
ne
A nice editor
Version 1.32

by Sebastiano Vigna and Todd M. Lewis

Copyright c© 1993-1998 Sebastiano Vigna
Copyright c© 1999-2004 Todd M. Lewis and Sebastiano Vigna
Permission is granted to make and distribute verbatim copies of this manual provided the copy-
right notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the condi-
tions for verbatim copying, provided that the entire resulting derived work is distributed under
the terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another language,
under the above conditions for modified versions, except that this permission notice may be
stated in a translation approved by the Free Software Foundation.

Chapter 1: Introduction 1

1 Introduction

ne is a full screen text editor for un*x (or, more precisely, for posix: see Chapter 7 [Mo-
tivations and Design], page 59). I came to the decision to write such an editor after getting
completely sick of vi, both from a feature and user interface point of view. I needed an edi-
tor that I could use through a telnet connection or a phone line and that wouldn’t fire off a
full-blown lithp1 operating system just to do some editing.

A concise overview of the main features follows:
• three user interfaces: control keystrokes, command line, and menus; keystrokes and menus

are completely configurable;
• full support for UTF-8 files, including multiple-column characters;
• the number of documents and clips, the dimensions of the display, and the file/line lengths

are limited only by the integer size of the machine;
• simple scripting language where scripts can be generated via an idiotproof record/play

method;
• unlimited undo/redo capability (can be disabled with a command);
• automatic preferences system based on the extension of the file name being edited;
• a file requester with completion features for easy file retrieval;
• extended regular expression search and replace a la emacs and vi;
• a very compact memory model—you can easily load and modify very large files;
• editing of binary files.

1 This otherwise unremarkable language is distinguished by the absence of an ‘s’ in its character set; users must
substitute ‘th’. lithp is said to be useful in protheththing lithtth.

2 ne’s manual

Chapter 2: Basics 3

2 Basics

Simple things should be simple, and complex things should be possible. (Alan Kay)
ne’s user interface is essentially a compromise between the limits of character driven terminals

and the power of GUIs. While real editing is done without ever touching a mouse, it is also true
that editing should be doable without ever touching a manual. These two conflicting goals can
be accomodated easily in a single program if we can offer a series of interfaces that allow for
differentiated use.

In other words, it is unlikely that an ne wizard will ever have to activate a menu, but to
become an expert user you just have to use the menus enough to learn by heart the most
important keystrokes. A good manual is always invaluable when one comes to configuration and
esoteric features, but few users will ever need to change ne’s menus or key bindings.

Another important thing is that powerful features should always be accessible, at least in
part, to every user. The average user should be able to record his actions, replay them, and save
them in a humanly readable format for further use and editing.

In the following sections we shall take a quick tour of ne’s features.

2.1 Terminology

In this section we explain and contrast some of the terms ne uses. Understanding these
distinctions will go a long way towards making the rest of this manual make sense.

A file is a group of bytes stored on disk. This may seem rather obvious, but the important
distinction here is that ne does not edit files; it edits documents.

A document is what ne calls one of the “text thingies” that you can edit. It is a sequence of
lines of text in the computer’s memory—not on disk. Documents can be created, edited, saved
in files, loaded from files, discarded, et cetera. When a document is loaded from or saved to a
file, it remains associated with that file by name until the document is either closed or saved to
a different file. Interactions between documents and files are handled by the commands under
the File menu. The Documents menu commands only deal with documents. See Section 3.6
[Menus], page 15.

Internally, ne holds its documents in buffers. A buffer is a chunk of memory in which ne
holds something. For example, each document is held in its own buffer, as are any loaded or
recorded macros, undo records, a copy of your last deleted line of text, a copy of all your previous
responses to long input, and several other things.

2.2 Starting

To start ne, just type ‘ne’ and press 〈Return〉. If you want to edit some specific file(s), you
can put their name(s) on the command line just after the command name, as for any un*x
command. The screen of your terminal will be cleared (or filled with text loaded from the first
file you specified).

At the bottom of the screen, you will see a line containing some numbers and letters. This
is called the status bar because it reports to you part of the internal state of the editor.

Writing text is pretty straightforward: if your terminal is properly configured, every key will
(should) do what you expect. Alphabetic characters insert text, cursor keys move the cursor,
and so on. You can use the 〈Delete〉 and 〈Backspace〉 key to perform corrections. If your keyboard
has an 〈Insert〉 key, you can use it to toggle (switch from on to off, or vice versa) insert mode. In
general, ne tries to squeeze everything it can from your keyboard. Functions keys and special

4 ne’s manual

movement keys should work flawlessly if your terminal is properly configured. If not, complain
to your system administrator.

At startup, the status bar has the following form:
L: 1 C: 1 12% ia----pvu-------@A <unnamed>

(the numbers could be different, and a file name could be shown as last item instead of
‘<unnamed>’). You probably already guessed that the numbers after ‘L:’ and ‘C:’ are the line and
column numbers, respectively, whereas the percentage indicates approximately your position in
the file. The small letters represent user flags that you can turn on and off. In particular, ‘i’ tells
you that insert mode is on, while ‘p’ tells that the automatic preferences system is activated.
For a thorough explanation of the meaning of the flags on the status line, see Section 3.2 [The
Status Bar], page 11.

Once you are accustomed to cursor movement and line editing, it is time to press 〈f1〉 (the
first function key), or in case your keyboard does not have such a key, 〈Escape〉. Immediately,
the menu bar will appear, and the first menu will be drawn (if you find yourself waiting for the
menu to appear, you can press 〈Escape〉 twice in a row). You can now move around menus and
menu items by pressing the cursor keys. Moreover, a lower case alphabetic key will move to the
first item whose name starts with that letter, and an upper case alphabetic key will move to the
first menu whose name starts with that letter.

Moving around the menus should give you an idea of the capabilities of ne. If you want to
save your work, you should use the ‘Save As...’ item from the ‘File’ menu. Menus are fully
discussed in Section 3.6 [Menus], page 15. When you want to exit from the menu system, press
〈f1〉 (or 〈Escape〉) again. If you instead prefer to choose a command and execute it, move to the
respective menu item and press 〈Return〉.

At the end of several menu items you will find strange symbols like ^A or 〈f1〉. They represent
shortcuts for the respective menu items. In other words, instead of activating, selecting and
executing a menu item, which can take seconds, you can simply press a couple of keys. The
symbol ‘^’ in front of a character denotes the shortcut produced by the 〈Control〉 key plus that
character (we assume here that you are perfectly aware of the usage of the 〈Control〉 key: it is just as
if you had to type a capital letter with 〈Shift〉). The descriptions of the form 〈f〉n represent instead
function keys. Finally, the symbol ‘[’ in front of a character denotes the shortcut produced by
〈Control〉 plus 〈Meta〉 (a.k.a. 〈Alt〉) plus that character, or 〈Meta〉 plus that character, depending on
your terminal emulator—you must check by yourself. Moreover, these last bindings could not
work with some terminals, in which case you can replace them with a sequence: just press the
〈Escape〉 key followed by the letter. A few menu items are bound to two control sequences (just
in case one does not work, or it is impractical).

Note that under certain conditions (for instance, while using ne through a telnet connection)
some of the shortcuts might not work because they are trapped by the operating system for other
purposes (see Chapter 6 [Hints and Tricks], page 57).

Finally, we have the third and last interface to ne’s features: the command line. If you press
〈Control〉-K, or 〈Escape〉 followed by ‘:’ (a la vi), you will be requested to enter a command to
execute. Just press 〈Return〉 for the time being (or, if you are really interested in this topic, see
Section 3.4 [The Command Line], page 14).

In the sections that follow, when explaining how to use a command we shall usually describe
the corresponding menu item. The related shortcut and command can be found on the menu
item itself, and in Section 3.6 [Menus], page 15.

2.3 Loading and Saving

The first thing to learn about an editor is how to exit. ne has a CloseDoc command that
can be activated by pressing 〈Control〉-Q, by choosing the ‘Close’ item of the ‘Document’ menu,

Chapter 2: Basics 5

or by activating the command line with 〈Control〉-K, writing ‘cd’ and pressing 〈Return〉. Its effect
is to close the current document without saving any modifications. (You will be requested to
confirm your choice in case the current document has been modified since the last save.)

There is also a Quit command, which closes all the documents without saving any modi-
fications, and an Save&Exit (〈Meta〉-X) command, which saves the modified documents before
quitting.

This choice of shortcuts could surprise you. Wouldn’t Quit be a much better candidate
for 〈Control〉-Q? Well, experience shows that the most common operation is closing a document
rather than quitting the editor. If there is just one document, the two operations coincide (this
is typical, for instance, when you use ne for writing electronic mail), and if there are many
documents, it is far more common to close a single document than all the existing documents.

If you want to load a file, you may use the Open command, which can be activated by pressing
〈Control〉-O, by choosing the ‘Open...’ item of the ‘File’ menu, or by typing it on the command
line (as in the previous case). You will be prompted with a list of files and directories in the
current working directory. (You can tell the directory names because they end with a slash.) You
can select any of the file names by using the cursor keys, or any other movement key. Pressing
an alphabetic key will move the cursor to the first entry after the cursor that starts with the
given letter. When the cursor is positioned over the file you want to open, press 〈Return〉, and
the file will be opened. If instead you move to a directory name, pressing 〈Return〉 will display
the contents of that directory.

You can also escape with 〈f1〉, 〈Escape〉 or 〈Escape〉-〈Escape〉 and manually type the file name on
the command line (or escape again, and abort the Open operation). If you escape with 〈Tab〉
instead, the file or directory under the cursor will be copied in the input line, where you can
modify it manually. ne has also file name completion features activated by 〈Tab〉 (see Section 3.3
[The Input Line], page 13).

When you want to save a file, just use the command Save (〈Control〉-S). It will use the current
document name or will ask you for one if the current document has no name. SaveAs, on the
other hand, will always ask for a new name before saving the file.

If ne is interrupted by an external signal (for instance, if your terminal crashes), it will try
to save your work in some emergency files. These files will have names similar to your current
files, but they will have a pound sign # prepended to their names. See Section 3.9 [Emergency
Save], page 23.

2.4 Editing

An editor is presumably used for editing text. If you decide not to edit text, you probably
don’t want to use ne, because that’s all it does—it edits text. It does not play Tetris. It does
not evaluate recursive functions. It does not solve your love problems. It just allows you to edit
text.

The design of ne makes editing extremely natural and straightforward. There is nothing
special you have to do to start editing once you’ve started ne. Just start typing, and the text
you type shows up in your document.

ne provides two ways of deleting characters, the 〈Backspace〉 (or 〈Control〉-H, if you have no such
key) and the 〈Delete〉 key. In the former case you delete the character to the left of the cursor,
while in the latter case you delete the character just under the cursor. This is in contrast with
many un*x editors, which for unknown reasons decide to limit your ways of destroying things—
something notoriously much funnier than creating. (See Section 4.11.3 [DeleteChar], page 51
and Section 4.11.4 [Backspace], page 51.)

If you want to delete a line, you can use the DeleteLine command, or 〈Control〉-Y. A very
nice feature of ne is that each time a nonempty line is deleted, it is stored in a temporary buffer

6 ne’s manual

from which it can be undeleted via the UndelLine command or 〈Control〉-U. (See Section 4.11.6
[DeleteLine], page 51 and Section 4.7.3 [UndelLine], page 36.)

If you want to copy, cut, paste or erase a block of text, you have to set a mark. This is done
via the Mark command, activated by choosing the ‘Mark Block’ item of the ‘Edit’ menu, or by
pressing 〈Control〉-B (think "block"). This command toggles the mark (puts it in the current
cursor position or removes it from wherever it is). Whenever the mark is set, the zone between
the mark and the cursor can be cut, copied or erased. Note that by using 〈Control〉-@ you can
set a vertical mark instead, which allows you to mark rectangles of text. Whenever a mark has
been set, either an ‘M’ appears on the command line or a ‘V’ appears if the mark is vertical. If
you forget where the mark is currently, you can use the ‘Goto Mark’ menu item of the ‘Search’
menu to move the cursor to it.

When you cut or copy a block, you can save it with the ‘Save Clip...’ menu item of the
‘Edit’ menu. You can also load a file into a clip with ‘Open Clip...’, and paste it anywhere.
All such operations act on the current clip, which is by default the clip 0. You can change the
current clip number with the ClipNumber command. See Section 4.4.10 [ClipNumber], page 30.

One of the most noteworthy features of ne is its unlimited undo/redo capability. Each editing
action is recorded, and can be played back and forth as much as you like. Undo and redo are
bound to the function keys 〈f5〉 and 〈f6〉.

Another interesting feature of ne is it’s ability to load an unlimited number of documents.
If you activate the NewDoc command (using the ‘Document’ menu or the command line), a new,
empty document will be created. You can switch between the existing documents in memory
with 〈f2〉 and 〈f3〉, which are bound to the PrevDoc and NextDoc commands. If you have a lot
of documents, the ‘Select...’ menu item (〈f4〉) prompts you with the list of names of currently
loaded documents and allows you to choose directly what to edit.

2.5 Basic Preferences

ne has a number of flags that specify alternative behaviours, the most prototypical example
being the insert flag, which specifies whether the text you type is inserted into the existing text
or overwrites it. You can toggle this flag with the ‘Insert’ menu item of the ‘Prefs’ menu, or
with the 〈Insert〉 key of your keyboard. (Toggle means to change the value of a flag from true to
false, or from false to true; see Section 4.9.4 [Insert], page 40.)

Another important flag is the free form flag, which specifies whether the cursor can be moved
beyond the right end of each line of text or only to existing text (a la vi). Programmers usually
prefer non free form editing; text writers seem to prefer free form. See Section 4.9.6 [FreeForm],
page 40 for some elaboration. The free form flag can be set with the ‘Free Form’ menu item of
the ‘Prefs’ menu.

At this point, we suggest you explore by trial and error the other flags of the Prefs menu,
or try the Flags command (see Section 4.9.1 [Flags], page 39), which explains all the flags and
the commands that operate on them. We prefer spending a few words discussing automatic
preferences or autoprefs.

Having many flags ensures a high degree of flexibility, but it can turn editing into a nightmare
if you have to turn on and off dozens of flags for each different kind of file you edit. ne’s solution
is to automatically set a document’s flags when a file is loaded based on your stated preferences
for each file type. A file’s type is determined by the extension of its file name, that is, the last
group of letters after the last dot. For instance, the extension of ‘ne.texinfo’ is ‘texinfo’, the
extension of ‘source.c’ is ‘c’, and the extension of ‘my.txt’ is ‘txt’.

Whenever you select the ‘Save AutoPrefs’ menu item, ne saves the flags of your current
document to be used when you load other files with the same extension as your current document.

Chapter 2: Basics 7

These autoprefs are saved in a file in your ‘~/.ne’ directory. This file has the same name as
the extension of the current document with ‘#ap’ appended to it. It contains all the commands
necessary to recreate your current document’s flag settings. Whenever you open a file with this
file name extension, ne will automagically recreate your prefered flag settings for that file type.
(There is a flag that inhibits the process; see Section 4.9.2 [AutoPrefs], page 39.)

Finally, when you select the ‘Save Def Prefs’ menu item, a special preferences file named
‘.default#ap’ is saved. These preferences are loaded whenever ne is run before loading any file.
This is how you set up the preferences you always want to be set.

Note also that a preferences file is just a macro (as described in the following section). Thus,
it can be edited manually if necessary.

2.6 Basic Macros

Very often, the programmer or the text writer has to repeat some complex editing action
over a series of similar blocks of text. This is where macros come in.

A macro is a stored sequence of commands. Any sequence of commands you find yourself
repeating is an excellent candidate for being made into a macro. You could create a macro by
editing a document that only contains valid ne commands and saving it, but by far the easiest
way to create a macro is to have ne record your actions. ne allows you to record macros and
then play them (execute the commands they contain) many times. You can save them on disk
for future use, edit them, or bind them to any key. You could even reconfigure each key of your
keyboard to play a complex macro if you wanted to.

ne can have any number of named macros loaded at the same time. It can also have one
unnamed macro in its current macro buffer. The named macros are typically loaded from disk
files, while the current macro buffer is where your recorded macro is held before you save it or
record over it.

Recording a macro is very simple. The keystroke 〈Control〉-T starts and stops recording a
macro. When you start recording a macro, ne clears the current macro buffer and starts record-
ing all your actions (with a few exceptions). You can see that you are recording a macro if an
‘R’ appears on the status bar. When you stop the recording process (again using 〈Control〉-T),
you can play the macro with the ‘Play Once’ item of the ‘Macros’ menu or with the 〈f9〉 key. If
you want to repeat the action many times, the Play command allows you to specify a number
of times to repeat the macro. You can always interrupt the macro’s execution with 〈Control〉-\.

A recorded macro has no name. It’s just an anonymous sequence of commands in the current
macro buffer, and it will go away when you exit ne or record another macro. If you want to save
your recorded macro for future use, you can give it a name and save it with the ‘Save Macro...’
menu item or the SaveMacro command. The macro is saved as a file in your current directory by
default or whatever directory you specify when prompted for the macro’s name. If you save it in
your ‘~/.ne’ directory then it will be easy to access it later from any other directory. The ‘Open
Macro...’ menu item and the OpenMacro command load a macro from a file into the current
macro buffer just as if you just Recorded it.

Any macro can be loaded from a file and played with the ‘Play Macro...’ menu item or
the Macro command. (This won’t modify any recorded anonymous macro that may be in the
current macro buffer; OpenMacro does that.) Useful macros can be permanently bound to a
keystroke as explained in Section 5.1 [Key Bindings], page 55. Moreover, whenever a command
line does not specify one of ne’s builtin commands, it is assumed to specify the name of a macro
to execute. Thus, you can execute macros just by typing their file names. Include a path if the
macro file’s directory is different from your current directory or your ‘~/.ne’ directory.

If the first attempt to open a macro fails, ne checks for a macro with the given name in your
‘~/.ne’ directory. This allows you to program simple extensions to ne’s language. For instance,

8 ne’s manual

all automatic preferences macros—which are just specially named macros that contain only
commands to set preferences flags—can be executed just by typing their names. For example,
if you have an automatic preference for the ‘doc’ extension for example, you can set ne’s flags
exactly as if you loaded a file ending with ‘.doc’ by typing the command doc#ap.

In general, it is a good idea to save frequently used macros in ‘~/.ne’ so that you can invoke
them by name without specifying a path regardless of your current directory. On the other
hand, if you have a macro that is customized for one document or a set of documents that you
store in one directory, then you might want to save the macro in that directory as well. If you
do, then you would want to cd to that directory before you start ne so that you can access that
macro without specifying a path.

If your macro has the same name as one of ne’s builtin commands, you can only access it with
the Macro name command. Builtin command names are always found first before ne command
interpreter looks for macros.

The system administrator may make some macros available from a global directory
(/usr/lib/ne by default). You can change where ne looks for this global directory by setting
and exporting the environment variable NE_GLOBAL_DIR before running ne.

Since loading a macro each time it is invoked would be a rather slow and expensive process,
once a macro has been executed it is cached internally. Subsequent invocations of the macro
will used the cached version.
Warning: the macro names are not case sensitive or path sensitive. ne only caches the file
name of a macro, not the path name, and uses a case insensitive comparison. That is, if
you invoke ‘~/foobar/macro’, a subsequent call for ‘/usr/MACRO’ will use the cached version
of ‘~/foobar/macro’. You can clear the cache by using the UnloadMacros command. See
Section 4.6.6 [UnloadMacros], page 35.

The behaviour of macros may vary with different preferences. If the user changes the Au-
toIndent and WordWrap flags, for example, new lines and new text may not appear in the same
way they would have when a macro was recorded. Good general purpose macros avoid such
problems by using the PushPrefs command first. This preserves the user’s preferences. Then
they set any preferences that could affect their behaviour. Once that is taken care of they get on
with the actual work for which they were intended. Finally, they use the PopPrefs command to
restore the user’s preferences. Note that if a macro is stopped before it restores the preferences
(either by the user pressing 〈Control〉-\ or by a command failing) then that responsibility falls on
the user.

2.7 More Advanced Features

2.7.1 UTF-8 support

UTF-8 is a character encoding that can represent the whole ISO 10646 character set—two
billion characters! ne can load and manipulate UTF-8 files transparently, in particular on
systems that provide UTF-8 I/O. See Section 3.10 [UTF-8 Support], page 23.

2.7.2 Bookmarks

It often happens that you have to browse through a file, switching frequently between a
small number of positions. In this case, you can use bookmarks. There are ten bookmarks per
document. You can set them with the SetBookmark command, and you can return to any set
bookmark with the GotoBookmark command. See Section 4.10.26 [SetBookmark], page 50, and
Section 4.10.27 [GotoBookmark], page 50. Note that in the default configuration no key binding

Chapter 2: Basics 9

is assigned to these commands. If you use them frequently, you may want to change the key
bindings. See Section 5.1 [Key Bindings], page 55.

2.7.3 MS-DOS files

ne will detect automagically the presence of MS-DOS line terminators (CR/LFs) and set
the CR/LF flag. When the file will be saved, the terminators will be restored correctly. You
can change this behaviour using the PreserveCR and CRLF commands. See Section 4.9.15 [Pre-
serveCR], page 42, and Section 4.9.16 [CRLF], page 43.

2.7.4 Binary files

ne allows a simplified form of binary editing. If the binary flag is set, only NULLs are
considered newlines when loading or saving. Thus, binary files can be safely loaded, modified
and saved. Inserting a new line or joining two lines has the effect of inserting or deleting a
NULL. Be careful not to mismatch the state of the binary flag when loading and saving the
same file.

2.7.5 File requester

The NoFileReq command deactivates the file requester. It is intended for “tough guys” who
always remember the names of their files and can type them at the speed of light (maybe with
the help of the completer, which is activated by the 〈Tab〉 key; see Section 3.3 [The Input Line],
page 13).

2.7.6 Executing un*x commands

There are three ways to execute un*x commands from within ne. The System command
can run any un*x command; you will get back into ne as soon as the command execution
terminates. See Section 4.12.9 [System], page 53. The Through (〈Meta〉-T) command (which
can be found in the ‘Edit’ menu), however, is much more powerful; it cuts the current block,
passes it as standard input to any un*x command, and pastes the command’s output at the
current cursor position. This provides a neat way to pass a part of your document through
one of un*x’s many filter commands (commands that read from standard input and write to
standard output, e.g., sort). See Section 4.4.11 [Through], page 30. Finally, you can use the
Suspend (〈Control〉-Z) command to temporarily stop ne and return to your command shell. See
Section 4.12.8 [Suspend], page 53.

2.7.7 Advanced key bindings

For an exaustive list of the remaining features of ne, see Chapter 3 [Reference], page 11.

10 ne’s manual

Chapter 3: Reference 11

3 Reference

In this chapter we shall methodically overview each part of ne. It is required reading for
becoming an expert user because some commands and features are not available through menus.

3.1 Arguments

The main arguments you can give to ne are the names of files you want to edit. They will
be loaded into separate documents. If you specifiy --help anywhere on the command line, a
simple help text describing ne’s arguments will be printed.

The --no-config option skips the reading of the key bindings and menu configuration files
(see Chapter 5 [Configuration], page 55). This is essential if you are experimenting with a new
configuration and you make mistakes in it.

The --macro filename option specifies the name of a macro that will be started just after
all documents have been loaded. A typical macro would move the cursor to a certain line.

The --keys filename option and the --menus filename option specify a name different
from the default one (‘.keys’ and ‘.menus’, respectively) for the key bindings and the menu
configuration files. Note that ne searches for these files first in the current directory, and then
in your ‘~/.ne’ directory.

The --ansi and the --no-ansi options manage ne’s built-in ANSI sequences. Usually ne
tries to retrieve from your system some information that is necessary to handle your terminal.
If for some reason this is impossible, you can ask ne to use a built-in set of sequences that will
work on many terminals using the --ansi option (to be true, ne can be even compiled so that
it uses directly the built-in set, but you need not know this). If you want to be sure (usually for
debugging purposes) that ne is not using the built-in set, you can specify --no-ansi.

Finally, the --utf8 and --no-utf8 options can be used to force or inhibit UTF-8 I/O,
overriding the choice imposed by the system locale. Note, however, that in general it is more
advisable to set the LANG environment variable to a locale supporting UTF-8 (you can usually
see the locale list with locale -a). See Section 3.10 [UTF-8 Support], page 23.

If you need to open a file whose name starts with ‘--’, you can put before the filename ‘--’,
which will skip command recognition for the next word.

3.2 The Status Bar

The last line of the screen, the status bar, is reserved by ne for displaying some information
about its internal state. Note that on most terminals it is physically impossible to write a
character on the last column of the last line, so we are not stealing precious editing space.

The status bar looks more or less like this:

L: 31 C: 25 12% iabcwfpvurBMRP*@8 20 /foo/bar

The numbers after ‘L:’ and ‘C:’ are the line and column of the cursor position. The first
line and the first column are both number 1. Then, ne shows the percentage of lines before the
current line (it will be 0% on the first line, and 100% on the last line).

Following that are a sequence of letters or dashes. These indicate the status of a series of
flags which we shall look at later.

The hexidecimal digits following the flags are the ISO-10646 code for the character at the
cursor, and are displayed optionally (see Section 4.9.9 [HexCode], page 41). If your cursor is at
or beyond the right end of the current line, the code disappears.

12 ne’s manual

The file name appearing after the character code is the file name of the current document.
The left end of very long file names may be truncated to keep the right end visible. Of course,
ne is keeping track internally of the complete file name. It is used by the Save command and as
the default input for the SaveAs command. See Section 4.2.3 [Save], page 26, and Section 4.2.4
[SaveAs], page 27.

The displayed line and column numbers, the percentage indicator and the character code
change when the cursor moves. This fact can really slow down cursor movement if you are using
ne through a slow connection. If you find this to be a problem, it is a good idea to turn off
the status bar using either the ‘Status Bar’ menu item of the ‘Prefs’ menu or the StatusBar
command. See Section 4.9.8 [StatusBar], page 41. Alternatively tyou can turn on the fast GUI
mode using either the ‘Fast GUI’ menu item of the ‘Prefs’ menu or the FastGUI command (see
Section 4.9.5 [FastGUI], page 40). In fast GUI mode the status bar is not draw in reverse, so
some additional optimization can be done when refreshing it.

The letters after the line and column number represent the status of the flags associated with
the current document. Flags that are off display a ‘-’ instead of a letter. Each flag also has an
associated command. The Flags command describes them all when you don’t have this manual
handy. Here’s the list in detail:

‘i’ appears if the insert flag is true. See Section 4.9.4 [Insert], page 40.

‘a’ appears if the auto indent flag is true. See Section 4.8.8 [AutoIndent], page 38.

‘b’ appears if the back search flag is true. See Section 4.5.8 [SearchBack], page 33.

‘c’ appears if the case sensitive search flag is true. See Section 4.5.9 [CaseSearch],
page 33.

‘w’ appears if the word wrap flag is true. See Section 4.8.7 [WordWrap], page 38.

‘f’ appears if the free form flag is true. See Section 4.9.6 [FreeForm], page 40.

‘p’ appears if the automatic preferences flag is true. See Section 4.9.2 [AutoPrefs],
page 39.

‘v’ appears if the verbose macros flag is true. See Section 4.9.14 [VerboseMacros],
page 42.

‘u’ appears if the undo flag is true. See Section 4.7.4 [DoUndo], page 36.

‘r’ appears if the read only flag is true. See Section 4.9.10 [ReadOnly], page 41.

‘B’ appears if the binary flag is true. See Section 4.9.3 [Binary], page 39.

‘M’ appears if you are currently marking a block. See Section 4.4.1 [Mark], page 28.

‘V’ can appear in place of ‘M’ if you are currently marking a vertical block. See Sec-
tion 4.4.2 [MarkVert], page 29.

‘R’ appears if you are currently recording a macro. See Section 4.6.1 [Record], page 33.

‘P’ appears if the PreserveCR flag is true. See Section 4.9.15 [PreserveCR], page 42.

‘C’ appears if the CRLF flag is true. See Section 4.9.16 [CRLF], page 43.

‘*’ appears if the document has been modified since the last save, or if the Modified
command was issued to set this flag. See Section 4.9.24 [Modified], page 45.

‘@’ appears if UTF-8 I/O is enabled. See Section 4.9.27 [UTF8IO], page 46.

‘A/8/U’ denotes the current buffer encoding—US-ASCII, 8-bit or UTF-8. See Section 4.9.25
[UTF8], page 45.

Note that sometimes ne needs to communicate some message to you. The message is usually
written over the status bar, where it stays until you do something. Any action such as moving
the cursor or inserting a character will restore the normal status bar.

Chapter 3: Reference 13

3.3 The Input Line

The bottom line of the screen is usually occupied by the status bar (see Section 3.2 [The
Status Bar], page 11). However, whenever ne prompts you for a command or file name or asks
you to confirm some action, the bottom line becomes the input line. You can see this because a
prompt is displayed at the start of the line, suggesting what kind of input is required. (Prompts
always ends with a colon, so it is easy to distinguish them from error messages, which overwrite
the status line from time to time.)

ne uses the input line in two essentially different ways: immediate input and long input. You
can easily distinguish between these two modes because in immediate input mode the cursor is
not on the input line, while for long input mode it is.

Immediate input is used whenever ne needs you to specify a simple choice that can be
expressed by one character (for example, ‘y’ or ‘n’). When you type the character, ne will
immediately accept and use your input. Most immediate inputs display a character just after
the prompt. This character is the default response, which is used if you just press the 〈Return〉
key. Note that immediate input is not case sensitive. Moreover, if a yes/no choice is requested,
anything other than ‘y’ will be considered a negative response.

Long input is used when a whole string is required. You can enter and edit your response to
long inputs like a line of text in a document. Most key bindings related to line editing work on
the command line exactly as they do in a document. This is true even of custom key bindings.
Just edit as you are used to. Moreover, the you can paste the first line of the current clip using
the keystroke that is bound to the Paste command, usually 〈Control〉-V. If your long input is
longer than the screen width, the input line scrolls to accomodate your text so you can input
very long lines even on small monitors. (There is a limit of 2048 characters.)

The default response to a long input is the response you gave to the previous long input.
Your first action when presented with a long input will either erase the default response or allow
you to edit it. If the first thing you type is a printing character, the default response will be
erased. Anything else (cursor movement for example) will allow you to edit it further.

Long input also lets you access your previous long input responses with the up and down
cursor commands (or with wider movement commands, such as start/end of file, page up/down,
etc.). Once you find a previous input you like, you can edit it further. Long input history is not
document specific, so you can recall any of your inputs regardless of which document was active
when you entered it. Furthermore, ne saves the most recent long inputs in ‘~/.ne/.history’
when you end your ne session and loads them again when you begin another ne session.

When asked to input a number, you can choose between decimal, octal and hexadecimal
notation in the standard way: a number starting with ‘0’ is considered in octal, a number
starting with ‘0x’ is considered in hexadecimal, and in all other cases decimal base is assumed.

Whenever a file name is requested, you can type a partial file name and complete it with
the 〈Tab〉 key. ne will scan the current directory (or the directory that you partially specified)
and search for the files matching your partial suggestion. The longest prefix common to all such
files will be copied on the input line (ne will beep if no completion exists). It’s easier done than
said—just try. If you press 〈Tab〉 again, you will be brought into the file requester: only the files
and directories matching your partial specification will appear, and as usual you will be able
to navigate and select a file or escape. See Section 3.5 [The Requester], page 14. Note that ne
considers the last word on the input line the partial file name to complete, no matter where the
cursor is currently (you must use quotes if the name contains spaces, even if it is the only item
on the input line).

Complete long input with the 〈Return〉 key. You can cancel a long input using 〈f1〉, 〈Escape〉,
〈Escape〉-〈Escape〉 or any key that is bound to the Escape command. The effect will vary depending

14 ne’s manual

on what your were requested to input, but the execution of the command requiring the input
will stop.

3.4 The Command Line

The command line is a typical (topical) way of controlling an editor on character driven
systems. It has some advantages over menus in terms of access speed, but it is not desirable
from a user interface point of view. ne has a command line that should be used whenever strange
features have to be accessed, or whenever you want to use a command that you are familiar
with and that is not bound to any key.

You have two ways to access the command line: by activating the menu and typing a colon
(‘:’) or by typing 〈Control〉-K (or any key that is bound to the Exec command; see Section 4.12.3
[Exec], page 52). The first method will work regardless of any key binding configuration if you
activate the menus with the 〈Escape〉 key since that key cannot be reconfigured. Of course, there
is also a menu entry that does the same job.

Once you activate the command line, the status bar will turn into an input line (see Section 3.3
[The Input Line], page 13) with a ‘Command:’ prompt waiting for you to do a long input. In
other words, you can now type any command (possibly with arguments), and when you press
〈Return〉, the command will be executed.

If the command you specify does not appear in ne’s internal tables, it is considered to be the
name of a macro. See Section 2.6 [Basic Macros], page 7, for details.

3.5 The Requester

In various situations, ne needs to ask you to choose one string from several (where “several”
can mean a lot). For this kind of event, the requester is issued. The requester displays the
strings in as many columns as possible and lets you move with the cursor from one string to
another. The strings can fill many screens, which are handled as consecutive pages. Most
navigation keys work exactly as in normal editing. This is true even of custom key bindings.
Thus, for instance, you can page up and down through the list with 〈Control〉-P and 〈Control〉-N
(in the standard keyboard configuration).

As with the input line (see Section 3.3 [The Input Line], page 13), you can confirm your input
with 〈Return〉 or escape the requester with 〈f1〉 or the 〈Escape〉 key (or whatever has been bound to
the Escape command). Moreover, if you are selecting a file name there is a third possibility:
by escaping with the 〈Tab〉 key, the file or directory name that the cursor is currently on will be
copied on the input line. This allows to choose an existing name and modify it.

A special feature is bound to alphabetic characters: they move you to the next entry starting
with the letter you typed. The search is case insensitive, and it continues on to the first string
after having passed the last one.

An example of a requester is the list of commands appearing when you use the Help command.
Another example is the file requester that ne issues whenever a file operation is going to take
place. In this case, pressing 〈Return〉 while on a directory name will enter the directory. Note
also that, should the requester take too long to appear, you can interrupt the directory scanning
with 〈Control〉-\. However, the listing will likely be incomplete.

Note that there are two items that always appear in the file requester: ‘./’ and ‘../’. The
first one represents the current directory and can be used to force a reread of the directory. The
second one represents the parent directory and can be used to move up by one directory level.

Chapter 3: Reference 15

3.6 Menus

ne’s menus are extremely straightforward. The suggested way of learning their use is by trial
and error, with a peek here and there at this manual when some doubts arise.

You activate menus with the 〈f1〉 key, or in case your keyboard does not have such a key,
〈Escape〉, 〈Escape〉-〈Escape〉 or any key that is bound to the Escape command. Move around the
menus pressing with the cursor keys and the page up/down keys (which move to the first or
last menu item in a menu). You can also move around menus and menu items by pressing the
alphabetic keys; a lower case letter will move to the first item in the current menu whose name
starts with the given letter; an upper case letter will move to the first menu whose name starts
with the given letter.

Each menu item of ne’s standard menu corresponds to a single command. In explaining
what each menu item allows you to do, we shall simply refer you to the section that explains
the command relative to the menu item.

If you plan to change ne’s menu (see Section 5.2 [Changing Menus], page 56), you should
take a look at the file ‘default.menus’ that comes with ne’s distribution. It contains a complete
menu configuration that clones the standard one.

3.6.1 File

The File menu contains standard items that allow loading and saving files. Quitting ne
(which doesn’t save changes) or exiting ne (which does save changes) is also possible.

‘Open...’ See Section 4.2.1 [Open], page 26.

‘Open New...’
See Section 4.2.2 [OpenNew], page 26.

‘Save’ See Section 4.2.3 [Save], page 26.

‘Save As...’
See Section 4.2.4 [SaveAs], page 27.

‘Quit Now’ See Section 4.3.1 [Quit], page 27.

‘Save&Exit’
See Section 4.3.2 [Exit], page 27.

‘About’ See Section 4.12.1 [About], page 52.

3.6.2 Documents

The Documents menu contains commands that create new documents, destroy them, and
browse through them.

‘New’ See Section 4.3.3 [NewDoc], page 27.

‘Clear’ See Section 4.3.4 [Clear], page 27.

‘Close’ See Section 4.3.5 [CloseDoc], page 28.

‘Next’ See Section 4.3.6 [NextDoc], page 28.

‘Prev’ See Section 4.3.7 [PrevDoc], page 28.

‘Select...’
See Section 4.3.8 [SelectDoc], page 28.

16 ne’s manual

3.6.3 Edit

The Edit menu contains commands related to cutting and pasting text.

‘Mark Block’
See Section 4.4.1 [Mark], page 28.

‘Cut’ See Section 4.4.4 [Cut], page 29.

‘Copy’ See Section 4.4.3 [Copy], page 29.

‘Paste’ See Section 4.4.5 [Paste], page 29.

‘Erase’ See Section 4.4.7 [Erase], page 30.

‘Through’ See Section 4.4.11 [Through], page 30.

‘Delete Line’
See Section 4.11.6 [DeleteLine], page 51.

‘Delete EOL’
See Section 4.11.7 [DeleteEOL], page 52.

‘Mark Vert’
See Section 4.4.2 [MarkVert], page 29.

‘Paste Vert’
See Section 4.4.6 [PasteVert], page 29.

‘Open Clip...’
See Section 4.4.8 [OpenClip], page 30.

‘Save Clip...’
See Section 4.4.9 [SaveClip], page 30.

3.6.4 Search

The Search menu contains commands related to searching for specific contents or locations
within a document.

‘Find...’ See Section 4.5.1 [Find], page 31.

‘Find RegExp...’
See Section 4.5.2 [FindRegExp], page 31.

‘Replace...’
See Section 4.5.3 [Replace], page 31.

‘Replace Once...’
See Section 4.5.4 [ReplaceOnce], page 32.

‘Replace All...’
See Section 4.5.5 [ReplaceAll], page 32.

‘Repeat Last’
See Section 4.5.6 [RepeatLast], page 32.

‘Goto Line...’
See Section 4.10.5 [GotoLine], page 47.

‘Goto Col...’
See Section 4.10.6 [GotoColumn], page 47.

Chapter 3: Reference 17

‘Goto Mark...’
See Section 4.10.7 [GotoMark], page 47.

‘Match Bracket’
See Section 4.5.7 [MatchBracket], page 33.

‘Set Bookmark’
See Section 4.10.26 [SetBookmark], page 50.

‘Goto Bookmark’
See Section 4.10.27 [GotoBookmark], page 50.

3.6.5 Macros

The Macros menu contains commands related to creating and using macros.

‘Record’ See Section 4.6.1 [Record], page 33.

‘Stop’ See Section 4.6.1 [Record], page 33.

‘Replace...’
See Section 4.5.3 [Replace], page 31.

‘Play Once’
‘Play Many...’

See Section 4.6.2 [Play], page 34.

‘Play Macro...’
See Section 4.6.3 [Macro], page 34.

‘Open Macro...’
See Section 4.6.4 [OpenMacro], page 34.

‘Save Macro...’
See Section 4.6.5 [SaveMacro], page 35.

3.6.6 Extras

This menu contains a few special items that don’t fit in obvious ways into other menus.

‘Exec...’ See Section 4.12.3 [Exec], page 52.

‘Suspend’ See Section 4.12.8 [Suspend], page 53.

‘Help...’ See Section 4.12.5 [Help], page 53.

‘Refresh’ See Section 4.12.7 [Refresh], page 53.

‘Undo’ See Section 4.7.1 [Undo], page 35.

‘Redo’ See Section 4.7.2 [Redo], page 36.

‘Undel Line’
See Section 4.7.3 [UndelLine], page 36.

‘Center’ See Section 4.8.1 [Center], page 36.

‘Paragraph’
See Section 4.8.2 [Paragraph], page 37.

‘Adjust View’
‘Center View’

See Section 4.10.23 [AdjustView], page 49.

18 ne’s manual

‘ToUpper’ See Section 4.8.3 [ToUpper], page 37.

‘ToLower’ See Section 4.8.4 [ToLower], page 37.

‘Capitalize’
See Section 4.8.5 [Capitalize], page 37.

3.6.7 Navigation

The Navigation menu contains commands related moving around in a document.

‘Move Left’
See Section 4.10.1 [MoveLeft], page 46.

‘Move Right’
See Section 4.10.2 [MoveRight], page 46.

‘Line Up’ See Section 4.10.3 [LineUp], page 46.

‘Line Down’
See Section 4.10.4 [LineDown], page 46.

‘Prev Page’
See Section 4.10.8 [PrevPage], page 47.

‘Next Page’
See Section 4.10.9 [NextPage], page 47.

‘Page Up’ See Section 4.10.10 [PageUp], page 47.

‘Page Down’
See Section 4.10.11 [PageDown], page 48.

‘Start Of File’
See Section 4.10.19 [MoveSOF], page 49.

‘End Of File’
See Section 4.10.18 [MoveEOF], page 48.

‘Start Of Line’
See Section 4.10.15 [MoveSOL], page 48.

‘End Of Line’
See Section 4.10.14 [MoveEOL], page 48.

‘Top Of Screen’
See Section 4.10.16 [MoveTOS], page 48.

‘Bottom Of Screen’
See Section 4.10.17 [MoveBOS], page 48.

‘Incr Up’ See Section 4.10.21 [MoveIncUp], page 49.

‘Incr Down’
See Section 4.10.22 [MoveIncDown], page 49.

‘Prev Word’
See Section 4.10.12 [PrevWord], page 48.

‘Next Word’
See Section 4.10.13 [NextWord], page 48.

Chapter 3: Reference 19

3.6.8 Prefs

The Prefs menu contains commands related to setting, storing, and using your prefered
document flags.

‘Tab Size...’
See Section 4.9.12 [TabSize], page 42.

‘Insert/Over’
See Section 4.9.4 [Insert], page 40.

‘Free Form’
See Section 4.9.6 [FreeForm], page 40.

‘Status Bar’
See Section 4.9.8 [StatusBar], page 41.

‘Hex Code’ See Section 4.9.9 [HexCode], page 41.

‘Fast GUI’ See Section 4.9.5 [FastGUI], page 40.

‘Word Wrap’
See Section 4.8.7 [WordWrap], page 38.

‘Right Margin’
See Section 4.8.6 [RightMargin], page 37.

‘Auto Indent’
See Section 4.8.8 [AutoIndent], page 38.

‘Preserve CR’
See Section 4.9.15 [PreserveCR], page 42.

‘Save CR/LF’
See Section 4.9.16 [CRLF], page 43.

‘Load Prefs...’
See Section 4.9.19 [LoadPrefs], page 44.

‘Save Prefs...’
See Section 4.9.20 [SavePrefs], page 44.

‘Load AutoPrefs’
See Section 4.9.21 [LoadAutoPrefs], page 44.

‘Save AutoPrefs’
See Section 4.9.22 [SaveAutoPrefs], page 44.

‘Save Def Prefs’
See Section 4.9.23 [SaveDefPrefs], page 45.

3.7 Regular Expressions

Regular expressions are a powerful way of specifying complex search and replace operations.
ne supports the full regular expression syntax on US-ASCII and 8-bit buffers, but has to impose
a restriction on character sets when searching in UTF-8 text. See Section 3.10 [UTF-8 Support],
page 23.

20 ne’s manual

3.7.1 Syntax

The following section is taken (with minor modifications) from the GNU regular expression
library documentation and is Copyright c© Free Software Foundation.

A regular expression describes a set of strings. The simplest case is one that describes a
particular string; for example, the string ‘foo’ when regarded as a regular expression matches
‘foo’ and nothing else. Nontrivial regular expressions use certain special constructs so that they
can match more than one string. For example, the regular expression ‘foo|bar’ matches either
the string ‘foo’ or the string ‘bar’; the regular expression ‘c[ad]*r’ matches any of the strings
‘cr’, ‘car’, ‘cdr’, ‘caar’, ‘cadddar’ and all other such strings with any number of ‘a’’s and ‘d’’s.

Regular expressions have a syntax in which a few characters are special constructs and the
rest are ordinary. An ordinary character is a simple regular expression which matches that
character and nothing else. The special characters are ‘$’, ‘^’, ‘.’, ‘*’, ‘+’, ‘?’, ‘[’, ‘]’ , ‘(’, ‘)’
and ‘\’. Any other character appearing in a regular expression is ordinary, unless a ‘\’ precedes
it.

For example, ‘f’ is not a special character, so it is ordinary, and therefore ‘f’ is a regular
expression that matches the string ‘f’ and no other string. (It does not match the string ‘ff’.)
Likewise, ‘o’ is a regular expression that matches only ‘o’.

Any two regular expressions a and b can be concatenated. The result is a regular expression
that matches a string if a matches some amount of the beginning of that string and b matches
the rest of the string.

As a simple example, we can concatenate the regular expressions ‘f’ and ‘o’ to get the regular
expression ‘fo’, which matches only the string ‘fo’. Still trivial.

Note: special characters are treated as ordinary ones if they are in contexts where their
special meanings make no sense. For example, ‘*foo’ treats ‘*’ as ordinary since there is no
preceding expression on which the ‘*’ can act. It is poor practice to depend on this behavior;
better to quote the special character anyway, regardless of where is appears.

The following are the characters and character sequences that have special meaning within
regular expressions. Any character not mentioned here is not special; it stands for exactly itself
for the purposes of searching and matching.

‘.’ is a special character that matches anything except a newline. Using concatenation,
we can make regular expressions like ‘a.b’, which matches any three-character string
which begins with ‘a’ and ends with ‘b’.

‘*’ is not a construct by itself; it is a suffix, which means the preceding regular expression
is to be repeated as many times as possible. In ‘fo*’, the ‘*’ applies to the ‘o’, so
‘fo*’ matches ‘f’ followed by any number of ‘o’’s.
The case of zero ‘o’’s is allowed: ‘fo*’ does match ‘f’.
‘*’ always applies to the smallest possible preceding expression. Thus, ‘fo*’ has a
repeating ‘o’, not a repeating ‘fo’.

‘+’ ‘+’ is like ‘*’ except that at least one match for the preceding pattern is required
for ‘+’. Thus, ‘c[ad]+r’ does not match ‘cr’ but does match anything else that
‘c[ad]*r’ would match.

‘?’ ‘?’ is like ‘*’ except that it allows either zero or one match for the preceding pattern.
Thus, ‘c[ad]?r’ matches ‘cr’ or ‘car’ or ‘cdr’, and nothing else.

‘[...]’ ‘[’ begins a character set, which is terminated by a ‘]’. In the simplest case, the
characters between the two form the set. Thus, ‘[ad]’ matches either ‘a’ or ‘d’,
and ‘[ad]*’ matches any string of ‘a’’s and ‘d’’s (including the empty string), from
which it follows that ‘c[ad]*r’ matches ‘car’, et cetera.

Chapter 3: Reference 21

Character ranges can also be included in a character set, by writing two characters
with a ‘-’ between them. Thus, ‘[a-z]’ matches any lower-case letter. Ranges may
be intermixed freely with individual characters, as in ‘[a-z$%.]’, which matches
any lower case letter or ‘$’, ‘%’ or period.
Note that the usual special characters are not special any more inside a character
set. A completely different set of special characters exists inside character sets: ‘]’,
‘-’ and ‘^’.
To include a ‘]’ in a character set, you must make it the first character. For example,
‘[]a]’ matches ‘]’ or ‘a’. To include a ‘-’, you must use it in a context where it
cannot possibly indicate a range: that is, as the first character, or immediately after
a range.
Note that when searching in UTF-8 text, a character set may contain US-ASCII
characters only.

‘[^ ...]’ ‘[^’ begins a complement character set, which matches any character except the ones
specified. Thus, ‘[^a-z0-9A-Z]’ matches all characters except letters and digits.
Also in this case, when searching in UTF-8 text a complemented character set may
contain US-ASCII characters only.
‘^’ is not special in a character set unless it is the first character. The character
following the ‘^’ is treated as if it were first (it may be a ‘-’ or a ‘]’).

‘^’ is a special character that matches the empty string – but only if at the beginning
of a line in the text being matched. Otherwise it fails to match anything. Thus,
‘^foo’ matches a ‘foo’ that occurs at the beginning of a line.

‘$’ is similar to ‘^’ but matches only at the end of a line. Thus, ‘xx*$’ matches a string
of one or more ‘x’’s at the end of a line.

‘\’ has two functions: it quotes the above special characters (including ‘\’), and it
introduces additional special constructs.
Because ‘\’ quotes special characters, ‘\$’ is a regular expression that matches only
‘$’, and ‘\[’ is a regular expression that matches only ‘[’, and so on.
For the most part, ‘\’ followed by any character matches only that character. How-
ever, there are several exceptions: characters which, when preceded by ‘\’, are
special constructs. Such characters are always ordinary when encountered on their
own.

‘|’ specifies an alternative. Two regular expressions a and b with ‘|’ in between form
an expression that matches anything that either a or b will match.
Thus, ‘foo|bar’ matches either ‘foo’ or ‘bar’ but no other string.
‘|’ applies to the largest possible surrounding expressions. Only a surrounding ‘(
...)’ grouping can limit the grouping power of ‘|’.

‘(...)’ is a grouping construct that serves three purposes:
1. To enclose a set of ‘|’ alternatives for other operations. Thus, ‘(foo|bar)x’

matches either ‘foox’ or ‘barx’.
2. To enclose a complicated expression for the postfix ‘*’ to operate on. Thus,

‘ba(na)*’ matches ‘bananana’ et cetera, with any (zero or more) number of
‘na’’s.

3. To mark a matched substring for future reference.

This last application is not a consequence of the idea of a parenthetical grouping; it
is a separate feature that happens to be assigned as a second meaning to the same ‘(

22 ne’s manual

...)’ construct because there is no conflict in practice between the two meanings.
Here is an explanation of this feature:

‘\digit ’ After the end of a ‘(...)’ construct, the matcher remembers the beginning and
end of the text matched by that construct. Then, later on in the regular expression,
you can use ‘\’ followed by digit to mean “match the same text matched the digit’th
time by the ‘(...)’ construct.” The ‘(...)’ constructs are numbered in order
of commencement in the regexp.
The strings matching the first nine ‘(...)’ constructs appearing in a regular ex-
pression are assigned numbers 1 through 9 in order of their beginnings. ‘\1’ through
‘\9’ may be used to refer to the text matched by the corresponding ‘(...)’ con-
struct.
For example, ‘(.+)\1’ matches any non empty string that is composed of two iden-
tical halves. The ‘(.+)’ matches the first half, which may be anything non empty,
but the ‘\1’ that follows must match the same exact text.

‘\b’ matches the empty string, but only if it is at the beginning or end of a word. Thus,
‘\bfoo\b’ matches any occurrence of ‘foo’ as a separate word. ‘\bball(s|)\b’
matches ‘ball’ or ‘balls’ as a separate word.

‘\B’ matches the empty string, provided it is not at the beginning or end of a word.

‘\<’ matches the empty string, but only if it is at the beginning of a word.

‘\>’ matches the empty string, but only if it is at the end of a word.

‘\w’ matches any word-constituent character. These are US-ASCII letters, numbers and
the underscore, independently on the buffer encoding.

‘\W’ matches any character that is not a word-constituent.

3.7.2 Replacing regular expressions

Also the replacement string has some special feature when doing a regular expression search
and replace. Exactly as during the search, ‘\’ followed by digit stands for “the text matched the
digit’th time by the ‘(...)’ construct in the search expression”. Moreover, ‘\0’ represent the
whole string matched by the regular expression. Thus, for instance, the replace string ‘\0\0’
has the effect of doubling any string matched.

Another example: if you search for ‘(a+)(b+)’, replacing with ‘\2x\1’, you will match any
string composed by a series of ‘a’’s followed by a series of ‘b’’s, and you will replace it with
the string obtained by moving the ‘a’ in front of the ‘b’’s, adding moreover ‘x’ inbetween. For
instance, ‘aaaab’ will be matched and replaced by ‘bxaaaa’.

Note that the backslash character can escape itself. Thus, to put a backslash in the replace-
ment string, you have to use ‘\\’.

3.8 Automatic Preferences

Automatic preferences let you set up a custom configuration that is automatically used
whenever you open a file with a given extension. For instance, you may prefer a tab size of
three when editing C sources, but eight could be more palatable when writing electronic mail.

The use of autoprefs is definitely straightforward. You simply use the ‘Save AutoPrefs’
menu item (or the SaveAutoPrefs command; see Section 4.9.22 [SaveAutoPrefs], page 44) when
the current document has the given extension and the current configuration suits your tastes.
The internal state of a series of options will be recorded as a macro containing commands that

Chapter 3: Reference 23

reproduce the current configuration. The macro is then saved in the ‘~/.ne’ directory (which is
created if necessary) with the name given by the extension, postfixed with ‘#ap’. Thus, the C
sources automatic preferences file will be named ‘c#ap’, the one for TEX files ‘tex#ap’, and so
on.

Macros are generated with short or long command names depending on the status of the
verbose macros flag. See Section 4.9.14 [VerboseMacros], page 42.

Automatic preferences files are loaded and executed whenever a file with a known extension
is opened. Note that you can manually edit such files, and even insert commands, but any
command that does something other than setting a flag will be rejected, and an error message
will be issued.

3.9 Emergency Save

When ne is interrupted by an abnormal event (for instance, the crash of your terminal), it
will try to save all unsaved documents in its current directory. Named documents will have their
names prefixed with a ‘#’. Unnamed documents will be given names made up of hexadecimal
numbers obtained by some addresses in memory that will make them unique.

3.10 UTF-8 Support

Since version 1.30, ne can manipulate UTF-8 files and supports UTF-8 when communicating
with the user. At startup, ne fetches the system locale description, and checks whether it
contains the string ‘utf8’ or ‘utf-8’. In this case, it starts communicating with the user using
UTF-8. This behaviour can be modified either using a suitable command line option (see see
Section 3.1 [Arguments], page 11), or using Section 4.9.27 [UTF8IO], page 46. This makes it
possible to display and read from the keyboard a wide range of characters.

Independently of the input/output encoding, ne keeps track of the encoding of each buffer.
ne does not try to select a particular coding on a buffer, unless it is forced to do so, for instance
because a certain character is inserted. Once a buffer has a definite encoding, however, it keeps
it forever.

More precisely, every buffer may be in one of three encoding modes: US-ASCII, when it is
entirely composed of US-ASCII characters; 8-bit, if it contains also other characters, but it is
not UTF-8 encoded; and finally, UTF-8, if it is UTF-8-encoded.

The behaviour of ne in US-ASCII and 8-bit mode is similar to previous versions. Each byte
in the buffer is considered a separate character. There is, however, an important difference:
if I/O is not UTF-8 encoded, any encoding of the ISO-8859 family will work flawlessly, as ne
merely reads bytes from the keyboard and displays bytes on the screen. On the contrary, in the
case of UTF-8 input/output ne must take a decision as to which encoding is used for non-UTF-8
buffers, and presently this is hardwired to ISO-8859-1.

In UTF-8 mode, instead, ne interprets the bytes in the buffer in a different way—several
bytes may encode a single character. The whole process is completely transparent to the user,
but if you really want to look at the buffer content, you can switch to 8-bit mode (see see
Section 4.9.25 [UTF8], page 45).

For most operations, UTF-8 support should be transparent. However, in some cases, in par-
ticular when mixing buffers with different encodings, ne will refuse to perform certain operations
because of incompatible encodings.

The main limitation of UTF-8 buffers is that when searching for a regular expression in a
UTF-8 text, character sets may only contain US-ASCII characters (see see Section 3.7 [Reg-
ular Expressions], page 19). You can, of course, partially emulate a full UTF-8 character set
implementation specifying the possible alternatives using ‘|’ (but you have no ranges).

24 ne’s manual

Chapter 4: Commands 25

4 Commands

Everything ne can do is specified through a command. Commands can be manually typed
on the command line, bound to a key, to a menu item, or grouped into macros for easier
manipulation. If you want to fully exploit the power of ne, you will be faced sooner or later
with using commands directly.

4.1 General Guidelines

Every command in ne has a long and a short name. Except in a very few cases, the short
name is given by two or three letters that are the initials of the words that form the long
name. For instance, SearchBack has short name SB, SaveDefPrefs has the short name SDP,
and AdjustView’s short name is AV. There are some exceptions however. The most frequently
used commands such as Exit have one-letter short names (X). Also some commands use a
different short name to avoid clashes with a more common command’s short name. For example,
StatusBar’s short name is ST rather than SB to avoid clashes with SearchBack’s short name.

A command always has at most one argument. This is a chosen limitation that allows ne’s
parsing of commands and macros to be very fast. Moreover, it nullifies nearly all problems
related to delimiters, escape characters, and the like. The unique argument can be a number, a
string, or a flag modifier. You can easily distinguish these three cases even without this manual
by looking at what the Help command says about the given command. Note that when a
command’s argument is enclosed in square brackets, it is optional.

Strings are general purpose arguments. Numbers are used to modify internal parameters,
such as the size of a tab. A flag modifier is an optional number that is interpreted as follows:
• 0 means clearing the flag;
• 1 (or any positive number) means setting the flag;
• no number means toggling the flag.

Thus, StatusBar 1 will activate that status bar, while I will toggle insert/overstrike. This
design choice is due to the fact that most of the time during interactive editing you need to
change a flag. For instance, you may be in insert mode and you want to overstrike, or vice
versa. Absolute settings (those with a number) are useful essentially for macros. It is reasonable
to use the fastest approach for the most frequent interactive event. When a number or a string
is required and the argument is optional, most of the time you will be prompted to type the
argument on the command line.

As for the input line, for numeric arguments you can choose between decimal, octal and
hexadecimal notation in the standard way: a number starting with ‘0’ is considered in octal, a
number starting with ‘0x’ is considered in hexadecimal, and in all other cases decimal base is
assumed.

When a number represents how many times ne should repeat an action, it is always under-
stood that the command will terminate when the conditions for applying it are no longer true.
For instance, the Paragraph command accepts the number of paragraphs to format. But if not
enough paragraphs exists in the text, only the available ones will be formatted.

This easily allows performing operations on an entire document by specifying preposterously
huge numbers as arguments. ToUpper 200000000 will make all the words in the document upper
case. (At least, one would hope so!) Note that this is much faster than recording a macro with
the command ToUpper in it and playing it many times because in the former case the command
has to be parsed just one time.

In any case, if a macro or a repeated operation takes too long, you can stop it using the
interrupt key (〈Control〉-\).

26 ne’s manual

To handle situations such as an argument string starting with a space, ne implements a
simple mechanism whereby you can enclose any string argument in double quotes. If the first
non-blank character after the command and last character of the command line are double
quotes, the quotes will be removed and whatever is left will be used as the string argument.
For example, the Find command to find a space could be entered on the command line or
in a macro as Find " ". The only case needing special treatment is when a string starts and
ends with double quotes. The command Find ""quote"" would locate the next occurance of
the string ‘"quote"’ (including the double quotes). However, Find onequote" wouldn’t require
special treatment because the command argument doesn’t both start and end with a double
quote.

4.2 File Commands

These commands allow opening and saving files. They all act in the context of the current
document (i.e., the document displayed when the command is issued).

4.2.1 Open

Syntax: Open [filename]
Abbreviation: O

loads the file specified by the filename string into the current document.

If the optional filename argument is not specified, the file requester is opened, and you are
prompted to select a file. (You can inhibit the file requester opening by using the NoFileReq
command; see Section 4.9.7 [NoFileReq], page 40.)

If you escape from the file requester, you can input the file name on the command line, the
default being the current document name, if available.

If the current document is marked as modified at the time the command is issued, you have
to confirm the action.

4.2.2 OpenNew

Syntax: OpenNew [filename]
Abbreviation: ON

is the same as Open, but loads the file specified by the filename string into a new document. See
Section 4.2.1 [Open], page 26.

4.2.3 Save

Syntax: Save
Abbreviation: S

saves the current document using its default file name.

If the current document is unnamed, the file requester will open and you will be prompted
to select a file. (You can inhibit the file requester opening by using the NoFileReq command;
see Section 4.9.7 [NoFileReq], page 40.)

If you escape from the file requester, you can input the file name on the command line.

Chapter 4: Commands 27

4.2.4 SaveAs

Syntax: SaveAs [filename]
Abbreviation: SA

saves the current document using the specified string as the file name.

If the optional filename argument is not specified, the file requester will open and you will
be prompted to select a file. (You can inhibit the file requester opening by using the NoFileReq
command; see Section 4.9.7 [NoFileReq], page 40.)

If you escape from the file requester, you can enter the file name on the input line, the default
being the current document name, if available.

4.3 Document Commands

These commands allow manipulation of the circular list of documents in ne.

4.3.1 Quit

Syntax: Quit
Abbreviation: Q

closes all documents and exits. If any documents are modified, you have to confirm the action.

4.3.2 Exit

Syntax: Exit
Abbreviation: X

saves all modified documents, closes them and exits. If any documents cannot be saved, the
action is suspended and an error message is issued.

4.3.3 NewDoc

Syntax: NewDoc
Abbreviation: N

creates a new, empty, unnamed document that becomes the current document. The position of
the document in the document list is just after the current document. The preferences of the
new document are a copy of the preferences of the current document.

4.3.4 Clear

Syntax: Clear
Abbreviation: CL

destroys the contents of the current document and of its undo buffer. Moreover, the document
becomes unnamed. If your current document is marked as modified, you have to confirm the
action.

28 ne’s manual

4.3.5 CloseDoc

Syntax: CloseDoc
Abbreviation: CD
closes the current document. The document is removed from ne’s list and, if it is the only
existing document, ne exits. If the document was modified since it was last saved, you have to
confirm the action.

4.3.6 NextDoc

Syntax: NextDoc
Abbreviation: ND
sets as current document the next document in the document list.

4.3.7 PrevDoc

Syntax: PrevDoc
Abbreviation: PD
sets as current document the previous document in the document list.

4.3.8 SelectDoc

Syntax: SelectDoc
Abbreviation: SD
displays a requester containing the names of all the documents in memory. You select whichever
document you want to become the current document.

If you escape from the requester the requester goes away and you are returned to your original
current document.

SelectDoc is especially useful if you have a large number of documents open (say, more than
10). Otherwise, NextDoc and PrevDoc should be enough. See Section 4.3.6 [NextDoc], page 28,
and Section 4.3.7 [PrevDoc], page 28.

4.4 Clip Commands

These commands control the clipping system. A clip is a snippet of text separate from any
document, which you can save to a file or insert into a document. You can select text in a
document and copy it to a clip, optionally deleting it from your text. You can also load text
directly from a file into a clip. ne can have any number of clips, which are distinguished by an
integer. Most clip commands act on the current clip, which can be selected with ClipNumber.
Clips can be copied and pasted in two ways—normally (as lines of text) or vertically (as a
rectangular block of characters).

Note that by using the Through command you can automatically pass a (possibly vertical)
block of text through any filter (such as sort under un*x).

4.4.1 Mark

Syntax: Mark [0|1]
Abbreviation: M

Chapter 4: Commands 29

sets the mark at the current position or cancels the previous mark. The mark can then be used
to perform clip operations. The clip commands act on the characters lying between the mark
and the cursor.

If you invoke Mark with no arguments, it will toggle the mark. If you specify 0 or 1, the mark
will be canceled or set to the current position, respectively. A capital ‘M’ appears on the status
bar, if the mark is active.

See Section 4.6.1 [Record], page 33, for the reason the mark is implemented as a flag.

4.4.2 MarkVert

Syntax: MarkVert [0|1]
Abbreviation: MV

is the same as Mark, but the mark is interpreted as vertical by the clip handling commands.
This means that the region manipulated by the cut/paste commands is the rectangle having as
vertices the cursor and the mark. Moreover, a capital ‘V’, rather than a capital ‘M’, will appear
on the status bar. Vertical cut/paste operations are useful for handling structured program
indentation.

4.4.3 Copy

Syntax: Copy [n]
Abbreviation: C

copies the contents of the characters lying between the cursor and the mark into the clip specified
by the optional numeric argument, the default clip being the current clip, which can be set with
the ClipNumber command (see Section 4.4.10 [ClipNumber], page 30). If the current mark was
vertical, the rectangle of characters defined by the cursor and the mark is copied instead.

4.4.4 Cut

Syntax: Cut [n]
Abbreviation: CU

acts just like Copy, but also deletes the block being copied.

4.4.5 Paste

Syntax: Paste [n]
Abbreviation: P

pastes the contents of specified clip into the current document at the cursor position. If you
don’t specify the clip number, the current clip is used (see Section 4.4.10 [ClipNumber], page 30
for how to specify which clip is current).

4.4.6 PasteVert

Syntax: PasteVert [n]
Abbreviation: PV

vertically pastes the contents of the specified clip, the default being the current clip. Each line
of the clip is inserted on consecutive lines at the horizontal cursor position.

30 ne’s manual

4.4.7 Erase

Syntax: Erase
Abbreviation: E

acts like Cut, but the block is just deleted and not copied into any clip.

4.4.8 OpenClip

Syntax: OpenClip [filename]
Abbreviation: OC

loads the given file name as the current clip (just as if you copied it; see Section 4.4.3 [Copy],
page 29).

If the optional filename argument is not specified, the file requester will open and you will
be prompted to select a file. (You can inhibit the file requester opening by using the NoFileReq
command; see Section 4.9.7 [NoFileReq], page 40.)

If you escape from the file requester, you can enter the file name on the input line.

4.4.9 SaveClip

Syntax: SaveClip [filename]
Abbreviation: SC

saves the current clip on the given file name.

If the optional filename argument is not specified, the file requester will open and you will
be prompted to select a file. (You can inhibit the file requester opening by using the NoFileReq
command; see Section 4.9.7 [NoFileReq], page 40.)

If you escape from the file requester, you can enter the file name on the input line.

4.4.10 ClipNumber

Syntax: ClipNumber [n]
Abbreviation: CN

sets the current clip number. This number is used by OpenClip and SaveClip, and by Copy,
Cut and Paste if they are called without any argument. Its default value is zero. n is limited
only by the integer size of the machine ne is running on.

If the optional argument n is not specified, you can enter it on the input line, the default
being the current clip number.

4.4.11 Through

Syntax: Through [command]
Abbreviation: T

asks the shell to execute command, piping the current block in the standard input, and replacing
it with the output of the command. This command is most useful with filters, such as sort. Its
practical effect is to pass the block through the specified filter.

Note that by selecting an empty block (or equivalently by having the mark unset) you can
use Through to insert the output of any un*x command in your file.

If the optional argument command is not specified, you can enter it on the input line.

Chapter 4: Commands 31

4.5 Search Commands

These commands control the search system. ne offers two complementary searching tech-
niques: a simple, fast exact matching search (optionally ignoring case), and a very flexible
and powerful, but slower, regular expression search based on the GNU regex library (again,
optionally case insensitive).

4.5.1 Find

Syntax: Find [pattern]
Abbreviation: F
searches for the given pattern. The cursor is positioned on the first occurrence of the pattern,
or an error message is given. The direction and the case sensitivity of the search are established
by the value of the back search and case sensitive search flags. See Section 4.5.8 [SearchBack],
page 33 and Section 4.5.9 [CaseSearch], page 33.

If the optional argument pattern is not specified, you can enter it on the input line, the
default being the last pattern used.

4.5.2 FindRegExp

Syntax: FindRegExp [pattern]
Abbreviation: FX
searches the current document for the given extended regular expression (see Section 3.7 [Regular
Expressions], page 19) . The cursor is positioned on the first string matching the expression.
The direction and the kind of search are established by the value of the back search and case
sensitive search flags. See Section 4.5.8 [SearchBack], page 33 and Section 4.5.9 [CaseSearch],
page 33.

If the optional argument pattern is not specified, you can enter it on the input line, the
default being the last pattern used.

4.5.3 Replace

Syntax: Replace [string]
Abbreviation: R
moves to the first match of the most recent find string or regular expression and prompts you
for which action to perform. You can choose among:
• replacing the string found with the given string and moving to the next match (‘Yes’);
• moving to the next match (‘No’);
• replacing the string found with the given string, and stopping the search (‘Last’);
• stopping the search immediately (‘Quit’);
• replacing all occurrences of the find string with the given string (‘All’);
• reversing the search direction (‘Backward’ or ‘Forward’); this choice will also modify the

value of the back search flag. See Section 4.5.8 [SearchBack], page 33.

Replace is mainly useful for interactive editing. ReplaceOnce, ReplaceAll and RepeatLast
are more suited to macros.

If no find string was ever specified, you can enter it on the input line. If the optional argument
string is not specified, you can enter it on the input line, the default being the last string used.
When the last search was a regular expression search (see Section 4.5.2 [FindRegExp], page 31),

32 ne’s manual

there are some special features you can use in the replace string (see Section 3.7 [Regular
Expressions], page 19) .

Note that normally a search starts just one character after the cursor. However, when
Replace is invoked, the search starts at the character just under the cursor, so that you can
safely Find a pattern and Replace it without having to move back.
Warning: when recording a macro (see Section 4.6.1 [Record], page 33), there is no trace in the
macro of your interaction with ne during the replacement process. When the macro is played, you
will again have to choose which actions to perform. If you want to apply automatic replacement
of strings for a certain number of times, you should look at Section 4.5.4 [ReplaceOnce], page 32,
Section 4.5.5 [ReplaceAll], page 32 and Section 4.5.6 [RepeatLast], page 32.

4.5.4 ReplaceOnce

Syntax: ReplaceOnce [string]
Abbreviation: R1
acts just like Replace, but without any interaction with you (unless there is no find string). The
first string matched by the last search pattern, if it exists, is replaced by the given replacement
string.

If the optional argument string is not specified, you can enter it on the input line, the default
being the last string used.

4.5.5 ReplaceAll

Syntax: ReplaceAll [string]
Abbreviation: RA
is similar to ReplaceOnce, but replaces all occurrences of the last search pattern with the given
replacement string.

If the optional argument string is not specified, you can enter it on the input line, the default
being the last string used.

Note that Undo will restore all the occurrences of the search pattern replaced by ReplaceAll.
See Section 4.7.1 [Undo], page 35.

4.5.6 RepeatLast

Syntax: RepeatLast [times]
Abbreviation: RL
repeats for the given number of times the last find or replace operation (with replace we mean
here a single replace, even if the last Replace operation ended with a global substitution).

RepeatLast is especially useful for researching a given number of times, or replacing some-
thing a given number of times. The standard technique for accomplishing this is:
1. Find (or FindRegExp) the string you are interested in;
2. if you want to repeat a replace operation, ReplaceOnce with the replacement string you

are interested in;
3. now issue a RepeatLast n-1 command, where n is the number of occurrences you wanted

to skip over, or replace.

The important thing about this sequence of actions is that it will work this way even in a
macro. The Replace command cannot be used in a macro unless you really want to interact
with ne during the macro execution. Avoiding interaction during macros is the primary reason
the commands ReplaceAll and ReplaceOnce are provided.

Chapter 4: Commands 33

4.5.7 MatchBracket

Syntax: MatchBracket
Abbreviation: MB
moves the cursor to the bracket associated with the bracket the cursor is on. If the cursor is not
on a bracket, or there is no bracket associated with the current one, an error message is issued.
Recognized brackets are ‘{}’, ‘()’, ‘[]’ and ‘<>’.

4.5.8 SearchBack

Syntax: SearchBack [0|1]
Abbreviation: SB
sets the back search flag. When this flag is true, every search or replacement command is
performed backwards.

If you invoke SearchBack with no arguments, it will toggle the flag. If you specify 0 or 1,
the flag will be set to false or true, respectively. A lower case ‘b’ will appear on the status bar
if the flag is true.

Note that this flag also can be set through interactions with the Replace command. See
Section 4.5.3 [Replace], page 31.

4.5.9 CaseSearch

Syntax: CaseSearch [0|1]
Abbreviation: CS
sets the case sensitivity flag. When this flag is true, the search commands distinguish between
the upper and lower case letters. By default the flag is false.

If you invoke CaseSearch with no arguments, it will toggle the flag. If you specify 0 or 1,
the flag will be set to false or true, respectively. A lower case ‘c’ will appear on the status bar
if the flag is true.

4.6 Macros Commands

Macros are lists of commands. Any series of operations that has to be performed frequently
is a good candidate for being a macro.

Macros can be written manually: they are just ASCII files, each command occupying a
line (lines starting with ‘#’ are considered comments; lines starting with other nonalphabetical
characters are presently ignored). But the real power of macros is that they be recorded during
the normal usage of ne. When the recording terminates, the operations that have been recorded
can be saved for later use. Note that each document has a current macro (the last macro that
has been opened or recorded).

4.6.1 Record

Syntax: Record [0|1]
Abbreviation: Rec
sets the recording state flag. When this flag becomes true, ne starts recording your actions in
a new macro. When it becomes false, the macro recording is stopped, and the macro can be
played (see Section 4.6.2 [Play], page 34) or saved (see Section 4.6.5 [SaveMacro], page 35).

34 ne’s manual

If you call invoke Record with no arguments, it will toggle the flag. If you specify 0 or 1, the
flag will be set to false or true, respectively. An upper case ‘R’ will appear on the status bar if
the flag is true.

The reason for providing a flag instead of an explicit start/stop recording command pair is
that this way it is possible to bind both starting and stopping macro recording to a single key
while still being able to specify “absolute” menu items (by using Record 0 and Record 1). For
instance, the default key binding for 〈Control〉-T is simply Record, which means that this shortcut
can be used both for initiating and for terminating a macro recording.

4.6.2 Play

Syntax: Play [times]
Abbreviation: PL

plays the current macro for the given number of times. If the optional argument times is not
specified, you can enter it on the input line.

A (possibly iterated) macro execution terminates as soon as its stream of instructions is
exhausted, or one of its commands returns an error. This means that, for instance, you can
perform some complex operation on all the lines contaning a certain pattern by recording a macro
that searches for the pattern and performs the operation, and then playing it a preposterously
huge number of times.

Execution of a macro can be interrupted by 〈Control〉-\.

4.6.3 Macro

Syntax: Macro [filename]
Abbreviation: MA

executes the given file name as a macro.

If the optional filename argument is not specified, the file requester is opened, and you are
prompted to select a file. (You can inhibit the file requester opening by using the NoFileReq
command; see Section 4.9.7 [NoFileReq], page 40.)

If you escape from the file requester, you can input the file name on the command line.

Note that macros whose name does not conflict with a command can be called without using
Macro. Whenever ne is required to perform a command it cannot find in its internal tables, it
will look for a macro by that name in the current directory. If this search also fails, ne looks in
‘~/.ne’ and finally in the global ne directory (/usr/lib/ne by default, or in a place specified
by your NE_GLOBAL_DIR environment variable) for a macro file by that name.

Warning: to improve (greatly) efficiency, the first time a macro is executed it is cached into
a hash table and is kept forever in memory (unless the UnloadMacros command is issued; see
Section 4.6.6 [UnloadMacros], page 35). The next time a macro with the same file name is
invoked, the cached list is searched for it before accessing the file using a case insensitive string
comparison. That is, if you call ‘~/foobar/macro’, a subsequent call for ‘/usr/MACRO’ or even
just ‘MaCrO’ will use the cached version of ‘~/foobar/macro’. Note that the cache table is global
to ne and not specific to any single document.

4.6.4 OpenMacro

Syntax: OpenMacro [filename]
Abbreviation: OM

Chapter 4: Commands 35

loads the given file name as the current macro (just as if you Recorded it; see Section 4.6.1
[Record], page 33).

If the optional filename argument is not specified, the file requester is opened, and you are
prompted to select a file. (You can inhibit the file requester opening by using the NoFileReq
command; see Section 4.9.7 [NoFileReq], page 40.)

If you escape from the file requester, you can input the file name on the command line.

4.6.5 SaveMacro

Syntax: SaveMacro [filename]
Abbreviation: SM

saves the current macro in a file with the given name.

If the optional filename argument is not specified, the file requester is opened, and you are
prompted to select a file. (You can inhibit the file requester opening by using the NoFileReq
command; see Section 4.9.7 [NoFileReq], page 40.)

If you escape from the file requester, you can input the file name on the command line.

SaveMacro is of course most useful for saving macros you just recorded. The macros can
then be loaded as normal text files for further editing, if necessary. Note that SaveMacro
converts InsertChar commands into a possibly smaller number of InsertString commands.
(See Section 4.11.1 [InsertChar], page 50, and Section 4.11.2 [InsertString], page 51.) This makes
macros easier to read and edit.

4.6.6 UnloadMacros

Syntax: UnloadMacros
Abbreviation: UM

frees the macro cache list. After this command, the Macro command will be forced to search for
the file containing the macros it has to play.

UnloadMacros is especially useful if you are experimenting with a macro bound to some
keystroke, and you are interactively modifying it and playing it. UnloadMacros forces ne to
look for the newer version available.

4.7 Undo Commands

The following commands control the undo system.

4.7.1 Undo

Syntax: Undo [n]
Abbreviation: U

undoes the last n actions. If n is not specified, it is assumed to be one. After you undo a number
of actions, you can Redo them (or some of them; see Section 4.7.2 [Redo], page 36). However,
if you take any new actions after having Undone some, you can no longer Redo those Undone
actions. See Section 4.7.2 [Redo], page 36.

36 ne’s manual

4.7.2 Redo

Syntax: Redo [n]
Abbreviation: RE

redoes the last n actions undone by Undo (as long as you don’t take any actions that change the
text between the Undo and Redo commands). If n is not specified, it is assumed to be one. You
can only Redo actions that have been Undone. See Section 4.7.1 [Undo], page 35.

4.7.3 UndelLine

Syntax: UndelLine [n]
Abbreviation: UL

inserts at the cursor position for n times the last non-empty line that was deleted with the
DeleteLine command. If n is not specified, it is assumed to be one.

UndelLine is most useful in that it allows a very fast way of moving one line around. Just
delete it, and undelete it somewhere else. It is also an easy way to replicate a line without
getting involved with clips.

Note that UndelLine works independently of the status of the undo flag. See Section 4.7.4
[DoUndo], page 36.

4.7.4 DoUndo

Syntax: DoUndo [0|1]
Abbreviation: DU

sets the flag that enables or disables the undo system. When you turn the undo system off, all
the recorded actions are discarded, and the undo buffers are reset.

If you invoke DoUndo with no arguments, it will toggle the flag. If you specify 0 or 1, the flag
will be set to false or true, respectively. A lower case ‘u’ will appear on the status bar if the flag
is true.

The usefulness of this option relies in the fact that the undo system is a major memory eater.
If you plan to do massive editing (say, cutting and pasting megabytes of text) it is a good idea
to disable the undo system, both for improving (doubling) performance and for using less (half)
memory. Except for this, on a virtual memory system we see no reason to not keep the undo
flag always true, and this is indeed the default.

4.8 Formatting Commands

The following commands allow simple formatting operations on the text. Note that for ne a
paragraph is delimited by an empty line.

4.8.1 Center

Syntax: Center [n]
Abbreviation: CE

centers n lines from the cursor position onwards. If n is not specified, it is assumed to be one.
The lines are centered with spaces, relatively to the value of the right margin as set by the
RightMargin command. See Section 4.8.6 [RightMargin], page 37.

Chapter 4: Commands 37

4.8.2 Paragraph

Syntax: Paragraph [n]
Abbreviation: PA
reformats n paragraphs from the cursor position onwards. If n is not specified, it is assumed to
be one. The paragraph are formatted relatively to the value of the right margin as set by the
RightMargin command. See Section 4.8.6 [RightMargin], page 37.

ne’s notion of a paragraph includes the current non-blank line (regardless of its leading white
space) and all subsequent non-blank lines that have identical (to each other’s—not to the first
line’s) leading white space. Therefore your paragraphs can have various first line indentations
and left margins.

After the Paragraph command completes, your cursor will be positioned on the first non-
blank character after the last reformatted paragraph (or, if there is no such character, at the
end of the document).

If you think paragraphing should insert “smart” spaces after full stops and colons, and do
other “smart” things such as justification, you should consider using a text formatter. TEX is
usually the best choice.

4.8.3 ToUpper

Syntax: ToUpper [n]
Abbreviation: TU
shifts to upper case the letters from the cursor position up to the end of a word, and moves to
the first letter of next word for n times.

The description of the command may seem a little bit cryptic. What is really happening is
that there are situations where you only want to upper case the last part of a word. In this
case, you just have to position the cursor in the first character you want to upper case, and use
ToUpper with no argument.

If you apply ToUpper on the first character of a word, it will just upper case n words.

4.8.4 ToLower

Syntax: ToLower [n]
Abbreviation: TL
acts exactly like ToUpper, but lowers the case. See Section 4.8.3 [ToUpper], page 37.

4.8.5 Capitalize

Syntax: Capitalize [n]
Abbreviation: CA
acts exactly like ToUpper, but capitalizes, that is, makes the first letter upper case and the other
ones lower case. See Section 4.8.3 [ToUpper], page 37.

4.8.6 RightMargin

Syntax: RightMargin [n]
Abbreviation: RM
sets the right margin for all formatting operations, and for WordWrap (see Section 4.8.7 [Word-
Wrap], page 38).

38 ne’s manual

If the optional argument n is not specified, you can enter it on the input line, the default
being the current value of the right margin.

A value of zero for n will force ne to use (what it thinks it is) the current screen width as
right margin.

4.8.7 WordWrap

Syntax: WordWrap [0|1]
Abbreviation: WW

sets the word wrap flag. When this flag is true, ne will automatically break lines of text longer
than the current right margin (see Section 4.8.6 [RightMargin], page 37) while you type them.

If you invoke WordWrap with no arguments, it will toggle the flag. If you specify 0 or 1, the
flag will be set to false or true, respectively. A lower case ‘w’ will appear on the status bar if the
flag is true.

4.8.8 AutoIndent

Syntax: AutoIndent [0|1]
Abbreviation: AI

sets the auto indent flag. When this flag is true, ne will automatically insert tabs and spaces
on a new line (created by an InsertLine command, or by automatic word wrapping) in such a
way to replicate the initial spaces of the previous line. Most useful for indenting programs.

If you invoke AutoIndent with no arguments, it will toggle the flag. If you specify 0 or 1,
the flag will be set to false or true, respectively. A lower case ‘a’ will appear on the status bar
if the flag is true.

AutoIndent features a nice interaction with Undo. Whenever a new line is created, the
insertion of spaces is recorded as a separate action in the undo buffer (with respect to the line
creation). If you are not satisfied with the indentation, just give the Undo command and the
indentation will disappear (but the new line will remain in place, since its creation has been
recorded as a separate action). See Section 4.7.1 [Undo], page 35.

4.9 Preferences Commands

These commands allow you to set your preferences, that is, the value of a series of flags that
modify the behaviour of ne. (Some of the flag commands, like the command for the indent
flag, appear in other sections.) The status of the flags can be saved and restored later either by
writing them out to a file (saved as a macro that suitably sets the flags) or by pushing them
onto a “preferences stack”. The back search and the read only flags are not saved, because they
do not represent a preference, but rather a temporary state. The escape time and the turbo
parameter are global to ne, and are not saved. However, you can add manually to a preferences
file any preferences command (such as EscapeTime or Turbo); usually, this will be done to the
default preferences file ‘~/.ne/.default#ap’.

Note that there is an automatic preferences system, which automagically loads a preferences
file related to the extension of the file name. Automatic preferences files are kept in your ‘~/.ne’
directory. They are named as an extension postfixed with ‘#ap’. Each time you open a file whose
name has an extension for which there is an automatic preferences file, the latter is executed. If
you want to inhibit this process, you can clear the automatic preferences flag. See Section 4.9.2
[AutoPrefs], page 39.

Chapter 4: Commands 39

4.9.1 Flags

Syntax: Flags
Abbreviation: FLAG

displays a list of all the status flags for ne and their associated commands. It is not recorded
when recording a macro.

FLAG COMMAND ABBR DESCRIPTION
i Insert I inserts new characters (vs. replacing)
a AutoIndent AI aligns cursor under previous line after <Return>
b BackSearch BS searches search backward rather than forward
c CaseSearch CS searches are case sensitive
w WordWrap WW breaks long lines as you type
f FreeForm FF allows cursor to move beyond the end of lines
p AutoPrefs AP use automatic preferences based on file extension
v VerboseMacros VM record macros using use long command names
u DoUndo DU record edits for later undoing
r ReadOnly RO changes are not allowed
B Binary B affects file loading/saving
M Mark M mark set for line-oriented block operations
V MarkVert MV like mark, but block is rectangle
R Record REC actions are being recorded in a macro
P PreserveCR PCR affects how <CR> chars are loaded from files
C CRLF CRLF use CR/LF as line terminator
* Modified MOD document has been modified since last saved
@ UTF8IO U8IO I/O (keyboard and terminal) are UTF-8 encoded

A/8/U UTF8 U8 the document encoding (ASCII, 8-bit or UTF-8)

4.9.2 AutoPrefs

Syntax: AutoPrefs [0|1]
Abbreviation: AP

sets the automatic preferences flag. If this flag is true, each time an Open command is executed
and a file is loaded, ne will look for an automatic preferences file in your ‘~/.ne’ directory. The
preferences file name is given by the extension of the file loaded, postfixed with ‘#ap’. Thus,
for instance, C sources have an associated ‘c#ap’ file. See Section 3.8 [Automatic Preferences],
page 22.

If you invoke AutoPrefs with no arguments, it will toggle the flag. If you specify 0 or 1, the
flag will be set to false or true, respectively. A lower case ‘p’ will appear on the status bar if the
flag is true.

4.9.3 Binary

Syntax: Binary [0|1]
Abbreviation: B

sets the binary flag. When this flag is true, loading and saving a document is performed in a
different way. On loading, only nulls are considered newlines; on saving, nulls are saved instead of
newlines. This allows you to edit a binary file, fix some text in it, and save it without modifying
anything else. Normally, linefeeds, carriage returns and nulls are considered newlines, so that
what you load will have all nulls and carriage returns substituted by newlines when saved.

40 ne’s manual

Note that since usually binary files contain a great number of nulls, and every null will be
considered a line terminator, the memory necessary for loading a binary file can be several times
bigger than the length of the file itself. Thus, binary editing within ne should be considered not
a normal activity, but rather an exceptional one.

If you invoke Binary with no arguments, it will toggle the flag. If you specify 0 or 1, the flag
will be set to false or true, respectively. An upper case ‘B’ will appear on the status bar if the
flag is true.

4.9.4 Insert

Syntax: Insert [0|1]
Abbreviation: I
sets the insert flag. If this flag is true, the text you type is inserted, otherwise it overwrites
the existing characters. This also governs the behaviour of the InsertChar and InsertString
commands.

If you invoke Insert with no arguments, it will toggle the flag. If you specify 0 or 1, the flag
will be set to false or true, respectively. A lower case ‘i’ will appear on the status bar if the flag
is true.

4.9.5 FastGUI

Syntax: FastGUI [0|1]
Abbreviation: FG
sets the fast graphical user interface flag. When this flag is true, ne tries to print as little as
possible while displaying menus and the status bar. In particular, menu items are highlighted by
the cursor only, the status bar is not highlighted (which allows printing it with fewer characters)
and the hexadecimal code is not displayed. This option is only (but very) useful if you are using
ne through a slow connection.

If you invoke FastGUI with no arguments, it will toggle the flag. If you specify 0 or 1, the
flag will be set to false or true, respectively.

4.9.6 FreeForm

Syntax: FreeForm [0|1]
Abbreviation: FF
sets the free form flag. When this flag is true, you can move with the cursor anywhere on the
screen, even where there is no text present (however, you cannot move inside the space expansion
of a tab character).

If you invoke FreeForm with no arguments, it will toggle the flag. If you specify 0 or 1, the
flag will be set to false or true, respectively. A lower case ‘f’ will appear on the status bar if the
flag is true.

The issue free-form-versus-non-free-form is a major religious war that has engaged users from
day one. The due of the implementor is to allow both choices, and to set as default the correct
one (in his humble opinion). In this case, non-free-form.

4.9.7 NoFileReq

Syntax: NoFileReq [0|1]
Abbreviation: NFR

Chapter 4: Commands 41

sets the file requester flag. When this flag is true, the file requester is never opened, under any
circumstances.

If you invoke NoFileReq with no arguments, it will toggle the flag. If you specify 0 or 1, the
flag will be set to false or true, respectively.

4.9.8 StatusBar

Syntax: StatusBar [0|1]
Abbreviation: ST
sets the status bar flag. When this flag is true, the status bar is displayed at the bottom of the
screen. There are only two reasons to turn off the status bar we are aware of:
• if you are using ne through a slow connection, updating the line/column indicator can really

slow down editing;
• scrolling caused by cursor movement on terminals that do not allow to set a scrolling region

can produce annoying flashes at the bottom of the screen.

If you invoke StatusBar with no arguments, it will toggle the flag. If you specify 0 or 1, the
flag will be set to false or true, respectively.

4.9.9 HexCode

Syntax: HexCode [0|1]
Abbreviation: HC
sets the hex code flag. When this flag is true, the hexadecimal code of the character currently
under the cursor is displayed on the status line.

4.9.10 ReadOnly

Syntax: ReadOnly [0|1]
Abbreviation: RO
sets the read only flag. When this flag is true, no editing can be performed on the document
(any such attempt produces an error message). This flag is automatically set whenever you open
a file that you cannot write to. See Section 4.2.1 [Open], page 26.

If you invoke ReadOnly with no arguments, it will toggle the flag. If you specify 0 or 1, the
flag will be set to false or true, respectively. A lower case ‘r’ will appear on the status bar if the
flag is true.

4.9.11 EscapeTime

Syntax: EscapeTime [n]
Abbreviation: ET
sets the escape time. The 〈Escape〉 key is recognized as such after n tenths of second. (see
Chapter 7 [Motivations and Design], page 59.) Along slow connections, it can happen that the
default value of 10 is too low: in this case, escape sequences (e.g., those of the arrow keys) could
be erroneously broken into an escape and some spurious characters. Rising the escape time
usually solves this problem. Allowed values range from 0 to 255. Note that you can accelerate
the recognition of the 〈Escape〉 key by hitting it twice in a row.

Note that the escape time is global to ne, and it is not saved. However, you can add an
EscapeTime command manually to a preferences file.

42 ne’s manual

4.9.12 TabSize

Syntax: TabSize [size]
Abbreviation: TS
sets the number of spaces ne will use when expanding a tab character.

If the optional argument size is not specified, you can enter it on the input line, the default
being the current tab size. Allowed values are strictly between 0 and half the width of the
screen.

4.9.13 Turbo

Syntax: Turbo [steps]
Abbreviation: TUR
sets the turbo parameter. Iterated actions and global replaces will update at most steps line of
the screen (or at most twice the number of visible rows if steps is zero); then, update will be
delayed to the end of the action.

This feature is most useful when massive operations (such as replacing thousands of occur-
rences of a pattern) have to be performed. After having updated steps lines, ne can proceed at
maximum speed, because no visual update has to be performed.

The value of the turbo parameter has to be adapted to the kind of terminal you are using.
Very high values can be good on high-speed terminals, since the time required for the visual
updates is very small, and it is always safer to look at what the editor is really doing. On slow
terminals, however, small values ensure that operations such as paragraph formatting will not
take too long.

You have to be careful about setting the turbo parameter too low. ne keeps track internally
of the part of the screen that needs refresh in a very rough way. This means that a value of less
than, say, 8 will force it to do a lot of unnecessary refresh.

The default value of this parameter is zero, which means twice the number of lines of the
screen; for several reasons this does seem to be a good value.

4.9.14 VerboseMacros

Syntax: VerboseMacros [0|1]
Abbreviation: VM
sets the verbose macros flag. When this flag is true, all macros generated by recording or by
automatic preferences saving will contain full names, instead of short names. This is highly
desirable if you are going to edit the macro manually, but it can slow down command parsing.

If you invoke VerboseMacros with no arguments, it will toggle the flag. If you specify 0 or
1, the flag will be set to false or true, respectively. A lower case ‘v’ will appear on the status
bar if the flag is true.

The only reason to use this flag is when recording a macro that will be played a great number
of times. Automatic preferences files are too short to be an issue with respect to execution timing.

4.9.15 PreserveCR

Syntax: PreserveCR [0|1]
Abbreviation: PCR
sets the preserve carriage returns flag. When a file is loaded into a buffer for which this flag is
false, both CR (carriage return) and NL (new line) characters are treated as line terminators.

Chapter 4: Commands 43

If the flag is true, CR characters do not act as line terminators but are instead preserved in the
buffer. This flag has no effect except when loading a file into a buffer.

If you invoke PreserveCR with no arguments, it will toggle the flag. If you specify 0 or 1,
the flag will be set to false or true, respectively. An upper case ‘P’ will appear on the status bar
if the flag is true.

4.9.16 CRLF

Syntax: CRLF [0|1]
Abbreviation: CRLF
sets the CR/LF flag. When a file is saved from a buffer for which this flag is true, both a CR
(carriage return) and a NL (new line) character are output as line terminators. This flag has no
effect except when saving a file.

This flag is automatically set if you load a file that has at least one CR/LF sequence into it.
If you invoke CRLF with no arguments, it will toggle the flag. If you specify 0 or 1, the flag

will be set to false or true, respectively. An upper case ‘C’ will appear on the status bar if the
flag is true.

4.9.17 PushPrefs

Syntax: PushPrefs [n]
Abbreviation: PUSHP
pushes n copies of the user preferences onto a stack. If not specified, n defaults to one. Use the
PopPrefs command to pop preferences off the stack and restore the values. See Section 4.9.18
[PopPrefs], page 43. Note that the preferences stack is global, not buffer-specific, so you could
PushPrefs one buffer’s preferences, switch buffers, then PopPrefs those preferences, thereby
altering the preferences for the second buffer. The maximum preferences stack depth is 32.

PushPrefs and PopPrefs are useful in macros that require certain preferences to work prop-
erly. A macro can PushPrefs, change any preferences necessary, do its work, then PopPrefs to
restore the users previous preferences settings.
PushPrefs saves the following values on the prefs stack:

AutoIndent DoUndo NoFileReq StatusBar
AutoPrefs FastGUI PreserveCR TabSize
Binary FreeForm ReadOnly Turbo
CaseSearch HexCode RightMargin VerboseMacros
ClipNumber Insert SearchBack WordWrap

4.9.18 PopPrefs

Syntax: PopPrefs [n]
Abbreviation: POPP
pops n sets of preferences from the prefs stack (where they were placed previously by PushPrefs)
and applies those preferences to the current buffer. See Section 4.9.17 [PushPrefs], page 43. If
not specified, n defaults to one. Note that the preferences stack is global, not buffer specific.
Therefore you could PushPrefs one buffer’s preferences, switch buffers, then PopPrefs those
settings altering the preferences for the second buffer. The maximum preferences stack depth is
32.

PushPrefs and PopPrefs are useful in macros that require certain preferences to work prop-
erly. A macro can PushPrefs, change any preferences necessary, do its work, then PopPrefs to
restore the users previous preferences settings.

44 ne’s manual

PopPrefs restores the following values from the prefs stack:

AutoIndent DoUndo NoFileReq StatusBar
AutoPrefs FastGUI PreserveCR TabSize
Binary FreeForm ReadOnly Turbo
CaseSearch HexCode RightMargin VerboseMacros
ClipNumber Insert SearchBack WordWrap

4.9.19 LoadPrefs

Syntax: LoadPrefs [filename]
Abbreviation: LP

loads the given preference file, and sets the current preferences accordingly.

If the optional filename argument is not specified, the file requester is opened, and you are
prompted to select a file. (You can inhibit the file requester opening by using the NoFileReq
command; see Section 4.9.7 [NoFileReq], page 40.) If you escape from the file requester, you
can input the file name on the command line.

Note that a preferences file is just a macro containing only option modifiers. You can manually
edit a preferences file for special purposes, such as filtering out specific settings. See Chapter 6
[Hints and Tricks], page 57.

4.9.20 SavePrefs

Syntax: SavePrefs [filename]
Abbreviation: SP

saves the current preferences on the given file.

If the optional filename argument is not specified, the file requester is opened, and you are
prompted to select a file. (You can inhibit the file requester opening by using the NoFileReq
command; see Section 4.9.7 [NoFileReq], page 40.) If you escape from the file requester, you
can input the file name on the command line.

4.9.21 LoadAutoPrefs

Syntax: LoadAutoPrefs
Abbreviation: LAP

loads the preferences file in ‘~/.ne’ associated with the current document’s file name extension.
If the current file name has no extension, the default preferences are loaded. See Section 4.9.2
[AutoPrefs], page 39.

4.9.22 SaveAutoPrefs

Syntax: SaveAutoPrefs
Abbreviation: SAP

saves the current preferences on the file in ‘~/.ne’ associated with the current document’s file
name extension. If the current file name has no extension, an error message is issued. See
Section 4.9.2 [AutoPrefs], page 39.

Chapter 4: Commands 45

4.9.23 SaveDefPrefs

Syntax: SaveDefPrefs
Abbreviation: SDP

saves the current preferences on the ‘~/.ne/.default#ap’ file. This file is always loaded by ne
at startup.

4.9.24 Modified

Syntax: Modified [0|1]
Abbreviation: MOD

sets the modified flag. This flag is set automatically whenever a buffer is modified, and is used to
determine which buffers need to be saved when ne exits. Normally you would not alter this flag,
but when a buffer is inadvertently modified and you don’t want the changes saved, Modified
provides a way to make ne consider the buffer unchanged.

If you invoke Modified with no arguments, it will toggle the flag. If you specify 0 or 1, the
flag will be set to false or true, respectively. An asterisk (‘*’) will appear on the status bar if
the flag is true.

4.9.25 UTF8

Syntax: UTF8 [0|1]
Abbreviation: U8

sets the UTF-8 flag. When this flag is true, ne considers the current buffer as UTF-8 coded.
Note that this flag is set automatically upon file loading (if possible) if you required automatic
detection. See Section 4.9.26 [UTF8Auto], page 45.

If you invoke UTF8 with no arguments, it will toggle the flag. If you specify 0 or 1, the flag
will be set to false or true, respectively. When you try to set this flag, the buffer will be checked
for UTF-8 compliance, and you will get an error message in case of failure. When you try to
reset it, the buffer is set to ASCII or ISO8859, depending on its content. A ‘U’ will appear on the
status bar if the flag is true. Alternatively, an ‘A’ or an ‘8’ will be displayed to denote whether
the buffer is composed esclusively by US-ASCII characters, or also by other 8-bit characters
(which are likely to be ISO-8859 encoded). Note that each time this command modifies the
buffer encoding, it also resets the undo buffer.

4.9.26 UTF8Auto

Syntax: UTF8Auto [0|1]
Abbreviation: U8A

sets the UTF-8 automatic-detection flag. When this flag is true, ne will try to guess whether
a file just loaded is UTF-8 encoded. Moreover, when a non US-ASCII character is inserted in
a pure US-ASCII buffer, ne will automatically switch to UTF-8. See Section 4.9.25 [UTF8],
page 45. The flag is true by default if ne detects UTF-8 I/O at startup. See Section 4.9.27
[UTF8IO], page 46.

If you invoke UTF8Auto with no arguments, it will toggle the flag. If you specify 0 or 1, the
flag will be set to false or true, respectively.

46 ne’s manual

4.9.27 UTF8IO

Syntax: UTF8IO [0|1]
Abbreviation: U8IO

sets the UTF-8 input/output flag. This flag is set automatically depending on your locale setting,
and is used to determine whether communication with the user (keyboard and terminal) should
be UTF-8 encoded. Normally you would not alter this flag, but sometimes ne may make the
wrong guess (e.g., when you are remotely connected).

If you invoke UTF8IO with no arguments, it will toggle the flag. If you specify 0 or 1, the flag
will be set to false or true, respectively. An ‘@’ will appear on the status bar if the flag is true.

4.10 Navigation Commands

These commands allow you to move through a document. Besides the standard commands
that allow you to move by lines, pages, et cetera, ne has bookmarks that let you mark a position
in a file so to move to the same position later.

4.10.1 MoveLeft

Syntax: MoveLeft [n]
Abbreviation: ML

moves the cursor to the left by one character n times. If the optional n argument is not specified,
it is assumed to be one.

4.10.2 MoveRight

Syntax: MoveRight [n]
Abbreviation: MR

moves the cursor to the right by one character n times. If the optional n argument is not
specified, it is assumed to be one.

4.10.3 LineUp

Syntax: LineUp [n]
Abbreviation: LU

moves the cursor up by one line n times. If the optional n argument is not specified, it is assumed
to be one.

4.10.4 LineDown

Syntax: LineDown [n]
Abbreviation: LD

moves the cursor down by one line n times. If the optional n argument is not specified, it is
assumed to be one.

Chapter 4: Commands 47

4.10.5 GotoLine

Syntax: GotoLine [line]
Abbreviation: GL

moves the cursor to the lineth line of the file. If line is zero or greater than the number of lines
in the file, the cursor is moved to the last line.

If the optional argument line is not specified, you can enter it on the input line; the default
input response is the current line number.

4.10.6 GotoColumn

Syntax: GotoColumn [column]
Abbreviation: GC

moves the cursor to the columnth column of the file.

If the optional argument line is not specified, you can enter it on the input line; the default
input response is the current column number.

4.10.7 GotoMark

Syntax: GotoMark
Abbreviation: GM

moves the cursor to the current mark, if it exists. See Section 4.4.1 [Mark], page 28.

GotoMark is mainly useful if you forgot where you started marking. If you want to record a
position in a file and jump to it later, you may want to use a bookmark. See Section 4.10.26
[SetBookmark], page 50.

4.10.8 PrevPage

Syntax: PrevPage [n]
Abbreviation: PP

moves the cursor n pages backward, if the cursor is on the first line of the screen; otherwise moves
the cursor to the first line of the screen, and moves by n-1 pages. If the optional n argument is
not specified, it is assumed to be one.

4.10.9 NextPage

Syntax: NextPage [n]
Abbreviation: NP

moves the cursor n pages forward, if the cursor is on the last line of the screen; otherwise moves
the cursor to the last line of the screen, and moves by n-1 pages. If the optional n argument is
not specified, it is assumed to be one.

4.10.10 PageUp

Syntax: PageUp [n]
Abbreviation: PUP

pages the screen backward by n screens. If n is not specified, it is assumed to be one.

48 ne’s manual

4.10.11 PageDown

Syntax: PageDown [n]
Abbreviation: PDN
pages the screen forward by n screens. If n is not specified, it is assumed to be one.

4.10.12 PrevWord

Syntax: PrevWord [n]
Abbreviation: PW
moves the cursor to the first character of the previous word n times. If the optional n argument
is not specified, it is assumed to be one (in which case, if the cursor is in the middle of a word
the effect is just to move it to the start of that word).

4.10.13 NextWord

Syntax: NextWord [n]
Abbreviation: NW
moves the cursor to the next word n times. If the optional n argument is not specified, it is
assumed to be one.

4.10.14 MoveEOL

Syntax: MoveEOL
Abbreviation: EOL
moves the cursor to the end of the current line (EOL = end of line).

4.10.15 MoveSOL

Syntax: MoveSOL
Abbreviation: SOL
moves the cursor to the start of the current line (SOL = start of line).

4.10.16 MoveTOS

Syntax: MoveTOS
Abbreviation: TOS
moves the cursor to the top line of the screen (TOS = top of screen).

4.10.17 MoveBOS

Syntax: MoveBOS
Abbreviation: BOS
moves the cursor to the lowest line currently visible (BOS = bottom of screen).

4.10.18 MoveEOF

Syntax: MoveEOF
Abbreviation: EOF
moves the cursor to the end of the document (EOF = end of file).

Chapter 4: Commands 49

4.10.19 MoveSOF

Syntax: MoveSOF
Abbreviation: SOF

moves the cursor to the start of the document (SOF = start of file).

4.10.20 MoveEOW

Syntax: MoveEOW
Abbreviation: EOW

moves the cursor one character past the end of the current word.

MoveEOW is extremely useful in macros, because it allows you to copy precisely the word the
cursor is on. See Chapter 6 [Hints and Tricks], page 57.

4.10.21 MoveIncUp

Syntax: MoveIncUp
Abbreviation: MIU

moves the cursor incrementally towards the beginning of the document. More precisely, if the
cursor is not on the start of the line it lies on, then it is moved to the start of that line. Otherwise,
if it is on the first line of the screen, then it is moved to the start of the document; otherwise,
it is moved to the first line of the screen.

4.10.22 MoveIncDown

Syntax: MoveIncDown
Abbreviation: MID

moves the cursor incrementally towards the end of the document. More precisely, if the cursor
is not on the end of the line it lies on, then it is moved to the end of that line. Otherwise, if it
is on the last line of the screen, then it is moved to the end of the document; otherwise, it is
moved to the last line of the screen.

4.10.23 AdjustView

Syntax: AdjustView [T|C|B|L|M|R]
Abbreviation: AV

shifts the view (text visible in the terminal window) horizontally or vertically without changing
the cursor’s position in the document. View adjustments are constrained by the current tab size
and the length and width of the current document. If called with no arguments ‘T’ is assumed.

‘T’, ‘C’, and ‘B’ cause vertical shifts so that the current line becomes the top, center, or
bottom-most visible line respectively.

‘L’, ‘M’, and ‘R’ cause horizontal shifts, making the current column the left-most, middle, or
right-most visible positions.

Horizontal and vertical adjustment specifications may be combined, so that for example
‘AdjustView TL’ shifts the view so that the current position becomes the top left-most character
on screen (within the limits of the current tab size).

50 ne’s manual

4.10.24 ToggleSEOF

Syntax: ToggleSEOF
Abbreviation: TSEOF

moves the cursor to the start of document, if it is not already there; otherwise, moves it to the
end of the document.

This kind of toggling command (also see Section 4.10.25 [ToggleSEOL], page 50) is very
useful in order to gain some keystrokes on systems with very few keys. See also Section 4.10.19
[MoveSOF], page 49, and Section 4.10.18 [MoveEOF], page 48.

4.10.25 ToggleSEOL

Syntax: ToggleSEOL
Abbreviation: TSEOL

moves the cursor to the start of the current line, if it is not already there; otherwise, moves it
to the end of the current line.

This kind of toggling command (also see Section 4.10.24 [ToggleSEOF], page 50) is very
useful in order to gain some keystrokes on systems with very few keys. See also Section 4.10.15
[MoveSOL], page 48, and Section 4.10.14 [MoveEOL], page 48.

4.10.26 SetBookmark

Syntax: SetBookmark [n]
Abbreviation: SBM

sets the nth bookmark to the current cursor position. If the optional n argument is not specified,
it is assumed to be zero. There are ten bookmarks per document, numbered from 0 to 9.

4.10.27 GotoBookmark

Syntax: GotoBookmark [n]
Abbreviation: GBM

moves the cursor to the nth bookmark. If the optional n argument is not specified, it is assumed
to be zero. There are ten bookmarks, numbered from 0 to 9.

4.11 Editing Commands

These commands allow modifing a document directly.

4.11.1 InsertChar

Syntax: InsertChar [code]
Abbreviation: IC

inserts a character whose ascii code is code at the current cursor position. code must always
be different from 0. All the currently active preferences options (insert, word wrapping, auto
indent, et cetera) are applied.

If the optional argument code is not specified, you can enter it on the input line, the default
being the last inserted character.

Chapter 4: Commands 51

Note that inserting a line feed (10) is completely different from inserting a line with
InsertLine. InsertChar 10 puts the control char 〈Control〉-J in the text at the current cur-
sor position. See Section 4.11.5 [InsertLine], page 51.

Note also that SaveMacro converts InsertChar commands into a possibly smaller number of
InsertString commands. (See Section 4.6.5 [SaveMacro], page 35.) This makes macros easier
to read and edit.

4.11.2 InsertString

Syntax: InsertString [text]
Abbreviation: IS

inserts text at the current cursor position. If the optional argument text is omitted, you will be
prompted for it on the command line. All the currently active preferences options (insert, word
wrapping, auto indent, et cetera) are applied.

Note that SaveMacro converts InsertChar commands into a possibly smaller number of
InsertString commands. (See Section 4.6.5 [SaveMacro], page 35.) This makes macros easier
to read and edit.

4.11.3 DeleteChar

Syntax: DeleteChar [n]
Abbreviation: DC

deletes n characters from the text. If the optional n argument is not specified, it is assumed to
be one. Deleting a character when the cursor is just after the last char on a line will join a line
with the following one; in other words, the carriage return between the two lines will be deleted.
Note that if the cursor is past the end of the current line, no action will be performed.

4.11.4 Backspace

Syntax: Backspace [n]
Abbreviation: BS

acts like DeleteChar, but moves the cursor to the left before deleting each character.

4.11.5 InsertLine

Syntax: InsertLine [n]
Abbreviation: IL

inserts n lines at the current cursor position, breaking the current line. If the optional n argument
is not specified, it is assumed to be one.

4.11.6 DeleteLine

Syntax: DeleteLine [n]
Abbreviation: DL

deletes n lines starting from the current cursor position (putting the last one in the temporary
buffer, from which it can be undeleted. See Section 4.7.3 [UndelLine], page 36.) If the optional
n argument is not specified, it is assumed to be one. Note that this action is in no way inverse
with respect to InsertLine.

52 ne’s manual

4.11.7 DeleteEOL

Syntax: DeleteEOL
Abbreviation: DE

deletes all characters from the current cursor position to the end of the line.

DeleteEOL could be easily implemented with a macro, but it is such a common, basic editing
feature that it seemed worth a separate implementation.

4.12 Support Commands

These commands perform miscellaneous useful actions. In particular, they provide access to
the shell and a way to assign the functionality of 〈Escape〉 to another key.

4.12.1 About

Syntax: About
Abbreviation: About

displays a simple information line about ne on the status bar.

4.12.2 Beep

Syntax: Beep
Abbreviation: BE

beeps. If your terminal cannot beep, it flashes. If it cannot flash, nothing happens (but you
have a very bad terminal).

4.12.3 Exec

Syntax: Exec
Abbreviation: EX

prompts the user on the input line, asking for a command, and executes it. It is never registered
while recording a macro (though the command you type is).

Exec is mainly useful for key bindings, menu configurations, and in manually programmed
macros.

Note that if the command you specify does not appear in ne’s internal tables, it is considered
to be a macro name. See Section 4.6.3 [Macro], page 34.

4.12.4 Flash

Syntax: Flash
Abbreviation: FL

acts as Beep, but interchanging the words “beep” and “flash”. Same comments apply. See
Section 4.12.2 [Beep], page 52.

Chapter 4: Commands 53

4.12.5 Help

Syntax: Help [name]
Abbreviation: H
displays some help about the command name (both the short and the long versions of the
command names are accepted). If no argument is given, a list of all existing commands in long
form is displayed, allowing you to choose one. You can browse the help text with the standard
navigation keys. If you press 〈Return〉, the command list will be displayed again. If you press 〈f1〉
or 〈Escape〉, you will return to normal editing.

Invocations of the Help command are never registered while recording macros so that you
can safely access the help system while recording. See Section 4.6.1 [Record], page 33.

4.12.6 NOP

Syntax: NOP
Abbreviation: NOP
does nothing. Mainly useful for inhibiting standard key bindings.

4.12.7 Refresh

Syntax: Refresh
Abbreviation: REF
refreshes the display. Refresh is very important, and should preferably be bound to the 〈Control〉-
L sequence, for historical reasons. It can always happen that a noisy phone line or a quirk in
the terminal corrupts the display. This command restores it from scratch.

Refresh has the side effect of checking to see if your window size has changed, and will
modify the display to take that into account.

4.12.8 Suspend

Syntax: Suspend
Abbreviation: SU
suspends ne and returns you to a shell prompt; usually, the shell command fg is used to resume
ne.

4.12.9 System

Syntax: System [command]
Abbreviation: SYS
asks the shell to execute command. The terminal is temporarily reset to the state it was in
before ne’s activation, and command is started. When the execution is finished, control returns
to ne.

If the optional argument command is not specified, you can enter it on the input line.

4.12.10 Escape

Syntax: Escape
Abbreviation: ESC

54 ne’s manual

toggles the menus on and off, or escapes from the input line. This command is mainly useful
for reprogramming the menu activator, and it is never registered while recording a macro. See
Section 4.6.1 [Record], page 33.

Chapter 5: Configuration 55

5 Configuration

In this chapter we shall see how the menus and the key bindings of ne can be completely
configured. Note that the configuration is parsed at startup time, and cannot be changed during
the execution of the program. This is a chosen limitation.

5.1 Key Bindings

ne allows you to associate any keystroke with any command. To accomplish this task, you
have to create a file named ‘.keys’ in your home directory, or in ‘~/.ne’. You can change the
default name (possibly specifying a complete path) using the --keys argument (see Section 3.1
[Arguments], page 11).

The format of the file is very simple: each line starting with the ‘KEY’ sequence of capital char-
acters is considered the description of a key binding. All other lines are considered commments.
The format of a key binding description is

KEY hexcode command

The hexcode value is the ascii code of the keystroke. (For special keys such as 〈Insert〉 or
function keys, you should take a look at the file ‘default.keys’ that comes with ne’s distribution:
it contains a complete, commented definition of ne’s standard bindings that you can modify with
a trial-and-error approach.) You can write just the hexadecimal digits, nothing else is necessary
(but a prefixing ‘0x’ is tolerated). For instance,

KEY 1 MoveSOL

binds to 〈Control〉-A the action of moving to the start of a line, while
KEY 101 LineUp

binds to the “cursor-up” key the action of moving the cursor one line up.
command can be any ne command, including Escape (which allows reconfiguring the menu

activator) and Macro, which allows binding complex sequences of actions to a single keystroke.
The binding of a macro is very fast because on the first call the macro is cached in memory. See
Section 4.6.3 [Macro], page 34.

Note that you cannot ever redefine 〈Return〉 and 〈Escape〉. This is a basic issue—however brain
damaged is the current configuration, you will always be able to exploit fully the menus and the
command line.

Besides the “standard” combinations (e.g., 〈Control〉-letter), it possible to program combi-
nations based on the 〈Meta〉 key (a.k.a. 〈Alt〉). The situation in this case is a bit more involved,
because depending on the terminal emulator you are using, the effect of the 〈Meta〉 key can be
widely different. For instance, xterm raises the eigth bit of a character, so, for instance,

KEY 81 MoveSOF

binds 〈Control〉-〈Meta〉-a to the action of moving to the start of the document. However, gnome-
terminal will emit the character of ASCII code 1 prefixed with ESC instead. To handle this
case, ne provides codes from 180 on for simulated 〈Meta〉 sequences: for instance,

KEY 181 MoveSOF

binds the abovementioned sequence to the same action as before. In general, the code 180+x
corresponds to the sequence ESC followed by the ASCII character of code x. Note that some of
these sequences may be disabled, if they conflict with existing sequences of your terminal (for
instance, ESC followed by ‘O’ is always disabled because it prefixes several built-in keyboard
sequences).

As a final note, we remark that typing 〈Meta〉-a on gnome-terminal will produce an ESC
followed by ‘a’. Since it is obviously easier to press just 〈Meta〉 rather than 〈Meta〉 and 〈Control〉 at
the same time, it is a good idea to associated the same sequence also to this combination, using

56 ne’s manual

KEY 1E1 MoveSOF

Moreover, this setting provides the user with a second choice: one can press 〈Escape〉 followed
by a letter instead of using modififiers.

This is the approach used by default in ne: this way, 〈Control〉 with 〈Meta〉 plus a letter should
always work, and 〈Meta〉 should work sometimes (of course, if you’re sure to use always the
same kind of emulator you can bind more features). Again, the best place to look at it’s
‘default.keys’.

The key binding file is parsed at startup. If something does not work, ne exits displaying an
error message. If you want ne to skip parsing the key binding file (for instance, to correct the
broken file), just give ne the --no-config argument. See Section 3.1 [Arguments], page 11.

5.2 Changing Menus

ne allows you to change the contents of its menus. To accomplish this task, you have to create
a file named ‘.menus’ in your home directory, or in ‘~/.ne’. You can change the default name
(possibly specifying a complete path) using the --menus argument (see Section 3.1 [Arguments],
page 11).

Each line of a menu configuration file not starting with the ‘MENU’ or ‘ITEM’ keywords is
considered a comment. You should describe the menus as in the following example:

MENU "File"
ITEM "Open... ^O" Open
ITEM "Close " Close
ITEM "DoIt " Macro DoIt

In other words: a line of this form
MENU "title"

will start the definition of a new menu, having the given title. Each line of the form
ITEM "text" command

will then define a menu item, and associate the given command to it.
Any number of menus can be accomodated, but you should consider that many terminals are

80 column wide. There is also a minor restriction on the items—their width has to be constant
throughout each menu (but different menus can have different widths). Note that the text of an
item, as the name of a menu, is between quotes. Whatever follows the last quote is considered
the command associated to the menu.
Warning: the description of key bindings in menus (‘^O’ in the previous example) is very im-
portant for the beginner; there is no relation inside ne about what you say in the menu and
how you configure the key bindings (see Section 5.1 [Key Bindings], page 55). Please do not say
things in the menus that are not true in the key binding file.

The menu configuration file is parsed at startup. If something does not work, ne exits
displaying an error message. If you want ne to skip the menu configuration phase (for instance,
to correct the broken file), just give ne the --no-config argument. See Section 3.1 [Arguments],
page 11.

Chapter 6: Hints and Tricks 57

6 Hints and Tricks

Use 〈f1〉 or 〈Escape〉-〈Escape〉, not 〈Escape〉.
Due to the limitations of the techniques used when communicating with a terminal,
it is not possible to “decide” that the user pressed the 〈Escape〉 key for about a second
after the actual key press (see Section 4.9.11 [EscapeTime], page 41). This means
that you will experience annoying delays when using menus. If you have no 〈f1〉 key,
use 〈Escape〉-〈Escape〉, or redefine a keystroke assigning the command Escape, and you
will be able to use that keystroke instead of 〈Escape〉.

Check for the presence of a 〈Meta〉 key.
If your system has a standard 〈Meta〉 or 〈Alt〉 key, there is a good chance that you
have several other shortcuts. If the built-in 〈Meta〉 bindings do not work, you must
discover which is the effect of the 〈Meta〉 in your terminal emulator. Indeed, it is
possible in theory to configure about 150 shortcuts. See Chapter 5 [Configuration],
page 55.

ne does tilda expansion.
When you have to specify a file name, you can always start with ‘~/’ in order to
specify your home directory, or ‘~user/’ to specify the home directory of another
user.

ne does interactive filename completion.
When you have to specify a file name as last element of a long input, you can
invoke the completer using 〈Tab〉. If you hit it twice in a row, you will enter the file
requester, where you can navigate and escape back to the command line, either with
〈f1〉, which will let you edit again your previous input, or with 〈Tab〉, which will copy
your current selection over your previous file name. In other words, you can freely
alternate completion, editing and browsing.

The 〈Escape〉 delay when activating menus can be avoided.
If you press after 〈Escape〉 any key that does not produce the second character of an
escape sequence, ne will immediately recognize the 〈Escape〉 key code as such. Since
non-alphabetical keys have no effect while browsing through the menus, if you’re
forced to use 〈Escape〉 as menu activator you can press, for instance, ‘,’ just after it
to speed up the menu activation (note that ‘:’ would not work, because it would
activate the command line). Alternatively, you can just type 〈Escape〉 twice in a row.

Use turbo mode for lengthy operations.
Turbo mode (see Section 4.9.13 [Turbo], page 42) allows performing very complex
operations without updating the screen until the operations are complete. This can
be a major plus if you are editing very long files, or if your terminal is slow. If the
default value (0, which means twice the number of visible rows) does not give you
the best results, experiment other values.

Regular expressions are powerful, and slow.
Regular expressions must be studied very carefully. If you spend a lot of time doing
editing, it is definitely reasonable to study even their most esoteric features. Very
complex editing actions can be performed by a single find/replace using the \n
convention. But remember always that regular expressions are much slower than a
normal search: in particular, if you use them on a UTF-8 text, ne has to transform
them into an equivalent (but more complex) expression that cannot match partially
a UTF-8 sequence, and this expansion makes the search even slower.

58 ne’s manual

Use the correct movement commands in a macro.
Many boring, repetitive editing actions can be performed in a breeze by recording
them the first time. Remember, however, that while recording a complex macro
you should always use a cursor movement that will apply in a different context. For
instance, if you are copying a word, you cannot move with cursor keys, because that
word at another application of the macro could be of a different length. Rather, use
the next/previous word keys and the MoveEOW command, which guarantee a correct
behaviour in all situations.

Some preferences can be preserved even with automatic preferences.
When you save an autoprefs file, the file simply contains a macro that, when exe-
cuted, produces the current configuration. However, you could want, for instance,
to never change the insert/overwrite state. In this case, just edit the autoprefs files
with ne and delete the line containing the command setting the insert flag. When
the autoprefs are loaded later, the insert flag will be left untouched. This trick is
particularly useful with the StatusBar and FastGUI commands.

If some keystrokes do not work, check for system-specific features.
Sometimes it can happen that a keystroke does not work—for instance, 〈Control〉-
O does not open a file. This usually is due to the kernel tracking that key for
its purposes. For instance, along a telnet connection with xon/xoff flow control,
〈Control〉-S and 〈Control〉-Q would block and release the output instead of saving and
quitting.
In these cases, if you do not need the system feature you should check how to
disable it: for instance, some bsd-like systems feature a delayed suspend signal
that is not in the posix standard, and thus cannot be disabled by ne. On hp-ux,
the command ‘stty dsusp ^-’ would disable the signal, and would let the control
sequence previously assigned to it to run up to ne.
Another example is the NCSA Telnet software for the Macintosh. Unless you modify
your settings in such a way to disable 〈Control〉-S and 〈Control〉-Q as flow controllers,
you will not be able to use them as keystrokes (even if ne is doing all it can to
explain to the software that it does not need xon/xoff flow control. . .).

Chapter 7: Motivations and Design 59

7 Motivations and Design

In this chapter I will try to outline the rationale behind ne’s design choices. Moreover, some
present, voluntary limitations of the current implementation will be described. The intended
audience of such a description is the programmer wanting to hack up ne’s sources, or the informed
user wanting to deepen his knowledge of the limitations.

The design goal of ne was to write an editor that is easy to use at first sight, powerful, and
completely configurable. Making ne run on any terminal that vi could handle was also a basic
issue, because there is no use getting accustomed to a new tool if you cannot use it when you
really need it. Finally, using resources sparingly was considered essential.

ne has no concept of mode. All shortcuts are defined by a single key, possibly with a modifier
(such as 〈Control〉 or 〈Meta〉). Modality is in my opinion a Bad Thing unless it has a very clear
visual feedback. As an example, menus are a form of modality. After entering the menus, the
alphabetic keys and the navigation keys have a different meaning. But the modality is clearly
reflected by a change in the user interface. The same can be said about the input line, because
it is always preceeded by a (possibly highlighted) prompt ending with a colon.

ne has no sophisticated visual updating system similar to, for instance, the one of curses. All
updating is done while manipulating the text, and only if the turbo flag is set can some iterated
operations delay the update. (In this case, ne keeps track in a very rough way of the part of the
screen that changed.) Moreover, the output is not preempted by additional input coming in, so
that along a slow connection the output could not keep up with the input. However, along fast
connections, the responsiveness of the editor is greatly enhanced by the direct update. Moreover,
a great deal of memory and computational power is gained, because it is not necessary to keep
two copies of the screen constantly updated, and to compare them whenever doing an update.
As it is typical in ne, when such design tradeoffs arise, preference is given to the solution that
is effective on a good part of the existing hardware and will be very effective on most future
hardware.

ne uses a particular scheme for handling text. There is a doubly linked list of line descriptors
that contain pointers to each line of text. The lines themselves are kept in a list of pools, which
is expanded and reduced dynamically. The interesting thing is that for each pool ne keeps track
just of the first and of the last character used. A character is free iff it containes a null, so there
is no need for a list of free chunks. The point is that the free characters lying between that first
and the last used characters (the lost characters) can only be allocated locally : whenever a line
has to grow in length, ne first checks if there are enough free characters around it. Otherwise,
it remaps the line elsewhere. Since editing is essentially a local activity, the number of such lost
characters remains very low. And the manipulation of a line is extremely fast and independent of
the size of the file, which can be very huge. A mathematical analysis of the space/time tradeoff
is rather difficult, but empirical evidence suggests that the idea works.

ne takes the posix standard as the basis for un*x compatibility. The fact that this standard
has been designed by a worldwide recognized and impartial organization such as ieee makes it in
my opinion the most interesting effort in its league. No attempt is made to support ten thousand
different versions and releases by using conditional compilation. Very few assumptions are made
about the behaviour of the system calls. This has obvious advantages in terms of code testing,
maintenance, and reliability. For the same reasons, the availability of an ansi C compiler is
assumed.

If the system has a terminfo database and the related functions (which are usually contained
in curses library), ne will use them. The need for a terminal capability database is clear, and
the choice of terminfo (with respect to termcap) is compulsory if you want to support a series of
features (such as more than ten function keys) that termcap lacks. If terminfo is not available,
ne can use a termcap database, or, as a last resort, a built-in set of ANSI control sequences.
Some details about this can be found in Chapter 11 [Portability Problems], page 67.

60 ne’s manual

ne does not allow redefinition of the 〈Escape〉, 〈Tab〉 and 〈Return〉 keys, and of the interrupt
character 〈Control〉-\. This decision has been made mainly for two reasons. First of all, it is
necessary to keep a user from transforming ne’s bindings to such a point that another unaware
user cannot work with it. These two keys and the alphabetic keys allow activating any command
without any further knowledge of the key bindings, so it seems to me this is a good choice. As a
second point, the 〈Escape〉 key usage should generally be avoided. The reason is that most escape
sequences that are produced by special keys start with the escape character. When 〈Escape〉
is pressed, ne has to wait for one second (this timing can be changed with the EscapeTime
command), just to be sure that it did not receive the first character of an escape sequence. This
makes the response of the key very slow, unless it is immediately followed by another key such
as ‘:’, or by 〈Escape〉, again. See Chapter 6 [Hints and Tricks], page 57.

Note that, as has been stated several times, the custom key bindings also work when doing
a long input, navigating through the menus or browsing the requester. However, this is only
partially true. To keep the code size and complexity down, in these cases ne recognizes only
direct bindings to commands, and discards the arguments. Thus, for instance, if a key is bound
to the command line ‘LineUp 2’, it will act like ‘LineUp’, while a binding to ‘Macro MoveItUp’
would produce no result. Of course full binding capability is available while writing text. (This
limitation will probably be lifted in a future version: presently it does not seem to limit seriously
the configurability of ne.)

ne has some restrictions in its terminal handling. It does not support highlighting on ter-
minals that use a magic cookie. Supporting such terminals correctly is a royal pain, and I did
not have any means of testing the code anyway. Moreover, they are rather obsolete. Another
lack of support is for the capability strings that specify a file to print or a program to launch in
order to initialize the terminal.

The macro capabilities of ne are rather limited. For instance, you cannot give an argument
to a macro: macros are simply scripts that can be played back automatically. This makes
them very useful for everyday use in a learn/play context, but rather inflexible for extending
the capabilities of the editor. However, it is not reasonable to incorporate in an editor an
interpreter for a custom language. Rather, a systemwide macro language should control the
editor via interprocess communication. This is the way of the REXX language, and it is likely
that future versions of ne will support optionally macros written in REXX.

ne has been written with sparing resource use as a basic goal. Every possible effort has
been made to reduce the use of cpu time and memory, and the number of system calls. For
instance, command parsing is done through hash techniques, and the escape sequence analysis
uses the order structure of strings for minimizing the number of comparisons. The optimal cursor
motion functions were directly copied from emacs. No busy polling is allowed. Doubly headed,
doubly linked lists allow for very fast list operations without any special case whatsoever. The
search algorithm is a version of the Boyer-Moore algorithm that provides high performance with
a minimal setup time. An effort has been taken to move to the text segment all data that
do not change during the program execution. When the status bar is switched off, additional
optimizations reduce the cursor movement to the minimum.

A word should be said about lists. Clearly, handling the text as a single block with an insertion
gap (a la emacs) allows you to gain some memory. However, the management of the text as a
linked list requires much less cpu time, and the tradeoff seems to be particularly favorable on
virtual memory systems, where moving the insertion gap can require a lot of accesses to different
pages.

In practice, ne occupies less memory than any memory-based editor we are aware of. (Of
course, this does not take into account some sophisticated features of ne, such as unlimited
undo/redo, which can cause a major memory consumption.)

Chapter 8: The Encoding Mess 61

8 The Encoding Mess

The original ne handled 8-bit text files, and assumed that every byte coming from the key-
board could be output to the terminal. No other assumption was made—for instance, the
up/down casing functions did not assume a particular encoding for non-US-ASCII characters.
This choice had a significant advantage: ne could handle easily several different encodings, with
minor nuisances for the end user.

Since version 1.30, ne supports UTF-8. It can use UTF-8 for its input/output, and it can also
interpret one of his buffers as containing UTF-8 encoded text, acting accordingly. Note that the
buffer content is actual UTF-8 text—ne does not use wide characters. As a positive side-effect,
ne can support fully the ISO-10646 standard, but nonetheless non-UTF-8 texts occupy exactly
one byte per character.

More precisely, any piece of text in ne is classified as US-ASCII, 8-bit or UTF-8. A US-
ASCII text contains only US-ASCII characters. An 8-bit text sports a one-to-one correspondence
between characters and bytes, whereas an UTF-8 text is interpreted in UTF-8. Of course, this
rises a difficult question: when should a buffer be classified as UTF-8?

Character encodings are a mess. There is nothing we can do to change this fact, as character
encodings are metadata that modify data semantics. The same file may represent different texts
of different lengths when interpreted with different encodings. Thus, there is no safe way of
guessing the encoding of a file.

ne stays on the safe side: it will never try to convert a file from an encoding to another one.
It can, however, interpret data contained in a buffer depending on an encoding: in other words,
encodings are truly treated as metadata. You can switch off UTF-8 at any time, and see the
same buffer as a standard 8-bit file.

Moreover, ne uses a lazy approach to the problem: first of all, unless the UTF-8 automatic
detection flag is set (see Section 4.9.26 [UTF8Auto], page 45), no attempt is ever made to
consider a file as UTF-8 encoded. Every file, clip, command line, etc., is firstly scanned for non-
US-ASCII characters: if it is entirely made of US-ASCII characters, it is classified as US-ASCII.
An US-ASCII piece of text is compatible with anything else—it may be pasted in any buffer, or,
if it is a buffer, it may accept any form of text. Buffers classified as US-ASCII are distinguished
by an ‘A’ on the status bar.

As soon as a user action forces a choice of encoding (e.g., an accented character is typed, or
an UTF-8-encoded clip is pasted), ne fixes the mode to 8-bit or UTF-8 (when there is a choice,
this depends on the value of the Section 4.9.26 [UTF8Auto], page 45 flag). Of course, in some
cases this may be impossible, and in that case an error will be reported.

All this happens behind the scenes, and it is designed so that in 99% of the cases there is no
need to think of encodings. In any case, should not ne behaviour match your needs, you can
always change at run time the level of UTF-8 support.

62 ne’s manual

Chapter 9: Some Notes for the Amiga User 63

9 Some Notes for the Amiga User

This section describes the differences between the Amiga and un*x versions of ne, and some
of the misfeatures inherited by its un*xish design.

Of course, the Amiga user will find ne much less attractive than un*x users will. There are
several excellent editors for the Amiga, and ne lacks many powerful features that Amiga users
are now accustomed to. However, for very special uses, such as editing through a serial terminal
connected to the AUX: device, ne is the only choice, since it runs in any CLI (even in remote
ones). Of course, a correct installation of aterminfo (the Amiga terminfo clone) is a basic
requirement.

To keep maintenance of the code simple, conditional code was avoided when possible. Thus,
some features had to be dropped. First of all, there is no interrupt character. This happens
because the Amiga handles signals in a way very different from un*x, and it would have been
very complex to reproduce the original behaviour.

In the file requester, it is not possible to obtain a list of the available devices. Indeed, it is
not even possible to pass from a device to another inside the requester. You have to escape, then
input manually the device name as a file name (which will produce a spurious error) and open
again: this time, the device scanned by the requester will be the new one. Another alternative,
of course, is simply to input a complete pathname.

ne will not behave particularly well under low memory conditions. It won’t crash, but it
could behave improperly.

The ‘$HOME’ (a.k.a ‘~’) directory has no meaning on the Amiga: rather, the ‘PROGDIR:’
directory is used. For instance, the ‘~/.ne’ directory is really ‘PROGDIR:.ne’.

64 ne’s manual

Chapter 10: History 65

10 History

The main inspiration for this work came from Martin Taillefer’s TurboText for the Amiga,
which is the best editor I ever saw on any computer.

The first versions of ne were created on an Amiga 3000T, using the port of the curses library
by Simon John Raybould. After switching to the lower-level terminfo library, the development
continued under un*x. Finally, I ported terminfo to the Amiga, thus making it possible to
develop on that platform again. For ne 1.0, an effort has been made to provide a terminfo
emulation using GNU’s termcap. The development eventually moved to Linux.

Todd Lewis got involved with ne when the University of North Carolina’s Chapel Hill campus
migrated its central research computers from mvs to unix in 1995. The readily available unix
editors had serious weaknesses in their user interfaces, especially from the standpoint of mvs
users who were not too excited about having to move their projects to another platform while
learning an entirely new suite of tools. ne offered an easily understood interface with enough
capabilities to keep these new unix users productive. Todd installed and has maintained unix
at UNC since then, making several improvements to the code to meet his users’ needs. In early
1999 his code base and mine were merged to become version 1.17.

66 ne’s manual

Chapter 11: Portability Problems 67

11 Portability Problems

This chapter is devoted to the description of the (hopefully very few) problems that could
arise when porting ne to other flavours of un*x.

The fact that only posix calls have been used (see Chapter 7 [Motivations and Design],
page 59) should guarantee that on posix-compliant systems a recompilation should suffice.
Unfortunately, terminfo has not been standardized by ieee, so that different calls could be
available. The necessary calls are setupterm(), tparm() and tputs(). The other terminfo
functions are never used.

If terminfo is not available, the source files ‘info2cap.c’ and ‘info2cap.h’ map terminfo
calls on termcap calls. The complete GNU termcap sources are distributed with ne, so no
library at all is needed to use them. You just have to compile using one of the options explained
in the ‘makefile’ and in the ‘README’. Should you need comprehensive information on GNU
termcap, you can find the distribution files on any ftp site that distributes the GNU archives.
I should note that the GNU termcap manual is definitely the best manual ever written about
terminal databases.

There are, however, some details that are not specified by posix, or are specified with insuf-
ficient precision. The places of the source where such details come to the light are evidenced by
the ‘PORTABILITY PROBLEM’ string, which is followed by a complete explanation of the problem.

For instance, there is no standard way of printing extended ascii characters (i.e., characters
whose code is smaller than 32 or greater than 126). On many system, these characters have
to be filtered and replaced with something printable: the default behaviour is to add 64 to all
characters under 32 (so that control characters will translate to the respective letter) and to
visualize all characters between 126 and 160 as a question mark (this works particularly well
with ISO Latin 1). If your system has a more powerful display, you may want to change the
de_control() function defined in ‘term.c’ that takes a character variable as an argument, and
transforms it into a printable character.

Note that it is certainly possible that some system features not standardized by posix in-
terfere with ne’s use of the I/O stream. Such problems should be dealt with locally by using
the system facilities rather than by horribly #ifdef’ing the source code. An example is given
in Chapter 6 [Hints and Tricks], page 57.

68 ne’s manual

Chapter 12: Acknowledgments 69

12 Acknowledgments

A lot of people contributed to this project. Part of the code comes from the emacs sources.
Many people, in particular at the silab (the Milan University Computer Science Department
Laboratory), helped in beta testing the first versions.

Comments, complaints, desiderata are welcome.
Sebastiano Vigna
Via California 22
I-20144 Milano MI
Italia

vigna@dsi.unimi.it

Todd M. Lewis
ATN Computing Systems
08 Phillips Hall, CB# 3455
University of North Carolina
Chapel Hill, NC 27599-3455
USA

utoddl@email.unc.edu

70 ne’s manual

Command Index 71

Command Index

A
About . 52
AdjustView . 49
AutoIndent . 38
AutoPrefs . 39

B
Backspace . 51
Beep . 52
Binary . 39

C
Capitalize . 37
CaseSearch . 33
Center . 36
Clear . 27
ClipNumber . 30
CloseDoc . 28
Copy . 29
CRLF . 43
Cut . 29

D
DeleteChar . 51
DeleteEOL . 52
DeleteLine . 51
DoUndo . 36

E
Erase . 30
Escape . 53
EscapeTime . 41
Exec . 52
Exit . 27

F
FastGUI . 40
Find . 31
FindRegExp . 31
Flags . 39
Flash. 52
FreeForm . 40

G
GotoBookmark . 50
GotoColumn . 47
GotoLine . 47
GotoMark . 47

H
Help . 53
HexCode . 41

I
Insert . 40
InsertChar . 50
InsertLine . 51
InsertString . 51

L
LineDown . 46
LineUp . 46
LoadAutoPrefs . 44
LoadPrefs . 44

M
Macro . 34
Mark . 28
MarkVert . 29
MatchBracket . 33
Modified . 45
MoveBOS . 48
MoveEOF . 48
MoveEOL . 48
MoveEOW . 49
MoveIncDown . 49
MoveIncUp . 49
MoveLeft . 46
MoveRight . 46
MoveSOF . 49
MoveSOL . 48
MoveTOS . 48

N
NewDoc . 27
NextDoc . 28
NextPage . 47
NextWord . 48
NoFileReq . 40
NOP . 53

O
Open . 26
OpenClip . 30
OpenMacro . 34
OpenNew. 26

P
PageDown . 48
PageUp . 47
Paragraph . 37
Paste. 29
PasteVert. 29
Play . 34
PopPrefs . 43
PreserveCR . 42
PrevDoc . 28
PrevPage . 47

72 ne’s manual

PrevWord . 48
PushPrefs . 43

Q
Quit . 27

R
ReadOnly . 41
Record . 33
Redo . 36
Refresh . 53
RepeatLast . 32
Replace . 31
ReplaceAll . 32
ReplaceOnce . 32
RightMargin . 37

S
Save . 26
SaveAs . 27
SaveAutoPrefs . 44
SaveClip. 30
SaveDefPrefs . 45
SaveMacro . 35
SavePrefs . 44
SearchBack . 33
SelectDoc . 28

SetBookmark . 50
StatusBar . 41
Suspend . 53
System . 53

T
TabSize . 42
Through . 30
ToggleSEOF . 50
ToggleSEOL . 50
ToLower . 37
ToUpper . 37
Turbo . 42

U
UndelLine . 36
Undo . 35
UnloadMacros . 35
UTF8 . 45
UTF8Auto . 45
UTF8IO . 46

V
VerboseMacros . 42

W
WordWrap . 38

Concept Index 73

Concept Index

A
Amiga . 63, 65

Arguments . 11

Automatic preferences. 6, 22

B
Binary files . 8, 39

Block operations . 5

Bookmarks . 8

Buffer . 3

C
Caching a macro . 7

Clip usage . 5

Closing a document . 4

Command arguments . 25

Command line . 3, 14

Commands . 25

Configuring the keyboard . 55

Configuring the menus . 56

Control key . 3

curses . 59

D
Deleting characters . 5

Deleting lines . 5

Document . 3

E
Emergency Save . 23

Escape conventions . 25

Escape usage . 57

Escaping an input . 13

Executing a macro . 7

Executing uni*x commands . 8

Exiting . 4

F
Fast GUI . 11

Features . 1

File . 3

File name completion . 13

File requester . 4, 8, 14

Flags . 6, 25

H
Help requester . 14

I
Immediate input . 13
Input line . 13
Insert mode . 6
Interrupt character. 7, 59
Interrupting a macro . 7
Interrupting directory scanning 14
ISO-8859 family . 61
ISO-8859-1 . 61

K
Key bindings . 55
Keyboard usage . 3

L
Line and column numbers . 11
LITHP . 1
Loading a file . 4
Long input . 13
Long names . 25

M
Macro definition . 7
Magic cookie terminals . 59
Menu bar . 3
Menu usage . 3
Menus . 15
Meta key . 3, 55, 57
Mode . 59
MS-DOS files . 8
Multiple documents . 5

O
Opening a file . 4

P
Portability . 67
POSIX . 1, 59, 67
Preferences . 6
Printable characters . 67

Q
Quitting . 4
Quoting conventions . 25

R
Recording a macro . 7
Regular Expressions . 19
Repeating actions . 25
Requester . 14
Resource usage. 59

74 ne’s manual

S
Saving a file . 4
Saving a macro . 7
Setting configuration file names 11
Short names . 25
Shortcuts . 3
Shortcuts not working . 57
Skipping configuration files . 11
Startup macro . 11
Status bar . 3, 11

T
termcap . 1, 59, 67
terminfo . 1, 59, 67
Turbo adjustment . 57

TurboText . 65

U
Undeleting lines . 5
Unloading macros . 7
UTF-8 . 61
UTF-8 support. 8
UTF-8 Support . 23

V
vi . 1

W
Writing a file . 4

i

Table of Contents

1 Introduction . 1

2 Basics . 3
2.1 Terminology . 3
2.2 Starting . 3
2.3 Loading and Saving . 4
2.4 Editing . 5
2.5 Basic Preferences . 6
2.6 Basic Macros . 7
2.7 More Advanced Features . 8

2.7.1 UTF-8 support . 8
2.7.2 Bookmarks . 8
2.7.3 MS-DOS files . 9
2.7.4 Binary files . 9
2.7.5 File requester . 9
2.7.6 Executing un*x commands . 9
2.7.7 Advanced key bindings . 9

3 Reference . 11
3.1 Arguments . 11
3.2 The Status Bar . 11
3.3 The Input Line . 12
3.4 The Command Line . 14
3.5 The Requester . 14
3.6 Menus . 14

3.6.1 File . 15
3.6.2 Documents . 15
3.6.3 Edit . 15
3.6.4 Search . 16
3.6.5 Macros. 17
3.6.6 Extras . 17
3.6.7 Navigation . 18
3.6.8 Prefs . 18

3.7 Regular Expressions . 19
3.7.1 Syntax . 19
3.7.2 Replacing regular expressions . 22

3.8 Automatic Preferences . 22
3.9 Emergency Save . 23
3.10 UTF-8 Support . 23

ii ne’s manual

4 Commands . 25
4.1 General Guidelines . 25
4.2 File Commands . 26

4.2.1 Open . 26
4.2.2 OpenNew . 26
4.2.3 Save . 26
4.2.4 SaveAs . 26

4.3 Document Commands . 27
4.3.1 Quit . 27
4.3.2 Exit . 27
4.3.3 NewDoc . 27
4.3.4 Clear . 27
4.3.5 CloseDoc . 27
4.3.6 NextDoc . 28
4.3.7 PrevDoc . 28
4.3.8 SelectDoc . 28

4.4 Clip Commands . 28
4.4.1 Mark . 28
4.4.2 MarkVert . 29
4.4.3 Copy . 29
4.4.4 Cut . 29
4.4.5 Paste . 29
4.4.6 PasteVert . 29
4.4.7 Erase . 29
4.4.8 OpenClip . 30
4.4.9 SaveClip . 30
4.4.10 ClipNumber . 30
4.4.11 Through . 30

4.5 Search Commands . 30
4.5.1 Find . 31
4.5.2 FindRegExp . 31
4.5.3 Replace . 31
4.5.4 ReplaceOnce . 32
4.5.5 ReplaceAll . 32
4.5.6 RepeatLast . 32
4.5.7 MatchBracket . 32
4.5.8 SearchBack . 33
4.5.9 CaseSearch . 33

4.6 Macros Commands . 33
4.6.1 Record . 33
4.6.2 Play . 34
4.6.3 Macro . 34
4.6.4 OpenMacro . 34
4.6.5 SaveMacro . 35
4.6.6 UnloadMacros . 35

4.7 Undo Commands . 35
4.7.1 Undo . 35
4.7.2 Redo . 35
4.7.3 UndelLine . 36
4.7.4 DoUndo. 36

4.8 Formatting Commands . 36
4.8.1 Center . 36
4.8.2 Paragraph . 36
4.8.3 ToUpper . 37

iii

4.8.4 ToLower . 37
4.8.5 Capitalize . 37
4.8.6 RightMargin . 37
4.8.7 WordWrap . 38
4.8.8 AutoIndent . 38

4.9 Preferences Commands . 38
4.9.1 Flags . 38
4.9.2 AutoPrefs . 39
4.9.3 Binary . 39
4.9.4 Insert . 40
4.9.5 FastGUI . 40
4.9.6 FreeForm . 40
4.9.7 NoFileReq . 40
4.9.8 StatusBar . 41
4.9.9 HexCode . 41
4.9.10 ReadOnly . 41
4.9.11 EscapeTime . 41
4.9.12 TabSize . 41
4.9.13 Turbo . 42
4.9.14 VerboseMacros . 42
4.9.15 PreserveCR . 42
4.9.16 CRLF . 43
4.9.17 PushPrefs . 43
4.9.18 PopPrefs . 43
4.9.19 LoadPrefs . 44
4.9.20 SavePrefs . 44
4.9.21 LoadAutoPrefs . 44
4.9.22 SaveAutoPrefs . 44
4.9.23 SaveDefPrefs . 44
4.9.24 Modified . 45
4.9.25 UTF8 . 45
4.9.26 UTF8Auto . 45
4.9.27 UTF8IO . 45

4.10 Navigation Commands . 46
4.10.1 MoveLeft . 46
4.10.2 MoveRight . 46
4.10.3 LineUp . 46
4.10.4 LineDown . 46
4.10.5 GotoLine. 46
4.10.6 GotoColumn . 47
4.10.7 GotoMark . 47
4.10.8 PrevPage . 47
4.10.9 NextPage . 47
4.10.10 PageUp . 47
4.10.11 PageDown . 47
4.10.12 PrevWord . 48
4.10.13 NextWord . 48
4.10.14 MoveEOL . 48
4.10.15 MoveSOL . 48
4.10.16 MoveTOS . 48
4.10.17 MoveBOS . 48
4.10.18 MoveEOF . 48
4.10.19 MoveSOF . 48
4.10.20 MoveEOW . 49

iv ne’s manual

4.10.21 MoveIncUp . 49
4.10.22 MoveIncDown . 49
4.10.23 AdjustView . 49
4.10.24 ToggleSEOF . 49
4.10.25 ToggleSEOL . 50
4.10.26 SetBookmark . 50
4.10.27 GotoBookmark . 50

4.11 Editing Commands . 50
4.11.1 InsertChar . 50
4.11.2 InsertString . 51
4.11.3 DeleteChar . 51
4.11.4 Backspace . 51
4.11.5 InsertLine . 51
4.11.6 DeleteLine . 51
4.11.7 DeleteEOL . 51

4.12 Support Commands . 52
4.12.1 About . 52
4.12.2 Beep . 52
4.12.3 Exec . 52
4.12.4 Flash . 52
4.12.5 Help . 52
4.12.6 NOP . 53
4.12.7 Refresh . 53
4.12.8 Suspend . 53
4.12.9 System . 53
4.12.10 Escape . 53

5 Configuration . 55
5.1 Key Bindings . 55
5.2 Changing Menus . 56

6 Hints and Tricks . 57

7 Motivations and Design. 59

8 The Encoding Mess . 61

9 Some Notes for the Amiga User . 63

10 History . 65

11 Portability Problems . 67

12 Acknowledgments . 69

Command Index . 71

Concept Index . 73

	Introduction
	Basics
	Terminology
	Starting
	Loading and Saving
	Editing
	Basic Preferences
	Basic Macros
	More Advanced Features
	UTF-8 support
	Bookmarks
	MS-DOS files
	Binary files
	File requester
	Executing un*x commands
	Advanced key bindings

	Reference
	Arguments
	The Status Bar
	The Input Line
	The Command Line
	The Requester
	Menus
	File
	Documents
	Edit
	Search
	Macros
	Extras
	Navigation
	Prefs

	Regular Expressions
	Syntax
	Replacing regular expressions

	Automatic Preferences
	Emergency Save
	UTF-8 Support

	Commands
	General Guidelines
	File Commands
	Open
	OpenNew
	Save
	SaveAs

	Document Commands
	Quit
	Exit
	NewDoc
	Clear
	CloseDoc
	NextDoc
	PrevDoc
	SelectDoc

	Clip Commands
	Mark
	MarkVert
	Copy
	Cut
	Paste
	PasteVert
	Erase
	OpenClip
	SaveClip
	ClipNumber
	Through

	Search Commands
	Find
	FindRegExp
	Replace
	ReplaceOnce
	ReplaceAll
	RepeatLast
	MatchBracket
	SearchBack
	CaseSearch

	Macros Commands
	Record
	Play
	Macro
	OpenMacro
	SaveMacro
	UnloadMacros

	Undo Commands
	Undo
	Redo
	UndelLine
	DoUndo

	Formatting Commands
	Center
	Paragraph
	ToUpper
	ToLower
	Capitalize
	RightMargin
	WordWrap
	AutoIndent

	Preferences Commands
	Flags
	AutoPrefs
	Binary
	Insert
	FastGUI
	FreeForm
	NoFileReq
	StatusBar
	HexCode
	ReadOnly
	EscapeTime
	TabSize
	Turbo
	VerboseMacros
	PreserveCR
	CRLF
	PushPrefs
	PopPrefs
	LoadPrefs
	SavePrefs
	LoadAutoPrefs
	SaveAutoPrefs
	SaveDefPrefs
	Modified
	UTF8
	UTF8Auto
	UTF8IO

	Navigation Commands
	MoveLeft
	MoveRight
	LineUp
	LineDown
	GotoLine
	GotoColumn
	GotoMark
	PrevPage
	NextPage
	PageUp
	PageDown
	PrevWord
	NextWord
	MoveEOL
	MoveSOL
	MoveTOS
	MoveBOS
	MoveEOF
	MoveSOF
	MoveEOW
	MoveIncUp
	MoveIncDown
	AdjustView
	ToggleSEOF
	ToggleSEOL
	SetBookmark
	GotoBookmark

	Editing Commands
	InsertChar
	InsertString
	DeleteChar
	Backspace
	InsertLine
	DeleteLine
	DeleteEOL

	Support Commands
	About
	Beep
	Exec
	Flash
	Help
	NOP
	Refresh
	Suspend
	System
	Escape

	Configuration
	Key Bindings
	Changing Menus

	Hints and Tricks
	Motivations and Design
	The Encoding Mess
	Some Notes for the Amiga User
	History
	Portability Problems
	Acknowledgments
	Command Index
	Concept Index

