GNU PROLOG

A Native Prolog Compiler with Constraint Solving over Finite Domains

Edition 1.50, for GNU Prolog version 1.5.0
July 8, 2021

by Daniel Diaz

http://cri-dist.univ-paris1.fr/diaz

Copyright (C) 1999-2021 Daniel Diaz

Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice
and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for
verbatim copying, provided that the entire resulting derived work is distributed under the terms of a
permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the
above conditions for modified versions, except that this permission notice may be stated in a translation
approved by the [Free Software Foundation, 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.

http://www.fsf.org/

CONTENTS 1
Contents

[T Acknowledgements| 9

2 GNU Prolog License Conditions| 11

13__Introductionl 11

4 sing rolo 13

M1 Introductionl. oL 13

4.2 The GNU Prolog interactive interpreter| 13

4.2.1 Starting/exiting the interactive interpreter| 13

4.2.2 'The interactive interpreter read-execute-write loop| 15

4.2.3 Consulting a Prolog program|. 17

4.2.4 Scripting Prolog| 18

4.2.5 Interrupting a query| 18

E26 Thelne edifor . - « « v v oottt e e 18

4.3 Adjusting the size of Prolog data] o oo 20

4.4 The GNU Prolog compiler| 21

441 Different kKindsof codes|o 21

4.4.2 Compilation scheme|. oo 21

443 Using the compiler| oo 23

EZ4 TRunning an executable 27

4.4.5 Generating a new interactive interpreter| 27

4.4.6 The name mangling scheme] o oo 28

Debugging; 31

.. 31

P.2 The procedure box modell Lo 31

P.3 Debugging predicates|. L 31

[5.3.1 Running and stopping the debugger | 31

B32 Teashing ports | o v v i e 32

5.3.3 Spy-points|. e 32

.4 Debugging messages| 33

P.5 Debugger commands|o Lo 33

5.6 The WAM debugger| e 35

r dofinitions 37

6.1 _General formatl 37

6.2 Typesand modes| e e 37

6.3 Frrors] e 39

[6.3. General format and error contextl oL oL 39

6.3.2 Instantiation errorl. L e 39

6.3.3 Uninstantiation errorl L 40

6.3.4 Typeerror L e 40

6.3.5 Domain errord e 40

[6.3.6 Existence errorl 41

[6.3.7 Permission errorl e 41

6.3.8 Representation error|o e 41

639 FBvaluationerrorlo 42

6.3.10 Resource error]o e e 42

6.3.11 Syntax error| L 42

16.3.12 System error| L e e e 42

|7 Prolog directives and control constructs| 45

CONTENTS

[(.1 Prolog directives| 45
[CI1 Tntroductionl v ottt 45
7.1.2 dynamic/1| e 45
.. 45
7.1.4 multifile/d]. e 46
[7.1.5 discomtiguous/1| 46
[[16 ensure linked/d] o o i i i 47
[[.1.7 _built_in/0, built _in/i, built in £d/0, built in £4/1]. . - 47

1.8 dnclude/I| . . . L L e e e e e e e e 48

[7.1.9 if/1, else/0, endif/0, elif/1|. 48

[7.1.10 _ensure_loaded/1| e e 49

7111 op/3| . . e 49

[TII2 char conversion/2. o v v v v i it 49

7.1.13 set_prolog flag/2| e 50

7.1.14 dinitialization/1|. e 50

[7.1.15 foreign/2, foreign/1|. 50
.................................... 51
2.1 true/0, fail/0, /0| L 51

[722 (’,’)/2 - conjunction, (;)/2 - disjunction, (->)/2 - if-then, (¥->)/2 - soft-cut |

| (soft if-then)| 51
[T23 call/Tl. 52

[1.2.4 catch/3, throw/1| e 53

18 Prolog built-in predicates| 55
8.1 Type testing] e 55

8.1.1 var/1, nonvar/1, atom/1, integer/1, float/1, number/1, atomic/1,

compound/1, callable/1, ground/1, is_list/1, list/1,

partial_list/1, list_or_partial list/1|. 55

B2 Term unificationl 56
18.2.1 (=)/2 - Prolog unification| o 56
[8.2.2 unify with occurs_check/2|., 56
[B2.3 (\=)/2-not Prolog unifiable] 57

8.3 Term comparison| L oL e e e e e e 57
[:3.1 Standard total ordering of terms|. 57
18.3.2 ==) /2 - term identical, (\==)/2 - term not identical |

| (6<) /2 - term less than, (8=<)/2 - term less than or equal to |
| (@>) /2 - term greater than, (8>=)/2 - term greater than or equal to] 57
8.3.3 compare/3 | e e e 58

B4 Term processing] v v o 59
B.4.1 functor/3] e e 59

8.4. Arg/3 | . . 59

4. =,)/2-UNIV Lo 60

8.4.4 copy_term/2|. e 60

8.4.5 term variables/2, term variables/3[. L. 61

8.4.6 subsumes _term/2[. 61
8.4.7 acyclic_term/1|. 61
RB48 termhash/4, term hash/2|. o i 62
[8.4.9 setarg/4, setarg/3| 63

[8.5 Variable naming/numbering| Lo L 63
8.5.1 name_singleton vars/1| 63

.0. name_quUery._vars/2lo e e 64

B5.3 bind_variables/2, numbervars/3, numbervars/i|. 64
8.5.4 termref/2 e 65

8.6 Arithmeticl. 66

CONTENTS 3

[8.6.1 Evaluation of an arithmetic expression| 66
@.6.2 (is)/2 - evaluate expression| 69
B6.3 (=:=)/2 - arithmetic equal, (=\=)/2 - arithmetic not equal, |

(<) /2 - arithmetic less than, (=<)/2 - arithmetic less than or equal to, |

(>) /2 - arithmetic greater than, (>=)/2 - arithmetic greater than or equal to] . . 69
.. 70

8.7 Dynamic clause management| Lo 70
BZI Tntroductionl o v v vt 70
8.7.2 asserta/l1, assertz/1| 71
B.7.3 retract/1l e e 72
B.7.4 retractall/l] e e e e 72
B.7.5 clause/2|. e e e 73
B.7.6 abolish/1l e e 73

8.8 Predicate informationl 74
8.8.1 current_predicate/1] 74
BB2 predicato Proporty/2. - - « o o oo e 75

8.9 All solutionsl. e e e 76
891 Tntroductionl e 76
8.9.2 findall/4, findall/3| 76

8.9.3 bagof/3, setof/3|. L 77

B0 Streamsl e e e 78
8.10.1 Introductionl e e 78
8.10.2 current_input/1| e 79
8.10.3 current_output/1| 79
8.10.4 set_input/1|. e e e 80
8.10.5 set_output/1| L e e 80
BI0.6 open/4,open/3| 81
[BI0.7 <close/2, close/d|. 82
8.10.8 flush output/1, flush output/O0|. 83
8.10.9 current_stream/1| 83

[8.10.10 stream_property/2[. 84
10.11 at_end_of stream/1, at_end of _stream/0| v v v it 85

[8.10.12 stream_position/2[. 85
[R10.13 set_stream position/2] i 86
B.10.14 seek/4]l e e e e e e e 86
8.10.15 character_count/2|. e 87
8.10.16_lime_count/2| 0 i e e e e e e e e e e e e e e e e e e 88
[8.10.17 line_position/2] 88
8.10.18 stream line._column/3| o v v it e e e e e e e e e e e e 89
8.10.19 set_stream line column/3| 89
8.10.20 add_stream alias/2 e e e e 90
8.10.21 current_alias/2| e e e e e e 90
91
91
92
92
93
93
94
94
[8.11.2 open_input_atom_stream/2, open_input_chars_stream/2, |

| open_input_codes_stream/2[. Lo 94
[RI1.3 close_input_atom stream/1, close_input_chars_stream/1,
| close_input_codes_stream/1|o 95

4 CONTENTS
[8.11.4 open_output_atom_stream/1, open_output_chars_stream/1, |

| open_output_codes_stream/1| L oL 96
[8.11.5 close_output_atom_stream/2, close_output_chars_stream/2, |

| close_output_codes_stream/2| 96
[8.12 Character input/output| 97
[8.12.1 get_char/2, get_char/1, get_code/1, get_code/2[. 97

[8.12.2" get_key/2, get key/1 get_key no_echo/2, get keymno_echo/1] 98

8.12.3 peek_char/2, peek_char/1, peek_code/1, peek code/2[. 99

.12.4 unget_char/2, unget_char/1, unget_code/2, unget_code/1 100

[8.12.5 put_char/2, put_char/1, put_code/1, put_code/2, n1/1,nl/0 100

[8.13 Byte input/output| 101
[13.1 getbyte/2, getbyte/1] 101

8.13.2 peek byte/2, peek byte/1|. 102

8.13.3 unget_byte/2, unget byte/1| 102

.13.4 put_byte/2, put_byte/1] 103

[8.14 Term input/output| 104
[8.14.1 read_term/3, read_term/2, read/2, read/1| 104

[R142 read atom/2, read atom/1, read_integer/2, read _integer/1, |

| read_number/2, read number/1| 105
8.14.3 read_token/2, read token/1| Lo 106

8.14.4 syntax_error_info/4]. L 107

BI45 Tast read start line column/2| ¢ oo vttt 107

[8.14.6 write_term/3, write_term/2, write/2, write/1, writeq/2, writeq/1,

write_canonical/2, write_canonical/1, display/2, display/1, print/2,

‘ Print/1] 108
147 format/3, format/2] L 110
[8.14.8 portray_clause/2, portray_clause/1| 112
[B14.9 getprint_stream/d] L 113
|8.14.10 og/3| ... 113
B.14.11 current op/3| e e e e e e e e e 115
8.14.12 char_conversion/2|. e 116
8.14.13 current_char_conversion/2| e e e 116
[8.15 Input/output from/to constant terms| L L 117
8.15.1 read_term_from_atom/3, read_from_atom/2, read_token_from_atom/2| 117
8.15.2 read_term_from_chars/3, read from_chars/2, read_token from_chars/2 117
38.15.3 read_term from codes/3, read from codes/2, read _token from codes/2[. . . . 118

[8.15.4 write_term to_atom/3, write_to_atom/2, writeq to_atom/2,

write_canonical_to_atom/2, display_to_atom/2, print_to_atom/2,

format_to_atom/3|. 118

[8.15.5 write_term_to_chars/3, write_to_chars/2, writeq_to_chars/2,

write_canonical _to_chars/2, display_to_chars/2, print_to_chars/2,

format_to chars/3l . « o v o e e e 119

[8.15.6 write_term to_codes/3, write_to_codes/2, writeq_to_codes/2,

write_canonical _to_codes/2, display_to_codes/2, print_to_codes/2,

format to codes/3| 120

[8.16 DEC-10 compatibility input/output| 120
RBI6.1 Tntroductionl o o e 120
3.16.2 see/1, tell/1 append/1|. 121
BI6:3 seeing/T, telling/I]. 121
BI6.4 seen/0, told/0] 122
8165 86t0/L, 8ot/L. SKiB/T] - - « o o o o e 122
BI6.6 put/1, tab/I] oo 123
[BI7 Term expansion] v v vt v 123

8.17.1 Definite clause grammars| oL Lo Lo 123

CONTENTS 5

[8.17.2 expand_term/2, term_expansion/2 124
[RI7.3 phrase/3, phrase/2 o v 125
18.18 Logic, control and exceptions| e 126
8.18.1 abort/0, stop/0, top_level/0, break/0, halt/1, halt/0Of 126

.18. false/0, once/1, (\+)/1-not provable, call/2-11, call with_args/1-11, call_det
forall/2l. e e 126
8.18.3 repeat/O|. L 127
8.18.4 between/3, for/3|. e 128
18.19 Atomic term processing]ot e e e e e e e e e 128
8.19.1 atom_length/2| e 129
BI0.2 atomconcat/3 129
[8.19.3 sub atom/Bl e 129
[8.19.4 char_code/2|. e 130
8.19.5 lower_upper/2[. 130
.19.6 atom_chars/2, atom_codes/2| L 131
18.19.7 number_atom/2, number_chars/2, number codes/2[. 132
.. 133
[8.19.9 mew_atom/2, mew_atom/1| 133
8.19.10 current_atom/1f. 134
[8.19.11 atom_property/2| 134
B30 DL DrOGossing - - -« « o o o oo 135
[8.20.1 append/3|. 135
[8:20.2 member/2, memberchk/2] 135
8.20.3 reverse/2l 136
8.20.4 delete/3, select/3] e 136
8.20.5 subtract/3| e 136
[8.20.6 permutation/2| 137
8.20.7 prefix/2, suffix/2| L 137
B20.8 sublist/2 138
8.20.9 Tast/2] e e 138
8.20.10 flatten/2l e 138
[8.20.11 Tength/2. 139
... 139
[8.20.13 max_1list/2, min_list/2, sum_list/2|. 139
B20.14 maplist/2-8]. 140
[8:20.15 sort/2, msort/2, keysort/2 sort/1, msort/1, keysort/1|. 140
821 Global variablesl. 141
821.1 Introductionl 141
8.21.2 g assign/2, g assignb/2, g link/2[. 143
8.21.3 gread/2|. e 143
3.21. _array-size/2| 144
.21.5 g_inc/3, g_inc/2, g_inco/2, g_inc/1, g_dec/3, g_dec/2, g_.deco/2, g dec/1| . . . 144
21, _set_bit/2, g_reset_bit/2, g_test_set_bit/2, g test_reset_bit/2] 145
8.21.7 Examples|. 146
8.22 Prolog state] 148
8.22.1 set_prolog flag/2| e 148
8.22.2 current_prolog flag/2| e e 151
8. set_bipmname/2| 151
B220 curremt bipmaie/d . . . o o v oo 151
[22.5 write pl state file/1, read pl state file/d|. 152
[8.23 Program state|. 153
m T consult/1, ’.°/2 - program consult] v v v vt 153
.. 153

CONTENTS

18.24 System statistics| oL 155
[B:241 statistics/0, Statistics/2 i e 155
5.24.2 user_time/1, system_time/1, cpu_time/1, real _time/1| 155

[825 Random number generator] 156
8.25.1 set_seed/1, randomize/O| 156
[8.20.2 get_seed/1| 156
B25:3 random/dl. 157
8.25.4 random/3|. e e e e 157

8.26 File name processing] Lo 158
8.26.1 absolute filemname/2[. 158
18.26.2 is_absolute_file name/1, is relative filemname/1] 158
[8.26.3 decompose_filemame/4| 159
8.26.4 prolog filename/2| e e 159

8.2 perating system interface] L 160
8.27.1 argument_counter/1| 160
8.27.2 argument_value/2| 160
B3 t@mmomb Lot/ - - - o oo e 161
B274 environ/2o 161
[8.27.5 make directory/1, delete directory/1, change directory/1] 162
|8.2 / .6 working directory/1] 162
8.27.7 directory files/2|. 162
B278 rename £ile/2 163
[8.27.9 deletefile/1, unlink/1] 163
8.27.10 file permission/2, file_exists/1| oL 164
8.27.11 file property/2| e 165
8.27.12 temporary name/2| 166
B27I3 temporary file/3| 167
B2704 date time/T] o o v v 167
8.27.15 hostmame/1| e e e e 168
B.27.16 os_version/1] Lo e e 168
8.27.17 architecture/1]. e 168
18.27.18 shell/2, shell/1, shell/O| e 169
[8.27.19 system/2, system/1| 169
[B:27.20 spawn/3, spawn/2|. 170
8.27.21 popen/3| e 170
8.27.22 exec/5, exec/4| e 171
[8.27.23 fork prolog/1| 172
B2724 createpipe/2] 172
B2725 wait/2 o o o 173
[8.27.26 prolog pid/1| 173
8.27.27 send_signal/2l e e e e 174
8 8 3722 1 174
B2720 SeTeCt/Bl. . « - o v v 175

[8.28 Sockets input/outputf. 176
8281 Tntroductionl e 176
[B.28.2 socket/2]. 176
8.28.3 socket._close/1|. e 176
8.28.4 socket bind/2| 177
8.28.5 socket_connect/4]lo 178
8.28.6 socket listen/2 e e 178
[3.28.7 socket_accept/4, socket_accept/3| L 179
8.28.8 hostname address/2 179

18.29 Linedit management| Lo 180

8:29.1 get_linedit_prompt/1| 180

CONTENTS 7

[8.29.2 set_linedit_prompt/1|. 180
[8:29.3 add Iinedit_completion/d] 181
8.29.4 find_linedit_completion/2| 181
|9 _Finite domain solver and built-in predicates| 183
DI Tntroductionl. v ottt 183
Q.11 TFinite Domain variablesl L 183
9.2 FD wvariable parameters| Lo 184
9.2.1 fdmax_integer/1|. 184
022 fdvectormax/d] 185
9.2.3 fd set.vectormax/1|. e e 185
9.3 Initial value constraints] oL Lo 185
9.3.1 fd_domain/3, fd_domain_bool/1|. 185
9.3.2 fd domain/2|. e 186
9.4 Type testing] e e 187
9.4.1 fd_var/1, non_fd_var/1, generic_var/1, non_generic_var/1 187
0.5 FD variable informationl 187
9.5.1 fd.min/2, fd max/2, fd_size/2, fddom/2| 187
9.5.2 fd_has_extra_cstr/1, fd_has_vector/1, fd use vector/1|. 188
0.6 Arithmetic constraintsl 188
[9.6.1 FD arithmetic expressions| 188

[076.2 Partial AC: (#=)/2 - constraint equal, (#\=)/2 - constraint not equal

| (#<) /2 - constraint less than, (#=<)/2 - constraint less than or equal
| (#>) /2 - constraint greater than, (#>=)/2 - constraint greater than or equal| . . . 189

9.6.3 Full AC: (#=#)/2 - constraint equal, (#\=#)/2 - constraint not equal, |
| (#<#) /2 - constraint less than, (#=<#)/2 - constraint less than or equal, |

| (#>#) /2 - constraint greater than, (#>=#)/2 - constraint greater than or equal|. . 190
9.6.4 fd prime/1, fd not_prime/1|. Lo 191

0.7 Boolean and reified conSaingsl . . - « . o o b oo e e 191
9.7.1 Boolean FD expressions|. oo 191

9.7.2 fd reified in/4] L 192

9.7.3 (#\)/1 - constraint NO'T, (#<=>)/2 - constraint equivalent
(#\<=>) /2 - constraint different, (##)/2 - constraint
(#==>) /2 - constraint imply, (#\==>)/2 - constraint not imply,

| (#/\) /2 - constraint AND, (#\/\)/2 - constraint NAND, |
| (#\/) /2 - constraint OR, (#\\/)/2 - constraint NOR|. 193
9.7.4 fd_cardinality/2, fd_cardinality/3, fd_at_least_one/1, fd_at_most_one/1, |

L fd_only_one/1|. 194
[09.8 Symbolic constraints] 195
9.8.1 fd all different/1] oL e e 195

9.8.2 fd element/3| e e 195

9.8.3 fd element var/3|. L 196

[9.8.4 fd atmost/3, fd_atleast/3, fd exactly/3 196

[085 fdrelation/2, A relationc/2| « v v v i i 197

9.9 Labeling constraints| 198
9.9.1 fd_labeling/2, fd_labeling/1, fd_labelingff/1] 198

D10 Opimiation Gomstratitdl - - - - - -« « 199
9.10.1 fdminimize/2, fd maximize/2| 199

|10 Interfacing Prolog and C| 201
[10.1 Introductionl. o L e 201
[10.2 Including and using gprolog.hlo 201
10.3 Calling C from Prolog| 202
MO3 T TIntroductionl - - - « v v v v v 202

8 CONTENTS
1033 The Cfunctionl e 204
110.3.4 Input arguments|.o 204
10.3.0 OQutput arguments|. L 204
10.3.6 Input/output arguments| 205
[10.3.7 Writing non-deterministic C code] o i i 205
110.3.8 Example: input and output arguments| oL 206
10.3.9 Example: non-deterministic code| L oL L 207
10.3.10 Example: input/output arguments| o L. 209

[10.4 Manipulating Prolog terms| 210
[10.4.1 TIntroductionl e 210
110.4.2 Managing Prolog atoms|. L o 210
[10.4.3 Reading Prolog terms| 211
10.4.4 nifying Prolog terms|o 212
10.4.5 reating Prolog Terms] e e 214
110.4.6 Testing the type of Prolog terms|. 214
110.4.7 Comparing Prolog terms| o 215
[10.4.8 Term processing| 215
|10.4.9 Comparing and evaluating arithmetic expressions| 216

[10.5 Raising Prolog CITOIS| v v v v v v e e e e e e e e e e 217
[T0.5.7 Managing the error CONLEXT]. . . . « v v v v v v e e e e e e e e e e 217
[10.5.2 Instantiation errorl. 217
[10.5.3 Uninstantiation error] 217
110.5.4 Type error| e e e e 217
[10.5.5 Domain errord 217
[[05.6 Existence error] 218
[10.5.7 Permission error e e 218
[10.5.8 Representation error| Lo e 218
(059 Fvaluation errorl 218
105,10 Resource errorfo e e e e e e e 219
[10.5.11 Syntax error| 219
[10.5.12 System error|o e e 219

[10.6 Calling Prolog from C| 220
[10.6.1 Introductionl e 220
[10.6.2 Example: my call/1-acall/iclone. 221
|10.6.3 Example: recovering the list of all operators| 223

10. efining a new Cmain() function| L L 224
110.7.1 Example: asking for ancestors| oL 225

[References] 229

[Tndex| 231

1 Acknowledgements

I am grateful to the members of the Loco project at INRIA Rocquencourt, for their encouragement. Their
involvement in this work led to useful feedback and exchange (1995).

Many thanks to all those people at (GNU|who helped me to finalize the GNU Prolog project (1999).

I would like to thank everybody who tested preliminary releases and helped me to put the finishing
touches to this system (1999).

I would particularly like to thank Jonathan Hodgson/ for the time and effort he put into the proofreading
of this manual. His suggestions, both regarding ISO technical aspects as well as the language in which it
was expressed, proved invaluable (1999-2017).

Thanks to Richard A. O’Keefe for his advice regarding the implementation of some Prolog built-in
predicates and for suggesting me the in-place installation feature (1999).

The on-line HTML version of this document was created using [HEVEA| developed by Luc Maranget who
kindly devoted so much of his time extending the capabilities of HEVEA in order to handle such a sizeable
manual (2000).

Jean-Christophe Aude kindly improved the visual aspect of both the illustrations and the GNU Prolog
web pages (2000).

Many thanks to the following contributors:
e Clive Coxﬂ and [Edmund Grimley Evans for their port to ix86/SCO (1999).
e Andreas Stolcke for his port to ix86/Solaris (1999).
e Alexander Diemancﬂ for his initial port to alpha/linux (2000).
e Nicolas Ollingerﬂ to for his port to ix86/FreeBSD (2000).
e Brook Milliganﬂ for his port to ix86/NetBSD and for general configuration improvements (2000).
e Lindsey Spratiﬂ for his port to powerpc/Darwin (MacOS X) (2002).
e Gwenolé Beauchesneﬂ for his port to x86_64/Linux (2002).
e Jason Beegarﬂ for his port to sparc/NetBSD and to powerpc/NetBSD (2003).
o Cesar Rabakﬁ for his initial port to ix86/MinGW (2004).
e Scott L. Bursorﬂ for his port to x86-64/Solaris (2007).
e David Hollanﬂ for his port to x86_.64/BSD systems (2008).
o Ozaki KiichilE for his port to x86_64/Darwin (Mac OS X) (2012).

lclive@laluna.demon.co.uk
2ax@apax.net
3nollinge@ens—lyon.fr
4brook@nmsu. edu
5spratt@alum.mit.edu
Sgbeauchesne@mandrakesoft.com
7jtb@netbsd.org
8csrabak@ig.com.br
9Scott@corals.com
10dnholland@netbsd.org
11gclient.gaap@gmail.com

http://www.inria.fr/Unites/ROCQUENCOURT-eng.html
http://www.gnu.org
http://www.sju.edu/~jhodgson
http://pauillac.inria.fr/~maranget/hevea/
http://www.rano.org/
http://www.speech.sri.com/people/stolcke/

10 1 ACKNOWLEDGEMENTS

e Jasper Taylof?] for his port to x86_64/MinGW64 (2011).
e Jasper Taylof™| for his ports to arm32/Linux and arm64,/Linux (2021).

Many thanks to Paulo Moura for his continuous help (in particular about Darwin ports), for his ISO
Prolog unit tests and for including GNU Prolog in his logtalk system (2000-).

Many thanks to John Collins, the [latexmk|/ maintainer, who greatly helped me to simplify the building of
the documentation using latexmk (2021).

12jasper@simulistiv:s .com
13jasper@simulist:i.cs .com

http://logtalk.org
https://ctan.org/pkg/latexmk/

11

2 GNU Prolog License Conditions

GNU Prolog is free software. Since version 1.4.0, GNU Prolog distributed under a dual license: LGPL
or GPL. So, you can redistribute it and/or modify it under the terms of either:

— the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.

or

— the GNU General Public License (GPL) as published by the Free Software Foundation; either version
2 of the License, or (at your option) any later version.

or both in parallel (as here).

GNU Prolog is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.

You should have received copies of the GNU General Public License and the GNU Lesser General Public
License along with this program. If not, see http://www.gnu.org/licenses/.

Remark: versions of GNU Prolog prior to 1.4.0 were entirely released under the GNU General Public
License (GPL).

3 Introduction

GNU Prolog [5] is a free Prolog compiler with constraint solving over finite domains. For recent infor-
mation about GNU Prolog please consult the GNU Prolog page.

GNU Prolog is a Prolog compiler based on the Warren Abstract Machine (WAM) [9] [I]. It first compiles
a Prolog program to a WAM file which is then translated to a low-level machine independent language
called mini-assembly specifically designed for GNU Prolog. The resulting file is then translated to the
assembly language of the target machine (from which an object is obtained). This allows GNU Prolog
to produce a native stand alone executable from a Prolog source (similarly to what does a C compiler
from a C program). The main advantage of this compilation scheme is to produce native code and to be
fast. Another interesting feature is that executables are small. Indeed, the code of most unused built-in
predicates is not included in the executables at link-time.

A lot of work has been devoted to the ISO compatibility. Indeed, GNU Prolog is very close to the ISO
standard for Prolog [6].

GNU Prolog also offers various extensions very useful in practice (global variables, OS interface, sock-
ets,...). In particular, GNU Prolog contains an efficient constraint solver over Finite Domains (FD). This
opens constraint logic programming to the user combining the power of constraint programming to the
declarativity of logic programming. The key feature of the GNU Prolog solver is the use of a single (low-
level) primitive to define all (high-level) FD constraints. There are many advantages of this approach:
constraints can be compiled, the user can define his own constraints (in terms of the primitive), the solver
is open and extensible (as opposed to black-box solvers like CHIP),. .. Moreover, the GNU Prolog solver
is rather efficient, often more than commercial solvers.

GNU Prolog is inspired from two systems:

http://www.gnu.org/licenses/
http://www.gprolog.org

12

3 INTRODUCTION

e wamcc: a Prolog to C compiler [3]. the key point of wamcc was its ability to produce stand alone
executables using an original compilation scheme: the translation of Prolog to C via the WAM.
Its drawback was the time needed by gcc to compile the produced sources. GNU Prolog can also
produce stand alone executables but using a faster compilation scheme.

e clp(FD): a constraint programming language over FD []. Tts key feature was the use of a single
primitive to define FD constraints. GNU Prolog is based on the same idea but offers an extended
constraint definition language. In comparison to c1p(FD), GNU Prolog offers new predefined con-
straints, new predefined heuristics, reified constraints,. ..

Here are some features of GNU Prolog:

e Prolog system:

conforms to the ISO standard for Prolog (floating point numbers, streams, dynamic code,. ..).

a lot of extensions: global variables, definite clause grammars (DCG), sockets interface, oper-
ating system interface,. ..

more than 300 Prolog built-in predicates.
Prolog debugger and a low-level WAM debugger.
line editing facility under the interactive interpreter with completion on atoms.

powerful bidirectional interface between Prolog and C.

e Compiler:

native-code compiler producing stand alone executables.

simple command-line compiler accepting a wide variety of files: Prolog files, C files, WAM
files,. ..

direct generation of assembly code 15 times faster than wamcc + gcc.
most of unused built-in predicates are not linked (to reduce the size of the executables).
compiled predicates (native-code) as fast as wamcc on average.

consulted predicates (byte-code) 5 times faster than wamcc.

o Constraint solver:

FD variables well integrated into the Prolog environment (full compatibility with Prolog vari-
ables and integers). No need for explicit FD declarations.

very efficient FD solver (comparable to commercial solvers).
high-level constraints can be described in terms of simple primitives.

a lot of predefined constraints: arithmetic constraints, boolean constraints, symbolic con-
straints, reified constraints,. . .

several predefined enumeration heuristics.
the user can define his own new constraints.

more than 50 FD built-in constraints/predicates.

13

4 Using GNU Prolog

4.1 Introduction

GNU Prolog offers two ways to execute a Prolog program:
e interpreting it using the GNU Prolog interactive interpreter.
e compiling it to a (machine-dependent) executable using the GNU Prolog native-code compiler.

Running a program under the interactive interpreter allows the user to list it and to make full use of the
debugger on it (section [5] page . Compiling a program to native code makes it possible to obtain a
stand alone executable, with a reduced size and optimized for speed. Running a Prolog program compiled
to native-code is around 3-5 times faster than running it under the interpreter. However, it is not possible
to make full use of the debugger on a program compiled to native-code. Nor is it possible to list the
program. In general, it is preferable to run a program under the interpreter for debugging and then
use the native-code compiler to produce an autonomous executable. It is also possible to combine these
two modes by producing an executable that contains some parts of the program (e.g. already debugged
predicates whose execution-time speed is crucial) and interpreting the other parts under this executable.
In that case, the executable has the same facilities as the GNU Prolog interpreter but also integrates
the native-code predicates. This way to define a new enriched interpreter is detailed later (section

page .

4.2 The GNU Prolog interactive interpreter
4.2.1 Starting/exiting the interactive interpreter

GNU Prolog offers a classical Prolog interactive interpreter also called top-level. It allows the user to
execute queries, to consult Prolog programs, to list them, to execute them and to debug them. The
top-level can be invoked using the following command:

% gprolog [OPTION]... (the % symbol is the operating system shell prompt)

Options:

--init-goal GOAL execute GOAL before entering the top-level

--consult-file FILE consult FILE inside the top-level

—--entry-goal GOAL execute GOAL inside the top-level

-—query-goal GOAL execute GOAL as a query for the top-level

--help print a help and exit

--version print version number and exit

- do not parse the rest of the command-line

The main role of the gprolog command is to execute the top-level itself, i.e. to execute the built-in
predicate top_level/0 (section [8.18.1] page [126)) which will produce something like:

GNU Prolog 1.5.0 (64 bits)
Compiled May 3 2021, 16:36:43 with gcc
Copyright (C) 1999-2021 Daniel Diaz

| 7-

The top-level is ready to execute your queries as explained in the next section.

14 4 USING GNU PROLOG

To quit the top-level type the end-of-file key sequence (Ct1-D) or its term representation: end of file.
It is also possible to use the built-in predicate halt/0 (section [8.18.1] page|[126]).

However, before entering the top-level itself, the command-line is processed to treat all known options
(those listed above). All unrecognized arguments are collected together to form the argument list which
will be available using argument_value/2 (section page or argument_list/1 (section
page [161)). The -- option stops the parsing of the command-line, all remainding options are collected
into the argument list.

Several options are provided to execute a goal before entering the interaction with the user:

e The --init-goal option executes the GOAL as soon as it is encountered (while the command-line
is processed). GOAL is thus executed before entering top_level/O0.

e The --consult-file option consults the FILE at the entry of top_level/0 just after the banner
is displayed. —-consult-file options are handled before ——consult-file options.

e The —-entry-goal option executes the GOAL at the entry of top_level/0 just after the banner is
displayed.

e The --query-goal option executes the GUAL as if the user has typed in (under the top-level).

The above order is thus the order in which each kind of goal (init, entry, query) is executed. If there
are several goals of a same kind they are executed in the order of appearance. Thus, all init goals are
executed (in the order of appearance) before all entry goals and all entry goals are executed before all
query goals.

Each GOAL is passed as a shell argument (i.e. one shell string) and should not contain a terminal dot.
Example: --init-goal ’write(hello), nl’ under a sh-like. To be executed, a GOAL is transformed
into a term using read_term from atom(Goal, Term, [end_of _term(eof)]). Respecting both the syn-
tax of shell strings and of Prolog can be heavy. For instance, passing a backslash character \ can be
difficult since it introduces an escape sequence both in sh and inside Prolog quoted atoms. The use of
back quotes can then be useful since, by default, no escape sequence is processed inside back quotes (this
behavior can be controlled using the back_quotes Prolog flag (section page)

Since the Prolog argument list is created when the whole command-line is parsed, if a ~——init-goal option
uses argument_value/2 or argument_list/1 it will obtained the original command-line arguments (i.e.
including all recognized arguments).

Here is an example of using execution goal options:

% gprolog --init-goal ’write(before), nl’ --entry-goal ’write(inside), nl’
--query-goal ’append([a,b], [c,d],X)’

will produce the following:

before

GNU Prolog 1.5.0 (64 bits)

Compiled May 3 2021, 16:36:43 with gcc
Copyright (C) 1999-2021 Daniel Diaz

inside
| ?- append([a,b], [c,d],X).

X = [a,b,c,d]

yes
| 7=

4.2 The GNU Prolog interactive interpreter 15

NB: depending on the used shell it may be necessary to use other string delimiters (e.g. use " under
Windows cmd. exe).

4.2.2 The interactive interpreter read-execute-write loop

The GNU Prolog top-level is built on a classical read-execute-write loop that also allows for re-executions
(when the query is not deterministic) as follows:

e display the prompt, i.e. ’| 7-".

e read a query (i.e. a goal).

e execute the query.

e in case of success display the values of the variables of the query.

e if there are remaining alternatives (i.e. the query is not deterministic), display a ? and ask the user
who can use one of the following commands: RETURN to stop the execution, ; to compute the next
solution or a to compute all remaining solution.

Here is an example of execution of a query (“find the lists X and Y such that the concatenation of X and
Y is [a,b]”):

| ?- append(X,Y,[a,b,c]).

X =1

Y = [a,b,c] ? ; (here the user presses ; to compute another solution)

X = [a]

Y =[b,c] ? a (here the user presses a to compute all remaining solutions)

X = [a,b]

Y = [c] (here the user is not asked and the next solution is computed)
X = [a,b,c]

Y =1] (here the user is not asked and the next solution is computed)
no (no more solution)

In some cases the top-level can detect that the current solution is the last one (no more alternatives
remaining). In such a case it does not display the ? symbol (and does not ask the user). Example:

| 7= (X=1 ; X=2).

X=17 ; (here the user presses ; to compute another solution)
X=2 (here the user is not prompted since there are no more alternatives)
yes

The user can stop the execution even if there are more alternatives by typing RETURN.

| 7- (X=1 ; X=2).
X=17 (here the user presses RETURN to stop the execution)

yes

16 4 USING GNU PROLOG

The top-level tries to display the values of the variables of the query in a readable manner. For instance,
when a variable is bound to a query variable, the name of this variable appears. When a variable is a
singleton an underscore symbol _ is displayed (- is a generic name for a singleton variable, it is also called
an anonymous variable). Other variables are bound to new brand variable names. When a query variable
name X appears as the value of another query variable Y it is because X is itself not instantiated otherwise
the value of X is displayed. In such a case, nothing is output for X itself (since it is a variable). Example:

| 7- X=£f(A,B,_,A), A=k.

A
X

k (the value of A is displayed also in £/3 for X)
f(k,B,_,k) (since B is a variable which is also a part of X, B is not displayed)

| ?- functor(T,f,3), arg(1,T,X), arg(3,T,X).

—
]

f(X,_,X) (the 1% and 37¢ args are equal to X, the 2"? is an anonymous variable)

| ?7- read_from_atom(’k(X,Y,X).’,T).

T

k(A,_,A) (the 15t and 37¢ args are unified, a new variable name A is introduced)

The top-level uses variable binding predicates (section page . To display the value of a variable,
the top-level calls write_term/3 with the following option list: [quoted(true) ,numbervars(false),
namevars (true)] (section page . A term of the form ’>$VARNAME’ (Name) where Name is
an atom is displayed as a variable name while a term of the form ’$VAR’ (N) where N is an integer is
displayed as a normal compound term (such a term could be output as a variable name by write_term/3).
Example:

| 7- X="$VARNAME’ (°Y’), Y="$VAR’(1).

X=Y (the term ’$VARNAME’ (’Y’) is displayed as Y)
Y = ’$VAR’ (1) (the term ’$VAR’ (1) is displayed as is)

| 7- X=Y, Y="$VAR’(1).

X >$VAR’ (1)
Y = ’$VAR’ (1)

In the first example, X is explicitly bound to >$VARNAME’ (°Y’) by the query so the top-level displays Y
as the value of X. Y is unified with >$VAR’ (1) so the top-level displays it as a normal compound term.
It should be clear that X is not bound to Y (whereas it is in the second query). This behavior should be
kept in mind when doing variable binding operations.

Finally, the top-level computes the user-time (section [8.24.2] page [155]) taken by a query and displays it
when it is significant. Example:

| ?- retractall(p(.)), assertz(p(0)),

repeat,
retract(p(X)),
Y is X + 1,
assertz (p(Y)),
X = 1000, !.
X = 1000
Y = 1001

(180 ms) yes (the query took 180ms of user time)

4.2 The GNU Prolog interactive interpreter 17

4.2.3 Consulting a Prolog program

The top-level allows the user to consult Prolog source files. Consulted predicates can be listed, executed
and debugged (while predicates compiled to native-code cannot). For more information about the differ-
ence between a native-code predicate and a consulted predicate refer to the introduction of this section

(section page and to the part devoted to the compiler (section page .

To consult a program use the built-in predicate consult/1 (section page . The argument
of this predicate is a Prolog file name or user to specify the terminal. This allows the user to directly
input the predicates from the terminal. In that case the input shall be terminated by the end-of-file key
sequence (Ct1-D) or its term representation: end of file. A shorthand for consult(FILE) is [FILE].
Example:

| ?7- [user].
{compiling user for byte code...}
even(0) .
even(s(s(X))):-
even(X) .
(here the user presses Ct1-D to end the input)
{user compiled, 3 lines read - 350 bytes written, 1180 ms}

| 7- even(X).

X=07 ; (here the user presses ; to compute another solution)
X =s(s(0)) ? ; (here the user presses ; to compute another solution)
X = s(s(s(s(0)))) 7 (here the user presses RETURN to stop the execution)

yes
| ?- listing.

even(0) .
even(s(s(h))) :-
even(A).

When consult/1 (section page is invoked on a Prolog file it first runs the GNU Prolog
compiler (section page [21)) as a child process to generate a temporary WAM file for byte-code. If
the compilation fails a message is displayed and nothing is loaded. If the compilation succeeds, the
produced file is loaded into memory using load/1 (section page . Namely, the byte-code of
each predicate is loaded. When a predicate P is loaded if there is a previous definition for P it is removed
(i.e. all clauses defining P are erased). We say that P is redefined. Note that only consulted predicates
can be redefined. If P is a native-code predicate, trying to redefine it will produce an error at load-time:
the predicate redefinition will be ignored and the following message displayed:

native code procedure P cannot be redefined

Finally, an existing predicate will not be removed if it is not re-loaded. This means that if a predicate P
is loaded when consulting the file F, and if later the definition of P is removed from the file F, consulting
F again will not remove the previously loaded definition of P from the memory.

Consulted predicates can be debugged using the Prolog debugger. Use the debugger predicate trace/0
or debug/0 (section m page to activate the debugger.

18 4 USING GNU PROLOG

4.2.4 Scripting Prolog

Since version 1.4.0 it is possible to use a Prolog source file as a Unix script-file (shebang support). A
PrologScript file should begin as follows:

#!/usr/bin/gprolog --consult-file
GNU Prolog will be invoked as
/usr/bin/gprolog --consult-file FILE

Then FILE will be consulted. In order to correctly deal with the #! first line, consult/1 treats as a
comment a first line of a file which begins with # (if you want to use a predicate name starting with a #,
simply skip a line before its definition).

Remark: it is almost never possible to pass additionnal parameters (e.g. query-goal) this way since in
most systems the shebang implementation deliver all arguments (following #!/usr/bin/gprolog) as a
single string (which cannot then correctly be recognized by gprolog).

4.2.5 Interrupting a query

Under the top-level it is possible to interrupt the execution of a query by typing the interruption key
(Ct1-C). This can be used to abort a query, to stop an infinite loop, to activate the debugger,... When an
interruption occurs the top-level displays the following message: Prolog interruption (h for help) 7
The user can then type one of the following commands:

| Command | Name [Description ‘

a abort abort the current execution. Same as abort/0 (section |8.18.1]7 page |12gL
e exit quit the current Prolog process. Same as halt/0 (section |8.18.1|7 pa@%[)
b break invoke a recursive top-level. Same as break/0 (section |8.18.1|7 page [126])
c continue | resume the execution
t trace start the debugger using trace/0 (section |5.3.1} page 31
d debug | start the debugger using debug/0 (section [5.3.1} page |31

hor? help display a summary of available commands

4.2.6 The line editor

The line editor (linedit) allows the user to build/update the current input line using a variety of
commands. This facility is available if the 1inedit part of GNU Prolog has been installed. linedit is
implicitly called by any built-in predicate reading from a terminal (e.g. get_char/1, read/1,...). This
is the case when the top-level reads a query.

Bindings: each command of linedit is activated using a key. For some commands another key is also
available to invoke the command (on some terminals this other key may not work properly while the
primary key always works). Here is the list of available commands:

4.2 The GNU Prolog interactive interpreter

19

’ Key \ Alternate key \ Description
Ctl-B — go to the previous character
Ctl-F — go to the next character
Esc-B Ctl-« go to the previous word
Esc-F Ctl-— go to the next word
Ctl-A Home go to the beginning of the line
Ctl-E End go to the end of the line
Ctl-H Backspace delete the previous character
Ctl-D Delete delete the current character
Ctl-U Ctl-Home delete from beginning of the line to the current character
Ctl-K Ctl-End delete from the current character to the end of the line
Esc-L lower case the next word
Esc-U upper case the next word
Esc-C capitalize the next word
Ctl-T exchange last two characters
Ctl-v Insert switch on/off the insert/replace mode
Ctl-I Tab complete word (twice displays all possible completions)
Esc-Ctl-I Esc-Tab insert spaces to emulate a tabulation
Ctl-space mark beginning of the selection
Esc-W copy (from the begin selection mark to the current character)
Ctl-W cut (from the begin selection mark to the current character)
Ctl-Y paste
Ctl-P T recall previous history line
Ctl-N 4 recall next history line
Esc-P recall previous history line beginning with the current prefix
Esc-N recall next history line beginning with the current prefix
Esc-< Page Up recall first history line
Esc-> Page Down recall last history line
Ctl-C generate an interrupt signal (section |4.2.5|7 pagelﬁb
Ctl-D generate an end-of-file character (at the begin of the line)
RETURN validate a line
Esc-7 display a summary of available commands

History: when a line is entered (i.e. terminated by RETURN), linedit records it in an internal list called
history. It is later possible to recall history lines using appropriate commands (e.g. Ct1-P recall the last
entered line) and to modify them as needed. It is also possible to recall a history line beginning with a
given prefix. For instance to recall the previous line beginning with write simply type write followed
by Esc-P. Another Esc-P will recall an earlier line beginning with write,. ..

Completion: another important feature of 1inedit is its completion facility. Indeed, linedit maintains
a list of known words and uses it to complete the prefix of a word. Initially this list contains all predefined
atoms and the atoms corresponding to available predicates. This list is dynamically updated when a new
atom appears in the system (whether read at the top-level, created with a built-in predicate, associated
with a new consulted predicate,...). When the completion key (Tab) is pressed linedit acts as follows:

e use the current word as a prefix.

e collect all words of the list that begin with this prefix.

e complete the current word with the longest common part of all matching words.

e if more than one word matches emit a beep (a second Tab will display all possibilities).

Example:

20 4 USING GNU PROLOG

here the user presses Tab to complete the word)

linedit completes argu with argument_ and emits a beep)
the user presses again Tab to see all possible completions)
linedit shows 3 possible completions)

| 7- argu
| ?- argument_

P N i

argument_counter
argument_list
argument_value

| ?- argument_ (linedit redisplays the input line)

| ?- argument_c (to select argument_counter the user presses ¢ and Tab)
| ?- argument_counter (linedit completes with argument_counter)

Balancing: linedit allows the user to check that (square/curly) brackets are well balanced. For this,
when a close bracket symbol, i.e.),] or }, is typed, linedit determines the associated open bracket,
i.e. (, [or {, and temporarily repositions the cursor on it to show the match.

Customization: the behavior of 1inedit can be controlled via an environment variable called LINEDIT.
This variable can contain the following substrings:

no do not activated linedit (should the only value of the variable)
ansi=no do not use ANSI escape sequence (unix only)

out=N use the file descriptor N for the output (unix only)

gui=no even if compiled with the GUI console run in text mode (windows)
gui=silent if the GUI console is not found, silently run in text mode (windows)
cp=N use code page N (windows text console)

oem_put=no do not use Char—QOem conversion when emitting a char (windows text console)
oem_get=no do not use Oem—Char conversion when reading a char (windows text console)

4.3 Adjusting the size of Prolog data

GNU Prolog uses several stacks to execute a Prolog program. Each stack has a static size and cannot be
dynamically increased during the execution. For each stack there is a default size but the user can define
a new size by setting an environment variable. When a GNU Prolog program is run it first consults these
variables and if they are not defined uses the default sizes. The following table presents each stack of
GNU Prolog with its default size and the name of its associated environment variable:

Since version 1.4.2, the size of the atom table (the table recording all atoms) is managed similarly to
stacks. It is then included in the following table (even if actually it is not a stack but an hash table). In
this table, the associated name is atoms which is the key used in statistics (section page . The
environment variable name is derived from the corresponding Prolog flag max_atom, see (section

page .

Stack Default | Environment | Description

name | size (Kb) variable

local 16384 LOCALSZ control stack (environments and choice-points)
global 32768 GLOBALSZ heap (compound terms)

trail 16384 TRAILSZ conditional bindings (bindings to undo at backtracking)
cstr 16384 CSTRSZ finite domain constraint stack (FD variables and constraints)
atoms 32768 MAX_ATOM atom table

In addition, under Windows (since version 1.4.0), registry keys are consulted (key names are the same as
environment names). The keys are stored in HKEY_CURRENT_USER\Software\GnuProlog\.

If the size of a stack is too small an overflow will occur during the execution. In that case GNU Prolog

4.4 The GNU Prolog compiler 21

emits the following error message before stopping:
S stack overflow (size: N Kb, environment variable used: E)

where S is the name of the stack, NV is the current stack size in Kb and E the name of the associated
environment variable. When such a message occurs it is possible to (re)define the variable E with the
new size. For instance to allocate Kb to the local stack under a Unix shell use:

LOCALSZ=32768; export LOCALSZ (under sh or bash)
setenv LOCALSZ 32768 (under csh or tcsh)

This method allows the user to adjust the size of Prolog stacks. However, in some cases it is preferable
not to allow the user to modify these sizes. For instance, when providing a stand alone executable whose
behavior should be independent of the environment in which it is run. In that case the program should
not consult environment variables and the programmer should be able to define new default stack sizes.
The GNU Prolog compiler offers this facilities via several command-line options such as --local-size

or --fixed-sizes (sectionm page .

Finally note that GNU Prolog stacks are virtually allocated (i.e. use virtual memory). This means that
a physical memory page is allocated only when needed (i.e. when an attempt to read/write it occurs).
Thus it is possible to define very large stacks. At the execution, only the needed amount of space will be
physically allocated.

4.4 The GNU Prolog compiler
4.4.1 Different kinds of codes

One of the main advantages of GNU Prolog is its ability to produce stand alone executables. A Prolog
program can be compiled to native code to give rise to a machine-dependent executable using the GNU
Prolog compiler. However native-code predicates cannot be listed nor fully debugged. So there is an
alternative to native-code compilation: byte-code compilation. By default the GNU Prolog compiler
produces native-code but via a command-line option it can produce a file ready for byte-code loading.
This is exactly what consult/1 does as was explained above (section m page . GNU Prolog also
manages interpreted code using a Prolog interpreter written in Prolog. Obviously interpreted code is
slower than byte-code but does not require the invocation of the GNU Prolog compiler. This interpreter
is used each time a meta-call is needed as by call/1 (section page . This also the case of
dynamically asserted clauses. The following table summarizes these three kinds of codes:

’ Type \ Speed \ Debug ? \ For what ‘
interpreted-code | slow yes meta-call and dynamically asserted clauses
byte-code medium yes consulted predicates
native-code fast no compiled predicates

4.4.2 Compilation scheme

Native-code compilation: a Prolog source is compiled in several stages to produce an object file that
is linked to the GNU Prolog libraries to produce an executable. The Prolog source is first compiled to
obtain a WAM [9] file. For a detailed study of the WAM the interested reader can refer to “Warren’s
Abstract Machine: A Tutorial Reconstruction”| [I]. The WAM file is translated to a machine-independent
language specifically designed for GNU Prolog. This language is close to a (universal) assembly language
and is based on a very reduced instruction set. For this reason this language is called mini-assembly
(MA). The mini-assembly file is then mapped to the assembly language of the target machine. This

http://www.isg.sfu.ca/~{}hak/documents/wam.html
http://www.isg.sfu.ca/~{}hak/documents/wam.html

22 4 USING GNU PROLOG

assembly file is assembled to give rise to an object file which is then linked with the GNU Prolog libraries
to provide an executable. The compiler also takes into account Finite Domain constraint definition files.
It translates them to C and invoke the C compiler to obtain object files. The following figure presents
this compilation scheme:

Proalog '
files T
T
| Pl2wam |
[
| -
WamM
files "
T
|
. r . .
mini-assembly FI constraint
files F § definition files
| i 1
| ma 2a sm | FdZ2e
" .)
r_ 1)
assembly files
files _ﬂrf’_“ i}
T 1
| asgembler C compiler
[b i
L] —
object [__*_ﬂ_ff
files
H-‘"—_
|
T
‘ linker |
I
1 o
— — Pralog/FIY libraries
executahle L N and user libranies

Obviously all intermediate stages are hidden to the user who simply invokes the compiler on his Prolog
file(s) (plus other files: C,...) and obtains an executable. However, it is also possible to stop the
compiler at any given stage. This can be useful, for instance, to see the WAM code produced (perhaps
when learning the WAM). Finally it is possible to give any kind of file to the compiler which will insert
it in the compilation chain at the stage corresponding to its type. The type of a file is determined using
the suffix of its file name. The following table presents all recognized types/suffixes:

4.4 The GNU Prolog compiler 23

’ Suffix of the file \ Type of the file \ Handled by: ‘
.pl, .pro, .prolog Prolog source file pl2wam
.wam WAM source file wam2ma
.ma Mini-assembly source file ma2asm
.8 Assembly source file the assembler
.c, .C, .CC, .cc, .cxx, .c++, .cpp | C or C++ source file the C compiler
.fd Finite Domain constraint source file | £d2c
any other suffix (.o, .a,...) any other type (object, library,...) | the linker (C linker)

Byte-code compilation: the same compiler can be used to compile a source Prolog file for byte-code.
In that case the Prolog to WAM compiler is invoked using a specific option and produces a WAM for
byte-code source file (suffixed .wbc) that can be later loaded using load/1 (section page [153)).
Note that this is exactly what consult/1 (section[8.23.1] page[L53)) does as explained above (section[4.2.3]

page .

4.4.3 Using the compiler

The GNU Prolog compiler is a command-line compiler similar in spirit to a Unix C compiler like gcc.
To invoke the compiler use the gplc command as follows:

% gplc [OPTION]... FILE... (the % symbol is the operating system shell prompt)

The arguments of gplc are file names that are dispatched in the compilation scheme depending on the
type determined from their suffix as was explained previously (section page . All object files are
then linked to produce an executable. Note however that GNU Prolog has no module facility (since there
is not yet an ISO reference for Prolog modules) thus a predicate defined in a Prolog file is visible from
any other predicate defined in any other file. GNU Prolog allows the user to split a big Prolog source
into several files but does not offer any way to hide a predicate from others.

The simplest way to obtain an executable from a Prolog source file prog.pl is to use:
% gplc prog.pl

This will produce an native executable called prog which can be executed as follows:
% prog

However, there are several options that can be used to control the compilation:

General options:

-o FILE, --output FILE use FILE as the name of the output file

-W, -—wam-for-native stop after producing WAM file(s)

-w, ——wam-for-byte-code stop after producing WAM for byte-code file(s) (force -—no-call-c)
-M, --mini-assembly stop after producing mini-assembly file(s)

-S, ——assembly stop after producing assembly file(s)

-F, --fd-to-c stop after producing C file(s) from FD constraint definition file(s)
-c, ——object stop after producing object file(s)

-—temp-dir PATH use PATH as directory for temporary files

--no-del-temp do not delete temporary files

--no-demangling do not decode predicate names (name demangling)

-v, ——verbose print executed commands

-h, --help print a help and exit

--version print version number and exit

24 4 USING GNU PROLOG

Prolog to WAM compiler options:

--pl-state FILE read FILE to set the initial Prolog state
--wam-comment COMMENT emit COMMENT as a comment in the WAM file
—-no-susp-warn do not show warnings for suspicious predicates
--no-singl-warn do not show warnings for named singleton variables
--no-redef-error do not show errors for built-in predicate redefinitions
—--foreign-only only compile foreign/1-2 directives

--no-call-c do not allow the use of fd_tell, ’>$call c’,...
--no-inline do not inline predicates

--no-reorder do not reorder predicate arguments

--no-reg-opt do not optimize registers

--min-reg-opt minimally optimize registers
--no-opt-last-subterm do not optimize last subterm compilation
--fast-math use fast mathematical mode (assume integer arithmetics)
--keep-void-inst keep void WAM instructions in the output file
--compile-msg print a compile message

--statistics print statistics information

WAM to mini-assembly translator options:
--comment include comments in the output file
Mini-assembly to assembly translator options:

—--comment include comments in the output file
--pic produce position independent code (PIC)

C compiler options:

—--c-compiler FILE use FILE as C compiler/linker
-C OPTION pass OPTION to the C compiler

Assembler options:
-A OPTION pass OPTION to the assembler

Linker options:

4.4 The GNU Prolog compiler 25

--linker FILE use FILE as linker

--local-size N set default local stack size to N Kb

--global-size N set default global stack size to ¥ Kb

--trail-size N set default trail stack size to N Kb

--cstr-size N set default constraint stack size to N Kb

--max-atom N set default atom table size to N atoms

--fixed-sizes do not consult environment variables at run-time (use default sizes)
--gui-console link with the GUI console (windows only)

--new-top-level link the top-level main (to recognize top-level command-line options)
--no-top-level do not link the top-level (force --no-debugger)

--no-debugger do not link the Prolog/WAM debugger

--min-pl-bips link only used Prolog built-in predicates

--min-fd-bips link only used FD solver built-in predicates

--min-bips shorthand for: --no-top-level --min-pl-bips —--min-fd-bips
--min-size shorthand for: --min-bips --strip

--no-fd-1ib do not look for the FD library (maintenance only)

-s, —-strip strip the executable

-L OPTION Pass OPTION to the linker

It is possible to only give the prefix of an option if there is no ambiguity.

The name of the output file is controlled via the —o FILE option. If present the output file produced will
be named FILE. If not specified, the output file name depends on the last stage reached by the compiler.
If the link is not done the output file name(s) is the input file name(s) with the suffix associated with
the last stage. If the link is done, the name of the executable is the name (without suffix) of the first file
name encountered in the command-line. Note that if the link is not done -o has no sense in the presence
of multiple input file names. For this reason, several meta characters are available for substitution in
FILE:

e f is substitued by the whole input file name.

e JF is similar to %f but the directory part is omitted.

e ’p is substitued by the whole prefix file name (omitting the suffix).

e P is similar to %p but the directory part is omitted.

e s is substitued by the file suffix (including the dot).

e ’d is substitued by the directory part (empty if no directory is specified).

e Y,c is substitued by the value of an internal counter starting from 1 and auto-incremented.

By default the compiler runs in the native-code compilation scheme. To generate a WAM file for byte-code
use the --wam-for-byte-code option. The resulting file can then be loaded using 1oad/1 (section[8.23.2

page [153).

To execute the Prolog to WAM compiler in a given read environment (operator definitions, character
conversion table,...) use -—pl-state FILE. The state file should be produced by write pl_state file/1

(section [8.22.5] page [152)).

By default the Prolog to WAM compiler inlines calls to some deterministic built-in predicates (e.g. arg/3
and functor/3). Namely a call to such a predicate will not yield a classical predicate call but a simple
C function call (which is obviously faster). It is possible to avoid this using --no-inline.

Another optimization performed by the Prolog to WAM compiler is unification reordering. The arguments
of a predicate are reordered to optimize unification. This can be deactivated using --no-reorder. The

26 4 USING GNU PROLOG

compiler also optimizes the unification/loading of nested compound terms. More precisely, the compiler
emits optimized instructions when the last subterm of a compound term is itself a compound term (e.g.
lists). This can be deactivated using --no-opt-last-subterm.

By default the Prolog to WAM compiler fully optimizes the allocation of registers to decrease both the
number of instruction produced and the number of used registers. A good allocation will generate many
void instructions that are removed from the produced file except if --keep-void-inst is specified. To
prevent any optimization use --no-reg-opt while —-min-reg-opt forces the compiler to only perform
simple register optimizations.

The Prolog to WAM compiler emits an error when a control construct or a built-in predicate is redefined.
This can be avoided using --no-redef-error. The compiler also emits warnings for suspicious predicate
definitions like -/2 since this often corresponds to an earlier syntax error (e.g. - instead of _. This can
be deactivated by specifying —-no-susp-warn. Finally, the compiler warns when a singleton variable has
a name (i.e. not the generic anonymous name _). This can be deactivated specifying ~-no-singl-warn.

Internally, predicate names are encoded to fit the syntax of (assembly) identifiers. For this GNU Prolog
uses it own name mangling scheme. This is explained in more detail later (section page . By
default the error messages from the linker (e.g. multiple definitions for a given predicate, reference to
an undefined predicate,...) are filtered to replace an internal name representation by the real predicate
name (demangling). Specifying the ~-no-demangling prevents gplc from filtering linker output messages
(internal identifiers are then shown).

When producing an executable it is possible to specify default stack sizes (using --STACK_NAME-size)
and to prevent it from consulting environment variables (using --fixed-sizes) as was explained above
(section page . By default the produced executable will include the top-level, the Prolog/WAM
debugger and all Prolog and FD built-in predicates. It is possible to avoid linking the top-level (sec-
tion page [13]) by specifying —-no-top-level. In this case, at least one initialization/1 directive
(section @%ge 50]) should be defined. The option --no-debugger does not link the debugger. To in-
clude only used built-in predicates that are actually used the options =—no-pl-bips and/or --no-fd-bips
can be specified. For the smallest executable all these options should be specified. This can be abbre-
viated by using the shorthand option --min-bips. By default, executables are not stripped, i.e. their
symbol table is not removed. This table is only useful for the C debugger (e.g. when interfacing Prolog
and C). To remove the symbol table (and then to reduce the size of the final executable) use --strip.
Finally —-min-size is a shortcut for --min-bips and --strip, i.e. the produced executable is as small
as possible.

Example: compile and link two Prolog sources progl.pl and prog2.pl. The resulting executable will
be named progl (since -o is not specified):

% gplc progl.pl prog2.pl

Example: compile the Prolog file prog.pl to study basic WAM code. The resulting file will be named
prog.wam:

% gplc -W --no-inline --no-reorder --keep-void-inst prog.pl

Example: compile the Prolog file prog.pl and its C interface file utils.c to provide an autonomous
executable called mycommand. The executable is not stripped to allow the use of the C debugger:

% gplc -o mycommand prog.pl utils.c

Example: detail all steps to compile the Prolog file prog.pl (the resulting executable is stripped). All
intermediate files are produced (prog.wam, prog.ma, prog.s, prog.o and the executable prog):

% gplc -W prog.pl
% gplc -M --comment prog.wam

4.4 The GNU Prolog compiler 27

% gplc -S --comment prog.ma
% gplc -c prog.s
% gplc -o prog -s prog.o

4.4.4 Running an executable

In this section we explain what happens when running an executable produced by the GNU Prolog native-
code compiler. The default main function first starts the Prolog engine. This function collects all linked
objects (issued from the compilation of Prolog files) and initializes them. The initialization of a Prolog
object file consists in adding to appropriate tables new atoms, new predicates and executing its system
directives. A system directive is generated by the Prolog to WAM compiler to reflect a (user) directive
executed at compile-time such as op/3 (section page . Indeed, when the compiler encounters
such a directive it immediately executes it and also generates a system directive to execute it at the
start of the executable. When all system directives have been executed the Prolog engine executes all
initialization directives defined with initialization/1 (section page . If several initialization
directives appear in the same file they are executed in the order of appearance. If several initialization
directives appear in different files the order in which they are executed is machine-dependant. However,
on most machines the order will be the reverse order in which the associated files have been linked (this
is not true under native win32). When all initialization directives have been executed the default main
function looks for the GNU Prolog top-level. If present (i.e. it has been linked) it is called otherwise the
program simply ends. Note that if the top-level is not linked and if there is no initialization directive the
program is useless since it simply ends without doing any work. The default main function detects such
a behavior and emits a warning message.

Example: compile an empty file prog.pl without linking the top-level and execute it:

% gplc ——no-top-level prog.pl

% prog
Warning: no initial goal executed
use a directive :- initialization(Goal)

or remove the link option --no-top-level (or --min-bips or --min-size)

4.4.5 Generating a new interactive interpreter

In this section we show how to define a new top-level extending the GNU Prolog interactive interpreter
with new predicate definitions. The obtained top-level can then be considered as an enriched version of
the basic GNU Prolog top-level (section page . Indeed, each added predicate can be viewed as
a predefined predicate just like any other built-in predicate. This can be achieved by compiling these
predicates and including the top-level at link-time.

The real question is: why would we include some predicates in a new top-level instead of simply consulting
them under the GNU Prolog top-level 7 There are two reasons for this:

e the predicate cannot be consulted. This is the case of a predicate calling foreign code, like a
predicate interfacing with C (section page [201]) or a predicate defining a new FD constraint.

e the performance of the predicate is crucial. Since it is compiled to native-code such a predicate will
be executed very quickly. Consulting will load it as byte-code. The gain is much more noticeable if
the program is run under the debugger. The included version will not be affected by the debugger
while the consulted version will be several times slower. Obviously, a predicate should be included
in a new top-level only when it is itself debugged since it is difficult to debug native-code.

28 4 USING GNU PROLOG

To define a new top-level simply compile the set of desired predicates and linking them with the GNU
Prolog top-level (this is the default) using gplc (section page [23)).

Example: let us define a new top-level called my_top_level including all predicates defined in prog.pl:
% gplc -o my_top_level prog.pl

By the way, note that if prog.pl is an empty Prolog file the previous command will simply create a new
interactive interpreter similar to the GNU Prolog top-level.

Example: as before where some predicates of prog.pl call C functions defined in utils.c:
% gplc -o my_top_-level prog.pl utils.c

To obtain a fully extended executable, it is desirable to accept the same set of opions as the original
top-level, see (section page [13]), e.g. ——init-goal. For this it is necessary to link main() function
used by the original top-level. This can be achieved passing the —-new-top-level to gplc:

% gplc —--new-top-level -o my_top_level prog.pl utils.c

In conclusion, defining a particular top-level is nothing else but a particular case of the native-code
compilation. It is simple to do and very useful in practice.

4.4.6 The name mangling scheme

When the GNU Prolog compiler compiles a Prolog source to an object file it has to associate a symbol to
each predicate name. However, the syntax of symbols is restricted to identifiers: string containing only
letters, digits or underscore characters. On the other hand, predicate names (i.e. atoms) can contain any
character with quotes if necessary (e.g. ’x+y=z’ is a valid predicate name). The compiler may thus have
to encode predicate names respecting the syntax of identifiers. In addition, Prolog allows the user to
define several predicates with the same name and different arities, for this GNU Prolog encodes predicate
indicators (predicate name followed by the arity). Finally, to support modules in the future, the module
name is also encoded.

Since version 1.4.0, GNU Prolog adopts the following name mangling scheme. A predicate indicator
of the form [MODULE :)PRED/N (where the MODULE can be omitted) will give rise to an identifier of the
following form: XK _[E(MODULE)__| E(PRED)__aN where:

K is a digit in 0..5 storing coding information about MODULE and PRED. Possible values are:

e 0: no module present, PRED is not encoded

e 1: no module present, PRED is encoded

e 2: MODULE is not encoded, PRED is not encoded

e 3: MODULE is not encoded, PRED is encoded
4
5

e 4: MODULE is encoded, PRED is not encoded

e 5: MODULE is encoded, PRED is encoded

E(STR) is a function to encode a string STR which returns:
e STR itself (not encoded) if STR only contains letters, digits or _ but does not contain the sub-
string __ and does not begin nor end with _ (i.e. regexp: [a-zA-Z0-9] ([-]7[a-zA-Z0-9])*).

e an hexadecimal representation of each character of the string otherwise. For example: E(x+y=z)
returns 782B793D7A since 78 is the hexadecimal representation of the ASCII code of x, 2B of
the code of +, etc.

Examples:

4.4 The GNU Prolog compiler 29

Predicate indicator ‘ internal identifier

father/2 X0_father__a2

’x+y=2’/3 X1_782B793D7A__a3
util:same/2 X2_util__same__a2
util:same__1/3 X3_util__73616D655F5F31__a3

So, from the mini-assembly stage, each predicate indicator is handled via its name mangling identifier.
The knowledge of this scheme is normally not of interest for the user, i.e. the Prolog programmer. For this
reason the GNU Prolog compiler hides this mangling. When an error occurs on a predicate (undefined
predicate, predicate with multiple definitions,...) the compiler has to decode the symbol associated
with the predicate indicator (name demangling). For this gplc filters each message emitted by the
linker to locate and decode eventual predicate indicators. This filtering can be deactivated specifying

--no-demangling when invoking gplc (section page [23)).

This filter is provided as an utility that can be invoked using the hexgplc command as follows:
% hexgplc [OPTION]... FILE... (the % symbol is the operating system shell prompt)

Options:

--decode or --demangling decoding mode (this is the default mode)

--encode or --mangling encoding mode

--relax decode also predicate names (not only predicate indicators)
—--printf FORMAT pass encoded/decoded string to C printf (3) with FORMAT
-—aux-father decode an auxiliary predicate as its father

--aux-father2 decode an auxiliary predicate as its father + auxiliary number
--cmd-line encode/decode each argument of the command-line

-E or -M same as: --cmd-line --encode --relax

-P or -D same as: --cmd-line --decode --relax --quote

--help print a help and exit

--version print version number and exit

It is possible to give a prefix of an option if there is no ambiguity.

Without arguments hexgplc runs in decoding mode reading its standard input and decoding (demangling)
each symbol corresponding to a predicate indicator. To use hexgplc in the encoding (mangling) mode
the --encode option must be specified. By default hexgplc only decodes predicate indicators, this can
be relaxed using --relax to also take into account simple predicate names (the arity can be omitted). It
is possible to format the output of an encoded/decoded string using --printf FORMAT in that case each
string S is passed to the C printf (3) function as printf (FORMAT,S).

Auxiliary predicates are generated by the Prolog to WAM compiler when simplifying some control con-
structs like > ;’/2 present in the body of a clause. They are of the form ’>$NAME /ARITY _$auxlN’ where
NAME /ARITY is the predicate indicator of the simplified (i.e. father) predicate and ¥ is a sequential num-
ber (a predicate can give rise to several auxiliary predicates). It is possible to force hexgplc to decode
an auxiliary predicate as its father predicate indicator using --aux-father or as its father predicate
indicator followed by the sequential number using --aux-father?2.

If no file is specified, hexgplc processes its standard input otherwise each file is treated sequentially.
Specifying the -—cmd-line option informs hexgplc that each argument is not a file name but a string
that must be encoded (or decoded). This is useful to encode/decode a particular string. For this reason
the option -E (encode) and -D (decode) are provided as shorthand. Then, to obtain the mangling
representation of a predicate PRED use:

% hexgplc -E PRED

30 4 USING GNU PROLOG

NB: if PRED is a complex atom it is necessary to quote it (the quotes must be passed to hexgplc). Here
is an example under bash:

% hexgplc -E \’x+y=2z\’/3
X1_782B793D7A__a3

Or even more safely (using bash quotes to prevent bash from interpreting special characters):

% hexgplc -E \’’x+y=z’\’/3
X1_782B793D7A__a3

31

5 Debugging

5.1 Introduction

The GNU Prolog debugger provides information concerning the control flow of the program. The debugger
can be fully used on consulted predicates (i.e. byte-code). For native compiled code only the calls/exits
are traced, no internal behavior is shown. Under the debugger it is possible to exhaustively trace the
execution or to set spy-points to only debug a specific part of the program. Spy-points allow the user to
indicate on which predicates the debugger has to stop to allow the user to interact with it. The debugger
uses the “procedure box control flow model”, also called the Byrd Box model since it is due to Lawrence
Byrd.

5.2 The procedure box model

The procedure box model of Prolog execution provides a simple way to show the control flow. This
model is very popular and has been adopted in many Prolog systems (e.g. SICStus Prolog, Quintus
Prolog,...). A good introduction is the chapter 8 of “Programming in Prolog” of Clocksin & Mellish [2].
The debugger executes a program step by step tracing an invocation to a predicate (call) and the
return from this predicate due to either a success (exit) or a failure (fail). When a failure occurs
the execution backtracks to the last predicate with an alternative clause. The predicate is then re-
invoked (redo). Another source of change of the control flow is due to exceptions. When an exception is
raised from a predicate (exception) by throw/1 (section page the control is given back to the
most recent predicate that has defined a handler to recover this exception using catch/3 (section
page . The procedure box model shows these different changes in the control flow, as illustrated here:

call - .' = exit
predicate
tail = : - redo

cuception -

Each arrow corresponds to a port. An arrow to the box indicates that the control is given to this predicate
while an arrow from the box indicates that the control is given back from the procedure. This model
visualizes the control flow through these five ports and the connections between the boxes associated with
subgoals. Finally, it should be clear that a box is associated with one invocation of a given predicate. In
particular, a recursive predicate will give raise to a box for each invocation of the