pyspark.pandas.groupby.GroupBy.sem¶
-
GroupBy.
sem
(ddof: int = 1) → FrameLike[source]¶ Compute standard error of the mean of groups, excluding missing values.
New in version 3.4.0.
- Parameters
- ddofint, default 1
Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements.
Examples
>>> df = ps.DataFrame({"A": [1, 2, 1, 1], "B": [True, False, False, True], ... "C": [3, None, 3, 4], "D": ["a", "b", "b", "a"]})
>>> df.groupby("A").sem() B C A 1 0.333333 0.333333 2 NaN NaN
>>> df.groupby("D").sem(ddof=1) A B C D a 0.0 0.0 0.5 b 0.5 0.0 NaN
>>> df.B.groupby(df.A).sem() A 1 0.333333 2 NaN Name: B, dtype: float64