pyspark.sql.DataFrameReader.load¶
-
DataFrameReader.
load
(path: Union[str, List[str], None] = None, format: Optional[str] = None, schema: Union[pyspark.sql.types.StructType, str, None] = None, **options: OptionalPrimitiveType) → DataFrame[source]¶ Loads data from a data source and returns it as a
DataFrame
.New in version 1.4.0.
Changed in version 3.4.0: Supports Spark Connect.
- Parameters
- pathstr or list, optional
optional string or a list of string for file-system backed data sources.
- formatstr, optional
optional string for format of the data source. Default to ‘parquet’.
- schema
pyspark.sql.types.StructType
or str, optional optional
pyspark.sql.types.StructType
for the input schema or a DDL-formatted string (For examplecol0 INT, col1 DOUBLE
).- **optionsdict
all other string options
Examples
Load a CSV file with format, schema and options specified.
>>> import tempfile >>> with tempfile.TemporaryDirectory() as d: ... # Write a DataFrame into a CSV file with a header ... df = spark.createDataFrame([{"age": 100, "name": "Hyukjin Kwon"}]) ... df.write.option("header", True).mode("overwrite").format("csv").save(d) ... ... # Read the CSV file as a DataFrame with 'nullValue' option set to 'Hyukjin Kwon', ... # and 'header' option set to `True`. ... df = spark.read.load( ... d, schema=df.schema, format="csv", nullValue="Hyukjin Kwon", header=True) ... df.printSchema() ... df.show() root |-- age: long (nullable = true) |-- name: string (nullable = true) +---+----+ |age|name| +---+----+ |100|NULL| +---+----+