pyspark.sql.functions.
nanvl
Returns col1 if it is not NaN, or col2 if col1 is NaN.
Both inputs should be floating point columns (DoubleType or FloatType).
DoubleType
FloatType
New in version 1.6.0.
Examples
>>> df = spark.createDataFrame([(1.0, float('nan')), (float('nan'), 2.0)], ("a", "b")) >>> df.select(nanvl("a", "b").alias("r1"), nanvl(df.a, df.b).alias("r2")).collect() [Row(r1=1.0, r2=1.0), Row(r1=2.0, r2=2.0)]