pyspark.sql.DataFrame.dropDuplicates¶
-
DataFrame.
dropDuplicates
(subset: Optional[List[str]] = None) → pyspark.sql.dataframe.DataFrame[source]¶ Return a new
DataFrame
with duplicate rows removed, optionally only considering certain columns.For a static batch
DataFrame
, it just drops duplicate rows. For a streamingDataFrame
, it will keep all data across triggers as intermediate state to drop duplicates rows. You can usewithWatermark()
to limit how late the duplicate data can be and the system will accordingly limit the state. In addition, data older than watermark will be dropped to avoid any possibility of duplicates.drop_duplicates()
is an alias fordropDuplicates()
.New in version 1.4.0.
Changed in version 3.4.0: Supports Spark Connect.
- Parameters
- subsetList of column names, optional
List of columns to use for duplicate comparison (default All columns).
- Returns
DataFrame
DataFrame without duplicates.
Examples
>>> from pyspark.sql import Row >>> df = spark.createDataFrame([ ... Row(name='Alice', age=5, height=80), ... Row(name='Alice', age=5, height=80), ... Row(name='Alice', age=10, height=80) ... ])
Deduplicate the same rows.
>>> df.dropDuplicates().show() +-----+---+------+ | name|age|height| +-----+---+------+ |Alice| 5| 80| |Alice| 10| 80| +-----+---+------+
Deduplicate values on ‘name’ and ‘height’ columns.
>>> df.dropDuplicates(['name', 'height']).show() +-----+---+------+ | name|age|height| +-----+---+------+ |Alice| 5| 80| +-----+---+------+