Tokenizer

class pyspark.ml.feature.Tokenizer(*, inputCol=None, outputCol=None)[source]

A tokenizer that converts the input string to lowercase and then splits it by white spaces.

New in version 1.3.0.

Examples

>>> df = spark.createDataFrame([("a b c",)], ["text"])
>>> tokenizer = Tokenizer(outputCol="words")
>>> tokenizer.setInputCol("text")
Tokenizer...
>>> tokenizer.transform(df).head()
Row(text='a b c', words=['a', 'b', 'c'])
>>> # Change a parameter.
>>> tokenizer.setParams(outputCol="tokens").transform(df).head()
Row(text='a b c', tokens=['a', 'b', 'c'])
>>> # Temporarily modify a parameter.
>>> tokenizer.transform(df, {tokenizer.outputCol: "words"}).head()
Row(text='a b c', words=['a', 'b', 'c'])
>>> tokenizer.transform(df).head()
Row(text='a b c', tokens=['a', 'b', 'c'])
>>> # Must use keyword arguments to specify params.
>>> tokenizer.setParams("text")
Traceback (most recent call last):
    ...
TypeError: Method setParams forces keyword arguments.
>>> tokenizerPath = temp_path + "/tokenizer"
>>> tokenizer.save(tokenizerPath)
>>> loadedTokenizer = Tokenizer.load(tokenizerPath)
>>> loadedTokenizer.transform(df).head().tokens == tokenizer.transform(df).head().tokens
True

Methods

clear(param)

Clears a param from the param map if it has been explicitly set.

copy([extra])

Creates a copy of this instance with the same uid and some extra params.

explainParam(param)

Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.

explainParams()

Returns the documentation of all params with their optionally default values and user-supplied values.

extractParamMap([extra])

Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.

getInputCol()

Gets the value of inputCol or its default value.

getOrDefault(param)

Gets the value of a param in the user-supplied param map or its default value.

getOutputCol()

Gets the value of outputCol or its default value.

getParam(paramName)

Gets a param by its name.

hasDefault(param)

Checks whether a param has a default value.

hasParam(paramName)

Tests whether this instance contains a param with a given (string) name.

isDefined(param)

Checks whether a param is explicitly set by user or has a default value.

isSet(param)

Checks whether a param is explicitly set by user.

load(path)

Reads an ML instance from the input path, a shortcut of read().load(path).

read()

Returns an MLReader instance for this class.

save(path)

Save this ML instance to the given path, a shortcut of ‘write().save(path)’.

set(param, value)

Sets a parameter in the embedded param map.

setInputCol(value)

Sets the value of inputCol.

setOutputCol(value)

Sets the value of outputCol.

setParams(self, \*[, inputCol, outputCol])

Sets params for this Tokenizer.

transform(dataset[, params])

Transforms the input dataset with optional parameters.

write()

Returns an MLWriter instance for this ML instance.

Attributes

inputCol

outputCol

params

Returns all params ordered by name.

Methods Documentation

clear(param)

Clears a param from the param map if it has been explicitly set.

copy(extra=None)

Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.

Parameters:
extradict, optional

Extra parameters to copy to the new instance

Returns:
JavaParams

Copy of this instance

explainParam(param)

Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.

explainParams()

Returns the documentation of all params with their optionally default values and user-supplied values.

extractParamMap(extra=None)

Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.

Parameters:
extradict, optional

extra param values

Returns:
dict

merged param map

getInputCol()

Gets the value of inputCol or its default value.

getOrDefault(param)

Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.

getOutputCol()

Gets the value of outputCol or its default value.

getParam(paramName)

Gets a param by its name.

hasDefault(param)

Checks whether a param has a default value.

hasParam(paramName)

Tests whether this instance contains a param with a given (string) name.

isDefined(param)

Checks whether a param is explicitly set by user or has a default value.

isSet(param)

Checks whether a param is explicitly set by user.

classmethod load(path)

Reads an ML instance from the input path, a shortcut of read().load(path).

classmethod read()

Returns an MLReader instance for this class.

save(path)

Save this ML instance to the given path, a shortcut of ‘write().save(path)’.

set(param, value)

Sets a parameter in the embedded param map.

setInputCol(value)[source]

Sets the value of inputCol.

setOutputCol(value)[source]

Sets the value of outputCol.

setParams(self, \*, inputCol=None, outputCol=None)[source]

Sets params for this Tokenizer.

New in version 1.3.0.

transform(dataset, params=None)

Transforms the input dataset with optional parameters.

New in version 1.3.0.

Parameters:
datasetpyspark.sql.DataFrame

input dataset

paramsdict, optional

an optional param map that overrides embedded params.

Returns:
pyspark.sql.DataFrame

transformed dataset

write()

Returns an MLWriter instance for this ML instance.

Attributes Documentation

inputCol = Param(parent='undefined', name='inputCol', doc='input column name.')
outputCol = Param(parent='undefined', name='outputCol', doc='output column name.')
params

Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.