answer:
It would be better in some sense, but there are situations
where it can be appropriate to use designs that sometimes
result in high lock contentions.

For example, imagine a system that is subject to a rare
error condition. It might well be best to have a simple
error-handling design that has poor performance and scal-
ability for the duration of the rare error condition, as
opposed to a complex and difficult-to-debug design that
is helpful only when one of those rare error conditions is
in effect.

That said, it is usually worth putting some effort into
attempting to produce a design that both simple as well
as efficient during error condsitions, for example by parti-
tioning the problem.

Quick Quiz 6.13:
How might the lock holder be interfered with?

Answer:
If the data protected by the lock is in the same cache line
as the lock itself, then attempts by other CPUs to acquire
the lock will result in expensive cache misses on the part
of the CPU holding the lock. In contrast, if the lock is in
a different cache line than the data that it protects, the
CPU holding the lock will usually suffer a cache miss
only on first access to a given variable. This is a special
case of false sharing, which can also occur if a pair of
variables protected by different locks happen to share a
cache line.

Quick Quiz 6.14:
Is there any other way for the VAX/VMS DLM to
emulate a reader-writer lock?

Answer:
There are in fact several. One way would be to use
the null, protected-read, and exclusive modes. Another
way would be to use the null, protected-read, and
concurrent-write modes. A third way would be to use the
null, concurrent-read, and exclusive modes.

Quick Quiz 6.15:
Why bother with the inner loop on lines 7-8 of Fig-
ure 6.14? Why not simply repeatedly do the atomic
exchange operation on line 6?

Answer:
Suppose that the lock is held and that several threads
are attempting to acquire the lock. In this situation, if
these threads all loop on the atomic exchange operation,
they will ping-pong the cache line containing the lock
among themselves, imposing load on the interconnect. In
contrast, if these threads are spinning in the inner loop
on lines 7-8, they will each spin within their own caches,
putting negligible load on the interconnect.

Quick Quiz 6.16:
Why not simply store zero into the lock word on line 14
of Figure 6.14?

Answer:
This can be a legitimate implementation, but only if this
store is preceded by a memory barrier. The memory
barrier is not required when the xchg() operation is
used because this operation implies a full memory barrier
due to the fact that it returns a value.

Quick Quiz 6.17:
How can relying on implicit existence guarantees result
in a bug?

Answer:
Here are some bugs resulting from improper use of
implicit existence guarantees:

1. A program writes the address of a global variable
to a file, then a later instance of that same program
reads that address and attempts to dereference it.
This can fail due to address-space randomization, to
say nothing of recompilation of the program.

2. A module can record the address of one of its vari-
ables in a pointer located in some other module, then
attempt to dereference that pointer after the module
has been unloaded.

3. A function can record the address of one of its on-
stack variables into a global pointer, which some
other function might attempt to dereference after
that function has returned.
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I am sure that you can come up with additional possibili-
ties.

Quick Quiz 6.18:
What if the element we need to delete is not the first
element of the list on line 8 of Figure 6.15?

Answer:
This is a very simple hash table with no chaining, so the
only element in a given bucket is the first element. The
reader is invited to adapt this example to a hash table
with full chaining.

Quick Quiz 6.19:
What race condition can occur in Figure 6.15?

Answer:
Consider the following sequence of events:

1. Thread 0 invokes delete(0), and reaches line 10
of the figure, acquiring the lock.

2. Thread 1 concurrently invokes delete(0), and
reaches line 10, but spins on the lock because
Thread 1 holds it.

3. Thread 0 executes lines 11-14, removing the ele-
ment from the hashtable, releasing the lock, and then
freeing the element.

4. Thread 0 continues execution, and allocates memory,
getting the exact block of memory that it just freed.

5. Thread 0 then initializes this block of memory as
some other type of structure.

6. Thread 1’s spin_lock() operation fails due to
the fact that what it believes to be p->lock is no
longer a spinlock.

Because there is no existence guarantee, the identity of
the data element can change while a thread is attempting
to acquire that element’s lock on line 10!

G.7 Deferred Processing

Quick Quiz 8.1:

Why not implement reference-acquisition using a
simple compare-and-swap operation that only acquires a
reference if the reference counter is non-zero?

Answer:
Although this can resolve the race between the release
of the last reference and acquisition of a new reference,
it does absolutely nothing to prevent the data structure
from being freed and reallocated, possibly as some
completely different type of structure. It is quite likely
that the “simple compare-and-swap operation” would
give undefined results if applied to the differently typed
structure.

In short, use of atomic operations such as compare-and-
swap absolutely requires either type-safety or existence
guarantees.

Quick Quiz 8.2:
Why isn’t it necessary to guard against cases where one
CPU acquires a reference just after another CPU releases
the last reference?

Answer:
Because a CPU must already hold a reference in order
to legally acquire another reference. Therefore, if one
CPU releases the last reference, there cannot possibly be
any CPU that is permitted to acquire a new reference.
This same fact allows the non-atomic check in line 22 of
Figure 8.2.

Quick Quiz 8.3:
If the check on line 22 of Figure 8.2 fails, how could the
check on line 23 possibly succeed?

Answer:
Suppose that kref_put() is protected by RCU, so
that two CPUs might be executing line 22 concur-
rently. Both might see the value “2”, causing both
to then execute line 23. One of the two instances of
atomic_dec_and_test() will decrement the value
to zero and thus return 1.

Quick Quiz 8.4:
How can it possibly be safe to non-atomically check for
equality with “1” on line 22 of Figure 8.2?
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Answer:
Remember that it is not legal to call either kref_get()
or kref_put() unless you hold a reference. If the
reference count is equal to “1”, then there can’t possibly
be another CPU authorized to change the value of the
reference count.

Quick Quiz 8.5:
Why can’t the check for a zero reference count be made
in a simple “if” statement with an atomic increment in its
“then” clause?

Answer:
Suppose that the “if” condition completed, finding the
reference counter value equal to one. Suppose that a
release operation executes, decrementing the reference
counter to zero and therefore starting cleanup operations.
But now the “then” clause can increment the counter
back to a value of one, allowing the object to be used
after it has been cleaned up.

Quick Quiz 8.6:
Why isn’t this sequence-lock discussion in Chapter 6,
you know, the one on locking?

Answer:
The sequence-lock mechanism is really a combina-
tion of two separate synchronization mechanisms,
sequence counts and locking. In fact, the sequence-
count mechanism is available separately in the Linux
kernel via the write_seqcount_begin() and
write_seqcount_end() primitives.

However, the combined write_seqlock() and
write_sequnlock() primitives are used much more
heavily in the Linux kernel. More importantly, many
more people will understand what you mean if you san
“sequence lock” than if you say “sequence count”.

So this section is entitled “Sequence Locks” so that
people will understand what it is about just from the title,
and it appears in the “Deferred Processing” because (1) of
the emphasis on the “sequence count” aspect of “sequence
locks” and (2) because a “sequence lock” is much more
than merely a lock.

Quick Quiz 8.7:
Can you use sequence locks as the only synchronization

mechanism protecting a linked list supporting concurrent
addition, deletion, and search?

Answer:
One trivial way of accomplishing this is to surround
all accesses, including the read-only accesses, with
write_seqlock() and write_sequnlock().
Of course, this solution also prohibits all read-side
parallelism, and furthermore could just as easily be
implemented using simple locking.

If you do come up with a solution that uses read_
seqbegin() and read_seqretry() to protect
read-side accesses, make sure that you correctly handle
the following sequence of events:

1. CPU 0 is traversing the linked list, and picks up a
pointer to list element A.

2. CPU 1 removes element A from the list and frees it.

3. CPU 2 allocates an unrelated data structure, and gets
the memory formerly occupied by element A. In this
unrelated data structure, the memory previously used
for element A’s ->next pointer is now occupied by
a floating-point number.

4. CPU 0 picks up what used to be element A’s
->next pointer, gets random bits, and therefore gets
a segmentation fault.

One way to protect against this sort of problem requires
use of “type-safe memory”, which will be discussed in
Section 8.3.3.6. But in that case, you would be using some
other synchronization mechanism in addition to sequence
locks!

Quick Quiz 8.8:
Why bother with the check on line 19 of read_
seqbegin() in Figure 8.7? Given that a new
writer could begin at any time, why not simply incor-
porate the check into line 31 of read_seqretry()?

Answer:
That would be a legitimate implementation. However,
it would not save anything to move the check down
to read_seqretry(): There would be roughly the
same number of instructions. Furthermore, the reader’s
accesses from its doomed read-side critical section could
inflict overhead on the writer in the form of cache misses.
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We can avoid these cache misses by placing the check in
read_seqbegin() as shown on line 19 of Figure 8.7.

Quick Quiz 8.9:
What prevents sequence-locking updaters from starving
readers?

Answer:
Nothing. This is one of the weaknesses of sequence
locking, and as a result, you should use sequence locking
only in read-mostly situations. Unless of course read-side
starvation is acceptable in your situation, in which case,
go wild the sequence-locking updates!

Quick Quiz 8.10:
What if something else serializes writers, so that the lock
is not needed?

Answer:
In this case, the ->lock field could be omitted, as it is
in seqcount_t in the Linux kernel.

Quick Quiz 8.11:
Why isn’t seq on line 2 of Figure 8.7 unsigned rather
than unsigned long? After all, if unsigned is
good enough for the Linux kernel, shouldn’t it be good
enough for everyone?

Answer:
Not at all. The Linux kernel has a number of special
attributes that allow it to ignore the following sequence
of events:

1. Thread 0 executes read_seqbegin(), picking
up ->seq in line 17, noting that the value is even,
and thus returning to the caller.

2. Thread 0 starts executing its read-side critical section,
but is then preempted for a long time.

3. Other threads repeatedly invoke write_
seqlock() and write_sequnlock(),
until the value of ->seq overflows back to the
value that Thread 0 fetched.

4. Thread 0 resumes execution, completing its read-
side critical section with inconsistent data.

5. Thread 0 invokes read_seqretry(), which in-
correctly concludes that Thread 0 has seen a con-
sistent view of the data protected by the sequence
lock.

The Linux kernel uses sequence locking for things that
are updated rarely, with time-of-day information being a
case in point. This information is updated at most once
per millisecond, so that seven weeks would be required to
overflow the counter. If a kernel thread was preempted for
seven weeks, the Linux kernel’s soft-lockup code would
be emitting warnings every two minutes for that entire
time.

In contrast, with a 64-bit counter, more than five cen-
turies would be required to overflow, even given an update
every nanosecond. Therefore, this implementation uses a
type for ->seq that is 64 bits on 64-bit systems.

Quick Quiz 8.12:
But doesn’t Section 8.2’s seqlock also permit readers and
updaters to get work done concurrently?

Answer:
Yes and no. Although seqlock readers can run concur-
rently with seqlock writers, whenever this happens, the
read_seqretry() primitive will force the reader
to retry. This means that any work done by a seqlock
reader running concurrently with a seqlock updater will
be discarded and redone. So seqlock readers can run
concurrently with updaters, but they cannot actually get
any work done in this case.

In contrast, RCU readers can perform useful work even
in presence of concurrent RCU updaters.

Quick Quiz 8.13:
What prevents the list_for_each_entry_rcu()
from getting a segfault if it happens to execute at exactly
the same time as the list_add_rcu()?

Answer:
On all systems running Linux, loads from and stores to
pointers are atomic, that is, if a store to a pointer occurs
at the same time as a load from that same pointer, the
load will return either the initial value or the value stored,
never some bitwise mashup of the two. In addition, the
list_for_each_entry_rcu() always proceeds
forward through the list, never looking back. Therefore,
the list_for_each_entry_rcu() will either see
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the element being added by list_add_rcu() or it
will not, but either way, it will see a valid well-formed
list.

Quick Quiz 8.14:
Why do we need to pass two pointers into
hlist_for_each_entry_rcu() when only
one is needed for list_for_each_entry_rcu()?

Answer:
Because in an hlist it is necessary to check for NULL
rather than for encountering the head. (Try coding up
a single-pointer hlist_for_each_entry_rcu()
If you come up with a nice solution, it would be a very
good thing!)

Quick Quiz 8.15:
How would you modify the deletion example to permit
more than two versions of the list to be active?

Answer:
One way of accomplishing this is as shown in Figure G.4.

1 spin_lock(&mylock);
2 p = search(head, key);
3 if (p == NULL)
4 spin_unlock(&mylock);
5 else {
6 list_del_rcu(&p->list);
7 spin_unlock(&mylock);
8 synchronize_rcu();
9 kfree(p);
10 }

Figure G.4: Concurrent RCU Deletion

Note that this means that multiple concurrent deletions
might be waiting in synchronize_rcu().

Quick Quiz 8.16:
How many RCU versions of a given list can be active at
any given time?

Answer:
That depends on the synchronization design. If a

semaphore protecting the update is held across the grace
period, then there can be at most two versions, the old
and the new.

However, if only the search, the update, and the
list_replace_rcu()were protected by a lock, then
there could be an arbitrary number of versions active, lim-
ited only by memory and by how many updates could
be completed within a grace period. But please note that
data structures that are updated so frequently probably are
not good candidates for RCU. That said, RCU can handle
high update rates when necessary.

Quick Quiz 8.17:
How can RCU updaters possibly delay RCU read-
ers, given that the rcu_read_lock() and
rcu_read_unlock() primitives neither spin
nor block?

Answer:
The modifications undertaken by a given RCU updater
will cause the corresponding CPU to invalidate cache
lines containing the data, forcing the CPUs running
concurrent RCU readers to incur expensive cache misses.
(Can you design an algorithm that changes a data
structure without inflicting expensive cache misses on
concurrent readers? On subsequent readers?)

Quick Quiz 8.18:
WTF? How the heck do you expect me to believe that
RCU has a 100-femtosecond overhead when the clock
period at 3GHz is more than 300 picoseconds?

Answer:
First, consider that the inner loop used to take this
measurement is as follows:

1 for (i = 0; i < CSCOUNT_SCALE; i++) {
2 rcu_read_lock();
3 rcu_read_unlock();
4 }

Next, consider the effective definitions of rcu_read_
lock() and rcu_read_unlock():

1 #define rcu_read_lock() do { } while (0)
2 #define rcu_read_unlock() do { } while (0)

Consider also that the compiler does simple optimiza-
tions, allowing it to replace the loop with:
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i = CSCOUNT_SCALE;

So the "measurement" of 100 femtoseconds is simply
the fixed overhead of the timing measurements divided
by the number of passes through the inner loop contain-
ing the calls to rcu_read_lock() and rcu_read_
unlock(). And therefore, this measurement really is
in error, in fact, in error by an arbitrary number of or-
ders of magnitude. As you can see by the definition
of rcu_read_lock() and rcu_read_unlock()
above, the actual overhead is precisely zero.

It certainly is not every day that a timing measurement
of 100 femtoseconds turns out to be an overestimate!

Quick Quiz 8.19:
Why does both the variability and overhead of rwlock
decrease as the critical-section overhead increases?

Answer:
Because the contention on the underlying rwlock_t
decreases as the critical-section overhead increases.
However, the rwlock overhead will not quite drop to that
on a single CPU because of cache-thrashing overhead.

Quick Quiz 8.20:
Is there an exception to this deadlock immunity, and if so,
what sequence of events could lead to deadlock?

Answer:
One way to cause a deadlock cycle involving RCU
read-side primitives is via the following (illegal) sequence
of statements:

idx = srcu_read_lock(&srcucb);
synchronize_srcu(&srcucb);
srcu_read_unlock(&srcucb, idx);

The synchronize_rcu() cannot return until all
pre-existing SRCU read-side critical sections complete,
but is enclosed in an SRCU read-side critical section
that cannot complete until the synchronize_srcu()
returns. The result is a classic self-deadlock–you get the
same effect when attempting to write-acquire a reader-
writer lock while read-holding it.

Note that this self-deadlock scenario does not apply
to RCU Classic, because the context switch performed
by the synchronize_rcu() would act as a quiescent
state for this CPU, allowing a grace period to complete.

However, this is if anything even worse, because data
used by the RCU read-side critical section might be freed
as a result of the grace period completing.

In short, do not invoke synchronous RCU update-side
primitives from within an RCU read-side critical section.

Quick Quiz 8.21:
But wait! This is exactly the same code that might
be used when thinking of RCU as a replacement for
reader-writer locking! What gives?

Answer:
This is an effect of the Law of Toy Examples: beyond a
certain point, the code fragments look the same. The only
difference is in how we think about the code. However,
this difference can be extremely important. For but one
example of the importance, consider that if we think
of RCU as a restricted reference counting scheme, we
would never be fooled into thinking that the updates
would exclude the RCU read-side critical sections.

It nevertheless is often useful to think of RCU as a
replacement for reader-writer locking, for example, when
you are replacing reader-writer locking with RCU.

Quick Quiz 8.22:
Why the dip in refcnt overhead near 6 CPUs?

Answer:
Most likely NUMA effects. However, there is substantial
variance in the values measured for the refcnt line, as can
be seen by the error bars. In fact, standard deviations
range in excess of 10values in some cases. The dip in
overhead therefore might well be a statistical aberration.

Quick Quiz 8.23:
What if the element we need to delete is not the first
element of the list on line 9 of Figure 8.30?

Answer:
As with Figure 6.15, this is a very simple hash table with
no chaining, so the only element in a given bucket is the
first element. The reader is again invited to adapt this
example to a hash table with full chaining.

Quick Quiz 8.24:
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Why is it OK to exit the RCU read-side critical section
on line 15 of Figure 8.30 before releasing the lock on
line 17?

Answer:
First, please note that the second check on line 14 is
necessary because some other CPU might have removed
this element while we were waiting to acquire the lock.
However, the fact that we were in an RCU read-side
critical section while acquiring the lock guarantees that
this element could not possibly have been re-allocated
and re-inserted into this hash table. Furthermore, once we
acquire the lock, the lock itself guarantees the element’s
existence, so we no longer need to be in an RCU read-side
critical section.

The question as to whether it is necessary to re-check
the element’s key is left as an exercise to the reader.

Quick Quiz 8.25:
Why not exit the RCU read-side critical section on line 23
of Figure 8.30 before releasing the lock on line 22?

Answer:
Suppose we reverse the order of these two lines. Then
this code is vulnerable to the following sequence of
events:

1. CPU 0 invokes delete(), and finds the element
to be deleted, executing through line 15. It has not
yet actually deleted the element, but is about to do
so.

2. CPU 1 concurrently invokes delete(), attempting
to delete this same element. However, CPU 0 still
holds the lock, so CPU 1 waits for it at line 13.

3. CPU 0 executes lines 16 and 17, and blocks at line 18
waiting for CPU 1 to exit its RCU read-side critical
section.

4. CPU 1 now acquires the lock, but the test on line 14
fails because CPU 0 has already removed the el-
ement. CPU 1 now executes line 22 (which we
switched with line 23 for the purposes of this Quick
Quiz) and exits its RCU read-side critical section.

5. CPU 0 can now return from synchronize_
rcu(), and thus executes line 19, sending the ele-
ment to the freelist.

6. CPU 1 now attempts to release a lock for an element
that has been freed, and, worse yet, possibly reallo-
cated as some other type of data structure. This is a
fatal memory-corruption error.

Quick Quiz 8.26:
But what if there is an arbitrarily long series of RCU
read-side critical sections in multiple threads, so that at
any point in time there is at least one thread in the system
executing in an RCU read-side critical section? Wouldn’t
that prevent any data from a SLAB_DESTROY_BY_RCU
slab ever being returned to the system, possibly resulting
in OOM events?

Answer:
There could certainly be an arbitrarily long period of
time during which at least one thread is always in an
RCU read-side critical section. However, the key words
in the description in Section 8.3.3.6 are “in-use” and
“pre-existing”. Keep in mind that a given RCU read-side
critical section is conceptually only permitted to gain
references to data elements that were in use at the
beginning of that critical section. Furthermore, remember
that a slab cannot be returned to the system until all of its
data elements have been freed, in fact, the RCU grace
period cannot start until after they have all been freed.

Therefore, the slab cache need only wait for those RCU
read-side critical sections that started before the freeing
of the last element of the slab. This in turn means that any
RCU grace period that begins after the freeing of the last
element will do—the slab may be returned to the system
after that grace period ends.

Quick Quiz 8.27:
Suppose that the nmi_profile() function was
preemptible. What would need to change to make this
example work correctly?

Answer:
One approach would be to use rcu_read_lock()
and rcu_read_unlock() in nmi_profile(),
and to replace the synchronize_sched() with
synchronize_rcu(), perhaps as shown in Fig-
ure G.5.

Quick Quiz 8.28:
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1 struct profile_buffer {
2 long size;
3 atomic_t entry[0];
4 };
5 static struct profile_buffer *buf = NULL;
6
7 void nmi_profile(unsigned long pcvalue)
8 {
9 struct profile_buffer *p;
10
11 rcu_read_lock();
12 p = rcu_dereference(buf);
13 if (p == NULL) {
14 rcu_read_unlock();
15 return;
16 }
17 if (pcvalue >= p->size) {
18 rcu_read_unlock();
19 return;
20 }
21 atomic_inc(&p->entry[pcvalue]);
22 rcu_read_unlock();
23 }
24
25 void nmi_stop(void)
26 {
27 struct profile_buffer *p = buf;
28
29 if (p == NULL)
30 return;
31 rcu_assign_pointer(buf, NULL);
32 synchronize_rcu();
33 kfree(p);
34 }

Figure G.5: Using RCU to Wait for Mythical Preemptible
NMIs to Finish

Why do some of the cells in Table 8.4 have exclamation
marks (“!”)?

Answer:
The API members with exclamation marks (rcu_read_
lock(), rcu_read_unlock(), and call_rcu())
were the only members of the Linux RCU API that Paul
E. McKenney was aware of back in the mid-90s. During
this timeframe, he was under the mistaken impression
that he knew all that there is to know about RCU.

Quick Quiz 8.29:
How do you prevent a huge number of RCU read-
side critical sections from indefinitely blocking a
synchronize_rcu() invocation?

Answer:
There is no need to do anything to prevent RCU
read-side critical sections from indefinitely blocking
a synchronize_rcu() invocation, because the
synchronize_rcu() invocation need wait only for
pre-existing RCU read-side critical sections. So as long
as each RCU read-side critical section is of finite duration,
there should be no problem.

Quick Quiz 8.30:
The synchronize_rcu() API waits for all pre-
existing interrupt handlers to complete, right?

Answer:
Absolutely not! And especially not when using
preemptible RCU! You instead want synchronize_
irq(). Alternatively, you can place calls to
rcu_read_lock() and rcu_read_unlock()
in the specific interrupt handlers that you want
synchronize_rcu() to wait for.

Quick Quiz 8.31:
What happens if you mix and match? For example,
suppose you use rcu_read_lock() and rcu_
read_unlock() to delimit RCU read-side critical
sections, but then use call_rcu_bh() to post an RCU
callback?

Answer:
If there happened to be no RCU read-side critical
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sections delimited by rcu_read_lock_bh() and
rcu_read_unlock_bh() at the time call_rcu_
bh() was invoked, RCU would be within its rights to
invoke the callback immediately, possibly freeing a data
structure still being used by the RCU read-side critical
section! This is not merely a theoretical possibility: a
long-running RCU read-side critical section delimited by
rcu_read_lock() and rcu_read_unlock() is
vulnerable to this failure mode.

This vulnerability disappears in -rt kernels, where RCU
Classic and RCU BH both map onto a common imple-
mentation.

Quick Quiz 8.32:
Hardware interrupt handlers can be thought of as being
under the protection of an implicit rcu_read_lock_
bh(), right?

Answer:
Absolutely not! And especially not when using pre-
emptible RCU! If you need to access “rcu_bh”-protected
data structures in an interrupt handler, you need to
provide explicit calls to rcu_read_lock_bh() and
rcu_read_unlock_bh().

Quick Quiz 8.33:
What happens if you mix and match RCU Classic and
RCU Sched?

Answer:
In a non-PREEMPT or a PREEMPT kernel, mixing these
two works "by accident" because in those kernel builds,
RCU Classic and RCU Sched map to the same implemen-
tation. However, this mixture is fatal in PREEMPT_RT
builds using the -rt patchset, due to the fact that Realtime
RCU’s read-side critical sections can be preempted,
which would permit synchronize_sched() to
return before the RCU read-side critical section reached
its rcu_read_unlock() call. This could in turn
result in a data structure being freed before the read-side
critical section was finished with it, which could in turn
greatly increase the actuarial risk experienced by your
kernel.

In fact, the split between RCU Classic and RCU Sched
was inspired by the need for preemptible RCU read-side
critical sections.

Quick Quiz 8.34:
In general, you cannot rely on synchronize_
sched() to wait for all pre-existing interrupt handlers,
right?

Answer:
That is correct! Because -rt Linux uses threaded interrupt
handlers, there can be context switches in the middle of an
interrupt handler. Because synchronize_sched()
waits only until each CPU has passed through a context
switch, it can return before a given interrupt handler
completes.

If you need to wait for a given interrupt handler to com-
plete, you should instead use synchronize_irq()
or place explicit RCU read-side critical sections in the
interrupt handlers that you wish to wait on.

Quick Quiz 8.35:
Why do both SRCU and QRCU lack asynchronous
call_srcu() or call_qrcu() interfaces?

Answer:
Given an asynchronous interface, a single task could
register an arbitrarily large number of SRCU or QRCU
callbacks, thereby consuming an arbitrarily large quantity
of memory. In contrast, given the current synchronous
synchronize_srcu() and synchronize_
qrcu() interfaces, a given task must finish waiting for a
given grace period before it can start waiting for the next
one.

Quick Quiz 8.36:
Under what conditions can synchronize_srcu()
be safely used within an SRCU read-side critical section?

Answer:
In principle, you can use synchronize_srcu()
with a given srcu_struct within an SRCU read-side
critical section that uses some other srcu_struct. In
practice, however, doing this is almost certainly a bad
idea. In particular, the code shown in Figure G.6 could
still result in deadlock.

Quick Quiz 8.37:
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1 idx = srcu_read_lock(&ssa);
2 synchronize_srcu(&ssb);
3 srcu_read_unlock(&ssa, idx);
4
5 /* . . . */
6
7 idx = srcu_read_lock(&ssb);
8 synchronize_srcu(&ssa);
9 srcu_read_unlock(&ssb, idx);

Figure G.6: Multistage SRCU Deadlocks

Why doesn’t list_del_rcu() poison both the next
and prev pointers?

Answer:
Poisoning the next pointer would interfere with
concurrent RCU readers, who must use this pointer.
However, RCU readers are forbidden from using the
prev pointer, so it may safely be poisoned.

Quick Quiz 8.38:
Normally, any pointer subject to rcu_
dereference() must always be updated using
rcu_assign_pointer(). What is an exception to
this rule?

Answer:
One such exception is when a multi-element linked data
structure is initialized as a unit while inaccessible to other
CPUs, and then a single rcu_assign_pointer()
is used to plant a global pointer to this data structure.
The initialization-time pointer assignments need not
use rcu_assign_pointer(), though any such
assignments that happen after the structure is globally
visible must use rcu_assign_pointer().

However, unless this initialization code is on an im-
pressively hot code-path, it is probably wise to use rcu_
assign_pointer() anyway, even though it is in the-
ory unnecessary. It is all too easy for a "minor" change
to invalidate your cherished assumptions about the initial-
ization happening privately.

Quick Quiz 8.39:
Are there any downsides to the fact that these traversal
and update primitives can be used with any of the RCU

API family members?

Answer:
It can sometimes be difficult for automated code checkers
such as “sparse” (or indeed for human beings) to work
out which type of RCU read-side critical section a given
RCU traversal primitive corresponds to. For example,
consider the code shown in Figure G.7.

1 rcu_read_lock();
2 preempt_disable();
3 p = rcu_dereference(global_pointer);
4
5 /* . . . */
6
7 preempt_enable();
8 rcu_read_unlock();

Figure G.7: Diverse RCU Read-Side Nesting

Is the rcu_dereference() primitive in an RCU
Classic or an RCU Sched critical section? What would
you have to do to figure this out?

Quick Quiz 8.40:
Why wouldn’t any deadlock in the RCU implementation
in Figure 8.33 also be a deadlock in any other RCU
implementation?

Answer:

Suppose the functions foo() and bar() in Fig-
ure G.8 are invoked concurrently from different CPUs.
Then foo() will acquire my_lock() on line 3, while
bar() will acquire rcu_gp_lock on line 13. When
foo() advances to line 4, it will attempt to acquire rcu_
gp_lock, which is held by bar(). Then when bar()
advances to line 14, it will attempt to acquire my_lock,
which is held by foo().

Each function is then waiting for a lock that the other
holds, a classic deadlock.

Other RCU implementations neither spin nor block in
rcu_read_lock(), hence avoiding deadlocks.

Quick Quiz 8.41:
Why not simply use reader-writer locks in the RCU
implementation in Figure 8.33 in order to allow RCU
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1 void foo(void)
2 {
3 spin_lock(&my_lock);
4 rcu_read_lock();
5 do_something();
6 rcu_read_unlock();
7 do_something_else();
8 spin_unlock(&my_lock);
9 }
10
11 void bar(void)
12 {
13 rcu_read_lock();
14 spin_lock(&my_lock);
15 do_some_other_thing();
16 spin_unlock(&my_lock);
17 do_whatever();
18 rcu_read_unlock();
19 }

Figure G.8: Deadlock in Lock-Based RCU Implementa-
tion

readers to proceed in parallel?

Answer:
One could in fact use reader-writer locks in this manner.
However, textbook reader-writer locks suffer from
memory contention, so that the RCU read-side critical
sections would need to be quite long to actually permit
parallel execution [McK03].

On the other hand, use of a reader-writer lock that is
read-acquired in rcu_read_lock() would avoid the
deadlock condition noted above.

Quick Quiz 8.42:
Wouldn’t it be cleaner to acquire all the locks, and
then release them all in the loop from lines 15-18 of
Figure 8.34? After all, with this change, there would be a
point in time when there were no readers, simplifying
things greatly.

Answer:
Making this change would re-introduce the deadlock, so
no, it would not be cleaner.

Quick Quiz 8.43:
Is the implementation shown in Figure 8.34 free from
deadlocks? Why or why not?

Answer:
One deadlock is where a lock is held across
synchronize_rcu(), and that same lock is ac-

quired within an RCU read-side critical section. However,
this situation will deadlock any correctly designed RCU
implementation. After all, the synchronize_rcu()
primitive must wait for all pre-existing RCU read-side
critical sections to complete, but if one of those critical
sections is spinning on a lock held by the thread executing
the synchronize_rcu(), we have a deadlock
inherent in the definition of RCU.

Another deadlock happens when attempting to nest
RCU read-side critical sections. This deadlock is peculiar
to this implementation, and might be avoided by using re-
cursive locks, or by using reader-writer locks that are read-
acquired by rcu_read_lock() and write-acquired by
synchronize_rcu().

However, if we exclude the above two cases, this imple-
mentation of RCU does not introduce any deadlock situa-
tions. This is because only time some other thread’s lock
is acquired is when executing synchronize_rcu(),
and in that case, the lock is immediately released, pro-
hibiting a deadlock cycle that does not involve a lock
held across the synchronize_rcu() which is the
first case above.

Quick Quiz 8.44:
Isn’t one advantage of the RCU algorithm shown in
Figure 8.34 that it uses only primitives that are widely
available, for example, in POSIX pthreads?

Answer:
This is indeed an advantage, but do not forget that rcu_
dereference() and rcu_assign_pointer()
are still required, which means volatile manipulation
for rcu_dereference() and memory barriers for
rcu_assign_pointer(). Of course, many Alpha
CPUs require memory barriers for both primitives.

Quick Quiz 8.45:
But what if you hold a lock across a call to
synchronize_rcu(), and then acquire that
same lock within an RCU read-side critical section?

Answer:
Indeed, this would deadlock any legal RCU implementa-
tion. But is rcu_read_lock() really participating in
the deadlock cycle? If you believe that it is, then please
ask yourself this same question when looking at the RCU
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implementation in Section 8.3.5.9.

Quick Quiz 8.46:
How can the grace period possibly elapse in 40
nanoseconds when synchronize_rcu() contains a
10-millisecond delay?

Answer:
The update-side test was run in absence of readers, so the
poll() system call was never invoked. In addition, the
actual code has this poll() system call commented out,
the better to evaluate the true overhead of the update-side
code. Any production uses of this code would be better
served by using the poll() system call, but then again,
production uses would be even better served by other
implementations shown later in this section.

Quick Quiz 8.47:
Why not simply make rcu_read_lock() wait when
a concurrent synchronize_rcu() has been waiting
too long in the RCU implementation in Figure 8.35?
Wouldn’t that prevent synchronize_rcu() from
starving?

Answer:
Although this would in fact eliminate the starvation, it
would also mean that rcu_read_lock() would spin
or block waiting for the writer, which is in turn waiting on
readers. If one of these readers is attempting to acquire
a lock that the spinning/blocking rcu_read_lock()
holds, we again have deadlock.

In short, the cure is worse than the disease. See Sec-
tion 8.3.5.4 for a proper cure.

Quick Quiz 8.48:
Why the memory barrier on line 5 of synchronize_
rcu() in Figure 8.38 given that there is a spin-lock
acquisition immediately after?

Answer:
The spin-lock acquisition only guarantees that the
spin-lock’s critical section will not “bleed out” to precede
the acquisition. It in no way guarantees that code
preceding the spin-lock acquisition won’t be reordered
into the critical section. Such reordering could cause a
removal from an RCU-protected list to be reordered to

follow the complementing of rcu_idx, which could
allow a newly starting RCU read-side critical section to
see the recently removed data element.

Exercise for the reader: use a tool such as Promela/spin
to determine which (if any) of the memory barriers in
Figure 8.38 are really needed. See Section F for informa-
tion on using these tools. The first correct and complete
response will be credited.

Quick Quiz 8.49:
Why is the counter flipped twice in Figure 8.38?
Shouldn’t a single flip-and-wait cycle be sufficient?

Answer:
Both flips are absolutely required. To see this, consider
the following sequence of events:

1. Line 8 of rcu_read_lock() in Figure 8.37 picks
up rcu_idx, finding its value to be zero.

2. Line 8 of synchronize_rcu() in Figure 8.38
complements the value of rcu_idx, setting its
value to one.

3. Lines 10-13 of synchronize_rcu() find that
the value of rcu_refcnt[0] is zero, and thus
returns. (Recall that the question is asking what
happens if lines 14-20 are omitted.)

4. Lines 9 and 10 of rcu_read_lock() store the
value zero to this thread’s instance of rcu_read_
idx and increments rcu_refcnt[0], respec-
tively. Execution then proceeds into the RCU read-
side critical section.

5. Another instance of synchronize_rcu() again
complements rcu_idx, this time setting its value
to zero. Because rcu_refcnt[1] is zero,
synchronize_rcu() returns immediately. (Re-
call that rcu_read_lock() incremented rcu_
refcnt[0], not rcu_refcnt[1]!)

6. The grace period that started in step 5 has been al-
lowed to end, despite the fact that the RCU read-side
critical section that started beforehand in step 4 has
not completed. This violates RCU semantics, and
could allow the update to free a data element that the
RCU read-side critical section was still referencing.

Exercise for the reader: What happens if rcu_read_
lock() is preempted for a very long time (hours!) just
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after line 8? Does this implementation operate correctly
in that case? Why or why not? The first correct and
complete response will be credited.

Quick Quiz 8.50:
Given that atomic increment and decrement are so
expensive, why not just use non-atomic increment
on line 10 and a non-atomic decrement on line 25 of
Figure 8.37?

Answer:
Using non-atomic operations would cause increments and
decrements to be lost, in turn causing the implementation
to fail. See Section 8.3.5.5 for a safe way to use
non-atomic operations in rcu_read_lock() and
rcu_read_unlock().

Quick Quiz 8.51:
Come off it! We can see the atomic_read() primitive
in rcu_read_lock()!!! So why are you trying to
pretend that rcu_read_lock() contains no atomic
operations???

Answer:
The atomic_read() primitives does not actually
execute atomic machine instructions, but rather does a
normal load from an atomic_t. Its sole purpose is to
keep the compiler’s type-checking happy. If the Linux
kernel ran on 8-bit CPUs, it would also need to prevent
“store tearing”, which could happen due to the need to
store a 16-bit pointer with two eight-bit accesses on some
8-bit systems. But thankfully, it seems that no one runs
Linux on 8-bit systems.

Quick Quiz 8.52:
Great, if we have N threads, we can have 2N ten-
millisecond waits (one set per flip_counter_and_
wait() invocation, and even that assumes that we wait
only once for each thread. Don’t we need the grace
period to complete much more quickly?

Answer:
Keep in mind that we only wait for a given thread if that
thread is still in a pre-existing RCU read-side critical
section, and that waiting for one hold-out thread gives all
the other threads a chance to complete any pre-existing

RCU read-side critical sections that they might still be
executing. So the only way that we would wait for 2N
intervals would be if the last thread still remained in
a pre-existing RCU read-side critical section despite
all the waiting for all the prior threads. In short, this
implementation will not wait unnecessarily.

However, if you are stress-testing code that uses RCU,
you might want to comment out the poll() statement
in order to better catch bugs that incorrectly retain a ref-
erence to an RCU-protected data element outside of an
RCU read-side critical section.

Quick Quiz 8.53:
All of these toy RCU implementations have either atomic
operations in rcu_read_lock() and rcu_read_
unlock(), or synchronize_rcu() overhead that
increases linearly with the number of threads. Under
what circumstances could an RCU implementation
enjoy light-weight implementations for all three of these
primitives, all having deterministic (O(1)) overheads and
latencies?

Answer:
Special-purpose uniprocessor implementations of RCU
can attain this ideal [McK09c].

Quick Quiz 8.54:
If any even value is sufficient to tell synchronize_
rcu() to ignore a given task, why doesn’t line 10 of
Figure 8.46 simply assign zero to rcu_reader_gp?

Answer:
Assigning zero (or any other even-numbered constant)
would in fact work, but assigning the value of rcu_gp_
ctr can provide a valuable debugging aid, as it gives the
developer an idea of when the corresponding thread last
exited an RCU read-side critical section.

Quick Quiz 8.55:
Why are the memory barriers on lines 17 and 29 of
Figure 8.46 needed? Aren’t the memory barriers inherent
in the locking primitives on lines 18 and 28 sufficient?

Answer:
These memory barriers are required because the locking
primitives are only guaranteed to confine the critical



342 APPENDIX G. ANSWERS TO QUICK QUIZZES

section. The locking primitives are under absolutely no
obligation to keep other code from bleeding in to the
critical section. The pair of memory barriers are therefore
requires to prevent this sort of code motion, whether
performed by the compiler or by the CPU.

Quick Quiz 8.56:
Couldn’t the update-side optimization described in
Section 8.3.5.6 be applied to the implementation shown
in Figure 8.46?

Answer:
Indeed it could, with a few modifications. This work is
left as an exercise for the reader.

Quick Quiz 8.57:
Is the possibility o readers being preempted in line 3 of
Figure 8.46 a real problem, in other words, is there a real
sequence of events that could lead to failure? If not, why
not? If so, what is the sequence of events, and how can
the failure be addressed?

Answer:
It is a real problem, there is a sequence of events leading
to failure, and there are a number of possible ways of
addressing it. For more details, see the Quick Quizzes
near the end of Section 8.3.5.8. The reason for locating
the discussion there is to (1) give you more time to think
about it, and (2) because the nesting support added in that
section greatly reduces the time required to overflow the
counter.

Quick Quiz 8.58:
Why not simply maintain a separate per-thread nesting-
level variable, as was done in previous section, rather
than having all this complicated bit manipulation?

Answer:
The apparent simplicity of the separate per-thread
variable is a red herring. This approach incurs much
greater complexity in the guise of careful ordering
of operations, especially if signal handlers are to be
permitted to contain RCU read-side critical sections. But
don’t take my word for it, code it up and see what you
end up with!

Quick Quiz 8.59:
Given the algorithm shown in Figure 8.48, how could
you double the time required to overflow the global
rcu_gp_ctr?

Answer:
One way would be to replace the magnitude com-
parison on lines 33 and 34 with an inequality check
of the per-thread rcu_reader_gp variable against
rcu_gp_ctr+RCU_GP_CTR_BOTTOM_BIT.

Quick Quiz 8.60:
Again, given the algorithm shown in Figure 8.48, is
counter overflow fatal? Why or why not? If it is fatal,
what can be done to fix it?

Answer:
It can indeed be fatal. To see this, consider the following
sequence of events:

1. Thread 0 enters rcu_read_lock(), determines
that it is not nested, and therefore fetches the value
of the global rcu_gp_ctr. Thread 0 is then pre-
empted for an extremely long time (before storing to
its per-thread rcu_reader_gp variable).

2. Other threads repeatedly invoke synchronize_
rcu(), so that the new value of the global
rcu_gp_ctr is now RCU_GP_CTR_BOTTOM_
BIT less than it was when thread 0 fetched it.

3. Thread 0 now starts running again, and stores into its
per-thread rcu_reader_gp variable. The value it
stores is RCU_GP_CTR_BOTTOM_BIT+1 greater
than that of the global rcu_gp_ctr.

4. Thread 0 acquires a reference to RCU-protected data
element A.

5. Thread 1 now removes the data element A that
thread 0 just acquired a reference to.

6. Thread 1 invokes synchronize_rcu(), which
increments the global rcu_gp_ctr by RCU_
GP_CTR_BOTTOM_BIT. It then checks all of
the per-thread rcu_reader_gp variables, but
thread 0’s value (incorrectly) indicates that it started
after thread 1’s call to synchronize_rcu(), so
thread 1 does not wait for thread 0 to complete its
RCU read-side critical section.
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7. Thread 1 then frees up data element A, which
thread 0 is still referencing.

Note that scenario can also occur in the implementation
presented in Section 8.3.5.7.

One strategy for fixing this problem is to use 64-bit
counters so that the time required to overflow them would
exceed the useful lifetime of the computer system. Note
that non-antique members of the 32-bit x86 CPU fam-
ily allow atomic manipulation of 64-bit counters via the
cmpxchg64b instruction.

Another strategy is to limit the rate at which grace
periods are permitted to occur in order to achieve a simi-
lar effect. For example, synchronize_rcu() could
record the last time that it was invoked, and any subse-
quent invocation would then check this time and block as
needed to force the desired spacing. For example, if the
low-order four bits of the counter were reserved for nest-
ing, and if grace periods were permitted to occur at most
ten times per second, then it would take more than 300
days for the counter to overflow. However, this approach
is not helpful if there is any possibility that the system
will be fully loaded with CPU-bound high-priority real-
time threads for the full 300 days. (A remote possibility,
perhaps, but best to consider it ahead of time.)

A third approach is to administratively abolish real-
time threads from the system in question. In this case,
the preempted process will age up in priority, thus getting
to run long before the counter had a chance to overflow.
Of course, this approach is less than helpful for real-time
applications.

A final approach would be for rcu_read_lock()
to recheck the value of the global rcu_gp_ctr after
storing to its per-thread rcu_reader_gp counter, retry-
ing if the new value of the global rcu_gp_ctr is inap-
propriate. This works, but introduces non-deterministic
execution time into rcu_read_lock(). On the other
hand, if your application is being preempted long enough
for the counter to overflow, you have no hope of determin-
istic execution time in any case!

Quick Quiz 8.61:
Doesn’t the additional memory barrier shown on
line 14 of Figure 8.50, greatly increase the overhead of
rcu_quiescent_state?

Answer:
Indeed it does! An application using this implementation
of RCU should therefore invoke rcu_quiescent_

state sparingly, instead using rcu_read_lock()
and rcu_read_unlock() most of the time.

However, this memory barrier is absolutely required so
that other threads will see the store on lines 12-13 before
any subsequent RCU read-side critical sections executed
by the caller.

Quick Quiz 8.62:
Why are the two memory barriers on lines 19 and 22 of
Figure 8.50 needed?

Answer:
The memory barrier on line 19 prevents any RCU
read-side critical sections that might precede the call
to rcu_thread_offline() won’t be reordered by
either the compiler or the CPU to follow the assignment
on lines 20-21. The memory barrier on line 22 is,
strictly speaking, unnecessary, as it is illegal to have
any RCU read-side critical sections following the call to
rcu_thread_offline().

Quick Quiz 8.63:
To be sure, the clock frequencies of ca-2008 Power
systems were quite high, but even a 5GHz clock
frequency is insufficient to allow loops to be executed in
50 picoseconds! What is going on here?

Answer:
Since the measurement loop contains a pair of empty
functions, the compiler optimizes it away. The mea-
surement loop takes 1,000 passes between each call to
rcu_quiescent_state(), so this measurement is
roughly one thousandth of the overhead of a single call to
rcu_quiescent_state().

Quick Quiz 8.64:
Why would the fact that the code is in a library make
any difference for how easy it is to use the RCU
implementation shown in Figures 8.50 and 8.51?

Answer:
A library function has absolutely no control over
the caller, and thus cannot force the caller to invoke
rcu_quiescent_state() periodically. On the
other hand, a library function that made many refer-
ences to a given RCU-protected data structure might
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be able to invoke rcu_thread_online() upon
entry, rcu_quiescent_state() periodically, and
rcu_thread_offline() upon exit.

Quick Quiz 8.65:
But what if you hold a lock across a call to
synchronize_rcu(), and then acquire that
same lock within an RCU read-side critical section?
This should be a deadlock, but how can a primitive that
generates absolutely no code possibly participate in a
deadlock cycle?

Answer:
Please note that the RCU read-side critical section is
in effect extended beyond the enclosing rcu_read_
lock() and rcu_read_unlock(), out to the
previous and next call to rcu_quiescent_state().
This rcu_quiescent_state can be thought of as a
rcu_read_unlock() immediately followed by an
rcu_read_lock().

Even so, the actual deadlock itself will involve the
lock acquisition in the RCU read-side critical sec-
tion and the synchronize_rcu(), never the rcu_
quiescent_state().

Quick Quiz 8.66:
Given that grace periods are prohibited within RCU
read-side critical sections, how can an RCU data structure
possibly be updated while in an RCU read-side critical
section?

Answer:
This situation is one reason for the existence of asyn-
chronous grace-period primitives such as call_rcu().
This primitive may be invoked within an RCU read-side
critical section, and the specified RCU callback will in
turn be invoked at a later time, after a grace period has
elapsed.

The ability to perform an RCU update while within
an RCU read-side critical section can be extremely con-
venient, and is analogous to a (mythical) unconditional
read-to-write upgrade for reader-writer locking.

Quick Quiz 8.67:
The statistical-counter implementation shown in Fig-
ure 4.8 (count_end.c) used a global lock to guard the

summation in read_count(), which resulted in poor
performance and negative scalability. How could you
use RCU to provide read_count() with excellent
performance and good scalability. (Keep in mind that
read_count()’s scalability will necessarily be limited
by its need to scan all threads’ counters.)

Answer:
Hint: place the global variable finalcount and the
array counterp[] into a single RCU-protected struct.
At initialization time, this structure would be allocated
and set to all zero and NULL.

The inc_count() function would be unchanged.
The read_count() function would use rcu_

read_lock() instead of acquiring final_mutex,
and would need to use rcu_dereference() to ac-
quire a reference to the current structure.

The count_register_thread() function
would set the array element corresponding to the newly
created thread to reference that thread’s per-thread
counter variable.

The count_unregister_thread() function
would need to allocate a new structure, acquire final_
mutex, copy the old structure to the new one, add the
outgoing thread’s counter variable to the total, NULL
the pointer to this same counter variable, use rcu_
assign_pointer() to install the new structure in
place of the old one, release final_mutex, wait for
a grace period, and finally free the old structure.

Does this really work? Why or why not?

Quick Quiz 8.68:
Section 4.5 showed a fanciful pair of code fragments that
dealt with counting I/O accesses to removable devices.
These code fragments suffered from high overhead on
the fastpath (starting an I/O) due to the need to acquire a
reader-writer lock. How would you use RCU to provide
excellent performance and scalability? (Keep in mind
that the performance of the common-case first code
fragment that does I/O accesses is much more important
than that of the device-removal code fragment.)

Answer:
Hint: replace the read-acquisitions of the reader-writer
lock with RCU read-side critical sections, then adjust the
device-removal code fragment to suit.

See Section 9.2 on Page 127 for one solution to this
problem.

count_end.c
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G.8 Applying RCU

Quick Quiz 9.1:
Why on earth did we need that global lock in the first
place?

Answer:
A given thread’s __thread variables vanish when that
thread exits. It is therefore necessary to synchronize
any operation that accesses other threads’ __thread
variables with thread exit. Without such synchronization,
accesses to __thread variable of a just-exited thread
will result in segmentation faults.

Quick Quiz 9.2:
Just what is the accuracy of read_count(), anyway?

Answer:
Refer to Figure 4.8 on Page 33. Clearly, if there are
no concurrent invocations of inc_count(), read_
count() will return an exact result. However, if there
are concurrent invocations of inc_count(), then the
sum is in fact changing as read_count() performs
its summation. That said, because thread creation and
exit are excluded by final_mutex, the pointers in
counterp remain constant.

Let’s imagine a mythical machine that is able to take
an instantaneous snapshot of its memory. Suppose that
this machine takes such a snapshot at the beginning of
read_count()’s execution, and another snapshot at
the end of read_count()’s execution. Then read_
count() will access each thread’s counter at some time
between these two snapshots, and will therefore obtain
a result that is bounded by those of the two snapshots,
inclusive. The overall sum will therefore be bounded by
the pair of sums that would have been obtained from each
of the two snapshots (again, inclusive).

The expected error is therefore half of the difference
between the pair of sums that would have been obtained
from each of the two snapshots, that is to say, half of
the execution time of read_count() multiplied by
the number of expected calls to inc_count() per unit
time.

Or, for those who prefer equations:

ε =
TrRi

2
(G.1)

where ε is the expected error in read_count()’s re-
turn value, Tr is the time that read_count() takes to
execute, and Ri is the rate of inc_count() calls per
unit time. (And of course, Tr and Ri should use the same
units of time: microseconds and calls per microsecond,
seconds and calls per second, or whatever, as long as they
are the same units.)

Quick Quiz 9.3:
Hey!!! Line 45 of Figure 9.1 modifies a value in a
pre-existing countarray structure! Didn’t you say that
this structure, once made available to read_count(),
remained constant???

Answer:
Indeed I did say that. And it would be possible to
make count_register_thread() allocate a new
structure, much as count_unregister_thread()
currently does.

But this is unnecessary. Recall the derivation of the
error bounds of read_count() that was based on the
snapshots of memory. Because new threads start with ini-
tial counter values of zero, the derivation holds even if
we add a new thread partway through read_count()’s
execution. So, interestingly enough, when adding a new
thread, this implementation gets the effect of allocating
a new structure, but without actually having to do the
allocation.

Quick Quiz 9.4:
Wow! Figure 9.1 contains 69 lines of code, compared
to only 42 in Figure 4.8. Is this extra complexity really
worth it?

Answer:
This of course needs to be decided on a case-by-case basis.
If you need an implementation of read_count()
that scales linearly, then the lock-based implementation
shown in Figure 4.8 simply will not work for you. On the
other hand, if calls to count_read() are sufficiently
rare, then the lock-based version is simpler and might
thus be better, although much of the size difference is due
to the structure definition, memory allocation, and NULL
return checking.

Of course, a better question is "why doesn’t the lan-
guage implement cross-thread access to __thread vari-
ables?" After all, such an implementation would make
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both the locking and the use of RCU unnecessary. This
would in turn enable an implementation that was even
simpler than the one shown in Figure 4.8, but with all the
scalability and performance benefits of the implementa-
tion shown in Figure 9.1!

G.9 Advanced Synchronization

Quick Quiz 12.1:
How on earth could the assertion on line 21 of the code
in Figure 12.3 on page 134 possibly fail?

Answer:
The key point is that the intuitive analysis missed is that
there is nothing preventing the assignment to C from
overtaking the assignment to A as both race to reach
thread2(). This is explained in the remainder of this
section.

Quick Quiz 12.2:
Great... So how do I fix it?

Answer:
The easiest fix is to replace the barrier() on line 12
with an smp_mb().

Quick Quiz 12.3:
What assumption is the code fragment in Figure 12.4
making that might not be valid on real hardware?

Answer:
The code assumes that as soon as a given CPU stops
seeing its own value, it will immediately see the final
agreed-upon value. On real hardware, some of the
CPUs might well see several intermediate results before
converging on the final value.

Quick Quiz 12.4:
How could CPUs possibly have different views of the
value of a single variable at the same time?

Answer:
Many CPUs have write buffers that record the values of
recent writes, which are applied once the corresponding

cache line makes its way to the CPU. Therefore, it is
quite possible for each CPU to see a different value for a
given variable at a single point in time — and for main
memory to hold yet another value. One of the reasons
that memory barriers were invented was to allow software
to deal gracefully with situations like this one.

Quick Quiz 12.5:
Why do CPUs 2 and 3 come to agreement so quickly,
when it takes so long for CPUs 1 and 4 to come to the
party?

Answer:
CPUs 2 and 3 are a pair of hardware threads on the same
core, sharing the same cache hierarchy, and therefore
have very low communications latencies. This is a
NUMA, or, more accurately, a NUCA effect.

This leads to the question of why CPUs 2 and 3 ever
disagree at all. One possible reason is that they each
might have a small amount of private cache in addition to a
larger shared cache. Another possible reason is instruction
reordering, given the short 10-nanosecond duration of the
disagreement and the total lack of memory barriers in the
code fragment.

Quick Quiz 12.6:
But if the memory barriers do not unconditionally force
ordering, how the heck can a device driver reliably ex-
ecute sequences of loads and stores to MMIO registers?

Answer:
MMIO registers are special cases: because they appear in
uncached regions of physical memory. Memory barriers
do unconditionally force ordering of loads and stores
to uncached memory. See Section @@@ for more
information on memory barriers and MMIO regions.

Quick Quiz 12.7:
How could the assertion b==2 on page 139 possibly fail?

Answer:
If the CPU is not required to see all of its loads and stores
in order, then the b=1+a might well see an old version
of the variable “a”.

This is why it is so very important that each CPU or
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thread see all of its own loads and stores in program order.

Quick Quiz 12.8:
How could the code on page 139 possibly leak memory?

Answer:
Only the first execution of the critical section should see
p==NULL. However, if there is no global ordering of
critical sections for mylock, then how can you say that
a particular one was first? If several different executions
of that critical section thought that they were first, they
would all see p==NULL, and they would all allocate
memory. All but one of those allocations would be
leaked.

This is why it is so very important that all the critical
sections for a given exclusive lock appear to execute in
some well-defined order.

Quick Quiz 12.9:
How could the code on page 139 possibly count
backwards?

Answer:
Suppose that the counter started out with the value
zero, and that three executions of the critical section
had therefore brought its value to three. If the fourth
execution of the critical section is not constrained to see
the most recent store to this variable, it might well see the
original value of zero, and therefore set the counter to
one, which would be going backwards.

This is why it is so very important that loads from a
given variable in a given critical section see the last store
from the last prior critical section to store to that variable.

Quick Quiz 12.10:
What effect does the following sequence have on the
order of stores to variables “a” and “b”?
a = 1;
b = 1;
<write barrier>

Answer:
Absolutely none. This barrier would ensure that the
assignments to “a” and “b” happened before any
subsequent assignments, but it does nothing to enforce

any order of assignments to “a” and “b” themselves.

Quick Quiz 12.11:
What sequence of LOCK-UNLOCK operations would
act as a full memory barrier?

Answer:
A series of two back-to-back LOCK-UNLOCK opera-
tions, or, somewhat less conventionally, an UNLOCK
operations followed by a LOCK operation.

Quick Quiz 12.12:
What (if any) CPUs have memory-barrier instructions
from which these semi-permeable locking primitives
might be constructed?

Answer:
Itanium is one example. The identification of any others
is left as an exercise for the reader.

Quick Quiz 12.13:
Given that operations grouped in curly braces are
executed concurrently, which of the rows of Table 12.2
are legitimate reorderings of the assignments to variables
“A” through “F” and the LOCK/UNLOCK operations?
(The order in the code is A, B, LOCK, C, D, UNLOCK,
E, F.) Why or why not?

Answer:

1. Legitimate, executed in order.

2. Legitimate, the lock acquisition was executed con-
currently with the last assignment preceding the crit-
ical section.

3. Illegitimate, the assignment to “F” must follow the
LOCK operation.

4. Illegitimate, the LOCK must complete before any
operation in the critical section. However, the UN-
LOCK may legitimately be executed concurrently
with subsequent operations.

5. Legitimate, the assignment to “A” precedes the UN-
LOCK, as required, and all other operations are in
order.
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6. Illegitimate, the assignment to “C” must follow the
LOCK.

7. Illegitimate, the assignment to “D” must precede the
UNLOCK.

8. Legitimate, all assignments are ordered with respect
to the LOCK and UNLOCK operations.

9. Illegitimate, the assignment to “A” must precede the
UNLOCK.

Quick Quiz 12.14:
What are the constraints for Table 12.2?

Answer:
They are as follows:

1. LOCK M must precede B, C, and D.

2. UNLOCK M must follow A, B, and C.

3. LOCK Q must precede F, G, and H.

4. UNLOCK Q must follow E, F, and G.

G.10 Ease of Use

Quick Quiz 13.1:
Can a similar algorithm be used when deleting elements?

Answer:
Yes. However, since each thread must hold the locks
of three consecutive elements to delete the middle one,
if there are N threads, there must be 2N + 1 elements
(rather than just N +1 in order to avoid deadlock.

Quick Quiz 13.2:
Yetch! What ever possessed someone to come up with an
algorithm that deserves to be shaved as much as this one
does???

Answer:
That would be Paul.

He was considering the Dining Philosopher’s Prob-
lem, which involves a rather unsanitary spaghetti dinner

attended by five philosophers. Given that there are five
plates and but five forks on the table, and given that each
philosopher requires two forks at a time to eat, one is
supposed to come up with a fork-allocation algorithm that
avoids deadlock. Paul’s response was “Sheesh! Just get
five more forks!”.

This in itself was OK, but Paul then applied this same
solution to circular linked lists.

This would not have been so bad either, but he had to
go and tell someone about it!

Quick Quiz 13.3:
Give an exception to this rule.

Answer:
One exception would be a difficult and complex algorithm
that was the only one known to work in a given situation.
Another exception would be a difficult and complex
algorithm that was nonetheless the simplest of the set
known to work in a given situation. However, even in
these cases, it may be very worthwhile to spend a little
time trying to come up with a simpler algorithm! After
all, if you managed to invent the first algorithm to do
some task, it shouldn’t be that hard to go on to invent a
simpler one.

G.11 Conflicting Visions of the Fu-
ture

Quick Quiz 15.1:
What about non-persistent primitives represented by data
structures in mmap() regions of memory? What happens
when their is an exec() within a critical section of such
a primitive?

Answer:
If the exec()ed program maps those same regions of
memory, then this program could in principle simply
release the lock. The question as to whether this approach
is sound from a software-engineering viewpoint is left as
an exercise for the reader.
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G.12 Important Questions

Quick Quiz A.1:
What SMP coding errors can you see in these examples?
See time.c for full code.

Answer:

1. Missing barrier() or volatile on tight loops.

2. Missing Memory barriers on update side.

3. Lack of synchronization between producer and con-
sumer.

Quick Quiz A.2:
How could there be such a large gap between successive
consumer reads? See timelocked.c for full code.

Answer:

1. The consumer might be preempted for long time
periods.

2. A long-running interrupt might delay the consumer.

3. The producer might also be running on a faster CPU
than is the consumer (for example, one of the CPUs
might have had to decrease its clock frequency due to
heat-dissipation or power-consumption constraints).

G.13 Synchronization Primitives

Quick Quiz B.1:
Give an example of a parallel program that could be
written without synchronization primitives.

Answer:
There are many examples. One of the simplest would be
a parametric study using a single independent variable.
If the program run_study took a single argument,
then we could use the following bash script to run
two instances in parallel, as might be appropriate on a
two-CPU system:

run_study 1 > 1.out& run_study 2 > 2.out; wait

One could of course argue that the bash ampersand op-
erator and the “wait” primitive are in fact synchronization
primitives. If so, then consider that this script could be
run manually in two separate command windows, so that
the only synchronization would be supplied by the user
himself or herself.

Quick Quiz B.2:
What problems could occur if the variable counter
were incremented without the protection of mutex?

Answer:
On CPUs with load-store architectures, incrementing
counter might compile into something like the
following:

LOAD counter,r0
INC r0
STORE r0,counter

On such machines, two threads might simultaneously
load the value of counter, each increment it, and each
store the result. The new value of counter will then
only be one greater than before, despite two threads each
incrementing it.

Quick Quiz B.3:
How could you work around the lack of a per-thread-
variable API on systems that do not provide it?

Answer:
One approach would be to create an array indexed by
smp_thread_id(), and another would be to use a
hash table to map from smp_thread_id() to an array
index — which is in fact what this set of APIs does in
pthread environments.

Another approach would be for the parent to allocate
a structure containing fields for each desired per-thread
variable, then pass this to the child during thread cre-
ation. However, this approach can impose large software-
engineering costs in large systems. To see this, imagine if
all global variables in a large system had to be declared
in a single file, regardless of whether or not they were C
static variables!

time.c
timelocked.c
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G.14 Why Memory Barriers?

Quick Quiz C.1:
What happens if two CPUs attempt to invalidate the same
cache line concurrently?

Answer:
One of the CPUs gains access to the shared bus first,
and that CPU “wins”. The other CPU must invalidate
its copy of the cache line and transmit an “invalidate
acknowledge” message to the other CPU.
Of course, the losing CPU can be expected to immediately
issue a “read invalidate” transaction, so the winning
CPU’s victory will be quite ephemeral.

Quick Quiz C.2:
When an “invalidate” message appears in a large
multiprocessor, every CPU must give an “invalidate
acknowledge” response. Wouldn’t the resulting “storm”
of “invalidate acknowledge” responses totally saturate
the system bus?

Answer:
It might, if large-scale multiprocessors were in fact im-
plemented that way. Larger multiprocessors, particularly
NUMA machines, tend to use so-called “directory-based”
cache-coherence protocols to avoid this and other
problems.

Quick Quiz C.3:
If SMP machines are really using message passing
anyway, why bother with SMP at all?

Answer:
There has been quite a bit of controversy on this topic
over the past few decades. One answer is that the
cache-coherence protocols are quite simple, and therefore
can be implemented directly in hardware, gaining
bandwidths and latencies unattainable by software
message passing. Another answer is that the real truth
is to be found in economics due to the relative prices of
large SMP machines and that of clusters of smaller SMP
machines. A third answer is that the SMP programming
model is easier to use than that of distributed systems,
but a rebuttal might note the appearance of HPC clusters

and MPI. And so the argument continues.

Quick Quiz C.4:
How does the hardware handle the delayed transitions
described above?

Answer:
Usually by adding additional states, though these
additional states need not be actually stored with
the cache line, due to the fact that only a few lines
at a time will be transitioning. The need to delay
transitions is but one issue that results in real-world
cache coherence protocols being much more complex
than the over-simplified MESI protocol described in this
appendix. Hennessy and Patterson’s classic introduction
to computer architecture [HP95] covers many of these
issues.

Quick Quiz C.5:
What sequence of operations would put the CPUs’ caches
all back into the “invalid” state?

Answer:
There is no such sequence, at least in absence of special
“flush my cache” instructions in the CPU’s instruction set.
Most CPUs do have such instructions.

Quick Quiz C.6:
In step 1 above, why does CPU 0 need to issue a “read
invalidate” rather than a simple “invalidate”?

Answer:
Because the cache line in question contains more than
just the variable a.

Quick Quiz C.7:
In step 1 of the first scenario in Section C.4.3, why is an
“invalidate” sent instead of a ”read invalidate” message?
Doesn’t CPU 0 need the values of the other variables that
share this cache line with “a”?

Answer:
CPU 0 already has the values of these variables, given
that it has a read-only copy of the cache line containing
“a”. Therefore, all CPU 0 need do is to cause the other
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CPUs to discard their copies of this cache line. An
“invalidate” message therefore suffices.

Quick Quiz C.8:
Say what??? Why do we need a memory barrier
here, given that the CPU cannot possibly execute the
assert() until after the while loop completes?

Answer:
CPUs are free to speculatively execute, which can have
the effect of executing the assertion before the while
loop completes.

Quick Quiz C.9:
Does the guarantee that each CPU sees its own memory
accesses in order also guarantee that each user-level
thread will see its own memory accesses in order? Why
or why not?

Answer:
No. Consider the case where a thread migrates from one
CPU to another, and where the destination CPU perceives
the source CPU’s recent memory operations out of order.
To preserve user-mode sanity, kernel hackers must use
memory barriers in the context-switch path. However,
the locking already required to safely do a context switch
should automatically provide the memory barriers needed
to cause the user-level task to see its own accesses in
order. That said, if you are designing a super-optimized
scheduler, either in the kernel or at user level, please keep
this scenario in mind!

Quick Quiz C.10:
Could this code be fixed by inserting a memory barrier
between CPU 1’s “while” and assignment to “c”? Why
or why not?

Answer:
No. Such a memory barrier would only force ordering
local to CPU 1. It would have no effect on the relative
ordering of CPU 0’s and CPU 1’s accesses, so the
assertion could still fail. However, all mainstream
computer systems provide one mechanism or another to
provide “transitivity”, which provides intuitive causal
ordering: if B saw the effects of A’s accesses, and C
saw the effects of B’s accesses, then C must also see the

effects of A’s accesses. In short, hardware designers have
taken at least a little pity on software developers.

Quick Quiz C.11:
Suppose that lines 3-5 for CPUs 1 and 2 in Table C.4 are
in an interrupt handler, and that the CPU 2’s line 9 is
run at process level. What changes, if any, are required
to enable the code to work correctly, in other words, to
prevent the assertion from firing?

Answer:
The assertion will need to written to ensure that the load
of “e” precedes that of “a”. In the Linux kernel, the
barrier() primitive may be used to accomplish this in
much the same way that the memory barrier was used in
the assertions in the previous examples.

Quick Quiz C.12:
If CPU 2 executed an assert(e==0||c==1) in
the example in Table C.4, would this assert ever trigger?

Answer:
The result depends on whether the CPU supports
“transitivity.” In other words, CPU 0 stored to “e” after
seeing CPU 1’s store to “c”, with a memory barrier
between CPU 0’s load from “c” and store to “e”. If some
other CPU sees CPU 0’s store to “e”, is it also guaranteed
to see CPU 1’s store?

All CPUs I am aware of claim to provide transitivity.

Quick Quiz C.13:
Why is Alpha’s smp_read_barrier_depends()
an smp_mb() rather than smp_rmb()?

Answer:
First, Alpha has only mb and wmb instructions, so
smp_rmb() would be implemented by the Alpha mb
instruction in either case.

More importantly, smp_read_barrier_
depends() must order subsequent stores. For
example, consider the following code:

1 p = global_pointer;
2 smp_read_barrier_depends();
3 if (do_something_with(p->a, p->b) == 0)
4 p->hey_look = 1;

Here the store to p->hey_look must be ordered, not
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just the loads from p->a and p->b.

G.15 Read-Copy Update Imple-
mentations

Quick Quiz D.1:
Why is sleeping prohibited within Classic RCU read-side
critical sections?

Answer:
Because sleeping implies a context switch, which in
Classic RCU is a quiescent state, and RCU’s grace-period
detection requires that quiescent states never appear in
RCU read-side critical sections.

Quick Quiz D.2:
Why not permit sleeping in Classic RCU read-side critical
sections by eliminating context switch as a quiescent
state, leaving user-mode execution and idle loop as the
remaining quiescent states?

Answer:
This would mean that a system undergoing heavy
kernel-mode execution load (e.g., due to kernel threads)
might never complete a grace period, which would cause
it to exhaust memory sooner or later.

Quick Quiz D.3:
Why is it OK to assume that updates separated by
synchronize_sched() will be performed in order?

Answer:
Because this property is required for the
synchronize_sched() aspect of RCU to work at all.
For example, consider a code sequence that removes an
object from a list, invokes synchronize_sched(),
then frees the object. If this property did not hold,
then that object might appear to be freed before it was
removed from the list, which is precisely the situation
that synchronize_sched() is supposed to prevent!

Quick Quiz D.4:

Why must line 17 in synchronize_srcu() (Fig-
ure D.10) precede the release of the mutex on line 18?
What would have to change to permit these two lines to
be interchanged? Would such a change be worthwhile?
Why or why not?

Answer:
Suppose that the order was reversed, and that CPU 0
has just reached line 13 of synchronize_srcu(),
while both CPU 1 and CPU 2 start executing another
synchronize_srcu() each, and CPU 3 starts
executing a srcu_read_lock(). Suppose that
CPU 1 reaches line 6 of synchronize_srcu()
just before CPU 0 increments the counter on line 13.
Most importantly, suppose that CPU 3 executes
srcu_read_lock() out of order with the following
SRCU read-side critical section, so that it acquires a
reference to some SRCU-protected data structure before
CPU 0 increments sp->completed, but executes the
srcu_read_lock() after CPU 0 does this increment.

Then CPU 0 will not wait for CPU 3 to complete its
SRCU read-side critical section before exiting the “while”
loop on lines 15-16 and releasing the mutex (remember,
the CPU could be reordering the code).

Now suppose that CPU 2 acquires the mutex next, and
again increments sp->completed. This CPU will then
have to wait for CPU 3 to exit its SRCU read-side critical
section before exiting the loop on lines 15-16 and releas-
ing the mutex. But suppose that CPU 3 again executes out
of order, completing the srcu_read_unlock() prior
to executing a final reference to the pointer it obtained
when entering the SRCU read-side critical section.

CPU 1 will then acquire the mutex, but see that the
sp->completed counter has incremented twice, and
therefore take the early exit. The caller might well free up
the element that CPU 3 is still referencing (due to CPU 3’s
out-of-order execution).

To prevent this perhaps improbable, but entirely possi-
ble, scenario, the final synchronize_sched() must
precede the mutex release in synchronize_srcu().

Another approach would be to change to comparison
on line 7 of synchronize_srcu() to check for at
least three increments of the counter. However, such
a change would increase the latency of a “bulk update”
scenario, where a hash table is being updated or unloaded
using multiple threads. In the current code, the latency of
the resulting concurrent synchronize_srcu() calls
would take at most two SRCU grace periods, while with
this change, three would be required.
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More experience will be required to determine which
approach is really better. For one thing, there must first
be some use of SRCU with multiple concurrent updaters.

Quick Quiz D.5:
Wait a minute! With all those new locks, how do you
avoid deadlock?

Answer:
Deadlock is avoided by never holding more than one
of the rcu_node structures’ locks at a given time.
This algorithm uses two more locks, one to prevent
CPU hotplug operations from running concurrently with
grace-period advancement (onofflock) and another to
permit only one CPU at a time from forcing a quiescent
state to end quickly (fqslock). These are subject to a
locking hierarchy, so that fqslock must be acquired
before onofflock, which in turn must be acquired
before any of the rcu_node structures’ locks.

Also, as a practical matter, refusing to ever hold more
than one of the rcu_node locks means that it is unnec-
essary to track which ones are held. Such tracking would
be painful as well as unnecessary.

Quick Quiz D.6:
Why stop at a 64-times reduction? Why not go for a few
orders of magnitude instead?

Answer:
RCU works with no problems on systems with a few
hundred CPUs, so allowing 64 CPUs to contend on a
single lock leaves plenty of headroom. Keep in mind
that these locks are acquired quite rarely, as each CPU
will check in about one time per grace period, and grace
periods extend for milliseconds.

Quick Quiz D.7:
But I don’t care about McKenney’s lame excuses in the
answer to Quick Quiz 2!!! I want to get the number of
CPUs contending on a single lock down to something
reasonable, like sixteen or so!!!

Answer:
OK, have it your way, then! Set CONFIG_RCU_
FANOUT=16 and (for NR_CPUS=4096) you will
get a three-level hierarchy with with 256 rcu_node

structures at the lowest level, 16 rcu_node structures as
intermediate nodes, and a single root-level rcu_node.
The penalty you will pay is that more rcu_node
structures will need to be scanned when checking to see
which CPUs need help completing their quiescent states
(256 instead of only 64).

Quick Quiz D.8:
OK, so what is the story with the colors?

Answer:
Data structures analogous to rcu_state (including
rcu_ctrlblk) are yellow, those containing the
bitmaps used to determine when CPUs have checked in
are pink, and the per-CPU rcu_data structures are
blue. The data structures used to conserve energy (such
as rcu_dynticks) will be colored green.

Quick Quiz D.9:
Given such an egregious bug, why does Linux run at all?

Answer:
Because the Linux kernel contains device drivers that
are (relatively) well behaved. Few if any of them spin in
RCU read-side critical sections for the many milliseconds
that would be required to provoke this bug. The bug
nevertheless does need to be fixed, and this variant of
RCU does fix it.

Quick Quiz D.10:
But doesn’t this state diagram indicate that dyntick-idle
CPUs will get hit with reschedule IPIs? Won’t that wake
them up?

Answer:
No. Keep in mind that RCU is handling groups of CPUs.
One particular group might contain both dyntick-idle
CPUs and CPUs in normal mode that have somehow
managed to avoid passing through a quiescent state.
Only the latter group will be sent a reschedule IPI; the
dyntick-idle CPUs will merely be marked as being in an
extended quiescent state.

Quick Quiz D.11:
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But what happens if a CPU tries to report going through
a quiescent state (by clearing its bit) before the bit-setting
CPU has finished?

Answer:
There are three cases to consider here:

1. A CPU corresponding to a non-yet-initialized leaf
rcu_node structure tries to report a quiescent state.
This CPU will see its bit already cleared, so will
give up on reporting its quiescent state. Some later
quiescent state will serve for the new grace period.

2. A CPU corresponding to a leaf rcu_node structure
that is currently being initialized tries to report a
quiescent state. This CPU will see that the rcu_
node structure’s ->lock is held, so will spin until
it is released. But once the lock is released, the rcu_
node structure will have been initialized, reducing
to the following case.

3. A CPU corresponding to a leaf rcu_node that has
already been initialized tries to report a quiescent
state. This CPU will find its bit set, and will therefore
clear it. If it is the last CPU for that leaf node, it will
move up to the next level of the hierarchy. However,
this CPU cannot possibly be the last CPU in the
system to report a quiescent state, given that the CPU
doing the initialization cannot yet have checked in.

So, in all three cases, the potential race is resolved
correctly.

Quick Quiz D.12:
And what happens if all CPUs try to report going through
a quiescent state before the bit-setting CPU has finished,
thus ending the new grace period before it starts?

Answer:
The bit-setting CPU cannot pass through a quiescent
state during initialization, as it has irqs disabled. Its
bits therefore remain non-zero, preventing the grace
period from ending until the data structure has been fully
initialized.

Quick Quiz D.13:
And what happens if one CPU comes out of dyntick-idle
mode and then passed through a quiescent state just
as another CPU notices that the first CPU was in

dyntick-idle mode? Couldn’t they both attempt to report a
quiescent state at the same time, resulting in confusion?

Answer:
They will both attempt to acquire the lock on the same
leaf rcu_node structure. The first one to acquire
the lock will report the quiescent state and clear the
appropriate bit, and the second one to acquire the lock
will see that this bit has already been cleared.

Quick Quiz D.14:
But what if all the CPUs end up in dyntick-idle mode?
Wouldn’t that prevent the current RCU grace period from
ever ending?

Answer:
Indeed it will! However, CPUs that have RCU callbacks
are not permitted to enter dyntick-idle mode, so the
only way that all the CPUs could possibly end up in
dyntick-idle mode would be if there were absolutely no
RCU callbacks in the system. And if there are no RCU
callbacks in the system, then there is no need for the
RCU grace period to end. In fact, there is no need for the
RCU grace period to even start.

RCU will restart if some irq handler does a call_
rcu(), which will cause an RCU callback to appear on
the corresponding CPU, which will force that CPU out of
dyntick-idle mode, which will in turn permit the current
RCU grace period to come to an end.

Quick Quiz D.15:
Given that force_quiescent_state() is a three-
phase state machine, don’t we have triple the scheduling
latency due to scanning all the CPUs?

Answer:
Ah, but the three phases will not execute back-to-back on
the same CPU, and, furthermore, the first (initialization)
phase doesn’t do any scanning. Therefore, the scheduling-
latency hit of the three-phase algorithm is no different
than that of a single-phase algorithm. If the scheduling
latency becomes a problem, one approach would be to
recode the state machine to scan the CPUs incrementally,
most likely by keeping state on a per-leaf-rcu_node
basis. But first show me a problem in the real world, then
I will consider fixing it!
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Quick Quiz D.16:
But the other reason to hold ->onofflock is to prevent
multiple concurrent online/offline operations, right?

Answer:
Actually, no! The CPU-hotplug code’s synchronization
design prevents multiple concurrent CPU online/offline
operations, so only one CPU online/offline operation
can be executing at any given time. Therefore, the only
purpose of ->onofflock is to prevent a CPU online
or offline operation from running concurrently with
grace-period initialization.

Quick Quiz D.17:
Given all these acquisitions of the global ->onofflock,
won’t there be horrible lock contention when running
with thousands of CPUs?

Answer:
Actually, there can be only three acquisitions of this
lock per grace period, and each grace period lasts many
milliseconds. One of the acquisitions is by the CPU
initializing for the current grace period, and the other two
onlining and offlining some CPU. These latter two cannot
run concurrently due to the CPU-hotplug locking, so at
most two CPUs can be contending for this lock at any
given time.

Lock contention on ->onofflock should therefore
be no problem, even on systems with thousands of CPUs.

Quick Quiz D.18:
Why not simplify the code by merging the detection of
dyntick-idle CPUs with that of offline CPUs?

Answer:
It might well be that such merging may eventually be the
right thing to do. In the meantime, however, there are
some challenges:

1. CPUs are not allowed to go into dyntick-idle mode
while they have RCU callbacks pending, but CPUs
are allowed to go offline with callbacks pending.
This means that CPUs going offline need to have
their callbacks migrated to some other CPU, thus,
we cannot allow CPUs to simply go quietly offline.

2. Present-day Linux systems run with NR_CPUS

much larger than the actual number of CPUs. A
unified approach could thus end up uselessly waiting
on CPUs that are not just offline, but which never
existed in the first place.

3. RCU is already operational when CPUs get onlined
one at a time during boot, and therefore must handle
the online process. This onlining must exclude grace-
period initialization, so the ->onofflock must
still be used.

4. CPUs often switch into and out of dyntick-idle mode
extremely frequently, so it is not reasonable to use
the heavyweight online/offline code path for entering
and exiting dyntick-idle mode.

Quick Quiz D.19:
Why not simply disable bottom halves (softirq) when
acquiring the rcu_data structure’s lock? Wouldn’t
this be faster?

Answer:
Because this lock can be acquired from functions called
by call_rcu(), which in turn can be invoked from irq
handlers. Therefore, irqs must be disabled when holding
this lock.

Quick Quiz D.20:
How about the qsmask and qsmaskinit fields for
the leaf rcu_node structures? Doesn’t there have to be
some way to work out which of the bits in these fields
corresponds to each CPU covered by the rcu_node
structure in question?

Answer:
Indeed there does! The grpmask field in each CPU’s
rcu_data structure does this job.

Quick Quiz D.21:
But why bother setting qs_pending to one when a
CPU is coming online, given that being offline is an
extended quiescent state that should cover any ongoing
grace period?

Answer:
Because this helps to resolve a race between a CPU
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coming online just as a new grace period is starting.

Quick Quiz D.22:
Why record the last completed grace period number in
passed_quiesc_completed? Doesn’t that cause
this RCU implementation to be vulnerable to quiescent
states seen while no grace period was in progress being
incorrectly applied to the next grace period that starts?

Answer:
We record the last completed grace period number in
order to avoid races where a quiescent state noted near
the end of one grace period is incorrectly applied to the
next grace period, especially for dyntick and CPU-offline
grace periods. Therefore, force_quiescent_
state() and friends all check the last completed grace
period number to avoid such races.

Now these dyntick and CPU-offline grace periods are
only checked for when a grace period is actually active.
The only quiescent states that can be recorded when no
grace period is in progress are self-detected quiescent
states, which are recorded in the passed_quiesc_
completed, passed_quiesc, and qs_pending.
These variables are initialized every time the correspond-
ing CPU notices that a new grace period has started, pre-
venting any obsolete quiescent states from being applied
to the new grace period.

All that said, optimizing grace-period latency may re-
quire that gpnum be tracked in addition to completed.

Quick Quiz D.23:
What is the point of running a system with NR_CPUS
way bigger than the actual number of CPUs?

Answer:
Because this allows producing a single binary of the
Linux kernel that runs on a wide variety of systems,
greatly easing administration and validation.

Quick Quiz D.24:
Why not simply have multiple lists rather than this funny
multi-tailed list?

Answer:
Because this multi-tailed approach, due to Lai Jiangshan,

simplifies callback processing.

Quick Quiz D.25:
So some poor CPU has to note quiescent states on behalf
of each and every offline CPU? Yecch! Won’t that result
in excessive overheads in the not-uncommon case of a
system with a small number of CPUs but a large value
for NR_CPUS?

Answer:
Actually, no it will not!

Offline CPUs are excluded from both the qsmask and
qsmaskinit bit masks, so RCU normally ignores them.
However, there are races with online/offline operations
that can result in an offline CPU having its qsmask bit
set. These races must of course be handled correctly, and
the way they are handled is to permit other CPUs to note
that RCU is waiting on a quiescent state from an offline
CPU.

Quick Quiz D.26:
So what guards the earlier fields in this structure?

Answer:
Nothing does, as they are constants set at compile time
or boot time. Of course, the fields internal to each
rcu_node in the ->node array may change, but they
are guarded separately.

Quick Quiz D.27:
I thought that RCU read-side processing was supposed
to be fast! The functions shown in Figure D.21 have so
much junk in them that they just have to be slow! What
gives here?

Answer:
Appearances can be deceiving. The preempt_
disable(), preempt_enable(), local_bh_
disable(), and local_bh_enable() each do
a single non-atomic manipulation of local data. Even
that assumes CONFIG_PREEMPT, otherwise, the
preempt_disable() and preempt_enable()
functions emit no code, not even compiler directives. The
__acquire() and __release() functions emit no
code (not even compiler directives), but are instead used
by the sparse semantic-parsing bug-finding program.



G.15. READ-COPY UPDATE IMPLEMENTATIONS 357

Finally, rcu_read_acquire() and rcu_read_
release() emit no code (not even compiler directives)
unless the “lockdep” lock-order debugging facility is
enabled, in which case they can indeed be somewhat
expensive.

In short, unless you are a kernel hacker who has enabled
debugging options, these functions are extremely cheap,
and in some cases, absolutely free of overhead. And, in
the words of a Portland-area furniture retailer, “free is a
very good price”.

Quick Quiz D.28:
Why not simply use __get_cpu_var() to pick up a
reference to the current CPU’s rcu_data structure on
line 13 in Figure D.22?

Answer:
Because we might be called either from call_rcu()
(in which case we would need __get_cpu_var(rcu_
data)) or from call_rcu_bh() (in which case
we would need __get_cpu_var(rcu_bh_data)).
Using the ->rda[] array of whichever rcu_state
structure we were passed works correctly regardless
of which API __call_rcu() was invoked from
(suggested by Lai Jiangshan [Jia08]).

Quick Quiz D.29:
Given that rcu_pending() is always called twice on
lines 29-32 of Figure D.23, shouldn’t there be some way
to combine the checks of the two structures?

Answer:
Sorry, but this was a trick question. The C language’s
short-circuit boolean expression evaluation means that
__rcu_pending() is invoked on rcu_bh_state
only if the prior invocation on rcu_state returns zero.

The reason the two calls are in this order is that “rcu”
is used more heavily than is “rcu_bh”, so the first call is
more likely to return non-zero than is the second.

Quick Quiz D.30:
Shouldn’t line 42 of Figure D.23 also check for in_
hardirq()?

Answer:
No. The rcu_read_lock_bh() primitive disables

softirq, not hardirq. Because call_rcu_bh()
need only wait for pre-existing “rcu_bh” read-side
critical sections to complete, we need only check
in_softirq().

Quick Quiz D.31:
But don’t we also need to check that a grace period is
actually in progress in __rcu_process_callbacks
in Figure D.24?

Answer:
Indeed we do! And the first thing that force_
quiescent_state() does is to perform exactly that
check.

Quick Quiz D.32:
What happens if two CPUs attempt to start a new grace
period concurrently in Figure D.24?

Answer:
One of the CPUs will be the first to acquire the root
rcu_node structure’s lock, and that CPU will start the
grace period. The other CPU will then acquire the lock
and invoke rcu_start_gp(), which, seeing that a
grace period is already in progress, will immediately
release the lock and return.

Quick Quiz D.33:
How does the code traverse a given path through the
rcu_node hierarchy from root to leaves?

Answer:
It turns out that the code never needs to do such a
traversal, so there is nothing special in place to handle
this.

Quick Quiz D.34:
C-preprocessor macros are so 1990s! Why not get with
the times and convert RCU_DATA_PTR_INIT() in
Figure D.29 to be a function?

Answer:
Because, although it is possible to pass a reference to
a particular CPU’s instance of a per-CPU variable to a
function, there does not appear to be a good way pass a
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reference to the full set of instances of a given per-CPU
variable to a function. One could of course build an array
of pointers, then pass a reference to the array in, but that
is part of what the RCU_DATA_PTR_INIT() macro is
doing in the first place.

Quick Quiz D.35:
What happens if a CPU comes online between the
time that the last online CPU is notified on lines 25-26
of Figure D.29 and the time that register_cpu_
notifier() is invoked on line 27?

Answer:
Only one CPU is online at this point, so the only way
another CPU can come online is if this CPU puts it online,
which it is not doing.

Quick Quiz D.36:
Why call cpu_quiet() on line 41 of Figure D.30,
given that we are excluding grace periods with various
locks, and given that any earlier grace periods would not
have been waiting on this previously-offlined CPU?

Answer:
A new grace period might have started just after
the ->onofflock was released on line 40. The
cpu_quiet() will help expedite such a grace period.

Quick Quiz D.37:
But what if the rcu_node hierarchy has only a single
structure, as it would on a small system? What prevents
concurrent grace-period initialization in that case, given
the code in Figure D.32?

Answer:
The later acquisition of the sole rcu_node structure’s
->lock on line 16 excludes grace-period initialization,
which must acquire this same lock in order to initialize
this sole rcu_node structure for the new grace period.

The ->onofflock is needed only for multi-node
hierarchies, and is used in that case as an alternative to
acquiring and holding all of the rcu_node structures’
->lock fields, which would be incredibly painful on
large systems.

Quick Quiz D.38:
But does line 25 of Figure D.32 ever really exit the loop?
Why or why not?

Answer:
The only way that line 25 could exit the loop is if all
CPUs were to be put offline. This cannot happen in the
Linux kernel as of 2.6.28, though other environments
have been designed to offline all CPUs during the normal
shutdown procedure.

Quick Quiz D.39:
Suppose that line 26 got executed seriously out of order
in Figure D.32, so that lastcomp is set to some prior
grace period, but so that the current grace period is still
waiting on the now-offline CPU? In this case, won’t the
call to cpu_quiet() fail to report the quiescent state,
thus causing the grace period to wait forever for this
now-offline CPU?

Answer:
First, the lock acquisitions on lines 16 and 12 would
prevent the execution of line 26 from being pushed that
far out of order. Nevertheless, even if line 26 managed to
be misordered that dramatically, what would happen is
that force_quiescent_state() would eventually
be invoked, and would notice that the current grace period
was waiting for a quiescent state from an offline CPU.
Then force_quiescent_state() would report
the extended quiescent state on behalf of the offlined
CPU.

Quick Quiz D.40:
Given that an offline CPU is in an extended quiescent
state, why does line 28 of Figure D.32 need to care which
grace period it is dealing with?

Answer:
It really does not need to care in this case. However,
because it does need to care in many other cases, the
cpu_quiet() function does take the grace-period
number as an argument, so some value must be supplied.

Quick Quiz D.41:
But this list movement in Figure D.32 makes all of the
going-offline CPU’s callbacks go through another grace
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period, even if they were ready to invoke. Isn’t that
inefficient? Furthermore, couldn’t an unfortunate pattern
of CPUs going offline then coming back online prevent a
given callback from ever being invoked?

Answer:
It is inefficient, but it is simple. Given that this is not a
commonly executed code path, this is the right tradeoff.
The starvation case would be a concern, except that
the online and offline process involves multiple grace
periods.

Quick Quiz D.42:
Why not just expand note_new_gpnum() inline
into check_for_new_grace_period() in Fig-
ure D.34?

Answer:
Because note_new_gpnum() must be called for
each new grace period, including both those started by
this CPU and those started by other CPUs. In contrast,
check_for_new_grace_period() is called only
for the case where some other CPU started the grace
period.

Quick Quiz D.43:
But there has been no initialization yet at line 15 of
Figure D.37! What happens if a CPU notices the new
grace period and immediately attempts to report a
quiescent state? Won’t it get confused?

Answer:
There are two cases of interest.

In the first case, there is only a single rcu_node
structure in the hierarchy. Since the CPU executing
in rcu_start_gp() is currently holding that rcu_
node structure’s lock, the CPU attempting to report the
quiescent state will not be able to acquire this lock until
initialization is complete, at which point the quiescent
state will be reported normally.

In the second case, there are multiple rcu_node struc-
tures, and the leaf rcu_node structure corresponding to
the CPU that is attempting to report the quiescent state al-
ready has that CPU’s ->qsmask bit cleared. Therefore,
the CPU attempting to report the quiescent state will give
up, and some later quiescent state for that CPU will be

applied to the new grace period.

Quick Quiz D.44:
Hey! Shouldn’t we hold the non-leaf rcu_node
structures’ locks when munging their state in line 37 of
Figure D.37???

Answer:
There is no need to hold their locks. The reasoning is as
follows:

1. The new grace period cannot end, because the
running CPU (which is initializing it) won’t pass
through a quiescent state. Therefore, there is no race
with another invocation of rcu_start_gp().

2. The running CPU holds ->onofflock, so there is
no race with CPU-hotplug operations.

3. The leaf rcu_node structures are not yet initial-
ized, so they have all of their ->qsmask bits
cleared. This means that any other CPU attempt-
ing to report a quiescent state will stop at the leaf
level, and thus cannot race with the current CPU for
non-leaf rcu_node structures.

4. The RCU tracing functions access, but do not modify,
the rcu_node structures’ fields. Races with these
functions is therefore harmless.

Quick Quiz D.45:
Why can’t we merge the loop spanning lines 36-37 with
the loop spanning lines 40-44 in Figure D.37?

Answer:
If we were to do so, we would either be needlessly
acquiring locks for the non-leaf rcu_node structures
or would need ugly checks for a given node being a leaf
node on each pass through the loop. (Recall that we must
acquire the locks for the leaf rcu_node structures due
to races with CPUs attempting to report quiescent states.)

Nevertheless, it is quite possible that experience on
very large systems will show that such merging is in fact
the right thing to do.

Quick Quiz D.46:
What prevents lines 11-12 of Figure D.39 from reporting
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a quiescent state from a prior grace period against the
current grace period?

Answer:
If this could occur, it would be a serious bug, since the
CPU in question might be in an RCU read-side critical
section that started before the beginning of the current
grace period.

There are several cases to consider for the CPU in
question:

1. It remained online and active throughout.

2. It was in dynticks-idle mode for at least part of the
current grace period.

3. It was offline for at least part of the current grace
period.

In the first case, the prior grace period could not have
ended without this CPU explicitly reporting a quies-
cent state, which would leave ->qs_pending zero.
This in turn would mean that lines 7-8 would return,
so that control would not reach cpu_quiet() unless
check_for_new_grace_period() had noted the
new grace period. However, if the current grace pe-
riod had been noted, it would also have set ->passed_
quiesc to zero, in which case lines 9-10 would have
returned, again meaning that cpu_quiet() would not
be invoked. Finally, the only way that ->passed_
quiesc could be invoked would be if rcu_check_
callbacks() was invoked by a scheduling-clock in-
terrupt that occurred somewhere between lines 5 and 9 of
rcu_check_quiescent_state() in Figure D.39.
However, this would be a case of a quiescent state occur-
ring in the current grace period, which would be totally
legitimate to report against the current grace period. So
this case is correctly covered.

In the second case, where the CPU in question spent
part of the new quiescent state in dynticks-idle mode,
note that dynticks-idle mode is an extended quiescent
state, hence it is again permissible to report this quiescent
state against the current grace period.

In the third case, where the CPU in question spent
part of the new quiescent state offline, note that offline
CPUs are in an extended quiescent state, which is again
permissible to report against the current grace period.

So quiescent states from prior grace periods are never
reported against the current grace period.

Quick Quiz D.47:
How do lines 22-23 of Figure D.40 know that it is safe to
promote the running CPU’s RCU callbacks?

Answer:
Because the specified CPU has not yet passed through a
quiescent state, and because we hold the corresponding
leaf node’s lock, we know that the current grace period
cannot possibly have ended yet. Therefore, there is no
danger that any of the callbacks currently queued were
registered after the next grace period started, given that
they have already been queued and the next grace period
has not yet started.

Quick Quiz D.48:
Given that argument mask on line 2 of Figure D.41 is
an unsigned long, how can it possibly deal with systems
with more than 64 CPUs?

Answer:
Because mask is specific to the specified leaf rcu_
node structure, it need only be large enough to represent
the CPUs corresponding to that particular rcu_node
structure. Since at most 64 CPUs may be associated
with a given rcu_node structure (32 CPUs on 32-bit
systems), the unsigned long mask argument suffices.

Quick Quiz D.49:
How do RCU callbacks on dynticks-idle or offline CPUs
get invoked?

Answer:
They don’t. CPUs with RCU callbacks are not permitted
to enter dynticks-idle mode, so dynticks-idle CPUs never
have RCU callbacks. When CPUs go offline, their RCU
callbacks are migrated to an online CPU, so offline CPUs
never have RCU callbacks, either. Thus, there is no need
to invoke callbacks on dynticks-idle or offline CPUs.

Quick Quiz D.50:
Why would lines 14-17 in Figure D.43 need to adjust the
tail pointers?

Answer:
If any of the tail pointers reference the last callback in the
sublist that was ready to invoke, they must be changed to
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instead reference the ->nxtlist pointer. This situation
occurs when the sublists immediately following the
ready-to-invoke sublist are empty.

Quick Quiz D.51:
But how does the code in Figure D.45 handle nested
NMIs?

Answer:
It does not have to handle nested NMIs, because NMIs
do not nest.

Quick Quiz D.52:
Why isn’t there a memory barrier between lines 8 and
9 of Figure D.47? Couldn’t this cause the code to fetch
even-numbered values from both the ->dynticks and
->dynticks_nmi fields, even though these two fields
never were zero at the same time?

Answer:
First, review the code in Figures D.44, D.45, and D.46,
and note that dynticks and dynticks_nmi will
never have odd values simultaneously (see especially
lines 6 and 17 of Figure D.45, and recall that interrupts
cannot happen from NMIs).

Of course, given the placement of the memory barriers
in these functions, it might appear to another CPU that
both counters were odd at the same time, but logically
this cannot happen, and would indicate that the CPU had
in fact passed through dynticks-idle mode.

Now, let’s suppose that at the time line 8 fetches
->dynticks, the value of ->dynticks_nmi was
at odd number, and that at the time line 9 fetches
->dynticks_nmi, the value of ->dynticks was an
odd number. Given that both counters cannot be odd si-
multaneously, there must have been a time between these
two fetches when both counters were even, and thus a
time when the CPU was in dynticks-idle mode, which is
a quiescent state, as required.

So, why can’t the && on line 13 of Figure D.47 be
replaced with an ==? Well, it could be, but this would
likely be more confusing than helpful.

Quick Quiz D.53:
Why wait the extra couple jiffies on lines 12-13 in
Figure D.55?

Answer:
This added delay gives the offending CPU a better chance
of reporting on itself, thus getting a decent stack trace
of the stalled code. Of course, if the offending CPU is
spinning with interrupts disabled, it will never report on
itself, so other CPUs do so after a short delay.

Quick Quiz D.54:
What prevents the grace period from ending before the
stall warning is printed in Figure D.56?

Answer:
The caller checked that this CPU still had not reported a
quiescent state, and because preemption is disabled, there
is no way that a quiescent state could have been reported
in the meantime.

Quick Quiz D.55:
Why does print_other_cpu_stall() in Fig-
ure D.57 need to check for the grace period ending when
print_cpu_stall() did not?

Answer:
The other CPUs might pass through a quiescent state at
any time, so the grace period might well have ended in
the meantime.

Quick Quiz D.56:
Why is it important that blocking primitives called from
within a preemptible-RCU read-side critical section be
subject to priority inheritance?

Answer:
Because blocked readers stall RCU grace periods,
which can result in OOM. For example, if a reader did
a wait_event() within an RCU read-side critical
section, and that event never occurred, then RCU grace
periods would stall indefinitely, guaranteeing that the
system would OOM sooner or later. There must therefore
be some way to cause these readers to progress through
their read-side critical sections in order to avoid such
OOMs. Priority boosting is one way to force such
progress, but only if readers are restricted to blocking
such that they can be awakened via priority boosting.

Of course, there are other methods besides priority
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inheritance that handle the priority inversion problem,
including priority ceiling, preemption disabling, and so on.
However, there are good reasons why priority inheritance
is the approach used in the Linux kernel, so this is what
is used for RCU.

Quick Quiz D.57:
Could the prohibition against using primitives that would
block in a non-CONFIG_PREEMPT kernel be lifted, and
if so, under what conditions?

Answer:
If testing and benchmarking demonstrated that the
preemptible RCU worked well enough that classic RCU
could be dispensed with entirely, and if priority inher-
itance was implemented for blocking synchronization
primitives such as semaphores, then those primitives
could be used in RCU read-side critical sections.

Quick Quiz D.58:
How is it possible for lines 38-43 of __rcu_advance_
callbacks() to be executed when lines 7-37 have
not? Won’t they both be executed just after a counter flip,
and never at any other time?

Answer:
Consider the following sequence of events:

1. CPU 0 executes lines 5-12 of rcu_try_flip_
idle().

2. CPU 1 executes __rcu_advance_
callbacks(). Because rcu_
ctrlblk.completed has been incremented,
lines 7-37 execute. However, none of the rcu_
flip_flag variables have been set, so lines 38-43
do not execute.

3. CPU 0 executes lines 13-15 of rcu_try_flip_
idle().

4. Later, CPU 1 again executes __rcu_advance_
callbacks(). The counter has not been incre-
mented since the earlier execution, but the rcu_
flip_flag variables have all been set, so only
lines 38-43 are executed.

Quick Quiz D.59:
What problems could arise if the lines containing
ACCESS_ONCE() in rcu_read_unlock() were
reordered by the compiler?

Answer:

1. If the ACCESS_ONCE() were omitted from the
fetch of rcu_flipctr_idx (line 14), then the
compiler would be within its rights to eliminate idx.
It would also be free to compile the rcu_flipctr
decrement as a fetch-increment-store sequence, sep-
arately fetching rcu_flipctr_idx for both the
fetch and the store. If an NMI were to occur between
the fetch and the store, and if the NMI handler con-
tained an rcu_read_lock(), then the value of
rcu_flipctr_idx would change in the mean-
time, resulting in corruption of the rcu_flipctr
values, destroying the ability to correctly identify
grace periods.

2. Another failure that could result from omitting the
ACCESS_ONCE() from line 14 is due to the com-
piler reordering this statement to follow the decre-
ment of rcu_read_lock_nesting (line 16).
In this case, if an NMI were to occur between these
two statements, then any rcu_read_lock() in
the NMI handler could corrupt rcu_flipctr_
idx, causing the wrong rcu_flipctr to be
decremented. As with the analogous situation in
rcu_read_lock(), this could result in prema-
ture grace-period termination, an indefinite grace
period, or even both.

3. If ACCESS_ONCE() macros were omitted such
that the update of rcu_read_lock_nesting
could be interchanged by the compiler with the decre-
ment of rcu_flipctr, and if an NMI occurred
in between, any rcu_read_lock() in the NMI
handler would incorrectly conclude that it was pro-
tected by an enclosing rcu_read_lock(), and
fail to increment the rcu_flipctr variables.

It is not clear that the ACCESS_ONCE() on the fetch
of rcu_read_lock_nesting (line 7) is required.

Quick Quiz D.60:
What problems could arise if the lines containing
ACCESS_ONCE() in rcu_read_unlock() were
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reordered by the CPU?

Answer:
Absolutely none! The code in rcu_read_unlock()
interacts with the scheduling-clock interrupt handler
running on the same CPU, and is thus insensitive to
reorderings because CPUs always see their own accesses
as if they occurred in program order. Other CPUs do
access the rcu_flipctr, but because these other
CPUs don’t access any of the other variables, ordering is
irrelevant.

Quick Quiz D.61:
What problems could arise in rcu_read_unlock()
if irqs were not disabled?

Answer:

1. Disabling irqs has the side effect of disabling pre-
emption. Suppose that this code were to be pre-
empted in the midst of line 17 between selecting
the current CPU’s copy of the rcu_flipctr array
and the decrement of the element indicated by rcu_
flipctr_idx. Execution might well resume on
some other CPU. If this resumption happened con-
currently with an rcu_read_lock() or rcu_
read_unlock() running on the original CPU, an
increment or decrement might be lost, resulting in
either premature termination of a grace period, in-
definite extension of a grace period, or even both.

2. Failing to disable preemption can also defeat RCU
priority boosting, which relies on rcu_read_
lock_nesting to determine which tasks to boost.
If preemption occurred between the update of rcu_
read_lock_nesting (line 16) and of rcu_
flipctr (line 17), then a grace period might be
stalled until this task resumed. But because the RCU
priority booster has no way of knowing that this par-
ticular task is stalling grace periods, needed boosting
will never occur. Therefore, if there are CPU-bound
realtime tasks running, the preempted task might
never resume, stalling grace periods indefinitely, and
eventually resulting in OOM.

Of course, both of these situations could be handled
by disabling preemption rather than disabling irqs. (The
CPUs I have access to do not show much difference be-

tween these two alternatives, but others might.)

Quick Quiz D.62:
Suppose that the irq disabling in rcu_read_lock()
was replaced by preemption disabling. What effect would
that have on GP_STAGES?

Answer:
No finite value of GP_STAGES suffices. The following
scenario, courtesy of Oleg Nesterov, demonstrates this:

Suppose that low-priority Task A has executed rcu_
read_lock() on CPU 0, and thus has incremented
per_cpu(rcu_flipctr, 0)[0], which thus has a
value of one. Suppose further that Task A is now pre-
empted indefinitely.

Given this situation, consider the following sequence
of events:

1. Task B starts executing rcu_read_lock(), also
on CPU 0, picking up the low-order bit of rcu_
ctrlblk.completed, which is still equal to
zero.

2. Task B is interrupted by a sufficient number of
scheduling-clock interrupts to allow the current
grace-period stage to complete, and also be suf-
ficient long-running interrupts to allow the RCU
grace-period state machine to advance the rcu_
ctrlblk.complete counter so that its bottom
bit is now equal to one and all CPUs have acknowl-
edged this increment operation.

3. CPU 1 starts summing the index==0 counters, start-
ing with per_cpu(rcu_flipctr, 0)[0],
which is equal to one due to Task A’s increment.
CPU 1’s local variable sum is therefore equal to
one.

4. Task B returns from interrupt, resuming its execu-
tion of rcu_read_lock(), incrementing per_
cpu(rcu_flipctr, 0)[0], which now has a
value of two.

5. Task B is migrated to CPU 2.

6. Task B completes its RCU read-side critical sec-
tion, and executes rcu_read_unlock(), which
decrements per_cpu(rcu_flipctr, 2)[0],
which is now -1.
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7. CPU 1 now adds per_cpu(rcu_
flipctr, 1)[0] and per_cpu(rcu_
flipctr, 2)[0] to its local variable sum,
obtaining the value zero.

8. CPU 1 then incorrectly concludes that all prior RCU
read-side critical sections have completed, and ad-
vances to the next RCU grace-period stage. This
means that some other task might well free up data
structures that Task A is still using!

This sequence of events could repeat indefinitely, so
that no finite value of GP_STAGES could prevent disrupt-
ing Task A. This sequence of events demonstrates the
importance of the promise made by CPUs that acknowl-
edge an increment of rcu_ctrlblk.completed, as
the problem illustrated by the above sequence of events is
caused by Task B’s repeated failure to honor this promise.

Therefore, more-pervasive changes to the grace-period
state will be required in order for rcu_read_lock()
to be able to safely dispense with irq disabling.

Quick Quiz D.63:
Why can’t the rcu_dereference() precede the
memory barrier?

Answer:
Because the memory barrier is being executed in an
interrupt handler, and interrupts are exact in the sense
that a single value of the PC is saved upon interrupt,
so that the interrupt occurs at a definite place in the
code. Therefore, if the rcu_dereference() were to
precede the memory barrier, the interrupt would have
had to have occurred after the rcu_dereference(),
and therefore the interrupt would also have had to have
occurred after the rcu_read_lock() that begins the
RCU read-side critical section. This would have forced
the rcu_read_lock() to use the earlier value of the
grace-period counter, which would in turn have meant
that the corresponding rcu_read_unlock() would
have had to precede the first "Old counters zero [0]"
rather than the second one. This in turn would have meant
that the read-side critical section would have been much
shorter — which would have been counter-productive,
given that the point of this exercise was to identify the
longest possible RCU read-side critical section.

Quick Quiz D.64:

What is a more precise way to say "CPU 0 might see
CPU 1’s increment as early as CPU 1’s last previous
memory barrier"?

Answer:
First, it is important to note that the problem with the
less-precise statement is that it gives the impression
that there might be a single global timeline, which
there is not, at least not for popular microprocessors.
Second, it is important to note that memory barriers are
all about perceived ordering, not about time. Finally,
a more precise way of stating above statement would
be as follows: "If CPU 0 loads the value resulting from
CPU 1’s increment, then any subsequent load by CPU 0
will see the values from any relevant stores by CPU 1 if
these stores preceded CPU 1’s last prior memory barrier."

Even this more-precise version leaves some wiggle
room. The word "subsequent" must be understood to
mean "ordered after", either by an explicit memory barrier
or by the CPU’s underlying memory ordering. In addition,
the memory barriers must be strong enough to order the
relevant operations. For example, CPU 1’s last prior
memory barrier must order stores (for example, smp_
wmb() or smp_mb()). Similarly, if CPU 0 needs an
explicit memory barrier to ensure that its later load follows
the one that saw the increment, then this memory barrier
needs to be an smp_rmb() or smp_mb().

In general, much care is required when proving parallel
algorithms.

G.16 Formal Verification

Quick Quiz F.1:
Why is there an unreached statement in locker? After all,
isn’t this a full state-space search?

Answer:
The locker process is an infinite loop, so control never
reaches the end of this process. However, since there are
no monotonically increasing variables, Promela is able to
model this infinite loop with a small number of states.

Quick Quiz F.2:
What are some Promela code-style issues with this
example?
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Answer:
There are several:

1. The declaration of sum should be moved to within
the init block, since it is not used anywhere else.

2. The assertion code should be moved outside of the
initialization loop. The initialization loop can then
be placed in an atomic block, greatly reducing the
state space (by how much?).

3. The atomic block covering the assertion code should
be extended to include the initialization of sum and
j, and also to cover the assertion. This also reduces
the state space (again, by how much?).

Quick Quiz F.3:
Is there a more straightforward way to code the do-od
statement?

Answer:
Yes. Replace it with if-fi and remove the two break
statements.

Quick Quiz F.4:
Why are there atomic blocks at lines 12-21 and lines
44-56, when the operations within those atomic blocks
have no atomic implementation on any current production
microprocessor?

Answer:
Because those operations are for the benefit of the
assertion only. They are not part of the algorithm itself.
There is therefore no harm in marking them atomic, and
so marking them greatly reduces the state space that must
be searched by the Promela model.

Quick Quiz F.5:
Is the re-summing of the counters on lines 24-27 really
necessary?

Answer:
Yes. To see this, delete these lines and run the model.

Alternatively, consider the following sequence of steps:

1. One process is within its RCU read-side critical sec-
tion, so that the value of ctr[0] is zero and the
value of ctr[1] is two.

2. An updater starts executing, and sees that the sum
of the counters is two so that the fastpath cannot be
executed. It therefore acquires the lock.

3. A second updater starts executing, and fetches the
value of ctr[0], which is zero.

4. The first updater adds one to ctr[0], flips the index
(which now becomes zero), then subtracts one from
ctr[1] (which now becomes one).

5. The second updater fetches the value of ctr[1],
which is now one.

6. The second updater now incorrectly concludes that
it is safe to proceed on the fastpath, despite the fact
that the original reader has not yet completed.

Quick Quiz F.6:
Yeah, that’s just great! Now, just what am I supposed to
do if I don’t happen to have a machine with 40GB of
main memory???

Answer:
Relax, there are a number of lawful answers to this
question:

1. Further optimize the model, reducing its memory
consumption.

2. Work out a pencil-and-paper proof, perhaps starting
with the comments in the code in the Linux kernel.

3. Devise careful torture tests, which, though they can-
not prove the code correct, can find hidden bugs.

4. There is some movement towards tools that do model
checking on clusters of smaller machines. However,
please note that we have not actually used such tools
myself, courtesy of some large machines that Paul
has occasional access to.

Quick Quiz F.7:
Why not simply increment rcu_update_flag,
and then only increment dynticks_progress_
counter if the old value of rcu_update_flag was
zero???

Answer:
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This fails in presence of NMIs. To see this, suppose an
NMI was received just after rcu_irq_enter() incre-
mented rcu_update_flag, but before it incremented
dynticks_progress_counter. The instance of
rcu_irq_enter() invoked by the NMI would see
that the original value of rcu_update_flag was
non-zero, and would therefore refrain from incrementing
dynticks_progress_counter. This would leave
the RCU grace-period machinery no clue that the NMI
handler was executing on this CPU, so that any RCU
read-side critical sections in the NMI handler would lose
their RCU protection.

The possibility of NMI handlers, which, by definition
cannot be masked, does complicate this code.

Quick Quiz F.8:
But if line 7 finds that we are the outermost interrupt,
wouldn’t we always need to increment dynticks_
progress_counter?

Answer:
Not if we interrupted a running task! In that case,
dynticks_progress_counter would have al-
ready been incremented by rcu_exit_nohz(), and
there would be no need to increment it again.

Quick Quiz F.9:
Can you spot any bugs in any of the code in this section?

Answer:
Read the next section to see if you were correct.

Quick Quiz F.10:
Why isn’t the memory barrier in rcu_exit_nohz()
and rcu_enter_nohz() modeled in Promela?

Answer:
Promela assumes sequential consistency, so it is not
necessary to model memory barriers. In fact, one must
instead explicitly model lack of memory barriers, for
example, as shown in Figure F.13 on page 283.

Quick Quiz F.11:
Isn’t it a bit strange to model rcu_exit_nohz()

followed by rcu_enter_nohz()? Wouldn’t it be
more natural to instead model entry before exit?

Answer:
It probably would be more natural, but we will need this
particular order for the liveness checks that we will add
later.

Quick Quiz F.12:
Wait a minute! In the Linux kernel, both dynticks_
progress_counter and rcu_dyntick_
snapshot are per-CPU variables. So why are
they instead being modeled as single global variables?

Answer:
Because the grace-period code processes each CPU’s
dynticks_progress_counter and rcu_
dyntick_snapshot variables separately, we can
collapse the state onto a single CPU. If the grace-period
code were instead to do something special given specific
values on specific CPUs, then we would indeed need to
model multiple CPUs. But fortunately, we can safely
confine ourselves to two CPUs, the one running the
grace-period processing and the one entering and leaving
dynticks-idle mode.

Quick Quiz F.13:
Given there are a pair of back-to-back changes to
grace_period_state on lines 25 and 26, how can
we be sure that line 25’s changes won’t be lost?

Answer:
Recall that Promela and spin trace out every possible
sequence of state changes. Therefore, timing is irrelevant:
Promela/spin will be quite happy to jam the entire rest
of the model between those two statements unless some
state variable specifically prohibits doing so.

Quick Quiz F.14:
But what would you do if you needed the statements
in a single EXECUTE_MAINLINE() group to execute
non-atomically?

Answer:
The easiest thing to do would be to put each such state-
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ment in its own EXECUTE_MAINLINE() statement.

Quick Quiz F.15:
But what if the dynticks_nohz() process had
“if” or “do” statements with conditions, where the
statement bodies of these constructs needed to execute
non-atomically?

Answer:
One approach, as we will see in a later section, is to use
explicit labels and “goto” statements. For example, the
construct:

if
:: i == 0 -> a = -1;
:: else -> a = -2;
fi;

could be modeled as something like:

EXECUTE_MAINLINE(stmt1,
if
:: i == 0 -> goto stmt1_then;
:: else -> goto stmt1_else;
fi)
stmt1_then: skip;
EXECUTE_MAINLINE(stmt1_then1, a = -1; goto stmt1_end)
stmt1_else: skip;
EXECUTE_MAINLINE(stmt1_then1, a = -2)
stmt1_end: skip;

However, it is not clear that the macro is helping much
in the case of the “if” statement, so these sorts of situations
will be open-coded in the following sections.

Quick Quiz F.16:
Why are lines 45 and 46 (the in_dyntick_irq = 0;
and the i++;) executed atomically?

Answer:
These lines of code pertain to controlling the model, not
to the code being modeled, so there is no reason to model
them non-atomically. The motivation for modeling them
atomically is to reduce the size of the state space.

Quick Quiz F.17:
What property of interrupts is this dynticks_irq()
process unable to model?

Answer:
One such property is nested interrupts, which are handled

in the following section.

Quick Quiz F.18:
Does Paul always write his code in this painfully
incremental manner?

Answer:
Not always, but more and more frequently. In this case,
Paul started with the smallest slice of code that included
an interrupt handler, because he was not sure how best to
model interrupts in Promela. Once he got that working,
he added other features. (But if he was doing it again, he
would start with a “toy” handler. For example, he might
have the handler increment a variable twice and have the
mainline code verify that the value was always even.)

Why the incremental approach? Consider the follow-
ing, attributed to Brian W. Kernighan:

Debugging is twice as hard as writing the code
in the first place. Therefore, if you write the
code as cleverly as possible, you are, by defini-
tion, not smart enough to debug it.

This means that any attempt to optimize the production
of code should place at least 66% of its emphasis on
optimizing the debugging process, even at the expense of
increasing the time and effort spent coding. Incremental
coding and testing is one way to optimize the debugging
process, at the expense of some increase in coding effort.
Paul uses this approach because he rarely has the luxury
of devoting full days (let alone weeks) to coding and
debugging.

Quick Quiz F.19:
But what happens if an NMI handler starts running
before an irq handler completes, and if that NMI handler
continues running until a second irq handler starts?

Answer:
This cannot happen within the confines of a single CPU.
The first irq handler cannot complete until the NMI
handler returns. Therefore, if each of the dynticks
and dynticks_nmi variables have taken on an even
value during a given time interval, the corresponding
CPU really was in a quiescent state at some time during
that interval.
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Quick Quiz F.20:
This is still pretty complicated. Why not just have a
cpumask_t that has a bit set for each CPU that is in
dyntick-idle mode, clearing the bit when entering an irq
or NMI handler, and setting it upon exit?

Answer:
Although this approach would be functionally correct,
it would result in excessive irq entry/exit overhead on
large machines. In contrast, the approach laid out in this
section allows each CPU to touch only per-CPU data
on irq and NMI entry/exit, resulting in much lower irq
entry/exit overhead, especially on large machines.



Appendix H

Glossary

Associativity: The number of cache lines that can be
held simultaneously in a given cache, when all of
these cache lines hash identically in that cache. A
cache that could hold four cache lines for each pos-
sible hash value would be termed a “four-way set-
associative” cache, while a cache that could hold
only one cache line for each possible hash value
would be termed a “direct-mapped” cache. A cache
whose associativity was equal to its capacity would
be termed a “fully associative” cache. Fully asso-
ciative caches have the advantage of eliminating as-
sociativity misses, but, due to hardware limitations,
fully associative caches are normally quite limited in
size. The associativity of the large caches found on
modern microprocessors typically range from two-
way to eight-way.

Associativity Miss: A cache miss incurred because the
corresponding CPU has recently accessed more data
hashing to a given set of the cache than will fit in
that set. Fully associative caches are not subject to
associativity misses (or, equivalently, in fully asso-
ciative caches, associativity and capacity misses are
identical).

Atomic: An operation is considered “atomic” if it is not
possible to observe any intermediate state. For ex-
ample, on most CPUs, a store to a properly aligned
pointer is atomic, because other CPUs will see either
the old value or the new value, but are guaranteed
not to see some mixed value containing some pieces
of the new and old values.

Cache: In modern computer systems, CPUs have caches
in which to hold frequently used data. These caches
can be thought of as hardware hash tables with very
simple hash functions, but in which each hash bucket

(termed a “set” by hardware types) can hold only a
limited number of data items. The number of data
items that can be held by each of a cache’s hash
buckets is termed the cache’s “associativity”. These
data items are normally called “cache lines”, which
can be thought of a fixed-length blocks of data that
circulate among the CPUs and memory.

Cache Coherence: A property of most modern SMP ma-
chines where all CPUs will observe a sequence of
values for a given variable that is consistent with
at least one global order of values for that variable.
Cache coherence also guarantees that at the end of
a group of stores to a given variable, all CPUs will
agree on the final value for that variable. Note that
cache coherence applies only to the series of val-
ues taken on by a single variable. In contrast, the
memory consistency model for a given machine de-
scribes the order in which loads and stores to groups
of variables will appear to occur.

Cache Coherence Protocol: A communications proto-
col, normally implemented in hardware, that en-
forces memory consistency and ordering, preventing
different CPUs from seeing inconsistent views of
data held in their caches.

Cache Geometry: The size and associativity of a cache
is termed its geometry. Each cache may be thought
of as a two-dimensional array, with rows of cache
lines (“sets”) that have the same hash value, and
columns of cache lines (“ways”) in which every
cache line has a different hash value. The associativ-
ity of a given cache is its number of columns (hence
the name “way” – a two-way set-associative cache
has two “ways”), and the size of the cache is its num-
ber of rows multiplied by its number of columns.

369
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Cache Line: (1) The unit of data that circulates among
the CPUs and memory, usually a moderate power of
two in size. Typical cache-line sizes range from 16
to 256 bytes.
(2) A physical location in a CPU cache capable of
holding one cache-line unit of data.
(3) A physical location in memory capable of hold-
ing one cache-line unit of data, but that it also aligned
on a cache-line boundary. For example, the address
of the first word of a cache line in memory will end
in 0x00 on systems with 256-byte cache lines.

Cache Miss: A cache miss occurs when data needed by
the CPU is not in that CPU’s cache. The data might
be missing because of a number of reasons, includ-
ing: (1) this CPU has never accessed the data be-
fore (“startup” or “warmup” miss), (2) this CPU has
recently accessed more data than would fit in its
cache, so that some of the older data had to be re-
moved (“capacity” miss), (3) this CPU has recently
accessed more data in a given set1 than that set could
hold (“associativity” miss), (4) some other CPU has
written to the data (or some other data in the same
cache line) since this CPU has accessed it (“commu-
nication miss”), or (5) this CPU attempted to write to
a cache line that is currently read-only, possibly due
to that line being replicated in other CPUs’ caches.

Capacity Miss: A cache miss incurred because the cor-
responding CPU has recently accessed more data
than will fit into the cache.

Code Locking: A simple locking design in which a
“global lock” is used to protect a set of critical sec-
tions, so that access by a given thread to that set is
granted or denied based only on the set of threads
currently occupying the set of critical sections, not
based on what data the thread intends to access. The
scalability of a code-locked program is limited by
the code; increasing the size of the data set will nor-
mally not increase scalability (in fact, will typically
decrease scalability by increasing “lock contention”).
Contrast with “data locking”.

Communication Miss: A cache miss incurred because
the some other CPU has written to the cache line
since the last time this CPU accessed it.

Critical Section: A section of code guarded by some
synchronization mechanism, so that its execution

1 In hardware-cache terminology, the word “set” is used in the same
way that the word “bucket” is used when discussing software caches.

constrained by that primitive. For example, if a set
of critical sections are guarded by the same global
lock, then only one of those critical sections may be
executing at a given time. If a thread is executing
in one such critical section, any other threads must
wait until the first thread completes before executing
any of the critical sections in the set.

Data Locking: A scalable locking design in which each
instance of a given data structure has its own lock. If
each thread is using a different instance of the data
structure, then all of the threads may be executing
in the set of critical sections simultaneously. Data
locking has the advantage of automatically scaling
to increasing numbers of CPUs as the number of in-
stances of data grows. Contrast with “code locking”.

Direct-Mapped Cache: A cache with only one way, so
that it may hold only one cache line with a given
hash value.

Exclusive Lock: An exclusive lock is a mutual-
exclusion mechanism that permits only one thread
at a time into the set of critical sections guarded by
that lock.

False Sharing: If two CPUs each frequently write to
one of a pair of data items, but the pair of data items
are located in the same cache line, this cache line
will be repeatedly invalidated, “ping-ponging” back
and forth between the two CPUs’ caches. This is
a common cause of “cache thrashing”, also called
“cacheline bouncing” (the latter most commonly in
the Linux community). False sharing can dramati-
cally reduce both performance and scalability.

Fragmentation: A memory pool that has a large amount
of unused memory, but not laid out to permit sat-
isfying a relatively small request is said to be frag-
mented. External fragmentation occurs when the
space is divided up into small fragments lying be-
tween allocated blocks of memory, while internal
fragmentation occurs when specific requests or types
of requests have been allotted more memory than
they actually requested.

Fully Associative Cache: A fully associative cache con-
tains only one set, so that it can hold any subset of
memory that fits within its capacity.

Grace Period: A grace period is any contiguous time
interval such that any RCU read-side critical section
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that began before the start of that interval has com-
pleted before the end of that same interval. Many
RCU implementations define a grace period to be a
time interval during which each thread has passed
through at least one quiescent state. Since RCU
read-side critical sections by definition cannot con-
tain quiescent states, these two definitions are almost
always interchangeable.

Hot Spot: Data structure that is very heavily used, result-
ing in high levels of contention on the corresponding
lock. One example of this situation would be a hash
table with a poorly chosen hash function.

Invalidation: When a CPU wishes to write to a data
item, it must first ensure that this data item is not
present in any other CPUs’ cache. If necessary, the
item is removed from the other CPUs’ caches via
“invalidation” messages from the writing CPUs to
any CPUs having a copy in their caches.

IPI: Inter-processor interrupt, which is an interrupt sent
from one CPU to another. IPIs are used heavily in
the Linux kernel, for example, within the scheduler
to alert CPUs that a high-priority process is now
runnable.

IRQ: Interrupt request, often used as an abbreviation for
“interrupt” within the Linux kernel community, as in
“irq handler”.

Linearizable: A sequence of operations is “linearizable”
if there is at least one global ordering of the se-
quence that is consistent with the observations of
all CPUs/threads.

Lock: A software abstraction that can be used to guard
critical sections, as such, an example of a ”mutual
exclusion mechanism”. An “exclusive lock” permits
only one thread at a time into the set of critical sec-
tions guarded by that lock, while a “reader-writer
lock” permits any number of reading threads, or but
one writing thread, into the set of critical sections
guarded by that lock. (Just to be clear, the presence
of a writer thread in any of a given reader-writer
lock’s critical sections will prevent any reader from
entering any of that lock’s critical sections and vice
versa.)

Lock Contention: A lock is said to be suffering con-
tention when it is being used so heavily that there

is often a CPU waiting on it. Reducing lock con-
tention is often a concern when designing parallel al-
gorithms and when implementing parallel programs.

Memory Consistency: A set of properties that impose
constraints on the order in which accesses to groups
of variables appear to occur. Memory consistency
models range from sequential consistency, a very
constraining model popular in academic circles,
through process consistency, release consistency, and
weak consistency.

MESI Protocol: The cache-coherence protocol featur-
ing modified, exclusive, shared, and invalid (MESI)
states, so that this protocol is named after the states
that the cache lines in a given cache can take on. A
modified line has been recently written to by this
CPU, and is the sole representative of the current
value of the corresponding memory location. An
exclusive cache line has not been written to, but this
CPU has the right to write to it at any time, as the
line is guaranteed not to be replicated into any other
CPU’s cache (though the corresponding location in
main memory is up to date). A shared cache line is
(or might be) replicated in some other CPUs’ cache,
meaning that this CPU must interact with those other
CPUs before writing to this cache line. An invalid
cache line contains no value, instead representing
“empty space” in the cache into which data from
memory might be loaded.

Mutual-Exclusion Mechanism: A software abstraction
that regulates threads’ access to “critical sections”
and corresponding data.

NMI: Non-maskable interrupt. As the name indicates,
this is an extremely high-priority interrupt that can-
not be masked. These are used for hardware-specific
purposes such as profiling. The advantage of using
NMIs for profiling is that it allows you to profile
code that runs with interrupts disabled.

NUCA: Non-uniform cache architecture, where groups
of CPUs share caches. CPUs in a group can therefore
exchange cache lines with each other much more
quickly than they can with CPUs in other groups.
Systems comprised of CPUs with hardware threads
will generally have a NUCA architecture.

NUMA: Non-uniform memory architecture, where mem-
ory is split into banks and each such bank is “close”
to a group of CPUs, the group being termed a
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“NUMA node”. An example NUMA machine is
Sequent’s NUMA-Q system, where each group of
four CPUs had a bank of memory near by. The CPUs
in a given group can access their memory much more
quickly than another group’s memory.

NUMA Node: A group of closely placed CPUs and as-
sociated memory within a larger NUMA machines.
Note that a NUMA node might well have a NUCA
architecture.

Pipelined CPU: A CPU with a pipeline, which is an
internal flow of instructions internal to the CPU that
is in some way similar to an assembly line, with
many of the same advantages and disadvantages. In
the 1960s through the early 1980s, pipelined CPUs
were the province of supercomputers, but started
appearing in microprocessors (such as the 80486) in
the late 1980s.

Process Consistency: A memory-consistency model in
which each CPU’s stores appear to occur in pro-
gram order, but in which different CPUs might see
accesses from more than one CPU as occurring in
different orders.

Program Order: The order in which a given thread’s in-
structions would be executed by a now-mythical “in-
order” CPU that completely executed each instruc-
tion before proceeding to the next instruction. (The
reason such CPUs are now the stuff of ancient myths
and legends is that they were extremely slow. These
dinosaurs were one of the many victims of Moore’s-
Law-driven increases in CPU clock frequency. Some
claim that these beasts will roam the earth once again,
others vehemently disagree.)

Quiescent State: In RCU, a point in the code where
there can be no references held to RCU-protected
data structures, which is normally any point outside
of an RCU read-side critical section. Any interval of
time during which all threads pass through at least
one quiescent state each is termed a “grace period”.

Read-Copy Update (RCU): A synchronization mecha-
nism that can be thought of as a replacement for
reader-writer locking or reference counting. RCU
provides extremely low-overhead access for readers,
while writers incur additional overhead maintaining
old versions for the benefit of pre-existing readers.
Readers neither block nor spin, and thus cannot par-
ticipate in deadlocks, however, they also can see stale

data and can run concurrently with updates. RCU
is thus best-suited for read-mostly situations where
stale data can either be tolerated (as in routing tables)
or avoided (as in the Linux kernel’s System V IPC
implementation).

Read-Side Critical Section: A section of code guarded
by read-acquisition of some reader-writer synchro-
nization mechanism. For example, if one set of crit-
ical sections are guarded by read-acquisition of a
given global reader-writer lock, while a second set
of critical section are guarded by write-acquisition
of that same reader-writer lock, then the first set of
critical sections will be the read-side critical sections
for that lock. Any number of threads may concur-
rently execute the read-side critical sections, but only
if no thread is executing one of the write-side critical
sections.

Reader-Writer Lock: A reader-writer lock is a mutual-
exclusion mechanism that permits any number of
reading threads, or but one writing thread, into the
set of critical sections guarded by that lock. Threads
attempting to write must wait until all pre-existing
reading threads release the lock, and, similarly, if
there is a pre-existing writer, any threads attempting
to write must wait for the writer to release the lock.
A key concern for reader-writer locks is “fairness”:
can an unending stream of readers starve a writer or
vice versa.

Sequential Consistency: A memory-consistency model
where all memory references appear to occur in an
order consistent with a single global order, and where
each CPU’s memory references appear to all CPUs
to occur in program order.

Store Buffer: A small set of internal registers used by a
given CPU to record pending stores while the cor-
responding cache lines are making their way to that
CPU. Also called “store queue”.

Store Forwarding: An arrangement where a given CPU
refers to its store buffer as well as its cache so as to
ensure that the software sees the memory operations
performed by this CPU as if they were carried out in
program order.

Super-Scalar CPU: A scalar (non-vector) CPU capable
of executing multiple instructions concurrently. This
is a step up from a pipelined CPU that executes mul-
tiple instructions in an assembly-line fashion — in a
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super-scalar CPU, each stage of the pipeline would
be capable of handling more than one instruction.
For example, if the conditions were exactly right, the
Intel Pentium Pro CPU from the mid-1990s could
execute two (and sometimes three) instructions per
clock cycle. Thus, a 200MHz Pentium Pro CPU
could “retire”, or complete the execution of, up to
400 million instructions per second.

Transactional Memory (TM): Shared-memory syn-
chronization scheme featuring “transactions”, each
of which is an atomic sequence of operations
that offers atomicity, consistency, isolation, but
differ from classic transactions in that they do
not offer durability. Transactional memory may
be implemented either in hardware (hardwire
transactional memory, or HTM), in software
(software transactional memory, or STM), or in a
combination of hardware and software (“unbounded”
transactional memory, or UTM).

Vector CPU: A CPU that can apply a single instruction
to multiple items of data concurrently. In the 1960s
through the 1980s, only supercomputers had vector
capabilities, but the advent of MMX in x86 CPUs
and VMX in PowerPC CPUs brought vector process-
ing to the masses.

Write Miss: A cache miss incurred because the corre-
sponding CPU attempted to write to a cache line that
is read-only, most likely due to its being replicated
in other CPUs’ caches.

Write-Side Critical Section: A section of code guarded
by write-acquisition of some reader-writer synchro-
nization mechanism. For example, if one set of crit-
ical sections are guarded by write-acquisition of a
given global reader-writer lock, while a second set
of critical section are guarded by read-acquisition of
that same reader-writer lock, then the first set of criti-
cal sections will be the write-side critical sections for
that lock. Only one thread may execute in the write-
side critical section at a time, and even then only if
there are no threads are executing concurrently in
any of the corresponding read-side critical sections.



374 APPENDIX H. GLOSSARY



Bibliography

[aCB08] University at California Berkeley.
SETI@HOME. Available: http:
//setiathome.berkeley.edu/
[Viewed January 31, 2008], December
2008.

[ACMS03] Andrea Arcangeli, Mingming Cao, Paul E.
McKenney, and Dipankar Sarma. Using
read-copy update techniques for System V
IPC in the Linux 2.5 kernel. In Proceedings
of the 2003 USENIX Annual Technical
Conference (FREENIX Track), pages
297–310. USENIX Association, June
2003. Available: http://www.rdrop.
com/users/paulmck/RCU/rcu.
FREENIX.2003.06.14.pdf [Viewed
November 21, 2007].

[Adv02] Advanced Micro Devices. AMD x86-64 Ar-
chitecture Programmer’s Manual Volumes
1-5, 2002.

[Adv07] Advanced Micro Devices. AMD x86-64 Ar-
chitecture Programmer’s Manual Volume 2:
System Programming, 2007.

[Ale79] Christopher Alexander. The Timeless Way
of Building. Oxford University Press, New
York, 1979.

[Amd67] Gene Amdahl. Validity of the single proces-
sor approach to achieving large-scale com-
puting capabilities. In AFIPS Conference
Proceedings, pages 483–485, Washington,
DC, USA, 1967. IEEE Computer Society.

[And90] T. E. Anderson. The performance of spin
lock alternatives for shared-memory multi-
processors. IEEE Transactions on Parallel
and Distributed Systems, 1(1):6–16, January
1990.

[ARM10] ARM Limited. ARM Architecture Reference
Manual: ARMv7-A and ARMv7-R Edition,
2010.

[ATS09] Ali-Reza Adl-Tabatabai and Tatiana
Shpeisman. Draft specification of trans-
actional language constructs for c++.
http://research.sun.com/scalable/pubs/C++-
transactional-constructs-1.0.pdf, August
2009.

[BA01] Jeff Bonwick and Jonathan Adams. Maga-
zines and vmem: Extending the slab alloca-
tor to many CPUs and arbitrary resources.
In USENIX Annual Technical Conference,
General Track 2001, pages 15–33, 2001.

[BC05] Daniel Bovet and Marco Cesati. Under-
standing the Linux Kernel. O’Reilly Media,
Inc., third edition, 2005.

[BHS07] Frank Buschmann, Kevlin Henney, and Dou-
glas C. Schmidt. Pattern-Oriented Software
Architecture Volume 4: A Pattern Language
for Distributed Computing. Wiley, Chich-
ester, West Sussex, England, 2007.

[BK85] Bob Beck and Bob Kasten. VLSI assist
in building a multiprocessor UNIX sys-
tem. In USENIX Conference Proceedings,
pages 255–275, Portland, OR, June 1985.
USENIX Association.

[BLM05] C. Blundell, E. C. Lewis, and M. Martin.
Deconstructing transactional semantics:
The subtleties of atomicity. In Annual
Workshop on Duplicating, Deconstructing,
and Debunking (WDDD), June 2005. Avail-
able: http://www.cis.upenn.edu/
acg/papers/wddd05_atomic_
semantics.pdf [Viewed June 4, 2009].

375

http://setiathome.berkeley.edu/
http://setiathome.berkeley.edu/
http://www.rdrop.com/users/paulmck/RCU/rcu.FREENIX.2003.06.14.pdf
http://www.rdrop.com/users/paulmck/RCU/rcu.FREENIX.2003.06.14.pdf
http://www.rdrop.com/users/paulmck/RCU/rcu.FREENIX.2003.06.14.pdf
http://www.cis.upenn.edu/acg/papers/wddd05_atomic_semantics.pdf
http://www.cis.upenn.edu/acg/papers/wddd05_atomic_semantics.pdf
http://www.cis.upenn.edu/acg/papers/wddd05_atomic_semantics.pdf


376 BIBLIOGRAPHY

[BLM06] C. Blundell, E. C. Lewis, and M. Martin.
Subtleties of transactional memory and
atomicity semantics. Computer Architecture
Letters, 5(2), 2006. Available: http://
www.cis.upenn.edu/acg/papers/
cal06_atomic_semantics.pdf
[Viewed June 4, 2009].

[BMMM05] Luke Browning, Thomas Mathews, Paul E.
McKenney, and James Moody. Apparatus,
method, and computer program product for
converting simple locks in a multiproces-
sor system. Technical Report US Patent
6,842,809, US Patent and Trademark Office,
Washington, DC, January 2005.

[Boe09] Hans-J. Boehm. Transactional memory
should be an implementation tech-
nique, not a programming interface.
In HOTPAR 2009, page 6, Berkeley,
CA, USA, March 2009. Available:
http://www.usenix.org/event/
hotpar09/tech/full_papers/
boehm/boehm.pdf [Viewed May 24,
2009].

[But97] David Butenhof. Programming with POSIX
Threads. Addison-Wesley, Boston, MA,
USA, 1997.

[CHP71] P. J. Courtois, F. Heymans, and D. L. Par-
nas. Concurrent control with “readers” and
“writers”. Communications of the ACM,
14(10):667–668, October 1971.

[Cor06a] Jonathan Corbet. The kernel lock val-
idator. Available: http://lwn.net/
Articles/185666/ [Viewed: March
26, 2010], May 2006.

[Cor06b] Jonathan Corbet. Priority inheritance in the
kernel. Available: http://lwn.net/
Articles/178253/ [Viewed June 29,
2009], April 2006.

[Cor08] Jonathan Corbet. Linux weekly news.
Available: http://lwn.net/ [Viewed
November 26, 2008], November 2008.

[Cra94] Travis Craig. Building FIFO and priority-
queuing spin locks from atomic swap. Tech-
nical Report 93-02-02, University of Wash-
ington, Seattle, Washington, February 1994.

[CRKH05] Jonathan Corbet, Alessandro Rubini, and
Greg Kroah-Hartman. Linux Device Drivers.
O’Reilly Media, Inc., third edition, 2005.

[CSG99] David E. Culler, Jaswinder Pal Singh, and
Anoop Gupta. Parallel Computer Architec-
ture: a Hardware/Software Approach. Mor-
gan Kaufman, 1999.

[DCW+11] Luke Dalessandro, Francois Carouge, Sean
White, Yossi Lev, Mark Moir, Michael L.
Scott, and Michael F. Spear. Hybrid norec:
A case study in the effectiveness of best
effort hardware transactional memory. In
Proceedings of the 16th International Con-
ference on Architectural Support for Pro-
gramming Languages and Operating Sys-
tems (ASPLOS), ASPLOS ’11, pages ???–
???, New York, NY, USA, 2011. ACM.

[Des09] Mathieu Desnoyers. [RFC git tree]
userspace RCU (urcu) for Linux. Available:
http://lkml.org/lkml/2009/2/
5/572 http://lttng.org/urcu
[Viewed February 20, 2009], February
2009.

[Dij65] E. W. Dijkstra. Solution of a problem in
concurrent programming control. Commu-
nications of the ACM, 8(9):569, Sept 1965.

[Dij71] Edsger W. Dijkstra. Hierarchical or-
dering of sequential processes. Acta
Informatica, 1(2):115–138, 1971. Avail-
able: http://www.cs.utexas.edu/
users/EWD/ewd03xx/EWD310.PDF
[Viewed January 13, 2008].

[DLM+10] Dave Dice, Yossi Lev, Virendra J. Marathe,
Mark Moir, Dan Nussbaum, and Marek
Oleszewski. Simplifying concurrent algo-
rithms by exploiting hardware transactional
memory. In Proceedings of the 22nd ACM
symposium on Parallelism in algorithms and
architectures, SPAA ’10, pages 325–334,
New York, NY, USA, 2010. ACM.

[DLMN09] Dave Dice, Yossi Lev, Mark Moir,
and Dan Nussbaum. Early experience
with a commericial hardware trans-
actional memory implementation. In
Fourteenth International Conference on

http://www.cis.upenn.edu/acg/papers/cal06_atomic_semantics.pdf
http://www.cis.upenn.edu/acg/papers/cal06_atomic_semantics.pdf
http://www.cis.upenn.edu/acg/papers/cal06_atomic_semantics.pdf
http://www.usenix.org/event/hotpar09/tech/full_papers/boehm/boehm.pdf
http://www.usenix.org/event/hotpar09/tech/full_papers/boehm/boehm.pdf
http://www.usenix.org/event/hotpar09/tech/full_papers/boehm/boehm.pdf
http://lwn.net/Articles/185666/
http://lwn.net/Articles/185666/
http://lwn.net/Articles/178253/
http://lwn.net/Articles/178253/
http://lwn.net/
http://lkml.org/lkml/2009/2/5/572
http://lkml.org/lkml/2009/2/5/572
http://lttng.org/urcu
http://www.cs.utexas.edu/users/EWD/ewd03xx/EWD310.PDF
http://www.cs.utexas.edu/users/EWD/ewd03xx/EWD310.PDF


BIBLIOGRAPHY 377

Architectural Support for Programming
Languages and Operating Systems (AS-
PLOS ’09), pages 157–168, Washington,
DC, USA, March 2009. Available: http:
//research.sun.com/scalable/
pubs/ASPLOS2009-RockHTM.pdf
[Viewed February 4, 2009].

[Dov90] Ken F. Dove. A high capacity TCP/IP in
parallel STREAMS. In UKUUG Conference
Proceedings, London, June 1990.

[DSS06] Dave Dice, Ori Shalev, and Nir Shavit.
Transactional locking II. In Proc. In-
ternational Symposium on Distributed
Computing. Springer Verlag, 2006. Avail-
able: http://www.springerlink.
com/content/5688h5q0w72r54x0/
[Viewed March 10, 2008].

[EGCD03] T. A. El-Ghazawi, W. W. Carlson, and
J. M. Draper. UPC language specifications
v1.1. Available: http://upc.gwu.edu
[Viewed September 19, 2008], May 2003.

[Eng68] Douglas Engelbart. The demo.
Available: http://video.
google.com/videoplay?docid=
-8734787622017763097 [Viewed
November 28, 2008], December 1968.

[ENS05] Ryan Eccles, Blair Nonneck, and Debo-
rah A. Stacey. Exploring parallel program-
ming knowledge in the novice. In HPCS

’05: Proceedings of the 19th International
Symposium on High Performance Comput-
ing Systems and Applications, pages 97–102,
Washington, DC, USA, 2005. IEEE Com-
puter Society.

[ES05] Ryan Eccles and Deborah A. Stacey. Under-
standing the parallel programmer. In HPCS

’05: Proceedings of the 19th International
Symposium on High Performance Comput-
ing Systems and Applications, pages 156–
160, Washington, DC, USA, 2005. IEEE
Computer Society.

[FRK02] Hubertus Francke, Rusty Russell, and
Matthew Kirkwood. Fuss, futexes and
furwocks: Fast userlevel locking in linux.

In Ottawa Linux Symposium, pages 479–
495, June 2002. Available: http://
www.kernel.org/doc/ols/2002/
ols2002-pages-479-495.pdf
[Viewed May 22, 2011].

[Gar90] Arun Garg. Parallel STREAMS: a multi-
processor implementation. In USENIX Con-
ference Proceedings, pages 163–176, Berke-
ley CA, February 1990. USENIX Associa-
tion.

[Gar07] Bryan Gardiner. Idf: Gordon
moore predicts end of moore’s
law (again). Available: http:
//blog.wired.com/business/
2007/09/idf-gordon-mo-1.html
[Viewed: November 28, 2008], September
2007.

[GC96] Michael Greenwald and David R. Cheriton.
The synergy between non-blocking synchro-
nization and operating system structure. In
Proceedings of the Second Symposium on
Operating Systems Design and Implementa-
tion, pages 123–136, Seattle, WA, October
1996. USENIX Association.

[Gha95] Kourosh Gharachorloo. Memory con-
sistency models for shared-memory
multiprocessors. Technical Report
CSL-TR-95-685, Computer Systems
Laboratory, Departments of Electrical
Engineering and Computer Science,
Stanford University, Stanford, CA,
December 1995. Available: http:
//www.hpl.hp.com/techreports/
Compaq-DEC/WRL-95-9.pdf
[Viewed: October 11, 2004].

[GHJV95] Erich Gamma, Richard Helm, Ralph John-
son, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley, 1995.

[GKAS99] Ben Gamsa, Orran Krieger, Jonathan
Appavoo, and Michael Stumm. Tornado:
Maximizing locality and concurrency in
a shared memory multiprocessor oper-
ating system. In Proceedings of the 3rd

Symposium on Operating System Design
and Implementation, pages 87–100, New

http://research.sun.com/scalable/pubs/ASPLOS2009-RockHTM.pdf
http://research.sun.com/scalable/pubs/ASPLOS2009-RockHTM.pdf
http://research.sun.com/scalable/pubs/ASPLOS2009-RockHTM.pdf
http://www.springerlink.com/content/5688h5q0w72r54x0/
http://www.springerlink.com/content/5688h5q0w72r54x0/
http://upc.gwu.edu
http://video.google.com/videoplay?docid=-8734787622017763097
http://video.google.com/videoplay?docid=-8734787622017763097
http://video.google.com/videoplay?docid=-8734787622017763097
http://www.kernel.org/doc/ols/2002/ols2002-pages-479-495.pdf
http://www.kernel.org/doc/ols/2002/ols2002-pages-479-495.pdf
http://www.kernel.org/doc/ols/2002/ols2002-pages-479-495.pdf
http://blog.wired.com/business/2007/09/idf-gordon-mo-1.html
http://blog.wired.com/business/2007/09/idf-gordon-mo-1.html
http://blog.wired.com/business/2007/09/idf-gordon-mo-1.html
http://www.hpl.hp.com/techreports/Compaq-DEC/WRL-95-9.pdf
http://www.hpl.hp.com/techreports/Compaq-DEC/WRL-95-9.pdf
http://www.hpl.hp.com/techreports/Compaq-DEC/WRL-95-9.pdf


378 BIBLIOGRAPHY

Orleans, LA, February 1999. Available:
http://www.usenix.org/events/
osdi99/full_papers/gamsa/
gamsa.pdf [Viewed August 30, 2006].

[GMTW08] D. Guniguntala, P. E. McKenney, J. Triplett,
and J. Walpole. The read-copy-update
mechanism for supporting real-time appli-
cations on shared-memory multiprocessor
systems with Linux. IBM Systems Journal,
47(2):221–236, May 2008. Available:
http://www.research.ibm.com/
journal/sj/472/guniguntala.
pdf [Viewed April 24, 2008].

[GPB+07] Brian Goetz, Tim Peierls, Joshua Bloch,
Joseph Bowbeer, David Holmes, and Doug
Lea. Java: Concurrency in Practice. Addi-
son Wesley, Upper Saddle River, NJ, USA,
2007.

[Gra02] Jim Gray. Super-servers: Com-
modity computer clusters pose a
software challenge. Available:
http://research.microsoft.
com/en-us/um/people/gray/
papers/superservers(4t_
computers).doc [Viewed: June
23, 2004], April 2002.

[Gri00] Scott Griffen. Internet pioneers:
Doug englebart. Available: http:
//www.ibiblio.org/pioneers/
englebart.html [Viewed November
28, 2008], May 2000.

[Gro01] The Open Group. Single UNIX specifica-
tion. http://www.opengroup.org/
onlinepubs/007908799/index.
html, July 2001.

[Gro07] Dan Grossman. The transactional memory
/ garbage collection analogy. In OOPSLA
’07: Proceedings of the 22nd annual ACM
SIGPLAN conference on Object oriented
programming systems and applications,
pages 695–706, New York, NY, USA, Octo-
ber 2007. ACM. Available: http://www.
cs.washington.edu/homes/djg/
papers/analogy_oopsla07.pdf
[Viewed December 19, 2008].

[GT90] Gary Graunke and Shreekant Thakkar. Syn-
chronization algorithms for shared-memory
multiprocessors. IEEE Computer, 23(6):60–
69, June 1990.

[HCS+05] Lorin Hochstein, Jeff Carver, Forrest Shull,
Sima Asgari, and Victor Basili. Parallel
programmer productivity: A case study of
novice parallel programmers. In SC ’05:
Proceedings of the 2005 ACM/IEEE confer-
ence on Supercomputing, page 35, Wash-
ington, DC, USA, 2005. IEEE Computer
Society.

[Her90] Maurice P. Herlihy. A methodology for
implementing highly concurrent data struc-
tures. In Proceedings of the 2nd ACM SIG-
PLAN Symposium on Principles and Prac-
tice of Parallel Programming, pages 197–
206, March 1990.

[Her05] Maurice Herlihy. The transactional man-
ifesto: software engineering and non-
blocking synchronization. In PLDI ’05: Pro-
ceedings of the 2005 ACM SIGPLAN con-
ference on Programming language design
and implementation, pages 280–280, New
York, NY, USA, 2005. ACM Press.

[HM93] Maurice Herlihy and J. Eliot B. Moss. Trans-
actional memory: Architectural support for
lock-free data structures. The 20th Annual
International Symposium on Computer Ar-
chitecture, pages 289–300, May 1993.

[HMB06] Thomas E. Hart, Paul E. McKenney,
and Angela Demke Brown. Making
lockless synchronization fast: Performance
implications of memory reclamation.
In 20th IEEE International Parallel
and Distributed Processing Symposium,
Rhodes, Greece, April 2006. Available:
http://www.rdrop.com/users/
paulmck/RCU/hart_ipdps06.pdf
[Viewed April 28, 2008].

[Hol03] Gerard J. Holzmann. The Spin Model
Checker: Primer and Reference Manual.
Addison-Wesley, 2003.

[HP95] John L. Hennessy and David A. Patterson.
Computer Architecture: A Quantitative Ap-
proach. Morgan Kaufman, 1995.

http://www.usenix.org/events/osdi99/full_papers/gamsa/gamsa.pdf
http://www.usenix.org/events/osdi99/full_papers/gamsa/gamsa.pdf
http://www.usenix.org/events/osdi99/full_papers/gamsa/gamsa.pdf
http://www.research.ibm.com/journal/sj/472/guniguntala.pdf
http://www.research.ibm.com/journal/sj/472/guniguntala.pdf
http://www.research.ibm.com/journal/sj/472/guniguntala.pdf
http://research.microsoft.com/en-us/um/people/gray/papers/superservers(4t_computers).doc
http://research.microsoft.com/en-us/um/people/gray/papers/superservers(4t_computers).doc
http://research.microsoft.com/en-us/um/people/gray/papers/superservers(4t_computers).doc
http://research.microsoft.com/en-us/um/people/gray/papers/superservers(4t_computers).doc
http://www.ibiblio.org/pioneers/englebart.html
http://www.ibiblio.org/pioneers/englebart.html
http://www.ibiblio.org/pioneers/englebart.html
http://www.opengroup.org/onlinepubs/007908799/index.html
http://www.opengroup.org/onlinepubs/007908799/index.html
http://www.opengroup.org/onlinepubs/007908799/index.html
http://www.cs.washington.edu/homes/djg/papers/analogy_oopsla07.pdf
http://www.cs.washington.edu/homes/djg/papers/analogy_oopsla07.pdf
http://www.cs.washington.edu/homes/djg/papers/analogy_oopsla07.pdf
http://www.rdrop.com/users/paulmck/RCU/hart_ipdps06.pdf
http://www.rdrop.com/users/paulmck/RCU/hart_ipdps06.pdf


BIBLIOGRAPHY 379

[HS08] Maurice Herlihy and Nir Shavit. The Art
of Multiprocessor Programming. Morgan
Kaufmann, Burlington, MA, USA, 2008.

[HW92] Wilson C. Hsieh and William E. Weihl. Scal-
able reader-writer locks for parallel sys-
tems. In Proceedings of the 6th International
Parallel Processing Symposium, pages 216–
230, Beverly Hills, CA, USA, March 1992.

[IBM94] IBM Microelectronics and Motorola. Pow-
erPC Microprocessor Family: The Program-
ming Environments, 1994.

[Inm85] Jack Inman. Implementing loosely cou-
pled functions on tightly coupled en-
gines. In USENIX Conference Proceedings,
pages 277–298, Portland, OR, June 1985.
USENIX Association.

[Int92] International Standards Organization.
Information Technology - Database Lan-
guage SQL. ISO, 1992. Available: http:
//www.contrib.andrew.cmu.edu/
~shadow/sql/sql1992.txt [Viewed
September 19, 2008].

[Int02a] Intel Corporation. Intel Itanium Architec-
ture Software Developer’s Manual Volume
3: Instruction Set Reference, 2002.

[Int02b] Intel Corporation. Intel Itanium Architec-
ture Software Developer’s Manual Volume
3: System Architecture, 2002.

[Int04a] Intel Corporation. IA-32 Intel Architecture
Software Developer’s Manual Volume
2B: Instruction Set Reference, N-Z, 2004.
Available: ftp://download.intel.
com/design/Pentium4/manuals/
25366714.pdf [Viewed: February 16,
2005].

[Int04b] Intel Corporation. IA-32 Intel Architecture
Software Developer’s Manual Volume
3: System Programming Guide, 2004.
Available: ftp://download.intel.
com/design/Pentium4/manuals/
25366814.pdf [Viewed: February 16,
2005].

[Int04c] International Business Machines
Corporation. z/Architecture prin-
ciples of operation. Available:
http://publibz.boulder.ibm.
com/epubs/pdf/dz9zr003.pdf
[Viewed: February 16, 2005], May 2004.

[Int07] Intel Corporation. Intel 64 Architec-
ture Memory Ordering White Paper,
2007. Available: http://developer.
intel.com/products/processor/
manuals/318147.pdf [Viewed:
September 7, 2007].

[Int11] Intel Corporation. Intel 64 and IA-32
Architectures Software DeveloperâĂŹs
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